Sample records for specific target organs

  1. Differences in DNA Binding Specificity of Floral Homeotic Protein Complexes Predict Organ-Specific Target Genes.

    PubMed

    Smaczniak, Cezary; Muiño, Jose M; Chen, Dijun; Angenent, Gerco C; Kaufmann, Kerstin

    2017-08-01

    Floral organ identities in plants are specified by the combinatorial action of homeotic master regulatory transcription factors. However, how these factors achieve their regulatory specificities is still largely unclear. Genome-wide in vivo DNA binding data show that homeotic MADS domain proteins recognize partly distinct genomic regions, suggesting that DNA binding specificity contributes to functional differences of homeotic protein complexes. We used in vitro systematic evolution of ligands by exponential enrichment followed by high-throughput DNA sequencing (SELEX-seq) on several floral MADS domain protein homo- and heterodimers to measure their DNA binding specificities. We show that specification of reproductive organs is associated with distinct binding preferences of a complex formed by SEPALLATA3 and AGAMOUS. Binding specificity is further modulated by different binding site spacing preferences. Combination of SELEX-seq and genome-wide DNA binding data allows differentiation between targets in specification of reproductive versus perianth organs in the flower. We validate the importance of DNA binding specificity for organ-specific gene regulation by modulating promoter activity through targeted mutagenesis. Our study shows that intrafamily protein interactions affect DNA binding specificity of floral MADS domain proteins. Differential DNA binding of MADS domain protein complexes plays a role in the specificity of target gene regulation. © 2017 American Society of Plant Biologists. All rights reserved.

  2. Screening phage display libraries for organ-specific vascular immunotargeting in vivo

    PubMed Central

    Valadon, Philippe; Garnett, Jeff D.; Testa, Jacqueline E.; Bauerle, Marc; Oh, Phil; Schnitzer, Jan E.

    2006-01-01

    The molecular diversity of the luminal endothelial cell surface arising in vivo from local variations in genetic expression and tissue microenvironment may create opportunities for achieving targeted molecular imaging and therapies. Here, we describe a strategy to identify probes and their cognate antigens for targeting vascular endothelia of specific organs in vivo. We differentially screen phage libraries to select organ-targeting antibodies by using luminal endothelial cell plasma membranes isolated directly from tissue and highly enriched in natively expressed proteins exposed to the bloodstream. To obviate liver uptake of intravenously injected phage, we convert the phage-displayed antibodies into scFv-Fc fusion proteins, which then are able to rapidly target select organ(s) in vivo as visualized directly by γ-scintigraphic whole-body imaging. Mass spectrometry helps identify the antigen targets. This comprehensive strategy provides new promise for harnessing the power of phage display for mapping vascular endothelia natively in tissue and for achieving vascular targeting of specific tissues in vivo. PMID:16384919

  3. Open-target sparse sensing of biological agents using DNA microarray

    PubMed Central

    2011-01-01

    Background Current biosensors are designed to target and react to specific nucleic acid sequences or structural epitopes. These 'target-specific' platforms require creation of new physical capture reagents when new organisms are targeted. An 'open-target' approach to DNA microarray biosensing is proposed and substantiated using laboratory generated data. The microarray consisted of 12,900 25 bp oligonucleotide capture probes derived from a statistical model trained on randomly selected genomic segments of pathogenic prokaryotic organisms. Open-target detection of organisms was accomplished using a reference library of hybridization patterns for three test organisms whose DNA sequences were not included in the design of the microarray probes. Results A multivariate mathematical model based on the partial least squares regression (PLSR) was developed to detect the presence of three test organisms in mixed samples. When all 12,900 probes were used, the model correctly detected the signature of three test organisms in all mixed samples (mean(R2)) = 0.76, CI = 0.95), with a 6% false positive rate. A sampling algorithm was then developed to sparsely sample the probe space for a minimal number of probes required to capture the hybridization imprints of the test organisms. The PLSR detection model was capable of correctly identifying the presence of the three test organisms in all mixed samples using only 47 probes (mean(R2)) = 0.77, CI = 0.95) with nearly 100% specificity. Conclusions We conceived an 'open-target' approach to biosensing, and hypothesized that a relatively small, non-specifically designed, DNA microarray is capable of identifying the presence of multiple organisms in mixed samples. Coupled with a mathematical model applied to laboratory generated data, and sparse sampling of capture probes, the prototype microarray platform was able to capture the signature of each organism in all mixed samples with high sensitivity and specificity. It was demonstrated that this new approach to biosensing closely follows the principles of sparse sensing. PMID:21801424

  4. Composites for removing metals and volatile organic compounds and method thereof

    DOEpatents

    Coronado, Paul R [Livermore, CA; Coleman, Sabre J [Oakland, CA; Reynolds, John G [San Ramon, CA

    2006-12-12

    Functionalized hydrophobic aerogel/solid support structure composites have been developed to remove metals and organic compounds from aqueous and vapor media. The targeted metals and organics are removed by passing the aqueous or vapor phase through the composite which can be in molded, granular, or powder form. The composites adsorb the metals and the organics leaving a purified aqueous or vapor stream. The species-specific adsorption occurs through specific functionalization of the aerogels tailored towards specific metals and/or organics. After adsorption, the composites can be disposed of or the targeted metals and/or organics can be reclaimed or removed and the composites recycled.

  5. Molecular mechanisms of floral organ specification by MADS domain proteins.

    PubMed

    Yan, Wenhao; Chen, Dijun; Kaufmann, Kerstin

    2016-02-01

    Flower development is a model system to understand organ specification in plants. The identities of different types of floral organs are specified by homeotic MADS transcription factors that interact in a combinatorial fashion. Systematic identification of DNA-binding sites and target genes of these key regulators show that they have shared and unique sets of target genes. DNA binding by MADS proteins is not based on 'simple' recognition of a specific DNA sequence, but depends on DNA structure and combinatorial interactions. Homeotic MADS proteins regulate gene expression via alternative mechanisms, one of which may be to modulate chromatin structure and accessibility in their target gene promoters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Genome organization and characteristics of soybean microRNAs

    PubMed Central

    2012-01-01

    Background microRNAs (miRNAs) are key regulators of gene expression and play important roles in many aspects of plant biology. The role(s) of miRNAs in nitrogen-fixing root nodules of leguminous plants such as soybean is not well understood. We examined a library of small RNAs from Bradyrhizobium japonicum-inoculated soybean roots and identified novel miRNAs. In order to enhance our understanding of miRNA evolution, diversification and function, we classified all known soybean miRNAs based on their phylogenetic conservation (conserved, legume- and soybean-specific miRNAs) and examined their genome organization, family characteristics and target diversity. We predicted targets of these miRNAs and experimentally validated several of them. We also examined organ-specific expression of selected miRNAs and their targets. Results We identified 120 previously unknown miRNA genes from soybean including 5 novel miRNA families. In the soybean genome, genes encoding miRNAs are primarily intergenic and a small percentage were intragenic or less than 1000 bp from a protein-coding gene, suggesting potential co-regulation between the miRNA and its parent gene. Difference in number and orientation of tandemly duplicated miRNA genes between orthologous genomic loci indicated continuous evolution and diversification. Conserved miRNA families are often larger in size and produce less diverse mature miRNAs than legume- and soybean-specific families. In addition, the majority of conserved and legume-specific miRNA families produce 21 nt long mature miRNAs with distinct nucleotide distribution and regulate a more conserved set of target mRNAs compared to soybean-specific families. A set of nodule-specific target mRNAs and their cognate regulatory miRNAs had inverse expression between root and nodule tissues suggesting that spatial restriction of target gene transcripts by miRNAs might govern nodule-specific gene expression in soybean. Conclusions Genome organization of soybean miRNAs suggests that they are actively evolving. Distinct family characteristics of soybean miRNAs suggest continuous diversification of function. Inverse organ-specific expression between selected miRNAs and their targets in the roots and nodules, suggested a potential role for these miRNAs in regulating nodule development. PMID:22559273

  7. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes.

    PubMed

    Burggraf, S; Mayer, T; Amann, R; Schadhauser, S; Woese, C R; Stetter, K O

    1994-09-01

    Two 16S rRNA-targeted oligonucleotide probes were designed for the archaeal kingdoms Euryachaeota and Crenarchaeota. Probe specificities were evaluated by nonradioactive dot blot hybridization against selected reference organisms. The successful application of fluorescent-probe derivatives for whole-cell hybridization required organism-specific optimizations of fixation and hybridization conditions to assure probe penetration and morphological integrity of the cells. The probes allowed preliminary grouping of three new hyperthermophilic isolates. Together with other group-specific rRNA-targeted oligonucleotide probes, these probes will facilitate rapid in situ monitoring of the populations present in hydrothermal systems and support cultivation attempts.

  8. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA.

    PubMed

    Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J

    2013-05-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.

  9. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA

    PubMed Central

    Fox, Rebecca M.; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J.

    2013-01-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously. PMID:23578928

  10. Subcellular Targeting of Methylmercury Lyase Enhances Its Specific Activity for Organic Mercury Detoxification in Plants1

    PubMed Central

    Bizily, Scott P.; Kim, Tehryung; Kandasamy, Muthugapatti K.; Meagher, Richard B.

    2003-01-01

    Methylmercury is an environmental pollutant that biomagnifies in the aquatic food chain with severe consequences for humans and other animals. In an effort to remove this toxin in situ, we have been engineering plants that express the bacterial mercury resistance enzymes organomercurial lyase MerB and mercuric ion reductase MerA. In vivo kinetics experiments suggest that the diffusion of hydrophobic organic mercury to MerB limits the rate of the coupled reaction with MerA (Bizily et al., 2000). To optimize reaction kinetics for organic mercury compounds, the merB gene was engineered to target MerB for accumulation in the endoplasmic reticulum and for secretion to the cell wall. Plants expressing the targeted MerB proteins and cytoplasmic MerA are highly resistant to organic mercury and degrade organic mercury at 10 to 70 times higher specific activity than plants with the cytoplasmically distributed wild-type MerB enzyme. MerB protein in endoplasmic reticulum-targeted plants appears to accumulate in large vesicular structures that can be visualized in immunolabeled plant cells. These results suggest that the toxic effects of organic mercury are focused in microenvironments of the secretory pathway, that these hydrophobic compartments provide more favorable reaction conditions for MerB activity, and that moderate increases in targeted MerB expression will lead to significant gains in detoxification. In summary, to maximize phytoremediation efficiency of hydrophobic pollutants in plants, it may be beneficial to target enzymes to specific subcellular environments. PMID:12586871

  11. Self-organization and progenitor targeting generate stable patterns in planarian regeneration.

    PubMed

    Atabay, Kutay Deniz; LoCascio, Samuel A; de Hoog, Thom; Reddien, Peter W

    2018-04-27

    During animal regeneration, cells must organize into discrete and functional systems. We show that self-organization, along with patterning cues, govern progenitor behavior in planarian regeneration. Surgical paradigms allowed the manipulation of planarian eye regeneration in predictable locations and numbers, generating alternative stable neuroanatomical states for wild-type animals with multiple functional ectopic eyes. We used animals with multiple ectopic eyes and eye transplantation to demonstrate that broad progenitor specification, combined with self-organization, allows anatomy maintenance during regeneration. We propose a model for regenerative progenitors involving (i) migratory targeting cues, (ii) self-organization into existing or regenerating eyes, and (iii) a broad zone, associated with coarse progenitor specification, in which eyes can be targeted by progenitors. These three properties help explain how tissues can be organized during regeneration. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Lung microenvironment promotes the metastasis of human hepatocellular carcinoma cells to the lungs.

    PubMed

    Jin, Yun; Ai, Junhua; Shi, Jun

    2015-01-01

    Cancer metastasis is a highly tissue-specific and organ-selective process. It has been shown that the affected tissues and/or organs play a major role in this complex process. The lung is the most common target organ of extrahepatic hepatocellular carcinoma (HCC) metastasis, but the precise molecular mechanism underlying this organ-specific metastasis remains unclear. We hypothesized that lung microenvironment was able to promote the metastasis of HCC cells to the lungs leading to distant metastases. In support of our hypothesis, we provided evidence from targeted metastasis in various types of cancer and contributing factors in the microenvironment of targeted tissues/organs. A better understanding of the steps involved in the interplay between HCC cells and lung microenvironment may offer new perspectives for the medical management of lung metastases of HCC.

  13. Development of a human-specific B. thetaiotaomicron IMS/ATP assay for measuring viable human contamination in surface waters in Baja California, Mexico

    EPA Science Inventory

    Immunomagnetic separation/adenosine triphosphate (IMS/ATP) assays utilize paramagnetic beads and target-specific antibodies to isolate target organisms. Following isolation, adenosine tri-phosphate (ATP) is extracted from the target population and quantified. An inversely-couple...

  14. Artificial neural network study on organ-targeting peptides

    NASA Astrophysics Data System (ADS)

    Jung, Eunkyoung; Kim, Junhyoung; Choi, Seung-Hoon; Kim, Minkyoung; Rhee, Hokyoung; Shin, Jae-Min; Choi, Kihang; Kang, Sang-Kee; Lee, Nam Kyung; Choi, Yun-Jaie; Jung, Dong Hyun

    2010-01-01

    We report a new approach to studying organ targeting of peptides on the basis of peptide sequence information. The positive control data sets consist of organ-targeting peptide sequences identified by the peroral phage-display technique for four organs, and the negative control data are prepared from random sequences. The capacity of our models to make appropriate predictions is validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC) curve (the ROC score). VHSE descriptor produces statistically significant training models and the models with simple neural network architectures show slightly greater predictive power than those with complex ones. The training and test set statistics indicate that our models could discriminate between organ-targeting and random sequences. We anticipate that our models will be applicable to the selection of organ-targeting peptides for generating peptide drugs or peptidomimetics.

  15. A COL11A1-correlated pan-cancer gene signature of activated fibroblasts for the prioritization of therapeutic targets

    PubMed Central

    Jia, Dongyu; Liu, Zhenqiu; Deng, Nan; Tan, Tuan Zea; Huang, Ruby Yun-Ju; Taylor-Harding, Barbie; Cheon, Dong-Joo; Lawrenson, Kate; Wiedemeyer, Wolf R.; Walts, Ann E.; Karlan, Beth Y.; Orsulic, Sandra

    2016-01-01

    Although cancer-associated fibroblasts (CAFs) are viewed as a promising therapeutic target, the design of rational therapy has been hampered by two key obstacles. First, attempts to ablate CAFs have resulted in significant toxicity because currently used biomarkers cannot effectively distinguish activated CAFs from non-cancer associated fibroblasts and mesenchymal progenitor cells. Second, it is unclear whether CAFs in different organs have different molecular and functional properties that necessitate organ-specific therapeutic designs. Our analyses uncovered COL11A1 as a highly specific biomarker of activated CAFs. Using COL11A1 as a ‘seed’, we identified co-expressed genes in 13 types of primary carcinoma in The Cancer Genome Atlas. We demonstrated that a molecular signature of activated CAFs is conserved in epithelial cancers regardless of organ site and transforming events within cancer cells, suggesting that targeting fibroblast activation should be effective in multiple cancers. We prioritized several potential pan-cancer therapeutic targets that are likely to have high specificity for activated CAFs and minimal toxicity in normal tissues. PMID:27609069

  16. Rotifer rDNA-specific R9 retrotransposable elements generate an exceptionally long target site duplication upon insertion.

    PubMed

    Gladyshev, Eugene A; Arkhipova, Irina R

    2009-12-15

    Ribosomal DNA genes in many eukaryotes contain insertions of non-LTR retrotransposable elements belonging to the R2 clade. These elements persist in the host genomes by inserting site-specifically into multicopy target sites, thereby avoiding random disruption of single-copy host genes. Here we describe R9 retrotransposons from the R2 clade in the 28S RNA genes of bdelloid rotifers, small freshwater invertebrate animals best known for their long-term asexuality and for their ability to survive repeated cycles of desiccation and rehydration. While the structural organization of R9 elements is highly similar to that of other members of the R2 clade, they are characterized by two distinct features: site-specific insertion into a previously unreported target sequence within the 28S gene, and an unusually long target site duplication of 126 bp. We discuss the implications of these findings in the context of bdelloid genome organization and the mechanisms of target-primed reverse transcription.

  17. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2002-12-03

    A process for the selective production and isolation of high specific activity cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  18. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2003-10-28

    A process for the selective production and isolation of high specific activity Cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  19. The Gram-positive model organism Bacillus subtilis does not form microscopically detectable cardiolipin-specific lipid domains.

    PubMed

    Pogmore, Alex-Rose; Seistrup, Kenneth H; Strahl, Henrik

    2018-04-01

    Rather than being homogenous diffusion-dominated structures, biological membranes can exhibit areas with distinct composition and characteristics, commonly termed as lipid domains. Arguably the most comprehensively studied examples in bacteria are domains formed by cardiolipin, which have been functionally linked to protein targeting, the cell division process and the mode of action of membrane-targeting antimicrobials. Cardiolipin domains were originally identified in the Gram-negative model organism Escherichia coli based on preferential staining by the fluorescent membrane dye nonylacridine orange (NAO), and later reported to also exist in other Gram-negative and -positive bacteria. Recently, the lipid-specificity of NAO has been questioned based on studies conducted in E. coli. This prompted us to reanalyse cardiolipin domains in the Gram-positive model organism Bacillus subtilis. Here we show that logarithmically growing B. subtilis does not form microscopically detectable cardiolipin-specific lipid domains, and that NAO is not a specific stain for cardiolipin in this organism.

  20. A high-throughput multiplex method adapted for GMO detection.

    PubMed

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  1. An integrated miRNA functional screening and target validation method for organ morphogenesis.

    PubMed

    Rebustini, Ivan T; Vlahos, Maryann; Packer, Trevor; Kukuruzinska, Maria A; Maas, Richard L

    2016-03-16

    The relative ease of identifying microRNAs and their increasing recognition as important regulators of organogenesis motivate the development of methods to efficiently assess microRNA function during organ morphogenesis. In this context, embryonic organ explants provide a reliable and reproducible system that recapitulates some of the important early morphogenetic processes during organ development. Here we present a method to target microRNA function in explanted mouse embryonic organs. Our method combines the use of peptide-based nanoparticles to transfect specific microRNA inhibitors or activators into embryonic organ explants, with a microRNA pulldown assay that allows direct identification of microRNA targets. This method provides effective assessment of microRNA function during organ morphogenesis, allows prioritization of multiple microRNAs in parallel for subsequent genetic approaches, and can be applied to a variety of embryonic organs.

  2. Hitting the sweet spot-glycans as targets of fungal defense effector proteins.

    PubMed

    Künzler, Markus

    2015-05-06

    Organisms which rely solely on innate defense systems must combat a large number of antagonists with a comparably low number of defense effector molecules. As one solution of this problem, these organisms have evolved effector molecules targeting epitopes that are conserved between different antagonists of a specific taxon or, if possible, even of different taxa. In order to restrict the activity of the defense effector molecules to physiologically relevant taxa, these target epitopes should, on the other hand, be taxon-specific and easily accessible. Glycans fulfill all these requirements and are therefore a preferred target of defense effector molecules, in particular defense proteins. Here, we review this defense strategy using the example of the defense system of multicellular (filamentous) fungi against microbial competitors and animal predators.

  3. Multi-atlas segmentation for abdominal organs with Gaussian mixture models

    NASA Astrophysics Data System (ADS)

    Burke, Ryan P.; Xu, Zhoubing; Lee, Christopher P.; Baucom, Rebeccah B.; Poulose, Benjamin K.; Abramson, Richard G.; Landman, Bennett A.

    2015-03-01

    Abdominal organ segmentation with clinically acquired computed tomography (CT) is drawing increasing interest in the medical imaging community. Gaussian mixture models (GMM) have been extensively used through medical segmentation, most notably in the brain for cerebrospinal fluid / gray matter / white matter differentiation. Because abdominal CT exhibit strong localized intensity characteristics, GMM have recently been incorporated in multi-stage abdominal segmentation algorithms. In the context of variable abdominal anatomy and rich algorithms, it is difficult to assess the marginal contribution of GMM. Herein, we characterize the efficacy of an a posteriori framework that integrates GMM of organ-wise intensity likelihood with spatial priors from multiple target-specific registered labels. In our study, we first manually labeled 100 CT images. Then, we assigned 40 images to use as training data for constructing target-specific spatial priors and intensity likelihoods. The remaining 60 images were evaluated as test targets for segmenting 12 abdominal organs. The overlap between the true and the automatic segmentations was measured by Dice similarity coefficient (DSC). A median improvement of 145% was achieved by integrating the GMM intensity likelihood against the specific spatial prior. The proposed framework opens the opportunities for abdominal organ segmentation by efficiently using both the spatial and appearance information from the atlases, and creates a benchmark for large-scale automatic abdominal segmentation.

  4. Searching for Life on Mars: Selection of Molecular Targets for ESA's Aurora ExoMars Mission

    NASA Astrophysics Data System (ADS)

    Parnell, John; Cullen, David; Sims, Mark R.; Bowden, Stephen; Cockell, Charles S.; Court, Richard; Ehrenfreund, Pascale; Gaubert, Francois; Grant, William; Parro, Victor; Rohmer, Michel; Sephton, Mark; Stan-Lotter, Helga; Steele, Andrew; Toporski, Jan; Vago, Jorge

    2007-08-01

    The European Space Agency's ExoMars mission will seek evidence of organic compounds of biological and non-biological origin at the martian surface. One of the instruments in the Pasteur payload may be a Life Marker Chip that utilizes an immunoassay approach to detect specific organic molecules or classes of molecules. Therefore, it is necessary to define and prioritize specific molecular targets for antibody development. Target compounds have been selected to represent meteoritic input, fossil organic matter, extant (living, recently dead) organic matter, and contamination. Once organic molecules are detected on Mars, further information is likely to derive from the detailed distribution of compounds rather than from single molecular identification. This will include concentration gradients beneath the surface and gradients from generic to specific compounds. The choice of biomarkers is informed by terrestrial biology but is wide ranging, and nonterrestrial biology may be evident from unexpected molecular distributions. One of the most important requirements is to sample where irradiation and oxidation are minimized, either by drilling or by using naturally excavated exposures. Analyzing regolith samples will allow for the search of both extant and fossil biomarkers, but sequential extraction would be required to optimize the analysis of each of these in turn.

  5. Searching for life on Mars: selection of molecular targets for ESA's aurora ExoMars mission.

    PubMed

    Parnell, John; Cullen, David; Sims, Mark R; Bowden, Stephen; Cockell, Charles S; Court, Richard; Ehrenfreund, Pascale; Gaubert, Francois; Grant, William; Parro, Victor; Rohmer, Michel; Sephton, Mark; Stan-Lotter, Helga; Steele, Andrew; Toporski, Jan; Vago, Jorge

    2007-08-01

    The European Space Agency's ExoMars mission will seek evidence of organic compounds of biological and non-biological origin at the martian surface. One of the instruments in the Pasteur payload may be a Life Marker Chip that utilizes an immunoassay approach to detect specific organic molecules or classes of molecules. Therefore, it is necessary to define and prioritize specific molecular targets for antibody development. Target compounds have been selected to represent meteoritic input, fossil organic matter, extant (living, recently dead) organic matter, and contamination. Once organic molecules are detected on Mars, further information is likely to derive from the detailed distribution of compounds rather than from single molecular identification. This will include concentration gradients beneath the surface and gradients from generic to specific compounds. The choice of biomarkers is informed by terrestrial biology but is wide ranging, and nonterrestrial biology may be evident from unexpected molecular distributions. One of the most important requirements is to sample where irradiation and oxidation are minimized, either by drilling or by using naturally excavated exposures. Analyzing regolith samples will allow for the search of both extant and fossil biomarkers, but sequential extraction would be required to optimize the analysis of each of these in turn.

  6. Heterobivalent Imaging Agents for Simultaneous Targeting Prostate-Specific Membrane Antigen (PSMA) and Hepsin

    DTIC Science & Technology

    2014-11-01

    Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin PRINCIPAL INVESTIGATOR: Youngjoo Byun, Ph. D. CONTRACTING ORGANIZATION: Korea...Simultaneous Targeting Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin 5b. GRANT NUMBER W81XWH-10-1-0189 5c. PROGRAM ELEMENT NUMBER 6...heterobivalent conjugates of PSMA /hepsin-binding ligands labeled with optical dyes or radionuclides. The sensitivity and accuracy of prostate cancer

  7. Problem-Solving Test: Targeted Gene Disruption

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Mutational inactivation of a specific gene is the most powerful technique to analyze the biological function of the gene. This approach has been used for a long time in viruses, bacteria, yeast, and fruit fly, but looked quite hopeless in more complex organisms. Targeted inactivation of specific genes (also known as knock-out mutation) in mice is…

  8. Engineering of a target site-specific recombinase by a combined evolution- and structure-guided approach

    PubMed Central

    Abi-Ghanem, Josephine; Chusainow, Janet; Karimova, Madina; Spiegel, Christopher; Hofmann-Sieber, Helga; Hauber, Joachim; Buchholz, Frank; Pisabarro, M. Teresa

    2013-01-01

    Site-specific recombinases (SSRs) can perform DNA rearrangements, including deletions, inversions and translocations when their naive target sequences are placed strategically into the genome of an organism. Hence, in order to employ SSRs in heterologous hosts, their target sites have to be introduced into the genome of an organism before the enzyme can be practically employed. Engineered SSRs hold great promise for biotechnology and advanced biomedical applications, as they promise to extend the usefulness of SSRs to allow efficient and specific recombination of pre-existing, natural genomic sequences. However, the generation of enzymes with desired properties remains challenging. Here, we use substrate-linked directed evolution in combination with molecular modeling to rationally engineer an efficient and specific recombinase (sTre) that readily and specifically recombines a sequence present in the HIV-1 genome. We elucidate the role of key residues implicated in the molecular recognition mechanism and we present a rationale for sTre’s enhanced specificity. Combining evolutionary and rational approaches should help in accelerating the generation of enzymes with desired properties for use in biotechnology and biomedicine. PMID:23275541

  9. Detection of organic compounds with whole-cell bioluminescent bioassays.

    PubMed

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven; Sayler, Gary

    2014-01-01

    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.

  10. [Difference in target antigens between central tolerance and peripheral tolerance deficiencies].

    PubMed

    Chida, Natsuko; Kobayashi, Ichiro

    2015-01-01

    Failure of the immunotolerance mechanisms causes multiple organ-specific autoimmune disorders. Mutations of autoimmune regulator (AIRE) gene result in central immunotolerance deficiency named autoimmune polyendocrinopathy, candidiasis, ectodermal dystrophy (APECED). Mutations of FOXP3 genes cause regulatory T cell (Treg) deficiency named immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Because T cell tolerance influences B cell tolerance, autoantibodies seem to reflect the presence of autoreactive T cells with the same antigen specificity. To date many differences in both clinical features and autoantibody profiles have been described between APECED and IPEX syndrome. In addition to the differences in target organs, we have found differences in the target antigens in the same organ, small intestine, between both disorders; anti-autoimmune enteropathy-related 75 kDa antigen (AIE-75) antibodies are specific to IPEX syndrome, whereas anti-tryptophan hydroxylase-1 (TPH-1) antibodies are specific to APECED. These facts suggest that immunotolerance to AIE-75 depends on the Treg, whereas the tolerance to TPH-1 depends on the central mechanisms. Furthermore, given the earlier onset and more serious clinical features of IPEX syndrome than APECED, physiological roles of Aire on the selection of Treg may be, if present, limited.

  11. A review of the ligands and related targeting strategies for active targeting of paclitaxel to tumours.

    PubMed

    Li, Juan; Wang, Fengshan; Sun, Deqing; Wang, Rongmei

    2016-08-01

    It has been 30 years since the discovery of the anti-tumour property of paclitaxel (PTX), which has been successfully applied in clinic for the treatment of carcinomas of the lungs, breast and ovarian. However, PTX is poorly soluble in water and has no targeting and selectivity to tumour tissue. Recent advances in active tumour targeting of PTX delivery vehicles have addressed some of the issues related to lack of solubility in water and non-specific toxicities associated with PTX. These PTX delivery vehicles are designed for active targeting to specific cancer cells by the addition of ligands for recognition by specific receptors/antigens on cancer cells. This article will focus on various ligands and related targeting strategies serving as potential tools for active targeting of PTX to tumour tissues, illustrating their use in different tumour models. This review also highlights the need of further studies on the discovery of receptors in different cells of specific organ and ligands with binding efficiency to these specific receptors.

  12. Extrapancreatic Autoantibody Profiles in Type I Diabetes

    PubMed Central

    Burbelo, Peter D.; Lebovitz, Evan E.; Bren, Kathleen E.; Bayat, Ahmad; Paviol, Scott; Wenzlau, Janet M.; Barriga, Katherine J.; Rewers, Marian; Harlan, David M.; Iadarola, Michael J.

    2012-01-01

    Type I diabetes (T1D) is an autoimmune disease characterized by destruction of insulin-producing β-cells in the pancreas. Although several islet cell autoantigens are known, the breadth and spectrum of autoantibody targets has not been fully explored. Here the luciferase immunoprecipitation systems (LIPS) antibody profiling technology was used to study islet and other organ-specific autoantibody responses in parallel. Examination of an initial cohort of 93 controls and 50 T1D subjects revealed that 16% of the diabetic subjects showed anti-gastric ATPase autoantibodies which did not correlate with autoantibodies against GAD65, IA2, or IA2-β. A more detailed study of a second cohort with 18 potential autoantibody targets revealed marked heterogeneity in autoantibody responses against islet cell autoantigens including two polymorphic variants of ZnT8. A subset of T1D subjects exhibited autoantibodies against several organ-specific targets including gastric ATPase (11%), thyroid peroxidase (14%), and anti-IgA autoantibodies against tissue transglutaminase (12%). Although a few T1D subjects showed autoantibodies against a lung-associated protein KCNRG (6%) and S100-β (8%), no statistically significant autoantibodies were detected against several cytokines. Analysis of the overall autoantibody profiles using a heatmap revealed two major subgroups of approximately similar numbers, consisting of T1D subjects with and without organ-specific autoantibodies. Within the organ-specific subgroup, there was minimal overlap among anti-gastric ATPase, anti-thyroid peroxidase, and anti-transglutaminase seropositivity, and these autoantibodies did not correlate with islet cell autoantibodies. Examination of a third cohort, comprising prospectively collected longitudinal samples from high-risk individuals, revealed that anti-gastric ATPase autoantibodies were present in several individuals prior to detection of islet autoantibodies and before clinical onset of T1D. Taken together, these results suggest that autoantibody portraits derived from islet and organ-specific targets will likely be useful for enhancing the clinical management of T1D. PMID:23028856

  13. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy

    PubMed Central

    Zhou, Jiehua; Rossi, John J.

    2014-01-01

    One hundred years ago, Dr. Paul Ehrlich popularized the “magic bullet” concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, “targeted therapy” that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges. PMID:24936916

  14. Advanced development of immobilized enzyme reactors

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.; Schussel, Leonard J.; Carter, Layne

    1991-01-01

    Fixed-bed reactors have been used at NASA-Marshall to purify wastewater generated by an end-use equipment facility, on the basis of a combination of multifiltration unibeds and enzyme unibeds. The enzyme beds were found to effectively remove such targeted organics as urea, alcohols, and aldehydes, down to levels lying below detection limits. The enzyme beds were also found to remove organic contaminants not specifically targeted.

  15. Nonenzymatic microorganism identification based on ribosomal RNA

    NASA Astrophysics Data System (ADS)

    Ives, Jeffrey T.; Pierini, Alicia M.; Stokes, Jeffrey A.; Wahlund, Thomas M.; Read, Betsy; Bechtel, James H.; Bronk, Burt V.

    1999-11-01

    Effective defense against biological warfare (BW) agents requires rapid, fieldable and accurate systems. For micro- organisms like bacteria and viruses, ribosomal RNA (rRNA) provides a valuable target with multiple advantages of species specificity and intrinsic target amplification. Vegetative and spore forms of bacteria contain approximately 104 copies of rRNA. Direct detection of rRNA copies can eliminate some of the interference and preparation difficulties involved in enzymatic amplification methods. In order to apply the advantages of rRNA to BW defense, we are developing a fieldable system based on 16S rRNA, physical disruption of the micro-organism, solid phase hybridization, and fluorescence detection. Our goals include species-specific identification, complete operation from raw sample to identification in 15 minutes or less, and compact, fieldable instrumentation. Initial work on this project has investigated the lysis and hybridization steps, the species-specificity of oligonucleotides probes, and the development of a novel electromagnetic method to physically disrupt the micro- organisms. Target bacteria have been Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis). Continuing work includes further development of methods to rapidly disrupt the micro-organisms and release the rRNA, improved integration and processing, and extension to bacterial and mammalian viruses like MS2 and vesicular stomatitis virus.

  16. Preclinical Evaluation to Specifically Target Ovarian Cancer with Folic Acid conjugated Nanoceria

    DTIC Science & Technology

    2013-06-01

    function (creatinine; urea ; albumin, uric acid ) in plasma collected, showed no significant difference in the untreated and treated mice. All values were...Transaminase), AST (Aspartate Transaminase), Albumin, Creatinine, urea and uric acid . groups (Fig 9). These data show that FA-NCe treatment...Specifically Target Ovarian Cancer with Folic Acid conjugated Nanoceria. PRINCIPAL INVESTIGATOR: Ramandeep Rattan, PhD CONTRACTING ORGANIZATION

  17. Detection of Organic Compounds with Whole-Cell Bioluminescent Bioassays

    PubMed Central

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven

    2015-01-01

    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices. PMID:25084996

  18. Development and validation of a 48-target analytical method for high-throughput monitoring of genetically modified organisms.

    PubMed

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-05

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection.

  19. Development and Validation of A 48-Target Analytical Method for High-throughput Monitoring of Genetically Modified Organisms

    PubMed Central

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-01

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection. PMID:25556930

  20. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification.

    PubMed

    Li, Lixin; Piatek, Marek J; Atef, Ahmed; Piatek, Agnieszka; Wibowo, Anjar; Fang, Xiaoyun; Sabir, J S M; Zhu, Jian-Kang; Mahfouz, Magdy M

    2012-03-01

    Transcription activator-like effectors (TALEs) can be used as DNA-targeting modules by engineering their repeat domains to dictate user-selected sequence specificity. TALEs have been shown to function as site-specific transcriptional activators in a variety of cell types and organisms. TALE nucleases (TALENs), generated by fusing the FokI cleavage domain to TALE, have been used to create genomic double-strand breaks. The identity of the TALE repeat variable di-residues, their number, and their order dictate the DNA sequence specificity. Because TALE repeats are nearly identical, their assembly by cloning or even by synthesis is challenging and time consuming. Here, we report the development and use of a rapid and straightforward approach for the construction of designer TALE (dTALE) activators and nucleases with user-selected DNA target specificity. Using our plasmid set of 100 repeat modules, researchers can assemble repeat domains for any 14-nucleotide target sequence in one sequential restriction-ligation cloning step and in only 24 h. We generated several custom dTALEs and dTALENs with new target sequence specificities and validated their function by transient expression in tobacco leaves and in vitro DNA cleavage assays, respectively. Moreover, we developed a web tool, called idTALE, to facilitate the design of dTALENs and the identification of their genomic targets and potential off-targets in the genomes of several model species. Our dTALE repeat assembly approach along with the web tool idTALE will expedite genome-engineering applications in a variety of cell types and organisms including plants.

  1. Biomining of MoS2 with Peptide-based Smart Biomaterials.

    PubMed

    Cetinel, Sibel; Shen, Wei-Zheng; Aminpour, Maral; Bhomkar, Prasanna; Wang, Feng; Borujeny, Elham Rafie; Sharma, Kumakshi; Nayebi, Niloofar; Montemagno, Carlo

    2018-02-20

    Biomining of valuable metals using a target specific approach promises increased purification yields and decreased cost. Target specificity can be implemented with proteins/peptides, the biological molecules, responsible from various structural and functional pathways in living organisms by virtue of their specific recognition abilities towards both organic and inorganic materials. Phage display libraries are used to identify peptide biomolecules capable of specifically recognizing and binding organic/inorganic materials of interest with high affinities. Using combinatorial approaches, these molecular recognition elements can be converted into smart hybrid biomaterials and harnessed for biotechnological applications. Herein, we used a commercially available phage-display library to identify peptides with specific binding affinity to molybdenite (MoS 2 ) and used them to decorate magnetic NPs. These peptide-coupled NPs could capture MoS 2 under a variety of environmental conditions. The same batch of NPs could be re-used multiple times to harvest MoS 2 , clearly suggesting that this hybrid material was robust and recyclable. The advantages of this smart hybrid biomaterial with respect to its MoS 2 -binding specificity, robust performance under environmentally challenging conditions and its recyclability suggests its potential application in harvesting MoS 2 from tailing ponds and downstream mining processes.

  2. A convex optimization approach for identification of human tissue-specific interactomes.

    PubMed

    Mohammadi, Shahin; Grama, Ananth

    2016-06-15

    Analysis of organism-specific interactomes has yielded novel insights into cellular function and coordination, understanding of pathology, and identification of markers and drug targets. Genes, however, can exhibit varying levels of cell type specificity in their expression, and their coordinated expression manifests in tissue-specific function and pathology. Tissue-specific/tissue-selective interaction mechanisms have significant applications in drug discovery, as they are more likely to reveal drug targets. Furthermore, tissue-specific transcription factors (tsTFs) are significantly implicated in human disease, including cancers. Finally, disease genes and protein complexes have the tendency to be differentially expressed in tissues in which defects cause pathology. These observations motivate the construction of refined tissue-specific interactomes from organism-specific interactomes. We present a novel technique for constructing human tissue-specific interactomes. Using a variety of validation tests (Edge Set Enrichment Analysis, Gene Ontology Enrichment, Disease-Gene Subnetwork Compactness), we show that our proposed approach significantly outperforms state-of-the-art techniques. Finally, using case studies of Alzheimer's and Parkinson's diseases, we show that tissue-specific interactomes derived from our study can be used to construct pathways implicated in pathology and demonstrate the use of these pathways in identifying novel targets. http://www.cs.purdue.edu/homes/mohammas/projects/ActPro.html mohammadi@purdue.edu. © The Author 2016. Published by Oxford University Press.

  3. Killing mechanism of stable N-halamine cross-linked polymethacrylamide nanoparticles that selectively target bacteria.

    PubMed

    Natan, Michal; Gutman, Ori; Lavi, Ronit; Margel, Shlomo; Banin, Ehud

    2015-02-24

    Increased resistance of bacteria to disinfection and antimicrobial treatment poses a serious public health threat worldwide. This has prompted the search for agents that can inhibit both bacterial growth and withstand harsh conditions (e.g., high organic loads). In the current study, N-halamine-derivatized cross-linked polymethacrylamide nanoparticles (NPs) were synthesized by copolymerization of the monomer methacrylamide (MAA) and the cross-linker monomer N,N-methylenebis(acrylamide) (MBAA) and were subsequently loaded with oxidative chlorine using sodium hypochlorite (NaOCl). The chlorinated NPs demonstrated remarkable stability and durability to organic reagents and to repetitive bacterial loading cycles as compared with the common disinfectant NaOCl (bleach), which was extremely labile under these conditions. The antibacterial mechanism of the cross-linked P(MAA-MBAA)-Cl NPs was found to involve generation of reactive oxygen species (ROS) only upon exposure to organic media. Importantly, ROS were not generated upon suspension in water, revealing that the mode of action is target-specific. Further, a unique and specific interaction of the chlorinated NPs with Staphylococcus aureus was discovered, whereby these microorganisms were all specifically targeted and marked for destruction. This bacterial encircling was achieved without using a targeting module (e.g., an antibody or a ligand) and represents a highly beneficial, natural property of the P(MAA-MBAA)-Cl nanostructures. Our findings provide insights into the mechanism of action of P(MAA-MBAA)-Cl NPs and demonstrate the superior efficacy of the NPs over bleach (i.e., stability, specificity, and targeting). This work underscores the potential of developing sustainable P(MAA-MBAA)-Cl NP-based devices for inhibiting bacterial colonization and growth.

  4. Single-carbon discrimination by selected peptides for individual detection of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Ju, Soomi; Lee, Ki-Young; Min, Sun-Joon; Yoo, Yong Kyoung; Hwang, Kyo Seon; Kim, Sang Kyung; Yi, Hyunjung

    2015-03-01

    Although volatile organic compounds (VOCs) are becoming increasingly recognized as harmful agents and potential biomarkers, selective detection of the organic targets remains a tremendous challenge. Among the materials being investigated for target recognition, peptides are attractive candidates because of their chemical robustness, divergence, and their homology to natural olfactory receptors. Using a combinatorial peptide library and either a graphitic surface or phenyl-terminated self-assembled monolayer as relevant target surfaces, we successfully selected three interesting peptides that differentiate a single carbon deviation among benzene and its analogues. The heterogeneity of the designed target surfaces provided peptides with varying affinity toward targeted molecules and generated a set of selective peptides that complemented each other. Microcantilever sensors conjugated with each peptide quantitated benzene, toluene and xylene to sub-ppm levels in real time. The selection of specific receptors for a group of volatile molecules will provide a strong foundation for general approach to individually monitoring VOCs.

  5. Scaffolds and tissue regeneration: An overview of the functional properties of selected organic tissues.

    PubMed

    Rebelo, Márcia A; Alves, Thais F R; de Lima, Renata; Oliveira, José M; Vila, Marta M D C; Balcão, Victor M; Severino, Patrícia; Chaud, Marco V

    2016-10-01

    Tissue engineering plays a significant role both in the re-establishment of functions and regeneration of organic tissues. Success in manufacturing projects for biological scaffolds, for the purpose of tissue regeneration, is conditioned by the selection of parameters such as the biomaterial, the device architecture, and the specificities of the cells making up the organic tissue to create, in vivo, a microenvironment that preserves and further enhances the proliferation of a specific cell phenotype. To support this approach, we have screened scientific publications that show biomedical applications of scaffolds, biomechanical, morphological, biochemical, and hemodynamic characteristics of the target organic tissues, and the possible interactions between different cell matrices and biological scaffolds. This review article provides an overview on the biomedical application of scaffolds and on the characteristics of the (bio)materials commonly used for manufacturing these biological devices used in tissue engineering, taking into consideration the cellular specificity of the target tissue. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1483-1494, 2016. © 2015 Wiley Periodicals, Inc.

  6. Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification.

    PubMed

    Yasuoka, Yuuri; Suzuki, Yutaka; Takahashi, Shuji; Someya, Haruka; Sudou, Norihiro; Haramoto, Yoshikazu; Cho, Ken W; Asashima, Makoto; Sugano, Sumio; Taira, Masanori

    2014-07-09

    Head specification by the head-selector gene, orthodenticle (otx), is highly conserved among bilaterian lineages. However, the molecular mechanisms by which Otx and other transcription factors (TFs) interact with the genome to direct head formation are largely unknown. Here we employ ChIP-seq and RNA-seq approaches in Xenopus tropicalis gastrulae and find that occupancy of the corepressor, TLE/Groucho, is a better indicator of tissue-specific cis-regulatory modules (CRMs) than the coactivator p300, during early embryonic stages. On the basis of TLE binding and comprehensive CRM profiling, we define two distinct types of Otx2- and TLE-occupied CRMs. Using these devices, Otx2 and other head organizer TFs (for example, Lim1/Lhx1 (activator) or Goosecoid (repressor)) are able to upregulate or downregulate a large battery of target genes in the head organizer. An underlying principle is that Otx marks target genes for head specification to be regulated positively or negatively by partner TFs through specific types of CRMs.

  7. Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways

    PubMed Central

    Rhind, Nicholas; Russell, Paul

    2010-01-01

    SUMMARY Recent work on the mechanisms of DNA damage and replication cell cycle checkpoints has revealed great similarity between the checkpoint pathways of organisms as diverse as yeasts, flies and humans. However, there are differences in the ways these organisms regulate their cell cycles. To connect the conserved checkpoint pathways with various cell cycle targets requires an adaptable link that can target different cell cycle components in different organisms. The Chk1 and Cds1 protein kinases, downstream effectors in the checkpoint pathways, seem to play just such roles. Perhaps more surprisingly, the two kinases not only have different targets in different organisms but also seem to respond to different signals in different organisms. So, whereas in fission yeast Chk1 is required for the DNA damage checkpoint and Cds1 is specifically involved in the replication checkpoint, their roles seem to be shuffled in metazoans. PMID:11058076

  8. Redox signaling in the cardiomyocyte: From physiology to failure.

    PubMed

    Santos, Celio X C; Raza, Sadaf; Shah, Ajay M

    2016-05-01

    The specific effect of oxygen and reactive oxygen species (ROS) in mediating post-translational modification of protein targets has emerged as a key mechanism regulating signaling components, a process termed redox signaling. ROS act in the post-translational modification of multiple target proteins including receptors, kinases, phosphatases, ion channels and transcription factors. Both O2 and ROS are major source of electrons in redox reactions in aerobic organisms. Because the heart has the highest O2 consumption among body organs, it is not surprising that redox signaling is central to heart function and pathophysiology. In this article, we review some of the main cardiac redox signaling pathways and their roles in the cardiomyocyte and in heart failure, with particular focus on the specific molecular targets of ROS in the heart. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation.

    PubMed

    Miki, Daisuke; Zhang, Wenxin; Zeng, Wenjie; Feng, Zhengyan; Zhu, Jian-Kang

    2018-05-17

    Homologous recombination-based gene targeting is a powerful tool for precise genome modification and has been widely used in organisms ranging from yeast to higher organisms such as Drosophila and mouse. However, gene targeting in higher plants, including the most widely used model plant Arabidopsis thaliana, remains challenging. Here we report a sequential transformation method for gene targeting in Arabidopsis. We find that parental lines expressing the bacterial endonuclease Cas9 from the egg cell- and early embryo-specific DD45 gene promoter can improve the frequency of single-guide RNA-targeted gene knock-ins and sequence replacements via homologous recombination at several endogenous sites in the Arabidopsis genome. These heritable gene targeting can be identified by regular PCR. Our approach enables routine and fine manipulation of the Arabidopsis genome.

  10. The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting.

    PubMed

    Lu, Zhi Hong; Kaliberov, Sergey; Zhang, Jingzhu; Muz, Barbara; Azab, Abdel K; Sohn, Rebecca E; Kaliberova, Lyudmila; Du, Yingqiu; Curiel, David T; Arbeit, Jeffrey M

    2014-08-01

    Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.

  11. Two Isomeric C16 Oxo-Fatty Acids from the Diatom Chaetoceros karianus Show Dual Agonist Activity towards Human Peroxisome Proliferator-Activated Receptors (PPARs) α/γ

    PubMed Central

    Moldes-Anaya, Angel; Sæther, Thomas; Uhlig, Silvio; Nebb, Hilde I.; Larsen, Terje; Eilertsen, Hans C.; Paulsen, Steinar M.

    2017-01-01

    The peroxisome proliferator-activated receptors (PPARs) function as ligand-activated transcription factors that convert signals in the form of lipids to physiological responses through the activation of metabolic target genes. Due to their key roles in lipid and carbohydrate metabolism, the PPARs are important drug targets. However, for several of the PPAR drugs currently in use, adverse side effects have been reported. In an effort to identify compounds from marine organisms that may serve as molecular scaffolds for the development of novel and safer PPAR-targeting drugs, we performed a bioassay-guided screening of organic extracts made from organisms supplied by the Norwegian Biobank of Arctic Marine Organisms (Marbank). Among several interesting hits, we identified two poorly described isomeric oxo-fatty acids from the microalgae Chaetoceros karianus for which we provide the first evidence that they might display dual specificity towards human PPARα and PPARγ. Principal component analysis showed that C. karianus stood out from other Chaetoceros species, both with respect to the metabolic profile and the PPAR activity. The isolation of these compounds holds the potential of uncovering a PPAR pharmacophore with tunable activity and specificity. PMID:28587091

  12. Drugs and Targets in Fibrosis

    PubMed Central

    Li, Xiaoyi; Zhu, Lixin; Wang, Beibei; Yuan, Meifei; Zhu, Ruixin

    2017-01-01

    Fibrosis contributes to the development of many diseases and many target molecules are involved in fibrosis. Currently, the majority of fibrosis treatment strategies are limited to specific diseases or organs. However, accumulating evidence demonstrates great similarities among fibroproliferative diseases, and more and more drugs are proved to be effective anti-fibrotic therapies across different diseases and organs. Here we comprehensively review the current knowledge on the pathological mechanisms of fibrosis, and divide factors mediating fibrosis progression into extracellular and intracellular groups. Furthermore, we systematically summarize both single and multiple component drugs that target fibrosis. Future directions of fibrosis drug discovery are also proposed. PMID:29218009

  13. Synthetic PAMAM-RGD conjugates target and bind to odontoblast-like MDPC 23 cells and the predentin in tooth organ cultures.

    PubMed

    Hill, Elliott; Shukla, Rameshwer; Park, Steve S; Baker, James R

    2007-01-01

    Screening techniques now allow for the identification of small peptides that bind specifically to molecules like cells. However, despite the enthusiasm for this approach, single peptides often lack the binding affinity to target in vivo and regulate cell function. We took peptides containing the Arg-Gly Asp(RGD) motif that bind to the alpha Vbeta 3 integrin and have shown potential as therapeutics. To improve their binding affinity, we synthesized polyamidoamine (PAMAM) dendrimer-RGD conjugates that that contain 12-13 copies of the peptide. When cultured with human dermal microvessel endothelial cells (HDMEC), human vascular endothelial cells (HUVEC), or odontoblast-like MDPC-23 cells, the PAMAM dendrimer conjugate targets this receptor in a manner that is both time- and dose-dependent. Finally, this conjugate selectively targets RGD binding sites in the predentin of human tooth organ cultures. Taken together, these studies provide proof of principle that synthetic PAMAM-RGD conjugates could prove useful as carriers for the tissue-specific delivery of integrin-targeted therapeutics or imaging agents and could be used to engineer tissue regeneration.

  14. Leveraging existing data for prioritization of the ecological risks of human and veterinary pharmaceuticals to aquatic organisms

    PubMed Central

    LaLone, Carlie A.; Berninger, Jason P.; Villeneuve, Daniel L.; Ankley, Gerald T.

    2014-01-01

    Medicinal innovation has led to the discovery and use of thousands of human and veterinary drugs. With this comes the potential for unintended effects on non-target organisms exposed to pharmaceuticals inevitably entering the environment. The impracticality of generating whole-organism chronic toxicity data representative of all species in the environment has necessitated prioritization of drugs for focused empirical testing as well as field monitoring. Current prioritization strategies typically emphasize likelihood for exposure (i.e. predicted/measured environmental concentrations), while incorporating only rather limited consideration of potential effects of the drug to non-target organisms. However, substantial mammalian pharmacokinetic and mechanism/mode of action (MOA) data are produced during drug development to understand drug target specificity and efficacy for intended consumers. An integrated prioritization strategy for assessing risks of human and veterinary drugs would leverage available pharmacokinetic and toxicokinetic data for evaluation of the potential for adverse effects to non-target organisms. In this reiview, we demonstrate the utility of read-across approaches to leverage mammalian absorption, distribution, metabolism and elimination data; analyse cross-species molecular target conservation and translate therapeutic MOA to an adverse outcome pathway(s) relevant to aquatic organisms as a means to inform prioritization of drugs for focused toxicity testing and environmental monitoring. PMID:25405975

  15. Photoacoustic imaging with an acoustic lens detects prostate cancer cells labeled with PSMA-targeting near-infrared dye-conjugates

    NASA Astrophysics Data System (ADS)

    Dogra, Vikram; Chinni, Bhargava; Singh, Shalini; Schmitthenner, Hans; Rao, Navalgund; Krolewski, John J.; Nastiuk, Kent L.

    2016-06-01

    There is an urgent need for sensitive and specific tools to accurately image early stage, organ-confined human prostate cancers to facilitate active surveillance and reduce unnecessary treatment. Recently, we developed an acoustic lens that enhances the sensitivity of photoacoustic imaging. Here, we report the use of this device in conjunction with two molecular imaging agents that specifically target the prostate-specific membrane antigen (PSMA) expressed on the tumor cell surface of most prostate cancers. We demonstrate successful imaging of phantoms containing cancer cells labeled with either of two different PSMA-targeting agents, the ribonucleic acid aptamer A10-3.2 and a urea-based peptidomimetic inhibitor, each linked to the near-infrared dye IRDye800CW. By specifically targeting cells with these agents linked to a dye chosen for optimal signal, we are able to discriminate prostate cancer cells that express PSMA.

  16. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of common genetically modified organisms (GMOs).

    PubMed

    Feng, Jiawang; Tang, Shiming; Liu, Lideng; Kuang, Xiaoshan; Wang, Xiaoyu; Hu, Songnan; You, Shuzhu

    2015-03-01

    Here, we developed a loop-mediated isothermal amplification (LAMP) assay for 11 common transgenic target DNA in GMOs. Six sets of LAMP primer candidates for each target were designed and their specificity, sensitivity, and reproductivity were evaluated. With the optimized LAMP primers, this LAMP assay was simply run within 45-60 min to detect all these targets in GMOs tested. The sensitivity, specificity, and reproductivity of the LAMP assay were further analyzed in comparison with those of Real-Time PCR. In consistent with real-time PCR, detection of 0.5% GMOs in equivalent background DNA was possible using this LAMP assay for all targets. In comparison with real-time PCR, the LAMP assay showed the same results with simple instruments. Hence, the LAMP assay developed can provide a rapid and simple approach for routine screening as well as specific events detection of many GMOs.

  17. Molecular Target Homology as a Basis for Species Extrapolation to Assess the Ecological Risk of Pharmaceuticals

    EPA Science Inventory

    Adverse effects of many chemical contaminants, including human pharmaceuticals and other chemicals of emerging concern (CECs), are initiated through interactions with specific proteins within the cells of effected organisms. When protein targets of a given chemical are known--as ...

  18. Transcription Factors Expressed in Lateral Organ Boundaries: Identification of Downstream Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, Patricia S

    2010-07-12

    The processes of lateral organ initiation and patterning are central to the generation of mature plant form. Characterization of the molecular mechanisms underlying these processes is essential to our understanding of plant development. Communication between the shoot apical meristem and initiating organ primordia is important both for functioning of the meristem and for proper organ patterning, and very little is known about this process. In particular, the boundary between meristem and leaf is emerging as a critical region that is important for SAM maintenance and regulation of organogenesis. The goal of this project was to characterize three boundary-expressed genes thatmore » encode predicted transcription factors. Specifically, we have studied LATERAL ORGAN BOUNDARIES (LOB), LATERAL ORGAN FUSION1 (LOF1), and LATERAL ORGAN FUSION2 (LOF2). LOB encodes the founding member of the LOB-DOMAIN (LBD) plant-specific DNA binding transcription factor family and LOF1 and LOF2 encode paralogous MYB-domain transcription factors. We characterized the genetic relationship between these three genes and other boundary and meristem genes. We also used an ectopic inducible expression system to identify direct targets of LOB.« less

  19. Targeted metabolomic profiling in rat tissues reveals sex differences.

    PubMed

    Ruoppolo, Margherita; Caterino, Marianna; Albano, Lucia; Pecce, Rita; Di Girolamo, Maria Grazia; Crisci, Daniela; Costanzo, Michele; Milella, Luigi; Franconi, Flavia; Campesi, Ilaria

    2018-03-16

    Sex differences affect several diseases and are organ-and parameter-specific. In humans and animals, sex differences also influence the metabolism and homeostasis of amino acids and fatty acids, which are linked to the onset of diseases. Thus, the use of targeted metabolite profiles in tissues represents a powerful approach to examine the intermediary metabolism and evidence for any sex differences. To clarify the sex-specific activities of liver, heart and kidney tissues, we used targeted metabolomics, linear discriminant analysis (LDA), principal component analysis (PCA), cluster analysis and linear correlation models to evaluate sex and organ-specific differences in amino acids, free carnitine and acylcarnitine levels in male and female Sprague-Dawley rats. Several intra-sex differences affect tissues, indicating that metabolite profiles in rat hearts, livers and kidneys are organ-dependent. Amino acids and carnitine levels in rat hearts, livers and kidneys are affected by sex: male and female hearts show the greatest sexual dimorphism, both qualitatively and quantitatively. Finally, multivariate analysis confirmed the influence of sex on the metabolomics profiling. Our data demonstrate that the metabolomics approach together with a multivariate approach can capture the dynamics of physiological and pathological states, which are essential for explaining the basis of the sex differences observed in physiological and pathological conditions.

  20. Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms.

    PubMed

    Peng, Cheng; Wang, Pengfei; Xu, Xiaoli; Wang, Xiaofu; Wei, Wei; Chen, Xiaoyun; Xu, Junfeng

    2016-01-01

    As the amount of commercially available genetically modified organisms (GMOs) grows recent years, the diversity of target sequences for molecular detection techniques are eagerly needed. Considered as the gold standard for GMO analysis, the real-time PCR technology was optimized to produce a high-throughput GMO screening method. With this method we can detect 19 transgenic targets. The specificity of the assays was demonstrated to be 100 % by the specific amplification of DNA derived from reference material from 20 genetically modified crops and 4 non modified crops. Furthermore, most assays showed a very sensitive detection, reaching the limit of ten copies. The 19 assays are the most frequently used genetic elements present in GM crops and theoretically enable the screening of the known GMO described in Chinese markets. Easy to use, fast and cost efficient, this method approach fits the purpose of GMO testing laboratories.

  1. Controlled Release Applications of Organometals.

    ERIC Educational Resources Information Center

    Thayer, John S.

    1981-01-01

    Reviews two classes of controlled release organometals: (1) distributional, to distribute bioactive materials to control a certain target organism; and (2) protective, to protect surface or interior of some structure from attach by organisms. Specific examples are given including a discussion of controlled release for schistosomiasis. (SK)

  2. Characterizing Health Information for Different Target Audiences.

    PubMed

    Sun, Yueping; Hou, Zhen; Hou, Li; Li, Jiao

    2015-01-01

    Different groups of audiences in health care: health professionals and health consumers, each have different information needs. Health monographs targeting different audiences are created by leveraging readers' background knowledge. The NCI's Physician Data Query (PDQ®) Cancer Information Summaries provide parallel cancer information and education resources with different target audiences. In this paper, we used targeted audience-specific cancer information PDQs to measure characteristic differences on the element level between audiences. In addition, we compared vocabulary coverage. Results show a significant difference between the professional and patient version of cancer monographs in both content organization and vocabulary. This study provides a new view to assess targeted audience-specific health information, and helps editors to improve the quality and readability of health information.

  3. Large-scale identification of target proteins of a glycosyltransferase isozyme by Lectin-IGOT-LC/MS, an LC/MS-based glycoproteomic approach

    PubMed Central

    Sugahara, Daisuke; Kaji, Hiroyuki; Sugihara, Kazushi; Asano, Masahide; Narimatsu, Hisashi

    2012-01-01

    Model organisms containing deletion or mutation in a glycosyltransferase-gene exhibit various physiological abnormalities, suggesting that specific glycan motifs on certain proteins play important roles in vivo. Identification of the target proteins of glycosyltransferase isozymes is the key to understand the roles of glycans. Here, we demonstrated the proteome-scale identification of the target proteins specific for a glycosyltransferase isozyme, β1,4-galactosyltransferase-I (β4GalT-I). Although β4GalT-I is the most characterized glycosyltransferase, its distinctive contribution to β1,4-galactosylation has been hardly described so far. We identified a large number of candidates for the target proteins specific to β4GalT-I by comparative analysis of β4GalT-I-deleted and wild-type mice using the LC/MS-based technique with the isotope-coded glycosylation site-specific tagging (IGOT) of lectin-captured N-glycopeptides. Our approach to identify the target proteins in a proteome-scale offers common features and trends in the target proteins, which facilitate understanding of the mechanism that controls assembly of a particular glycan motif on specific proteins. PMID:23002422

  4. Methods and systems for Raman and optical cross-interrogation in flow-through silicon membranes

    DOEpatents

    Bond, Tiziana C.; Letant, Sonia E.

    2014-09-09

    Cross-interrogating photonic detection systems and methods are shown. A flow through photonic crystal membrane with a surface enhanced Raman scattering (SERS) substrate is provided with pores which are distributed along multiple regions. The pores of one region have walls to which a first type of target specific anchor can be attached, while pores of another region have walls to which a second type of target specific anchor can be attached. An optical arrangement out-of-plane to the SERS substrate is also provided for enhanced sensitivity and identification of target organisms.

  5. Macromolecular target prediction by self-organizing feature maps.

    PubMed

    Schneider, Gisbert; Schneider, Petra

    2017-03-01

    Rational drug discovery would greatly benefit from a more nuanced appreciation of the activity of pharmacologically active compounds against a diverse panel of macromolecular targets. Already, computational target-prediction models assist medicinal chemists in library screening, de novo molecular design, optimization of active chemical agents, drug re-purposing, in the spotting of potential undesired off-target activities, and in the 'de-orphaning' of phenotypic screening hits. The self-organizing map (SOM) algorithm has been employed successfully for these and other purposes. Areas covered: The authors recapitulate contemporary artificial neural network methods for macromolecular target prediction, and present the basic SOM algorithm at a conceptual level. Specifically, they highlight consensus target-scoring by the employment of multiple SOMs, and discuss the opportunities and limitations of this technique. Expert opinion: Self-organizing feature maps represent a straightforward approach to ligand clustering and classification. Some of the appeal lies in their conceptual simplicity and broad applicability domain. Despite known algorithmic shortcomings, this computational target prediction concept has been proven to work in prospective settings with high success rates. It represents a prototypic technique for future advances in the in silico identification of the modes of action and macromolecular targets of bioactive molecules.

  6. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem.

    PubMed

    Samach, A; Klenz, J E; Kohalmi, S E; Risseeuw, E; Haughn, G W; Crosby, W L

    1999-11-01

    Genetic and molecular studies have suggested that the UNUSUAL FLORAL ORGANS (UFO) gene, from Arabidopsis thaliana, is expressed in all shoot apical meristems, and is involved in the regulation of a complex set of developmental events during floral development, including floral meristem and floral organ identity. Results from in situ hybridization using genes expressed early in floral development as probes indicate that UFO controls growth of young floral primordia. Transgenic constructs were used to provide evidence that UFO regulates floral organ identity by activating or maintaining transcription of the class B organ-identity gene APETALA 3, but not PISTILLATA. In an attempt to understand the biochemical mode of action of the UFO gene product, we show here that UFO is an F-box protein that interacts with Arabidopsis SKP1-like proteins, both in the yeast two-hybrid system and in vitro. In yeast and other organisms both F-box proteins and SKP1 homologues are subunits of specific ubiquitin E3 enzyme complexes that target specific proteins for degradation. The protein selected for degradation by the complex is specified by the F-box proteins. It is therefore possible that the role of UFO is to target for degradation specific proteins controlling normal growth patterns in the floral primordia, as well as proteins that negatively regulate APETALA 3 transcription.

  7. BuD, a helix–loop–helix DNA-binding domain for genome modification

    PubMed Central

    Stella, Stefano; Molina, Rafael; López-Méndez, Blanca; Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza; Campos-Olivas, Ramon; Duchateau, Phillippe; Montoya, Guillermo

    2014-01-01

    DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing. PMID:25004980

  8. The epididymis as a target for male contraceptive development.

    PubMed

    Hinton, B T; Cooper, T G

    2010-01-01

    The epididymis is an excellent target for the development of a male contraceptive. This is because the process of sperm maturation occurs in this organ; spermatozoa become motile and are able to recognise and fertilise an egg once they have traversed the epididymal duct. However, a number of attempts to interfere in sperm maturation and epididymal function or both have not been successful. The use of transgenic animals has proved useful in identifying a few epididymal targets but has yet to open the doors for drug development. Continuous focus on identifying additional epididymal targets and sperm-specific and epididymal-specific drugs is key to bringing a male contraceptive acting on the epididymis to the public.

  9. Chemical biology based on target-selective degradation of proteins and carbohydrates using light-activatable organic molecules.

    PubMed

    Toshima, Kazunobu

    2013-05-01

    Proteins and carbohydrates play crucial roles in a wide range of biological processes, including serious diseases. The development of novel and innovative methods for selective control of specific proteins and carbohydrates functions has attracted much attention in the field of chemical biology. In this account article, the development of novel chemical tools, which can degrade target proteins and carbohydrates by irradiation with a specific wavelength of light under mild conditions without any additives, is introduced. This novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of proteins and carbohydrates but also novel therapeutic drugs targeting proteins and carbohydrates.

  10. Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo

    PubMed Central

    Harris, John E.

    2015-01-01

    Summary For decades, research in autoimmunity has focused primarily on immune contributions to disease. Yet recent studies report elevated levels of reactive oxygen species (ROS) and abnormal activation of the unfolded protein response (UPR) in cells targeted by autoimmunity, implicating cellular stress originating from the target tissue as a contributing factor. A better understanding of this contribution may help to answer important lingering questions in organ-specific autoimmunity, like what factors initiate disease, and what directs its tissue specificity. Vitiligo, an autoimmune disease of the skin, has been the focus of translational research for over 30 years, and both melanocyte stress and immune mechanisms have been thought to be mutually exclusive explanations for pathogenesis. Chemical-induced vitiligo is a unique clinical presentation that reflects the importance of environmental influences on autoimmunity, provides insight into a new paradigm linking cell stress to the immune response, and serves as a template for other autoimmune diseases. In this review I will discuss the evidence for cell stress contributions to a number of autoimmune diseases, the questions that remain, and how vitiligo, an underappreciated example of organ-specific autoimmunity, helps to answer them. PMID:26683142

  11. Organization of Circadian Behavior Relies on Glycinergic Transmission.

    PubMed

    Frenkel, Lia; Muraro, Nara I; Beltrán González, Andrea N; Marcora, María S; Bernabó, Guillermo; Hermann-Luibl, Christiane; Romero, Juan I; Helfrich-Förster, Charlotte; Castaño, Eduardo M; Marino-Busjle, Cristina; Calvo, Daniel J; Ceriani, M Fernanda

    2017-04-04

    The small ventral lateral neurons (sLNvs) constitute a central circadian pacemaker in the Drosophila brain. They organize daily locomotor activity, partly through the release of the neuropeptide pigment-dispersing factor (PDF), coordinating the action of the remaining clusters required for network synchronization. Despite extensive efforts, the basic principles underlying communication among circadian clusters remain obscure. We identified classical neurotransmitters released by sLNvs through disruption of specific transporters. Adult-specific RNAi-mediated downregulation of the glycine transporter or impairment of glycine synthesis in LNv neurons increased period length by nearly an hour without affecting rhythmicity of locomotor activity. Electrophysiological recordings showed that glycine reduces spiking frequency in circadian neurons. Interestingly, downregulation of glycine receptor subunits in specific sLNv targets impaired rhythmicity, revealing involvement of glycine in information processing within the network. These data identify glycinergic inhibition of specific targets as a cue that contributes to the synchronization of the circadian network. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Targeted organ generation using Mixl1-inducible mouse pluripotent stem cells in blastocyst complementation.

    PubMed

    Kobayashi, Toshihiro; Kato-Itoh, Megumi; Nakauchi, Hiromitsu

    2015-01-15

    Generation of functional organs from patients' own cells is one of the ultimate goals of regenerative medicine. As a novel approach to creation of organs from pluripotent stem cells (PSCs), we employed blastocyst complementation in organogenesis-disabled animals and successfully generated PSC-derived pancreas and kidneys. Blastocyst complementation, which exploits the capacity of PSCs to participate in forming chimeras, does not, however, exclude contribution of PSCs to the development of tissues-including neural cells or germ cells-other than those specifically targeted by disabling of organogenesis. This fact provokes ethical controversy if human PSCs are to be used. In this study, we demonstrated that forced expression of Mix-like protein 1 (encoded by Mixl1) can be used to guide contribution of mouse embryonic stem cells to endodermal organs after blastocyst injection. We then succeeded in applying this method to generate functional pancreas in pancreatogenesis-disabled Pdx1 knockout mice using a newly developed tetraploid-based organ-complementation method. These findings hold promise for targeted organ generation from patients' own PSCs in livestock animals.

  13. Targeting therapeutics to the glomerulus with nanoparticles.

    PubMed

    Zuckerman, Jonathan E; Davis, Mark E

    2013-11-01

    Nanoparticles are an enabling technology for the creation of tissue-/cell-specific therapeutics that have been investigated extensively as targeted therapeutics for cancer. The kidney, specifically the glomerulus, is another accessible site for nanoparticle delivery that has been relatively overlooked as a target organ. Given the medical need for the development of more potent, kidney-targeted therapies, the use of nanoparticle-based therapeutics may be one such solution to this problem. Here, we review the literature on nanoparticle targeting of the glomerulus. Specifically, we provide a broad overview of nanoparticle-based therapeutics and how the unique structural characteristics of the glomerulus allow for selective, nanoparticle targeting of this area of the kidney. We then summarize literature examples of nanoparticle delivery to the glomerulus and elaborate on the appropriate nanoparticle design criteria for glomerular targeting. Finally, we discuss the behavior of nanoparticles in animal models of diseased glomeruli and review examples of nanoparticle therapeutic approaches that have shown promise in animal models of glomerulonephritic disease. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  14. Development of a polymerase chain reaction assay for the rapid detection of the oral pathogenic bacterium, Selenomonas noxia.

    PubMed

    Cruz, Patricia; Mehretu, Arthuro M; Buttner, Mark P; Trice, Theresa; Howard, Katherine M

    2015-08-14

    In recent studies, periodontal health has been linked to being overweight and/or obese. Among common oral bacteria, Selenomonas noxia has been implicated in converting periodontal health to disease, and Selenomonas species have also been found in gastric ulcers. The objective of this study was to develop and validate a quantitative polymerase chain reaction (qPCR) assay for the specific and rapid detection of S. noxia. Two oligonucleotide primer pairs and one probe were designed and tested to determine optimal amplification signal with three strains of S. noxia. The PCR assay was tested against fourteen non-target organisms, including closely related oral Selenomonads, one phylogenetically closely related bacterium, and two commonly isolated oral bacteria. One of the primer sets was more sensitive at detecting the target organism and was selected for optimization and validation experiments. The designed primers and probe amplified the target organism with 100% specificity. PCR inhibition was observed with an internal positive control, and inhibition was resolved by diluting the DNA extract. The qPCR assay designed in this study can be used to specifically detect S. noxia in the clinical setting and in future research involving the enhanced detection of S. noxia. The assay can also be used in epidemiological studies for understanding the role of S. noxia in disease processes including, but not limited to, oral health and obesity of infectious origin.

  15. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model.

    PubMed

    Sharma, Anjali; Porterfield, Joshua E; Smith, Elizabeth; Sharma, Rishi; Kannan, Sujatha; Kannan, Rangaramanujam M

    2018-06-05

    Neurotherapeutics for the treatment of central nervous system (CNS) disorders must overcome challenges relating to the blood-brain barrier (BBB), brain tissue penetration, and the targeting of specific cells. Neuroinflammation mediated by activated microglia is a major hallmark of several neurological disorders, making these cells a desirable therapeutic target. Building on the promise of hydroxyl-terminated generation four polyamidoamine (PAMAM) dendrimers (D4-OH) for penetrating the injured BBB and targeting activated glia, we explored if conjugation of targeting ligands would enhance and modify brain and organ uptake. Since mannose receptors [cluster of differentiation (CD) 206] are typically over-expressed on injured microglia, we conjugated mannose to the surface of multifunctional D4-OH using highly efficient, atom-economical, and orthogonal Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click chemistry and evaluated the effect of mannose conjugation on the specific cell uptake of targeted and non-targeted dendrimers both in vitro and in vivo. In vitro results indicate that the conjugation of mannose as a targeting ligand significantly changes the mechanism of dendrimer internalization, giving mannosylated dendrimer a preference for mannose receptor-mediated endocytosis as opposed to non-specific fluid phase endocytosis. We further investigated the brain uptake and biodistribution of targeted and non-targeted fluorescently labeled dendrimers in a maternal intrauterine inflammation-induced cerebral palsy (CP) rabbit model using quantification methods based on fluorescence spectroscopy and confocal microscopy. We found that the conjugation of mannose modified the distribution of D4-OH throughout the body in this neonatal rabbit CP model without lowering the amount of dendrimer delivered to injured glia in the brain, even though significantly higher glial uptake was not observed in this model. Mannose conjugation to the dendrimer modifies the dendrimer's interaction with cells, but does not minimize its inherent inflammation-targeting abilities. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Transsynaptic Teneurin Signaling in Neuromuscular Synapse Organization and Target Choice

    PubMed Central

    Mosca, Timothy J.; Hong, Weizhe; Dani, Vardhan S.; Favaloro, Vincenzo; Luo, Liqun

    2012-01-01

    Synapse assembly requires transsynaptic signals between the pre- and postsynapse1, but the understanding of essential organizational molecules remains incomplete2. Teneurins are conserved, EGF-repeat containing transmembrane proteins with large extracellular domains3. Here we show that two Drosophila Teneurins, Ten-m and Ten-a, are required for neuromuscular synapse organization and target selection. Ten-a is presynaptic while Ten-m is mostly postsynaptic; neuronal Ten-a and muscle Ten-m form a complex in vivo. Pre- or postsynaptic Teneurin perturbations cause severe synapse loss and impair many facets of organization transsynaptically and cell-autonomously. These include defects in active zone apposition, release sites, membrane and vesicle organization, and synaptic transmission. Moreover, the presynaptic microtubule and postsynaptic spectrin cytoskeletons are severely disrupted, suggesting a mechanism whereby Teneurins organize the cytoskeleton, which in turn affects other aspects of synapse development. Supporting this, Ten-m physically interacts with α-spectrin. Genetic analyses of teneurin and neuroligin reveal their differential roles that synergize to promote synapse assembly. Finally, at elevated endogenous levels, Ten-m regulates specific motoneuron-muscle target selection. Our study identifies the Teneurins as a key bi-directional transsynaptic signal in general synapse organization, and demonstrates that such a molecule can also regulate target selection. PMID:22426000

  17. Friction and Wear Management Using Solvent Partitioning of Hydrophilic-Surface-Interactive Chemicals Contained in Boundary Layer-Targeted Emulsions

    NASA Technical Reports Server (NTRS)

    Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)

    2015-01-01

    Lubrication additives of the current invention require formation of emulsions in base lubricants, created with an aqueous salt solution plus a single-phase compound such that partitioning within the resulting emulsion provides thermodynamically targeted compounds for boundary layer organization thus establishing anti-friction and/or anti-wear. The single-phase compound is termed "boundary layer organizer", abbreviated BLO. These emulsion-contained compounds energetically favor association with tribologic surfaces in accord with the Second Law of Thermodynamics, and will organize boundary layers on those surfaces in ways specific to the chemistry of the salt and BLO additives. In this way friction modifications may be provided by BLOs targeted to boundary layers via emulsions within lubricating fluids, wherein those lubricating fluids may be water-based or oil-based.

  18. A single-step polymerase chain reaction for simultaneous detection and differentiation of nontypeable and serotypeable Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae.

    PubMed

    Kunthalert, Duangkamol; Henghiranyawong, Kritsada; Sistayanarain, Anchalee; Khoothiam, Krissana

    2013-02-01

    The critically high prevalence of bacterial otitis media worldwide has prompted a proper disease management. While vaccine development for otitis media is promising, the reliable and effective methods for diagnosis of such etiologic agents are of importance. We developed a multiplex polymerase chain reaction assay for simultaneous detection and differentiation of nontypeable and serotypeable Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae. Five primer pairs targeting genes fumarate reductase (H. influenzae), outer membrane protein B (M. catarrhalis), major autolysin (S. pneumoniae), capsulation-associated BexA protein (all encapsulated H. influenzae) and 16S rRNA were incorporated in this single-step PCR. Validation of the multiplex PCR was also performed on clinical isolates. The developed multiplex PCR was highly specific, enabling the detection of the target pathogens in a specific manner, either individually or as a mixture of all target organisms. The assay was also found to be sensitive with the lowest detection limit of 1 ng of bacterial DNA. When applied to clinical isolates from diverse specimen sources, the multiplex PCR developed in this study correctly identified each microorganism individually or in a combination of two or more target organisms. All results matched with conventional culture identification. In addition, the ability of such assay to differentiate H. influenzae encapsulation from the study clinical isolates was 100%. Our multiplex PCR provides a rapid and accurate diagnostic tool for detection of the 4 target organisms. Such assay would serve as a useful tool for clinicians and epidemiologists in their efforts to the proper treatment and disease management caused by these organisms. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Generation of Organ-conditioned Media and Applications for Studying Organ-specific Influences on Breast Cancer Metastatic Behavior.

    PubMed

    Piaseczny, Matthew M; Pio, Graciella M; Chu, Jenny E; Xia, Ying; Nguyen, Kim; Goodale, David; Allan, Alison

    2016-06-13

    Breast cancer preferentially metastasizes to the lymph node, bone, lung, brain and liver in breast cancer patients. Previous research efforts have focused on identifying factors inherent to breast cancer cells that are responsible for this observed metastatic pattern (termed organ tropism), however much less is known about factors present within specific organs that contribute to this process. This is in part because of a lack of in vitro model systems that accurately recapitulate the organ microenvironment. To address this, an ex vivo model system has been established that allows for the study of soluble factors present within different organ microenvironments. This model consists of generating conditioned media from organs (lymph node, bone, lung, and brain) isolated from normal athymic nude mice. The model system has been validated by demonstrating that different breast cancer cell lines display cell-line specific and organ-specific malignant behavior in response to organ-conditioned media that corresponds to their in vivo metastatic potential. This model system can be used to identify and evaluate specific organ-derived soluble factors that may play a role in the metastatic behavior of breast and other types of cancer cells, including influences on growth, migration, stem-like behavior, and gene expression, as well as the identification of potential new therapeutic targets for cancer. This is the first ex vivo model system that can be used to study organ-specific metastatic behavior in detail and evaluate the role of specific organ-derived soluble factors in driving the process of cancer metastasis.

  20. A transcriptome-wide, organ-specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb

    PubMed Central

    Meng, Yijun; Yu, Dongliang; Xue, Jie; Lu, Jiangjie; Feng, Shangguo; Shen, Chenjia; Wang, Huizhong

    2016-01-01

    Dendrobium officinale is an important traditional Chinese herb. Here, we did a transcriptome-wide, organ-specific study on this valuable plant by combining RNA, small RNA (sRNA) and degradome sequencing. RNA sequencing of four organs (flower, root, leaf and stem) of Dendrobium officinale enabled us to obtain 536,558 assembled transcripts, from which 2,645, 256, 42 and 54 were identified to be highly expressed in the four organs respectively. Based on sRNA sequencing, 2,038, 2, 21 and 24 sRNAs were identified to be specifically accumulated in the four organs respectively. A total of 1,047 mature microRNA (miRNA) candidates were detected. Based on secondary structure predictions and sequencing, tens of potential miRNA precursors were identified from the assembled transcripts. Interestingly, phase-distributed sRNAs with degradome-based processing evidences were discovered on the long-stem structures of two precursors. Target identification was performed for the 1,047 miRNA candidates, resulting in the discovery of 1,257 miRNA--target pairs. Finally, some biological meaningful subnetworks involving hormone signaling, development, secondary metabolism and Argonaute 1-related regulation were established. All of the sequencing data sets are available at NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra/). Summarily, our study provides a valuable resource for the in-depth molecular and functional studies on this important Chinese orchid herb. PMID:26732614

  1. Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective.

    PubMed

    Schlüter, Urte; Benchabane, Meriem; Munger, Aurélie; Kiggundu, Andrew; Vorster, Juan; Goulet, Marie-Claire; Cloutier, Conrad; Michaud, Dominique

    2010-10-01

    Protease inhibitors are a promising complement to Bt toxins for the development of insect-resistant transgenic crops, but their limited specificity against proteolytic enzymes and the ubiquity of protease-dependent processes in living organisms raise questions about their eventual non-target effects in agroecosystems. After a brief overview of the main factors driving the impacts of insect-resistant transgenic crops on non-target organisms, the possible effects of protease inhibitors are discussed from a multitrophic perspective, taking into account not only the target herbivore proteases but also the proteases of other organisms found along the trophic chain, including the plant itself. Major progress has been achieved in recent years towards the design of highly potent broad-spectrum inhibitors and the field deployment of protease inhibitor-expressing transgenic plants resistant to major herbivore pests. A thorough assessment of the current literature suggests that, whereas the non-specific inhibitory effects of recombinant protease inhibitors in plant food webs could often be negligible and their 'unintended' pleiotropic effects in planta of potential agronomic value, the innocuity of these proteins might always remain an issue to be assessed empirically, on a case-by-case basis.

  2. The Detection of Protein via ZnO Resonant Raman Scattering Signal

    NASA Astrophysics Data System (ADS)

    Shan, Guiye; Yang, Guoliang; Wang, Shuang; Liu, Yichun

    2008-03-01

    Detecting protein with high sensitivity and specificity is essential for disease diagnostics, drug screening and other application. Semiconductor nanoparticles show better properties than organic dye molecules when used as markers for optical measurements. We used ZnO nanoparticles as markers for detecting protein in resonant Raman scattering measurements. The highly sensitive detection of proteins was achieved by an antibody-based sandwich assay. A probe for the target protein was constructed by binding the ZnO/Au nanoparticles to a primary antibody by eletrostatic interaction between Au and the antibody. A secondary antibody, which could be specifically recognized by target protein, was attached to a solid surface. The ZnO/Au-antibody probe could specifically recognize and bind to the complex of the target protein and secondary antibody. Our measurements using the resonant Raman scattering signal of ZnO nanoparticles showed good selectivity and sensitivity for the target protein.

  3. Cancer-linked targets modulated by curcumin

    PubMed Central

    Hasima, Noor; Aggarwal, Bharat B

    2012-01-01

    In spite of major advances in oncology, the World Health Organization predicts that cancer incidence will double within the next two decades. Although it is well understood that cancer is a hyperproliferative disorder mediated through dysregulation of multiple cell signaling pathways, most cancer drug development remains focused on modulation of specific targets, mostly one at a time, with agents referred to as “targeted therapies,” “smart drugs,” or “magic bullets.” How many cancer targets there are is not known, and how many targets must be attacked to control cancer growth is not well understood. Although more than 90% of cancer-linked deaths are due to metastasis of the tumor to vital organs, most drug targeting is focused on killing the primary tumor. Besides lacking specificity, the targeted drugs induce toxicity and side effects that sometimes are greater problems than the disease itself. Furthermore, the cost of some of these drugs is so high that most people cannot afford them. The present report describes the potential anticancer properties of curcumin, a component of the Indian spice turmeric (Curcuma longa), known for its safety and low cost. Curcumin can selectively modulate multiple cell signaling pathways linked to inflammation and to survival, growth, invasion, angiogenesis, and metastasis of cancer cells. More clinical trials of curcumin are needed to prove its usefulness in the cancer setting. PMID:23301199

  4. Biochemical Detection and Identification False Alarm Rate Dependence on Wavelength Using Laser Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Bhartia, R.; Hug, W. F.; Sala, E. C.; Sijapati, K.; Lane, A. L.; Reid, R. D.; Conrad, P. G.

    2006-01-01

    Most organic and many inorganic materials absorb strongly in specific wavelength ranges in the deep UV between about 220nm and 300nm. Excitation within these absorption bands results in native fluorescence emission. Each compound or composite material, such as a bacterial spore, has a unique excitation-emission fingerprint that can be used to provide information about the material. The sensitivity and specificity with which these materials can be detected and identified depends on the excitation wavelength and the number and location of observation wavelengths.We will present data on our deep ultraviolet Targeted Ultraviolet Chemical Sensors that demonstrate the sensitivity and specificity of the sensors. In particular, we will demonstrate the ability to quantitatively differentiate a wide range of biochemical agent targets against a wide range of background materials. We will describe the relationship between spectral resolution and specificity in target identification, as well as simple, fast, algorithms to identify materials.Hand-held, battery operated instruments using a deep UV laser and multi-band detection have been developed and deployed on missions to the Antarctic, the Arctic, and the deep ocean with the capability of detecting a single bacterial spore and to differentiate a wide range of organic and biological compounds.

  5. Canine Detection of the Volatilome: A Review of Implications for Pathogen and Disease Detection.

    PubMed

    Angle, Craig; Waggoner, Lowell Paul; Ferrando, Arny; Haney, Pamela; Passler, Thomas

    2016-01-01

    The volatilome is the entire set of volatile organic compounds (VOC) produced by an organism. The accumulation of VOC inside and outside of the body reflects the unique metabolic state of an organism. Scientists are developing technologies to non-invasively detect VOC for the purposes of medical diagnosis, therapeutic monitoring, disease outbreak containment, and disease prevention. Detection dogs are proven to be a valuable real-time mobile detection technology for the detection of VOC related to explosives, narcotics, humans, and many other targets of interests. Little is known about what dogs are detecting when searching for biological targets. It is important to understand where biological VOC originates and how dogs might be able to detect biological targets. This review paper discusses the recent scientific literature involving VOC analysis and postulates potential biological targets for canine detection. Dogs have shown their ability to detect pathogen and disease-specific VOC. Future research will determine if dogs can be employed operationally in hospitals, on borders, in underserved areas, on farms, and in other operational environments to give real-time feedback on the presence of a biological target.

  6. Use of direct fluorescence labeling and confocal microscopy to determine the biodistribution of two protein therapeutics, Cerezyme and Ceredase.

    PubMed

    Piepenhagen, Peter A; Vanpatten, Scott; Hughes, Heather; Waire, James; Murray, James; Andrews, Laura; Edmunds, Tim; O'Callaghan, Michael; Thurberg, Beth L

    2010-07-01

    Efficient targeting of therapeutic reagents to tissues and cell types of interest is critical to achieving therapeutic efficacy and avoiding unwanted side effects due to offtarget uptake. To increase assay efficiency and reduce the number of animals used per experiment during preclinical development, we used a combination of direct fluorescence labeling and confocal microscopy to simultaneously examine the biodistribution of two therapeutic proteins, Cerezyme and Ceredase, in the same animals. We show that the fluorescent tags do not interfere with protein uptake and localization. We are able to detect Cerezyme and Ceredase in intact cells and organs and demonstrate colocalization within target cells using confocal microscopy. In addition, the relative amount of protein internalized by different cell types can be quantified using cell type-specific markers and morphometric analysis. This approach provides an easy and straightforward means of assessing the tissue and cell type-specific biodistribution of multiple protein therapeutics in target organs using a minimal number of animals. (c) 2009 Wiley-Liss, Inc.

  7. Dietary Anthocyanins and Insulin Resistance: When Food Becomes a Medicine.

    PubMed

    Belwal, Tarun; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad; Habtemariam, Solomon

    2017-10-12

    Insulin resistance is an abnormal physiological state that occurs when insulin from pancreatic β-cells is unable to trigger a signal transduction pathway in target organs such as the liver, muscles and adipose tissues. The loss of insulin sensitivity is generally associated with persistent hyperglycemia (diabetes), hyperinsulinemia, fatty acids and/or lipid dysregulation which are often prevalent under obesity conditions. Hence, insulin sensitizers are one class of drugs currently employed to treat diabetes and associated metabolic disorders. A number of natural products that act through multiple mechanisms have also been identified to enhance insulin sensitivity in target organs. One group of such compounds that gained interest in recent years are the dietary anthocyanins. Data from their in vitro, in vivo and clinical studies are scrutinized in this communication to show their potential health benefit through ameliorating insulin resistance. Specific mechanism of action ranging from targeting specific signal transduction receptors/enzymes to the general antioxidant and anti-inflammatory mechanisms of insulin resistance are presented.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stella, Stefano; University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen; Molina, Rafael

    Crystal structures of BurrH and the BurrH–DNA complex are reported. DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-bindingmore » domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.« less

  9. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liburdy, R.P.

    1993-03-02

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C.more » The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.« less

  10. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, R.P.

    1993-03-02

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C. The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  11. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, Robert P.

    1993-01-01

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  12. Dual pancreas- and lung-targeting therapy for local and systemic complications of acute pancreatitis mediated by a phenolic propanediamine moiety.

    PubMed

    Li, Jianbo; Zhang, Jinjie; Fu, Yao; Sun, Xun; Gong, Tao; Jiang, Jinghui; Zhang, Zhirong

    2015-08-28

    To inhibit both the local and systemic complications with acute pancreatitis, an effective therapy requires a drug delivery system that can efficiently overcome the blood-pancreas barrier while achieving lung-specific accumulation. Here, we report the first dual pancreas- and lung-targeting therapeutic strategy mediated by a phenolic propanediamine moiety for the treatment of acute pancreatitis. Using the proposed dual-targeting ligand, an anti-inflammatory compound Rhein has been tailored to preferentially accumulate in the pancreas and lungs with rapid distribution kinetics, excellent tissue-penetrating properties and minimum toxicity. Accordingly, the drug-ligand conjugate remarkably downregulated the proinflammatory cytokines in the target organs thus effectively inhibiting local pancreatic and systemic inflammation in rats. The dual-specific targeting therapeutic strategy may help pave the way for targeted drug delivery to treat complicated inflammatory diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Pattern Genes Suggest Functional Connectivity of Organs

    NASA Astrophysics Data System (ADS)

    Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang

    2016-05-01

    Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose & gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.

  14. Approaches for grouping of pesticides into cumulative assessment groups for risk assessment of pesticide residues in food.

    PubMed

    Colnot, Thomas; Dekant, Wolfgang

    2017-02-01

    The European Food Safety Authority (EFSA) is developing approaches to cumulative risk assessment of pesticides by assigning individual pesticides to cumulative assessment groups (CAGs). For assignment to CAGs, EFSA recommended to rely on adverse effects on the specific target system. Contractors to EFSA have proposed to allocate individual pesticides into CAGs relying on NOAELs for effects on target organs. This manuscript evaluates the assignments by applying EFSAs criteria to the CAGs "Toxicity to the nervous system" and "Toxicity to the thyroid hormone system (gland or hormones)". Assignment to the CAG "Toxicity to the nervous system" based, for example, on neurochemical effects like choline esterase inhibition is well supported, whereas assignment to the CAG "Toxicity to the thyroid hormone system (gland or hormones)" has been based in the examined case studies on non-reproducible effects seen in single studies or on observations that are not adverse. Therefore, a more detailed effects evaluation is required to assign a pesticide to a CAG for a target organ where many confounders regarding effects are present. Relative potency factors in cumulative risk assessment should be based on benchmark doses from studies in one species with identical study design and human relevance of effects on specific target organs should be analyzed to define minimal margins of exposure. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Relevance of MICA and other non-HLA antibodies in clinical transplantation.

    PubMed

    Sumitran-Holgersson, Suchitra

    2008-10-01

    The clinical importance of HLA-specific antibodies for organ allograft outcome is well established. In the past few years, there has been an increasing interest in non-HLA antigens as targets of injury in organ transplant recipients. This increased interest has been spurred by the fact that HLA-identical kidney transplants also undergo immunological rejections. Polymorphisms within non-HLA genes associated with evoking an immune response to alloantigens are currently being studied for their association with transplant outcome. Non-HLA antigens, such as the polymorphic MHC class I-related chain A (MICA), expressed on endothelial cells have been implicated in the pathogenesis of hyperacute, acute and chronic organ allograft rejections. Use of endothelial cells as targets may clarify the specificities of other clinically relevant non-HLA antibodies in graft rejections. This review summarizes past and current knowledge of the clinical importance and specificities of non-HLA antibodies, and mechanisms by which these antibodies may contribute to graft destruction in clinical transplantation. The aims of current research into the role of non-HLA antigens and their genetics in predicting outcome are to develop an improved insight into the basic science of transplantation and to develop a risk or prognostic index for use in the clinical setting. Non-HLA antibody responses are receiving increasing interest in acute and chronic rejection and specificity, affinity, and pathogenicity need to be investigated to estimate their contribution. Undoubtedly, this will continue to be an area of interest in terms of fully understanding the role of non-HLA antigens as targets of immune-mediated injury and the potential for clinical intervention.

  16. Development and validation of a real-time TaqMan assay for the detection and enumeration of Pseudomonas fluorescens ATCC 13525 used as a challenge organism in testing of food equipments.

    PubMed

    Saha, Ratul; Bestervelt, Lorelle L; Donofrio, Robert S

    2012-02-01

    Pseudomonas fluorescens ATCC 13525 is used as the challenge organism to evaluate the efficacy of the clean-in-place (CIP) process of food equipment (automatic ice-maker) as per NSF/ANSI Standard 12. Traditional culturing methodology is presently used to determine the concentration of the challenge organism, which takes 48 h to confirm the cell density. Storage of the challenge preparation in the refrigerator might alter the cell density as P. fluorescens is capable of growing at 4 °C. Also, background organism can grow on the Pseudomonas F agar (PFA) used for the recovery of P. fluorescens thus affecting the results of the test. Real-time TaqMan assay targeting the cpn60 gene was developed for the enumeration and the identification of P. fluorescens because of its specificity, accuracy, and shorter turnaround time. The TaqMan primer-probe pair developed using the Allele ID® 7.0 probe design software was highly specific and sensitive for the target organism. The sensitivity of the assay was 10 colony forming units (CFU)/mL. The assay was also successful in determining the concentration of the challenge preparation within 2 h. Based on these observations, TaqMan assay targeting the cpn60 gene can be efficiently used for strain level identification and enumeration of bacteria. Pseudomonas fluorescens ATCC 13525 is used as a challenge organism in the efficacy testing of clean-in-place process of food equipments. Currently, culturing technique is used for its identification and estimation, which is not only time-consuming but also prone to error. Real-time TaqMan assay is more specific, sensitive, and accurate along with a shorter turnaround time compared to culturing techniques, thereby increasing the overall quality of the testing methodology to evaluate the clean-in-place process critical for the food industry to protect public health and safety. © 2012 Institute of Food Technologists®

  17. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging.

    PubMed

    Bhaskar, Sonu; Tian, Furong; Stoeger, Tobias; Kreyling, Wolfgang; de la Fuente, Jesús M; Grazú, Valeria; Borm, Paul; Estrada, Giovani; Ntziachristos, Vasilis; Razansky, Daniel

    2010-03-03

    Nanotechnology has brought a variety of new possibilities into biological discovery and clinical practice. In particular, nano-scaled carriers have revolutionalized drug delivery, allowing for therapeutic agents to be selectively targeted on an organ, tissue and cell specific level, also minimizing exposure of healthy tissue to drugs. In this review we discuss and analyze three issues, which are considered to be at the core of nano-scaled drug delivery systems, namely functionalization of nanocarriers, delivery to target organs and in vivo imaging. The latest developments on highly specific conjugation strategies that are used to attach biomolecules to the surface of nanoparticles (NP) are first reviewed. Besides drug carrying capabilities, the functionalization of nanocarriers also facilitate their transport to primary target organs. We highlight the leading advantage of nanocarriers, i.e. their ability to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells surrounding the brain that prevents high-molecular weight molecules from entering the brain. The BBB has several transport molecules such as growth factors, insulin and transferrin that can potentially increase the efficiency and kinetics of brain-targeting nanocarriers. Potential treatments for common neurological disorders, such as stroke, tumours and Alzheimer's, are therefore a much sought-after application of nanomedicine. Likewise any other drug delivery system, a number of parameters need to be registered once functionalized NPs are administered, for instance their efficiency in organ-selective targeting, bioaccumulation and excretion. Finally, direct in vivo imaging of nanomaterials is an exciting recent field that can provide real-time tracking of those nanocarriers. We review a range of systems suitable for in vivo imaging and monitoring of drug delivery, with an emphasis on most recently introduced molecular imaging modalities based on optical and hybrid contrast, such as fluorescent protein tomography and multispectral optoacoustic tomography. Overall, great potential is foreseen for nanocarriers in medical diagnostics, therapeutics and molecular targeting. A proposed roadmap for ongoing and future research directions is therefore discussed in detail with emphasis on the development of novel approaches for functionalization, targeting and imaging of nano-based drug delivery systems, a cutting-edge technology poised to change the ways medicine is administered.

  18. Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors.

    PubMed

    Okada, Toshiyuki; Linguraru, Marius George; Hori, Masatoshi; Summers, Ronald M; Tomiyama, Noriyuki; Sato, Yoshinobu

    2013-01-01

    The paper addresses the automated segmentation of multiple organs in upper abdominal CT data. We propose a framework of multi-organ segmentation which is adaptable to any imaging conditions without using intensity information in manually traced training data. The features of the framework are as follows: (1) the organ correlation graph (OCG) is introduced, which encodes the spatial correlations among organs inherent in human anatomy; (2) the patient-specific organ shape and location priors obtained using OCG enable the estimation of intensity priors from only target data and optionally a number of untraced CT data of the same imaging condition as the target data. The proposed methods were evaluated through segmentation of eight abdominal organs (liver, spleen, left and right kidney, pancreas, gallbladder, aorta, and inferior vena cava) from 86 CT data obtained by four imaging conditions at two hospitals. The performance was comparable to the state-of-the-art method using intensity priors constructed from manually traced data.

  19. Target-specific stigma change: a strategy for impacting mental illness stigma.

    PubMed

    Corrigan, Patrick W

    2004-01-01

    In the past decade, mental health advocates and researchers have sought to better understand stigma so that the harm it causes can be erased. In this paper, we propose a target-specific stigma change model to organize the diversity of information into a cogent framework. "Target" here has a double meaning: the power groups that have some authority over the life goals of people with mental illness and specific discriminatory behaviors which power groups might produce that interfere with these goals. Key power groups in the model include landlords, employers, health care providers, criminal justice professionals, policy makers, and the media. Examples are provided of stigmatizing attitudes that influence the discriminatory behavior and social context in which the power group interacts with people with mental illness. Stigma change is most effective when it includes all the components that describe how a specific power group impacts people with mental illness.

  20. Shedding light on the role of AT-hook/PPC domain protein in Arabidopsis thaliana

    PubMed Central

    Ng, Kian-Hong

    2010-01-01

    Flower reproductive development is a complex process involving well-coordinated control of transcriptional regulation cascades. AGAMOUS (AG) plays an instrumental role in the specification and differentiation of reproductive organs in Arabidopsis thaliana. We recently characterized a downstream target gene of AG, GIANT KILLER (GIK), which encodes for an AT-hook/plants and prokaryotes conserved (PPC) domain protein. We found that overexpression of GIK leads to severe reproductive defects and downregulation of genes involved in patterning and differentiation of reproductive floral organs. We showed that GIK is a matrix protein, and GIK-mediated gene regulation requires binding of GIK to matrix associated region (MAR) of the target genes. We further showed that GIK-mediated negative regulation of one of the target genes, ETTIN (ETT), is associated with changes of chromatin histone modification at ETT promoter, suggesting that GIK acts as a gene expression modulator through chromatin organization. PMID:20173412

  1. A functional gene array for detection of bacterial virulence elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, C

    2007-11-01

    We report our development of the first of a series of microarrays designed to detect pathogens with known mechanisms of virulence and antibiotic resistance. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. To validate our approach, we developed a first generation array targeting genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for microorganism detection and discrimination, measured the required target concentration, and assessedmore » tolerance for mismatches between probe and target sequences. Mismatch tolerance is a priority for this application, due to DNA sequence variability among members of gene families. Arrays were created using the NimbleGen Maskless Array Synthesizer at Lawrence Livermore National Laboratory. Purified genomic DNA from combinations of one or more of the four target organisms, pure cultures of four related organisms, and environmental aerosol samples with spiked-in genomic DNA were hybridized to the arrays. Based on the success of this prototype, we plan to design further arrays in this series, with the goal of detecting all known virulence and antibiotic resistance gene families in a greatly expanded set of organisms.« less

  2. A distributed computational search strategy for the identification of diagnostics targets: application to finding aptamer targets for methicillin-resistant staphylococci.

    PubMed

    Flanagan, Keith; Cockell, Simon; Harwood, Colin; Hallinan, Jennifer; Nakjang, Sirintra; Lawry, Beth; Wipat, Anil

    2014-06-30

    The rapid and cost-effective identification of bacterial species is crucial, especially for clinical diagnosis and treatment. Peptide aptamers have been shown to be valuable for use as a component of novel, direct detection methods. These small peptides have a number of advantages over antibodies, including greater specificity and longer shelf life. These properties facilitate their use as the detector components of biosensor devices. However, the identification of suitable aptamer targets for particular groups of organisms is challenging. We present a semi-automated processing pipeline for the identification of candidate aptamer targets from whole bacterial genome sequences. The pipeline can be configured to search for protein sequence fragments that uniquely identify a set of strains of interest. The system is also capable of identifying additional organisms that may be of interest due to their possession of protein fragments in common with the initial set. Through the use of Cloud computing technology and distributed databases, our system is capable of scaling with the rapidly growing genome repositories, and consequently of keeping the resulting data sets up-to-date. The system described is also more generically applicable to the discovery of specific targets for other diagnostic approaches such as DNA probes, PCR primers and antibodies.

  3. A distributed computational search strategy for the identification of diagnostics targets: Application to finding aptamer targets for methicillin-resistant staphylococci.

    PubMed

    Flanagan, Keith; Cockell, Simon; Harwood, Colin; Hallinan, Jennifer; Nakjang, Sirintra; Lawry, Beth; Wipat, Anil

    2014-06-01

    The rapid and cost-effective identification of bacterial species is crucial, especially for clinical diagnosis and treatment. Peptide aptamers have been shown to be valuable for use as a component of novel, direct detection methods. These small peptides have a number of advantages over antibodies, including greater specificity and longer shelf life. These properties facilitate their use as the detector components of biosensor devices. However, the identification of suitable aptamer targets for particular groups of organisms is challenging. We present a semi-automated processing pipeline for the identification of candidate aptamer targets from whole bacterial genome sequences. The pipeline can be configured to search for protein sequence fragments that uniquely identify a set of strains of interest. The system is also capable of identifying additional organisms that may be of interest due to their possession of protein fragments in common with the initial set. Through the use of Cloud computing technology and distributed databases, our system is capable of scaling with the rapidly growing genome repositories, and consequently of keeping the resulting data sets up-to-date. The system described is also more generically applicable to the discovery of specific targets for other diagnostic approaches such as DNA probes, PCR primers and antibodies.

  4. Spatial Cytoskeleton Organization Supports Targeted Intracellular Transport

    NASA Astrophysics Data System (ADS)

    Hafner, Anne E.; Rieger, Heiko

    2018-03-01

    The efficiency of intracellular cargo transport from specific source to target locations is strongly dependent upon molecular motor-assisted motion along the cytoskeleton. Radial transport along microtubules and lateral transport along the filaments of the actin cortex underneath the cell membrane are characteristic for cells with a centrosome. The interplay between the specific cytoskeleton organization and the motor performance realizes a spatially inhomogeneous intermittent search strategy. In order to analyze the efficiency of such intracellular search strategies we formulate a random velocity model with intermittent arrest states. We evaluate efficiency in terms of mean first passage times for three different, frequently encountered intracellular transport tasks: i) the narrow escape problem, which emerges during cargo transport to a synapse or other specific region of the cell membrane, ii) the reaction problem, which considers the binding time of two particles within the cell, and iii) the reaction-escape problem, which arises when cargo must be released at a synapse only after pairing with another particle. Our results indicate that cells are able to realize efficient search strategies for various intracellular transport tasks economically through a spatial cytoskeleton organization that involves only a narrow actin cortex rather than a cell body filled with randomly oriented actin filaments.

  5. Efficiency and specificity of RAAS inhibitors in cardiovascular diseases: how to achieve better end-organ protection?

    PubMed

    Nehme, Ali; Zibara, Kazem

    2017-11-01

    RAAS, a major pharmacological target in cardiovascular medicine, is inhibited by pharmacological classes including angiotensin converting enzyme (ACE) inhibitors (ACEIs), angiotensin-II type 1 blockers (ARBs) and aldosterone receptors antagonists, in addition to the recently introduced direct renin inhibitors (DRIs). However, currently used RAAS inhibitors still cannot achieve their desired effects and are associated with certain drawbacks, such as adverse side effects, incomplete blockage of the system and poor end-organ protection. In this review, we discuss the efficiency and specificity of the current RAAS inhibitors and propose some recommendations for achieving better treatments with better end-organ protection.

  6. Identification and characterization of highly versatile peptide-vectors that bind non-competitively to the low-density lipoprotein receptor for in vivo targeting and delivery of small molecules and protein cargos

    PubMed Central

    David, Marion; Lécorché, Pascaline; Masse, Maxime; Faucon, Aude; Abouzid, Karima; Gaudin, Nicolas; Varini, Karine; Gassiot, Fanny; Ferracci, Géraldine; Jacquot, Guillaume; Vlieghe, Patrick

    2018-01-01

    Insufficient membrane penetration of drugs, in particular biotherapeutics and/or low target specificity remain a major drawback in their efficacy. We propose here the rational characterization and optimization of peptides to be developed as vectors that target cells expressing specific receptors involved in endocytosis or transcytosis. Among receptors involved in receptor-mediated transport is the LDL receptor. Screening complex phage-displayed peptide libraries on the human LDLR (hLDLR) stably expressed in cell lines led to the characterization of a family of cyclic and linear peptides that specifically bind the hLDLR. The VH411 lead cyclic peptide allowed endocytosis of payloads such as the S-Tag peptide or antibodies into cells expressing the hLDLR. Size reduction and chemical optimization of this lead peptide-vector led to improved receptor affinity. The optimized peptide-vectors were successfully conjugated to cargos of different nature and size including small organic molecules, siRNAs, peptides or a protein moiety such as an Fc fragment. We show that in all cases, the peptide-vectors retain their binding affinity to the hLDLR and potential for endocytosis. Following i.v. administration in wild type or ldlr-/- mice, an Fc fragment chemically conjugated or fused in C-terminal to peptide-vectors showed significant biodistribution in LDLR-enriched organs. We have thus developed highly versatile peptide-vectors endowed with good affinity for the LDLR as a target receptor. These peptide-vectors have the potential to be further developed for efficient transport of therapeutic or imaging agents into cells -including pathological cells—or organs that express the LDLR. PMID:29485998

  7. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    USDA-ARS?s Scientific Manuscript database

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  8. Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs.

    PubMed

    Glinskii, Olga V; Huxley, Virginia H; Glinsky, Gennadi V; Pienta, Kenneth J; Raz, Avraham; Glinsky, Vladislav V

    2005-05-01

    In this report, we challenge a common perception that tumor embolism is a size-limited event of mechanical arrest, occurring in the first capillary bed encountered by blood-borne metastatic cells. We tested the hypothesis that mechanical entrapment alone, in the absence of tumor cell adhesion to blood vessel walls, is not sufficient for metastatic cell arrest in target organ microvasculature. The in vivo metastatic deposit formation assay was used to assess the number and location of fluorescently labeled tumor cells lodged in selected organs and tissues following intravenous inoculation. We report that a significant fraction of breast and prostate cancer cells escapes arrest in a lung capillary bed and lodges successfully in other organs and tissues. Monoclonal antibodies and carbohydrate-based compounds (anti-Thomsen-Friedenreich antigen antibody, anti-galectin-3 antibody, modified citrus pectin, and lactulosyl-l-leucine), targeting specifically beta-galactoside-mediated tumor-endothelial cell adhesive interactions, inhibited by >90% the in vivo formation of breast and prostate carcinoma metastatic deposits in mouse lung and bones. Our results indicate that metastatic cell arrest in target organ microvessels is not a consequence of mechanical trapping, but is supported predominantly by intercellular adhesive interactions mediated by cancer-associated Thomsen-Friedenreich glycoantigen and beta-galactoside-binding lectin galectin-3. Efficient blocking of beta-galactoside-mediated adhesion precludes malignant cell lodging in target organs.

  9. SU-E-T-507: Internal Dosimetry in Nuclear Medicine Using GATE and XCAT Phantom: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallahpoor, M; Abbasi, M; Sen, A

    Purpose Monte Carlo simulations are routinely used for internal dosimetry studies. These studies are conducted with humanoid phantoms such as the XCAT phantom. In this abstract we present the absorbed doses for various pairs of source and target organs using three common radiotracers in nuclear medicine. Methods The GATE software package is used for the Monte Carlo simulations. A typical female XCAT phantom is used as the input. Three radiotracers 153Sm, 131I and 99mTc are studied. The Specific Absorbed Fraction (SAF) for gamma rays (99mTc, 153Sm and 131I) and Specific Fraction (SF) for beta particles (153Sm and 131I) are calculatedmore » for all 100 pairs of source target organs including brain, liver, lung, pancreas, kidney, adrenal, spleen, rib bone, bladder and ovaries. Results The source organs themselves gain the highest absorbed dose as compared to other organs. The dose is found to be inversely proportional to distance from the source organ. In SAF results of 153Sm, when the source organ is lung, the rib bone, gain 0.0730 (Kg-1) that is more than lung itself. Conclusion The absorbed dose for various organs was studied in terms of SAF and SF. Such studies hold importance for future therapeutic procedures and optimization of induced radiotracer.« less

  10. The seed and soil hypothesis revisited - the role of tumor-stroma interactions in metastasis to different organs

    PubMed Central

    Langley, Robert R.; Fidler, Isaiah J.

    2011-01-01

    The fact that certain tumors exhibit a predilection for metastasis to specific organs has been recognized for well over a century now. An extensive body of clinical data and experimental research has confirmed Stephen Paget's original “seed and soil” hypothesis that proposed the organ-preference patterns of tumor metastasis are the product of favorable interactions between metastatic tumor cells (the “seed”) and their organ microenvironment (the “soil”). Indeed, many of first-line therapeutic regimens currently in use for the treatment of human cancer are designed to target cancer cells (such as chemotherapy) and also to modulate the tumor microenvironment (such as anti-angiogenic therapy). While some types of tumors are capable of forming metastases in virtually every organ in the body, the most frequent target organs of metastasis are bone, brain, liver, and the lung. In this review, we discuss how tumor-stromal interactions influence metastasis in each of these organs. PMID:21365651

  11. Whole-body multicolor spectrally resolved fluorescence imaging for development of target-specific optical contrast agents using genetically engineered probes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hisataka; Hama, Yukihiro; Koyama, Yoshinori; Barrett, Tristan; Urano, Yasuteru; Choyke, Peter L.

    2007-02-01

    Target-specific contrast agents are being developed for the molecular imaging of cancer. Optically detectable target-specific agents are promising for clinical applications because of their high sensitivity and specificity. Pre clinical testing is needed, however, to validate the actual sensitivity and specificity of these agents in animal models, and involves both conventional histology and immunohistochemistry, which requires large numbers of animals and samples with costly handling. However, a superior validation tool takes advantage of genetic engineering technology whereby cell lines are transfected with genes that induce the target cell to produce fluorescent proteins with characteristic emission spectra thus, identifying them as cancer cells. Multicolor fluorescence imaging of these genetically engineered probes can provide rapid validation of newly developed exogenous probes that fluoresce at different wavelengths. For example, the plasmid containing the gene encoding red fluorescent protein (RFP) was transfected into cell lines previously developed to either express or not-express specific cell surface receptors. Various antibody-based or receptor ligand-based optical contrast agents with either green or near infrared fluorophores were developed to concurrently target and validate cancer cells and their positive and negative controls, such as β-D-galactose receptor, HER1 and HER2 in a single animal/organ. Spectrally resolved fluorescence multicolor imaging was used to detect separate fluorescent emission spectra from the exogenous agents and RFP. Therefore, using this in vivo imaging technique, we were able to demonstrate the sensitivity and specificity of the target-specific optical contrast agents, thus reducing the number of animals needed to conduct these experiments.

  12. Performance Measurement and Target-Setting in California's Safety Net Health Systems.

    PubMed

    Hemmat, Shirin; Schillinger, Dean; Lyles, Courtney; Ackerman, Sara; Gourley, Gato; Vittinghoff, Eric; Handley, Margaret; Sarkar, Urmimala

    Health policies encourage implementing quality measurement with performance targets. The 2010-2015 California Medicaid waiver mandated quality measurement and reporting. In 2013, California safety net hospitals participating in the waiver set a voluntary performance target (the 90th percentile for Medicare preferred provider organization plans) for mammography screening and cholesterol control in diabetes. They did not reach the target, and the difference-in-differences analysis suggested that there was no difference for mammography ( P = .39) and low-density lipoprotein control ( P = .11) performance compared to measures for which no statewide quality improvement initiative existed. California's Medicaid waiver was associated with improved performance on a number of metrics, but this performance was not attributable to target setting on specific health conditions. Performance may have improved because of secular trends or systems improvements related to waiver funding. Relying on condition-specific targets to measure performance may underestimate improvements and disadvantage certain health systems. Achieving ambitious targets likely requires sustained fiscal, management, and workforce investments.

  13. Targeting GPCR-Gβγ-GRK2 signaling as a novel strategy for treating cardiorenal pathologies.

    PubMed

    Rudomanova, Valeria; Blaxall, Burns C

    2017-08-01

    The pathologic crosstalk between the heart and kidney is known as cardiorenal syndrome (CRS). While the specific mechanisms underlying this crosstalk remain poorly understood, CRS is associated with exacerbated dysfunction of either or both organs and reduced survival. Maladaptive fibrotic remodeling is a key component of both heart and kidney failure pathogenesis and progression. G-protein coupled receptor (GPCR) signaling is a crucial regulator of cardiovascular and renal function. Chronic/pathologic GPCR signaling elicits the interaction of the G-protein Gβγ subunit with GPCR kinase 2 (GRK2), targeting the receptor for internalization, scaffolding to pathologic signals, and receptor degradation. Targeting this pathologic Gβγ-GRK2 interaction has been suggested as a possible strategy for the treatment of HF. In the current review, we discuss recent updates in understanding the role of GPCR-Gβγ-GRK2 signaling as a crucial mediator of maladaptive organ remodeling detected in HF and kidney dysfunction, with specific attention to small molecule-mediated inhibition of pathologic Gβγ-GRK2 interactions. Further, we explore the potential of GPCR-Gβγ-GRK2 signaling as a possible therapeutic target for cardiorenal pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Crustacean hyperglycemic hormone (CHH) neuropeptidesfamily: Functions, titer, and binding to target tissues.

    PubMed

    Chung, J Sook; Zmora, N; Katayama, H; Tsutsui, N

    2010-05-01

    The removal of the eyestalk (s) induces molting and reproduction promoted the presence of regulatory substances in the eyestalk (ES), particularly medulla terminalis X-organ and the sinus gland (MTXO-SG). The PCR-based cloning strategies have allowed for isolating a great number of cDNAs sequences of crustacean hyperglycemic hormone (CHH) neuropeptides family from the eyestalk and non-eyestalk tissues, e.g., pericardial organs and fore- and hindguts. However, the translated corresponding neuropeptides in these tissues, their circulating concentrations, the mode of actions, and specific physiological functions have not been well described. The profiles of CHH neuropeptides present in the MTXO-SG may differ among decapod crustacean species, but they can be largely divided into two sub-groups on the basis of structural homology: (1) CHH and (2) molt-inhibiting hormone (MIH)/mandibular organ-inhibiting hormone (MOIH)/vitellogenesis/gonad-inhibiting hormone (V/GIH). CHH typically elevating the level of circulating glucose from animals under stressful conditions (hyper- and hypothermia, hypoxia, and low salinity) has multiple target tissues and functions such as ecdysteroidogenesis, osmoregulation, and vitellogenesis. Recently, MIH, known for exclusively suppressing ecdysteroidogenesis in Y-organs, is also reported to have an additional role in vitellogenesis of adult female crustacean species, suggesting that some CHH neuropeptides may acquire an extra regulatory role in reproduction at adult stage. This paper reviews the regulatory roles of CHH and MIH at the levels of specific functions, temporal and spatial expression, titers, their binding sites on the target tissues, and second messengers from two crab species: the blue crab, Callinectes sapidus, and the European green crab, Carcinus maenas. It further discusses the diverse regulatory roles of these neuropeptides and the functional plasticity of these neuropeptides in regard to life stage and species-specific physiology. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Custom-Designed Molecular Scissors for Site-Specific Manipulation of the Plant and Mammalian Genomes

    NASA Astrophysics Data System (ADS)

    Kandavelou, Karthikeyan; Chandrasegaran, Srinivasan

    Zinc finger nucleases (ZFNs) are custom-designed molecular scissors, engineered to cut at specific DNA sequences. ZFNs combine the zinc finger proteins (ZFPs) with the nonspecific cleavage domain of the FokI restriction enzyme. The DNA-binding specificity of ZFNs can be easily altered experimentally. This easy manipulation of the ZFN recognition specificity enables one to deliver a targeted double-strand break (DSB) to a genome. The targeted DSB stimulates local gene targeting by several orders of magnitude at that specific cut site via homologous recombination (HR). Thus, ZFNs have become an important experimental tool to make site-specific and permanent alterations to genomes of not only plants and mammals but also of many other organisms. Engineering of custom ZFNs involves many steps. The first step is to identify a ZFN site at or near the chosen chromosomal target within the genome to which ZFNs will bind and cut. The second step is to design and/or select various ZFP combinations that will bind to the chosen target site with high specificity and affinity. The DNA coding sequence for the designed ZFPs are then assembled by polymerase chain reaction (PCR) using oligonucleotides. The third step is to fuse the ZFP constructs to the FokI cleavage domain. The ZFNs are then expressed as proteins by using the rabbit reticulocyte in vitro transcription/translation system and the protein products assayed for their DNA cleavage specificity.

  16. Target-Specific Delivery of an Antibody That Blocks the Formation of Collagen Deposits in Skin and Lung.

    PubMed

    Fertala, Jolanta; Romero, Freddy; Summer, Ross; Fertala, Andrzej

    2017-10-01

    Regardless of the cause of organ fibrosis, its main unwanted consequence is the formation of collagen fibril-rich deposits that hamper the structure and function of affected tissues. Although many strategies have been proposed for the treatment of fibrotic diseases, no therapy has been developed, which can effectively block the formation of collagen fibril deposits. With this in mind, we recently developed an antibody-based therapy to block key interactions that drive collagen molecules into fibrils. In this study, we analyzed target specificity, which is a main parameter that defines the safe use of all antibody-based therapies in humans. We hypothesized that, regardless of the route of administration, our antibody would preferentially bind to free collagen molecules synthesized at the sites of fibrosis and have minimal off-target interactions when applied in various tissues. To test this hypothesis, we used two experimental models of organ fibrosis: (1) a keloid model, in which antibody constructs were directly implanted under the skin of nude mice and (2) an experimental model of pulmonary fibrosis, in which our antibody was administered systemically by intravenous injection. Following administration, we studied the distribution of our antibody within target and off-target sites as well as analyzed its effects on fibrotic tissue formation. We found that local and systemic application of our antibody had high specificity for targeting collagen fibrillogenesis and also appeared safe and therapeutically effective. In summary, this study provides the basis for further testing our antifibrotic antibody in a broad range of disease conditions and suggests that this treatment approach will be effective if delivered by local or systemic administration.

  17. Understanding mechanisms of autoimmunity through translational research in vitiligo

    PubMed Central

    Strassner, James P; Harris, John E

    2016-01-01

    Vitiligo is an autoimmune disease of the skin that leads to life-altering depigmentation and remains difficult to treat. However, clinical observations and translational studies over 30-40 years have led to the development of an insightful working model of disease pathogenesis: Genetic risk spanning both immune and melanocyte functions is pushed over a threshold by known and suspected environmental factors to initiate autoimmune T cell-mediated killing of melanocytes. While under cellular stress, melanocytes appear to signal innate immunity to activate T cells. Once the autoimmune T cell response is established, the IFN-γ-STAT1-CXCL10 signaling axis becomes the primary inflammatory pathway driving both progression and maintenance of vitiligo. This pathway is a tempting target for both existing and developing pharmaceuticals, but further detailing how melanocytes signal their own demise may also lead to new therapeutic targets. Research in vitiligo may be the future key to understand the pathogenesis of organ-specific autoimmunity, as vitiligo is common, reversible, progresses over the life of the individual, has been relatively well-defined, and is quite easy to study using translational and clinical approaches. What is revealed in these studies can lead to innovative treatments and also help elucidate the principles that underlie similar organ-specific autoimmune diseases, especially in cases where the target organ is less accessible. PMID:27764715

  18. Triple helix-forming oligonucleotide corresponding to the polypyrimidine sequence in the rat alpha 1(I) collagen promoter specifically inhibits factor binding and transcription.

    PubMed

    Kovacs, A; Kandala, J C; Weber, K T; Guntaka, R V

    1996-01-19

    Type I and III fibrillar collagens are the major structural proteins of the extracellular matrix found in various organs including the myocardium. Abnormal and progressive accumulation of fibrillar type I collagen in the interstitial spaces compromises organ function and therefore, the study of transcriptional regulation of this gene and specific targeting of its expression is of major interest. Transient transfection of adult cardiac fibroblasts indicate that the polypurine-polypyrimidine sequence of alpha 1(I) collagen promoter between nucleotides - 200 and -140 represents an overall positive regulatory element. DNase I footprinting and electrophoretic mobility shift assays suggest that multiple factors bind to different elements of this promoter region. We further demonstrate that the unique polypyrimidine sequence between -172 and -138 of the promoter represents a suitable target for a single-stranded polypurine oligonucleotide (TFO) to form a triple helix DNA structure. Modified electrophoretic mobility shift assays show that this TFO specifically inhibits the protein-DNA interaction within the target region. In vitro transcription assays and transient transfection experiments demonstrate that the transcriptional activity of the promoter is inhibited by this oligonucleotide. We propose that TFOs represent a therapeutic potential to specifically influence the expression of alpha 1(I) collagen gene in various disease states where abnormal type I collagen accumulation is known to occur.

  19. Unliganded Thyroid Hormone Receptor Regulates Metamorphic Timing via the Recruitment of Histone Deacetylase Complexes

    PubMed Central

    2014-01-01

    Anuran metamorphosis involves a complex series of tissue transformations that change an aquatic tadpole to a terrestrial frog and resembles the postembryonic perinatal period in mammals. Thyroid hormone (TH) plays a causative role in amphibian metamorphosis and its effect is mediated by TH receptors (TRs). Molecular analyses during Xenopus development have shown that unliganded TR recruits histone deacetylase (HDAC)-containing N-CoR/SMRT complexes and causes histone deacetylation at target genes while liganded TR leads to increased histone acetylations and altered histone methylations at target genes. Transgenic studies involving mutant TR-cofactors have shown that corepressor recruitment by unliganded TR is required to ensure proper timing of the onset of metamorphosis while coactivator levels influence the rate of metamorphic progression. In addition, a number of factors that can influence cellular free TH levels appear to contribute the timing of metamorphic transformations of different organs by regulating the levels of unliganded vs. liganded TR in an organ-specific manner. Thus, the recruitment of HDAC-containing corepressor complexes by unliganded TR likely controls both the timing of the initiation of metamorphosis and the temporal regulation of organ-specific transformations. Similar mechanisms likely mediate TR function in mammals as the maturation of many organs during postembryonic development is dependent upon TH and resembles organ metamorphosis in amphibians. PMID:23962846

  20. Super-lncRNAs: identification of lncRNAs that target super-enhancers via RNA:DNA:DNA triplex formation.

    PubMed

    Soibam, Benjamin

    2017-11-01

    Super-enhancers are characterized by high levels of Mediator binding and are major contributors to the expression of their associated genes. They exhibit high levels of local chromatin interactions and a higher order of local chromatin organization. On the other hand, lncRNAs can localize to specific DNA sites by forming a RNA:DNA:DNA triplex, which in turn can contribute to local chromatin organization. In this paper, we characterize a new class of lncRNAs called super-lncRNAs that target super-enhancers and which can contribute to the local chromatin organization of the super-enhancers. Using a logistic regression model based on the number of RNA:DNA:DNA triplex sites a lncRNA forms within the super-enhancer, we identify 442 unique super-lncRNA transcripts in 27 different human cell and tissue types; 70% of these super-lncRNAs were tissue restricted. They primarily harbor a single triplex-forming repeat domain, which forms an RNA:DNA:DNA triplex with multiple anchor DNA sites (originating from transposable elements) within the super-enhancers. Super-lncRNAs can be grouped into 17 different clusters based on the tissue or cell lines they target. Super-lncRNAs in a particular cluster share common short structural motifs and their corresponding super-enhancer targets are associated with gene ontology terms pertaining to the tissue or cell line. Super-lncRNAs may use these structural motifs to recruit and transport necessary regulators (such as transcription factors and Mediator complexes) to super-enhancers, influence chromatin organization, and act as spatial amplifiers for key tissue-specific genes associated with super-enhancers. © 2017 Soibam; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates

    PubMed Central

    Mahe, Karan; Ou, Tingyoung; Castro, Noemi M; Christensen, Lana N; Cheung, Lee; Jiang, Xueer; Yoon, Daniel; Huang, Bo

    2018-01-01

    As microtubule-organizing centers of animal cells, centrosomes guide the formation of the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM). This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at the PCM and helps recruit additional PCM components. However, the mechanism underlying the timely centrosomal enrichment of PCNT remains unclear. Here, we show that PCNT is delivered co-translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by centrosomal enrichment of PCNT mRNA, its translation near centrosomes, and requirement of intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator, ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a generalized protein targeting mechanism. PMID:29708497

  2. Autoimmune Neuromuscular Disorders

    PubMed Central

    Kraker, Jessica; Živković, Saša A

    2011-01-01

    Autoimmune neuromuscular disorders affecting peripheral nerves, neuromuscular junction or muscle have a wide clinical spectrum with diverse pathogenetic mechanisms. Peripheral nervous system may be targeted in the context of complex immune reactions involving different cytokines, antigen-presenting cells, B cells and different types of T cells. Various immunomodulating and cytotoxic treatments block proliferation or activation of immune cells by different mechanisms attempting to control the response of the immune system and limit target organ injury. Most treatment protocols for autoimmune neuromuscular disorders are based on the use of corticosteroids, intravenous immunoglobulins and plasmapheresis, with cytotoxic agents mostly used as steroid-sparing medications. More recently, development of specific monoclonal antibodies targeting individual cell types allowed a different approach targeting specific immune pathways, but these new treatments are also associated with various adverse effects and their long-term efficacy is still unknown. PMID:22379454

  3. Strategies for targeting primate neural circuits with viral vectors

    PubMed Central

    El-Shamayleh, Yasmine; Ni, Amy M.

    2016-01-01

    Understanding how the brain works requires understanding how different types of neurons contribute to circuit function and organism behavior. Progress on this front has been accelerated by optogenetics and chemogenetics, which provide an unprecedented level of control over distinct neuronal types in small animals. In primates, however, targeting specific types of neurons with these tools remains challenging. In this review, we discuss existing and emerging strategies for directing genetic manipulations to targeted neurons in the adult primate central nervous system. We review the literature on viral vectors for gene delivery to neurons, focusing on adeno-associated viral vectors and lentiviral vectors, their tropism for different cell types, and prospects for new variants with improved efficacy and selectivity. We discuss two projection targeting approaches for probing neural circuits: anterograde projection targeting and retrograde transport of viral vectors. We conclude with an analysis of cell type-specific promoters and other nucleotide sequences that can be used in viral vectors to target neuronal types at the transcriptional level. PMID:27052579

  4. Blueprint for antimicrobial hit discovery targeting metabolic networks.

    PubMed

    Shen, Y; Liu, J; Estiu, G; Isin, B; Ahn, Y-Y; Lee, D-S; Barabási, A-L; Kapatral, V; Wiest, O; Oltvai, Z N

    2010-01-19

    Advances in genome analysis, network biology, and computational chemistry have the potential to revolutionize drug discovery by combining system-level identification of drug targets with the atomistic modeling of small molecules capable of modulating their activity. To demonstrate the effectiveness of such a discovery pipeline, we deduced common antibiotic targets in Escherichia coli and Staphylococcus aureus by identifying shared tissue-specific or uniformly essential metabolic reactions in their metabolic networks. We then predicted through virtual screening dozens of potential inhibitors for several enzymes of these reactions and showed experimentally that a subset of these inhibited both enzyme activities in vitro and bacterial cell viability. This blueprint is applicable for any sequenced organism with high-quality metabolic reconstruction and suggests a general strategy for strain-specific antiinfective therapy.

  5. A review of NIR dyes in cancer targeting and imaging.

    PubMed

    Luo, Shenglin; Zhang, Erlong; Su, Yongping; Cheng, Tianmin; Shi, Chunmeng

    2011-10-01

    The development of multifunctional agents for simultaneous tumor targeting and near infrared (NIR) fluorescence imaging is expected to have significant impact on future personalized oncology owing to the very low tissue autofluorescence and high tissue penetration depth in the NIR spectrum window. Cancer NIR molecular imaging relies greatly on the development of stable, highly specific and sensitive molecular probes. Organic dyes have shown promising clinical implications as non-targeting agents for optical imaging in which indocyanine green has long been implemented in clinical use. Recently, significant progress has been made on the development of unique NIR dyes with tumor targeting properties. Current ongoing design strategies have overcome some of the limitations of conventional NIR organic dyes, such as poor hydrophilicity and photostability, low quantum yield, insufficient stability in biological system, low detection sensitivity, etc. This potential is further realized with the use of these NIR dyes or NIR dye-encapsulated nanoparticles by conjugation with tumor specific ligands (such as small molecules, peptides, proteins and antibodies) for tumor targeted imaging. Very recently, natively multifunctional NIR dyes that can preferentially accumulate in tumor cells without the need of chemical conjugation to tumor targeting ligands have been developed and these dyes have shown unique optical and pharmaceutical properties for biomedical imaging with superior signal-to-background contrast index. The main focus of this article is to provide a concise overview of newly developed NIR dyes and their potential applications in cancer targeting and imaging. The development of future multifunctional agents by combining targeting, imaging and even therapeutic routes will also be discussed. We believe these newly developed multifunctional NIR dyes will broaden current concept of tumor targeted imaging and hold promise to make an important contribution to the diagnosis and therapeutics for the treatment of cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Extended specificity studies of mRNA assays used to infer human organ tissues and body fluids.

    PubMed

    van den Berge, Margreet; Sijen, Titia

    2017-12-01

    Messenger RNA (mRNA) profiling is a technique increasingly applied for the forensic identification of body fluids and skin. More recently, an mRNA-based organ typing assay was developed which allows for the inference of brain, lung, liver, skeletal muscle, heart, kidney, and skin tissue. When applying this organ typing system in forensic casework for the presence of animal, rather than human, tissue is an alternative scenario to be proposed, for instance that bullets carry cell material from a hunting event. Even though mRNA profiling systems are commonly in silico designed to be primate specific, physical testing against other animal species is generally limited. In this study, human specificity of the organ tissue inferring system was assessed against organ tissue RNAs of various animals. Results confirm human specificity of the system, especially when utilizing interpretation rules considering multiple markers per cell type. Besides, we cross-tested our organ and body fluid mRNA assays against the target types covered by the other assay. Marker expression in the nontarget organ tissues and body fluids was observed to a limited extent, which emphasizes the importance of involving the case-specific context of the forensic samples in deciding which mRNA profiling assay to use and when for interpreting results. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms

    NASA Astrophysics Data System (ADS)

    Zacharatou Jarlskog, Christina; Lee, Choonik; Bolch, Wesley E.; Xu, X. George; Paganetti, Harald

    2008-02-01

    Proton beams used for radiotherapy will produce neutrons when interacting with matter. The purpose of this study was to quantify the equivalent dose to tissue due to secondary neutrons in pediatric and adult patients treated by proton therapy for brain lesions. Assessment of the equivalent dose to organs away from the target requires whole-body geometrical information. Furthermore, because the patient geometry depends on age at exposure, age-dependent representations are also needed. We implemented age-dependent phantoms into our proton Monte Carlo dose calculation environment. We considered eight typical radiation fields, two of which had been previously used to treat pediatric patients. The other six fields were additionally considered to allow a systematic study of equivalent doses as a function of field parameters. For all phantoms and all fields, we simulated organ-specific equivalent neutron doses and analyzed for each organ (1) the equivalent dose due to neutrons as a function of distance to the target; (2) the equivalent dose due to neutrons as a function of patient age; (3) the equivalent dose due to neutrons as a function of field parameters; and (4) the ratio of contributions to secondary dose from the treatment head versus the contribution from the patient's body tissues. This work reports organ-specific equivalent neutron doses for up to 48 organs in a patient. We demonstrate quantitatively how organ equivalent doses for adult and pediatric patients vary as a function of patient's age, organ and field parameters. Neutron doses increase with increasing range and modulation width but decrease with field size (as defined by the aperture). We analyzed the ratio of neutron dose contributions from the patient and from the treatment head, and found that neutron-equivalent doses fall off rapidly as a function of distance from the target, in agreement with experimental data. It appears that for the fields used in this study, the neutron dose lateral to the field is smaller than the reported scattered photon doses in a typical intensity-modulated photon treatment. Most importantly, our study shows that neutron doses to specific organs depend considerably on the patient's age and body stature. The younger the patient, the higher the dose deposited due to neutrons. Given the fact that the risk also increases with decreasing patient age, this factor needs to be taken into account when treating pediatric patients of very young ages and/or of small body size. The neutron dose from a course of proton therapy treatment (assuming 70 Gy in 30 fractions) could potentially (depending on patient's age, organ, treatment site and area of CT scan) be equivalent to up to ~30 CT scans.

  8. Advancement and applications of peptide phage display technology in biomedical science.

    PubMed

    Wu, Chien-Hsun; Liu, I-Ju; Lu, Ruei-Min; Wu, Han-Chung

    2016-01-19

    Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.

  9. Temporal identity in axonal target layer recognition.

    PubMed

    Petrovic, Milan; Hummel, Thomas

    2008-12-11

    The segregation of axon and dendrite projections into distinct synaptic layers is a fundamental principle of nervous system organization and the structural basis for information processing in the brain. Layer-specific recognition molecules that allow projecting neurons to stabilize transient contacts and initiate synaptogenesis have been identified. However, most of the neuronal cell-surface molecules critical for layer organization are expressed broadly in the developing nervous system, raising the question of how these so-called permissive adhesion molecules support synaptic specificity. Here we show that the temporal expression dynamics of the zinc-finger protein sequoia is the major determinant of Drosophila photoreceptor connectivity into distinct synaptic layers. Neighbouring R8 and R7 photoreceptors show consecutive peaks of elevated sequoia expression, which correspond to their sequential target-layer innervation. Loss of sequoia in R7 leads to a projection switch into the R8 recipient layer, whereas a prolonged expression in R8 induces a redirection of their axons into the R7 layer. The sequoia-induced axon targeting is mediated through the ubiquitously expressed Cadherin-N cell adhesion molecule. Our data support a model in which recognition specificity during synaptic layer formation is generated through a temporally restricted axonal competence to respond to broadly expressed adhesion molecules. Because developing neurons innervating the same target area often project in a distinct, birth-order-dependent sequence, temporal identity seems to contain crucial information in generating not only cell type diversity during neuronal division but also connection diversity of projecting neurons.

  10. Assessment of DNA degradation induced by thermal and UV radiation processing: implications for quantification of genetically modified organisms.

    PubMed

    Ballari, Rajashekhar V; Martin, Asha

    2013-12-01

    DNA quality is an important parameter for the detection and quantification of genetically modified organisms (GMO's) using the polymerase chain reaction (PCR). Food processing leads to degradation of DNA, which may impair GMO detection and quantification. This study evaluated the effect of various processing treatments such as heating, baking, microwaving, autoclaving and ultraviolet (UV) irradiation on the relative transgenic content of MON 810 maize using pRSETMON-02, a dual target plasmid as a model system. Amongst all the processing treatments examined, autoclaving and UV irradiation resulted in the least recovery of the transgenic (CaMV 35S promoter) and taxon-specific (zein) target DNA sequences. Although a profound impact on DNA degradation was seen during the processing, DNA could still be reliably quantified by Real-time PCR. The measured mean DNA copy number ratios of the processed samples were in agreement with the expected values. Our study confirms the premise that the final analytical value assigned to a particular sample is independent of the degree of DNA degradation since the transgenic and the taxon-specific target sequences possessing approximately similar lengths degrade in parallel. The results of our study demonstrate that food processing does not alter the relative quantification of the transgenic content provided the quantitative assays target shorter amplicons and the difference in the amplicon size between the transgenic and taxon-specific genes is minimal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A versatile strategy for gene trapping and trap conversion in emerging model organisms.

    PubMed

    Kontarakis, Zacharias; Pavlopoulos, Anastasios; Kiupakis, Alexandros; Konstantinides, Nikolaos; Douris, Vassilis; Averof, Michalis

    2011-06-01

    Genetic model organisms such as Drosophila, C. elegans and the mouse provide formidable tools for studying mechanisms of development, physiology and behaviour. Established models alone, however, allow us to survey only a tiny fraction of the morphological and functional diversity present in the animal kingdom. Here, we present iTRAC, a versatile gene-trapping approach that combines the implementation of unbiased genetic screens with the generation of sophisticated genetic tools both in established and emerging model organisms. The approach utilises an exon-trapping transposon vector that carries an integrase docking site, allowing the targeted integration of new constructs into trapped loci. We provide proof of principle for iTRAC in the emerging model crustacean Parhyale hawaiensis: we generate traps that allow specific developmental and physiological processes to be visualised in unparalleled detail, we show that trapped genes can be easily cloned from an unsequenced genome, and we demonstrate targeting of new constructs into a trapped locus. Using this approach, gene traps can serve as platforms for generating diverse reporters, drivers for tissue-specific expression, gene knockdown and other genetic tools not yet imagined.

  12. Tandem mass spectrometry for the detection of plant pathogenic fungi and the effects of database composition on protein inferences.

    PubMed

    Padliya, Neerav D; Garrett, Wesley M; Campbell, Kimberly B; Tabb, David L; Cooper, Bret

    2007-11-01

    LC-MS/MS has demonstrated potential for detecting plant pathogens. Unlike PCR or ELISA, LC-MS/MS does not require pathogen-specific reagents for the detection of pathogen-specific proteins and peptides. However, the MS/MS approach we and others have explored does require a protein sequence reference database and database-search software to interpret tandem mass spectra. To evaluate the limitations of database composition on pathogen identification, we analyzed proteins from cultured Ustilago maydis, Phytophthora sojae, Fusarium graminearum, and Rhizoctonia solani by LC-MS/MS. When the search database did not contain sequences for a target pathogen, or contained sequences to related pathogens, target pathogen spectra were reliably matched to protein sequences from nontarget organisms, giving an illusion that proteins from nontarget organisms were identified. Our analysis demonstrates that when database-search software is used as part of the identification process, a paradox exists whereby additional sequences needed to detect a wide variety of possible organisms may lead to more cross-species protein matches and misidentification of pathogens.

  13. Chemical structure determines target organ carcinogenesis in rats

    PubMed Central

    Carrasquer, C. A.; Malik, N.; States, G.; Qamar, S.; Cunningham, S.L.; Cunningham, A.R.

    2012-01-01

    SAR models were developed for 12 rat tumour sites using data derived from the Carcinogenic Potency Database. Essentially, the models fall into two categories: Target Site Carcinogen – Non-Carcinogen (TSC-NC) and Target Site Carcinogen – Non-Target Site Carcinogen (TSC-NTSC). The TSC-NC models were composed of active chemicals that were carcinogenic to a specific target site and inactive ones that were whole animal non-carcinogens. On the other hand, the TSC-NTSC models used an inactive category also composed of carcinogens but to any/all other sites but the target site. Leave one out validations produced an overall average concordance value for all 12 models of 0.77 for the TSC-NC models and 0.73 for the TSC-NTSC models. Overall, these findings suggest that while the TSC-NC models are able to distinguish between carcinogens and non-carcinogens, the TSC-NTSC models are identifying structural attributes that associate carcinogens to specific tumour sites. Since the TSC-NTSC models are composed of active and inactive compounds that are genotoxic and non-genotoxic carcinogens, the TSC-NTSC models may be capable of deciphering non-genotoxic mechanisms of carcinogenesis. Together, models of this type may also prove useful in anticancer drug development since they essentially contain chemicals moieties that target specific tumour site. PMID:23066888

  14. Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance.

    PubMed

    Mohana, Krishnamoorthy; Achary, Anant

    2017-08-01

    Glutathione-S-transferase (GST) inhibition is a strategy to overcome drug resistance. Several isoforms of human GSTs are present and they are expressed in almost all the organs. Specific expression levels of GSTs in various organs are collected from the human transcriptome data and analysis of the organ-specific expression of GST isoforms is carried out. The variations in the level of expressions of GST isoforms are statistically significant. The GST expression differs in diseased conditions as reported by many investigators and some of the isoforms of GSTs are disease markers or drug targets. Structure analysis of various isoforms is carried out and literature mining has been performed to identify the differences in the active sites of the GSTs. The xenobiotic binding H site is classified into H1, H2, and H3 and the differences in the amino acid composition, the hydrophobicity and other structural features of H site of GSTs are discussed. The existing inhibition strategies are compared. The advent of rational drug design, mechanism-based inhibition strategies, availability of high-throughput screening, target specific, and selective inhibition of GST isoforms involved in drug resistance could be achieved for the reversal of drug resistance and aid in the treatment of diseases.

  15. Patient specific computerized phantoms to estimate dose in pediatric CT

    NASA Astrophysics Data System (ADS)

    Segars, W. P.; Sturgeon, G.; Li, X.; Cheng, L.; Ceritoglu, C.; Ratnanather, J. T.; Miller, M. I.; Tsui, B. M. W.; Frush, D.; Samei, E.

    2009-02-01

    We create a series of detailed computerized phantoms to estimate patient organ and effective dose in pediatric CT and investigate techniques for efficiently creating patient-specific phantoms based on imaging data. The initial anatomy of each phantom was previously developed based on manual segmentation of pediatric CT data. Each phantom was extended to include a more detailed anatomy based on morphing an existing adult phantom in our laboratory to match the framework (based on segmentation) defined for the target pediatric model. By morphing a template anatomy to match the patient data in the LDDMM framework, it was possible to create a patient specific phantom with many anatomical structures, some not visible in the CT data. The adult models contain thousands of defined structures that were transformed to define them in each pediatric anatomy. The accuracy of this method, under different conditions, was tested using a known voxelized phantom as the target. Errors were measured in terms of a distance map between the predicted organ surfaces and the known ones. We also compared calculated dose measurements to see the effect of different magnitudes of errors in morphing. Despite some variations in organ geometry, dose measurements from morphing predictions were found to agree with those calculated from the voxelized phantom thus demonstrating the feasibility of our methods.

  16. Hypertension criterion for stroke prevention--to strengthen the principle of individualization in guidelines.

    PubMed

    Chen, Yicong; Chen, Xinran; Dang, Ge; Zhao, Yuhui; Ouyang, Fubing; Su, Zhenpei; Zeng, Jinsheng

    2015-03-01

    The diagnosis of hypertension, as recommended by most guidelines, is determined by systolic blood pressure ≥140 mm Hg and/or diastolic blood pressure ≥90 mm Hg. A threshold-based definition of hypertension, however, ignores sex and age, pathophysiology, and disparities in patient-specific conditions. Moreover, the harmful effects of hypertension-induced target organ damage cannot be ignored. Although the principle of individualization for hypertension management is recommended, especially for stroke prevention, how to practice it in a clinical setting has not been clearly elaborated. Therefore, we put forward a proposal for individualized hypertension management incorporating target organ damage, the main harmful effect of hypertension. We propose that hypertension should be diagnosed when an individual's blood pressure exceeds some difference from their own baseline in young adulthood, accompanied by any hypertension-induced target organ damage, confirmed by various detection methods. Application of this proposal to stroke prevention will hopefully strengthen the principle of individualized hypertension management. ©2015 Wiley Periodicals, Inc.

  17. The Possible Role of Infertility Drugs in Later Malignancy: A Review.

    PubMed

    Schaffer, Moshe; Schaffer, Pamela Manuela; Kassem, Riad; Shlomo, Izhar Ben

    2016-01-01

    Some 15% of all couples in the industrialized world suffer from infertility. Accordingly, any possible life-long morbidity that may result from treatments for infertility presents a significant concern to public health. The use of medications for infertility is specifically relevant to their possible effects on the classical target tissues for hormones involved in the sex axes, i.e., uterus, ovaries, and breast, but may have an effect on other organs, which harbor receptors for some of the hormones involved in reproduction. When one deals with the effect of treatment for infertility on the occurrence of malignant conditions, there is no doubt that certain malignancies tend to occur more frequently in women who suffered from and/or were treated for infertility. To review the accumulated data on the association of treatments for infertility with subsequent malignancies both in the classical target organs of sex steroids and in non-target organs. Systematic compilation of the relevant literature. Contrary to popular believes, treatment for infertility is associated with very little increase in malignacies.

  18. Quantitative Predictive Models for Systemic Toxicity (SOT)

    EPA Science Inventory

    Models to identify systemic and specific target organ toxicity were developed to help transition the field of toxicology towards computational models. By leveraging multiple data sources to incorporate read-across and machine learning approaches, a quantitative model of systemic ...

  19. A linear-encoding model explains the variability of the target morphology in regeneration

    PubMed Central

    Lobo, Daniel; Solano, Mauricio; Bubenik, George A.; Levin, Michael

    2014-01-01

    A fundamental assumption of today's molecular genetics paradigm is that complex morphology emerges from the combined activity of low-level processes involving proteins and nucleic acids. An inherent characteristic of such nonlinear encodings is the difficulty of creating the genetic and epigenetic information that will produce a given self-assembling complex morphology. This ‘inverse problem’ is vital not only for understanding the evolution, development and regeneration of bodyplans, but also for synthetic biology efforts that seek to engineer biological shapes. Importantly, the regenerative mechanisms in deer antlers, planarian worms and fiddler crabs can solve an inverse problem: their target morphology can be altered specifically and stably by injuries in particular locations. Here, we discuss the class of models that use pre-specified morphological goal states and propose the existence of a linear encoding of the target morphology, making the inverse problem easy for these organisms to solve. Indeed, many model organisms such as Drosophila, hydra and Xenopus also develop according to nonlinear encodings producing linear encodings of their final morphologies. We propose the development of testable models of regeneration regulation that combine emergence with a top-down specification of shape by linear encodings of target morphology, driving transformative applications in biomedicine and synthetic bioengineering. PMID:24402915

  20. Potential dosimetric benefits of adaptive tumor tracking over the internal target volume concept for stereotactic body radiation therapy of pancreatic cancer.

    PubMed

    Karava, Konstantina; Ehrbar, Stefanie; Riesterer, Oliver; Roesch, Johannes; Glatz, Stefan; Klöck, Stephan; Guckenberger, Matthias; Tanadini-Lang, Stephanie

    2017-11-09

    Radiotherapy for pancreatic cancer has two major challenges: (I) the tumor is adjacent to several critical organs and, (II) the mobility of both, the tumor and its surrounding organs at risk (OARs). A treatment planning study simulating stereotactic body radiation therapy (SBRT) for pancreatic tumors with both the internal target volume (ITV) concept and the tumor tracking approach was performed. The two respiratory motion-management techniques were compared in terms of doses to the target volume and organs at risk. Two volumetric-modulated arc therapy (VMAT) treatment plans (5 × 5 Gy) were created for each of the 12 previously treated pancreatic cancer patients, one using the ITV concept and one the tumor tracking approach. To better evaluate the overall dose delivered to the moving tumor volume, 4D dose calculations were performed on four-dimensional computed tomography (4DCT) scans. The resulting planning target volume (PTV) size for each technique was analyzed. Target and OAR dose parameters were reported and analyzed for both 3D and 4D dose calculation. Tumor motion ranged from 1.3 to 11.2 mm. Tracking led to a reduction of PTV size (max. 39.2%) accompanied with significant better tumor coverage (p<0.05, paired Wilcoxon signed rank test) both in 3D and 4D dose calculations and improved organ at risk sparing. Especially for duodenum, stomach and liver, the mean dose was significantly reduced (p<0.05) with tracking for 3D and 4D dose calculations. By using an adaptive tumor tracking approach for respiratory-induced pancreatic motion management, a significant reduction in PTV size can be achieved, which subsequently facilitates treatment planning, and improves organ dose sparing. The dosimetric benefit of tumor tracking is organ and patient-specific.

  1. Histone Deacetylase Rpd3 Regulates Olfactory Projection Neuron Dendrite Targeting via the Transcription Factor Prospero

    PubMed Central

    Tea, Joy S.; Chihara, Takahiro; Luo, Liqun

    2010-01-01

    Compared to the mechanisms of axon guidance, relatively little is known about the transcriptional control of dendrite guidance. The Drosophila olfactory system with its stereotyped organization provides an excellent model to study the transcriptional control of dendrite wiring specificity. Each projection neuron (PN) targets its dendrites to a specific glomerulus in the antennal lobe and its axon stereotypically to higher brain centers. Using a forward genetic screen, we identified a mutation in Rpd3 that disrupts PN targeting specificity. Rpd3 encodes a class I histone deacetylase (HDAC) homologous to mammalian HDAC1 and HDAC2. Rpd3−/− PN dendrites that normally target to a dorsolateral glomerulus mistarget to medial glomeruli in the antennal lobe, and axons exhibit a severe overbranching phenotype. These phenotypes can be rescued by postmitotic expression of Rpd3 but not HDAC3, the only other class I HDAC in Drosophila. Furthermore, disruption of the atypical homeodomain transcription factor Prospero (Pros) yields similar phenotypes, which can be rescued by Pros expression in postmitotic neurons. Strikingly, overexpression of Pros can suppress Rpd3−/− phenotypes. Our study suggests a specific function for the general chromatin remodeling factor Rpd3 in regulating dendrite targeting in neurons, largely through the postmitotic action of the Pros transcription factor. PMID:20660276

  2. Improved prediction of peptide detectability for targeted proteomics using a rank-based algorithm and organism-specific data.

    PubMed

    Qeli, Ermir; Omasits, Ulrich; Goetze, Sandra; Stekhoven, Daniel J; Frey, Juerg E; Basler, Konrad; Wollscheid, Bernd; Brunner, Erich; Ahrens, Christian H

    2014-08-28

    The in silico prediction of the best-observable "proteotypic" peptides in mass spectrometry-based workflows is a challenging problem. Being able to accurately predict such peptides would enable the informed selection of proteotypic peptides for targeted quantification of previously observed and non-observed proteins for any organism, with a significant impact for clinical proteomics and systems biology studies. Current prediction algorithms rely on physicochemical parameters in combination with positive and negative training sets to identify those peptide properties that most profoundly affect their general detectability. Here we present PeptideRank, an approach that uses learning to rank algorithm for peptide detectability prediction from shotgun proteomics data, and that eliminates the need to select a negative dataset for the training step. A large number of different peptide properties are used to train ranking models in order to predict a ranking of the best-observable peptides within a protein. Empirical evaluation with rank accuracy metrics showed that PeptideRank complements existing prediction algorithms. Our results indicate that the best performance is achieved when it is trained on organism-specific shotgun proteomics data, and that PeptideRank is most accurate for short to medium-sized and abundant proteins, without any loss in prediction accuracy for the important class of membrane proteins. Targeted proteomics approaches have been gaining a lot of momentum and hold immense potential for systems biology studies and clinical proteomics. However, since only very few complete proteomes have been reported to date, for a considerable fraction of a proteome there is no experimental proteomics evidence that would allow to guide the selection of the best-suited proteotypic peptides (PTPs), i.e. peptides that are specific to a given proteoform and that are repeatedly observed in a mass spectrometer. We describe a novel, rank-based approach for the prediction of the best-suited PTPs for targeted proteomics applications. By building on methods developed in the field of information retrieval (e.g. web search engines like Google's PageRank), we circumvent the delicate step of selecting positive and negative training sets and at the same time also more closely reflect the experimentalist´s need for selecting e.g. the 5 most promising peptides for targeting a protein of interest. This approach allows to predict PTPs for not yet observed proteins or for organisms without prior experimental proteomics data such as many non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention.

    PubMed

    Zhang, Qiang; Xing, Hui-Li; Wang, Zhi-Ping; Zhang, Hai-Yan; Yang, Fang; Wang, Xue-Chen; Chen, Qi-Jun

    2018-03-01

    We present novel observations of high-specificity SpCas9 variants, sgRNA expression strategies based on mutant sgRNA scaffold and tRNA processing system, and CRISPR/Cas9-mediated T-DNA integrations. Specificity of CRISPR/Cas9 tools has been a major concern along with the reports of their successful applications. We report unexpected observations of high frequency off-target mutagenesis induced by CRISPR/Cas9 in T1 Arabidopsis mutants although the sgRNA was predicted to have a high specificity score. We also present evidence that the off-target effects were further exacerbated in the T2 progeny. To prevent the off-target effects, we tested and optimized two strategies in Arabidopsis, including introduction of a mCherry cassette for a simple and reliable isolation of Cas9-free mutants and the use of highly specific mutant SpCas9 variants. Optimization of the mCherry vectors and subsequent validation found that fusion of tRNA with the mutant rather than the original sgRNA scaffold significantly improves editing efficiency. We then examined the editing efficiency of eight high-specificity SpCas9 variants in combination with the improved tRNA-sgRNA fusion strategy. Our results suggest that highly specific SpCas9 variants require a higher level of expression than their wild-type counterpart to maintain high editing efficiency. Additionally, we demonstrate that T-DNA can be inserted into the cleavage sites of CRISPR/Cas9 targets with high frequency. Altogether, our results suggest that in plants, continuous attention should be paid to off-target effects induced by CRISPR/Cas9 in current and subsequent generations, and that the tools optimized in this report will be useful in improving genome editing efficiency and specificity in plants and other organisms.

  4. How does the 'rest-self overlap' mediate the qualitative and automatic features of self-reference?

    PubMed

    Northoff, Georg

    2016-01-01

    The target article points out the qualitative and automatic features of self-reference while leaving open the underlying neural mechanisms. Based on empirical evidence about rest-self overlap and rest-stimulus interaction being special for self-related stimuli, I postulate that the resting state shows self-specific organization. The resting state's self-specific organization may be encoded by activity balances between different networks which in turn predispose the qualitative features of subsequent self-related stimulus-induced activity in, for instance, SAN as well as the automatic features of self-reference effects.

  5. 3D Bioprinting for Organ Regeneration

    PubMed Central

    Cui, Haitao; Nowicki, Margaret; Fisher, John P.; Zhang, Lijie Grace

    2017-01-01

    Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled bio-manufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting. PMID:27995751

  6. 3D Bioprinting for Organ Regeneration.

    PubMed

    Cui, Haitao; Nowicki, Margaret; Fisher, John P; Zhang, Lijie Grace

    2017-01-01

    Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled biomanufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Recent advances in synthetic biosafety

    PubMed Central

    Simon, Anna J.; Ellington, Andrew D.

    2016-01-01

    Synthetically engineered organisms hold promise for a broad range of medical, environmental, and industrial applications. Organisms can potentially be designed, for example, for the inexpensive and environmentally benign synthesis of pharmaceuticals and industrial chemicals, for the cleanup of environmental pollutants, and potentially even for biomedical applications such as the targeting of specific diseases or tissues. However, the use of synthetically engineered organisms comes with several reasonable safety concerns, one of which is that the organisms or their genes could escape their intended habitats and cause environmental disruption. Here we review key recent developments in this emerging field of synthetic biocontainment and discuss further developments that might be necessary for the widespread use of synthetic organisms. Specifically, we discuss the history and modern development of three strategies for the containment of synthetic microbes: addiction to an exogenously supplied ligand; self-killing outside of a designated environment; and self-destroying encoded DNA circuitry outside of a designated environment. PMID:27635235

  8. Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases

    PubMed Central

    Krishnakumar, Radha; Grose, Carissa; Haft, Daniel H.; Zaveri, Jayshree; Alperovich, Nina; Gibson, Daniel G.; Merryman, Chuck; Glass, John I.

    2014-01-01

    Toward achieving rapid and large scale genome modification directly in a target organism, we have developed a new genome engineering strategy that uses a combination of bioinformatics aided design, large synthetic DNA and site-specific recombinases. Using Cre recombinase we swapped a target 126-kb segment of the Escherichia coli genome with a 72-kb synthetic DNA cassette, thereby effectively eliminating over 54 kb of genomic DNA from three non-contiguous regions in a single recombination event. We observed complete replacement of the native sequence with the modified synthetic sequence through the action of the Cre recombinase and no competition from homologous recombination. Because of the versatility and high-efficiency of the Cre-lox system, this method can be used in any organism where this system is functional as well as adapted to use with other highly precise genome engineering systems. Compared to present-day iterative approaches in genome engineering, we anticipate this method will greatly speed up the creation of reduced, modularized and optimized genomes through the integration of deletion analyses data, transcriptomics, synthetic biology and site-specific recombination. PMID:24914053

  9. In vivo characterization of the novel CD44v6-targeting Fab fragment AbD15179 for molecular imaging of squamous cell carcinoma: a dual-isotope study

    PubMed Central

    2014-01-01

    Background Patients with squamous cell carcinoma in the head and neck region (HNSCC) offer a diagnostic challenge due to difficulties to detect small tumours and metastases. Imaging methods available are not sufficient, and radio-immunodiagnostics could increase specificity and sensitivity of diagnostics. The objective of this study was to evaluate, for the first time, the in vivo properties of the radiolabelled CD44v6-targeting fragment AbD15179 and to assess its utility as a targeting agent for radio-immunodiagnostics of CD44v6-expressing tumours. Methods The fully human CD44v6-targeting Fab fragment AbD15179 was labelled with 111In or 125I, as models for radionuclides suitable for imaging with SPECT or PET. Species specificity, antigen specificity and internalization properties were first assessed in vitro. In vivo specificity and biodistribution were then evaluated in tumour-bearing mice using a dual-tumour and dual-isotope setup. Results Both species-specific and antigen-specific binding of the conjugates were demonstrated in vitro, with no detectable internalization. The in vivo studies demonstrated specific tumour binding and favourable tumour targeting properties for both conjugates, albeit with higher tumour uptake, slower tumour dissociation, higher tumour-to-blood ratio and higher CD44v6 sensitivity for the 111In-labelled fragment. In contrast, the 125I-Fab demonstrated more favourable tumour-to-organ ratios for liver, spleen and kidneys. Conclusions We conclude that AbD15179 efficiently targets CD44v6-expressing squamous cell carcinoma xenografts, and particularly, the 111In-Fab displayed high and specific tumour uptake. CD44v6 emerges as a suitable target for radio-immunodiagnostics, and a fully human antibody fragment such as AbD15179 can enable further clinical imaging studies. PMID:24598405

  10. Evaluation of Targeted Next-Generation Sequencing for Detection of Bovine Pathogens in Clinical Samples.

    PubMed

    Anis, Eman; Hawkins, Ian K; Ilha, Marcia R S; Woldemeskel, Moges W; Saliki, Jeremiah T; Wilkes, Rebecca P

    2018-07-01

    The laboratory diagnosis of infectious diseases, especially those caused by mixed infections, is challenging. Routinely, it requires submission of multiple samples to separate laboratories. Advances in next-generation sequencing (NGS) have provided the opportunity for development of a comprehensive method to identify infectious agents. This study describes the use of target-specific primers for PCR-mediated amplification with the NGS technology in which pathogen genomic regions of interest are enriched and selectively sequenced from clinical samples. In the study, 198 primers were designed to target 43 common bovine and small-ruminant bacterial, fungal, viral, and parasitic pathogens, and a bioinformatics tool was specifically constructed for the detection of targeted pathogens. The primers were confirmed to detect the intended pathogens by testing reference strains and isolates. The method was then validated using 60 clinical samples (including tissues, feces, and milk) that were also tested with other routine diagnostic techniques. The detection limits of the targeted NGS method were evaluated using 10 representative pathogens that were also tested by quantitative PCR (qPCR), and the NGS method was able to detect the organisms from samples with qPCR threshold cycle ( C T ) values in the 30s. The method was successful for the detection of multiple pathogens in the clinical samples, including some additional pathogens missed by the routine techniques because the specific tests needed for the particular organisms were not performed. The results demonstrate the feasibility of the approach and indicate that it is possible to incorporate NGS as a diagnostic tool in a cost-effective manner into a veterinary diagnostic laboratory. Copyright © 2018 Anis et al.

  11. Two-Step Resonance-Enhanced Desorption Laser Mass Spectrometry for In Situ Analysis of Organic-Rich Environments

    NASA Technical Reports Server (NTRS)

    Getty, S. A.; Grubisic, A.; Uckert, K.; Li, X.; Cornish, T.; Cook, J. E.; Brinckerhoff, W. B.

    2016-01-01

    A wide diversity of planetary surfaces in the solar system represent high priority targets for in situ compositional and contextual analysis as part of future missions. The planned mission portfolio will inform our knowledge of the chemistry at play on Mars, icy moons, comets, and primitive asteroids, which can lead to advances in our understanding of the interplay between inorganic and organic building blocks that led to the evolution of habitable environments on Earth and beyond. In many of these environments, the presence of water or aqueously altered mineralogy is an important indicator of habitable environments that are present or may have been present in the past. As a result, the search for complex organic chemistry that may imply the presence of a feedstock, if not an inventory of biosignatures, is naturally aligned with targeted analyses of water-rich surface materials. Here we describe the two-step laser mass spectrometry (L2MS) analytical technique that has seen broad application in the study of organics in meteoritic samples, now demonstrated to be compatible with an in situ investigation with technique improvements to target high priority planetary environments as part of a future scientific payload. An ultraviolet (UV) pulsed laser is used in previous and current embodiments of laser desorption/ionization mass spectrometry (LDMS) to produce ionized species traceable to the mineral and organic composition of a planetary surface sample. L2MS, an advanced technique in laser mass spectrometry, is selective to the aromatic organic fraction of a complex sample, which can provide additional sensitivity and confidence in the detection of specific compound structures. Use of a compact two-step laser mass spectrometer prototype has been previously reported to provide specificity to key aromatic species, such as PAHs, nucleobases, and certain amino acids. Recent improvements in this technique have focused on the interaction between the mineral matrix and the organic analyte. The majority of planetary targets of astrobiological interest are characterized by the presence of water or hydrated mineral phases. Water signatures can indicate a history of available liquid water that may have played an important role in the chemical environment of these planetary surfaces and subsurfaces. The studies we report here investigate the influence of water content on the detectability of organics by L2MS in planetary analog samples.

  12. SSER: Species specific essential reactions database.

    PubMed

    Labena, Abraham A; Ye, Yuan-Nong; Dong, Chuan; Zhang, Fa-Z; Guo, Feng-Biao

    2017-04-19

    Essential reactions are vital components of cellular networks. They are the foundations of synthetic biology and are potential candidate targets for antimetabolic drug design. Especially if a single reaction is catalyzed by multiple enzymes, then inhibiting the reaction would be a better option than targeting the enzymes or the corresponding enzyme-encoding gene. The existing databases such as BRENDA, BiGG, KEGG, Bio-models, Biosilico, and many others offer useful and comprehensive information on biochemical reactions. But none of these databases especially focus on essential reactions. Therefore, building a centralized repository for this class of reactions would be of great value. Here, we present a species-specific essential reactions database (SSER). The current version comprises essential biochemical and transport reactions of twenty-six organisms which are identified via flux balance analysis (FBA) combined with manual curation on experimentally validated metabolic network models. Quantitative data on the number of essential reactions, number of the essential reactions associated with their respective enzyme-encoding genes and shared essential reactions across organisms are the main contents of the database. SSER would be a prime source to obtain essential reactions data and related gene and metabolite information and it can significantly facilitate the metabolic network models reconstruction and analysis, and drug target discovery studies. Users can browse, search, compare and download the essential reactions of organisms of their interest through the website http://cefg.uestc.edu.cn/sser .

  13. Serving some and serving all: how providers navigate the challenges of providing racially targeted health services.

    PubMed

    Zhou, Amy

    2017-10-01

    Racially targeted healthcare provides racial minorities with culturally and linguistically appropriate health services. This mandate, however, can conflict with the professional obligation of healthcare providers to serve patients based on their health needs. The dilemma between serving a particular population and serving all is heightened when the patients seeking care are racially diverse. This study examines how providers in a multi-racial context decide whom to include or exclude from health programs. This study draws on 12 months of ethnographic fieldwork at an Asian-specific HIV organization. Fieldwork included participant observation of HIV support groups, community outreach programs, and substance abuse recovery groups, as well as interviews with providers and clients. Providers managed the dilemma in different ways. While some programs in the organization focused on an Asian clientele, others de-emphasized race and served a predominantly Latino and African American clientele. Organizational structures shaped whether services were delivered according to racial categories. When funders examined client documents, providers prioritized finding Asian clients so that their documents reflected program goals to serve the Asian population. In contrast, when funders used qualitative methods, providers could construct an image of a program that targets Asians during evaluations while they included other racial minorities in their everyday practice. Program services were organized more broadly by health needs. Even within racially targeted programs, the meaning of race fluctuates and is contested. Patients' health needs cross cut racial boundaries, and in some circumstances, the boundaries of inclusion can expand beyond specific racial categories to include racial minorities and underserved populations more generally.

  14. Surface target-tracking guidance by self-organizing formation flight of fixed-wing UAV

    NASA Astrophysics Data System (ADS)

    Regina, N.; Zanzi, M.

    This paper presents a new concept of ground target surveillance based on a formation flight of two Unmanned Aerial Vehicles (UAVs) of fixed-wing type. Each UAV considered in this work has its own guidance law specifically designed for two different aims. A self organizing non-symmetric collaborative surveying scheme has been developed based on pursuers with different roles: the close-up-pursuer and the distance-pursuer. The close-up-pursuer behaves according to a guidance law which takes it to continually over-fly the target, also optimizing flight endurance. On the other hand, the distancepursuer behaves so as to circle around the target by flying at a certain distance and altitude from it; moreover, its motion ensures the maximum “ seeability” of the ground based target. In addition, the guidance law designed for the distance-pursuer also implements a collision avoidance feature in order to prevent possible risks of collision with the close-up-pursuer during the tracking maneuvers. The surveying scheme is non-symmetric in the sense that the collision avoidance feature is accomplished by a guidance law implemented only on one of the two pursuers; moreover, it is collaborative because the surveying is performed by different tasks of two UAVs and is self-organizing because, due to the collision avoidance feature, target tracking does not require pre-planned collision-risk-free trajectories but trajectories are generated in real time.

  15. New generation of oral mucosal vaccines targeting dendritic cells

    PubMed Central

    Owen, Jennifer L.; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-01-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including B. anthracis in experimental models of disease. PMID:23835515

  16. Advances in targeted genome editing.

    PubMed

    Perez-Pinera, Pablo; Ousterout, David G; Gersbach, Charles A

    2012-08-01

    New technologies have recently emerged that enable targeted editing of genomes in diverse systems. This includes precise manipulation of gene sequences in their natural chromosomal context and addition of transgenes to specific genomic loci. This progress has been facilitated by advances in engineering targeted nucleases with programmable, site-specific DNA-binding domains, including zinc finger proteins and transcription activator-like effectors (TALEs). Recent improvements have enhanced nuclease performance, accelerated nuclease assembly, and lowered the cost of genome editing. These advances are driving new approaches to many areas of biotechnology, including biopharmaceutical production, agriculture, creation of transgenic organisms and cell lines, and studies of genome structure, regulation, and function. Genome editing is also being investigated in preclinical and clinical gene therapies for many diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Blueprint for antimicrobial hit discovery targeting metabolic networks

    PubMed Central

    Shen, Y.; Liu, J.; Estiu, G.; Isin, B.; Ahn, Y-Y.; Lee, D-S.; Barabási, A-L.; Kapatral, V.; Wiest, O.; Oltvai, Z. N.

    2010-01-01

    Advances in genome analysis, network biology, and computational chemistry have the potential to revolutionize drug discovery by combining system-level identification of drug targets with the atomistic modeling of small molecules capable of modulating their activity. To demonstrate the effectiveness of such a discovery pipeline, we deduced common antibiotic targets in Escherichia coli and Staphylococcus aureus by identifying shared tissue-specific or uniformly essential metabolic reactions in their metabolic networks. We then predicted through virtual screening dozens of potential inhibitors for several enzymes of these reactions and showed experimentally that a subset of these inhibited both enzyme activities in vitro and bacterial cell viability. This blueprint is applicable for any sequenced organism with high-quality metabolic reconstruction and suggests a general strategy for strain-specific antiinfective therapy. PMID:20080587

  18. Vector design for liver specific expression of multiple interfering RNAs that target hepatitis B virus transcripts

    PubMed Central

    Snyder, Lindsey L.; Esser, Jonathan M.; Pachuk, Catherine J.; Steel, Laura F.

    2008-01-01

    RNA interference (RNAi) is a process that can target intracellular RNAs for degradation in a highly sequence specific manner, making it a powerful tool that is being pursued in both research and therapeutic applications. Hepatitis B virus (HBV) is a serious public health problem in need of better treatment options, and aspects of its life cycle make it an excellent target for RNAi-based therapeutics. We have designed a vector that expresses interfering RNAs that target HBV transcripts, including both viral RNA replicative intermediates and mRNAs encoding viral proteins. Our vector design incorporates many features of endogenous microRNA (miRNA) gene organization that are proving useful for the development of reagents for RNAi. In particular, our vector contains an RNA pol II driven gene cassette that leads to tissue specific expression and efficient processing of multiple interfering RNAs from a single transcript, without the co-expression of any protein product. This vector shows potent silencing of HBV targets in cell culture models of HBV infection. The vector design will be applicable to silencing of additional cellular or disease-related genes. PMID:18499277

  19. Using the Fish Larvae and Egg Exposure System (FLEES) to Generate Effects Data for Informing Environmental Windows

    DTIC Science & Technology

    2017-03-01

    complete a specific part of its life cycle due to resuspended sediment. However, there is limited information concerning species-specific biological...and to determine its effects on the early life stages of aquatic organisms. Studies using FLEES use fine-grained sediment particles which are most...the dredge to areas where the critical life stages of the species of concern may be exposed. Target endpoints were project specific, including

  20. Organizational strategies for promoting patient and provider uptake of personal health records

    PubMed Central

    Wells, Susan; Rozenblum, Ronen; Park, Andrea; Dunn, Marie; Bates, David W

    2015-01-01

    Objective To investigate organizational strategies to promote personal health records (PHRs) adoption with a focus on patients with chronic disease. Methods Using semi-structured interviews and a web-based survey, we sampled US health delivery organizations which had implemented PHRs for at least 12 months, were recognized as PHR innovators, and had scored highly in national patient satisfaction surveys. Respondents had lead positions for clinical information systems or high-risk population management. Using grounded theory approach, thematic categories were derived from interviews and coupled with data from the survey. Results Interviews were conducted with 30 informants from 16 identified organizations. Organizational strategies were directed towards raising patient awareness via multimedia communications, and provider acceptance and uptake. Strategies for providers were grouped into six main themes: organizational vision, governance and policies, work process redesign, staff training, information technology (IT) support, and monitoring and incentives. Successful organizations actively communicated their vision, engaged leaders at all levels, had clear governance, planning, and protocols, set targets, and celebrated achievement. The most effective strategy for patient uptake was through health professional encouragement. No specific outreach efforts targeted patients with chronic disease. Registration and PHR activity was routinely measured but without reference to a denominator population or high risk subpopulations. Discussion and conclusion Successful PHR implementation represents a social change and operational project catalyzed by a technical solution. The key to clinician acceptance is making their work easier. However, organizations will likely not achieve the value they want from PHRs unless they target specific populations and monitor their uptake. PMID:25326601

  1. Spatial organization of the cytoskeleton enhances cargo delivery to specific target areas on the plasma membrane of spherical cells.

    PubMed

    Hafner, Anne E; Rieger, Heiko

    2016-11-15

    Intracellular transport is vital for the proper functioning and survival of a cell. Cargo (proteins, vesicles, organelles, etc) is transferred from its place of creation to its target locations via molecular motor assisted transport along cytoskeletal filaments. The transport efficiency is strongly affected by the spatial organization of the cytoskeleton, which constitutes an inhomogeneous, complex network. In cells with a centrosome microtubules grow radially from the central microtubule organizing center towards the cell periphery whereas actin filaments form a dense meshwork, the actin cortex, underneath the cell membrane with a broad range of orientations. The emerging ballistic motion along filaments is frequently interrupted due to constricting intersection nodes or cycles of detachment and reattachment processes in the crowded cytoplasm. In order to investigate the efficiency of search strategies established by the cell's specific spatial organization of the cytoskeleton we formulate a random velocity model with intermittent arrest states. With extensive computer simulations we analyze the dependence of the mean first passage times for narrow escape problems on the structural characteristics of the cytoskeleton, the motor properties and the fraction of time spent in each state. We find that an inhomogeneous architecture with a small width of the actin cortex constitutes an efficient intracellular search strategy.

  2. Spatial organization of the cytoskeleton enhances cargo delivery to specific target areas on the plasma membrane of spherical cells

    NASA Astrophysics Data System (ADS)

    Hafner, Anne E.; Rieger, Heiko

    2016-12-01

    Intracellular transport is vital for the proper functioning and survival of a cell. Cargo (proteins, vesicles, organelles, etc) is transferred from its place of creation to its target locations via molecular motor assisted transport along cytoskeletal filaments. The transport efficiency is strongly affected by the spatial organization of the cytoskeleton, which constitutes an inhomogeneous, complex network. In cells with a centrosome microtubules grow radially from the central microtubule organizing center towards the cell periphery whereas actin filaments form a dense meshwork, the actin cortex, underneath the cell membrane with a broad range of orientations. The emerging ballistic motion along filaments is frequently interrupted due to constricting intersection nodes or cycles of detachment and reattachment processes in the crowded cytoplasm. In order to investigate the efficiency of search strategies established by the cell’s specific spatial organization of the cytoskeleton we formulate a random velocity model with intermittent arrest states. With extensive computer simulations we analyze the dependence of the mean first passage times for narrow escape problems on the structural characteristics of the cytoskeleton, the motor properties and the fraction of time spent in each state. We find that an inhomogeneous architecture with a small width of the actin cortex constitutes an efficient intracellular search strategy.

  3. Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers

    PubMed Central

    Kebebe, Dereje; Liu, Yuanyuan; Wu, Yumei; Vilakhamxay, Maikhone; Liu, Zhidong; Li, Jiawei

    2018-01-01

    Cancer has become one of the leading causes of mortality globally. The major challenges of conventional cancer therapy are the failure of most chemotherapeutic agents to accumulate selectively in tumor cells and their severe systemic side effects. In the past three decades, a number of drug delivery approaches have been discovered to overwhelm the obstacles. Among these, nanocarriers have gained much attention for their excellent and efficient drug delivery systems to improve specific tissue/organ/cell targeting. In order to enhance targeting efficiency further and reduce limitations of nanocarriers, nanoparticle surfaces are functionalized with different ligands. Several kinds of ligand-modified nanomedicines have been reported. Cell-penetrating peptides (CPPs) are promising ligands, attracting the attention of researchers due to their efficiency to transport bioactive molecules intracellularly. However, their lack of specificity and in vivo degradation led to the development of newer types of CPP. Currently, activable CPP and tumor-targeting peptide (TTP)-modified nanocarriers have shown dramatically superior cellular specific uptake, cytotoxicity, and tumor growth inhibition. In this review, we discuss recent advances in tumor-targeting strategies using CPPs and their limitations in tumor delivery systems. Special emphasis is given to activable CPPs and TTPs. Finally, we address the application of CPPs and/or TTPs in the delivery of plant-derived chemotherapeutic agents. PMID:29563797

  4. The Role of Special Operations Forces in Counter-Narcotic Operations

    DTIC Science & Technology

    1990-06-01

    and Colombia . The thesis describes the present structure of US Army Special Operations Forces and their capabilites. It recommends missions for each...target countries of Colombia , Peru and Bolivia. The area known as the Andean Ridge will be the specific target area for this thesis. In examining...organization, recognized that pre- conditions exist in Colombia for their initial success. They must retain support of the local population to maintain control

  5. Method to determine transcriptional regulation pathways in organisms

    DOEpatents

    Gardner, Timothy S.; Collins, James J.; Hayete, Boris; Faith, Jeremiah

    2012-11-06

    The invention relates to computer-implemented methods and systems for identifying regulatory relationships between expressed regulating polypeptides and targets of the regulatory activities of such regulating polypeptides. More specifically, the invention provides a new method for identifying regulatory dependencies between biochemical species in a cell. In particular embodiments, provided are computer-implemented methods for identifying a regulatory interaction between a transcription factor and a gene target of the transcription factor, or between a transcription factor and a set of gene targets of the transcription factor. Further provided are genome-scale methods for predicting regulatory interactions between a set of transcription factors and a corresponding set of transcriptional target substrates thereof.

  6. Assessing and Evaluating Department of Defense Efforts to Inform, Influence, and Persuade: Work Example

    DTIC Science & Technology

    2017-01-01

    reviewing and refining their initial objectives to ensure that these objectives are SMART: specific, measurable, achievable, relevant, and time -bound...should not conflate exposure and effectiveness where messaging is concerned, and they should aim to capture trends over time . Assessors should use...specific, measurable, achievable, relevant, and time -bound TAA target audience analysis TCO transnational criminal organization UN United Nations VEO

  7. Multiplex Identification of Gram-Positive Bacteria and Resistance Determinants Directly from Positive Blood Culture Broths: Evaluation of an Automated Microarray-Based Nucleic Acid Test

    PubMed Central

    Buchan, Blake W.; Ginocchio, Christine C.; Manii, Ryhana; Cavagnolo, Robert; Pancholi, Preeti; Swyers, Lettie; Thomson, Richard B.; Anderson, Christopher; Kaul, Karen; Ledeboer, Nathan A.

    2013-01-01

    Background A multicenter study was conducted to evaluate the diagnostic accuracy (sensitivity and specificity) of the Verigene Gram-Positive Blood Culture Test (BC-GP) test to identify 12 Gram-positive bacterial gene targets and three genetic resistance determinants directly from positive blood culture broths containing Gram-positive bacteria. Methods and Findings 1,252 blood cultures containing Gram-positive bacteria were prospectively collected and tested at five clinical centers between April, 2011 and January, 2012. An additional 387 contrived blood cultures containing uncommon targets (e.g., Listeria spp., S. lugdunensis, vanB-positive Enterococci) were included to fully evaluate the performance of the BC-GP test. Sensitivity and specificity for the 12 specific genus or species targets identified by the BC-GP test ranged from 92.6%–100% and 95.4%–100%, respectively. Identification of the mecA gene in 599 cultures containing S. aureus or S. epidermidis was 98.6% sensitive and 94.3% specific compared to cefoxitin disk method. Identification of the vanA gene in 81 cultures containing Enterococcus faecium or E. faecalis was 100% sensitive and specific. Approximately 7.5% (87/1,157) of single-organism cultures contained Gram-positive bacteria not present on the BC-GP test panel. In 95 cultures containing multiple organisms the BC-GP test was in 71.6% (68/95) agreement with culture results. Retrospective analysis of 107 separate blood cultures demonstrated that identification of methicillin resistant S. aureus and vancomycin resistant Enterococcus spp. was completed an average of 41.8 to 42.4 h earlier using the BC-GP test compared to routine culture methods. The BC-GP test was unable to assign mecA to a specific organism in cultures containing more than one Staphylococcus isolate and does not identify common blood culture contaminants such as Micrococcus, Corynebacterium, and Bacillus. Conclusions The BC-GP test is a multiplex test capable of detecting most leading causes of Gram-positive bacterial blood stream infections as well as genetic markers of methicillin and vancomycin resistance directly from positive blood cultures. Please see later in the article for the Editors' Summary PMID:23843749

  8. Targets of perioperative fluid therapy and their effects on postoperative outcome: a systematic review and meta-analysis.

    PubMed

    Berger, M M; Gradwohl-Matis, I; Brunauer, A; Ulmer, H; Dünser, M W

    2015-07-01

    Perioperative fluid management plays a fundamental role in maintaining organ perfusion, and is considered to affect morbidity and mortality. Targets according to which fluid therapy should be administered are poorly defined. This systematic review aimed to identify specific targets for perioperative fluid therapy. The PubMed database (January 1993-December 2013) and reference lists were searched to identify clinical trials which evaluated specific targets of perioperative fluid therapy and reported clinically relevant perioperative endpoints in adult patients. Only studies in which targeted fluid therapy was the sole intervention were included into the main data analysis. A pooled data analysis was used to compare mortality between goal-directed fluid therapy and control interventions. Thirty-six clinical studies were selected. Sixteen studies including 1224 patients specifically evaluated targeted fluid therapy and were included into the main data analysis. Three specific targets for perioperative fluid therapy were identified: a systolic or pulse pressure variation <10-12%, an increase in stroke volume <10%, and a corrected flow time of 0.35-0.4 s in combination with an increase in stroke volume <10%. Targeting any one of these goals resulted in less postoperative complications (pooled data analysis: OR 0.53; CI95, 0.34-0.83; P=0.005) and a shorter length of intensive care unit/hospital stay, but no difference in postoperative mortality (pooled data analysis: OR 0.61; CI95, 0.33-1.11; P=0.12). This systematic review identified three goals for perioperative fluid administration, targeting of which appeared to be associated with less postoperative complications and shorter intensive care unit/hospital lengths of stay. Perioperative mortality remained unaffected.

  9. Imaging Metastasis Using an Integrin-Targeting Chain-Shaped Nanoparticle

    PubMed Central

    Peiris, Pubudu M.; Toy, Randall; Doolittle, Elizabeth; Pansky, Jenna; Abramowski, Aaron; Tam, Morgan; Vicente, Peter; Tran, Emily; Hayden, Elliott; Camann, Andrew; Mayer, Aaron; Erokwu, Bernadette O.; Berman, Zachary; Wilson, David; Baskaran, Harihara; Flask, Chris A.; Keri, Ruth A.; Karathanasis, Efstathios

    2012-01-01

    While the enhanced permeability and retention effect may promote the preferential accumulation of nanoparticles into well-vascularized primary tumors, it is ineffective in the case of metastases hidden within a large population of normal cells. Due to their small size, high dispersion to organs, and low vascularization, metastatic tumors are less accessible to targeted nanoparticles. To tackle these challenges, we designed a nanoparticle for vascular targeting based on an αvβ3 integrin-targeted nanochain particle composed of four iron oxide nanospheres chemically linked in a linear assembly. The chain-shaped nanoparticles enabled enhanced ‘sensing’ of the tumor-associated remodeling of the vascular bed offering increased likelihood of specific recognition of metastatic tumors. Compared to spherical nanoparticles, the chain-shaped nanoparticles resulted in superior targeting of αvβ3 integrin due to geometrically enhanced multivalent docking. We performed multimodal in vivo imaging (Fluorescence Molecular Tomography and Magnetic Resonance Imaging) in a non-invasive and quantitative manner, which showed that the nanoparticles targeted metastases in the liver and lungs with high specificity in a highly aggressive breast tumor model in mice. PMID:23005348

  10. How does EPA assess risks of chemicals to birds?

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) evaluates the risk of chemicals to birds and other non-target organisms using Ecological Risk Assessment (ERA). The specific evaluations conducted under an ERA typically vary by statutory authority and available data. Under the Fede...

  11. Development of a peptide nucleic acid polymerase chain reaction clamping assay for semiquantitative evaluation of genetically modified organism content in food.

    PubMed

    Peano, C; Lesignoli, F; Gulli, M; Corradini, R; Samson, M C; Marchelli, R; Marmiroli, N

    2005-09-15

    In the present study a peptide nucleic acid (PNA)-mediated polymerase chain reaction (PCR) clamping method was developed and applied to the detection of genetically modified organisms (GMO), to test PCR products for band identity and to obtain a semiquantitative evaluation of GMO content. The minimal concentration of PNA necessary to block the PCR was determined by comparing PCRs containing a constant amount of DNA in the presence of increasing concentration of target-specific PNA. The lowest PNA concentration at which specific inhibition took place, by the inhibition of primer extension and/or steric hindrance, was the most efficient condition. Optimization of PCR clamping by PNA was observed by testing five different PNAs with a minimum of 13 bp to a maximum of 15 bp, designed on the target sequence of Roundup Ready soybean. The results obtained on the DNA extracted from Roundup Ready soybean standard flour were verified also on DNA extracted from standard flours of maize GA21, Bt176, Bt11, and MON810. A correlation between the PNA concentration necessary for inducing PCR clamping and the percentage of the GMO target sequence in the sample was found.

  12. Introduction to the ultrasound targeted microbubble destruction technique.

    PubMed

    Walton, Chad B; Anderson, Cynthia D; Boulay, Rachel; Shohet, Ralph V

    2011-06-12

    In UTMD, bioactive molecules, such as negatively charged plasmid DNA vectors encoding a gene of interest, are added to the cationic shells of lipid microbubble contrast agents. In mice these vector-carrying microbubbles can be administered intravenously or directly to the left ventricle of the heart. In larger animals they can also be infused through an intracoronary catheter. The subsequent delivery from the circulation to a target organ occurs by acoustic cavitation at a resonant frequency of the microbubbles. It seems likely that the mechanical energy generated by the microbubble destruction results in transient pore formation in or between the endothelial cells of the microvasculature of the targeted region. As a result of this sonoporation effect, the transfection efficiency into and across the endothelial cells is enhanced, and transgene-encoding vectors are deposited into the surrounding tissue. Plasmid DNA remaining in the circulation is rapidly degraded by nucleases in the blood, which further reduces the likelihood of delivery to non-sonicated tissues and leads to highly specific target-organ transfection.

  13. Neuromuscular mechanisms and neural strategies in the control of time-varying muscle contractions.

    PubMed

    Erimaki, Sophia; Agapaki, Orsalia M; Christakos, Constantinos N

    2013-09-01

    The organization of the neural input to motoneurons that underlies time-varying muscle force is assumed to depend on muscle transfer characteristics and neural strategies or control modes utilizing sensory signals. We jointly addressed these interlinked, but previously studied individually and partially, issues for sinusoidal (range 0.5-5.0 Hz) force-tracking contractions of a human finger muscle. Using spectral and correlation analyses of target signal, force signal, and motor unit (MU) discharges, we studied 1) patterns of such discharges, allowing inferences on the motoneuronal input; 2) transformation of MU population activity (EMG) into quasi-sinusoidal force; and 3) relation of force oscillation to target, carrying information on the input's organization. A broad view of force control mechanisms and strategies emerged. Specifically, synchronized MU and EMG modulations, reflecting a frequency-modulated motoneuronal input, accompanied the force variations. Gain and delay drops between EMG modulation and force oscillation, critical for the appropriate organization of this input, occurred with increasing target frequency. According to our analyses, gain compensation was achieved primarily through rhythmical activation/deactivation of higher-threshold MUs and secondarily through the adaptation of the input's strength expected during tracking tasks. However, the input's timing was not adapted to delay behaviors and seemed to depend on the control modes employed. Thus, for low-frequency targets, the force oscillation was highly coherent with, but led, a target, this timing error being compatible with predictive feedforward control partly based on the target's derivatives. In contrast, the force oscillation was weakly coherent, but in phase, with high-frequency targets, suggesting control mainly based on a target's rhythm.

  14. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  15. PCR technology for screening and quantification of genetically modified organisms (GMOs).

    PubMed

    Holst-Jensen, Arne; Rønning, Sissel B; Løvseth, Astrid; Berdal, Knut G

    2003-04-01

    Although PCR technology has obvious limitations, the potentially high degree of sensitivity and specificity explains why it has been the first choice of most analytical laboratories interested in detection of genetically modified (GM) organisms (GMOs) and derived materials. Because the products that laboratories receive for analysis are often processed and refined, the quality and quantity of target analyte (e.g. protein or DNA) frequently challenges the sensitivity of any detection method. Among the currently available methods, PCR methods are generally accepted as the most sensitive and reliable methods for detection of GM-derived material in routine applications. The choice of target sequence motif is the single most important factor controlling the specificity of the PCR method. The target sequence is normally a part of the modified gene construct, for example a promoter, a terminator, a gene, or a junction between two of these elements. However, the elements may originate from wildtype organisms, they may be present in more than one GMO, and their copy number may also vary from one GMO to another. They may even be combined in a similar way in more than one GMO. Thus, the choice of method should fit the purpose. Recent developments include event-specific methods, particularly useful for identification and quantification of GM content. Thresholds for labelling are now in place in many countries including those in the European Union. The success of the labelling schemes is dependent upon the efficiency with which GM-derived material can be detected. We will present an overview of currently available PCR methods for screening and quantification of GM-derived DNA, and discuss their applicability and limitations. In addition, we will discuss some of the major challenges related to determination of the limits of detection (LOD) and quantification (LOQ), and to validation of methods.

  16. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish

    NASA Astrophysics Data System (ADS)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Osgood, Christopher J.; Xu, Xiao-Hong Nancy

    2013-11-01

    Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development.Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03210h

  17. Target Organ Metabolism, Toxicity, and Mechanisms of Trichloroethylene and Perchloroethylene: Key Similarities, Differences, and Data Gaps

    PubMed Central

    Cichocki, Joseph A.; Guyton, Kathryn Z.; Guha, Neela; Chiu, Weihsueh A.

    2016-01-01

    Trichloroethylene (TCE) and perchloroethylene or tetrachloroethylene (PCE) are high–production volume chemicals with numerous industrial applications. As a consequence of their widespread use, these chemicals are ubiquitous environmental contaminants to which the general population is commonly exposed. It is widely assumed that TCE and PCE are toxicologically similar; both are simple olefins with three (TCE) or four (PCE) chlorines. Nonetheless, despite decades of research on the adverse health effects of TCE or PCE, few studies have directly compared these two toxicants. Although the metabolic pathways are qualitatively similar, quantitative differences in the flux and yield of metabolites exist. Recent human health assessments have uncovered some overlap in target organs that are affected by exposure to TCE or PCE, and divergent species- and sex-specificity with regard to cancer and noncancer hazards. The objective of this minireview is to highlight key similarities, differences, and data gaps in target organ metabolism and mechanism of toxicity. The main anticipated outcome of this review is to encourage research to 1) directly compare the responses to TCE and PCE using more sensitive biochemical techniques and robust statistical comparisons; 2) more closely examine interindividual variability in the relationship between toxicokinetics and toxicodynamics for TCE and PCE; 3) elucidate the effect of coexposure to these two toxicants; and 4) explore new mechanisms for target organ toxicity associated with TCE and/or PCE exposure. PMID:27511820

  18. Programmable RNA recognition and cleavage by CRISPR/Cas9.

    PubMed

    O'Connell, Mitchell R; Oakes, Benjamin L; Sternberg, Samuel H; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A

    2014-12-11

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA-DNA complementarity to identify target sites for sequence-specific double-stranded DNA (dsDNA) cleavage. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, known as the protospacer adjacent motif (PAM), next to and on the strand opposite the twenty-nucleotide target site in dsDNA. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in a large range of prokaryotic and eukaryotic cell types, and in whole organisms, but it has been thought to be incapable of targeting RNA. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalysed DNA cleavage. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous messenger RNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable transcript recognition without the need for tags.

  19. Programmable RNA recognition and cleavage by CRISPR/Cas9

    PubMed Central

    O’Connell, Mitchell R.; Oakes, Benjamin L.; Sternberg, Samuel H.; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A.

    2014-01-01

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA:DNA complementarity to identify target sites for sequence-specific doublestranded DNA (dsDNA) cleavage1-5. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, the protospacer adjacent motif (PAM), next to and on the strand opposite the 20-nucleotide target site in dsDNA4-7. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in many cell types and organisms8, but it has been thought to be incapable of targeting RNA5. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalyzed DNA cleavage7. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous mRNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable and tagless transcript recognition. PMID:25274302

  20. Topographic Organization for Delayed Saccades in Human Posterior Parietal Cortex

    PubMed Central

    Schluppeck, Denis; Glimcher, Paul; Heeger, David J.

    2008-01-01

    Posterior parietal cortex (PPC) is thought to play a critical role in decision making, sensory attention, motor intention, and/or working memory. Research on the PPC in non-human primates has focused on the lateral intraparietal area (LIP) in the intraparietal sulcus (IPS). Neurons in LIP respond after the onset of visual targets, just before saccades to those targets, and during the delay period in between. To study the function of posterior parietal cortex in humans, it will be crucial to have a routine and reliable method for localizing specific parietal areas in individual subjects. Here, we show that human PPC contains at least two topographically organized regions, which are candidates for the human homologue of LIP. We mapped the topographic organization of human PPC for delayed (memory guided) saccades using fMRI. Subjects were instructed to fixate centrally while a peripheral target was briefly presented. After a further 3-s delay, subjects made a saccade to the remembered target location followed by a saccade back to fixation and a 1-s inter-trial interval. Targets appeared at successive locations “around the clock” (same eccentricity, ≈30° angular steps), to produce a traveling wave of activity in areas that are topographically organized. PPC exhibited topographic organization for delayed saccades. We defined two areas in each hemisphere that contained topographic maps of the contralateral visual field. These two areas were immediately rostral to V7 as defined by standard retinotopic mapping. The two areas were separated from each other and from V7 by reversals in visual field orientation. However, we leave open the possibility that these two areas will be further subdivided in future studies. Our results demonstrate that topographic maps tile the cortex continuously from V1 well into PPC. PMID:15817644

  1. Organ failure avoidance and mitigation strategies in surgery.

    PubMed

    McConnell, Kevin W; Coopersmith, Craig M

    2012-04-01

    Postoperative organ failure is a challenging disease process that is better prevented than treated. Providers should use close observation and clinical judgment, and checklists of best practices to minimize the risk of organ failure in their patients. The treatment of multiorgan dysfunction syndrome (MODS) generally remains supportive, outside of rapid initiation of source control (when appropriate) and targeted antibiotic therapy. More specific treatments may be developed as the complex pathophysiology of MODS is better understood and more homogenous patient populations are selected for study. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Electrochemical genoassays on gold-coated magnetic nanoparticles to quantify genetically modified organisms (GMOs) in food and feed as GMO percentage.

    PubMed

    Plácido, Alexandra; Pereira, Clara; Guedes, Alexandra; Barroso, M Fátima; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Delerue-Matos, Cristina

    2018-07-01

    The integration of nanomaterials in the field of (bio)sensors has allowed developing strategies with improved analytical performance. In this work, ultrasmall core-shell Fe 3 O 4 @Au magnetic nanoparticles (MNPs) were used as the platform for the immobilization of event-specific Roundup Ready (RR) soybean and taxon-specific DNA sequences. Firstly, monodisperse Fe 3 O 4 MNPs were synthesized by thermal decomposition and subsequently coated with a gold shell through reduction of Au(III) precursor on the surface of the MNPs in the presence of an organic capping agent. This nanosupport exhibited high colloidal stability, average particle size of 10.2 ± 1.3 nm, and spherical shape. The covalent immobilization of ssDNA probe onto the Au shell of the Fe 3 O 4 @Au MNPs was achieved through a self-assembled monolayer (SAM) created from mixtures of alkane thiols (6-mercapto-1-hexanol and mercaptohexanoic acid). The influence of the thiols ratio on the electrochemical performance of the resulting electrochemical genoassays was studied, and remarkably, the best analytical performance was achieved for a pure mercaptohexanoic acid SAM. Two quantification assays were designed; one targeting an RR sequence and a second targeting a reference soybean gene, both with a sandwich format for hybridization, signaling probes labelled with fluorescein isothiocyanate (FITC), enzymatic amplification and chronoamperometric detection at screen-printed carbon electrodes (SPCE). The magnetogenoassays exhibited linear ranges from 0.1 to 10.0 nM and from 0.1 to 5.0 nM with similar detection limits of 0.02 nM and 0.05 nM for the event-specific (RR) and the taxon-specific (lectin) targets, respectively. The usefulness of the approach was demonstrated by its application to detect genetically modified organisms (GMOs) in feed and food. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Environmental endocrine disruptors: Effects on the human male reproductive system.

    PubMed

    Sweeney, M F; Hasan, N; Soto, A M; Sonnenschein, C

    2015-12-01

    Incidences of altered development and neoplasia of male reproductive organs have increased during the last 50 years, as shown by epidemiological data. These data are associated with the increased presence of environmental chemicals, specifically "endocrine disruptors," that interfere with normal hormonal action. Much research has gone into testing the effects of specific endocrine disrupting chemicals (EDCs) on the development of male reproductive organs and endocrine-related cancers in both in vitro and in vivo models. Efforts have been made to bridge the accruing laboratory findings with the epidemiological data to draw conclusions regarding the relationship between EDCs, altered development and carcinogenesis. The ability of EDCs to predispose target fetal and adult tissues to neoplastic transformation is best explained under the framework of the tissue organization field theory of carcinogenesis (TOFT), which posits that carcinogenesis is development gone awry. Here, we focus on the available evidence, from both empirical and epidemiological studies, regarding the effects of EDCs on male reproductive development and carcinogenesis of endocrine target tissues. We also critique current research methodology utilized in the investigation of EDCs effects and outline what could possibly be done to address these obstacles moving forward.

  4. Targeting the prostate for destruction through a vascular address

    PubMed Central

    Arap, Wadih; Haedicke, Wolfgang; Bernasconi, Michele; Kain, Renate; Rajotte, Daniel; Krajewski, Stanislaw; Ellerby, H. Michael; Bredesen, Dale E.; Pasqualini, Renata; Ruoslahti, Erkki

    2002-01-01

    Organ specific drug targeting was explored in mice as a possible alternative to surgery to treat prostate diseases. Peptides that specifically recognize the vasculature in the prostate were identified from phage-displayed peptide libraries by selecting for phage capable of homing into the prostate after an i.v. injection. One of the phage selected in this manner homed to the prostate 10–15 times more than to other organs. Unselected phage did not show this preference. The phage bound also to vasculature in the human prostate. The peptide displayed by the prostate-homing phage, SMSIARL (single letter code), was synthesized and shown to inhibit the homing of the phage when co-injected into mice with the phage. Systemic treatment of mice with a chimeric peptide consisting of the SMSIARL homing peptide, linked to a proapoptotic peptide that disrupts mitochondrial membranes, caused tissue destruction in the prostate, but not in other organs. The chimeric peptide delayed the development of the cancers in prostate cancer-prone transgenic mice (TRAMP mice). These results suggest that it may be possible to develop an alternative to surgical prostate resection and that such a treatment may also reduce future cancer risk. PMID:11830668

  5. Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms (GMOs).

    PubMed

    Dörries, Hans-Henno; Remus, Ivonne; Grönewald, Astrid; Grönewald, Cordt; Berghof-Jäger, Kornelia

    2010-03-01

    The number of commercially available genetically modified organisms (GMOs) and therefore the diversity of possible target sequences for molecular detection techniques are constantly increasing. As a result, GMO laboratories and the food production industry currently are forced to apply many different methods to reliably test raw material and complex processed food products. Screening methods have become more and more relevant to minimize the analytical effort and to make a preselection for further analysis (e.g., specific identification or quantification of the GMO). A multiplex real-time PCR kit was developed to detect the 35S promoter of the cauliflower mosaic virus, the terminator of the nopaline synthase gene of Agrobacterium tumefaciens, the 35S promoter from the figwort mosaic virus, and the bar gene of the soil bacterium Streptomyces hygroscopicus as the most widely used sequences in GMOs. The kit contains a second assay for the detection of plant-derived DNA to control the quality of the often processed and refined sample material. Additionally, the plant-specific assay comprises a homologous internal amplification control for inhibition control. The determined limits of detection for the five assays were 10 target copies/reaction. No amplification products were observed with DNAs of 26 bacterial species, 25 yeasts, 13 molds, and 41 not genetically modified plants. The specificity of the assays was further demonstrated to be 100% by the specific amplification of DNA derived from reference material from 22 genetically modified crops. The applicability of the kit in routine laboratory use was verified by testing of 50 spiked and unspiked food products. The herein described kit represents a simple and sensitive GMO screening method for the reliable detection of multiple GMO-specific target sequences in a multiplex real-time PCR reaction.

  6. Probing the target search of DNA-binding proteins in mammalian cells using TetR as model searcher

    NASA Astrophysics Data System (ADS)

    Normanno, Davide; Boudarène, Lydia; Dugast-Darzacq, Claire; Chen, Jiji; Richter, Christian; Proux, Florence; Bénichou, Olivier; Voituriez, Raphaël; Darzacq, Xavier; Dahan, Maxime

    2015-07-01

    Many cellular functions rely on DNA-binding proteins finding and associating to specific sites in the genome. Yet the mechanisms underlying the target search remain poorly understood, especially in the case of the highly organized mammalian cell nucleus. Using as a model Tet repressors (TetRs) searching for a multi-array locus, we quantitatively analyse the search process in human cells with single-molecule tracking and single-cell protein-DNA association measurements. We find that TetRs explore the nucleus and reach their target by 3D diffusion interspersed with transient interactions with non-cognate sites, consistent with the facilitated diffusion model. Remarkably, nonspecific binding times are broadly distributed, underlining a lack of clear delimitation between specific and nonspecific interactions. However, the search kinetics is not determined by diffusive transport but by the low association rate to nonspecific sites. Altogether, our results provide a comprehensive view of the recruitment dynamics of proteins at specific loci in mammalian cells.

  7. Identifying p53 Transactivation Domain 1-Specific Inhibitors to Alleviate the Side Effects of Prostate Cancer Therapy

    DTIC Science & Technology

    2015-12-01

    CANCER THERAPY PRINCIPAL INVESTIGATOR: Dr. LAURA D. ATTARDI CONTRACTING ORGANIZATION: STANFORD UNIVERSITY MENLO PARK, CA 94025-3434 REPORT DATE...S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBERStanford University 450 Serra Mall Stanford, CA 94305-2004 9...Generation of reporter lines in Arf-/- immortalized MEFs. As described in detail in the previous annual report, we utilized CRISPR /Cas9 targeting strategies

  8. Passive Sampling Methods for Contaminated Sediments: Practical Guidance for Selection, Calibration, and Implementation

    EPA Science Inventory

    This article provides practical guidance on the use of passive sampling methods(PSMs) that target the freely dissolved concentration (Cfree) for improved exposure assessment of hydrophobic organic chemicals in sediments. Primary considerations for selecting a PSM for a specific a...

  9. Biotherapies in Behçet's disease.

    PubMed

    Comarmond, Cloé; Wechsler, Bertrand; Bodaghi, Bahram; Cacoub, Patrice; Saadoun, David

    2014-07-01

    Behçet's disease (BD) is a systemic large-vessel vasculitis characterized by a wide clinical spectrum including recurrent oral and genital ulcerations, uveitis, vascular, neurological, articular, renal and gastrointestinal manifestations. Therapeutic management of BD depends on the clinical presentation and organ involved. Although colchicine, nonsteroidal antiinflammatory agents and topical treatments with corticosteroids are often sufficient for mucocutaneous and joint involvements, more aggressive approach with immunosuppressive agents is warranted for severe manifestations such as posterior uveitis, retinal vasculitis, vascular, and neurological and gastrointestinal involvements. However, some patients still have refractory disease, relapse, sight threatening eye disease, or irreversible organ damage. Recent improvements in the understanding of the pathogenic mechanisms have led to the identification of potential targets and future biological therapies for BD. In contrast to current non-specific immunosuppressive agents, the emergence of biotherapies provides the possibility of interfering with specific pathogenic pathways. Novel targeted biotherapies might be used in the future for BD. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Nanostructured Lipid Carriers as Multifunctional Nanomedicine Platform for Pulmonary Co-Delivery of Anticancer Drugs and siRNA

    PubMed Central

    Taratula, Oleh; Kuzmov, Andriy; Shah, Milin; Garbuzenko, Olga B.; Minko, Tamara

    2013-01-01

    We developed, synthesized, and tested a multifunctional nanostructured lipid nanocarrier-based system (NLCS) for efficient delivery of an anticancer drug and siRNA directly into the lungs by inhalation. The system contains: (1) nanostructured lipid carriers (NLC); (2) anticancer drug (doxorubicin or paclitaxel); (3) siRNA targeted to MRP1 mRNA as a suppressor of pump drug resistance; (4) siRNA targeted to BCL2 mRNA as a suppressor of nonpump cellular resistance and (5) a modified synthetic analog of luteinizing hormone-releasing hormone (LHRH) as a targeting moiety specific to the receptors that are overexpressed in the plasma membrane of lung cancer cells. The NLCS was tested in vitro using human lung cancer cells and in vivo utilizing mouse orthotopic model of human lung cancer. After inhalation, the proposed NLCS effectively delivered its payload into lung cancer cells leaving healthy lung tissues intact and also significantly decreasing the exposure of healthy organs when compared with intravenous injection. The NLCS showed enhanced antitumor activity when compared with intravenous treatment. The data obtained demonstrated high efficiency of proposed NLCS for tumor-targeted local delivery by inhalation of anticancer drugs and mixture of siRNAs specifically to lung cancer cells and, as a result, efficient suppression of tumor growth and prevention of adverse side effects on healthy organs. PMID:23648833

  11. Synergistic effects of dendritic cell targeting and laser-microporation on enhancing epicutaneous skin vaccination efficacy.

    PubMed

    Machado, Yoan; Duinkerken, Sanne; Hoepflinger, Veronika; Mayr, Melissa; Korotchenko, Evgeniia; Kurtaj, Almedina; Pablos, Isabel; Steiner, Markus; Stoecklinger, Angelika; Lübbers, Joyce; Schmid, Maximillian; Ritter, Uwe; Scheiblhofer, Sandra; Ablinger, Michael; Wally, Verena; Hochmann, Sarah; Raninger, Anna M; Strunk, Dirk; van Kooyk, Yvette; Thalhamer, Josef; Weiss, Richard

    2017-11-28

    Due to its unique immunological properties, the skin is an attractive target tissue for allergen-specific immunotherapy. In our current work, we combined a dendritic cell targeting approach with epicutaneous immunization using an ablative fractional laser to generate defined micropores in the upper layers of the skin. By coupling the major birch pollen allergen Bet v 1 to mannan from S. cerevisiae via mild periodate oxidation we generated hypoallergenic Bet-mannan neoglycoconjugates, which efficiently targeted CD14 + dendritic cells and Langerhans cells in human skin explants. Mannan conjugation resulted in sustained release from the skin and retention in secondary lymphoid organs, whereas unconjugated antigen showed fast renal clearance. In a mouse model, Bet-mannan neoglycoconjugates applied via laser-microporated skin synergistically elicited potent humoral and cellular immune responses, superior to intradermal injection. The induced antibody responses displayed IgE-blocking capacity, highlighting the therapeutic potential of the approach. Moreover, application via micropores, but not by intradermal injection, resulted in a mixed TH1/TH17-biased immune response. Our data clearly show that applying mannan-neoglycoconjugates to an organ rich in dendritic cells using laser-microporation is superior to intradermal injection. Due to their low IgE binding capacity and biodegradability, mannan neoglycoconjugates therefore represent an attractive formulation for allergen-specific epicutaneous immunotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. New generation of oral mucosal vaccines targeting dendritic cells.

    PubMed

    Owen, Jennifer L; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-12-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including Bacillus anthracis in experimental models of disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Computational multiscale modeling in protein--ligand docking.

    PubMed

    Taufer, Michela; Armen, Roger; Chen, Jianhan; Teller, Patricia; Brooks, Charles

    2009-01-01

    In biological systems, the binding of small molecule ligands to proteins is a crucial process for almost every aspect of biochemistry and molecular biology. Enzymes are proteins that function by catalyzing specific biochemical reactions that convert reactants into products. Complex organisms are typically composed of cells in which thousands of enzymes participate in complex and interconnected biochemical pathways. Some enzymes serve as sequential steps in specific pathways (such as energy metabolism), while others function to regulate entire pathways and cellular functions [1]. Small molecule ligands can be designed to bind to a specific enzyme and inhibit the biochemical reaction. Inhibiting the activity of key enzymes may result in the entire biochemical pathways being turned on or off [2], [3]. Many small molecule drugs marketed today function in this generic way as enzyme inhibitors. If research identifies a specific enzyme as being crucial to the progress of disease, then this enzyme may be targeted with an inhibitor, which may slow down or reverse the progress of disease. In this way, enzymes are targeted from specific pathogens (e.g., virus, bacteria, fungi) for infectious diseases [4], [5], and human enzymes are targeted for noninfectious diseases such as cardiovascular disease, cancer, diabetes, and neurodegenerative diseases [6].

  14. Genome engineering with TALENs and ZFNs: repair pathways and donor design.

    PubMed

    Carroll, Dana; Beumer, Kelly J

    2014-09-01

    Genome engineering with targetable nucleases depends on cellular pathways of DNA repair after target cleavage. Knowledge of how those pathways work, their requirements and their active factors, can guide experimental design and improve outcomes. While many aspects of both homologous recombination (HR) and nonhomologous end joining (NHEJ) are shared by a broad range of cells and organisms, some features are specific to individual situations. This article reviews the influence of repair mechanisms on the results of gene targeting experiments, with an emphasis on lessons learned from experiments with Drosophila. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Formulation of multifunctional oil-in-water nanosized emulsions for active and passive targeting of drugs to otherwise inaccessible internal organs of the human body.

    PubMed

    Tamilvanan, Shunmugaperumal

    2009-10-20

    Oil-in-water (o/w) type nanosized emulsions (NE) have been widely investigated as vehicles/carrier for the formulation and delivery of drugs with a broad range of applications. A comprehensive summary is presented on how to formulate the multifunctional o/w NE for active and passive targeting of drugs to otherwise inaccessible internal organs of the human body. The NE is classified into three generations based on its development over the last couple of decades to make ultimately a better colloidal carrier for a target site within the internal and external organs/parts of the body, thus allowing site-specific drug delivery and/or enhanced drug absorption. The third generation NE has tremendous application for drug absorption enhancement and for 'ferrying' compounds across cell membranes in comparison to its first and second generation counterparts. Furthermore, the third generation NE provides an interesting opportunity for use as drug delivery vehicles for numerous therapeutics that can range in size from small molecules to macromolecules.

  16. Humidifier disinfectant-associated specific diseases should be called together as “humidifier disinfectant syndrome”

    PubMed Central

    Lee, Jong-Hyeon

    2017-01-01

    Humidifier disinfectant (HD) damage was terrible chemical damage caused by household goods that happened in only South Korea, but still very little is known in HD damage. Up to now, previous research tried to focus on interstitial fibrosis on terminal bronchioles and alveoli because it is a specific finding, compared with other diseases. To figure out whole effects from HDs, much epidemiologic and toxicologic research is underway. HDs were shown to give rise to typical toxicologic effects on various target organs, such as skin, conjunctiva, naval mucosa, bronchial mucosa, alveoli and so on, which shared common toxicological responses. On a specific target, specific toxicologic effects existed. Diverse diseases along exposure pathways can occur at the same time with a common toxicologic mechanism and cause of HDs, which can be called as HD syndrome. To gain stronger scientific evidence about it, further epidemiological and toxicological studies should be applied. PMID:29026061

  17. Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences.

    PubMed

    Lee, David; La Mura, Maurizio; Allnutt, Theo R; Powell, Wayne

    2009-02-02

    The most common method of GMO detection is based upon the amplification of GMO-specific DNA amplicons using the polymerase chain reaction (PCR). Here we have applied the loop-mediated isothermal amplification (LAMP) method to amplify GMO-related DNA sequences, 'internal' commonly-used motifs for controlling transgene expression and event-specific (plant-transgene) junctions. We have tested the specificity and sensitivity of the technique for use in GMO studies. Results show that detection of 0.01% GMO in equivalent background DNA was possible and dilutions of template suggest that detection from single copies of the template may be possible using LAMP. This work shows that GMO detection can be carried out using LAMP for routine screening as well as for specific events detection. Moreover, the sensitivity and ability to amplify targets, even with a high background of DNA, here demonstrated, highlights the advantages of this isothermal amplification when applied for GMO detection.

  18. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering

    PubMed Central

    Zhang, Xiao-Hui; Tee, Louis Y; Wang, Xiao-Gang; Huang, Qun-Shan; Yang, Shi-Hua

    2015-01-01

    CRISPR/Cas9 is a versatile genome-editing technology that is widely used for studying the functionality of genetic elements, creating genetically modified organisms as well as preclinical research of genetic disorders. However, the high frequency of off-target activity (≥50%)—RGEN (RNA-guided endonuclease)-induced mutations at sites other than the intended on-target site—is one major concern, especially for therapeutic and clinical applications. Here, we review the basic mechanisms underlying off-target cutting in the CRISPR/Cas9 system, methods for detecting off-target mutations, and strategies for minimizing off-target cleavage. The improvement off-target specificity in the CRISPR/Cas9 system will provide solid genotype–phenotype correlations, and thus enable faithful interpretation of genome-editing data, which will certainly facilitate the basic and clinical application of this technology. PMID:26575098

  19. Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC).

    PubMed

    Harjola, Veli-Pekka; Mullens, Wilfried; Banaszewski, Marek; Bauersachs, Johann; Brunner-La Rocca, Hans-Peter; Chioncel, Ovidiu; Collins, Sean P; Doehner, Wolfram; Filippatos, Gerasimos S; Flammer, Andreas J; Fuhrmann, Valentin; Lainscak, Mitja; Lassus, Johan; Legrand, Matthieu; Masip, Josep; Mueller, Christian; Papp, Zoltán; Parissis, John; Platz, Elke; Rudiger, Alain; Ruschitzka, Frank; Schäfer, Andreas; Seferovic, Petar M; Skouri, Hadi; Yilmaz, Mehmet Birhan; Mebazaa, Alexandre

    2017-07-01

    Organ injury and impairment are commonly observed in patients with acute heart failure (AHF), and congestion is an essential pathophysiological mechanism of impaired organ function. Congestion is the predominant clinical profile in most patients with AHF; a smaller proportion presents with peripheral hypoperfusion or cardiogenic shock. Hypoperfusion further deteriorates organ function. The injury and dysfunction of target organs (i.e. heart, lungs, kidneys, liver, intestine, brain) in the setting of AHF are associated with increased risk for mortality. Improvement in organ function after decongestive therapies has been associated with a lower risk for post-discharge mortality. Thus, the prevention and correction of organ dysfunction represent a therapeutic target of interest in AHF and should be evaluated in clinical trials. Treatment strategies that specifically prevent, reduce or reverse organ dysfunction remain to be identified and evaluated to determine if such interventions impact mortality, morbidity and patient-centred outcomes. This paper reflects current understanding among experts of the presentation and management of organ impairment in AHF and suggests priorities for future research to advance the field. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.

  20. RNAi triggered by symmetrically transcribed transgenes in Drosophila melanogaster.

    PubMed Central

    Giordano, Ennio; Rendina, Rosaria; Peluso, Ivana; Furia, Maria

    2002-01-01

    Specific silencing of target genes can be induced in a variety of organisms by providing homologous double-stranded RNA molecules. In vivo, these molecules can be generated either by transcription of sequences having an inverted-repeat (IR) configuration or by simultaneous transcription of sense-antisense strands. Since IR constructs are difficult to prepare and can stimulate genomic rearrangements, we investigated the silencing potential of symmetrically transcribed sequences. We report that Drosophila transgenes whose sense-antisense transcription was driven by two convergent arrays of Gal4-dependent UAS sequences can induce specific, dominant, and heritable repression of target genes. This effect is not dependent on a mechanism based on homology-dependent DNA/DNA interactions, but is directly triggered by transcriptional activation and is accompanied by specific depletion of the endogenous target RNA. Tissue-specific induction of these transgenes restricts the target gene silencing to selected body domains, and spreading phenomena described in other cases of post-transcriptional gene silencing (PTGS) were not observed. In addition to providing an additional tool useful for Drosophila functional genomic analysis, these results add further strength to the view that events of sense-antisense transcription may readily account for some, if not all, PTGS-cosuppression phenomena and can potentially play a relevant role in gene regulation. PMID:11861567

  1. Monitoring benthic aIgal communides: A comparison of targeted and coefficient sampling methods

    USGS Publications Warehouse

    Edwards, Matthew S.; Tinker, M. Tim

    2009-01-01

    Choosing an appropriate sample unit is a fundamental decision in the design of ecological studies. While numerous methods have been developed to estimate organism abundance, they differ in cost, accuracy and precision.Using both field data and computer simulation modeling, we evaluated the costs and benefits associated with two methods commonly used to sample benthic organisms in temperate kelp forests. One of these methods, the Targeted Sampling method, relies on different sample units, each "targeted" for a specific species or group of species while the other method relies on coefficients that represent ranges of bottom cover obtained from visual esti-mates within standardized sample units. Both the field data and the computer simulations suggest that both methods yield remarkably similar estimates of organism abundance and among-site variability, although the Coefficient method slightly underestimates variability among sample units when abundances are low. In contrast, the two methods differ considerably in the effort needed to sample these communities; the Targeted Sampling requires more time and twice the personnel to complete. We conclude that the Coefficent Sampling method may be better for environmental monitoring programs where changes in mean abundance are of central concern and resources are limiting, but that the Targeted sampling methods may be better for ecological studies where quantitative relationships among species and small-scale variability in abundance are of central concern.

  2. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality

    DOE PAGES

    Yadav, Umesh P.; Ayre, Brian G.; Bush, Daniel R.

    2015-04-22

    The principal components of plant productivity and nutritional value, from the standpoint of modern agriculture, are the acquisition and partitioning of organic carbon (C) and nitrogen (N) compounds among the various organs of the plant. The flow of essential organic nutrients among the plant organ systems is mediated by its complex vascular system, and is driven by a series of transport steps including export from sites of primary assimilation, transport into and out of the phloem and xylem, and transport into the various import-dependent organs. Manipulating C and N partitioning to enhance yield of harvested organs is evident in themore » earliest crop domestication events and continues to be a goal for modern plant biology. Research on the biochemistry, molecular and cellular biology, and physiology of C and N partitioning has now matured to an extent that strategic manipulation of these transport systems through biotechnology are being attempted to improve movement from source to sink tissues in general, but also to target partitioning to specific organs. These nascent efforts are demonstrating the potential of applied biomass targeting but are also identifying interactions between essential nutrients that require further basic research. In this review, we summarize the key transport steps involved in C and N partitioning, and discuss various transgenic approaches for directly manipulating key C and N transporters involved. In addition, we propose several experiments that could enhance biomass accumulation in targeted organs while simultaneously testing current partitioning models.« less

  3. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Umesh P.; Ayre, Brian G.; Bush, Daniel R.

    The principal components of plant productivity and nutritional value, from the standpoint of modern agriculture, are the acquisition and partitioning of organic carbon (C) and nitrogen (N) compounds among the various organs of the plant. The flow of essential organic nutrients among the plant organ systems is mediated by its complex vascular system, and is driven by a series of transport steps including export from sites of primary assimilation, transport into and out of the phloem and xylem, and transport into the various import-dependent organs. Manipulating C and N partitioning to enhance yield of harvested organs is evident in themore » earliest crop domestication events and continues to be a goal for modern plant biology. Research on the biochemistry, molecular and cellular biology, and physiology of C and N partitioning has now matured to an extent that strategic manipulation of these transport systems through biotechnology are being attempted to improve movement from source to sink tissues in general, but also to target partitioning to specific organs. These nascent efforts are demonstrating the potential of applied biomass targeting but are also identifying interactions between essential nutrients that require further basic research. In this review, we summarize the key transport steps involved in C and N partitioning, and discuss various transgenic approaches for directly manipulating key C and N transporters involved. In addition, we propose several experiments that could enhance biomass accumulation in targeted organs while simultaneously testing current partitioning models.« less

  4. Development and Function of the Drosophila Tracheal System.

    PubMed

    Hayashi, Shigeo; Kondo, Takefumi

    2018-06-01

    The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed. Copyright © 2018 by the Genetics Society of America.

  5. Intercepting moving targets: does memory from practice in a specific condition of target displacement affect movement timing?

    PubMed

    de Azevedo Neto, Raymundo Machado; Teixeira, Luis Augusto

    2011-05-01

    This investigation aimed at assessing the extent to which memory from practice in a specific condition of target displacement modulates temporal errors and movement timing of interceptive movements. We compared two groups practicing with certainty of future target velocity either in unchanged target velocity or in target velocity decrease. Following practice, both experimental groups were probed in the situations of unchanged target velocity and target velocity decrease either under the context of certainty or uncertainty about target velocity. Results from practice showed similar improvement of temporal accuracy between groups, revealing that target velocity decrease did not disturb temporal movement organization when fully predictable. Analysis of temporal errors in the probing trials indicated that both groups had higher timing accuracy in velocity decrease in comparison with unchanged velocity. Effect of practice was detected by increased temporal accuracy of the velocity decrease group in situations of decreased velocity; a trend consistent with the expected effect of practice was observed for temporal errors in the unchanged velocity group and in movement initiation at a descriptive level. An additional point of theoretical interest was the fast adaptation in both groups to a target velocity pattern different from that practiced. These points are discussed under the perspective of integration of vision and motor control by means of an internal forward model of external motion.

  6. Therapeutic milestone: stroke declines from the second to the third leading organ- and disease-specific cause of death in the United States.

    PubMed

    Towfighi, Amytis; Ovbiagele, Bruce; Saver, Jeffrey L

    2010-03-01

    Stroke mortality rates declined for much of the second half of the 20th century, but recent trends and their relation to other organ- and disease-specific causes of death have not been characterized. Using the National Center for Health Statistics mortality data, leading organ- and disease-specific causes of death were assessed for the most recent 10-year period (1996 to 2005) in the United States with a specific focus on stroke deaths. Age-adjusted stroke death rates declined by 25.4%; as a result, lung cancer (which only declined by 9.2%) surpassed stroke as the second leading cause of death in 2003. Despite a 31.9% decline in age-adjusted ischemic heart disease death rates, it remains the leading cause of death. Stroke is now the fifth leading cause of death in men and the fourth leading cause of death in whites but remains the second leading cause of death in women and blacks. With stroke death rates decreasing substantially in the United States from 1996 to 2005, stroke moved from the second to the third leading organ- and disease-specific cause of death. Women and blacks may warrant attention for targeted stroke prevention and treatment because they continue to have disproportionately high stroke death rates.

  7. Category-Specific Neural Oscillations Predict Recall Organization During Memory Search

    PubMed Central

    Morton, Neal W.; Kahana, Michael J.; Rosenberg, Emily A.; Baltuch, Gordon H.; Litt, Brian; Sharan, Ashwini D.; Sperling, Michael R.; Polyn, Sean M.

    2013-01-01

    Retrieved-context models of human memory propose that as material is studied, retrieval cues are constructed that allow one to target particular aspects of past experience. We examined the neural predictions of these models by using electrocorticographic/depth recordings and scalp electroencephalography (EEG) to characterize category-specific oscillatory activity, while participants studied and recalled items from distinct, neurally discriminable categories. During study, these category-specific patterns predict whether a studied item will be recalled. In the scalp EEG experiment, category-specific activity during study also predicts whether a given item will be recalled adjacent to other same-category items, consistent with the proposal that a category-specific retrieval cue is used to guide memory search. Retrieved-context models suggest that integrative neural circuitry is involved in the construction and maintenance of the retrieval cue. Consistent with this hypothesis, we observe category-specific patterns that rise in strength as multiple same-category items are studied sequentially, and find that individual differences in this category-specific neural integration during study predict the degree to which a participant will use category information to organize memory search. Finally, we track the deployment of this retrieval cue during memory search: Category-specific patterns are stronger when participants organize their responses according to the category of the studied material. PMID:22875859

  8. "Drug" Discovery with the Help of Organic Chemistry.

    PubMed

    Itoh, Yukihiro; Suzuki, Takayoshi

    2017-01-01

    The first step in "drug" discovery is to find compounds binding to a potential drug target. In modern medicinal chemistry, the screening of a chemical library, structure-based drug design, and ligand-based drug design, or a combination of these methods, are generally used for identifying the desired compounds. However, they do not necessarily lead to success and there is no infallible method for drug discovery. Therefore, it is important to explore medicinal chemistry based on not only the conventional methods but also new ideas. So far, we have found various compounds as drug candidates. In these studies, some strategies based on organic chemistry have allowed us to find drug candidates, through 1) construction of a focused library using organic reactions and 2) rational design of enzyme inhibitors based on chemical reactions catalyzed by the target enzyme. Medicinal chemistry based on organic chemical reactions could be expected to supplement the conventional methods. In this review, we present drug discovery with the help of organic chemistry showing examples of our explorative studies on histone deacetylase inhibitors and lysine-specific demethylase 1 inhibitors.

  9. Pretargeting vs. direct targeting of human betalox5 islet cells subcutaneously implanted in mice using an anti-human islet cell antibody.

    PubMed

    Liu, Guozheng; Dou, Shuping; Akalin, Ali; Rusckowski, Mary; Streeter, Philip R; Shultz, Leonard D; Greiner, Dale L

    2012-07-01

    We previously demonstrated MORF/cMORF pretargeting of human islets and betalox 5 cells (a human beta cell line) transplanted subcutaneously in mice with the anti-human islet antibody, HPi1. We now compare pretargeting with direct targeting in the beta cell transplant model to evaluate the degree to which target/non-target (T/NT) ratios may be improved by pretargeting. Specific binding of an anti-human islet antibody HPi1 to the beta cells transplanted subcutaneously in mice was examined against a negative control antibody. We then compared pretargeting by MORF-HPi1 plus 111In-labeled cMORF to direct targeting by 111In-labeled HPi1. HPi1 binding to betalox5 human cells in the transplant was shown by immunofluorescence. Normal organ 111In backgrounds by pretargeting were always lower, although target accumulations were similar. More importantly, the transplant to pancreas and liver ratios was, respectively, 26 and 10 by pretargeting as compared to 9 and 0.6 by direct targeting. Pretargeting greatly improves the T/NT ratios, and based on the estimated endocrine to exocrine ratio within a pancreas, pretargeting may be approaching the sensitivity required for successful imaging of human islets within this organ. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe.

    PubMed

    Braun, Burga; Richert, Inga; Szewzyk, Ulrich

    2009-10-01

    Iron-depositing bacteria play an important role in technical water systems (water wells, distribution systems) due to their intense deposition of iron oxides and resulting clogging effects. Pedomicrobium is known as iron- and manganese-oxidizing and accumulating bacterium. The ability to detect and quantify members of this species in biofilm communities is therefore desirable. In this study the fluorescence in situ hybridization (FISH) method was used to detect Pedomicrobium in iron and manganese incrusted biofilms. Based on comparative sequence analysis, we designed and evaluated a specific oligonucleotide probe (Pedo 1250) complementary to the hypervariable region 8 of the 16S rRNA gene for Pedomicrobium. Probe specificities were tested against 3 different strains of Pedomicrobium and Sphingobium yanoikuyae as non-target organism. Using optimized conditions the probe hybridized with all tested strains of Pedomicrobium with an efficiency of 80%. The non-target organism showed no hybridization signals. The new FISH probe was applied successfully for the in situ detection of Pedomicrobium in different native, iron-depositing biofilms. The hybridization results of native bioflims using probe Pedo_1250 agreed with the results of the morphological structure of Pedomicrobium bioflims based on scanning electron microscopy.

  11. Inference of Expanded Lrp-Like Feast/Famine Transcription Factor Targets in a Non-Model Organism Using Protein Structure-Based Prediction

    PubMed Central

    Ashworth, Justin; Plaisier, Christopher L.; Lo, Fang Yin; Reiss, David J.; Baliga, Nitin S.

    2014-01-01

    Widespread microbial genome sequencing presents an opportunity to understand the gene regulatory networks of non-model organisms. This requires knowledge of the binding sites for transcription factors whose DNA-binding properties are unknown or difficult to infer. We adapted a protein structure-based method to predict the specificities and putative regulons of homologous transcription factors across diverse species. As a proof-of-concept we predicted the specificities and transcriptional target genes of divergent archaeal feast/famine regulatory proteins, several of which are encoded in the genome of Halobacterium salinarum. This was validated by comparison to experimentally determined specificities for transcription factors in distantly related extremophiles, chromatin immunoprecipitation experiments, and cis-regulatory sequence conservation across eighteen related species of halobacteria. Through this analysis we were able to infer that Halobacterium salinarum employs a divergent local trans-regulatory strategy to regulate genes (carA and carB) involved in arginine and pyrimidine metabolism, whereas Escherichia coli employs an operon. The prediction of gene regulatory binding sites using structure-based methods is useful for the inference of gene regulatory relationships in new species that are otherwise difficult to infer. PMID:25255272

  12. Inference of expanded Lrp-like feast/famine transcription factor targets in a non-model organism using protein structure-based prediction.

    PubMed

    Ashworth, Justin; Plaisier, Christopher L; Lo, Fang Yin; Reiss, David J; Baliga, Nitin S

    2014-01-01

    Widespread microbial genome sequencing presents an opportunity to understand the gene regulatory networks of non-model organisms. This requires knowledge of the binding sites for transcription factors whose DNA-binding properties are unknown or difficult to infer. We adapted a protein structure-based method to predict the specificities and putative regulons of homologous transcription factors across diverse species. As a proof-of-concept we predicted the specificities and transcriptional target genes of divergent archaeal feast/famine regulatory proteins, several of which are encoded in the genome of Halobacterium salinarum. This was validated by comparison to experimentally determined specificities for transcription factors in distantly related extremophiles, chromatin immunoprecipitation experiments, and cis-regulatory sequence conservation across eighteen related species of halobacteria. Through this analysis we were able to infer that Halobacterium salinarum employs a divergent local trans-regulatory strategy to regulate genes (carA and carB) involved in arginine and pyrimidine metabolism, whereas Escherichia coli employs an operon. The prediction of gene regulatory binding sites using structure-based methods is useful for the inference of gene regulatory relationships in new species that are otherwise difficult to infer.

  13. Organizational strategies for promoting patient and provider uptake of personal health records.

    PubMed

    Wells, Susan; Rozenblum, Ronen; Park, Andrea; Dunn, Marie; Bates, David W

    2015-01-01

    To investigate organizational strategies to promote personal health records (PHRs) adoption with a focus on patients with chronic disease. Using semi-structured interviews and a web-based survey, we sampled US health delivery organizations which had implemented PHRs for at least 12 months, were recognized as PHR innovators, and had scored highly in national patient satisfaction surveys. Respondents had lead positions for clinical information systems or high-risk population management. Using grounded theory approach, thematic categories were derived from interviews and coupled with data from the survey. Interviews were conducted with 30 informants from 16 identified organizations. Organizational strategies were directed towards raising patient awareness via multimedia communications, and provider acceptance and uptake. Strategies for providers were grouped into six main themes: organizational vision, governance and policies, work process redesign, staff training, information technology (IT) support, and monitoring and incentives. Successful organizations actively communicated their vision, engaged leaders at all levels, had clear governance, planning, and protocols, set targets, and celebrated achievement. The most effective strategy for patient uptake was through health professional encouragement. No specific outreach efforts targeted patients with chronic disease. Registration and PHR activity was routinely measured but without reference to a denominator population or high risk subpopulations. Successful PHR implementation represents a social change and operational project catalyzed by a technical solution. The key to clinician acceptance is making their work easier. However, organizations will likely not achieve the value they want from PHRs unless they target specific populations and monitor their uptake. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.comFor numbered affiliations see end of article.

  14. Identifying transcription factor functions and targets by phenotypic activation

    PubMed Central

    Chua, Gordon; Morris, Quaid D.; Sopko, Richelle; Robinson, Mark D.; Ryan, Owen; Chan, Esther T.; Frey, Brendan J.; Andrews, Brenda J.; Boone, Charles; Hughes, Timothy R.

    2006-01-01

    Mapping transcriptional regulatory networks is difficult because many transcription factors (TFs) are activated only under specific conditions. We describe a generic strategy for identifying genes and pathways induced by individual TFs that does not require knowledge of their normal activation cues. Microarray analysis of 55 yeast TFs that caused a growth phenotype when overexpressed showed that the majority caused increased transcript levels of genes in specific physiological categories, suggesting a mechanism for growth inhibition. Induced genes typically included established targets and genes with consensus promoter motifs, if known, indicating that these data are useful for identifying potential new target genes and binding sites. We identified the sequence 5′-TCACGCAA as a binding sequence for Hms1p, a TF that positively regulates pseudohyphal growth and previously had no known motif. The general strategy outlined here presents a straightforward approach to discovery of TF activities and mapping targets that could be adapted to any organism with transgenic technology. PMID:16880382

  15. Role of necroptosis in the pathogenesis of solid organ injury

    PubMed Central

    Zhao, H; Jaffer, T; Eguchi, S; Wang, Z; Linkermann, A; Ma, D

    2015-01-01

    Necroptosis is a type of regulated cell death dependent on the activity of receptor-interacting serine/threonine-protein (RIP) kinases. However, unlike apoptosis, it is caspase independent. Increasing evidence has implicated necroptosis in the pathogenesis of disease, including ischemic injury, neurodegeneration, viral infection and many others. Key players of the necroptosis signalling pathway are now widely recognized as therapeutic targets. Necrostatins may be developed as potent inhibitors of necroptosis, targeting the activity of RIPK1. Necrostatin-1, the first generation of necrostatins, has been shown to confer potent protective effects in different animal models. This review will summarize novel insights into the involvement of necroptosis in specific injury of different organs, and the therapeutic platform that it provides for treatment. PMID:26583318

  16. Nonviral Genome Editing Based on a Polymer-Derivatized CRISPR Nanocomplex for Targeting Bacterial Pathogens and Antibiotic Resistance.

    PubMed

    Kang, Yoo Kyung; Kwon, Kyu; Ryu, Jea Sung; Lee, Ha Neul; Park, Chankyu; Chung, Hyun Jung

    2017-04-19

    The overuse of antibiotics plays a major role in the emergence and spread of multidrug-resistant bacteria. A molecularly targeted, specific treatment method for bacterial pathogens can prevent this problem by reducing the selective pressure during microbial growth. Herein, we introduce a nonviral treatment strategy delivering genome editing material for targeting antibacterial resistance. We apply the CRISPR-Cas9 system, which has been recognized as an innovative tool for highly specific and efficient genome engineering in different organisms, as the delivery cargo. We utilize polymer-derivatized Cas9, by direct covalent modification of the protein with cationic polymer, for subsequent complexation with single-guide RNA targeting antibiotic resistance. We show that nanosized CRISPR complexes (= Cr-Nanocomplex) were successfully formed, while maintaining the functional activity of Cas9 endonuclease to induce double-strand DNA cleavage. We also demonstrate that the Cr-Nanocomplex designed to target mecA-the major gene involved in methicillin resistance-can be efficiently delivered into Methicillin-resistant Staphylococcus aureus (MRSA), and allow the editing of the bacterial genome with much higher efficiency compared to using native Cas9 complexes or conventional lipid-based formulations. The present study shows for the first time that a covalently modified CRISPR system allows nonviral, therapeutic genome editing, and can be potentially applied as a target specific antimicrobial.

  17. [On the issue of organization of consultative medical care on hospital stage].

    PubMed

    2011-01-01

    The study picked out several groups of in-demand specialties of consulting physicians. It is proposed to elaborate specific model of hospital consultative medical care providing the possibility of counseling by the most in-demand specialists already on the level of admission department. The key target is to avoid the involvement of less in-demand specialists at the expense of organization the specialized consultative crew on the basis on emergency medical care.

  18. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions.

    PubMed

    Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D

    2016-11-03

    Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses.

  19. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions

    PubMed Central

    Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D.

    2016-01-01

    Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses. PMID:27808111

  20. Topological and statistical analyses of gene regulatory networks reveal unifying yet quantitatively different emergent properties.

    PubMed

    Ouma, Wilberforce Zachary; Pogacar, Katja; Grotewold, Erich

    2018-04-01

    Understanding complexity in physical, biological, social and information systems is predicated on describing interactions amongst different components. Advances in genomics are facilitating the high-throughput identification of molecular interactions, and graphs are emerging as indispensable tools in explaining how the connections in the network drive organismal phenotypic plasticity. Here, we describe the architectural organization and associated emergent topological properties of gene regulatory networks (GRNs) that describe protein-DNA interactions (PDIs) in several model eukaryotes. By analyzing GRN connectivity, our results show that the anticipated scale-free network architectures are characterized by organism-specific power law scaling exponents. These exponents are independent of the fraction of the GRN experimentally sampled, enabling prediction of properties of the complete GRN for an organism. We further demonstrate that the exponents describe inequalities in transcription factor (TF)-target gene recognition across GRNs. These observations have the important biological implication that they predict the existence of an intrinsic organism-specific trans and/or cis regulatory landscape that constrains GRN topologies. Consequently, architectural GRN organization drives not only phenotypic plasticity within a species, but is also likely implicated in species-specific phenotype.

  1. Colorimetric detection of genetically modified organisms based on exonuclease III-assisted target recycling and hemin/G-quadruplex DNAzyme amplification.

    PubMed

    Zhang, Decai; Wang, Weijia; Dong, Qian; Huang, Yunxiu; Wen, Dongmei; Mu, Yuejing; Yuan, Yong

    2017-12-21

    An isothermal colorimetric method is described for amplified detection of the CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on (a) target DNA-triggered unlabeled molecular beacon (UMB) termini binding, and (b) exonuclease III (Exo III)-assisted target recycling, and (c) hemin/G-quadruplex (DNAzyme) based signal amplification. The specific binding of target to the G-quadruplex sequence-locked UMB triggers the digestion of Exo III. This, in turn, releases an active G-quadruplex segment and target DNA for successive hybridization and cleavage. The Exo III impellent recycling of targets produces numerous G-quadruplex sequences. These further associate with hemin to form DNAzymes and hence will catalyze H 2 O 2 -mediated oxidation of the chromogenic enzyme substrate ABTS 2- causing the formation of a green colored product. This finding enables a sensitive colorimetric determination of GMO DNA (at an analytical wavelength of 420 nm) at concentrations as low as 0.23 nM. By taking advantage of isothermal incubation, this method does not require sophisticated equipment or complicated syntheses. Analyses can be performed within 90 min. The method also discriminates single base mismatches. In our perception, it has a wide scope in that it may be applied to the detection of many other GMOs. Graphical abstract An isothermal and sensitive colorimetric method is described for amplified detection of CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on target DNA-triggered molecular beacon (UMB) termini-binding and exonuclease III assisted target recycling, and on hemin/G-quadruplex (DNAzyme) signal amplification.

  2. Basics of genome editing technology and its application in livestock species.

    PubMed

    Petersen, Bjoern

    2017-08-01

    In the last decade, the research community has witnessed a blooming of targeted genome editing tools and applications. Novel programmable DNA nucleases such as zinc finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs) and the clustered regularly interspaced short palindromic repeats/Cas9 system (CRISPR/Cas9) possess long recognition sites and are capable of cutting DNA in a very specific manner. These DNA nucleases mediate targeted genetic alterations by enhancing the DNA mutation rate via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination-based gene targeting, DNA nucleases, also referred to as Genome Editors (GEs), can increase the targeting rate around 10,000- to 100,000-fold. The successful application of different GEs has been shown in a myriad of different organisms, including insects, amphibians, plants, nematodes and several mammalian species, including human cells and embryos. In contrast to all other DNA nucleases, that rely on protein-DNA binding, CRISPR/Cas9 uses RNA to establish a specific binding of its DNA nuclease. Besides its capability to facilitate multiplexed genomic modifications in one shot, the CRISPR/Cas is much easier to design compared to all other DNA nucleases. Current results indicate that any DNA nuclease can be successfully employed in a broad range of organisms which renders them useful for improving the understanding of complex physiological systems such as reproduction, producing transgenic animals, including creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on DNA nucleases, their underlying mechanism and focuses on their application to edit the genome of livestock species. © 2017 Blackwell Verlag GmbH.

  3. Bioavailability and transport of peptides and peptide drugs into the brain.

    PubMed

    Egleton, R D; Davis, T P

    1997-01-01

    Rational drug design and the targeting of specific organs has become a reality in modern drug development, with the emergence of molecular biology and receptor chemistry as powerful tools for the pharmacologist. A greater understanding of peptide function as one of the major extracellular message systems has made neuropeptides an important target in neuropharmaceutical drug design. The major obstacle to targeting the brain with therapeutics is the presence of the blood-brain barrier (BBB), which controls the concentration and entry of solutes into the central nervous system. Peptides are generally polar in nature, do not easily cross the blood-brain barrier by diffusion, and except for a small number do not have specific transport systems. Peptides can also undergo metabolic deactivation by peptidases of the blood, brain and the endothelial cells that comprise the BBB. In this review, we discuss a number of the recent strategies which have been used to promote peptide stability and peptide entry into the brain. In addition, we approach the subject of targeting specific transport systems that can be found on the brain endothelial cells, and describe the limitations of the methodologies that are currently used to study brain entry of neuropharmaceuticals.

  4. Organ specific acute toxicity of the carcinogen trans-4-acetylaminostilbene is not correlated with macromolecular binding.

    PubMed

    Pfeifer, A; Neumann, H G

    1986-09-01

    trans-4-Acetylaminostilbene (trans-AAS) is acutely toxic in rats and lesions are produced specifically in the glandular stomach. Toxicity is slightly increased by pretreating the animals with phenobarbital (PB) and is completely prevented by pretreatment with methylcholanthrene (MC). The prostaglandin inhibitors, indomethacin and acetyl salicylic acid, do not reduce toxicity. The high efficiency of MC suggested that toxicity is caused by reactive metabolites. trans-[3H]-AAS was administered orally to untreated and to PB- or MC-pretreated female Wistar rats and target doses in different tissues were measured by means of covalent binding to proteins, RNA and DNA. Macromolecular binding in the target tissue of poisoned animals was significantly lower than in liver and kidney and comparable to other non-target tissues. Pretreatment with MC lowered macromolecular binding in all extrahepatic tissues but not in liver. These findings are not in line with tissue specific metabolic activation. The only unique property of the target tissue, glandular stomach, that we observed was a particular affinity for the systemically available parent compound. In the early phase of poisoning, tissue concentrations were exceedingly high and the stomach function was impaired.

  5. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification.

    PubMed

    Janse, Ingmar; Hamidjaja, Raditijo A; Bok, Jasper M; van Rotterdam, Bart J

    2010-12-08

    Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum.

  6. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification

    PubMed Central

    2010-01-01

    Background Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Results Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. Conclusions The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum PMID:21143837

  7. Recent advances in aptamer-armed multimodal theranostic nanosystems for imaging and targeted therapy of cancer.

    PubMed

    Vandghanooni, Somayeh; Eskandani, Morteza; Barar, Jaleh; Omidi, Yadollah

    2018-05-30

    The side effects of chemotherapeutics during the course of cancer treatment limit their clinical outcomes. The most important mission of the modern cancer therapy modalities is the delivery of anticancer drugs specifically to the target cells/tissue in order to avoid/reduce any inadvertent non-specific impacts on the healthy normal cells. Nanocarriers decorated with a designated targeting ligand such as aptamers (Aps) and antibodies (Abs) are able to deliver cargo molecules to the target cells/tissue without affecting other neighboring cells, resulting in an improved treatment of cancer. For targeted therapy of cancer, different ligands (e.g., protein, peptide, Abs, Aps and small molecules) have widely been used in the development of different targeting drug delivery systems (DDSs). Of these homing agents, nucleic acid Aps show unique targeting potential with high binding affinity to a variety of biological targets (e.g., genes, peptides, proteins, and even cells and organs). Aps have widely been used as the targeting agent, in large part due to their unique 3D structure, simplicity in synthesis and functionalization, high chemical flexibility, low immunogenicity and toxicity, and cell/tissue penetration capability in some cases. Here, in this review, we provide important insights on Ap-decorated multimodal nanosystems (NSs) and discuss their applications in targeted therapy and imaging of cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Human microRNA target analysis and gene ontology clustering by GOmir, a novel stand-alone application

    PubMed Central

    Roubelakis, Maria G; Zotos, Pantelis; Papachristoudis, Georgios; Michalopoulos, Ioannis; Pappa, Kalliopi I; Anagnou, Nicholas P; Kossida, Sophia

    2009-01-01

    Background microRNAs (miRNAs) are single-stranded RNA molecules of about 20–23 nucleotides length found in a wide variety of organisms. miRNAs regulate gene expression, by interacting with target mRNAs at specific sites in order to induce cleavage of the message or inhibit translation. Predicting or verifying mRNA targets of specific miRNAs is a difficult process of great importance. Results GOmir is a novel stand-alone application consisting of two separate tools: JTarget and TAGGO. JTarget integrates miRNA target prediction and functional analysis by combining the predicted target genes from TargetScan, miRanda, RNAhybrid and PicTar computational tools as well as the experimentally supported targets from TarBase and also providing a full gene description and functional analysis for each target gene. On the other hand, TAGGO application is designed to automatically group gene ontology annotations, taking advantage of the Gene Ontology (GO), in order to extract the main attributes of sets of proteins. GOmir represents a new tool incorporating two separate Java applications integrated into one stand-alone Java application. Conclusion GOmir (by using up to five different databases) introduces miRNA predicted targets accompanied by (a) full gene description, (b) functional analysis and (c) detailed gene ontology clustering. Additionally, a reverse search initiated by a potential target can also be conducted. GOmir can freely be downloaded BRFAA. PMID:19534746

  9. Human microRNA target analysis and gene ontology clustering by GOmir, a novel stand-alone application.

    PubMed

    Roubelakis, Maria G; Zotos, Pantelis; Papachristoudis, Georgios; Michalopoulos, Ioannis; Pappa, Kalliopi I; Anagnou, Nicholas P; Kossida, Sophia

    2009-06-16

    microRNAs (miRNAs) are single-stranded RNA molecules of about 20-23 nucleotides length found in a wide variety of organisms. miRNAs regulate gene expression, by interacting with target mRNAs at specific sites in order to induce cleavage of the message or inhibit translation. Predicting or verifying mRNA targets of specific miRNAs is a difficult process of great importance. GOmir is a novel stand-alone application consisting of two separate tools: JTarget and TAGGO. JTarget integrates miRNA target prediction and functional analysis by combining the predicted target genes from TargetScan, miRanda, RNAhybrid and PicTar computational tools as well as the experimentally supported targets from TarBase and also providing a full gene description and functional analysis for each target gene. On the other hand, TAGGO application is designed to automatically group gene ontology annotations, taking advantage of the Gene Ontology (GO), in order to extract the main attributes of sets of proteins. GOmir represents a new tool incorporating two separate Java applications integrated into one stand-alone Java application. GOmir (by using up to five different databases) introduces miRNA predicted targets accompanied by (a) full gene description, (b) functional analysis and (c) detailed gene ontology clustering. Additionally, a reverse search initiated by a potential target can also be conducted. GOmir can freely be downloaded BRFAA.

  10. Spacer length impacts the efficacy of targeted docetaxel conjugates in prostate-specific membrane antigen expressing prostate cancer.

    PubMed

    Peng, Zheng-Hong; Sima, Monika; Salama, Mohamed E; Kopečková, Pavla; Kopeček, Jindřich

    2013-12-01

    Combination of targeted delivery and controlled release is a powerful technique for cancer treatment. In this paper, we describe the design, synthesis, structure validation and biological properties of targeted and non-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-docetaxel conjugates. Docetaxel (DTX) was conjugated to HPMA copolymer via a tetrapeptide spacer (-GFLG-). 3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid (DUPA) was used as the targeting moiety to actively deliver DTX for treatment of Prostate-Specific Membrane Antigen (PSMA) expressing prostate cancer. Short and long spacer DUPA monomers were prepared, and four HPMA copolymer--DTX conjugates (non-targeted, two targeted with short spacer of different molecular weight and targeted with long spacer) were prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) copolymerization. Following confirmation of PSMA expression on C4-2 cell line, the DTX conjugates' in vitro cytotoxicity was tested against C4-2 tumor cells and their anticancer efficacies were assessed in nude mice bearing s.c. human prostate adenocarcinoma C4-2 xenografts. The in vivo results show that the spacer length between targeting moieties and HPMA copolymer backbone can significantly affect the treatment efficacy of DTX conjugates against C4-2 tumor bearing nu/nu mice. Moreover, histological analysis indicated that the DUPA-targeted DTX conjugate with longer spacer had no toxicity in major organs of treated mice.

  11. Spacer length impacts the efficacy of targeted docetaxel conjugates in prostate-specific membrane antigen expressing prostate cancer

    PubMed Central

    Peng, Zheng-Hong; Sima, Monika; Salama, Mohamed E.; Kopečková, Pavla; Kopeček, Jindřich

    2015-01-01

    Combination of targeted delivery and controlled release is a powerful technique for cancer treatment. In this paper, we describe the design, synthesis, structure validation and biological properties of targeted and non-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-docetaxel conjugates. Docetaxel (DTX) was conjugated to HPMA copolymer via a tetrapeptide spacer (–GFLG-). 3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid (DUPA) was used as the targeting moiety to actively deliver DTX for treatment of Prostate-Specific Membrane Antigen (PSMA) expressing prostate cancer. Short and long spacer DUPA monomers were prepared, and four HPMA copolymer – DTX conjugates (non-targeted, two targeted with short spacer of different molecular weight and targeted with long spacer) were prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) copolymerization. Following confirmation of PSMA expression on C4-2 cell line, the DTX conjugates’ in vitro cytotoxicity was tested against C4-2 tumor cells and their anticancer efficacies were assessed in nude mice bearing s.c. human prostate adenocarcinoma C4-2 xenografts. The in vivo results show that the spacer length between targeting moieties and HPMA copolymer backbone can significantly affect the treatment efficacy of DTX conjugates against C4-2 tumor bearing nu/nu mice. Moreover, histological analysis indicated that the DUPA-targeted DTX conjugate with longer spacer had no toxicity in major organs of treated mice. PMID:24160903

  12. Application of quantum-dots for analysis of nanosystems by either utilizing or preventing FRET

    NASA Astrophysics Data System (ADS)

    Kim, Joong H.; Chaudhary, Sumit; Stephens, Jared P.; Singh, Krishna V.; Ozkan, Mihrimah

    2005-04-01

    We have developed conjugates with quantum-dots (QDs) for the purpose of analysis of nanosystems that are organic or inorganic in nature such as DNA and carbon nanotubes. First, by employing Florescence Resonant Energy Transfer (FRET) principles, a hybrid molecular beacon conjugates are synthesized. For water- solubilization of QDs, we modified the surface of CdSe-ZnS core-shell QD by using mercaptoacetic acid ligand. This modification does not affect the size of QDs from that of unmodified QDs. After linking molecular beacons to the carboxyl groups of the modified QDs using 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, hybrid molecular beacons are prepared as a DNA probe. After hybridization with specific target DNA and non-specific target DNA, the hybrid conjugates show high specificity to the target DNA with 5-fold increase in the intensity of fluorescence. By developing atomic model of the conjugates, we calculated with 8 numbers of molecular beacons on a single quantum dots, we could increase the efficiency of FRET up to 90%. In other hands, for application of quantum dots to the carbon nanotubes, FRET is a barrier. Thus, after employing 1 % sodium-dodecyl-sulfonate (SDS), single-walled carbon nanotubes are decorated with QDs at their outer surface. This enables fluorescent microscopy imaging of single-walled carbon nanotubes which is a more common technique than electron microscopy. In summary, QDs can be used for analysis or detection of both organic and inorganic based nanosystems.

  13. Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target.

    PubMed

    Ulrich, Julia; Dao, Van Anh; Majumdar, Upalparna; Schmitt-Engel, Christian; Schwirz, Jonas; Schultheis, Dorothea; Ströhlein, Nadi; Troelenberg, Nicole; Grossmann, Daniela; Richter, Tobias; Dönitz, Jürgen; Gerischer, Lizzy; Leboulle, Gérard; Vilcinskas, Andreas; Stanke, Mario; Bucher, Gregor

    2015-09-03

    Insect pest control is challenged by insecticide resistance and negative impact on ecology and health. One promising pest specific alternative is the generation of transgenic plants, which express double stranded RNAs targeting essential genes of a pest species. Upon feeding, the dsRNA induces gene silencing in the pest resulting in its death. However, the identification of efficient RNAi target genes remains a major challenge as genomic tools and breeding capacity is limited in most pest insects impeding whole-animal-high-throughput-screening. We use the red flour beetle Tribolium castaneum as a screening platform in order to identify the most efficient RNAi target genes. From about 5,000 randomly screened genes of the iBeetle RNAi screen we identify 11 novel and highly efficient RNAi targets. Our data allowed us to determine GO term combinations that are predictive for efficient RNAi target genes with proteasomal genes being most predictive. Finally, we show that RNAi target genes do not appear to act synergistically and that protein sequence conservation does not correlate with the number of potential off target sites. Our results will aid the identification of RNAi target genes in many pest species by providing a manageable number of excellent candidate genes to be tested and the proteasome as prime target. Further, the identified GO term combinations will help to identify efficient target genes from organ specific transcriptomes. Our off target analysis is relevant for the sequence selection used in transgenic plants.

  14. Determination of phytate in high molecular weight, charged organic matrices by two-dimensional size exclusion-ion chromatography

    USDA-ARS?s Scientific Manuscript database

    A two-dimensional chromatography method for analyzing anionic targets (specifically phytate) in complex matrices is described. Prior to quantification by anion exchange chromatography, the sample matrix was prepared by size exclusion chromatography, which removed the majority of matrix complexities....

  15. Computational approach for elucidating interactions of cross-species miRNAs and their targets in Flaviviruses.

    PubMed

    Shinde, Santosh P; Banerjee, Amit Kumar; Arora, Neelima; Murty, U S N; Sripathi, Venkateswara Rao; Pal-Bhadra, Manika; Bhadra, Utpal

    2015-03-01

    Combating viral diseases has been a challenging task since time immemorial. Available molecular approaches are limited and not much effective for this daunting task. MicroRNA based therapies have shown promise in recent times. MicroRNAs are tiny non-coding RNAs that regulate translational repression of target mRNA in highly specific manner. In this study, we have determined the target regions for human and viral microRNAs in the conserved genomic regions of selected viruses of Flaviviridae family using miRanda and performed a comparative target selectivity analysis among them. Specific target regions were determined and they were compared extensively among themselves by exploring their position to determine the vicinity. Based on the multiplicity and cooperativity analysis, interaction maps were developed manually to represent the interactions between top-ranking miRNAs and genomes of the viruses considered in this study. Self-organizing map (SOM) was used to cluster the best-ranked microRNAs based on the vital physicochemical properties. This study will provide deep insight into the interrelation of the viral and human microRNAs interactions with the selected Flaviviridae genomes and will help to identify cross-species microRNA targets on the viral genome.

  16. Use of in vivo/in vitro unscheduled DNA synthesis for identification of organ-specific carcinogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furihata, C.; Matsushima, T.

    1987-01-01

    There are still only a few in vivo short-term assay methods for predicting potential organ-specific carcinogens and mutagens in mammals, although such methods are required for evaluating the in vivo effects of in vitro mutagens. In the in vivo/in vitro UDS assay methods described here, chemicals are given to experimental animals and induction of UDS in target organs is determined by in vitro organ culture or primary cell culture in the presence of (/sup 3/H)dThd. Incorporation of (/sup 3/H)dThd into DNA is measured with a liquid scintillation counter or by autoradiography. These methods have now been applied to the glandularmore » stomach, forestomach, colon, liver, kidney, pancreas, tracheal epithelium, nasal epithelium, and spermatocytes. With minor modifications, they may also be applied to other organs. The present review shows that induction of UDS in various organs correlated well with the induction of cancer in these organs. The present authors have used the present methods to identify some potential organ-specific mutagens and carcinogens in mammals. The present authors found that three dicarbonyl compounds, glyoxal, methylglyoxal, and diacetyl, induced apparent UDS and TDS in the glandular stomach, and other groups found that 2-NT, MA6BT, and CNEt6BT induced UDS in the liver. These in vivo/in vitro UDS assays are better than in vitro UDS assay for identification of potential organ-specific mutagens and carcinogens in mammals and are especially useful for identifying potential mutagens and carcinogens that are specific for certain organs, such as the stomach, liver, and kidney. They are also useful for examining the potential mutagenicities and carcinogenicities of carcinogen analogs. However, these methods are not suitable for general in vivo screening because they are not yet available for all organs. 113 references.« less

  17. A novel anti-PSMA human scFv has the potential to be used as a diagnostic tool in prostate cancer

    PubMed Central

    Han, Yueheng; Wei, Ming; Han, Sen; Lin, Ruihe; Sun, Ziyong; Yang, Fa; Jiao, Dian; Xie, Pin; Zhang, Lingling; Yang, An-Gang; Zhao, Aizhi; Wen, Weihong; Qin, Weijun

    2016-01-01

    Prostate cancer (PCa) is the most commonly diagnosed malignancy and the second leading cause of cancer related death in men. The early diagnosis and treatment of PCa are still challenging due to the lack of efficient tumor targeting agents in traditional managements. Prostate specific membrane antigen (PSMA) is highly expressed in PCa, while only has limited expression in other organs, providing an ideal target for the diagnosis and therapy of PCa. The antibody library technique has opened the avenue for the discovery of novel antibodies to be used in the diagnosis and therapy of cancer. In this paper, by screening a large yeast display naive human single chain antibody fragment (scFv) library, we obtained a high affinity scFv targeting PSMA, called gy1. The gy1 scFv was expressed in E.coli and purified via a C terminal 6His tag. The binding affinity of gy1 was shown to be at the nanomolar level and gy1 can specifically bind with PSMA positive cancer cells, and binding triggers its rapid internalization through the endosome-lysosome pathway. The specific targeting of gy1 to PSMA positive tumor tissues was also evaluated in vivo. We showed that the IRDye800CW labeled gy1 can efficiently target and specifically distribute in PSMA positive tumor tissues after being injected into xenograft nude mice. This study indicated that the novel antibody gy1 could be used as a great tool for the development of PSMA targeted imaging and therapy agents for PCa. PMID:27448970

  18. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.

    PubMed

    Zhang, Hui; Zhang, Jinshan; Wei, Pengliang; Zhang, Botao; Gou, Feng; Feng, Zhengyan; Mao, Yanfei; Yang, Lan; Zhang, Heng; Xu, Nanfei; Zhu, Jian-Kang

    2014-08-01

    The CRISPR/Cas9 system has been demonstrated to efficiently induce targeted gene editing in a variety of organisms including plants. Recent work showed that CRISPR/Cas9-induced gene mutations in Arabidopsis were mostly somatic mutations in the early generation, although some mutations could be stably inherited in later generations. However, it remains unclear whether this system will work similarly in crops such as rice. In this study, we tested in two rice subspecies 11 target genes for their amenability to CRISPR/Cas9-induced editing and determined the patterns, specificity and heritability of the gene modifications. Analysis of the genotypes and frequency of edited genes in the first generation of transformed plants (T0) showed that the CRISPR/Cas9 system was highly efficient in rice, with target genes edited in nearly half of the transformed embryogenic cells before their first cell division. Homozygotes of edited target genes were readily found in T0 plants. The gene mutations were passed to the next generation (T1) following classic Mendelian law, without any detectable new mutation or reversion. Even with extensive searches including whole genome resequencing, we could not find any evidence of large-scale off-targeting in rice for any of the many targets tested in this study. By specifically sequencing the putative off-target sites of a large number of T0 plants, low-frequency mutations were found in only one off-target site where the sequence had 1-bp difference from the intended target. Overall, the data in this study point to the CRISPR/Cas9 system being a powerful tool in crop genome engineering. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Killing cancer cells by targeted drug-carrying phage nanomedicines

    PubMed Central

    Bar, Hagit; Yacoby, Iftach; Benhar, Itai

    2008-01-01

    Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates. PMID:18387177

  20. Galactosylated magnetic nanovectors for regulation of lipid metabolism based on biomarker-specific RNAi and MR imaging.

    PubMed

    Heo, Dan; Lee, Chanjoo; Ku, Minhee; Haam, Seungjoo; Suh, Jin-Suck; Huh, Yong-Min; Park, Sahng Wook; Yang, Jaemoon

    2015-08-21

    The specific delivery of ribonucleic acid (RNA) interfering molecules to disease-related cells is still a critical blockade for in vivo systemic treatment. Here, this study suggests a robust delivery carrier for targeted delivery of RNA-interfering molecules using galactosylated magnetic nanovectors (gMNVs). gMNVs are an organic-inorganic polymeric nanomaterial composed of polycationics and magnetic nanocrystal for delivery of RNA-interfering molecules and tracking via magnetic resonance (MR) imaging. In particular, the surface of gMNVs was modified by galactosylgluconic groups for targeted delivering to asialoglycoprotein receptor (ASGPR) of hepatocytes. Moreover, the small interfering RNAs were used to regulate target proteins related with low-density lipoprotein level and in vivo MR imaging was conducted for tracking of nanovectors. The obtained results show that the prepared gMNVs demonstrate potential as a systemic theragnostic nanoplatform for RNA interference and MR imaging.

  1. Molecular and ionic mimicry and the transport of toxic metals

    PubMed Central

    Bridges, Christy C.; Zalups, Rudolfs K.

    2008-01-01

    Despite many scientific advances, human exposure to, and intoxication by, toxic metal species continues to occur. Surprisingly, little is understood about the mechanisms by which certain metals and metal-containing species gain entry into target cells. Since there do not appear to be transporters designed specifically for the entry of most toxic metal species into mammalian cells, it has been postulated that some of these metals gain entry into target cells, through the mechanisms of ionic and/or molecular mimicry, at the site of transporters of essential elements and/or molecules. The primary purpose of this review is to discuss the transport of selective toxic metals in target organs and provide evidence supporting a role of ionic and/or molecular mimicry. In the context of this review, molecular mimicry refers to the ability of a metal ion to bond to an endogenous organic molecule to form an organic metal species that acts as a functional or structural mimic of essential molecules at the sites of transporters of those molecules. Ionic mimicry refers to the ability of a cationic form of a toxic metal to mimic an essential element or cationic species of an element at the site of a transporter of that element. Molecular and ionic mimics can also be sub-classified as structural or functional mimics. This review will present the established and putative roles of molecular and ionic mimicry in the transport of mercury, cadmium, lead, arsenic, selenium, and selected oxyanions in target organs and tissues. PMID:15845419

  2. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops.

    PubMed

    Corbel, Sylvain; Mougin, Christian; Bouaïcha, Noureddine

    2014-02-01

    The occurrence of harmful cyanobacterial blooms in surface waters is often accompanied by the production of a variety of cyanotoxins. These toxins are designed to target in humans and animals specific organs on which they act: hepatotoxins (liver), neurotoxins (nervous system), cytotoxic alkaloids, and dermatotoxins (skin), but they often have important side effects too. When introduced into the soil ecosystem by spray irrigation of crops they may affect the same molecular pathways in plants having identical or similar target organs, tissues, cells or biomolecules. There are also several indications that terrestrial plants, including food crop plants, can bioaccumulate cyanotoxins and present, therefore, potential health hazards for human and animals. The number of publications concerned with phytotoxic effects of cyanotoxins on agricultural plants has increased recently. In this review, we first examine different cyanotoxins and their modes of actions in humans and mammals and occurrence of target biomolecules in vegetable organisms. Then we present environmental concentrations of cyanotoxins in freshwaters and their fate in aquatic and soil ecosystems. Finally, we highlight bioaccumulation of cyanotoxins in plants used for feed and food and its consequences on animals and human health. Overall, our review shows that the information on the effects of cyanotoxins on non-target organisms in the terrestrial environment is particularly scarce, and that there are still serious gaps in the knowledge about the fate in the soil ecosystems and phytotoxicity of these toxins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Target Organ Metabolism, Toxicity, and Mechanisms of Trichloroethylene and Perchloroethylene: Key Similarities, Differences, and Data Gaps.

    PubMed

    Cichocki, Joseph A; Guyton, Kathryn Z; Guha, Neela; Chiu, Weihsueh A; Rusyn, Ivan; Lash, Lawrence H

    2016-10-01

    Trichloroethylene (TCE) and perchloroethylene or tetrachloroethylene (PCE) are high-production volume chemicals with numerous industrial applications. As a consequence of their widespread use, these chemicals are ubiquitous environmental contaminants to which the general population is commonly exposed. It is widely assumed that TCE and PCE are toxicologically similar; both are simple olefins with three (TCE) or four (PCE) chlorines. Nonetheless, despite decades of research on the adverse health effects of TCE or PCE, few studies have directly compared these two toxicants. Although the metabolic pathways are qualitatively similar, quantitative differences in the flux and yield of metabolites exist. Recent human health assessments have uncovered some overlap in target organs that are affected by exposure to TCE or PCE, and divergent species- and sex-specificity with regard to cancer and noncancer hazards. The objective of this minireview is to highlight key similarities, differences, and data gaps in target organ metabolism and mechanism of toxicity. The main anticipated outcome of this review is to encourage research to 1) directly compare the responses to TCE and PCE using more sensitive biochemical techniques and robust statistical comparisons; 2) more closely examine interindividual variability in the relationship between toxicokinetics and toxicodynamics for TCE and PCE; 3) elucidate the effect of coexposure to these two toxicants; and 4) explore new mechanisms for target organ toxicity associated with TCE and/or PCE exposure. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Molecular and ionic mimicry and the transport of toxic metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, Christy C.; Zalups, Rudolfs K.

    Despite many scientific advances, human exposure to, and intoxication by, toxic metal species continues to occur. Surprisingly, little is understood about the mechanisms by which certain metals and metal-containing species gain entry into target cells. Since there do not appear to be transporters designed specifically for the entry of most toxic metal species into mammalian cells, it has been postulated that some of these metals gain entry into target cells, through the mechanisms of ionic and/or molecular mimicry, at the site of transporters of essential elements and/or molecules. The primary purpose of this review is to discuss the transport ofmore » selective toxic metals in target organs and provide evidence supporting a role of ionic and/or molecular mimicry. In the context of this review, molecular mimicry refers to the ability of a metal ion to bond to an endogenous organic molecule to form an organic metal species that acts as a functional or structural mimic of essential molecules at the sites of transporters of those molecules. Ionic mimicry refers to the ability of a cationic form of a toxic metal to mimic an essential element or cationic species of an element at the site of a transporter of that element. Molecular and ionic mimics can also be sub-classified as structural or functional mimics. This review will present the established and putative roles of molecular and ionic mimicry in the transport of mercury, cadmium, lead, arsenic, selenium, and selected oxyanions in target organs and tissues.« less

  5. The Control of Auxin Transport in Parasitic and Symbiotic Root–Microbe Interactions

    PubMed Central

    Ng, Jason Liang Pin; Perrine-Walker, Francine; Wasson, Anton P.; Mathesius, Ulrike

    2015-01-01

    Most field-grown plants are surrounded by microbes, especially from the soil. Some of these, including bacteria, fungi and nematodes, specifically manipulate the growth and development of their plant hosts, primarily for the formation of structures housing the microbes in roots. These developmental processes require the correct localization of the phytohormone auxin, which is involved in the control of cell division, cell enlargement, organ development and defense, and is thus a likely target for microbes that infect and invade plants. Some microbes have the ability to directly synthesize auxin. Others produce specific signals that indirectly alter the accumulation of auxin in the plant by altering auxin transport. This review highlights root–microbe interactions in which auxin transport is known to be targeted by symbionts and parasites to manipulate the development of their host root system. We include case studies for parasitic root–nematode interactions, mycorrhizal symbioses as well as nitrogen fixing symbioses in actinorhizal and legume hosts. The mechanisms to achieve auxin transport control that have been studied in model organisms include the induction of plant flavonoids that indirectly alter auxin transport and the direct targeting of auxin transporters by nematode effectors. In most cases, detailed mechanisms of auxin transport control remain unknown. PMID:27135343

  6. Peripheral tissues reprogram CD8+ T cells for pathogenicity during graft-versus-host disease

    PubMed Central

    Conlan, Thomas; Jardine, Laura; Tkacz, Claire; Ferrer, Ivana R.; Lomas, Cara; Ward, Sophie; West, Heather; Dertschnig, Simone; Means, Terry K.; Kaplan, Daniel H.; Bennett, Clare L.

    2018-01-01

    Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic stem cell transplantation induced by the influx of donor-derived effector T cells (TE) into peripheral tissues. Current treatment strategies rely on targeting systemic T cells; however, the precise location and nature of instructions that program TE to become pathogenic and trigger injury are unknown. We therefore used weighted gene coexpression network analysis to construct an unbiased spatial map of TE differentiation during the evolution of GVHD and identified wide variation in effector programs in mice and humans according to location. Idiosyncrasy of effector programming in affected organs did not result from variation in T cell receptor repertoire or the selection of optimally activated TE. Instead, TE were reprogrammed by tissue-autonomous mechanisms in target organs for site-specific proinflammatory functions that were highly divergent from those primed in lymph nodes. In the skin, we combined the correlation-based network with a module-based differential expression analysis and showed that Langerhans cells provided in situ instructions for a Notch-dependent T cell gene cluster critical for triggering local injury. Thus, the principal determinant of TE pathogenicity in GVHD is the final destination, highlighting the need for target organ–specific approaches to block immunopathology while avoiding global immune suppression. PMID:29515032

  7. CRISPRTarget

    PubMed Central

    Biswas, Ambarish; Gagnon, Joshua N.; Brouns, Stan J.J.; Fineran, Peter C.; Brown, Chris M.

    2013-01-01

    The bacterial and archaeal CRISPR/Cas adaptive immune system targets specific protospacer nucleotide sequences in invading organisms. This requires base pairing between processed CRISPR RNA and the target protospacer. For type I and II CRISPR/Cas systems, protospacer adjacent motifs (PAM) are essential for target recognition, and for type III, mismatches in the flanking sequences are important in the antiviral response. In this study, we examine the properties of each class of CRISPR. We use this information to provide a tool (CRISPRTarget) that predicts the most likely targets of CRISPR RNAs (http://bioanalysis.otago.ac.nz/CRISPRTarget). This can be used to discover targets in newly sequenced genomic or metagenomic data. To test its utility, we discover features and targets of well-characterized Streptococcus thermophilus and Sulfolobus solfataricus type II and III CRISPR/Cas systems. Finally, in Pectobacterium species, we identify new CRISPR targets and propose a model of temperate phage exposure and subsequent inhibition by the type I CRISPR/Cas systems. PMID:23492433

  8. A process evaluation: does recruitment for an exercise program through ethnically specific channels and key figures contribute to its reach and receptivity in ethnic minority mothers?

    PubMed

    Hartman, Marieke A; Nierkens, Vera; Cremer, Stephan W; Stronks, Karien; Verhoeff, Arnoud P

    2013-08-19

    Ethnic minority women from low-income countries who live in high-income countries are more physically inactive than ethnic majority women in those countries. At the same time, they can be harder to reach with health promotion programs. Targeting recruitment channels and execution to ethnic groups could increase reach and receptivity to program participation. We explored using ethnically specific channels and key figures to reach Ghanaian, Antillean, and Surinamese mothers with an invitation for an exercise program, and subsequently, to determine the mothers' receptivity and participation. We conducted a mixed methods process evaluation in Amsterdam, The Netherlands. To recruit mothers, we employed ethnically specific community organizations and ethnically matched key figures as recruiters over Dutch health educators. Reach and participation were measured using reply cards and the attendance records from the exercise programs. Observations were made of the recruitment process. We interviewed 14 key figures and 32 mothers to respond to the recruitment channel and recruiter used. Content analysis was used to analyze qualitative data. Recruitment through ethnically specific community channels was successful among Ghanaian mothers, but less so among Antillean and Surinamese mothers. The more close-knit an ethnic community was, retaining their own culture and having poorer comprehension of the Dutch language, the more likely we were to reach mothers through ethnically specific organizations. Furthermore, we found that using ethnically matched recruiters resulted in higher receptivity to the program and, among the Ghanaian mothers in particular, in greater participation. This was because the ethnically matched recruiter was a familiar, trusted person, a translator, and a motivator who was enthusiastic, encouraging, and able to adapt her message (targeting/tailoring). Using a health expert was preferred in order to increase the credibility and professionalism of the recruitment. Recruitment for an exercise program through ethnically specific organizations seems to contribute to its reach, particularly in close-knit, highly organized ethnic communities with limited fluency in the local language. Using ethnically matched recruiters as motivator, translator, and trusted person seems to enhance receptivity of a health promotion program. An expert is likely to be needed for effective information delivery.

  9. Molecular Detection of 10 of the Most Unwanted Alien Forest Pathogens in Canada Using Real-Time PCR

    PubMed Central

    Lamarche, Josyanne; Potvin, Amélie; Pelletier, Gervais; Stewart, Don; Feau, Nicolas; Alayon, Dario I. O.; Dale, Angela L.; Coelho, Aaron; Uzunovic, Adnan; Bilodeau, Guillaume J.; Brière, Stephan C.; Hamelin, Richard C.; Tanguay, Philippe

    2015-01-01

    Invasive alien tree pathogens can cause significant economic losses as well as large-scale damage to natural ecosystems. Early detection to prevent their establishment and spread is an important approach used by several national plant protection organizations (NPPOs). Molecular detection tools targeting 10 of the most unwanted alien forest pathogens in Canada were developed as part of the TAIGA project (http://taigaforesthealth.com/). Forest pathogens were selected following an independent prioritization. Specific TaqMan real-time PCR detection assays were designed to function under homogeneous conditions so that they may be used in 96- or 384-well plate format arrays for high-throughput testing of large numbers of samples against multiple targets. Assays were validated for 1) specificity, 2) sensitivity, 3) precision, and 4) robustness on environmental samples. All assays were highly specific when evaluated against a panel of pure cultures of target and phylogenetically closely-related species. Sensitivity, evaluated by assessing the limit of detection (with a threshold of 95% of positive samples), was found to be between one and ten target gene region copies. Precision or repeatability of each assay revealed a mean coefficient of variation of 3.4%. All assays successfully allowed detection of target pathogen on positive environmental samples, without any non-specific amplification. These molecular detection tools will allow for rapid and reliable detection of 10 of the most unwanted alien forest pathogens in Canada. PMID:26274489

  10. Targeted physical activity messages for parents of children with disabilities: A qualitative investigation of parents' informational needs and preferences.

    PubMed

    Bassett-Gunter, R L; Ruscitti, R J; Latimer-Cheung, A E; Fraser-Thomas, J L

    2017-05-01

    Physical activity (PA) has myriad benefits for children with disabilities (CWD). Information and messaging campaigns can promote PA among CWD. The overall purpose of the study was to gain an understanding of the development of PA information and messages targeting parents of CWD. The specific objectives were to identify parents' preferences regarding PA information and messaging content and preferred methods and sources of communication. Focus groups were conducted with parents of CWD (N=28). Qualitative data were collected and transcribed. Inductive content analyses were employed to identify key themes. Three key thematic areas were identified: 1) Preferred content (e.g., targeted information, self-regulatory strategies, inclusive images), 2) Challenges (e.g., lack of information and language clarity), 3) Preferred sources (e.g., other parents, reliable organizations, central information hub). Parents' needs and preferences regarding PA information could be incorporated into campaigns to enhance parent PA support and PA among CWD. Stakeholders (e.g., PA organizations, programs and practitioners) can employ these strategies in campaigns and resources targeting parents of CWD. Research is necessary to empirically develop and evaluate PA information and messaging campaigns targeting parents of CWD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Simultaneous detection of genetically modified organisms by multiplex ligation-dependent genome amplification and capillary gel electrophoresis with laser-induced fluorescence.

    PubMed

    García-Cañas, Virginia; Mondello, Monica; Cifuentes, Alejandro

    2010-07-01

    In this work, an innovative method useful to simultaneously analyze multiple genetically modified organisms is described. The developed method consists in the combination of multiplex ligation-dependent genome dependent amplification (MLGA) with CGE and LIF detection using bare-fused silica capillaries. The MLGA process is based on oligonucleotide constructs, formed by a universal sequence (vector) and long specific oligonucleotides (selectors) that facilitate the circularization of specific DNA target regions. Subsequently, the circularized target sequences are simultaneously amplified with the same couple of primers and analyzed by CGE-LIF using a bare-fused silica capillary and a run electrolyte containing 2-hydroxyethyl cellulose acting as both sieving matrix and dynamic capillary coating. CGE-LIF is shown to be very useful and informative for optimizing MLGA parameters such as annealing temperature, number of ligation cycles, and selector probes concentration. We demonstrate the specificity of the method in detecting the presence of transgenic DNA in certified reference and raw commercial samples. The method developed is sensitive and allows the simultaneous detection in a single run of percentages of transgenic maize as low as 1% of GA21, 1% of MON863, and 1% of MON810 in maize samples with signal-to-noise ratios for the corresponding DNA peaks of 15, 12, and 26, respectively. These results demonstrate, to our knowledge for the first time, the great possibilities of MLGA techniques for genetically modified organisms analysis.

  12. Successful Renal Transplantation Across HLA Barrier: Report from India.

    PubMed

    Aggarwal, G; Tiwari, A K; Dorwal, P; Chauhan, R; Arora, D; Dara, R C; Kher, V

    2017-01-01

    Organ donors are sometimes found "unsuitable" due to the presence of donor-specific anti-HLA antibodies in the recipient. In recent years, improved desensitization protocols have successfully helped to overcome HLA incompatibility hurdle. We present three cases where optimum desensitization was achieved in patients with the donor-specific anti-HLA antibody (DSA) leading to successful renal transplantation. All patient-donor pair underwent HLA typing, complement dependent cytotoxicity crossmatch (CDC-XM), flow cytometry XM (FC-XM), and panel reactive antibody. If any of the three tests was positive, single antigen bead assay was performed to determine the specificity of the anti-HLA antibody (s). Patients with DSA were offered organ-swap or anti-HLA antibody desensitization followed by transplantation. Desensitization protocol consisted of single dose rituximab and cascade plasmapheresis (CP) along with standard triple immunosuppression. The target DSA mean fluorescence index (MFI) was <500, along with negative CDC-XM and FC-XM for both T- and B-cells. Three patients with anti-HLA DSA, who did not find a suitable match in organ swap program, consented to anti-HLA antibody desensitization, followed by transplantation. Mean pre-desensitization antibody MFI was 1740 (1422-2280). Mean number of CP required to achieve the target MFI was 2.3 (2-3). All the three patients are on regular follow-up and have normal renal function test at a mean follow-up of 8 months. This report underlines successful application of desensitization protocol leading to successful HLA-antibody incompatible renal transplants and their continued normal renal functions.

  13. The microenvironmental landscape of brain tumors

    PubMed Central

    Quail, Daniela F.; Joyce, Johanna A.

    2017-01-01

    The brain tumor microenvironment (TME) is emerging as a critical regulator of cancer progression in primary and metastatic brain malignancies. The unique properties of this organ require a specific framework for designing TME-targeted interventions. Here we discuss a number of these distinct features, including brain-resident cell types, the blood-brain barrier, and various aspects of the immune-suppressive environment. We also highlight recent advances in therapeutically targeting the brain TME in cancer. By developing a comprehensive understanding of the complex and interconnected microenvironmental landscape of brain malignancies we will greatly expand the range of therapeutic strategies available to target these deadly diseases. PMID:28292436

  14. Bypassing Protein Corona Issue on Active Targeting: Zwitterionic Coatings Dictate Specific Interactions of Targeting Moieties and Cell Receptors.

    PubMed

    Safavi-Sohi, Reihaneh; Maghari, Shokoofeh; Raoufi, Mohammad; Jalali, Seyed Amir; Hajipour, Mohammad J; Ghassempour, Alireza; Mahmoudi, Morteza

    2016-09-07

    Surface functionalization strategies for targeting nanoparticles (NP) to specific organs, cells, or organelles, is the foundation for new applications of nanomedicine to drug delivery and biomedical imaging. Interaction of NPs with biological media leads to the formation of a biomolecular layer at the surface of NPs so-called as "protein corona". This corona layer can shield active molecules at the surface of NPs and cause mistargeting or unintended scavenging by the liver, kidney, or spleen. To overcome this corona issue, we have designed biotin-cysteine conjugated silica NPs (biotin was employed as a targeting molecule and cysteine was used as a zwitterionic ligand) to inhibit corona-induced mistargeting and thus significantly enhance the active targeting capability of NPs in complex biological media. To probe the targeting yield of our engineered NPs, we employed both modified silicon wafer substrates with streptavidin (i.e., biotin receptor) to simulate a target and a cell-based model platform using tumor cell lines that overexpress biotin receptors. In both cases, after incubation with human plasma (thus forming a protein corona), cellular uptake/substrate attachment of the targeted NPs with zwitterionic coatings were significantly higher than the same NPs without zwitterionic coating. Our results demonstrated that NPs with a zwitterionic surface can considerably facilitate targeting yield of NPs and provide a promising new type of nanocarriers in biological applications.

  15. A specific endogenous reference for genetically modified common bean (Phaseolus vulgaris L.) DNA quantification by real-time PCR targeting lectin gene.

    PubMed

    Venturelli, Gustavo L; Brod, Fábio C A; Rossi, Gabriela B; Zimmermann, Naíra F; Oliveira, Jaison P; Faria, Josias C; Arisi, Ana C M

    2014-11-01

    The Embrapa 5.1 genetically modified (GM) common bean was approved for commercialization in Brazil. Methods for the quantification of this new genetically modified organism (GMO) are necessary. The development of a suitable endogenous reference is essential for GMO quantification by real-time PCR. Based on this, a new taxon-specific endogenous reference quantification assay was developed for Phaseolus vulgaris L. Three genes encoding common bean proteins (phaseolin, arcelin, and lectin) were selected as candidates for endogenous reference. Primers targeting these candidate genes were designed and the detection was evaluated using the SYBR Green chemistry. The assay targeting lectin gene showed higher specificity than the remaining assays, and a hydrolysis probe was then designed. This assay showed high specificity for 50 common bean samples from two gene pools, Andean and Mesoamerican. For GM common bean varieties, the results were similar to those obtained for non-GM isogenic varieties with PCR efficiency values ranging from 92 to 101 %. Moreover, this assay presented a limit of detection of ten haploid genome copies. The primers and probe developed in this work are suitable to detect and quantify either GM or non-GM common bean.

  16. ENU mutagenesis to generate genetically modified rat models.

    PubMed

    van Boxtel, Ruben; Gould, Michael N; Cuppen, Edwin; Smits, Bart M G

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach for generating genetically modified rats has been the target-selected N-ethyl-N-nitrosourea (ENU) mutagenesis-based technology. Here, we describe the detailed protocols for ENU mutagenesis and mutant retrieval in the rat model organism.

  17. Development of novel cardiovascular therapeutics from small regulatory RNA molecules--an outline of key requirements.

    PubMed

    Poller, W; Fechner, H

    2010-01-01

    Understanding of the roles of RNAs within the cell has changed and expanded dramatically during the past few years. Based on fundamentally new insights it is now increasingly possible to employ RNAs as highly valuable tools in molecular biology and medicine. At present, the most important therapeutic strategies are based on non-coding regulatory RNAs inducing RNA interference (RNAi) to silence single genes, and on modulation of cellular microRNAs (miRNAs) to alter complex gene expression patterns in diseased organs. Only recently it became possible to target therapeutic RNAi to specific organs via organotropic viral vector systems and we discuss the most recent strategies in this field, e.g. heart failure treatment by cardiac-targeted RNAi. Due to the peculiar biochemical properties of small RNA molecules, true therapeutic translation of results in vitro is more demanding than with small molecule drugs or proteins. Specifically, there is a critical requirement for extensive studies in animal models of human disease after pre-testing of the RNAi tools in vitro. This requirement likewise applies for miRNA modulations which have complex consequences in the recipient dependent on biochemical stability and distribution of the therapeutic RNA. Problems not yet fully solved are the prediction of targets and specificity of the RNA tools. However, major progress has been made to achieve their tissue-specific and regulatable expression, and breakthroughs in vector technologies from the gene therapy field have fundamentally improved safety and efficacy of RNA-based therapeutic approaches, too. In summary, insight into the molecular mechanisms of action of regulatory RNAs in combination with new delivery tools for RNA therapeutics will significantly expand our cardiovascular therapeutic repertoire beyond classical pharmacology.

  18. Efficient Hepatic Delivery of Drugs: Novel Strategies and Their Significance

    PubMed Central

    Yadav, Narayan Prasad; Jain, Sanyog; Arora, Sumit

    2013-01-01

    Liver is a vital organ responsible for plethora of functions including detoxification, protein synthesis, and the production of biochemicals necessary for the sustenance of life. Therefore, patients with chronic liver diseases such as viral hepatitis, liver cirrhosis, and hepatocellular carcinoma need immediate attention to sustain life and as a result are often exposed to the prolonged treatment with drugs/herbal medications. Lack of site-specific delivery of these medications to the hepatocytes/nonparenchymal cells and adverse effects associated with their off-target interactions limit their continuous use. This calls for the development and fabrication of targeted delivery systems which can deliver the drug payload at the desired site of action for defined period of time. The primary aim of drug targeting is to manipulate the whole body distribution of drugs, that is, to prevent distribution to non-target cells and concomitantly increase the drug concentration at the targeted site. Carrier molecules are designed for their selective cellular uptake, taking advantage of specific receptors or binding sites present on the surface membrane of the target cell. In this review, various aspects of liver targeting of drug molecules and herbal medications have been discussed which elucidate the importance of delivering the drugs/herbal medications at their desired site of action. PMID:24286077

  19. Does atrial natriuretic factor protect against right ventricular overload II. Tissue binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, L.C.; Yen, S.; Sardella, G.L.

    1989-10-01

    Previous studies have led us to hypothesize that the physiological significance of the diuretic and pulmonary vaso-relaxant effects of atrial natriuretic factor (ANF) is to protect the right heart. This study was designed to evaluate the relative importance of various peripheral tissues as sites of ANF action by tracing the temporal pattern of distribution of {sup 125}I-ANF and quantitating the specific binding sites. An in vivo approach, utilizing trace amount of {sup 125}I-ANF was adopted to simulate physiological conditions. {sup 125}I-ANF injected either intravenously or intra-arterially was quickly bound to peripheral tissues with less than 5% remaining in the circulationmore » after 1 min. The relative binding capacity was greatest in the lung, followed by the kidney, right ventricle, adrenal gland, and left ventricle. The magnitude of specific ANF binding sites per gram of tissue weight followed a similar order. The data demonstrate that ANF released under all circumstances is quickly bound to the target organs, particularly the lung and the kidney, and suggest that these two organs could be the most important target organs of ANF. This evidence provides further support for the proposed hypothesis that a major evolutionary role of ANF is the protection of the right ventricle from mechanical loads.« less

  20. Development of a human-specific B. thetaiotaomicron IMS ...

    EPA Pesticide Factsheets

    Immunomagnetic separation/adenosine triphosphate (IMS/ATP) assays utilize paramagnetic beads and target-specific antibodies to isolate target organisms. Following isolation, adenosine tri-phosphate (ATP) is extracted from the target population and quantified. An inversely-coupled (Inv-IMS/ATP)assay for detection of Bacteroides thetaiotaomicron was developed and applied for rapid detection of human-associated fecal contamination in surface waters in Baja California. Specificity of the assay was tested against challenge solutions of varying concentrations of dog, gull, horse and chicken feces, and a field validation survey of coastal and WWTP effluent water quality in Rosarito and Enseneda, Baja California was conducted. Inv IMS/ATP measurements made shown to be specific and sensitive to human fecal contamination. At test concentrations of less than 1000 MPN ENT/100 mL, sensitivity and specificity of the assay both exceeded 80%. Moreover, the Inv-IMS/ATP assay yielded measurements of viable B. thetaiotaomicron that were comparable to the HF183 human marker in complex surface waters impacted with both wastewater and runoff, and the Inv-IMS/ATP assay was able to effectively differentiate between surface waters impacted with adequately and inadequately treated wastewater. The Inv-IMS/ATP assays shows promise for rapid evaluation of recreational water quality in areas where access to more expensive methods is limited and in areas where water quality in unpredicta

  1. Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus

    PubMed Central

    Yeaman, Michael R.; Filler, Scott G.; Schmidt, Clint S.; Ibrahim, Ashraf S.; Edwards, John E.; Hennessey, John P.

    2014-01-01

    Recent perspectives forecast a new paradigm for future “third generation” vaccines based on commonalities found in diverse pathogens or convergent immune defenses to such pathogens. For Staphylococcus aureus, recurring infections and a limited success of vaccines containing S. aureus antigens imply that native antigens induce immune responses insufficient for optimal efficacy. These perspectives exemplify the need to apply novel vaccine strategies to high-priority pathogens. One such approach can be termed convergent immunity, where antigens from non-target organisms that contain epitope homologs found in the target organism are applied in vaccines. This approach aims to evoke atypical immune defenses via synergistic processes that (1) afford protective efficacy; (2) target an epitope from one organism that contributes to protective immunity against another; (3) cross-protect against multiple pathogens occupying a common anatomic or immunological niche; and/or (4) overcome immune subversion or avoidance strategies of target pathogens. Thus, convergent immunity has a potential to promote protective efficacy not usually elicited by native antigens from a target pathogen. Variations of this concept have been mainstays in the history of viral and bacterial vaccine development. A more far-reaching example is the pre-clinical evidence that specific fungal antigens can induce cross-kingdom protection against bacterial pathogens. This trans-kingdom protection has been demonstrated in pre-clinical studies of the recombinant Candida albicans agglutinin-like sequence 3 protein (rAls3) where it was shown that a vaccine containing rAls3 provides homologous protection against C. albicans, heterologous protection against several other Candida species, and convergent protection against several strains of S. aureus. Convergent immunity reflects an intriguing new approach to designing and developing vaccine antigens and is considered here in the context of vaccines to target S. aureus. PMID:25309545

  2. Beam-specific planning volumes for scattered-proton lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Flampouri, S.; Hoppe, B. S.; Slopsema, R. L.; Li, Z.

    2014-08-01

    This work describes the clinical implementation of a beam-specific planning treatment volume (bsPTV) calculation for lung cancer proton therapy and its integration into the treatment planning process. Uncertainties incorporated in the calculation of the bsPTV included setup errors, machine delivery variability, breathing effects, inherent proton range uncertainties and combinations of the above. Margins were added for translational and rotational setup errors and breathing motion variability during the course of treatment as well as for their effect on proton range of each treatment field. The effect of breathing motion and deformation on the proton range was calculated from 4D computed tomography data. Range uncertainties were considered taking into account the individual voxel HU uncertainty along each proton beamlet. Beam-specific treatment volumes generated for 12 patients were used: a) as planning targets, b) for routine plan evaluation, c) to aid beam angle selection and d) to create beam-specific margins for organs at risk to insure sparing. The alternative planning technique based on the bsPTVs produced similar target coverage as the conventional proton plans while better sparing the surrounding tissues. Conventional proton plans were evaluated by comparing the dose distributions per beam with the corresponding bsPTV. The bsPTV volume as a function of beam angle revealed some unexpected sources of uncertainty and could help the planner choose more robust beams. Beam-specific planning volume for the spinal cord was used for dose distribution shaping to ensure organ sparing laterally and distally to the beam.

  3. Identification of Salmonella Typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis.

    PubMed

    Moon, Jihea; Kim, Giyoung; Lee, Sangdae; Park, Saetbyeol

    2013-11-01

    Conventional methods for detection of infective organisms, such as Salmonella, are complicated and require multiple steps, and the need for rapid detection has increased. Biosensors show great potential for rapid detection of pathogens. In turn, aptamers have great potential for biosensor assay development, given their small size, ease of synthesis and labeling, lack of immunogenicity, a lower cost of production than antibodies, and high target specificity. In this study, ssDNA aptamers specific to Salmonella Typhimurium were obtained by a whole bacterium-based systematic evolution of ligands by exponential enrichment (SELEX) procedure and applied to probing S. Typhimurium. After 10 rounds of selection with S. Typhimurium as the target and Salmonella Enteritidis, Escherichia coli and Staphylococcus aureus as counter targets, the highly enriched oligonucleic acid pool was sorted using flow cytometry. In total, 12 aptamer candidates from different families were sequenced and grouped. Fluorescent analysis demonstrated that aptamer C4 had particularly high binding affinity and selectivity; this aptamer was then further characterized. © 2013 Elsevier B.V. All rights reserved.

  4. New generation of magnetic and luminescent nanoparticles for in vivo real-time imaging

    PubMed Central

    Lacroix, Lise-Marie; Delpech, Fabien; Nayral, Céline; Lachaize, Sébastien; Chaudret, Bruno

    2013-01-01

    A new generation of optimized contrast agents is emerging, based on metallic nanoparticles (NPs) and semiconductor nanocrystals for, respectively, magnetic resonance imaging (MRI) and near-infrared (NIR) fluorescent imaging techniques. Compared with established contrast agents, such as iron oxide NPs or organic dyes, these NPs benefit from several advantages: their magnetic and optical properties can be tuned through size, shape and composition engineering, their efficiency can exceed by several orders of magnitude that of contrast agents clinically used, their surface can be modified to incorporate specific targeting agents and antifolding polymers to increase blood circulation time and tumour recognition, and they can possibly be integrated in complex architecture to yield multi-modal imaging agents. In this review, we will report the materials of choice based on the understanding of the basic physics of NIR and MRI techniques and their corresponding syntheses as NPs. Surface engineering, water transfer and specific targeting will be highlighted prior to their first use for in vivo real-time imaging. Highly efficient NPs that are safer and target specific are likely to enter clinical application in a near future. PMID:24427542

  5. [Tale nucleases--new tool for genome editing].

    PubMed

    Glazkova, D V; Shipulin, G A

    2014-01-01

    The ability to introduce targeted changes in the genome of living cells or entire organisms enables researchers to meet the challenges of basic life sciences, biotechnology and medicine. Knockdown of target genes in the zygotes gives the opportunity to investigate the functions of these genes in different organisms. Replacement of single nucleotide in the DNA sequence allows to correct mutations in genes and thus to cure hereditary diseases. Adding transgene to specific genomic.loci can be used in biotechnology for generation of organisms with certain properties or cell lines for biopharmaceutical production. Such manipulations of gene sequences in their natural chromosomal context became possible after the emergence of the technology called "genome editing". This technology is based on the induction of a double-strand break in a specific genomic target DNA using endonucleases that recognize the unique sequences in the genome and on subsequent recovery of DNA integrity through the use of cellular repair mechanisms. A necessary tool for the genome editing is a custom-designed endonuclease which is able to recognize selected sequences. The emergence of a new type of programmable endonucleases, which were constructed on the basis of bacterial proteins--TAL-effectors (Transcription activators like effector), has become an important stage in the development of technology and promoted wide spread of the genome editing. This article reviews the history of the discovery of TAL effectors and creation of TALE nucleases, and describes their advantages over zinc finger endonucleases that appeared earlier. A large section is devoted to description of genetic modifications that can be performed using the genome editing.

  6. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine.

    PubMed

    Cortese-Krott, Miriam M; Koning, Anne; Kuhnle, Gunter G C; Nagy, Peter; Bianco, Christopher L; Pasch, Andreas; Wink, David A; Fukuto, Jon M; Jackson, Alan A; van Goor, Harry; Olson, Kenneth R; Feelisch, Martin

    2017-10-01

    Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox Signal. 00, 000-000.

  7. Divergent and convergent evolution in metastases suggest treatment strategies based on specific metastatic sites

    PubMed Central

    Cunningham, Jessica J.; Brown, Joel S.; Vincent, Thomas L.

    2015-01-01

    Background and objective: Systemic therapy for metastatic cancer is currently determined exclusively by the site of tumor origin. Yet, there is increasing evidence that the molecular characteristics of metastases significantly differ from the primary tumor. We define the evolutionary dynamics of metastases that govern this molecular divergence and examine their potential contribution to variations in response to targeted therapies. Methodology: Darwinian interactions of transformed cells with the tissue microenvironments at primary and metastatic sites are analyzed using evolutionary game theory. Computational models simulate responses to targeted therapies in different organs within the same patient. Results: Tumor cells, although maximally fit at their primary site, typically have lower fitness on the adaptive landscapes offered by the metastatic sites due to organ-specific variations in mesenchymal properties and signaling pathways. Clinically evident metastases usually exhibit time-dependent divergence from the phenotypic mean of the primary population as the tumor cells evolve and adapt to their new circumstances. In contrast, tumors from different primary sites evolving on identical metastatic adaptive landscapes exhibit phenotypic convergence. Thus, metastases in the liver from different primary tumors and even in different hosts will evolve toward similar adaptive phenotypes. The combination of evolutionary divergence from the primary cancer phenotype and convergence towards similar adaptive strategies in the same tissue cause significant variations in treatment responses particularly for highly targeted therapies. Conclusion and implications: The results suggest that optimal therapies for disseminated cancer must take into account the site(s) of metastatic growth as well as the primary organ. PMID:25794501

  8. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection.

    PubMed

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  9. Loading and conjugating cavity biostructures

    DOEpatents

    Hainfeld, J.F.

    1997-11-25

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.

  10. Loading and conjugating cavity biostructures

    DOEpatents

    Hainfeld, J.F.

    1995-08-22

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.

  11. Targeting prostate cancer: Prostate-specific membrane antigen based diagnosis and therapy.

    PubMed

    Wüstemann, Till; Haberkorn, Uwe; Babich, John; Mier, Walter

    2018-05-17

    The high incidence rates of prostate cancer (PCa) raise demand for improved therapeutic strategies. Prostate tumors specifically express the prostate-specific membrane antigen (PSMA), a membrane-bound protease. As PSMA is highly overexpressed on malignant prostate tumor cells and as its expression rate correlates with the aggressiveness of the disease, this tumor-associated biomarker provides the possibility to develop new strategies for diagnostics and therapy of PCa. Major advances have been made in PSMA targeting, ranging from immunotherapeutic approaches to therapeutic small molecules. This review elaborates the diversity of PSMA targeting agents while focusing on the radioactively labeled tracers for diagnosis and endoradiotherapy. A variety of radionuclides have been shown to either enable precise diagnosis or efficiently treat the tumor with minimal effects to nontargeted organs. Most small molecules with affinity for PSMA are based on either a phosphonate or a urea-based binding motif. Based on these pharmacophores, major effort has been made to identify modifications to achieve ideal pharmacokinetics while retaining the specific targeting of the PSMA binding pocket. Several tracers have now shown excellent clinical usability in particular for molecular imaging and therapy as proven by the efficiency of theranostic approaches in current studies. The archetypal expression profile of PSMA may be exploited for the treatment with alpha emitters to break radioresistance and thus to bring the power of systemic therapy to higher levels. © 2018 Wiley Periodicals, Inc.

  12. Paired organs--Should they be treated jointly or separately in internal dosimetry?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parach, Ali-Asghar; Rajabi, Hossein; Askari, Mohammad-Ali

    2011-10-15

    Purpose: Size, shape, and the position of paired organs are different in abdomen. However, the counterpart organs are conventionally treated jointly together in internal dosimetry. This study was performed to quantify the difference of specific absorbed fraction of organs in considering paired organs jointly like single organs or as two separate organs. Methods: Zubal phantom and GATE Monte Carlo package were used to calculate the SAF for the self-absorption and cross-irradiation of the lungs, kidneys, adrenal glands (paired organs), liver, spleen, stomach, and pancreas (single organs). The activity was assumed uniformly distributed in the organs, and simulation was performed formore » monoenergetic photons of 10, 50, 100, 500, 1000 keV and mono-energetic electrons of 350, 500, 690, 935, 1200 keV. Results: The results demonstrated that self-absorption of left and right counterpart organs may be different depending upon the differences in their masses. The cross-irradiations between left-to-right and right-to-left counterpart organs are always equal irrespective of difference in their masses. Cross-irradiation from the left and right counterpart organs to other organs are different (4-24 times in Zubal phantom) depending on the photon energy and organs. The irradiation from a single source organ to the left and right counterpart paired organs is always different irrespective of activity concentration. Conclusions: Left and right counterpart organs always receive different absorbed doses from target organs and deliver different absorbed doses to target organs. Therefore, in application of radiopharmaceuticals in which the dose to the organs plays a role, counterpart organs should be treated separately as two separate organs.« less

  13. Autoimmune Thyroiditis and Myasthenia Gravis

    PubMed Central

    Lopomo, Angela; Berrih-Aknin, Sonia

    2017-01-01

    Autoimmune diseases (AIDs) are the result of specific immune responses directed against structures of the self. In normal conditions, the molecules recognized as “self” are tolerated by immune system, but when the self-tolerance is lost, the immune system could react against molecules from the body, causing the loss of self-tolerance, and subsequently the onset of AID that differs for organ target and etiology. Autoimmune thyroid disease (ATD) is caused by the development of autoimmunity against thyroid antigens and comprises Hashimoto’s thyroiditis and Graves disease. They are frequently associated with other organ or non-organ specific AIDs, such as myasthenia gravis (MG). In fact, ATD seems to be the most associated pathology to MG. The etiology of both diseases is multifactorial and it is due to genetic and environmental factors, and each of them has specific characteristics. The two pathologies show many commonalities, such as the organ-specificity with a clear pathogenic effect of antibodies, the pathological mechanisms, such as deregulation of the immune system and the implication of the genetic predisposition. They also show some differences, such as the mode of action of the antibodies and therapies. In this review that focuses on ATD and MG, the common features and the differences between the two diseases are discussed. PMID:28751878

  14. Identification of highly effective target genes for RNAi-mediated control of emerald ash borer, Agrilus planipennis.

    PubMed

    Rodrigues, Thais B; Duan, Jian J; Palli, Subba R; Rieske, Lynne K

    2018-03-22

    Recent study has shown that RNA interference (RNAi) is efficient in emerald ash borer (EAB), Agrilus planipennis, and that ingestion of double-stranded RNA (dsRNA) targeting specific genes causes gene silencing and mortality in neonates. Here, we report on the identification of highly effective target genes for RNAi-mediated control of EAB. We screened 13 candidate genes in neonate larvae and selected the most effective target genes for further investigation, including their effect on EAB adults and on a non-target organism, Tribolium castaneum. The two most efficient target genes selected, hsp (heat shock 70-kDa protein cognate 3) and shi (shibire), caused up to 90% mortality of larvae and adults. In EAB eggs, larvae, and adults, the hsp is expressed at higher levels when compared to that of shi. Ingestion of dsHSP and dsSHI caused mortality in both neonate larvae and adults. Administration of a mixture of both dsRNAs worked better than either dsRNA by itself. In contrast, injection of EAB.dsHSP and EAB.dsSHI did not cause mortality in T. castaneum. Thus, the two genes identified cause high mortality in the EAB with no apparent phenotype effects in a non-target organism, the red flour beetle, and could be used in RNAi-mediated control of this invasive pest.

  15. Collaborative School Improvement: An Integrated Model for Educational Leaders.

    ERIC Educational Resources Information Center

    Perry, Eleanor A.

    A systematic way to create collaborative school improvement is provided. The currently expanding role of administrators as staff developers is explored; 10 strategies are listed for the principal to use as a key player in staff development. Two specific organization development problem-solving strategies, Situation-Target-Plan (S-T-P) and Force…

  16. Substrates of the Arabidopsis thaliana protein isoaspartyl methyltransferasel identified using phage display and biopanning

    USDA-ARS?s Scientific Manuscript database

    The role of PROTEIN ISOASPARTYL-METHYLTRANSFERASE (PIMT) in repairing a wide assortment of damaged proteins in a host of organisms has been inferred from the affinity of the enzyme for isoaspartyl residues in a plethora of amino acid contexts. The identification of specific PIMT target proteins in p...

  17. Phototoxicity of TiO2 Nanoparticles under Solar Radiation to Two Aquatic Species: Daphnia magna and Japanese Medaka

    EPA Science Inventory

    One target of development and application of TiO2 nanoparticles (nano-TiO2) is photochemical degredation of contaminants and photo-killing of microbes and fouling organisms. However, few ecotoxicological studies have focused on this aspect of nano-TiO2, specifically whether this ...

  18. [Treatment of Behçet's disease].

    PubMed

    Comarmond, C; Wechsler, B; Cacoub, P; Saadoun, D

    2014-02-01

    Behçet's disease (BD) is a systemic large-vessel vasculitis characterized by a wide clinical spectrum including recurrent oral and genital ulcerations, uveitis, vascular, neurological, articular, and gastrointestinal manifestations. Therapeutic management of BD depends on the clinical presentation and organ involved. Although colchicine, non-steroidal anti-inflammatory agents and topical treatments with corticosteroids are often sufficient for mucocutaneous and joint involvement, a more aggressive approach with immunosuppressive agents is warranted for severe manifestations such as posterior uveitis, retinal vasculitis, vascular, neurological and gastrointestinal involvement. However, some patients still have refractory disease, relapses, sight threatening eye disease, or irreversible organ damage. Recent improvements in the understanding of the pathogenic mechanisms have led to the identification of potential targets and future therapies for BD. In contrast to current non-specific immunosuppressive agents, the emergence of immunomodulatory drugs provides the possibility of interfering with specific pathogenic pathways. Novel targeted immunosuppressive therapies might be used in the future for BD. Copyright © 2013 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  19. Stable isotope probing to study functional components of complex microbial ecosystems.

    PubMed

    Mazard, Sophie; Schäfer, Hendrik

    2014-01-01

    This protocol presents a method of dissecting the DNA or RNA of key organisms involved in a specific biochemical process within a complex ecosystem. Stable isotope probing (SIP) allows the labelling and separation of nucleic acids from community members that are involved in important biochemical transformations, yet are often not the most numerically abundant members of a community. This pure culture-independent technique circumvents limitations of traditional microbial isolation techniques or data mining from large-scale whole-community metagenomic studies to tease out the identities and genomic repertoires of microorganisms participating in biological nutrient cycles. SIP experiments can be applied to virtually any ecosystem and biochemical pathway under investigation provided a suitable stable isotope substrate is available. This versatile methodology allows a wide range of analyses to be performed, from fatty-acid analyses, community structure and ecology studies, and targeted metagenomics involving nucleic acid sequencing. SIP experiments provide an effective alternative to large-scale whole-community metagenomic studies by specifically targeting the organisms or biochemical transformations of interest, thereby reducing the sequencing effort and time-consuming bioinformatics analyses of large datasets.

  20. A review of competencies developed for disaster healthcare providers: limitations of current processes and applicability.

    PubMed

    Daily, Elaine; Padjen, Patricia; Birnbaum, Marvin

    2010-01-01

    In order to prepare the healthcare system and healthcare personnel to meet the health needs of populations affected by disasters, educational programs have been developed by numerous academic institutions, hospitals, professional organizations, governments, and non-government organizations. Lacking standards for best practices as a foundation, many organizations and institutions have developed "core competencies" that they consider essential knowledge and skills for disaster healthcare personnel. The Nursing Section of the World Association for Disaster and Emergency Medicine (WADEM) considered the possibility of endorsing an existing set of competencies that could be used to prepare nurses universally to participate in disaster health activities. This study was undertaken for the purpose of reviewing published disaster health competencies to determine commonalities and universal applicability for disaster preparedness. In 2007, a review of the electronic literature databases was conducted using the major keywords: disaster response competencies; disaster preparedness competencies; emergency response competencies; disaster planning competencies; emergency planning competencies; public health emergency preparedness competencies; disaster nursing competencies; and disaster nursing education competencies. A manual search of references and selected literature from public and private sources also was conducted. Inclusion criteria included: English language; competencies listed or specifically referred to; competencies relevant to disaster, mass-casualty incident (MCI), or public health emergency; and competencies relevant to healthcare. Eighty-six articles were identified; 20 articles failed to meet the initial inclusion criteria; 27 articles did not meet the additional criteria, leaving 39 articles for analysis. Twenty-eight articles described competencies targeted to a specific profession/discipline, while 10 articles described competencies targeted to a defined role or function during a disaster. Four of the articles described specific competencies according to skill level, rather than to a specific role or function. One article defined competencies according to specific roles as well as proficiency levels. Two articles categorized disaster nursing competencies according to the phases of the disaster management continuum. Fourteen articles described specified competencies as "core" competencies for various target groups, while one article described "cross-cutting" competencies applicable to all healthcare workers. Hundreds of competencies for disaster healthcare personnel have been developed and endorsed by governmental and professional organizations and societies. Imprecise and inconsistent terminology and structure are evident throughout the reviewed competency sets. Universal acceptance and application of these competencies are lacking and none have been validated. Further efforts must be directed to developing a framework and standardized terminology for the articulation of competency sets for disaster health professionals that can by accepted and adapted universally.

  1. Position-dependent and neuron-specific splicing regulation by the CELF family RNA-binding protein UNC-75 in Caenorhabditis elegans

    PubMed Central

    Kuroyanagi, Hidehito; Watanabe, Yohei; Suzuki, Yutaka; Hagiwara, Masatoshi

    2013-01-01

    A large fraction of protein-coding genes in metazoans undergo alternative pre-mRNA splicing in tissue- or cell-type-specific manners. Recent genome-wide approaches have identified many putative-binding sites for some of tissue-specific trans-acting splicing regulators. However, the mechanisms of splicing regulation in vivo remain largely unknown. To elucidate the modes of splicing regulation by the neuron-specific CELF family RNA-binding protein UNC-75 in Caenorhabditis elegans, we performed deep sequencing of poly(A)+ RNAs from the unc-75(+)- and unc-75-mutant worms and identified more than 20 cassette and mutually exclusive exons repressed or activated by UNC-75. Motif searches revealed that (G/U)UGUUGUG stretches are enriched in the upstream and downstream introns of the UNC-75-repressed and -activated exons, respectively. Recombinant UNC-75 protein specifically binds to RNA fragments carrying the (G/U)UGUUGUG stretches in vitro. Bi-chromatic fluorescence alternative splicing reporters revealed that the UNC-75-target exons are regulated in tissue-specific and (G/U)UGUUGUG element-dependent manners in vivo. The unc-75 mutation affected the splicing reporter expression specifically in the nervous system. These results indicate that UNC-75 regulates alternative splicing of its target exons in neuron-specific and position-dependent manners through the (G/U)UGUUGUG elements in C. elegans. This study thus reveals the repertoire of target events for the CELF family in the living organism. PMID:23416545

  2. Mechanisms for cytoplasmic organization: an overview.

    PubMed

    Pagliaro, L

    2000-01-01

    One of the basic characteristics of life is the intrinsic organization of cytoplasm, yet we know surprisingly little about the manner in which cytoplasmic macromolecules are arranged. It is clear that cytoplasm is not the homogeneous "soup" it was once envisioned to be, but a comprehensive model for cytoplasmic organization is not available in modern cell biology. The premise of this volume is that phase separation in cytoplasm may play a role in organization at the subcellular level. Other mechanisms for non-membrane-bounded intracellular organization have previously been proposed. Some of these will be reviewed in this chapter. Multiple mechanisms, involving phase separation, specific intracellular targeting, formation of macromolecular complexes, and channeling, all could well contribute to cytoplasmic organization. Temporal and spatial organization, as well as composition, are likely to be important in defining the characteristics of cytoplasm.

  3. SP and KLF Transcription Factors in Digestive Physiology and Diseases.

    PubMed

    Kim, Chang-Kyung; He, Ping; Bialkowska, Agnieszka B; Yang, Vincent W

    2017-06-01

    Specificity proteins (SPs) and Krüppel-like factors (KLFs) belong to the family of transcription factors that contain conserved zinc finger domains involved in binding to target DNA sequences. Many of these proteins are expressed in different tissues and have distinct tissue-specific activities and functions. Studies have shown that SPs and KLFs regulate not only physiological processes such as growth, development, differentiation, proliferation, and embryogenesis, but pathogenesis of many diseases, including cancer and inflammatory disorders. Consistently, these proteins have been shown to regulate normal functions and pathobiology in the digestive system. We review recent findings on the tissue- and organ-specific functions of SPs and KLFs in the digestive system including the oral cavity, esophagus, stomach, small and large intestines, pancreas, and liver. We provide a list of agents under development to target these proteins. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. The radiology conglomerate: optimizing the structure and function of the 50-plus radiology organizations--a summary of the 2010 Intersociety Conference.

    PubMed

    Dodd, Gerald D

    2011-08-01

    There has been a substantial proliferation in the number of radiology organizations over the past 30 years. This has occurred without integrated planning or the development of a central administration. Although each of the 50-plus organizations was created for specific reasons, the lack of coordination among them has led to considerable duplication of missions, services, and resources. The majority of the members attending the 2010 meeting of the Intersociety Conference believe that radiology as a whole would benefit from collaboration and consolidation of our organizations. Specific opportunities for collaboration include joint annual meetings between 2 or more organizations, the creation of a clearinghouse for meeting scheduling that would minimize meeting conflicts, coordinated development of self-assessment modules, the development of an online site for "one-stop shopping" for paying dues and making foundation contributions, consolidation of the 15-plus radiology foundations to increase the investment corpus and allow larger targeted investments in specific research projects that would benefit radiology as a whole, and the creation of a new Web site that would link all radiology organizations to facilitate information access and collaboration. To move forward with meaningful and successful collaboration or consolidation will require an accurate database of the mission, structure, and function of our organizations; a careful analysis of potential synergies; and, full buy-in by the participating organizations. Copyright © 2011 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  5. SU-E-T-567: Neutron Dose Equivalent Evaluation for Pencil Beam Scanning Proton Therapy with Apertures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, C; Nanjing University of Aeronautics and Astronautics, Nanjing; Schuemann, J

    Purpose: To determine the neutron contamination from the aperture in pencil beam scanning during proton therapy. Methods: A Monte Carlo based proton therapy research platform TOPAS and the UF-series hybrid pediatric phantoms were used to perform this study. First, pencil beam scanning (PBS) treatment pediatric plans with average spot size of 10 mm at iso-center were created and optimized for three patients with and without apertures. Then, the plans were imported into TOPAS. A scripting method was developed to automatically replace the patient CT with a whole body phantom positioned according to the original plan iso-center. The neutron dose equivalentmore » was calculated using organ specific quality factors for two phantoms resembling a 4- and 14-years old patient. Results: The neutron dose equivalent generated by the apertures in PBS is 4–10% of the total neutron dose equivalent for organs near the target, while roughly 40% for organs far from the target. Compared to the neutron dose equivalent caused by PBS without aperture, the results show that the neutron dose equivalent with aperture is reduced in the organs near the target, and moderately increased for those organs located further from the target. This is due to the reduction of the proton dose around the edge of the CTV, which causes fewer neutrons generated in the patient. Conclusion: Clinically, for pediatric patients, one might consider adding an aperture to get a more conformal treatment plan if the spot size is too large. This work shows the somewhat surprising fact that adding an aperture for beam scanning for facilities with large spot sizes reduces instead of increases a potential neutron background in regions near target. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)« less

  6. Identification and Analyses of AUX-IAA target genes controlling multiple pathways in developing fiber cells of Gossypium hirsutum L

    PubMed Central

    Nigam, Deepti; Sawant, Samir V

    2013-01-01

    Technological development led to an increased interest in systems biological approaches in plants to characterize developmental mechanism and candidate genes relevant to specific tissue or cell morphology. AUX-IAA proteins are important plant-specific putative transcription factors. There are several reports on physiological response of this family in Arabidopsis but in cotton fiber the transcriptional network through which AUX-IAA regulated its target genes is still unknown. in-silico modelling of cotton fiber development specific gene expression data (108 microarrays and 22,737 genes) using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals 3690 putative AUX-IAA target genes of which 139 genes were known to be AUX-IAA co-regulated within Arabidopsis. Further AUX-IAA targeted gene regulatory network (GRN) had substantial impact on the transcriptional dynamics of cotton fiber, as showed by, altered TF networks, and Gene Ontology (GO) biological processes and metabolic pathway associated with its target genes. Analysis of the AUX-IAA-correlated gene network reveals multiple functions for AUX-IAA target genes such as unidimensional cell growth, cellular nitrogen compound metabolic process, nucleosome organization, DNA-protein complex and process related to cell wall. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell proliferation, and cell differentiation. While these functions are fairly broad, their underlying TF networks may provide a global view of AUX-IAA regulated gene expression and a GRN that guides future studies in understanding role of AUX-IAA box protein and its targets regulating fiber development. PMID:24497725

  7. Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma.

    PubMed

    Krishnamurthy, Janani; Rabinovich, Brian A; Mi, Tiejuan; Switzer, Kirsten C; Olivares, Simon; Maiti, Sourindra N; Plummer, Joshua B; Singh, Harjeet; Kumaresan, Pappanaicken R; Huls, Helen M; Wang-Johanning, Feng; Cooper, Laurence J N

    2015-07-15

    The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma. Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR(+) T cells were expanded ex vivo on activating and propagating cells (AaPC) and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR(+) T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. We detected HERV-K env protein on melanoma but not in normal tissues. After electroporation of T cells and selection on HERV-K(+) AaPC, more than 95% of genetically modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env(+) tumor targets in an antigen-specific manner. Even though there is apparent shedding of this TAA from tumor cells that can be recognized by HERV-K env-specific CAR(+) T cells, we observed a significant antitumor effect. Adoptive cellular immunotherapy with HERV-K env-specific CAR(+) T cells represents a clinically appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors. ©2015 American Association for Cancer Research.

  8. Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis

    PubMed Central

    Cao, Zhongwei; Ye, Tinghong; Sun, Yue; Ji, Gaili; Shido, Koji; Chen, Yutian; Luo, Lin; Na, Feifei; Li, Xiaoyan; Huang, Zhen; Ko, Jane L.; Mittal, Vivek; Qiao, Lina; Chen, Chong; Martinez, Fernando J.; Rafii, Shahin; Ding, Bi-Sen

    2017-01-01

    The regenerative capacity of lung and liver is sometimes impaired by chronic or overwhelming injury. Orthotopic transplantation of parenchymal stem cells to damaged organs might reinstate their self-repair ability. However, parenchymal cell engraftment is frequently hampered by the microenvironment in diseased recipient organs. Here, we show that targeting both the vascular niche and perivascular fibroblasts establishes “hospitable soil” to foster incorporation of “seed”, in this case the engraftment of parenchymal cells in injured organs. Specifically, ectopic induction of endothelial cell (EC)-expressed paracrine/angiocrine hepatocyte growth factor (HGF) and inhibition of perivascular NADPH Oxidase 4 (NOX4) synergistically enabled reconstitution of mouse and human parenchymal cells in damaged organs. Reciprocally, genetic knockout of Hgf in mouse ECs (HgfiΔEC/iΔEC) aberrantly upregulated perivascular NOX4 during liver and lung regeneration. Dysregulated HGF and NOX4 pathways subverted the function of vascular and perivascular cells from an epithelially-inductive niche to a microenvironment that inhibited parenchymal reconstitution. Perivascular NOX4 induction in HgfiΔEC/iΔEC mice recapitulated the phenotype of human and mouse fibrotic livers and lungs. Consequently, EC-directed HGF and NOX4 inhibitor GKT137831 stimulated regenerative integration of mouse and human parenchymal cells in chronically injured lung and liver. Our data suggest that targeting dysfunctional perivascular and vascular cells in diseased organs can bypass fibrosis and enable reparative cell engraftment to reinstate lung and liver regeneration. PMID:28855398

  9. Removal of organic matter from a variety of water matrices by UV photolysis and UV/H2O2 method.

    PubMed

    Vilhunen, Sari; Vilve, Miia; Vepsäläinen, Mikko; Sillanpää, Mika

    2010-07-15

    A re-circulated flow-through photoreactor was used to evaluate the ultraviolet (UV) photolysis and UV/H(2)O(2) oxidation process in the purification of three different water matrices. Chemically coagulated and electrocoagulated surface water, groundwater contaminated with creosote wood preservative and 1,2-dichloroethane (DCE) containing washing water from the plant manufacturing tailor-made ion-exchange resins were used as sample waters. The organic constituents of creosote consist mainly of harmful polycyclic aromatic hydrocarbons (PAH) whereas 1,2-DCE is a toxic volatile organic compound (VOC). Besides analyzing the specific target compounds, total organic carbon (TOC) analysis and measurement of change in UV absorbance at 254 nm (UV(254)) were performed. Initial TOC, UV(254) and pH varied significantly among treated waters. Initial H(2)O(2) concentrations 0-200 mg/l were used. The UV/H(2)O(2) treatment was efficient in removing the hazardous target pollutants (PAHs and 1,2-DCE) and natural organic matter (NOM). In addition, high removal efficiency for TOC was achieved for coagulated waters and groundwater. Also, the efficiency of direct photolysis in UV(254) removal was significant except in the treatment of 1,2-DCE containing washing water. Overall, UV(254) and TOC removal rates were high, except in case of washing water, and the target pollutants were efficiently decomposed with the UV/H(2)O(2) method. 2010 Elsevier B.V. All rights reserved.

  10. Retrotransposon insertion targeting: a mechanism for homogenization of centromere sequences on nonhomologous chromosomes.

    PubMed

    Birchler, James A; Presting, Gernot G

    2012-04-01

    The centromeres of most eukaryotic organisms consist of highly repetitive arrays that are similar across nonhomologous chromosomes. These sequences evolve rapidly, thus posing a mystery as to how such arrays can be homogenized. Recent work in species in which centromere-enriched retrotransposons occur indicates that these elements preferentially insert into the centromeric regions. In two different Arabidopsis species, a related element was recognized in which the specificity for such targeting was altered. These observations provide a partial explanation for how homogenization of centromere DNA sequences occurs.

  11. Characterization of parasite-specific indels and their proposed relevance for selective anthelminthic drug targeting

    PubMed Central

    Wang, Qi; Heizer, Esley; Rosa, Bruce A.; Wildman, Scott A.; Janetka, James W.; Mitreva, Makedonka

    2016-01-01

    Insertions and deletions (indels) are important sequence variants that are considered as phylogenetic markers that reflect evolutionary adaptations in different species. In an effort to systematically study indels specific to the phylum Nematoda and their structural impact on the proteins bearing them, we examined over 340,000 polypeptides from 21 nematode species spanning the phylum, compared them to non-nematodes and identified indels unique to nematode proteins in more than 3,000 protein families. Examination of the amino acid composition revealed uneven usage of amino acids for insertions and deletions. The amino acid composition and cost, along with the secondary structure constitution of the indels, were analyzed in the context of their biological pathway associations. Species-specific indels could enable indel-based targeting for drug design in pathogens/parasites. Therefore, we screened the spatial locations of the indels in the parasite’s protein 3D structures, determined the location of the indel and identified potential unique drug targeting sites. These indels could be confirmed by RNA-Seq data. Examples are presented that illustrate the close proximity of the indel to established small-molecule binding pockets that can potentially facilitate selective targeting to the parasites and bypassing their host, thus reducing or eliminating the toxicity of the potential drugs. The study presents an approach for understanding the adaptation of pathogens/parasites at a molecular level, and outlines a strategy to identify such nematode-selective targets that remain essential to the organism. With further experimental characterization and validation, it opens a possible channel for the development of novel treatments with high target specificity, addressing both host toxicity and resistance concerns. PMID:26829384

  12. Characterization of parasite-specific indels and their proposed relevance for selective anthelminthic drug targeting.

    PubMed

    Wang, Qi; Heizer, Esley; Rosa, Bruce A; Wildman, Scott A; Janetka, James W; Mitreva, Makedonka

    2016-04-01

    Insertions and deletions (indels) are important sequence variants that are considered as phylogenetic markers that reflect evolutionary adaptations in different species. In an effort to systematically study indels specific to the phylum Nematoda and their structural impact on the proteins bearing them, we examined over 340,000 polypeptides from 21 nematode species spanning the phylum, compared them to non-nematodes and identified indels unique to nematode proteins in more than 3000 protein families. Examination of the amino acid composition revealed uneven usage of amino acids for insertions and deletions. The amino acid composition and cost, along with the secondary structure constitution of the indels, were analyzed in the context of their biological pathway associations. Species-specific indels could enable indel-based targeting for drug design in pathogens/parasites. Therefore, we screened the spatial locations of the indels in the parasite's protein 3D structures, determined the location of the indel and identified potential unique drug targeting sites. These indels could be confirmed by RNA-Seq data. Examples are presented illustrating the close proximity of some indels to established small-molecule binding pockets that can potentially facilitate selective targeting to the parasites and bypassing their host, thus reducing or eliminating the toxicity of the potential drugs. This study presents an approach for understanding the adaptation of pathogens/parasites at a molecular level, and outlines a strategy to identify such nematode-selective targets that remain essential to the organism. With further experimental characterization and validation, it opens a possible channel for the development of novel treatments with high target specificity, addressing both host toxicity and resistance concerns. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Minimal resin embedding of multicellular specimens for targeted FIB-SEM imaging.

    PubMed

    Schieber, Nicole L; Machado, Pedro; Markert, Sebastian M; Stigloher, Christian; Schwab, Yannick; Steyer, Anna M

    2017-01-01

    Correlative light and electron microscopy (CLEM) is a powerful tool to perform ultrastructural analysis of targeted tissues or cells. The large field of view of the light microscope (LM) enables quick and efficient surveys of the whole specimen. It is also compatible with live imaging, giving access to functional assays. CLEM protocols take advantage of the features to efficiently retrace the position of targeted sites when switching from one modality to the other. They more often rely on anatomical cues that are visible both by light and electron microscopy. We present here a simple workflow where multicellular specimens are embedded in minimal amounts of resin, exposing their surface topology that can be imaged by scanning electron microscopy (SEM). LM and SEM both benefit from a large field of view that can cover whole model organisms. As a result, targeting specific anatomic locations by focused ion beam-SEM (FIB-SEM) tomography becomes straightforward. We illustrate this application on three different model organisms, used in our laboratory: the zebrafish embryo Danio rerio, the marine worm Platynereis dumerilii, and the dauer larva of the nematode Caenorhabditis elegans. Here we focus on the experimental steps to reduce the amount of resin covering the samples and to image the specimens inside an FIB-SEM. We expect this approach to have widespread applications for volume electron microscopy on multiple model organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Musical space synesthesia: automatic, explicit and conceptual connections between musical stimuli and space.

    PubMed

    Akiva-Kabiri, Lilach; Linkovski, Omer; Gertner, Limor; Henik, Avishai

    2014-08-01

    In musical-space synesthesia, musical pitches are perceived as having a spatially defined array. Previous studies showed that symbolic inducers (e.g., numbers, months) can modulate response according to the inducer's relative position on the synesthetic spatial form. In the current study we tested two musical-space synesthetes and a group of matched controls on three different tasks: musical-space mapping, spatial cue detection and a spatial Stroop-like task. In the free mapping task, both synesthetes exhibited a diagonal organization of musical pitch tones rising from bottom left to the top right. This organization was found to be consistent over time. In the subsequent tasks, synesthetes were asked to ignore an auditory or visually presented musical pitch (irrelevant information) and respond to a visual target (i.e., an asterisk) on the screen (relevant information). Compatibility between musical pitch and the target's spatial location was manipulated to be compatible or incompatible with the synesthetes' spatial representations. In the spatial cue detection task participants had to press the space key immediately upon detecting the target. In the Stroop-like task, they had to reach the target by using a mouse cursor. In both tasks, synesthetes' performance was modulated by the compatibility between irrelevant and relevant spatial information. Specifically, the target's spatial location conflicted with the spatial information triggered by the irrelevant musical stimulus. These results reveal that for musical-space synesthetes, musical information automatically orients attention according to their specific spatial musical-forms. The present study demonstrates the genuineness of musical-space synesthesia by revealing its two hallmarks-automaticity and consistency. In addition, our results challenge previous findings regarding an implicit vertical representation for pitch tones in non-synesthete musicians. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. LeishCyc: a guide to building a metabolic pathway database and visualization of metabolomic data.

    PubMed

    Saunders, Eleanor C; MacRae, James I; Naderer, Thomas; Ng, Milica; McConville, Malcolm J; Likić, Vladimir A

    2012-01-01

    The complexity of the metabolic networks in even the simplest organisms has raised new challenges in organizing metabolic information. To address this, specialized computer frameworks have been developed to capture, manage, and visualize metabolic knowledge. The leading databases of metabolic information are those organized under the umbrella of the BioCyc project, which consists of the reference database MetaCyc, and a number of pathway/genome databases (PGDBs) each focussed on a specific organism. A number of PGDBs have been developed for bacterial, fungal, and protozoan pathogens, greatly facilitating dissection of the metabolic potential of these organisms and the identification of new drug targets. Leishmania are protozoan parasites belonging to the family Trypanosomatidae that cause a broad spectrum of diseases in humans. In this work we use the LeishCyc database, the BioCyc database for Leishmania major, to describe how to build a BioCyc database from genomic sequences and associated annotations. By using metabolomic data generated in our group, we show how such databases can be utilized to elucidate specific changes in parasite metabolism.

  16. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos.

    PubMed

    Karimi, Mahdi; Mirshekari, Hamed; Moosavi Basri, Seyed Masoud; Bahrami, Sajad; Moghoofei, Mohsen; Hamblin, Michael R

    2016-11-15

    The main goal of drug delivery systems is to target therapeutic cargoes to desired cells and to ensure their efficient uptake. Recently a number of studies have focused on designing bio-inspired nanocarriers, such as bacteriophages, and synthetic carriers based on the bacteriophage structure. Bacteriophages are viruses that specifically recognize their bacterial hosts. They can replicate only inside their host cell and can act as natural gene carriers. Each type of phage has a particular shape, a different capacity for loading cargo, a specific production time, and their own mechanisms of supramolecular assembly, that have enabled them to act as tunable carriers. New phage-based technologies have led to the construction of different peptide libraries, and recognition abilities provided by novel targeting ligands. Phage hybridization with non-organic compounds introduces new properties to phages and could be a suitable strategy for construction of bio-inorganic carriers. In this review we try to cover the major phage species that have been used in drug and gene delivery systems, and the biological application of phages as novel targeting ligands and targeted therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells.

    PubMed

    Lee, Ciaran M; Cradick, Thomas J; Bao, Gang

    2016-03-01

    The clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system from Streptococcus pyogenes (Spy) has been successfully adapted for RNA-guided genome editing in a wide range of organisms. However, numerous reports have indicated that Spy CRISPR-Cas9 systems may have significant off-target cleavage of genomic DNA sequences differing from the intended on-target site. Here, we report the performance of the Neisseria meningitidis (Nme) CRISPR-Cas9 system that requires a longer protospacer-adjacent motif for site-specific cleavage, and present a comparison between the Spy and Nme CRISPR-Cas9 systems targeting the same protospacer sequence. The results with the native crRNA and tracrRNA as well as a chimeric single guide RNA for the Nme CRISPR-Cas9 system were also compared. Our results suggest that, compared with the Spy system, the Nme CRISPR-Cas9 system has similar or lower on-target cleavage activity but a reduced overall off-target effect on a genomic level when sites containing three or fewer mismatches are considered. Thus, the Nme CRISPR-Cas9 system may represent a safer alternative for precision genome engineering applications.

  18. Omen: identifying potential spear-phishing targets before the email is sent.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Jeremy Daniel.

    2013-07-01

    We present the results of a two year project focused on a common social engineering attack method called "spear phishing". In a spear phishing attack, the user receives an email with information specifically focused on the user. This email contains either a malware-laced attachment or a link to download the malware that has been disguised as a useful program. Spear phishing attacks have been one of the most effective avenues for attackers to gain initial entry into a target network. This project focused on a proactive approach to spear phishing. To create an effective, user-specific spear phishing email, the attackermore » must research the intended recipient. We believe that much of the information used by the attacker is provided by the target organization's own external website. Thus when researching potential targets, the attacker leaves signs of his research in the webserver's logs. We created tools and visualizations to improve cybersecurity analysts' abilities to quickly understand a visitor's visit patterns and interests. Given these suspicious visitors and log-parsing tools, analysts can more quickly identify truly suspicious visitors, search for potential spear-phishing targeted users, and improve security around those users before the spear phishing email is sent.« less

  19. The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells

    PubMed Central

    Lee, Ciaran M; Cradick, Thomas J; Bao, Gang

    2016-01-01

    The clustered regularly-interspaced short palindromic repeats (CRISPR)—CRISPR-associated (Cas) system from Streptococcus pyogenes (Spy) has been successfully adapted for RNA-guided genome editing in a wide range of organisms. However, numerous reports have indicated that Spy CRISPR-Cas9 systems may have significant off-target cleavage of genomic DNA sequences differing from the intended on-target site. Here, we report the performance of the Neisseria meningitidis (Nme) CRISPR-Cas9 system that requires a longer protospacer-adjacent motif for site-specific cleavage, and present a comparison between the Spy and Nme CRISPR-Cas9 systems targeting the same protospacer sequence. The results with the native crRNA and tracrRNA as well as a chimeric single guide RNA for the Nme CRISPR-Cas9 system were also compared. Our results suggest that, compared with the Spy system, the Nme CRISPR-Cas9 system has similar or lower on-target cleavage activity but a reduced overall off-target effect on a genomic level when sites containing three or fewer mismatches are considered. Thus, the Nme CRISPR-Cas9 system may represent a safer alternative for precision genome engineering applications. PMID:26782639

  20. Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach.

    PubMed

    Qazi, Arish A; Pekar, Vladimir; Kim, John; Xie, Jason; Breen, Stephen L; Jaffray, David A

    2011-11-01

    Intensity modulated radiation therapy (IMRT) allows greater control over dose distribution, which leads to a decrease in radiation related toxicity. IMRT, however, requires precise and accurate delineation of the organs at risk and target volumes. Manual delineation is tedious and suffers from both interobserver and intraobserver variability. State of the art auto-segmentation methods are either atlas-based, model-based or hybrid however, robust fully automated segmentation is often difficult due to the insufficient discriminative information provided by standard medical imaging modalities for certain tissue types. In this paper, the authors present a fully automated hybrid approach which combines deformable registration with the model-based approach to accurately segment normal and target tissues from head and neck CT images. The segmentation process starts by using an average atlas to reliably identify salient landmarks in the patient image. The relationship between these landmarks and the reference dataset serves to guide a deformable registration algorithm, which allows for a close initialization of a set of organ-specific deformable models in the patient image, ensuring their robust adaptation to the boundaries of the structures. Finally, the models are automatically fine adjusted by our boundary refinement approach which attempts to model the uncertainty in model adaptation using a probabilistic mask. This uncertainty is subsequently resolved by voxel classification based on local low-level organ-specific features. To quantitatively evaluate the method, they auto-segment several organs at risk and target tissues from 10 head and neck CT images. They compare the segmentations to the manual delineations outlined by the expert. The evaluation is carried out by estimating two common quantitative measures on 10 datasets: volume overlap fraction or the Dice similarity coefficient (DSC), and a geometrical metric, the median symmetric Hausdorff distance (HD), which is evaluated slice-wise. They achieve an average overlap of 93% for the mandible, 91% for the brainstem, 83% for the parotids, 83% for the submandibular glands, and 74% for the lymph node levels. Our automated segmentation framework is able to segment anatomy in the head and neck region with high accuracy within a clinically-acceptable segmentation time.

  1. Tracking targeted bimodal nanovaccines: immune responses and routing in cells, tissue, and whole organism.

    PubMed

    Cruz, Luis J; Tacken, Paul J; Zeelenberg, Ingrid S; Srinivas, Mangala; Bonetto, Fernando; Weigelin, Bettina; Eich, Christina; de Vries, I Jolanda; Figdor, Carl G

    2014-12-01

    Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs), involved in the induction of immunity and currently exploited for antitumor immunotherapies. An optimized noninvasive imaging modality capable of determining and quantifying DC-targeted nanoparticle (NP) trajectories could provide valuable information regarding therapeutic vaccine outcome. Here, targeted poly(d,l-lactide-co-glycolide) nanoparticles (PLGA NPs) recognizing DC receptors were equipped with superparamagnetic iron oxide particles (SPIO) or gold nanoparticles with fluorescently labeled antigen. The fluorescent label allowed for rapid analysis and quantification of DC-specific uptake of targeted PLGA NPs in comparison to uptake by other cells. Transmission electron microscopy (TEM) showed that a fraction of the encapsulated antigen reached the lysosomal compartment of DCs, where SPIO and gold were already partially released. However, part of the PLGA NPs localized within the cytoplasm, as confirmed by confocal microscopy. DCs targeted with NPs carrying SPIO or fluorescent antigen were detected within lymph nodes as early as 1 h after injection by magnetic resonance imaging (MRI). Despite the fact that targeting did not markedly affect PLGA NP biodistribution on organism and tissue level, it increased delivery of NPs to DCs residing in peripheral lymph nodes and resulted in enhanced T cell proliferation. In conclusion, two imaging agents within a single carrier allows tracking of targeted PLGA NPs at the subcellular, cellular, and organismal levels, thereby facilitating the rational design of in vivo targeted vaccination strategies.

  2. Planarians in pharmacology: parthenolide is a specific behavioral antagonist of cocaine in the planarian Girardia tigrina.

    PubMed

    Pagán, Oné R; Baker, Debra; Deats, Sean; Montgomery, Erica; Tenaglia, Matthew; Randolph, Clinita; Kotturu, Dharini; Tallarida, Christopher; Bach, Daniel; Wilk, Galia; Rawls, Scott; Raffa, Robert B

    2012-01-01

    Planarians are traditional animal models in developmental and regeneration biology. Recently, these organisms are arising as vertebrate-relevant animal models in neuropharmacology. Using an adaptation of published behavioral protocols, we have described the alleviation of cocaine-induced planarian seizure-like movements (pSLM) by a naturally-occurring sesquiterpene lactone, parthenolide. Interestingly, parthenolide does not prevent the expression of pSLM induced by amphetamines; in vertebrates, amphetamines interact with the same protein target as cocaine. Parthenolide is also unable to prevent pSLM elicited by the cholinergic com-pounds nicotine and cytisine or by the glutamatergic agents L- or D- glutamic acid or NMDA. Thus, we conclude that parthenolide is a specific anti-cocaine agent in this experimental organism.

  3. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish.

    PubMed

    Lee, Kerry J; Browning, Lauren M; Nallathamby, Prakash D; Osgood, Christopher J; Xu, Xiao-Hong Nancy

    2013-12-07

    Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 ± 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c < 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development.

  4. [Genome editing ~Principle and possibility of a novel genetic engineering technology. Basic principles of genome editing.

    PubMed

    Yamamoto, Takashi

    Programmable site-specific nuclease mediated-genome editing is an emerging biotechnology for precise manipulation of target genes. In genome editing, gene-knockout as well as gene-knockin are possible in various organisms and cultured cells. CRISPR-Cas9, which was developed in 2012, is a convenient and efficient programmable site-specific nuclease and the use spreads around the world rapidly. For this, it is important for the progress of life science research to introduce the genome editing technology.

  5. Focal calcium monitoring with targeted nanosensors at the cytosolic side of endoplasmic reticulum

    NASA Astrophysics Data System (ADS)

    Hou, Yanyan; Arai, Satoshi; Takei, Yoshiaki; Murata, Atsushi; Takeoka, Shinji; Suzuki, Madoka

    2016-01-01

    Ca2+ distribution is spatially and temporally non-uniform inside cells due to cellular compartmentalization. However, Ca2+ sensing with small organic dyes, such as fura-2 and fluo-4, has been practically applied at a single cell level where the averaged signal from freely diffusing dye molecules is acquired. In this study, we aimed to target azide-functionalized fura-2 (N3-fura-2) to a specific site of subcellular compartments to realize focal Ca2+ sensing. Using scAVD (single-chain avidin)-biotin interaction and a copper-free click reaction system, we linked N3-fura-2 to specifically-targeted scAVD protein fused with a red fluorescent protein mCherry, so that Ca2+ sensors conjugated with four N3-fura-2 dyes with dibenzocyclooctyne (DBCO)-PEG4-biotin as a linker were generated at subcellular compartments in living cells. In cytoplasm, N3-fura-2 showed a prolonged retention period after binding to scAVD. Furthermore, the reacted N3-fura-2 was retained inside cells even after free dyes were washed out by methanol fixation. When scAVD was overexpressed on endoplasmic reticulum (ER) membranes, N3-fura-2 was accumulated on ER membranes. Upon histamine stimulation, which increases cytosolic Ca2+ concentration, ER-localized N3-fura-2 successfully sensed the Ca2+ level changes at the cytosolic side of ER membrane. Our study demonstrated specific targeting of N3-fura-2 to subcellular compartments and the ability of sensing focal Ca2+ level changes with the specifically targeted Ca2+ sensors.

  6. TNNI3K, a novel cardiac-specific kinase, emerging as a molecular target for the treatment of cardiac disease

    PubMed Central

    Lal, Hind; Ahmad, Firdos; Parikh, Shan; Force, Thomas

    2014-01-01

    Coronary heart disease (AHD) is the leading cause of death and disability worldwide. In patients with acute coronary syndromes (ACS), timely and effective myocardial reperfusion by percutaneous coronary intervention (PCI) is the primary treatment of choice to minimize the ischemic injury and limit MI size. However, reperfusion can itself promote cardiomyocyte death which leads to cardiac dysfunction via reperfusion injury. The molecular mechanisms of ischemia/reperfusion (I/R) injury are not completely understood and new drug targets are needed. Recently we reported that cardiac troponin I-interacting protein kinase (TNNI3K), a cardiomyocyte-specific kinase, promotes I/R injury via profound oxidative stress, thereby promoting cardiomyocyte death. By using novel genetic animal models and newly developed small-molecule TNNI3K inhibitors, we demonstrate that TNNI3K-mediated I/R injury occurs through impaired mitochondrial function and is in part dependent on p38 MAPK. Herein we discuss the emerging role of TNNI3K as a promising new drug target to limit the I/R-induced myocardial injury. We will also examine the underlying mechanisms that drive the profoundly reduced infarct size in mice in which TNNI3K is specifically deleted in cardiomyocytes. Since TNNI3K is a cardiac-specific kinase, it could be an ideal molecular target since inhibiting it would have little or no effect on other organ systems, a serious problem associated with the use of kinase inhibitors targeting kinases that are more widely expressed. PMID:24899531

  7. 40 CFR 156.85 - Non-target organisms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Non-target organisms. 156.85 Section 156.85 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Non-target organisms. (a) Requirement. Where a hazard exists to non-target organisms, EPA may require...

  8. 40 CFR 156.85 - Non-target organisms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Non-target organisms. 156.85 Section 156.85 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Non-target organisms. (a) Requirement. Where a hazard exists to non-target organisms, EPA may require...

  9. Oligodeoxynucleotide Probes for Detecting Intact Cells

    NASA Technical Reports Server (NTRS)

    Rosson, Reinhardt A.; Maurina-Brunker, Julie; Langley, Kim; Pynnonen, Christine M.

    2004-01-01

    A rapid, sensitive test using chemiluminescent oligodeoxynucleotide probes has been developed for detecting, identifying, and enumerating intact cells. The test is intended especially for use in detecting and enumerating bacteria and yeasts in potable water. As in related tests that have been developed recently for similar purposes, the oligodeoxynucleotide probes used in this test are typically targeted at either singlecopy deoxyribonucleic acid (DNA) genes (such as virulence genes) or the multiple copies (10,000 to 50,000 copies per cell) of 16S ribosomal ribonucleic acids (rRNAs). Some of those tests involve radioisotope or fluorescent labeling of the probes for reporting hybridization of probes to target nucleic acids. Others of those tests involve labeling with enzymes plus the use of chemiluminescent or chromogenic substrates to report hybridization via color or the emission of light, respectively. The present test is of the last-mentioned type. The chemiluminescence in the present test can be detected easily with relatively simple instrumentation. In developing the present test, the hybridization approach was chosen because hybridization techniques are very specific. Hybridization detects stable, inheritable genetic targets within microorganisms. These targets are not dependent on products of gene expression that can vary with growth conditions or physiological states of organisms in test samples. Therefore, unique probes can be designed to detect and identify specific genera or species of bacteria or yeast (in terms of rRNA target sequences) or can be designed to detect and identify virulence genes (genomic target sequences). Because of the inherent specificity of this system, there are few problems of cross-reactivity. Hybridization tests are rapid, but hybridization tests now available commercially lack sensitivity; typically, between 10(exp 6) and 10(exp 7) cells of the target organism are needed to ensure a reliable test. Consequently, the numbers of target bacteria in samples are usually amplified by overnight pre-enrichment growth. These tests are usually performed in laboratories by skilled technicians. The present test was designed to overcome the shortcomings of the commercial hybridization tests. The figure summarizes the major steps of the test. It is important to emphasize that the hybridization process used in this test differs from that of other hybridization tests in that it does not extract target nucleic acids. This process is based on intact-cell hybridization (so-called in situ hybridization ), wherein the intact cells act as immobilizing agents. The cells are identified and enumerated by measuring the chemiluminescence emitted from alkaline phosphatase-probe (AP-probe) hybridization; the chemiluminescence is detected or measured by use of photographic film or a luminometer, respectively.

  10. Rapid and reliable detection and identification of GM events using multiplex PCR coupled with oligonucleotide microarray.

    PubMed

    Xu, Xiaodan; Li, Yingcong; Zhao, Heng; Wen, Si-yuan; Wang, Sheng-qi; Huang, Jian; Huang, Kun-lun; Luo, Yun-bo

    2005-05-18

    To devise a rapid and reliable method for the detection and identification of genetically modified (GM) events, we developed a multiplex polymerase chain reaction (PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a single reaction. The system included probes for screening gene, species reference gene, specific gene, construct-specific gene, event-specific gene, and internal and negative control genes. 18S rRNA was combined with species reference genes as internal controls to assess the efficiency of all reactions and to eliminate false negatives. Two sets of the multiplex PCR system were used to amplify four and five targets, respectively. Eight different structure genes could be detected and identified simultaneously for Roundup Ready soybean in a single microarray. The microarray specificity was validated by its ability to discriminate two GM maizes Bt176 and Bt11. The advantages of this method are its high specificity and greatly reduced false-positives and -negatives. The multiplex PCR coupled with microarray technology presented here is a rapid and reliable tool for the simultaneous detection of GM organism ingredients.

  11. Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131I and 86Y/90Y antibodies.

    PubMed

    Lopci, Egesta; Chiti, Arturo; Castellani, Maria Rita; Pepe, Giovanna; Antunovic, Lidija; Fanti, Stefano; Bombardieri, Emilio

    2011-05-01

    The technological advances in imaging and production of radiopharmaceuticals are driving an innovative way of evaluating the targets for antineoplastic therapies. Besides the use of imaging to better delineate the volume of external beam radiation therapy in oncology, modern imaging techniques are able to identify targets for highly specific medical therapies, using chemotherapeutic drugs and antiangiogenesis molecules. Moreover, radionuclide imaging is able to select targets for radionuclide therapy and to give the way to in vivo dose calculation to target tissues and to critical organs. This contribution reports the main studies published on matched pairs dosimetry with (124)I/(131)I- and (86)Y/(90)Y-labelled radiopharmaceuticals, with an emphasis on metaiodobenzylguanidine (MIBG) and monoclonal antibodies.

  12. Drug delivery across length scales.

    PubMed

    Delcassian, Derfogail; Patel, Asha K; Cortinas, Abel B; Langer, Robert

    2018-02-20

    Over the last century, there has been a dramatic change in the nature of therapeutic, biologically active molecules available to treat disease. Therapies have evolved from extracted natural products towards rationally designed biomolecules, including small molecules, engineered proteins and nucleic acids. The use of potent drugs which target specific organs, cells or biochemical pathways, necessitates new tools which can enable controlled delivery and dosing of these therapeutics to their biological targets. Here, we review the miniaturisation of drug delivery systems from the macro to nano-scale, focussing on controlled dosing and controlled targeting as two key parameters in drug delivery device design. We describe how the miniaturisation of these devices enables the move from repeated, systemic dosing, to on-demand, targeted delivery of therapeutic drugs and highlight areas of focus for the future.

  13. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.

    PubMed

    Masood, Farha

    2016-03-01

    A targeted delivery system based on the polymeric nanoparticles as a drug carrier represents a marvelous avenue for cancer therapy. The pivotal characteristics of this system include biodegradability, biocompatibility, non-toxicity, prolonged circulation and a wide payload spectrum of a therapeutic agent. Other outstanding features are their distinctive size and shape properties for tissue penetration via an active and passive targeting, specific cellular/subcellular trafficking pathways and facile control of cargo release by sophisticated material engineering. In this review, the current implications of encapsulation of anticancer agents within polyhydroxyalkanoates, poly-(lactic-co-glycolic acid) and cyclodextrin based nanoparticles to precisely target the tumor site, i.e., cell, tissue and organ are highlighted. Furthermore, the promising perspectives in this emerging field are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Printed electronic on flexible and glass substrates

    NASA Astrophysics Data System (ADS)

    Futera, Konrad; Jakubowska, Małgorzata; Kozioł, Grażyna

    2010-09-01

    Organic electronics is a platform technology that enables multiple applications based on organic electronics but varied in specifications. Organic electronics is based on the combination of new materials and cost-effective, large area production processes that provide new fields of application. Organic electronic by its size, weight, flexibility and environmental friendliness electronics enables low cost production of numerous electrical components and provides for such promising fields of application as: intelligent packaging, low cost RFID, flexible solar cells, disposable diagnostic devices or games, and printed batteries [1]. The paper presents results of inkjetted electronics elements on flexible and glass substrates. The investigations was target on characterizing shape, surface and geometry of printed structures. Variety of substrates were investigated, within some, low cost, non specialized substrate, design for other purposes than organic electronic.

  15. Detection of nucleotide-specific CRISPR/Cas9 modified alleles using multiplex ligation detection

    PubMed Central

    KC, R.; Srivastava, A.; Wilkowski, J. M.; Richter, C. E.; Shavit, J. A.; Burke, D. T.; Bielas, S. L.

    2016-01-01

    CRISPR/Cas9 genome-editing has emerged as a powerful tool to create mutant alleles in model organisms. However, the precision with which these mutations are created has introduced a new set of complications for genotyping and colony management. Traditional gene-targeting approaches in many experimental organisms incorporated exogenous DNA and/or allele specific sequence that allow for genotyping strategies based on binary readout of PCR product amplification and size selection. In contrast, alleles created by non-homologous end-joining (NHEJ) repair of double-stranded DNA breaks generated by Cas9 are much less amenable to such strategies. Here we describe a novel genotyping strategy that is cost effective, sequence specific and allows for accurate and efficient multiplexing of small insertion-deletions and single-nucleotide variants characteristic of CRISPR/Cas9 edited alleles. We show that ligation detection reaction (LDR) can be used to generate products that are sequence specific and uniquely detected by product size and/or fluorescent tags. The method works independently of the model organism and will be useful for colony management as mutant alleles differing by a few nucleotides become more prevalent in experimental animal colonies. PMID:27557703

  16. [Autoimmune thyroid disease and other non-endocrine autoimmune diseases].

    PubMed

    Dilas, Ljiljana Todorović; Icin, Tijana; Paro, Jovanka Novaković; Bajkin, Ivana

    2011-01-01

    Autoimmune diseases are chronic conditions initiated by the loss of immunological tolerance to self-antigens. They constitute heterogeneous group of disorders, in which multiple alterations in the immune system result in a spectrum of syndromes that either target specific organs or affect the body systematically. Recent epidemiological studies have shown a possible shift of one autoimmune disease to another or the fact that more than one autoimmune disease may coexist in a single patient or in the same family. Numerous autoimmune diseases have been shown to coexist frequently with thyroid autoimmune diseases. AUTOIMMNUNE THYROID DISEASE AND OTHER ORGAN SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: This part of the study reviews the prevalence of autoimmune thyroid disease coexisting with: pernicious anaemia, vitiligo, celiac disease, autoimmune liver disease, miastenia gravis, alopecia areata and sclerosis multiplex, and several recommendations for screening have been given. AUTOIMMUNE THYROID DISEASE AND OTHER ORGAN NON-SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: Special attention is given to the correlation between autoimmune thyroid disease and rheumatoid arthritis, systemic lupus erythematosus, syndrome Sjögren, systemic sclerosis and mixed connective tissue disease. Screening for autoimmune thyroid diseases should be recommended in everyday clinical practice, in patients with primary organ-specific or organ non-specific autoimmune disease. Otherwise, in patients with primary thyroid autoimmune disease, there is no good reason of seeking for all other autoimmune diseases, although these patients have a greater risk of developing other autoimmune disease. Economic aspects of medicine require further analyzing of these data, from cost/benefit point of view to justified either mandatory screening or medical practitioner judgment.

  17. Diversity and Gene Expression of Phosphatase Genes Provide Insight into Soil Phosphorus Dynamics in a New Zealand Managed Grassland

    NASA Astrophysics Data System (ADS)

    Dunfield, K. E.; Gaiero, J. R.; Condron, L.

    2017-12-01

    Healthy and diverse communities of soil organisms influence key soil ecosystem services such as carbon sequestration, water quality protection, climate regulation and nutrient cycling. Microbially driven mineralization of organic phosphorus is an important contributor to plant available inorganic orthophosphates. In acidic soils, microbes produce non-specific acid phosphatases (NSAPs) which act on common forms of organic phosphorus (P). Our current understanding of P turnover in soils has been limited by lack of research tools capable of targeting these genes. Thus, we developed a set of oligonucleotide PCR primers that targeted bacteria with the genetic potential for acid phosphatase production. A long term randomized-block pasture trial was sampled following 22 years of continued aerial biomass removal and retention. Primers were used to target genes encoding alkaline phosphatase (phoD) and the three classes (CAAP, CBAP, CCAP) of non-specific acid phosphatases. PCR amplicons targeting total genes and gene transcripts were sequenced using Illumina MiSeq to understand the diversity of the bacterial phosphatase producing communities. In general, the majority of operational taxonomic units (OTUs) were shared across both treatments and across metagenomes and transcriptomes. However, analysis of DNA OTUs revealed significantly different communities driven by treatment differences (P < 0.05). Transcript expression was highest in the removed biomass treatment which corresponded the reduced Olsen P levels (15 vs. 36 mg kg-1 in retained treatment). Acid phosphatase activity was measured in all samples, and found to be highest in the biomass retained treatment (16.8 vs. 11.4 µmol g-1 dry soil h-1), likely elevated due to plant-derived enzymes; however, was still correlated to bacterial gene abundances. Overall, the phosphatase producing microbial communities responded to the effect of consistent P limitation as expected, through alteration in the composition of the community structure and through increased levels of gene expression of the phosphatase genes.

  18. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.

    PubMed

    Yin, L; Maddison, L A; Chen, W

    2016-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system is a powerful tool for genome editing in numerous organisms. However, the system is typically used for gene editing throughout the entire organism. Tissue and temporal specific mutagenesis is often desirable to determine gene function in a specific stage or tissue and to bypass undesired consequences of global mutations. We have developed the CRISPR/Cas system for conditional mutagenesis in transgenic zebrafish using tissue-specific and/or inducible expression of Cas9 and U6-driven expression of sgRNA. To allow mutagenesis of multiple targets, we have isolated four distinct U6 promoters and designed Golden Gate vectors to easily assemble transgenes with multiple sgRNAs. We provide experimental details on the reagents and applications for multiplex conditional mutagenesis in zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The consequences of sequence erosion in the evolution of recombination hotspots.

    PubMed

    Tiemann-Boege, Irene; Schwarz, Theresa; Striedner, Yasmin; Heissl, Angelika

    2017-12-19

    Meiosis is initiated by a double-strand break (DSB) introduced in the DNA by a highly controlled process that is repaired by recombination. In many organisms, recombination occurs at specific and narrow regions of the genome, known as recombination hotspots, which overlap with regions enriched for DSBs. In recent years, it has been demonstrated that conversions and mutations resulting from the repair of DSBs lead to a rapid sequence evolution at recombination hotspots eroding target sites for DSBs. We still do not fully understand the effect of this erosion in the recombination activity, but evidence has shown that the binding of trans -acting factors like PRDM9 is affected. PRDM9 is a meiosis-specific, multi-domain protein that recognizes DNA target motifs by its zinc finger domain and directs DSBs to these target sites. Here we discuss the changes in affinity of PRDM9 to eroded recognition sequences, and explain how these changes in affinity of PRDM9 can affect recombination, leading sometimes to sterility in the context of hybrid crosses. We also present experimental data showing that DNA methylation reduces PRDM9 binding in vitro Finally, we discuss PRDM9-independent hotspots, posing the question how these hotspots evolve and change with sequence erosion.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'. © 2017 The Authors.

  20. Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate.

    PubMed

    Dawes, H E; Berlin, D S; Lapidus, D M; Nusbaum, C; Davis, T L; Meyer, B J

    1999-06-11

    In many organisms, master control genes coordinately regulate sex-specific aspects of development. SDC-2 was shown to induce hermaphrodite sexual differentiation and activate X chromosome dosage compensation in Caenorhabditis elegans. To control these distinct processes, SDC-2 acts as a strong gene-specific repressor and a weaker chromosome-wide repressor. To initiate hermaphrodite development, SDC-2 associates with the promoter of the male sex-determining gene her-1 to repress its transcription. To activate dosage compensation, SDC-2 triggers assembly of a specialized protein complex exclusively on hermaphrodite X chromosomes to reduce gene expression by half. SDC-2 can localize to X chromosomes without other components of the dosage compensation complex, suggesting that SDC-2 targets dosage compensation machinery to X chromosomes.

  1. Retinal ganglion cell maps in the brain: implications for visual processing.

    PubMed

    Dhande, Onkar S; Huberman, Andrew D

    2014-02-01

    Everything the brain knows about the content of the visual world is built from the spiking activity of retinal ganglion cells (RGCs). As the output neurons of the eye, RGCs include ∼20 different subtypes, each responding best to a specific feature in the visual scene. Here we discuss recent advances in identifying where different RGC subtypes route visual information in the brain, including which targets they connect to and how their organization within those targets influences visual processing. We also highlight examples where causal links have been established between specific RGC subtypes, their maps of central connections and defined aspects of light-mediated behavior and we suggest the use of techniques that stand to extend these sorts of analyses to circuits underlying visual perception. Copyright © 2013. Published by Elsevier Ltd.

  2. CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects.

    PubMed

    de la Fuente-Núñez, César; Lu, Timothy K

    2017-02-20

    The development of CRISPR-Cas9 technology has revolutionized our ability to edit DNA and to modulate expression levels of genes of interest, thus providing powerful tools to accelerate the precise engineering of a wide range of organisms. In addition, the CRISPR-Cas system can be harnessed to design "precision" antimicrobials that target bacterial pathogens in a DNA sequence-specific manner. This capability will enable killing of drug-resistant microbes by selectively targeting genes involved in antibiotic resistance, biofilm formation and virulence. Here, we review the origins and mechanistic basis of CRISPR-Cas systems, discuss how this technology can be leveraged to provide a range of applications in both eukaryotic and prokaryotic systems, and finish by outlining limitations and future prospects.

  3. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma

    PubMed Central

    Varshosaz, Jaleh; Farzan, Maryam

    2015-01-01

    Hepatocellular carcinoma (HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein, ganglioside GM1 cell surface ligand, epidermal growth factor receptor receptors, monoclonal antibodies, retinoic acid receptors, integrin receptors targeted by Arg-Gly-Asp peptide, folate, and transferrin receptors are the most widely studied cell surface receptors which are used for the site specific delivery of drugs and siRNA-based therapeutics in HCC and discussed in detail in this article. PMID:26576089

  4. Guidance for Subaqueous Dredged Material Capping.

    DTIC Science & Technology

    1998-06-01

    from Ambrose Channel , over the contaminated sediments. At least two intermediate sur- veys and additional capping were required before capping was...organisms to a given bioturbation depth; reducing contami- nant flux rates to achieve specific sediment, pore water, or water column target...bathymetry, bottom slopes, cur- rents, water depths, water column density stratification, erosion/accretion trends, proximity to navigation channels

  5. Get Organized! Time Management for School Leaders

    ERIC Educational Resources Information Center

    Buck, Frank

    2008-01-01

    Too often, time-management books target the business executive. Although it is true that those in the educational arena share many of the same challenges, it is also true that schools are unique places. This book is written for school leaders. Its scenarios specifically address the day-to-day situations school leaders face on a regular basis. This…

  6. Assessing the Vulnerability of Private and Public College Campuses in New Jersey to Domestic Terrorist Attacks

    ERIC Educational Resources Information Center

    Drew, Christopher James

    2016-01-01

    Colleges and universities are among the United States of America's most vulnerable and exploitable targets for individuals and organizations seeking to cause harm and fear. This study specifically addressed the various vulnerabilities identified by those in charge of college campus public safety in New Jersey. The information gathered was very…

  7. Research and Development Project Summaries, October 1991

    DTIC Science & Technology

    1991-10-01

    delivery methods, training cost reduction, demonstration of technology’ effectiveness, and the reduction of acquisition risk . The majority of the work...demonstrations, risk reduction developments, and cost-effectiveness investigations in simulator and training technologzv. This advanced development program is a...systems. The program is organized around specific demonstration tasks that target critical technical risks that confront future weapons system

  8. The Effect of Implicit and Explicit Rules on Customer Greeting and Productivity in a Retail Organization

    ERIC Educational Resources Information Center

    Johnson, Rebecca A.; Houmanfar, Ramona; Smith, Gregory S.

    2010-01-01

    The purpose of this study was to determine the effects of presenting organizational information through implicit and explicit rules on sales-related target behaviors in a retail setting. Results indicated that when organizational information was presented in a specific form, productivity was increased and maintained longer than when presented in…

  9. The genome editing revolution: A CRISPR-Cas TALE off-target story.

    PubMed

    Stella, Stefano; Montoya, Guillermo

    2016-07-01

    In the last 10 years, we have witnessed a blooming of targeted genome editing systems and applications. The area was revolutionized by the discovery and characterization of the transcription activator-like effector proteins, which are easier to engineer to target new DNA sequences than the previously available DNA binding templates, zinc fingers and meganucleases. Recently, the area experimented a quantum leap because of the introduction of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system (clustered regularly interspaced short palindromic sequence). This ribonucleoprotein complex protects bacteria from invading DNAs, and it was adapted to be used in genome editing. The CRISPR ribonucleic acid (RNA) molecule guides to the specific DNA site the Cas9 nuclease to cleave the DNA target. Two years and more than 1000 publications later, the CRISPR-Cas system has become the main tool for genome editing in many laboratories. Currently the targeted genome editing technology has been used in many fields and may be a possible approach for human gene therapy. Furthermore, it can also be used to modifying the genomes of model organisms for studying human pathways or to improve key organisms for biotechnological applications, such as plants, livestock genome as well as yeasts and bacterial strains. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  10. A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP).

    PubMed

    Bitar, A; Lisbona, A; Thedrez, P; Sai Maurel, C; Le Forestier, D; Barbet, J; Bardies, M

    2007-02-21

    Murine models are useful for targeted radiotherapy pre-clinical experiments. These models can help to assess the potential interest of new radiopharmaceuticals. In this study, we developed a voxel-based mouse for dosimetric estimates. A female nude mouse (30 g) was frozen and cut into slices. High-resolution digital photographs were taken directly on the frozen block after each section. Images were segmented manually. Monoenergetic photon or electron sources were simulated using the MCNP4c2 Monte Carlo code for each source organ, in order to give tables of S-factors (in Gy Bq-1 s-1) for all target organs. Results obtained from monoenergetic particles were then used to generate S-factors for several radionuclides of potential interest in targeted radiotherapy. Thirteen source and 25 target regions were considered in this study. For each source region, 16 photon and 16 electron energies were simulated. Absorbed fractions, specific absorbed fractions and S-factors were calculated for 16 radionuclides of interest for targeted radiotherapy. The results obtained generally agree well with data published previously. For electron energies ranging from 0.1 to 2.5 MeV, the self-absorbed fraction varies from 0.98 to 0.376 for the liver, and from 0.89 to 0.04 for the thyroid. Electrons cannot be considered as 'non-penetrating' radiation for energies above 0.5 MeV for mouse organs. This observation can be generalized to radionuclides: for example, the beta self-absorbed fraction for the thyroid was 0.616 for I-131; absorbed fractions for Y-90 for left kidney-to-left kidney and for left kidney-to-spleen were 0.486 and 0.058, respectively. Our voxel-based mouse allowed us to generate a dosimetric database for use in preclinical targeted radiotherapy experiments.

  11. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs

    PubMed Central

    Shu, Yi; Haque, Farzin; Shu, Dan; Li, Wei; Zhu, Zhenqi; Kotb, Malak; Lyubchenko, Yuri; Guo, Peixuan

    2013-01-01

    Due to structural flexibility, RNase sensitivity, and serum instability, RNA nanoparticles with concrete shapes for in vivo application remain challenging to construct. Here we report the construction of 14 RNA nanoparticles with solid shapes for targeting cancers specifically. These RNA nanoparticles were resistant to RNase degradation, stable in serum for >36 h, and stable in vivo after systemic injection. By applying RNA nanotechnology and exemplifying with these 14 RNA nanoparticles, we have established the technology and developed “toolkits” utilizing a variety of principles to construct RNA architectures with diverse shapes and angles. The structure elements of phi29 motor pRNA were utilized for fabrication of dimers, twins, trimers, triplets, tetramers, quadruplets, pentamers, hexamers, heptamers, and other higher-order oligomers, as well as branched diverse architectures via hand-in-hand, foot-to-foot, and arm-on-arm interactions. These novel RNA nanostructures harbor resourceful functionalities for numerous applications in nanotechnology and medicine. It was found that all incorporated functional modules, such as siRNA, ribozymes, aptamers, and other functionalities, folded correctly and functioned independently within the nanoparticles. The incorporation of all functionalities was achieved prior, but not subsequent, to the assembly of the RNA nanoparticles, thus ensuring the production of homogeneous therapeutic nanoparticles. More importantly, upon systemic injection, these RNA nanoparticles targeted cancer exclusively in vivo without accumulation in normal organs and tissues. These findings open a new territory for cancer targeting and treatment. The versatility and diversity in structure and function derived from one biological RNA molecule implies immense potential concealed within the RNA nanotechnology field. PMID:23604636

  12. [Amalgam. IV. Metabolism of mercury].

    PubMed

    Gladys, S; van Meerbeek, B; Vanherle, G; Lambrechts, P

    1993-04-01

    After absorption in the body by four ways, each type of mercury undergoes a specific metabolism. Elementary mercury as mercury vapour becomes rapidly oxidized to Hg2+ and, afterwards, is metabolized as an inorganic mercurial compound. From the blood circulation mercury reaches target organs like the kidneys, the central nervous system, the liver and the hypophysis, in which mercury accumulates. The retention time varies by organ and is longest in the brain. Mercury is mainly eliminated with urine and faeces, to a lesser degree with transpiration and mother's milk and sometimes by respiration.

  13. Basics and applications of genome editing technology.

    PubMed

    Yamamoto, Takashi; Sakamoto, Naoaki

    2016-01-01

    Genome editing with programmable site-specific nucleases is an emerging technology that enables the manipulation of targeted genes in many organisms and cell lines. Since the development of the CRISPR-Cas9 system in 2012, genome editing has rapidly become an indispensable technology for all life science researchers, applicable in various fields. In this seminar, we will introduce the basics of genome editing and focus on the recent development of genome editing tools and technologies for the modification of various organisms and discuss future directions of the genome editing research field, from basic to medical applications.

  14. Pig Organ Energy Loss Comparison Experiments Using BBs.

    PubMed

    Maiden, Nicholas R; Musgrave, Ian; Fisk, Wesley; Byard, Roger W

    2016-05-01

    Torso models for ballistics research require that the mechanical properties of simulant materials must match the heterogeneous nature of tissues/organs within the human thorax/abdomen. A series of energy loss experiments were conducted on fresh porcine organs/tissues at room temperature and 37°C, using steel 4.5 mm BBs fired from a Daisy(®) brand air rifle. They were compared to FBI and NATO specification ordnance gelatin and a candidate surrogate material called Simulant "A". Two CED M2 chronographs measured BB velocity. The resulting energy loss was established using KE = 1/2 mv² before and after target perforation. The combined results at room temperature and 37°C were as follows: FBI specification gelatin was similar (p > 0.05) to heart and lung, spleen was similar to NATO specification gelatin, Simulant "A" was similar to hindquarter muscle, and hindquarter muscle, kidney, and spleen were similar to each other regarding energy retardation. These results can be used as a basis for the development of simulant materials to create an anatomically correct heterogeneous model. © 2016 American Academy of Forensic Sciences.

  15. Obscurin is required for ankyrinB-dependent dystrophin localization and sarcolemma integrity

    PubMed Central

    Randazzo, Davide; Giacomello, Emiliana; Lorenzini, Stefania; Rossi, Daniela; Pierantozzi, Enrico; Blaauw, Bert; Reggiani, Carlo; Lange, Stephan; Peter, Angela K.; Chen, Ju

    2013-01-01

    Obscurin is a large myofibrillar protein that contains several interacting modules, one of which mediates binding to muscle-specific ankyrins. Interaction between obscurin and the muscle-specific ankyrin sAnk1.5 regulates the organization of the sarcoplasmic reticulum in striated muscles. Additional muscle-specific ankyrin isoforms, ankB and ankG, are localized at the subsarcolemma level, at which they contribute to the organization of dystrophin and β-dystroglycan at costameres. In this paper, we report that in mice deficient for obscurin, ankB was displaced from its localization at the M band, whereas localization of ankG at the Z disk was not affected. In obscurin KO mice, localization at costameres of dystrophin, but not of β-dystroglycan, was altered, and the subsarcolemma microtubule cytoskeleton was disrupted. In addition, these mutant mice displayed marked sarcolemmal fragility and reduced muscle exercise tolerance. Altogether, the results support a model in which obscurin, by targeting ankB at the M band, contributes to the organization of subsarcolemma microtubules, localization of dystrophin at costameres, and maintenance of sarcolemmal integrity. PMID:23420875

  16. Beyond Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon Projection Patterns in Rat Vibrissal Cortex

    PubMed Central

    Narayanan, Rajeevan T.; Egger, Robert; Johnson, Andrew S.; Mansvelder, Huibert D.; Sakmann, Bert; de Kock, Christiaan P.J.; Oberlaender, Marcel

    2015-01-01

    Vertical thalamocortical afferents give rise to the elementary functional units of sensory cortex, cortical columns. Principles that underlie communication between columns remain however unknown. Here we unravel these by reconstructing in vivo-labeled neurons from all excitatory cell types in the vibrissal part of rat primary somatosensory cortex (vS1). Integrating the morphologies into an exact 3D model of vS1 revealed that the majority of intracortical (IC) axons project far beyond the borders of the principal column. We defined the corresponding innervation volume as the IC-unit. Deconstructing this structural cortical unit into its cell type-specific components, we found asymmetric projections that innervate columns of either the same whisker row or arc, and which subdivide vS1 into 2 orthogonal [supra-]granular and infragranular strata. We show that such organization could be most effective for encoding multi whisker inputs. Communication between columns is thus organized by multiple highly specific horizontal projection patterns, rendering IC-units as the primary structural entities for processing complex sensory stimuli. PMID:25838038

  17. Intraperitoneal administration of tumor-targeting Salmonella typhimurium A1-R inhibits disseminated human ovarian cancer and extends survival in nude mice

    PubMed Central

    Zhang, Yong; Zhao, Ming; Yano, Shuya; Uehara, Fuminari; Yamamoto, Mako; Hiroshima, Yukihiko; Toneri, Makoto; Bouvet, Michael; Matsubara, Hisahiro; Tsuchiya, Hiroyuki; Hoffman, Robert M.

    2015-01-01

    Peritoneal disseminated cancer is highly treatment resistant. We here report the efficacy of intraperitoneal (i.p.) administration of tumor-targeting Salmonella typhimurium A1-R in a nude mouse model of disseminated human ovarian cancer. The mouse model was established by intraperitoneal injection of the human ovarian cancer cell line SKOV3-GFP. Seven days after implantation, mice were treated with S. typhimurium A1-R via intravenous (i.v.) or i.p. administration at the same dose, 5×107 CFU, once per week. Both i.v. and i.p. treatments effected prolonged survival compared with the untreated control group (P=0.025 and P<0.001, respectively). However, i.p. treatment was less toxic than i.v. treatment. Tumor-specific targeting of S. typhimurium A1-R was confirmed with bacterial culture from tumors and various organs and tumor or organ colony formation after i.v. or i.p. injection. Selective tumor targeting was most effective with i.p. administration. The results of the present study show S. typhimurium A1-R has promising clinical potential for disseminated ovarian cancer, especially via i.p. administration. PMID:25957417

  18. Analysis of microRNA expression and function.

    PubMed

    Van Wynsberghe, Priscilla M; Chan, Shih-Peng; Slack, Frank J; Pasquinelli, Amy E

    2011-01-01

    Originally discovered in C. elegans, microRNAs (miRNAs) are small RNAs that regulate fundamental cellular processes in diverse organisms. MiRNAs are encoded within the genome and are initially transcribed as primary transcripts that can be several kilobases in length. Primary transcripts are successively cleaved by two RNase III enzymes, Drosha in the nucleus and Dicer in the cytoplasm, to produce ∼70 nucleotide (nt) long precursor miRNAs and 22 nt long mature miRNAs, respectively. Mature miRNAs regulate gene expression post-transcriptionally by imperfectly binding target mRNAs in association with the multiprotein RNA induced silencing complex (RISC). The conserved sequence, expression pattern, and function of some miRNAs across distinct species as well as the importance of specific miRNAs in many biological pathways have led to an explosion in the study of miRNA biogenesis, miRNA target identification, and miRNA target regulation. Many advances in our understanding of miRNA biology have come from studies in the powerful model organism C. elegans. This chapter reviews the current methods used in C. elegans to study miRNA biogenesis, small RNA populations, miRNA-protein complexes, and miRNA target regulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Cancer stem cell drugs target K-ras signaling in a stemness context

    PubMed Central

    Najumudeen, A K; Jaiswal, A; Lectez, B; Oetken-Lindholm, C; Guzmán, C; Siljamäki, E; Posada, I M D; Lacey, E; Aittokallio, T; Abankwa, D

    2016-01-01

    Cancer stem cells (CSCs) are considered to be responsible for treatment relapse and have therefore become a major target in cancer research. Salinomycin is the most established CSC inhibitor. However, its primary mechanistic target is still unclear, impeding the discovery of compounds with similar anti-CSC activity. Here, we show that salinomycin very specifically interferes with the activity of K-ras4B, but not H-ras, by disrupting its nanoscale membrane organization. We found that caveolae negatively regulate the sensitivity to this drug. On the basis of this novel mechanistic insight, we defined a K-ras-associated and stem cell-derived gene expression signature that predicts the drug response of cancer cells to salinomycin. Consistent with therapy resistance of CSC, 8% of tumor samples in the TCGA-database displayed our signature and were associated with a significantly higher mortality. Using our K-ras-specific screening platform, we identified several new candidate CSC drugs. Two of these, ophiobolin A and conglobatin A, possessed a similar or higher potency than salinomycin. Finally, we established that the most potent compound, ophiobolin A, exerts its K-ras4B-specific activity through inactivation of calmodulin. Our data suggest that specific interference with the K-ras4B/calmodulin interaction selectively inhibits CSC. PMID:26973241

  20. Subnuclear organization and trafficking of regulatory proteins: implications for biological control and cancer.

    PubMed

    Stein, G S; van Wijnen, A J; Stein, J L; Lian, J B; Montecino, M; Zaidi, K; Javed, A

    2000-01-01

    The regulated and regulatory components that interrelate nuclear structure and function must be experimentally established. A formidable challenge is to define further the control of transcription factor targeting to acceptor sites associated with the nuclear matrix. It will be important to determine whether acceptor proteins are associated with a pre-existing core-filament structural lattice or whether a compositely organized scaffold of regulatory factors is dynamically assembled. An inclusive model for all steps in the targeting of proteins to subnuclear sites cannot yet be proposed. However, this model must account for the apparent diversity of intranuclear targeting signals. It is also important to assess the extent to which regulatory discrimination is mediated by subnuclear domain-specific trafficking signals. Furthermore, the checkpoints that monitor subnuclear distribution of regulatory factors and the sorting steps that ensure both structural and functional fidelity of nuclear domains in which replication and expression of genes occur must be biochemically and mechanistically defined. There is emerging recognition that placement of regulatory components of gene expression must be temporally and spatially coordinated to facilitate biological control. The consequences of breaches in nuclear structure-function relationships are observed in an expanding series of diseases that include cancer [Weis et al., 1994; Rogaia et al., 1997; Yano et al., 1997; Rowley, 1998; Zeng et al., 1998; McNeil et al., 1999; Tao and Levine, 1999a] and neurological disorders [Skinner et al., 1997]. As the repertoire of architecture-associated regulatory factors and cofactors expands, workers in the field are becoming increasingly confident that nuclear organization contributes significantly to control of transcription. To gain increased appreciation for the complexities of subnuclear organization and gene regulation, we must continue to characterize mechanisms that direct regulatory proteins to specific transcription sites within the nucleus so that these proteins are in the right place at the right time. J. Cell. Biochem. Suppl. 35:84-92, 2000. Copyright 2001 Wiley-Liss, Inc.

  1. [Advances in CRISPR-Cas-mediated genome editing system in plants].

    PubMed

    Wang, Chun; Wang, Kejian

    2017-10-25

    Targeted genome editing technology is an important tool to study the function of genes and to modify organisms at the genetic level. Recently, CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins) system has emerged as an efficient tool for specific genome editing in animals and plants. CRISPR-Cas system uses CRISPR-associated endonuclease and a guide RNA to generate double-strand breaks at the target DNA site, subsequently leading to genetic modifications. CRISPR-Cas system has received widespread attention for manipulating the genomes with simple, easy and high specificity. This review summarizes recent advances of diverse applications of the CRISPR-Cas toolkit in plant research and crop breeding, including expanding the range of genome editing, precise editing of a target base, and efficient DNA-free genome editing technology. This review also discusses the potential challenges and application prospect in the future, and provides a useful reference for researchers who are interested in this field.

  2. Why Targeted Therapies are Necessary for Systemic Lupus Erythematosus

    PubMed Central

    Durcan, Laura; Petri, Michelle

    2016-01-01

    Systemic lupus erythematosus (SLE) continues to have important morbidity and accelerated mortality despite therapeutic advances. Targeted therapies offer the possibility of improved efficacy with fewer side-effects. Current management strategies rely heavily on non-specific immunosuppressive agents. Prednisone, in particular, is responsible for a considerable burden of later organ damage. There are a multitude of diverse mechanisms of disease activity, immunogenic abnormalities and clinical manifestations to take into consideration in SLE. Many targeted agents with robust mechanistic pre-clinical data and promising early phase studies have ultimately been disappointing in phase III randomized controlled studies. Recent efforts have focused on B cell therapies, in particular given the success of belimumab in clinical trials, with limited success. We remain optimistic regarding other specific therapies being evaluated including interferon alpha blockade. It is likely that in SLE, given the heterogeneity of the population involved, precision medicine is needed, rather than expecting that any single biologic will be universally effective. PMID:27497251

  3. SOX2 regulates common and specific stem cell features in the CNS and endoderm derived organs.

    PubMed

    Hagey, Daniel W; Klum, Susanne; Kurtsdotter, Idha; Zaouter, Cecile; Topcic, Danijal; Andersson, Olov; Bergsland, Maria; Muhr, Jonas

    2018-02-01

    Stem cells are defined by their capacities to self-renew and generate progeny of multiple lineages. The transcription factor SOX2 has key roles in the regulation of stem cell characteristics, but whether SOX2 achieves these functions through similar mechanisms in distinct stem cell populations is not known. To address this question, we performed RNA-seq and SOX2 ChIP-seq on embryonic mouse cortex, spinal cord, stomach and lung/esophagus. We demonstrate that, although SOX2 binds a similar motif in the different cell types, its target regions are primarily cell-type-specific and enriched for the distinct binding motifs of appropriately expressed interacting co-factors. Furthermore, cell-type-specific SOX2 binding in endodermal and neural cells is most often found around genes specifically expressed in the corresponding tissue. Consistent with this, we demonstrate that SOX2 target regions can act as cis-regulatory modules capable of directing reporter expression to appropriate tissues in a zebrafish reporter assay. In contrast, SOX2 binding sites found in both endodermal and neural tissues are associated with genes regulating general stem cell features, such as proliferation. Notably, we provide evidence that SOX2 regulates proliferation through conserved mechanisms and target genes in both germ layers examined. Together, these findings demonstrate how SOX2 simultaneously regulates cell-type-specific, as well as core transcriptional programs in neural and endodermal stem cells.

  4. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine

    PubMed Central

    Koning, Anne; Kuhnle, Gunter G.C.; Nagy, Peter; Bianco, Christopher L.; Pasch, Andreas; Wink, David A.; Fukuto, Jon M.; Jackson, Alan A.; van Goor, Harry; Olson, Kenneth R.

    2017-01-01

    Abstract Significance: Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. Critical Issues: To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. Future Directions: Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox Signal. 27, 684–712. PMID:28398072

  5. Targeted Deletion of Sox10 by Wnt1-cre Defects Neuronal Migration and Projection in the Mouse Inner Ear

    PubMed Central

    Mao, YanYan; Reiprich, Simone; Wegner, Michael; Fritzsch, Bernd

    2014-01-01

    Sensory nerves of the brainstem are mostly composed of placode-derived neurons, neural crest-derived neurons and neural crest-derived Schwann cells. This mixed origin of cells has made it difficult to dissect interdependence for fiber guidance. Inner ear-derived neurons are known to connect to the brain after delayed loss of Schwann cells in ErbB2 mutants. However, the ErbB2 mutant related alterations in the ear and the brain compound interpretation of the data. We present here a new model to evaluate exclusively the effect of Schwann cell loss on inner ear innervation. Conditional deletion of the neural crest specific transcription factor, Sox10, using the rhombic lip/neural crest specific Wnt1-cre driver spares Sox10 expression in the ear. We confirm that neural crest-derived cells provide a stop signal for migrating spiral ganglion neurons. In the absence of Schwann cells, spiral ganglion neurons migrate into the center of the cochlea and even out of the ear toward the brain. Spiral ganglion neuron afferent processes reach the organ of Corti, but many afferent fibers bypass the organ of Corti to enter the lateral wall of the cochlea. In contrast to this peripheral disorganization, the central projection to cochlear nuclei is normal. Compared to ErbB2 mutants, conditional Sox10 mutants have limited cell death in spiral ganglion neurons, indicating that the absence of Schwann cells alone contributes little to the embryonic survival of neurons. These data suggest that neural crest-derived cells are dispensable for all central and some peripheral targeting of inner ear neurons. However, Schwann cells provide a stop signal for migratory spiral ganglion neurons and facilitate proper targeting of the organ of Corti by spiral ganglion afferents. PMID:24718611

  6. Unique patterns of organization and migration of FGF-expressing cells during Drosophila morphogenesis.

    PubMed

    Du, Lijuan; Zhou, Amy; Patel, Akshay; Rao, Mishal; Anderson, Kelsey; Roy, Sougata

    2017-07-01

    Fibroblast growth factors (FGF) are essential signaling proteins that regulate diverse cellular functions in developmental and metabolic processes. In Drosophila, the FGF homolog, branchless (bnl) is expressed in a dynamic and spatiotemporally restricted pattern to induce branching morphogenesis of the trachea, which expresses the Bnl-receptor, breathless (btl). Here we have developed a new strategy to determine bnl- expressing cells and study their interactions with the btl-expressing cells in the range of tissue patterning during Drosophila development. To enable targeted gene expression specifically in the bnl expressing cells, a new LexA based bnl enhancer trap line was generated using CRISPR/Cas9 based genome editing. Analyses of the spatiotemporal expression of the reporter in various embryonic stages, larval or adult tissues and in metabolic hypoxia, confirmed its target specificity and versatility. With this tool, new bnl expressing cells, their unique organization and functional interactions with the btl-expressing cells were uncovered in a larval tracheoblast niche in the leg imaginal discs, in larval photoreceptors of the developing retina, and in the embryonic central nervous system. The targeted expression system also facilitated live imaging of simultaneously labeled Bnl sources and tracheal cells, which revealed a unique morphogenetic movement of the embryonic bnl- source. Migration of bnl- expressing cells may create a dynamic spatiotemporal pattern of the signal source necessary for the directional growth of the tracheal branch. The genetic tool and the comprehensive profile of expression, organization, and activity of various types of bnl-expressing cells described in this study provided us with an important foundation for future research investigating the mechanisms underlying Bnl signaling in tissue morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Probing nano-organization of astroglia with multi-color super-resolution microscopy.

    PubMed

    Heller, Janosch P; Michaluk, Piotr; Sugao, Kohtaroh; Rusakov, Dmitri A

    2017-11-01

    Astroglia are essential for brain development, homeostasis, and metabolic support. They also contribute actively to the formation and regulation of synaptic circuits, by successfully handling, integrating, and propagating physiological signals of neural networks. The latter occurs mainly by engaging a versatile mechanism of internal Ca 2+ fluctuations and regenerative waves prompting targeted release of signaling molecules into the extracellular space. Astroglia also show substantial structural plasticity associated with age- and use-dependent changes in neural circuitry. However, the underlying cellular mechanisms are poorly understood, mainly because of the extraordinary complex morphology of astroglial compartments on the nanoscopic scale. This complexity largely prevents direct experimental access to astroglial processes, most of which are beyond the diffraction limit of optical microscopy. Here we employed super-resolution microscopy (direct stochastic optical reconstruction microscopy; dSTORM), to visualize astroglial organization on the nanoscale, in culture and in thin brain slices, as an initial step to understand the structural basis of astrocytic nano-physiology. We were able to follow nanoscopic morphology of GFAP-enriched astrocytes, which adapt a flattened shape in culture and a sponge-like structure in situ, with GFAP fibers of varied diameters. We also visualized nanoscopic astrocytic processes using the ubiquitous cytosolic astrocyte marker proteins S100β and glutamine synthetase. Finally, we overexpressed and imaged membrane-targeted pHluorin and lymphocyte-specific protein tyrosine kinase (N-terminal domain) -green fluorescent protein (lck-GFP), to better understand the molecular cascades underlying some common astroglia-targeted fluorescence imaging techniques. The results provide novel, albeit initial, insights into the cellular organization of astroglia on the nanoscale, paving the way for function-specific studies. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection

    PubMed Central

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR–HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants. PMID:28066408

  9. Glutamine Synthetase Is a Genetic Determinant of Cell Type–Specific Glutamine Independence in Breast Epithelia

    PubMed Central

    Kung, Hsiu-Ni; Marks, Jeffrey R.; Chi, Jen-Tsan

    2011-01-01

    Although significant variations in the metabolic profiles exist among different cells, little is understood in terms of genetic regulations of such cell type–specific metabolic phenotypes and nutrient requirements. While many cancer cells depend on exogenous glutamine for survival to justify the therapeutic targeting of glutamine metabolism, the mechanisms of glutamine dependence and likely response and resistance of such glutamine-targeting strategies among cancers are largely unknown. In this study, we have found a systematic variation in the glutamine dependence among breast tumor subtypes associated with mammary differentiation: basal- but not luminal-type breast cells are more glutamine-dependent and may be susceptible to glutamine-targeting therapeutics. Glutamine independence of luminal-type cells is associated mechanistically with lineage-specific expression of glutamine synthetase (GS). Luminal cells can also rescue basal cells in co-culture without glutamine, indicating a potential for glutamine symbiosis within breast ducts. The luminal-specific expression of GS is directly induced by GATA3 and represses glutaminase expression. Such distinct glutamine dependency and metabolic symbiosis is coupled with the acquisition of the GS and glutamine independence during the mammary differentiation program. Understanding the genetic circuitry governing distinct metabolic patterns is relevant to many symbiotic relationships among different cells and organisms. In addition, the ability of GS to predict patterns of glutamine metabolism and dependency among tumors is also crucial in the rational design and application of glutamine and other metabolic pathway targeted therapies. PMID:21852960

  10. Targeting Antigens to Dec-205 on Dendritic Cells Induces Immune Protection in Experimental Colitis in Mice

    PubMed Central

    Wadwa, Munisch; Klopfleisch, Robert; Buer, Jan; Westendorf, Astrid M.

    2016-01-01

    The endocytotic c-type lectin receptor DEC-205 is highly expressed on immature dendritic cells. In previous studies, it was shown that antigen-targeting to DEC-205 is a useful tool for the induction of antigen-specific Foxp3+ regulatory T cells and thereby can prevent inflammatory processes. However, whether this approach is sufficient to mediate tolerance in mucosal tissues like the gut is unknown. In this study, we established a new mouse model in which the adoptive transfer of naive hemagglutinin (HA)-specific CD4+Foxp3– T cells into VILLIN-HA transgenic mice leads to severe colitis. To analyze if antigen-targeting to DEC-205 could protect against inflammation of the gut, VILLIN-HA transgenic mice were injected with an antibody–antigen complex consisting of the immunogenic HA110–120 peptide coupled to an α-DEC-205 antibody (DEC-HA) before adoptive T cell transfer. DEC-HA-treated mice showed significantly less signs of intestinal inflammation as was demonstrated by reduced loss of body weight and histopathology in the gut. Strikingly, abrogated intestinal inflammation was mediated via the conversion of naive HA-specific CD4+Foxp3– T cells into HA-specific CD4+Foxp3+ regulatory T cells. In this study, we provide evidence that antigen-targeting to DEC-205 can be utilized for the induction of tolerance in mucosal organs that are confronted with large numbers of exogenous antigens. PMID:27141310

  11. The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications.

    PubMed

    Upadhyaya, Laxmi; Singh, Jay; Agarwal, Vishnu; Tewari, Ravi Prakash

    2014-07-28

    Over the last decade carboxymethyl chitosan (CMCS) has emerged as a promising biopolymer for the development of new drug delivery systems and improved scaffolds along with other tissue engineering devices for regenerative medicine that is currently one of the most rapidly growing fields in the life sciences. CMCS is amphiprotic ether, derived from chitosan, exhibiting enhanced aqueous solubility, excellent biocompatibility, controllable biodegradability, osteogenesis ability and numerous other outstanding physicochemical and biological properties. More strikingly, it can load hydrophobic drugs and displays strong bioactivity which highlight its suitability and extensive usage for preparing different drug delivery and tissue engineering formulations respectively. This review provides a comprehensive introduction to various types of CMCS based formulations for delivery of therapeutic agents and tissue regeneration and further describes their preparation procedures and applications in different tissues/organs. Detailed information of CMCS based nano/micro systems for targeted delivery of drugs with emphasis on cancer specific and organ specific drug delivery have been described. Further, we have discussed various CMCS based tissue engineering biomaterials along with their preparation procedures and applications in different tissues/organs. The article then, gives a brief account of therapy combining drug delivery and tissue engineering. Finally, identification of major challenges and opportunities for current and ongoing application of CMCS based systems in the field are summarised. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A process evaluation: Does recruitment for an exercise program through ethnically specific channels and key figures contribute to its reach and receptivity in ethnic minority mothers?

    PubMed Central

    2013-01-01

    Background Ethnic minority women from low-income countries who live in high-income countries are more physically inactive than ethnic majority women in those countries. At the same time, they can be harder to reach with health promotion programs. Targeting recruitment channels and execution to ethnic groups could increase reach and receptivity to program participation. We explored using ethnically specific channels and key figures to reach Ghanaian, Antillean, and Surinamese mothers with an invitation for an exercise program, and subsequently, to determine the mothers’ receptivity and participation. Methods We conducted a mixed methods process evaluation in Amsterdam, the Netherlands. To recruit mothers, we employed ethnically specific community organizations and ethnically matched key figures as recruiters over Dutch health educators. Reach and participation were measured using reply cards and the attendance records from the exercise programs. Observations were made of the recruitment process. We interviewed 14 key figures and 32 mothers to respond to the recruitment channel and recruiter used. Content analysis was used to analyze qualitative data. Results Recruitment through ethnically specific community channels was successful among Ghanaian mothers, but less so among Antillean and Surinamese mothers. The more close-knit an ethnic community was, retaining their own culture and having poorer comprehension of the Dutch language, the more likely we were to reach mothers through ethnically specific organizations. Furthermore, we found that using ethnically matched recruiters resulted in higher receptivity to the program and, among the Ghanaian mothers in particular, in greater participation. This was because the ethnically matched recruiter was a familiar, trusted person, a translator, and a motivator who was enthusiastic, encouraging, and able to adapt her message (targeting/tailoring). Using a health expert was preferred in order to increase the credibility and professionalism of the recruitment. Conclusions Recruitment for an exercise program through ethnically specific organizations seems to contribute to its reach, particularly in close-knit, highly organized ethnic communities with limited fluency in the local language. Using ethnically matched recruiters as motivator, translator, and trusted person seems to enhance receptivity of a health promotion program. An expert is likely to be needed for effective information delivery. PMID:23957695

  13. Phylum- and Class-Specific PCR Primers for General Microbial Community Analysis

    PubMed Central

    Blackwood, Christopher B.; Oaks, Adam; Buyer, Jeffrey S.

    2005-01-01

    Amplification of a particular DNA fragment from a mixture of organisms by PCR is a common first step in methods of examining microbial community structure. The use of group-specific primers in community DNA profiling applications can provide enhanced sensitivity and phylogenetic detail compared to domain-specific primers. Other uses for group-specific primers include quantitative PCR and library screening. The purpose of the present study was to develop several primer sets targeting commonly occurring and important groups. Primers specific for the 16S ribosomal sequences of Alphaproteobacteria, Betaproteobacteria, Bacilli, Actinobacteria, and Planctomycetes and for parts of both the 18S ribosomal sequence and the internal transcribed spacer region of Basidiomycota were examined. Primers were tested by comparison to sequences in the ARB 2003 database, and chosen primers were further tested by cloning and sequencing from soil community DNA. Eighty-five to 100% of the sequences obtained from clone libraries were found to be placed with the groups intended as targets, demonstrating the specificity of the primers under field conditions. It will be important to reevaluate primers over time because of the continual growth of sequence databases and revision of microbial taxonomy. PMID:16204538

  14. Development of a simple and rapid method for the specific identification of organism causing anthrax by slide latex agglutination.

    PubMed

    Sumithra, T G; Chaturvedi, V K; Gupta, P K; Sunita, S C; Rai, A K; Kutty, M V H; Laxmi, U; Murugan, M S

    2014-05-01

    A specific latex agglutination test (LAT) based on anti-PA (protective antigen) antibodies having detection limit of 5 × 10(4) formalin treated Bacillus anthracis cells or 110 ng of PA was optimized in this study. The optimized LAT could detect anthrax toxin in whole blood as well as in serum from the animal models of anthrax infection. The protocol is a simple and promising method for the specific detection of bacteria causing anthrax under routine laboratory, as well as in field, conditions without any special equipments or expertise. The article presents the first report of a latex agglutination test for the specific identification of the cultures of bacteria causing anthrax. As the test is targeting one of anthrax toxic protein (PA), this can also be used to determine virulence of suspected organisms. At the same time, the same LAT can be used directly on whole blood or sera samples under field conditions for the specific diagnosis of anthrax. © 2013 The Society for Applied Microbiology.

  15. ‘Multi-Epitope-Targeted’ Immune-Specific Therapy for a Multiple Sclerosis-Like Disease via Engineered Multi-Epitope Protein Is Superior to Peptides

    PubMed Central

    Zilkha-Falb, Rina; Yosef-Hemo, Reut; Cohen, Lydia; Ben-Nun, Avraham

    2011-01-01

    Antigen-induced peripheral tolerance is potentially one of the most efficient and specific therapeutic approaches for autoimmune diseases. Although highly effective in animal models, antigen-based strategies have not yet been translated into practicable human therapy, and several clinical trials using a single antigen or peptidic-epitope in multiple sclerosis (MS) yielded disappointing results. In these clinical trials, however, the apparent complexity and dynamics of the pathogenic autoimmunity associated with MS, which result from the multiplicity of potential target antigens and “epitope spread”, have not been sufficiently considered. Thus, targeting pathogenic T-cells reactive against a single antigen/epitope is unlikely to be sufficient; to be effective, immunospecific therapy to MS should logically neutralize concomitantly T-cells reactive against as many major target antigens/epitopes as possible. We investigated such “multi-epitope-targeting” approach in murine experimental autoimmune encephalomyelitis (EAE) associated with a single (“classical”) or multiple (“complex”) anti-myelin autoreactivities, using cocktail of different encephalitogenic peptides vis-a-vis artificial multi-epitope-protein (designated Y-MSPc) encompassing rationally selected MS-relevant epitopes of five major myelin antigens, as “multi-epitope-targeting” agents. Y-MSPc was superior to peptide(s) in concomitantly downregulating pathogenic T-cells reactive against multiple myelin antigens/epitopes, via inducing more effective, longer lasting peripheral regulatory mechanisms (cytokine shift, anergy, and Foxp3+ CTLA4+ regulatory T-cells). Y-MSPc was also consistently more effective than the disease-inducing single peptide or peptide cocktail, not only in suppressing the development of “classical” or “complex EAE” or ameliorating ongoing disease, but most importantly, in reversing chronic EAE. Overall, our data emphasize that a “multi-epitope-targeting” strategy is required for effective immune-specific therapy of organ-specific autoimmune diseases associated with complex and dynamic pathogenic autoimmunity, such as MS; our data further demonstrate that the “multi-epitope-targeting” approach to therapy is optimized through specifically designed multi-epitope-proteins, rather than myelin peptide cocktails, as “multi-epitope-targeting” agents. Such artificial multi-epitope proteins can be tailored to other organ-specific autoimmune diseases. PMID:22140475

  16. Current nonclinical testing paradigm enables safe entry to First-In-Human clinical trials: The IQ consortium nonclinical to clinical translational database.

    PubMed

    Monticello, Thomas M; Jones, Thomas W; Dambach, Donna M; Potter, David M; Bolt, Michael W; Liu, Maggie; Keller, Douglas A; Hart, Timothy K; Kadambi, Vivek J

    2017-11-01

    The contribution of animal testing in drug development has been widely debated and challenged. An industry-wide nonclinical to clinical translational database was created to determine how safety assessments in animal models translate to First-In-Human clinical risk. The blinded database was composed of 182 molecules and contained animal toxicology data coupled with clinical observations from phase I human studies. Animal and clinical data were categorized by organ system and correlations determined. The 2×2 contingency table (true positive, false positive, true negative, false negative) was used for statistical analysis. Sensitivity was 48% with a 43% positive predictive value (PPV). The nonhuman primate had the strongest performance in predicting adverse effects, especially for gastrointestinal and nervous system categories. When the same target organ was identified in both the rodent and nonrodent, the PPV increased. Specificity was 84% with an 86% negative predictive value (NPV). The beagle dog had the strongest performance in predicting an absence of clinical adverse effects. If no target organ toxicity was observed in either test species, the NPV increased. While nonclinical studies can demonstrate great value in the PPV for certain species and organ categories, the NPV was the stronger predictive performance measure across test species and target organs indicating that an absence of toxicity in animal studies strongly predicts a similar outcome in the clinic. These results support the current regulatory paradigm of animal testing in supporting safe entry to clinical trials and provide context for emerging alternate models. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The development and current status of Intensive Care Unit management of prospective organ donors

    PubMed Central

    Ellis, Margaret Kathleen Menzel; Sally, Mitchell Brett; Malinoski, Darren

    2016-01-01

    Introduction: Despite continuous advances in transplant medicine, there is a persistent worldwide shortage of organs available for donation. There is a growing body of research that supports that optimal management of deceased organ donors in Intensive Care Unit can substantially increase the availability of organs for transplant and improve outcomes in transplant recipients. Methods: A systematic literature review was performed, comprising a comprehensive search of the PubMed database for relevant terms, as well as individual assessment of references included in large original investigations, and comprehensive society guidelines. Results: In addition to overall adherence to catastrophic brain injury guidelines, optimization of physiologic state in accordance with established donor management goals (DMGs), and establishment of system-wide processes for ensuring early referral to organ procurement organizations (OPOs), several specific critical care management strategies have been associated with improved rates and outcomes of renal transplantation from deceased donors. These include vasoactive medication selection, maintenance of euvolemia, avoidance of hydroxyethyl starch, glycemic control, targeted temperature management, and blood transfusions if indicated. Conclusions: Management of deceased organ donors should focus first on maintaining adequate perfusion to all organ systems through adherence to standard critical care guidelines, early referral to OPOs, and family support. Furthermore, several specific DMGs and strategies have been recently shown to improve both the rates and outcomes of organ transplantation. PMID:27555674

  18. Simultaneous live imaging of the transcription and nuclear position of specific genes

    PubMed Central

    Ochiai, Hiroshi; Sugawara, Takeshi; Yamamoto, Takashi

    2015-01-01

    The relationship between genome organization and gene expression has recently been established. However, the relationships between spatial organization, dynamics, and transcriptional regulation of the genome remain unknown. In this study, we developed a live-imaging method for simultaneous measurements of the transcriptional activity and nuclear position of endogenous genes, which we termed the ‘Real-time Observation of Localization and EXpression (ROLEX)’ system. We demonstrated that ROLEX is highly specific and does not affect the expression level of the target gene. ROLEX enabled detection of sub-genome-wide mobility changes that depended on the state of Nanog transactivation in embryonic stem cells. We believe that the ROLEX system will become a powerful tool for exploring the relationship between transcription and nuclear dynamics in living cells. PMID:26092696

  19. Using CRISPR-Cas9 to Study ERK Signaling in Drosophila.

    PubMed

    Forés, Marta; Papagianni, Aikaterini; Rodríguez-Muñoz, Laura; Jiménez, Gerardo

    2017-01-01

    Genome engineering using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated nuclease 9 (Cas9) technology is revolutionizing biomedical research. CRISPR-Cas9 enables precise editing of genes in a wide variety of cells and organisms, thereby accelerating molecular studies via targeted mutagenesis, epitope tagging, and other custom genetic modifications. Here, we illustrate the CRISPR-Cas9 methodology by focusing on Capicua (Cic), a nuclear transcriptional repressor directly phosphorylated and inactivated by ERK/MAPK. Specifically, we use CRISPR-Cas9 for targeting an ERK docking site of Drosophila Cic, thus generating ERK-insensitive mutants of this important signaling sensor.

  20. Erythrocyte-derived optical nano-vesicles as theranostic agents

    NASA Astrophysics Data System (ADS)

    Mac, Jenny T.; Nunez, Vicente; Bahmani, Baharak; Guerrero, Yadir; Tang, Jack; Vullev, Valentine I.; Anvari, Bahman

    2015-07-01

    We have engineered nano-vesicles, derived from erythrocytes, which can be doped with various near infrared (NIR) organic chromophores, including the FDA-approved indocyanine green (ICG). We refer to these vesicles as NIR erythrocyte-mimicking transducers (NETS) since in response to NIR photo-excitation they can generate heat or emit fluorescent light. Using biochemical methods based on reduction amination, we have functionalized the surface of NET with antibodies to target specific biomolecules. We present results that demonstrate the effectiveness of NETs in targeted imaging of cancer cells that over-express the human epidermal growth factor receptor-2 (HER2).

  1. Nanoparticles for multimodal in vivo imaging in nanomedicine

    PubMed Central

    Key, Jaehong; Leary, James F

    2014-01-01

    While nanoparticles are usually designed for targeted drug delivery, they can also simultaneously provide diagnostic information by a variety of in vivo imaging methods. These diagnostic capabilities make use of specific properties of nanoparticle core materials. Near-infrared fluorescent probes provide optical detection of cells targeted by real-time nanoparticle-distribution studies within the organ compartments of live, anesthetized animals. By combining different imaging modalities, we can start with deep-body imaging by magnetic resonance imaging or computed tomography, and by using optical imaging, get down to the resolution required for real-time fluorescence-guided surgery. PMID:24511229

  2. Facilitators and barriers experienced by federal cross-sector partners during the implementation of a healthy eating campaign.

    PubMed

    Fernandez, Melissa Anne; Desroches, Sophie; Marquis, Marie; Turcotte, Mylène; Provencher, Véronique

    2017-09-01

    To identify facilitators and barriers that Health Canada's (HC) cross-sector partners experienced while implementing the Eat Well Campaign: Food Skills (EWC; 2013-2014) and describe how these experiences might differ according to distinct partner types. A qualitative study using hour-long semi-structured telephone interviews conducted with HC partners that were transcribed verbatim. Facilitators and barriers were identified inductively and analysed according partner types. Implementation of a national mass-media health education campaign. Twenty-one of HC's cross-sector partners (food retailers, media and health organizations) engaged in the EWC. Facilitators and barriers were grouped into seven major themes: operational elements, intervention factors, resources, collaborator traits, developer traits, partnership factors and target population factors. Four of these themes had dual roles as both facilitators and barriers (intervention factors, resources, collaborator traits and developer traits). Sub-themes identified as both facilitators and barriers illustrate the extent to which a facilitator can easily become a barrier. Partnership factors were unique facilitators, while operational and target population factors were unique barriers. Time was a barrier that was common to almost all partners regardless of partnership type. There appeared to be a greater degree of uniformity among facilitators, whereas barriers were more diverse and unique to the realities of specific types of partner. Collaborative planning will help public health organizations anticipate barriers unique to the realities of specific types of organizations. It will also prevent facilitators from becoming barriers. Advanced planning will help organizations manage time constraints and integrate activities, facilitating implementation.

  3. Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms.

    PubMed

    Werner, Stephanie; Polle, Andrea; Brinkmann, Nicole

    2016-10-01

    We reviewed the impact of fungal volatile organic compounds (VOCs) on soil-inhabiting organisms and their physiological and molecular consequences for their targets. Because fungi can only move by growth to distinct directions, a main mechanism to protect themselves from enemies or to manipulate their surroundings is the secretion of exudates or VOCs. The importance of VOCs in this regard has been significantly underestimated. VOCs not only can be means of communication, but also signals that are able to specifically manipulate the recipient. VOCs can reprogram root architecture of symbiotic partner plants or increase plant growth leading to enlarged colonization surfaces. VOCs are also able to enhance plant resistance against pathogens by activating phytohormone-dependent signaling pathways. In some cases, they were phytotoxic. Because the response was specific to distinct species, fungal VOCs may contribute to regulate the competition of plant communities. Additionally, VOCs are used by the producing fungus to attack rivaling fungi or bacteria, thereby protecting the emitter or its nutrient sources. In addition, animals, like springtails, nematodes, and earthworms, which are important components of the soil food web, respond to fungal VOCs. Some VOCs are effective repellents for nematodes and, therefore, have applications as biocontrol agents. In conclusion, this review shows that fungal VOCs have a huge impact on soil fauna and flora, but the underlying mechanisms, how VOCs are perceived by the recipients, how they manipulate their targets and the resulting ecological consequences of VOCs in inter-kingdom signaling is only partly understood. These knowledge gaps are left to be filled by future studies.

  4. The BioGRID interaction database: 2017 update

    PubMed Central

    Chatr-aryamontri, Andrew; Oughtred, Rose; Boucher, Lorrie; Rust, Jennifer; Chang, Christie; Kolas, Nadine K.; O'Donnell, Lara; Oster, Sara; Theesfeld, Chandra; Sellam, Adnane; Stark, Chris; Breitkreutz, Bobby-Joe; Dolinski, Kara; Tyers, Mike

    2017-01-01

    The Biological General Repository for Interaction Datasets (BioGRID: https://thebiogrid.org) is an open access database dedicated to the annotation and archival of protein, genetic and chemical interactions for all major model organism species and humans. As of September 2016 (build 3.4.140), the BioGRID contains 1 072 173 genetic and protein interactions, and 38 559 post-translational modifications, as manually annotated from 48 114 publications. This dataset represents interaction records for 66 model organisms and represents a 30% increase compared to the previous 2015 BioGRID update. BioGRID curates the biomedical literature for major model organism species, including humans, with a recent emphasis on central biological processes and specific human diseases. To facilitate network-based approaches to drug discovery, BioGRID now incorporates 27 501 chemical–protein interactions for human drug targets, as drawn from the DrugBank database. A new dynamic interaction network viewer allows the easy navigation and filtering of all genetic and protein interaction data, as well as for bioactive compounds and their established targets. BioGRID data are directly downloadable without restriction in a variety of standardized formats and are freely distributed through partner model organism databases and meta-databases. PMID:27980099

  5. Molecular Vaccines for Malaria

    DTIC Science & Technology

    2010-01-01

    T cell phenotype from pro-inflammatory (Th I) ro anti -inflammatory (Th2).1 A particularly interesting example of rhe interplay of immune selection ...medi- ated responses specifically targeting one or more protective anti - gens. Molecular vaccines are to be contrasted with whole organism vaccines...development, namely the empirical selection and testing of an immunogen •correspondence to: joseph T. Bruder; Email: jbruder@genvec.com Submitted

  6. Pulsed Irradiation Improves Target Selectivity of Infrared Laser-Evoked Gene Operator for Single-Cell Gene Induction in the Nematode C. elegans

    PubMed Central

    Suzuki, Motoshi; Toyoda, Naoya; Takagi, Shin

    2014-01-01

    Methods for turning on/off gene expression at the experimenter’s discretion would be useful for various biological studies. Recently, we reported on a novel microscope system utilizing an infrared laser-evoked gene operator (IR-LEGO) designed for inducing heat shock response efficiently in targeted single cells in living organisms without cell damage, thereby driving expression of a transgene under the control of a heat shock promoter. Although the original IR-LEGO can be successfully used for gene induction, several limitations hinder its wider application. Here, using the nematode Caenorhabditis elegans (C. elegans) as a subject, we have made improvements in IR-LEGO. For better spatial control of heating, a pulsed irradiation method using an optical chopper was introduced. As a result, single cells of C. elegans embryos as early as the 2-cell stage and single neurons in ganglia can be induced to express genes selectively. In addition, the introduction of site-specific recombination systems to IR-LEGO enables the induction of gene expression controlled by constitutive and cell type-specific promoters. The strategies adopted here will be useful for future applications of IR-LEGO to other organisms. PMID:24465705

  7. Designing multilayered nanoplatforms for SERS-based detection of genetically modified organisms

    NASA Astrophysics Data System (ADS)

    Uluok, Saadet; Guven, Burcu; Eksi, Haslet; Ustundag, Zafer; Tamer, Ugur; Boyaci, Ismail Hakki

    2015-01-01

    In this study, the multilayered surface-enhanced Raman spectroscopy (SERS) platforms were developed for the analysis of genetically modified organisms (GMOs). For this purpose, two molecules [11-mercaptoundecanoic acid (11-MUA) and 2-mercaptoethylamine (2-MEA)] were attached with Aurod and Auspherical nanoparticles to form multilayered constructions on the gold (Au)slide surface. The best multilayered platform structure was chosen depending on SERS enhancement, and this surface was characterised with atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy. After the optimum multilayered SERS platform and nanoparticle interaction was identified, the oligonucleotides on the Aurod nanoparticles and Auslide were combined to determine target concentrations from the 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) signals using SERS. The correlation between the SERS intensities for DTNB and target concentrations was found to be linear within a range of 10 pM to 1 µM, and with a detection limit of 34 fM. The selectivity and specificity of the developed sandwich assay were tested using negative and positive controls, and nonsense and real sample studies. The obtained results showed that the multilayered SERS sandwich method allows for sensitive, selective, and specific detection of oligonucleotide sequences.

  8. Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are endogenously encoded small RNAs that post-transcriptionally regulate gene expression. MiRNAs play essential roles in almost all plant biological processes. Currently, few miRNAs have been identified in the model food legume Phaseolus vulgaris (common bean). Recent advances in next generation sequencing technologies have allowed the identification of conserved and novel miRNAs in many plant species. Here, we used Illumina's sequencing by synthesis (SBS) technology to identify and characterize the miRNA population of Phaseolus vulgaris. Results Small RNA libraries were generated from roots, flowers, leaves, and seedlings of P. vulgaris. Based on similarity to previously reported plant miRNAs,114 miRNAs belonging to 33 conserved miRNA families were identified. Stem-loop precursors and target gene sequences for several conserved common bean miRNAs were determined from publicly available databases. Less conserved miRNA families and species-specific common bean miRNA isoforms were also characterized. Moreover, novel miRNAs based on the small RNAs were found and their potential precursors were predicted. In addition, new target candidates for novel and conserved miRNAs were proposed. Finally, we studied organ-specific miRNA family expression levels through miRNA read frequencies. Conclusions This work represents the first massive-scale RNA sequencing study performed in Phaseolus vulgaris to identify and characterize its miRNA population. It significantly increases the number of miRNAs, precursors, and targets identified in this agronomically important species. The miRNA expression analysis provides a foundation for understanding common bean miRNA organ-specific expression patterns. The present study offers an expanded picture of P. vulgaris miRNAs in relation to those of other legumes. PMID:22394504

  9. A new PCR-CGE (size and color) method for simultaneous detection of genetically modified maize events.

    PubMed

    Nadal, Anna; Coll, Anna; La Paz, Jose-Luis; Esteve, Teresa; Pla, Maria

    2006-10-01

    We present a novel multiplex PCR assay for simultaneous detection of multiple transgenic events in maize. Initially, five PCR primers pairs specific to events Bt11, GA21, MON810, and NK603, and Zea mays L. (alcohol dehydrogenase) were included. The event specificity was based on amplification of transgene/plant genome flanking regions, i.e., the same targets as for validated real-time PCR assays. These short and similarly sized amplicons were selected to achieve high and similar amplification efficiency for all targets; however, its unambiguous identification was a technical challenge. We achieved a clear distinction by a novel CGE approach that combined the identification by size and color (CGE-SC). In one single step, all five targets were amplified and specifically labeled with three different fluorescent dyes. The assay was specific and displayed an LOD of 0.1% of each genetically modified organism (GMO). Therefore, it was adequate to fulfill legal thresholds established, e.g., in the European Union. Our CGE-SC based strategy in combination with an adequate labeling design has the potential to simultaneously detect higher numbers of targets. As an example, we present the detection of up to eight targets in a single run. Multiplex PCR-CGE-SC only requires a conventional sequencer device and enables automation and high throughput. In addition, it proved to be transferable to a different laboratory. The number of authorized GMO events is rapidly growing; and the acreage of genetically modified (GM) varieties cultivated and commercialized worldwide is rapidly increasing. In this context, our multiplex PCR-CGE-SC can be suitable for screening GM contents in food.

  10. Recent Advances in Aptamers Targeting Immune System.

    PubMed

    Hu, Piao-Ping

    2017-02-01

    The immune system plays important role in protecting the organism by recognizing non-self molecules from pathogen such as bacteria, parasitic worms, and viruses. When the balance of the host defense system is disturbed, immunodeficiency, autoimmunity, and inflammation occur. Nucleic acid aptamers are short single-stranded DNA (ssDNA) or RNA ligands that interact with complementary molecules with high specificity and affinity. Aptamers that target the molecules involved in immune system to modulate their function have great potential to be explored as new diagnostic and therapeutic agents for immune disorders. This review summarizes recent advances in the development of aptamers targeting immune system. The selection of aptamers with superior chemical and biological characteristics will facilitate their application in the diagnosis and treatment of immune disorders.

  11. 2A4 binds soluble and insoluble light chain aggregates from AL amyloidosis patients and promotes clearance of amyloid deposits by phagocytosis †.

    PubMed

    Renz, Mark; Torres, Ronald; Dolan, Philip J; Tam, Stephen J; Tapia, Jose R; Li, Lauri; Salmans, Joshua R; Barbour, Robin M; Shughrue, Paul J; Nijjar, Tarlochan; Schenk, Dale; Kinney, Gene G; Zago, Wagner

    2016-09-01

    Amyloid light chain (AL) amyloidosis is characterized by misfolded light chain (LC) (amyloid) deposition in various peripheral organs, leading to progressive dysfunction and death. There are no regulatory agency-approved treatments for AL amyloidosis, and none of the available standard of care approaches directly targets the LC protein that constitutes the amyloid. NEOD001, currently in late-stage clinical trials, is a conformation-specific, anti-LC antibody designed to specifically target misfolded LC aggregates and promote phagocytic clearance of AL amyloid deposits. The present study demonstrated that the monoclonal antibody 2A4, the murine form of NEOD001, binds to patient-derived soluble and insoluble LC aggregates and induces phagocytic clearance of AL amyloid in vitro. 2A4 specifically labeled all 21 fresh-frozen organ samples studied, which were derived from 10 patients representing both κ and λ LC amyloidosis subtypes. 2A4 immunoreactivity largely overlapped with thioflavin T-positive labeling, and 2A4 bound both soluble and insoluble LC aggregates extracted from patient tissue. Finally, 2A4 induced macrophage engagement and phagocytic clearance of AL amyloid deposits in vitro. These findings provide further evidence that 2A4/NEOD001 can effectively clear and remove human AL-amyloid from tissue and further support the rationale for the evaluation of NEOD001 in patients with AL amyloidosis.

  12. A qualitative study of governance of evolving response to non-communicable diseases in low-and middle- income countries: current status, risks and options.

    PubMed

    Rani, Manju; Nusrat, Sharmin; Hawken, Laura H

    2012-10-16

    Segmented service delivery with consequent inefficiencies in health systems was one of the main concerns raised during scaling up of disease-specific programs in the last two decades. The organized response to NCD is in infancy in most LMICs with little evidence on how the response is evolving in terms of institutional arrangements and policy development processes. Drawing on qualitative review of policy and program documents from five LMICs and data from global key-informant surveys conducted in 2004 and 2010, we examine current status of governance of response to NCDs at national level along three dimensions- institutional arrangements for stewardship and program management and implementation; policies/plans; and multisectoral coordination and partnerships. Several positive trends were noted in the organization and governance of response to NCDs: shift from specific NCD-based programs to integrated NCD programs, increasing inclusion of NCDs in sector-wide health plans, and establishment of high-level multisectoral coordination mechanisms.Several areas of concern were identified. The evolving NCD-specific institutional structures are being treated as 'program management and implementation' entities rather than as lead 'technical advisory' bodies, with unclear division of roles and responsibilities between NCD-specific and sector-wide structures. NCD-specific and sector-wide plans are poorly aligned and lack prioritization, costing, and appropriate targets. Finally, the effectiveness of existing multisectoral coordination mechanisms remains questionable. The 'technical functions' and 'implementation and management functions' should be clearly separated between NCD-specific units and sector-wide institutional structures to avoid duplicative segmented service delivery systems. Institutional capacity building efforts for NCDs should target both NCD-specific units (for building technical and analytical capacity) and sector-wide organizational units (for building program management and implementation capacity) in MOH.The sector-wide health plans should reflect NCDs in proportion to their public health importance. NCD specific plans should be developed in close consultation with sector-wide health- and non-health stakeholders. These plans should expand on the directions provided by sector-wide health plans specifying strategically prioritized, fully costed activities, and realistic quantifiable targets for NCD control linked with sector-wide expenditure framework. Multisectoral coordination mechanisms need to be strengthened with optimal decision-making powers and resource commitment and monitoring of their outputs.

  13. A qualitative study of governance of evolving response to non-communicable diseases in low-and middle- income countries: current status, risks and options

    PubMed Central

    2012-01-01

    Background Segmented service delivery with consequent inefficiencies in health systems was one of the main concerns raised during scaling up of disease-specific programs in the last two decades. The organized response to NCD is in infancy in most LMICs with little evidence on how the response is evolving in terms of institutional arrangements and policy development processes. Methods Drawing on qualitative review of policy and program documents from five LMICs and data from global key-informant surveys conducted in 2004 and 2010, we examine current status of governance of response to NCDs at national level along three dimensions— institutional arrangements for stewardship and program management and implementation; policies/plans; and multisectoral coordination and partnerships. Results Several positive trends were noted in the organization and governance of response to NCDs: shift from specific NCD-based programs to integrated NCD programs, increasing inclusion of NCDs in sector-wide health plans, and establishment of high-level multisectoral coordination mechanisms. Several areas of concern were identified. The evolving NCD-specific institutional structures are being treated as ‘program management and implementation’ entities rather than as lead ‘technical advisory’ bodies, with unclear division of roles and responsibilities between NCD-specific and sector-wide structures. NCD-specific and sector-wide plans are poorly aligned and lack prioritization, costing, and appropriate targets. Finally, the effectiveness of existing multisectoral coordination mechanisms remains questionable. Conclusions The ‘technical functions’ and ‘implementation and management functions’ should be clearly separated between NCD-specific units and sector-wide institutional structures to avoid duplicative segmented service delivery systems. Institutional capacity building efforts for NCDs should target both NCD-specific units (for building technical and analytical capacity) and sector-wide organizational units (for building program management and implementation capacity) in MOH. The sector-wide health plans should reflect NCDs in proportion to their public health importance. NCD specific plans should be developed in close consultation with sector-wide health- and non-health stakeholders. These plans should expand on the directions provided by sector-wide health plans specifying strategically prioritized, fully costed activities, and realistic quantifiable targets for NCD control linked with sector-wide expenditure framework. Multisectoral coordination mechanisms need to be strengthened with optimal decision-making powers and resource commitment and monitoring of their outputs. PMID:23067232

  14. To be targeted: is the magic bullet concept a viable option for synthetic nucleic acid therapeutics?

    PubMed

    Ogris, Manfred; Wagner, Ernst

    2011-07-01

    Nucleic acids offer the possibility of tailor-made, individualized treatments for genetic disorders, infectious diseases, and cancer. As an alternative to viral vectors, synthetic delivery systems have a potentially improved safety profile, but often lack sufficient efficiency especially when applied in vivo. Receptor targeting of synthetic vectors can improve the specificity of the vector and increase the efficiency of nucleic acid delivery to the target site. This review covers recent concepts for targeted DNA and RNA delivery to organs like liver and lung, and also to solid cancers. Syntheses and applications of delivery systems targeted with proteins, peptides, and small molecules as ligands coupled to polymeric or lipidic nucleic acid carriers are reviewed. Therapeutic concepts for treatment of genetic and infectious diseases are explained. Systemic treatment regimens of metastasized malignancies in combination with chemotherapy and radiation have already been successfully applied in preclinical studies. In addition, a first clinical study in the human application of a targeted synthetic carrier has been performed.

  15. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.

    PubMed

    Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad

    2015-10-01

    Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.

  16. Tailoring Water, Sanitation, and Hygiene (WASH) Targets for Soil-Transmitted Helminthiasis and Schistosomiasis Control.

    PubMed

    Campbell, Suzy J; Biritwum, Nana-Kwadwo; Woods, Geordie; Velleman, Yael; Fleming, Fiona; Stothard, J Russell

    2018-01-01

    The World Health Organization's (WHO) 2015-2020 Global Strategy on water, sanitation, and hygiene (WASH) and neglected tropical diseases (NTDs) encourages integration, whilst maintaining existing structured NTD investments, and acceleration towards Sustainable Development Goal (SDG) targets. Accordingly, SDG-associated and WASH-NTD indicators have been developed, commencing important intersectoral dialogue, alongside opportunities for future disease-specific refinements. The rationale for soil-transmitted helminthiasis (STH)- and schistosomiasis-specific WASH considerations, and a traffic-light figure, are presented here to indicate where current international definitions may, or may not, suffice. Certain unique aspects in control dynamics and parasitic lifecycles, however, necessitate additional implementation research with more appropriate measurement indicators developed to record programmatic interventions and to define strategic priorities more effectively. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. DNA origami nanorobot fiber optic genosensor to TMV.

    PubMed

    Torelli, Emanuela; Manzano, Marisa; Srivastava, Sachin K; Marks, Robert S

    2018-01-15

    In the quest of greater sensitivity and specificity of diagnostic systems, one continually searches for alternative DNA hybridization methods, enabling greater versatility and where possible field-enabled detection of target analytes. We present, herein, a hybrid molecular self-assembled scaffolded DNA origami entity, intimately immobilized via capture probes linked to aminopropyltriethoxysilane, onto a glass optical fiber end-face transducer, thus producing a novel biosensor. Immobilized DNA nanorobots with a switchable flap can then be actuated by a specific target DNA present in a sample, by exposing a hemin/G-quadruplex DNAzyme, which then catalyzes the generation of chemiluminescence, once the specific fiber probes are immersed in a luminol-based solution. Integrating organic nanorobots to inorganic fiber optics creates a hybrid system that we demonstrate as a proof-of-principle can be utilized in specific DNA sequence detection. This system has potential applications in a wide range of fields, including point-of-care diagnostics or cellular in vivo biosensing when using ultrathin fiber optic probes for research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Biomolecular self-defense and futility of high-specificity therapeutic targeting.

    PubMed

    Rosenfeld, Simon

    2011-01-01

    Robustness has been long recognized to be a distinctive property of living entities. While a reasonably wide consensus has been achieved regarding the conceptual meaning of robustness, the biomolecular mechanisms underlying this systemic property are still open to many unresolved questions. The goal of this paper is to provide an overview of existing approaches to characterization of robustness in mathematically sound terms. The concept of robustness is discussed in various contexts including network vulnerability, nonlinear dynamic stability, and self-organization. The second goal is to discuss the implications of biological robustness for individual-target therapeutics and possible strategies for outsmarting drug resistance arising from it. Special attention is paid to the concept of swarm intelligence, a well studied mechanism of self-organization in natural, societal and artificial systems. It is hypothesized that swarm intelligence is the key to understanding the emergent property of chemoresistance.

  19. Biomolecular Self-Defense and Futility of High-Specificity Therapeutic Targeting

    PubMed Central

    Rosenfeld, Simon

    2011-01-01

    Robustness has been long recognized to be a distinctive property of living entities. While a reasonably wide consensus has been achieved regarding the conceptual meaning of robustness, the biomolecular mechanisms underlying this systemic property are still open to many unresolved questions. The goal of this paper is to provide an overview of existing approaches to characterization of robustness in mathematically sound terms. The concept of robustness is discussed in various contexts including network vulnerability, nonlinear dynamic stability, and self-organization. The second goal is to discuss the implications of biological robustness for individual-target therapeutics and possible strategies for outsmarting drug resistance arising from it. Special attention is paid to the concept of swarm intelligence, a well studied mechanism of self-organization in natural, societal and artificial systems. It is hypothesized that swarm intelligence is the key to understanding the emergent property of chemoresistance. PMID:22272063

  20. Toward a systems-level view of dynamic phosphorylation networks

    PubMed Central

    Newman, Robert H.; Zhang, Jin; Zhu, Heng

    2014-01-01

    To better understand how cells sense and respond to their environment, it is important to understand the organization and regulation of the phosphorylation networks that underlie most cellular signal transduction pathways. These networks, which are composed of protein kinases, protein phosphatases and their respective cellular targets, are highly dynamic. Importantly, to achieve signaling specificity, phosphorylation networks must be regulated at several levels, including at the level of protein expression, substrate recognition, and spatiotemporal modulation of enzymatic activity. Here, we briefly summarize some of the traditional methods used to study the phosphorylation status of cellular proteins before focusing our attention on several recent technological advances, such as protein microarrays, quantitative mass spectrometry, and genetically-targetable fluorescent biosensors, that are offering new insights into the organization and regulation of cellular phosphorylation networks. Together, these approaches promise to lead to a systems-level view of dynamic phosphorylation networks. PMID:25177341

  1. Nano-vectors for efficient liver specific gene transfer

    PubMed Central

    Pathak, Atul; Vyas, Suresh P; Gupta, Kailash C

    2008-01-01

    Recent progress in nanotechnology has triggered the site specific drug/gene delivery research and gained wide acknowledgment in contemporary DNA therapeutics. Amongst various organs, liver plays a crucial role in various body functions and in addition, the site is a primary location of metastatic tumor growth. In past few years, a plethora of nano-vectors have been developed and investigated to target liver associated cells through receptor mediated endocytosis. This emerging paradigm in cellular drug/gene delivery provides promising approach to eradicate genetic as well as acquired diseases affecting the liver. The present review provides a comprehensive overview of potential of various delivery systems, viz., lipoplexes, liposomes, polyplexes, nanoparticles and so forth to selectively relocate foreign therapeutic DNA into liver specific cell type via the receptor mediated endocytosis. Various receptors like asialoglycoprotein receptors (ASGP-R) provide unique opportunity to target liver parenchymal cells. The results obtained so far reveal tremendous promise and offer enormous options to develop novel DNA-based pharmaceuticals for liver disorders in near future. PMID:18488414

  2. Laminar- and Target-Specific Amygdalar Inputs in Rat Primary Gustatory Cortex.

    PubMed

    Haley, Melissa S; Fontanini, Alfredo; Maffei, Arianna

    2016-03-02

    The primary gustatory cortex (GC) receives projections from the basolateral nucleus of the amygdala (BLA). Behavioral and electrophysiological studies demonstrated that this projection is involved in encoding the hedonic value of taste and is a source of anticipatory activity in GC. Anatomically, this projection is largest in the agranular portion of GC; however, its synaptic targets and synaptic properties are currently unknown. In vivo electrophysiological recordings report conflicting evidence about BLA afferents either selectively activating excitatory neurons or driving a compound response consistent with the activation of inhibitory circuits. Here we demonstrate that BLA afferents directly activate excitatory neurons and two distinct populations of inhibitory neurons in both superficial and deep layers of rat GC. BLA afferents recruit different proportions of excitatory and inhibitory neurons and show distinct patterns of circuit activation in the superficial and deep layers of GC. These results provide the first circuit-level analysis of BLA inputs to a sensory area. Laminar- and target-specific differences of BLA inputs likely explain the complexity of amygdalocortical interactions during sensory processing. Projections from the basolateral nucleus of the amygdala (BLA) to the cortex convey information about the emotional value and the expectation of a sensory stimulus. Although much work has been done to establish the behavioral role of BLA inputs to sensory cortices, very little is known about the circuit organization of BLA projections. Here we provide the first in-depth analysis of connectivity and synaptic properties of the BLA input to the gustatory cortex. We show that BLA afferents activate excitatory and inhibitory circuits in a layer-specific and pattern-specific manner. Our results provide important new information about how neural circuits establishing the hedonic value of sensory stimuli and driving anticipatory behaviors are organized at the synaptic level. Copyright © 2016 the authors 0270-6474/16/362623-15$15.00/0.

  3. The autonomic nervous system as a therapeutic target in heart failure: a scientific position statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology.

    PubMed

    van Bilsen, Marc; Patel, Hitesh C; Bauersachs, Johann; Böhm, Michael; Borggrefe, Martin; Brutsaert, Dirk; Coats, Andrew J S; de Boer, Rudolf A; de Keulenaer, Gilles W; Filippatos, Gerasimos S; Floras, John; Grassi, Guido; Jankowska, Ewa A; Kornet, Lilian; Lunde, Ida G; Maack, Christoph; Mahfoud, Felix; Pollesello, Piero; Ponikowski, Piotr; Ruschitzka, Frank; Sabbah, Hani N; Schultz, Harold D; Seferovic, Petar; Slart, Riemer H J A; Taggart, Peter; Tocchetti, Carlo G; Van Laake, Linda W; Zannad, Faiez; Heymans, Stephane; Lyon, Alexander R

    2017-11-01

    Despite improvements in medical therapy and device-based treatment, heart failure (HF) continues to impose enormous burdens on patients and health care systems worldwide. Alterations in autonomic nervous system (ANS) activity contribute to cardiac disease progression, and the recent development of invasive techniques and electrical stimulation devices has opened new avenues for specific targeting of the sympathetic and parasympathetic branches of the ANS. The Heart Failure Association of the European Society of Cardiology recently organized an expert workshop which brought together clinicians, trialists and basic scientists to discuss the ANS as a therapeutic target in HF. The questions addressed were: (i) What are the abnormalities of ANS in HF patients? (ii) What methods are available to measure autonomic dysfunction? (iii) What therapeutic interventions are available to target the ANS in patients with HF, and what are their specific strengths and weaknesses? (iv) What have we learned from previous ANS trials? (v) How should we proceed in the future? © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.

  4. Inflammatory targets of therapy in sickle cell disease

    PubMed Central

    Owusu-Ansah, Amma; Ihunnah, Chibueze A.; Walker, Aisha L.; Ofori-Acquah, Solomon F.

    2015-01-01

    Sickle cell disease (SCD) is a monogenic globin disorder characterized by the production of a structurally abnormal hemoglobin (Hb) variant Hb S, which causes severe hemolytic anemia, episodic painful vaso-occlusion and ultimately end-organ damage. The primary disease pathophysiology is intracellular Hb S polymerization and consequent sickling of erythrocytes. It has become evident over several decades that a more complex disease process contributes to the myriad of clinical complications seen in SCD patients with inflammation playing a central role. Drugs targeting specific inflammatory pathways therefore offer an attractive therapeutic strategy to ameliorate many of the clinical events in SCD. In addition they are useful tools to dissecting the molecular and cellular mechanisms that promote individual clinical events, and for developing improved therapeutics to address more challenging clinical dilemmas such as refractoriness to opioids or hyperalgesia. Here, we discuss the prospect of targeting multiple inflammatory pathways implicated in the pathogenesis of SCD with a focus on new therapeutics, striving to link the actions of the anti-inflammatory agents to a defined pathobiology, and specific clinical manifestations of SCD. We also review the anti-inflammatory attributes and the cognate inflammatory targets of hydroxyurea, the only FDA approved drug for SCD. PMID:26226206

  5. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung

    PubMed Central

    Chuang, Pao-Tien; Kawcak, T'Nay; McMahon, Andrew P.

    2003-01-01

    Hedgehog (Hh) signaling plays a major role in multiple aspects of embryonic development. A key issue is how negative regulation of Hh signaling might contribute to generating differential responses over tens of cell diameters. In cells that respond to Hh, two proteins that are up-regulated are Patched1 (Ptch1), the Hh receptor, a general target in both invertebrate and vertebrate organisms, and Hip1, a Hh-binding protein that is vertebrate specific. To address the developmental role of Hip1 in the context of Hh signaling, we generated Hip1 mutants in the mouse. Loss of Hip1 function results in specific defects in two Hh target issues, the lung, a target of Sonic hedgehog (Shh) signaling, and the endochondral skeleton, a target of Indian hedgehog (Ihh) signaling. Hh signaling was up-regulated in Hip1 mutants, substantiating Hip1's general role in negatively regulating Hh signaling. Our studies focused on Hip1 in the lung. Here, a dynamic interaction between Hh and fibroblast growth factor (Fgf) signaling, modulated at least in part by Hip1, controls early lung branching. PMID:12569124

  6. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung.

    PubMed

    Chuang, Pao-Tien; Kawcak, T'Nay; McMahon, Andrew P

    2003-02-01

    Hedgehog (Hh) signaling plays a major role in multiple aspects of embryonic development. A key issue is how negative regulation of Hh signaling might contribute to generating differential responses over tens of cell diameters. In cells that respond to Hh, two proteins that are up-regulated are Patched1 (Ptch1), the Hh receptor, a general target in both invertebrate and vertebrate organisms, and Hip1, a Hh-binding protein that is vertebrate specific. To address the developmental role of Hip1 in the context of Hh signaling, we generated Hip1 mutants in the mouse. Loss of Hip1 function results in specific defects in two Hh target issues, the lung, a target of Sonic hedgehog (Shh) signaling, and the endochondral skeleton, a target of Indian hedgehog (Ihh) signaling. Hh signaling was up-regulated in Hip1 mutants, substantiating Hip1's general role in negatively regulating Hh signaling. Our studies focused on Hip1 in the lung. Here, a dynamic interaction between Hh and fibroblast growth factor (Fgf) signaling, modulated at least in part by Hip1, controls early lung branching.

  7. Organ specificity of the bladder carcinogen 4-aminobiphenyl in inducing DNA damage and mutation in mice.

    PubMed

    Yoon, Jae-In; Kim, Sang-In; Tommasi, Stella; Besaratinia, Ahmad

    2012-02-01

    Aromatic amines are a widespread class of environmental contaminants present in various occupational settings and tobacco smoke. Exposure to aromatic amines is a major risk factor for bladder cancer development. The etiologic involvement of aromatic amines in the genesis of bladder cancer is attributable to their ability to form DNA adducts, which upon eluding repair and causing mispairing during replication, may initiate mutagenesis. We have investigated the induction of DNA adducts in relation to mutagenesis in bladder and various nontarget organs of transgenic Big Blue mice treated weekly (i.p.) with a representative aromatic amine compound, 4-aminobiphenyl (4-ABP), for six weeks, followed by a six-week recovery period. We show an organ-specificity of 4-ABP in inducing repair-resistant DNA adducts in bladder, kidney, and liver of carcinogen-treated animals, which accords with the bioactivation pathway of this chemical in the respective organs. In confirmation, we show a predominant and sustained mutagenic effect of 4-ABP in bladder, and much weaker but significant mutagenicity of 4-ABP in the kidney and liver of carcinogen-treated mice, as reflected by the elevation of background cII mutant frequency in the respective organs. The spectrum of mutations produced in bladder of 4-ABP-treated mice matches the known mutagenic properties of 4-ABP-DNA adducts, as verified by the preponderance of induced mutations occurring at G:C base pairs (82.9%), with the vast majority being G:C→T:A transversions (47.1%). Our data support a possible etiologic role of 4-ABP in bladder carcinogenesis and provide a mechanistic view on how DNA adduct-driven mutagenesis, specifically targeted to bladder urothelium, may account for organ-specific tumorigenicity of this chemical. ©2011 AACR.

  8. Organic food consumption by athletes in Lithuania.

    PubMed

    Baranauskas, Marius; Stukas, Rimantas; Tubelis, Linas; Žagminas, Kęstutis; Šurkienė, Genė; Dobrovolskij, Valerij; Jakubauskienė, Marija; Giedraitis, Vincentas Rolandas

    2015-01-01

    With environmental pollution increasing, interest in organic farming and organic foodstuffs has been growing all over the world. Data on organic food consumption by Lithuanian athletes is not yet available. This lack of data determined the aim of this study: to identify the particulars of organic foodstuff consumption among athletes. In September-November 2012, we polled 158 of the best-performing athletes of the Olympic sports team through direct interviews. An approved questionnaire was used to identify the specifics of organic foodstuff consumption among athletes. The survey results showed that 97% of athletes consume organic foodstuffs, and 80% of athletes highlighted the positive impact of organic food on health. Nevertheless, a slim majority of athletes (51.7%) consume organic foodstuffs seldomly, 2-3 times per week. The range of organic foodstuffs consumed depends on the gender of athletes, and the consumption of some products depends on monthly incomes. Survey results confirm the need for the production and expansion of the variety of organic foodstuffs. In the course of the development of the organic food market, it should be beneficial for manufacturers to target high-performance athletes and physically active people.

  9. Neurochemical differences between target-specific populations of rat dorsal raphe projection neurons.

    PubMed

    Prouty, Eric W; Chandler, Daniel J; Waterhouse, Barry D

    2017-11-15

    Serotonin (5-HT)-containing neurons in the dorsal raphe (DR) nucleus project throughout the forebrain and are implicated in many physiological processes and neuropsychiatric disorders. Diversity among these neurons has been characterized in terms of their neurochemistry and anatomical organization, but a clear sense of whether these attributes align with specific brain functions or terminal fields is lacking. DR 5-HT neurons can co-express additional neuroactive substances, increasing the potential for individualized regulation of target circuits. The goal of this study was to link DR neurons to a specific functional role by characterizing cells according to both their neurotransmitter expression and efferent connectivity; specifically, cells projecting to the medial prefrontal cortex (mPFC), a region implicated in cognition, emotion, and responses to stress. Following retrograde tracer injection, brainstem sections from Sprague-Dawley rats were immunohistochemically stained for markers of serotonin, glutamate, GABA, and nitric oxide (NO). 98% of the mPFC-projecting serotonergic neurons co-expressed the marker for glutamate, while the markers for NO and GABA were observed in 60% and less than 1% of those neurons, respectively. To identify potential target-specific differences in co-transmitter expression, we also characterized DR neurons projecting to a visual sensory structure, the lateral geniculate nucleus (LGN). The proportion of serotonergic neurons co-expressing NO was greater amongst cells targeting the mPFC vs LGN (60% vs 22%). The established role of 5-HT in affective disorders and the emerging role of NO in stress signaling suggest that the impact of 5-HT/NO co-localization in DR neurons that regulate mPFC circuit function may be clinically relevant. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Future perspectives in target-specific immunotherapies of myasthenia gravis

    PubMed Central

    Dalakas, Marinos C.

    2015-01-01

    Myasthenia gravis (MG) is an autoimmune disease caused by complement-fixing antibodies against acetylcholine receptors (AChR); antigen-specific CD4+ T cells, regulatory T cells (Tregs) and T helper (Th) 17+ cells are essential in antibody production. Target-specific therapeutic interventions should therefore be directed against antibodies, B cells, complement and molecules associated with T cell signaling. Even though the progress in the immunopathogenesis of the disease probably exceeds any other autoimmune disorder, MG is still treated with traditional drugs or procedures that exert a non-antigen specific immunosuppression or immunomodulation. Novel biological agents currently on the market, directed against the following molecular pathways, are relevant and specific therapeutic targets that can be tested in MG: (a) T cell intracellular signaling molecules, such as anti-CD52, anti-interleukin (IL) 2 receptors, anti- costimulatory molecules, and anti-Janus tyrosine kinases (JAK1, JAK3) that block the intracellular cascade associated with T-cell activation; (b) B cells and their trophic factors, directed against key B-cell molecules; (c) complement C3 or C5, intercepting the destructive effect of complement-fixing antibodies; (d) cytokines and cytokine receptors, such as those targeting IL-6 which promotes antibody production and IL-17, or the p40 subunit of IL-12/1L-23 that affect regulatory T cells; and (e) T and B cell transmigration molecules associated with lymphocyte egress from the lymphoid organs. All drugs against these molecular pathways require testing in controlled trials, although some have already been tried in small case series. Construction of recombinant AChR antibodies that block binding of the pathogenic antibodies, thereby eliminating complement and antibody-depended-cell-mediated cytotoxicity, are additional novel molecular tools that require exploration in experimental MG. PMID:26600875

  11. Mutant mice: experimental organisms as materialised models in biomedicine.

    PubMed

    Huber, Lara; Keuck, Lara K

    2013-09-01

    Animal models have received particular attention as key examples of material models. In this paper, we argue that the specificities of establishing animal models-acknowledging their status as living beings and as epistemological tools-necessitate a more complex account of animal models as materialised models. This becomes particularly evident in animal-based models of diseases that only occur in humans: in these cases, the representational relation between animal model and human patient needs to be generated and validated. The first part of this paper presents an account of how disease-specific animal models are established by drawing on the example of transgenic mice models for Alzheimer's disease. We will introduce an account of validation that involves a three-fold process including (1) from human being to experimental organism; (2) from experimental organism to animal model; and (3) from animal model to human patient. This process draws upon clinical relevance as much as scientific practices and results in disease-specific, yet incomplete, animal models. The second part of this paper argues that the incompleteness of models can be described in terms of multi-level abstractions. We qualify this notion by pointing to different experimental techniques and targets of modelling, which give rise to a plurality of models for a specific disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays

    PubMed Central

    Popescu, Sorina C.; Popescu, George V.; Bachan, Shawn; Zhang, Zimei; Seay, Montrell; Gerstein, Mark; Snyder, Michael; Dinesh-Kumar, S. P.

    2007-01-01

    Calmodulins (CaMs) are the most ubiquitous calcium sensors in eukaryotes. A number of CaM-binding proteins have been identified through classical methods, and many proteins have been predicted to bind CaMs based on their structural homology with known targets. However, multicellular organisms typically contain many CaM-like (CML) proteins, and a global identification of their targets and specificity of interaction is lacking. In an effort to develop a platform for large-scale analysis of proteins in plants we have developed a protein microarray and used it to study the global analysis of CaM/CML interactions. An Arabidopsis thaliana expression collection containing 1,133 ORFs was generated and used to produce proteins with an optimized medium-throughput plant-based expression system. Protein microarrays were prepared and screened with several CaMs/CMLs. A large number of previously known and novel CaM/CML targets were identified, including transcription factors, receptor and intracellular protein kinases, F-box proteins, RNA-binding proteins, and proteins of unknown function. Multiple CaM/CML proteins bound many binding partners, but the majority of targets were specific to one or a few CaMs/CMLs indicating that different CaM family members function through different targets. Based on our analyses, the emergent CaM/CML interactome is more extensive than previously predicted. Our results suggest that calcium functions through distinct CaM/CML proteins to regulate a wide range of targets and cellular activities. PMID:17360592

  13. Rapid transcriptional acclimation following transgenerational exposure of oysters to ocean acidification.

    PubMed

    Goncalves, Priscila; Anderson, Kelli; Thompson, Emma L; Melwani, Aroon; Parker, Laura M; Ross, Pauline M; Raftos, David A

    2016-10-01

    Marine organisms need to adapt in order to cope with the adverse effects of ocean acidification and warming. Transgenerational exposure to CO2 stress has been shown to enhance resilience to ocean acidification in offspring from a number of species. However, the molecular basis underlying such adaptive responses is currently unknown. Here, we compared the transcriptional profiles of two genetically distinct oyster breeding lines following transgenerational exposure to elevated CO2 in order to explore the molecular basis of acclimation or adaptation to ocean acidification in these organisms. The expression of key target genes associated with antioxidant defence, metabolism and the cytoskeleton was assessed in oysters exposed to elevated CO2 over three consecutive generations. This set of target genes was chosen specifically to test whether altered responsiveness of intracellular stress mechanisms contributes to the differential acclimation of oyster populations to climate stressors. Transgenerational exposure to elevated CO2 resulted in changes to both basal and inducible expression of those key target genes (e.g. ecSOD, catalase and peroxiredoxin 6), particularly in oysters derived from the disease-resistant, fast-growing B2 line. Exposure to CO2 stress over consecutive generations produced opposite and less evident effects on transcription in a second population that was derived from wild-type (nonselected) oysters. The analysis of key target genes revealed that the acute responses of oysters to CO2 stress appear to be affected by population-specific genetic and/or phenotypic traits and by the CO2 conditions to which their parents had been exposed. This supports the contention that the capacity for heritable change in response to ocean acidification varies between oyster breeding lines and is mediated by parental conditioning. © 2016 John Wiley & Sons Ltd.

  14. A rapid method for detection of genetically modified organisms based on magnetic separation and surface-enhanced Raman scattering.

    PubMed

    Guven, Burcu; Boyacı, İsmail Hakkı; Tamer, Ugur; Çalık, Pınar

    2012-01-07

    In this study, a new method combining magnetic separation (MS) and surface-enhanced Raman scattering (SERS) was developed to detect genetically modified organisms (GMOs). An oligonucleotide probe which is specific for 35 S DNA target was immobilized onto gold coated magnetic nanospheres to form oligonucleotide-coated nanoparticles. A self assembled monolayer was formed on gold nanorods using 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) and the second probe of the 35 S DNA target was immobilized on the activated nanorod surfaces. Probes on the nanoparticles were hybridized with the target oligonucleotide. Optimization parameters for hybridization were investigated by high performance liquid chromatography. Optimum hybridization parameters were determined as: 4 μM probe concentration, 20 min immobilization time, 30 min hybridization time, 55 °C hybridization temperature, 750 mM buffer salt concentration and pH: 7.4. Quantification of the target concentration was performed via SERS spectra of DTNB on the nanorods. The correlation between the target concentration and the SERS signal was found to be linear within the range of 25-100 nM. The analyses were performed with only one hybridization step in 40 min. Real sample analysis was conducted using Bt-176 maize sample. The results showed that the developed MS-SERS assay is capable of detecting GMOs in a rapid and selective manner. This journal is © The Royal Society of Chemistry 2012

  15. Application of Emerging Pharmaceutical Technologies for Therapeutic Challenges of Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi

    2011-01-01

    An important requirement of therapeutics for extended duration exploration missions beyond low Earth orbit will be the development of pharmaceutical technologies suitable for sustained and preventive health care in remote and adverse environmental conditions. Availability of sustained, stable and targeted delivery pharmaceuticals for preventive health of major organ systems including gastrointestinal, hepato-renal, musculo-skeletal and immune function are essential to offset adverse effects of space environment beyond low Earth orbit. Specifically, medical needs may include multi-drug combinations for hormone replacement, radiation protection, immune enhancement and organ function restoration. Additionally, extended stability of pharmaceuticals dispensed in space must be also considered in future drug development. Emerging technologies that can deliver stable and multi-therapy pharmaceutical preparations and delivery systems include nanotechnology based drug delivery platforms, targeted-delivery systems in non-oral and non-parenteral formulation matrices. Synthetic nanomaterials designed with molecular precision offer defined structures, electronics, and chemistries to be efficient drug carriers with clear advantages over conventional materials of drug delivery matricies. Nano-carrier materials like the bottle brush polymers may be suitable for systemic delivery of drug cocktails while Superparamagnetic Iron Oxide Nanoparticles or (SPIONS) have great potential to serve as carriers for targeted drug delivery to a specific site. These and other emerging concepts of drug delivery and extended shelf-life technologies will be reviewed in light of their application to address health-care challenges of exploration missions. Innovations in alternate treatments for sustained immune enhancement and infection control will be also discussed.

  16. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways.

    PubMed

    Bhat, Supriya V; Booth, Sean C; McGrath, Seamus G K; Dahms, Tanya E S

    2014-01-01

    There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv) as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria.

  17. Soil microbial community structure and target organisms under different fumigation treatments

    USDA-ARS?s Scientific Manuscript database

    Several high-value crop producers in California rely heavily on soil fumigants to control key diseases, nematodes, weeds and volunteer crops. Fumigants with broad biocidal activity can affect both target and non-target soil organisms. The ability of non-target soil organisms to recover after fumigat...

  18. Biomimicry enhances sequential reactions of tethered glycolytic enzymes, TPI and GAPDHS.

    PubMed

    Mukai, Chinatsu; Gao, Lizeng; Bergkvist, Magnus; Nelson, Jacquelyn L; Hinchman, Meleana M; Travis, Alexander J

    2013-01-01

    Maintaining activity of enzymes tethered to solid interfaces remains a major challenge in developing hybrid organic-inorganic devices. In nature, mammalian spermatozoa have overcome this design challenge by having glycolytic enzymes with specialized targeting domains that enable them to function while tethered to a cytoskeletal element. As a step toward designing a hybrid organic-inorganic ATP-generating system, we implemented a biomimetic site-specific immobilization strategy to tether two glycolytic enzymes representing different functional enzyme families: triose phosphoisomerase (TPI; an isomerase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDHS; an oxidoreductase). We then evaluated the activities of these enzymes in comparison to when they were tethered via classical carboxyl-amine crosslinking. Both enzymes show similar surface binding regardless of immobilization method. Remarkably, specific activities for both enzymes were significantly higher when tethered using the biomimetic, site-specific immobilization approach. Using this biomimetic approach, we tethered both enzymes to a single surface and demonstrated their function in series in both forward and reverse directions. Again, the activities in series were significantly higher in both directions when the enzymes were coupled using this biomimetic approach versus carboxyl-amine binding. Our results suggest that biomimetic, site-specific immobilization can provide important functional advantages over chemically specific, but non-oriented attachment, an important strategic insight given the growing interest in recapitulating entire biological pathways on hybrid organic-inorganic devices.

  19. Biomimicry Enhances Sequential Reactions of Tethered Glycolytic Enzymes, TPI and GAPDHS

    PubMed Central

    Mukai, Chinatsu; Gao, Lizeng; Bergkvist, Magnus; Nelson, Jacquelyn L.; Hinchman, Meleana M.; Travis, Alexander J.

    2013-01-01

    Maintaining activity of enzymes tethered to solid interfaces remains a major challenge in developing hybrid organic-inorganic devices. In nature, mammalian spermatozoa have overcome this design challenge by having glycolytic enzymes with specialized targeting domains that enable them to function while tethered to a cytoskeletal element. As a step toward designing a hybrid organic-inorganic ATP-generating system, we implemented a biomimetic site-specific immobilization strategy to tether two glycolytic enzymes representing different functional enzyme families: triose phosphoisomerase (TPI; an isomerase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDHS; an oxidoreductase). We then evaluated the activities of these enzymes in comparison to when they were tethered via classical carboxyl-amine crosslinking. Both enzymes show similar surface binding regardless of immobilization method. Remarkably, specific activities for both enzymes were significantly higher when tethered using the biomimetic, site-specific immobilization approach. Using this biomimetic approach, we tethered both enzymes to a single surface and demonstrated their function in series in both forward and reverse directions. Again, the activities in series were significantly higher in both directions when the enzymes were coupled using this biomimetic approach versus carboxyl-amine binding. Our results suggest that biomimetic, site-specific immobilization can provide important functional advantages over chemically specific, but non-oriented attachment, an important strategic insight given the growing interest in recapitulating entire biological pathways on hybrid organic-inorganic devices. PMID:23626684

  20. Genome organization and long-range regulation of gene expression by enhancers

    PubMed Central

    Smallwood, Andrea; Ren, Bing

    2014-01-01

    It is now well accepted that cell-type specific gene regulation is under the purview of enhancers. Great strides have been made recently to characterize and identify enhancers both genetically and epigenetically for multiple cell types and species, but efforts have just begun to link enhancers to their target promoters. Mapping these interactions and understanding how the 3D landscape of the genome constrains such interactions is fundamental to our understanding of mammalian gene regulation. Here, we review recent progress in mapping long-range regulatory interactions in mammalian genomes, focusing on transcriptional enhancers and chromatin organization principles. PMID:23465541

  1. The Importance of Context in Screening in Occupational Health Interventions in Organizations: A Mixed Methods Study.

    PubMed

    Vignoli, Michela; Nielsen, Karina; Guglielmi, Dina; Tabanelli, Maria C; Violante, Francesco S

    2017-01-01

    In occupational health interventions, there is a debate as to whether standardized or tailored measures should be used to identify which aspects of the psychosocial work environment should be targeted in order to improve employees' well-being. Using the Job Demands-Resources model, the main aim of the present study is to demonstrate how a mixed methods approach to conducting screening enables the identification of potential context-dependent demands and resources in the workplace, which should to be targeted by the intervention. Specifically, we used a mixed methods exploratory sequential research design. First, we conducted four focus groups ( N = 37) in a sample of employees working in grocery stores in Italy. The qualitative results allowed to identify one possible context-specific job demand: the use of a work scheduling IT software, whose implementation resulted in a high rotation between different market's departments. From the qualitative results, this context-specific demand seemed to be related to workers' well-being. Thus, in a subsequent questionnaire survey ( N = 288), we included this demand together with generic measures of social support and psychological well-being. Results confirmed that this context-specific job demand was related to emotional exhaustion. Furthermore, it was found that social support moderated the relationship between this specific job demand and emotional exhaustion showing among employees whose activities depended on the IT software, employees that perceived higher levels of social support from colleagues experienced lower levels of emotional exhaustion with respect to their colleagues who perceived lower levels of social support. The present study confirms that mixed methods approach is useful in occupational health intervention research and offers a way forward on helping organizations prioritize their intervention activities.

  2. The Importance of Context in Screening in Occupational Health Interventions in Organizations: A Mixed Methods Study

    PubMed Central

    Vignoli, Michela; Nielsen, Karina; Guglielmi, Dina; Tabanelli, Maria C.; Violante, Francesco S.

    2017-01-01

    In occupational health interventions, there is a debate as to whether standardized or tailored measures should be used to identify which aspects of the psychosocial work environment should be targeted in order to improve employees’ well-being. Using the Job Demands-Resources model, the main aim of the present study is to demonstrate how a mixed methods approach to conducting screening enables the identification of potential context-dependent demands and resources in the workplace, which should to be targeted by the intervention. Specifically, we used a mixed methods exploratory sequential research design. First, we conducted four focus groups (N = 37) in a sample of employees working in grocery stores in Italy. The qualitative results allowed to identify one possible context-specific job demand: the use of a work scheduling IT software, whose implementation resulted in a high rotation between different market’s departments. From the qualitative results, this context-specific demand seemed to be related to workers’ well-being. Thus, in a subsequent questionnaire survey (N = 288), we included this demand together with generic measures of social support and psychological well-being. Results confirmed that this context-specific job demand was related to emotional exhaustion. Furthermore, it was found that social support moderated the relationship between this specific job demand and emotional exhaustion showing among employees whose activities depended on the IT software, employees that perceived higher levels of social support from colleagues experienced lower levels of emotional exhaustion with respect to their colleagues who perceived lower levels of social support. The present study confirms that mixed methods approach is useful in occupational health intervention research and offers a way forward on helping organizations prioritize their intervention activities. PMID:28848468

  3. Annexins - scaffolds modulating PKC localization and signaling.

    PubMed

    Hoque, Monira; Rentero, Carles; Cairns, Rose; Tebar, Francesc; Enrich, Carlos; Grewal, Thomas

    2014-06-01

    Spatial and temporal organization of signal transduction is critical to link different extracellular stimuli with distinct cellular responses. A classical example of hormones and growth factors creating functional diversity is illustrated by the multiple signaling pathways activated by the protein kinase C (PKC) family of serine/threonine protein kinases. The molecular requirements for diacylglycerol (DAG) and calcium (Ca(2+)) to promote PKC membrane translocation, the hallmark of PKC activation, have been clarified. However, the underlying mechanisms that establish selectivity of individual PKC family members to facilitate differential substrate phosphorylation and varied signal output are still not fully understood. It is now well believed that the coordinated control and functional diversity of PKC signaling involves the formation of PKC isozyme-specific protein complexes in certain subcellular sites. In particular, interaction of PKC isozymes with compartment and signal-organizing scaffolds, including receptors for activated C-kinase (RACKs), A-kinase-anchoring proteins (AKAPs), 14-3-3, heat shock proteins (HSP), and importins target PKC isozymes to specific cellular locations, thereby delivering PKC isozymes into close proximity of their substrates. In addition, several annexins (Anx), including AnxA1, A2, A5 and A6, display specific and distinct abilities to interact and promote membrane targeting of different PKC isozymes. Together with the ability of annexins to create specific membrane microenvironments, this is likely to enable PKCs to phosphorylate certain substrates and regulate their downstream effector pathways in specific cellular sites. This review aims to summarize the capacity of annexins to modulate the localization and activity of PKC family members and participate in the spatiotemporal regulation of PKC signaling in health and disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New l-Prolyl-l-leucyl-glycinamide Peptidomimetics.

    PubMed

    Ferreira da Costa, Joana; Silva, David; Caamaño, Olga; Brea, José M; Loza, Maria Isabel; Munteanu, Cristian R; Pazos, Alejandro; García-Mera, Xerardo; González-Díaz, Humbert

    2018-06-25

    Predicting drug-protein interactions (DPIs) for target proteins involved in dopamine pathways is a very important goal in medicinal chemistry. We can tackle this problem using Molecular Docking or Machine Learning (ML) models for one specific protein. Unfortunately, these models fail to account for large and complex big data sets of preclinical assays reported in public databases. This includes multiple conditions of assays, such as different experimental parameters, biological assays, target proteins, cell lines, organism of the target, or organism of assay. On the other hand, perturbation theory (PT) models allow us to predict the properties of a query compound or molecular system in experimental assays with multiple boundary conditions based on a previously known case of reference. In this work, we report the first PTML (PT + ML) study of a large ChEMBL data set of preclinical assays of compounds targeting dopamine pathway proteins. The best PTML model found predicts 50000 cases with accuracy of 70-91% in training and external validation series. We also compared the linear PTML model with alternative PTML models trained with multiple nonlinear methods (artificial neural network (ANN), Random Forest, Deep Learning, etc.). Some of the nonlinear methods outperform the linear model but at the cost of a notable increment of the complexity of the model. We illustrated the practical use of the new model with a proof-of-concept theoretical-experimental study. We reported for the first time the organic synthesis, chemical characterization, and pharmacological assay of a new series of l-prolyl-l-leucyl-glycinamide (PLG) peptidomimetic compounds. In addition, we performed a molecular docking study for some of these compounds with the software Vina AutoDock. The work ends with a PTML model predictive study of the outcomes of the new compounds in a large number of assays. Therefore, this study offers a new computational methodology for predicting the outcome for any compound in new assays. This PTML method focuses on the prediction with a simple linear model of multiple pharmacological parameters (IC 50 , EC 50 , K i , etc.) for compounds in assays involving different cell lines used, organisms of the protein target, or organism of assay for proteins in the dopamine pathway.

  5. Libyan Former Foreign Fighters and Their Effects on the Libyan Revolution

    DTIC Science & Technology

    2012-03-23

    Glocal organizations; Arab Spring; Sinjar Papers; CJSOTF 120; 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 52...the Libyan Islamic Fighting Group (LIFG) ........................................................................ 13 LIFG and Al Qaeda: A “ Glocal ...to be specifically targeted.(27) LIFG and Al Qaeda Connections: A “ Glocal ” Operation(28) FORMER FOREIGN FIGHTERS AND THEIR EFFECTS ON THE LIBYAN

  6. Meta-analysis for deriving age- and gender-specific dose-response relationships between urinary cadmium concentration and {beta} {sub 2}-microglobulinuria under environmental exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamo, Masashi; Ono, Kyoko; Nakanishi, Junko

    2006-05-15

    A meta-analysis was conducted to derive age- and gender-specific dose-response relationships between urinary cadmium (Cd) concentration and {beta} {sub 2}-microglobulinuria ({beta}2MG-uria) under environmental exposure. {beta}2MG-uria was defined by a cutoff point of 1000 {mu}g {beta} {sub 2}-microglobulin/g creatinine. We proposed a model for describing the relationships among the interindividual variabilities in urinary Cd concentration, the ratio of Cd concentrations in the target organ and in urine, and the threshold Cd concentration in the target organ. The parameters in the model were determined so that good agreement might be achieved between the prevalence rates of {beta}2MG-uria reported in the literature andmore » those estimated by the model. In this analysis, only the data from the literature on populations environmentally exposed to Cd were used. Using the model and estimated parameters, the prevalence rate of {beta}2MG-uria can be estimated for an age- and gender-specific subpopulation for which the distribution of urinary Cd concentrations is known. The maximum permissible level of urinary Cd concentration was defined as the maximum geometric mean of the urinary Cd concentration in an age- and gender-specific subpopulation that would not result in a statistically significant increase in the prevalence rate of {beta}2MG-uria. This was estimated to be approximately 3 {mu}g/g creatinine for a population in a small geographical area and approximately 2 {mu}g/g creatinine for a nationwide population.« less

  7. Preparation and characterization of a novel Al(18)F-NOTA-BZA conjugate for melanin-targeted imaging of malignant melanoma.

    PubMed

    Chang, Chih-Chao; Chang, Chih-Hsien; Lo, Yi-Hsuan; Lin, Ming-Hsien; Shen, Chih-Chieh; Liu, Ren-Shyan; Wang, Hsin-Ell; Chen, Chuan-Lin

    2016-08-15

    Melanin is an attractive target for the diagnosis and treatment of malignant melanoma. Previous studies have demonstrated the specific binding ability of benzamide moiety to melanin. In this study, we developed a novel (18)F-labeled NOTA-benzamide conjugate, Al(18)F-NOTA-BZA, which can be synthesized in 30min with a radiochemical yield of 20-35% and a radiochemical purity of >95%. Al(18)F-NOTA-BZA is highly hydrophilic (logP=-1.96) and shows good in vitro stability. Intravenous administration of Al(18)F-NOTA-BZA in two melanoma-bearing mouse models revealed highly specific uptake in B16F0 melanotic melanoma (6.67±0.91 and 1.50±0.26%ID/g at 15 and 120min p.i., respectively), but not in A375 amelanotic melanoma (0.87±0.21 and 0.24±0.09%ID/g at 15 and 120min p.i., respectively). The clearance from most normal tissues was fast. A microPET scan of Al(18)F-NOTA-BZA-injected mice also displayed high-contrast tumor images as compared with normal organs. Owing to the favorable in vivo distribution of Al(18)F-NOTA-BZA after intravenous administration, the estimated absorption dose was low in all normal organs and tissues. The melanin-specific binding ability, sustained tumor retention, fast normal tissues clearance and thelow projected human dosimetry supported that Al(18)F-NOTA-BZA is a very promising melanin-specific PET probe for melanin-positive melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Construction of ultrasonic nanobubbles carrying CAIX polypeptides to target carcinoma cells derived from various organs.

    PubMed

    Zhu, Lianhua; Guo, Yanli; Wang, Luofu; Fan, Xiaozhou; Xiong, Xingyu; Fang, Kejing; Xu, Dan

    2017-09-29

    Ultrasound molecular imaging is a novel diagnostic approach for tumors, whose key link is the construction of targeted ultrasound contrast agents. However, available targeted ultrasound contrast agents for molecular imaging of tumors are only achieving imaging in blood pool or one type tumor. No targeted ultrasound contrast agents have realized targeted ultrasound molecular imaging of tumor parenchymal cells in a variety of solid tumors so far. Carbonic anhydrase IX (CAIX) is highly expressed on cell membranes of various malignant solid tumors, so it's a good target for ultrasound molecular imaging. Here, targeted nanobubbles carrying CAIX polypeptides for targeted binding to a variety of malignant tumors were constructed, and targeted binding ability and ultrasound imaging effect in different types of tumors were evaluated. The mean diameter of lipid targeted nanobubbles was (503.7 ± 78.47) nm, and the polypeptides evenly distributed on the surfaces of targeted nanobubbles, which possessed the advantages of homogenous particle size, high stability, and good safety. Targeted nanobubbles could gather around CAIX-positive cells (786-O and Hela cells), while they cannot gather around CAIX-negative cells (BxPC-3 cells) in vitro, and the affinity of targeted nanobubbles to CAIX-positive cells were significantly higher than that to CAIX-negative cells (P < 0.05). Peak intensity and duration time of targeted nanobubbles and blank nanobubbles were different in CAIX-positive transplanted tumor tissues in vivo (P < 0.05). Moreover, targeted nanobubbles in CAIX-positive transplanted tumor tissues produced higher peak intensity and longer duration time than those in CAIX-negative transplanted tumor tissues (P < 0.05). Finally, immunofluorescence not only confirmed targeted nanobubbles could pass through blood vessels to enter in tumor tissue spaces, but also clarified imaging differences of targeted nanobubbles in different types of transplanted tumor tissues. Targeted nanobubbles carrying CAIX polypeptides can specifically enhance ultrasound imaging in CAIX-positive transplanted tumor tissues and could potentially be used in early diagnosis of a variety of solid tumors derived from various organs.

  9. Computer integrated manufacturing/processing in the HPI. [Hydrocarbon Processing Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimura, J.S.

    1993-05-01

    Hydrocarbon Processing and Systemhouse Inc., developed a comprehensive survey on the status of computer integrated manufacturing/processing (CIM/CIP) targeted specifically to the unique requirements of the hydrocarbon processing industry. These types of surveys and other benchmarking techniques can be invaluable in assisting companies to maximize business benefits from technology investments. The survey was organized into 5 major areas: CIM/CIP planning, management perspective, functional applications, integration and technology infrastructure and trends. The CIM/CIP planning area dealt with the use and type of planning methods to plan, justify implement information technology projects. The management perspective section addressed management priorities, expenditure levels and implementationmore » barriers. The functional application area covered virtually all functional areas of organization and focused on the specific solutions and benefits in each of the functional areas. The integration section addressed the needs and integration status of the organization's functional areas. Finally, the technology infrastructure and trends section dealt with specific technologies in use as well as trends over the next three years. In February 1993, summary areas from preliminary results were presented at the 2nd International Conference on Productivity and Quality in the Hydrocarbon Processing Industry.« less

  10. Poster - Thur Eve - 54: A software solution for ongoing DVH quality assurance in radiation therapy.

    PubMed

    Annis, S-L; Zeng, G; Wu, X; Macpherson, M

    2012-07-01

    A program has been developed in MATLAB for use in quality assurance of treatment planning of radiation therapy. It analyzes patient DVH files and compiles dose volume data for review, trending, comparison and analysis. Patient DVH files are exported from the Eclipse treatment planning system and saved according to treatment sites and date. Currently analysis is available for 4 treatment sites; Prostate, Prostate Bed, Lung, and Upper GI, with two functions for data report and analysis: patient-specific and organ-specific. The patient-specific function loads one patient DVH file and reports the user-specified dose volume data of organs and targets. These data can be compiled to an external file for a third party analysis. The organ-specific function extracts a requested dose volume of an organ from the DVH files of a patient group and reports the statistics over this population. A graphical user interface is utilized to select clinical sites, function and structures, and input user's requests. We have implemented this program in planning quality assurance at our center. The program has tracked the dosimetric improvement in GU sites after VMAT was implemented clinically. It has generated dose volume statistics for different groups of patients associated with technique or time range. This program allows reporting and statistical analysis of DVH files. It is an efficient tool for the planning quality control in radiation therapy. © 2012 American Association of Physicists in Medicine.

  11. Antibacterial Targets in Fatty Acid Biosynthesis

    PubMed Central

    Wright, H. Tonie; Reynolds, Kevin A.

    2008-01-01

    Summary The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for development of new anti-bacterial agents. The extended use of the anti-tuberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for anti-bacterial development. Differences in subcellular organization of the bacterial and eukaryotic multi-enzyme fatty acid synthase systems offer the prospect of inhibitors with host vs. target specificity. Platensimycin, platencin, and phomallenic acids, newly discovered natural product inhibitors of the condensation steps in fatty acid biosynthesis, represent new classes of compounds with antibiotic potential. An almost complete catalogue of crystal structures for the enzymes of the type II fatty acid biosynthesis pathway can now be exploited in the rational design of new inhibitors, as well as the recently published crystal structures of type I FAS complexes. PMID:17707686

  12. Gold-manganese nanoparticles for targeted diagnostic and imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, Simona Hunyadi

    Imagine the possibility of non-invasive, non-radiation based Magnetic resonance imaging (MRI) in combating cardiac disease. Researchers at the Savannah River National Laboratory (SRNL) are developing a process that would use nanotechnology in a novel, targeted approach that would allow MRIs to be more descriptive and brighter, and to target specific organs. Researchers at SRNL have discovered a way to use multifunctional metallic gold-manganese nanoparticles to create a unique, targeted positive contrast agent. SRNL Senior Scientist Dr. Simona Hunyadi Murph says she first thought of using the nanoparticles for cardiac disease applications after learning that people who survive an infarct exhibitmore » up to 15 times higher rate of developing chronic heart failure, arrhythmias and/or sudden death compared to the general population. Without question, nanotechnology will revolutionize the future of technology. The development of functional nanomaterials with multi-detection modalities opens up new avenues for creating multi-purpose technologies for biomedical applications.« less

  13. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Beck, Michael W.; Derrick, Jeffrey S.; Kerr, Richard A.; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C.; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D.; Kim, Kwang S.; Lee, Joo-Yong; Ruotolo, Brandon T.; Lim, Mi Hee

    2016-10-01

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.

  14. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease.

    PubMed

    Beck, Michael W; Derrick, Jeffrey S; Kerr, Richard A; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D; Kim, Kwang S; Lee, Joo-Yong; Ruotolo, Brandon T; Lim, Mi Hee

    2016-10-13

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.

  15. Phage-Enabled Nanomedicine: From Probes to Therapeutics in Precision Medicine.

    PubMed

    Sunderland, Kegan S; Yang, Mingying; Mao, Chuanbin

    2017-02-13

    Both lytic and temperate bacteriophages (phages) can be applied in nanomedicine, in particular, as nanoprobes for precise disease diagnosis and nanotherapeutics for targeted disease treatment. Since phages are bacteria-specific viruses, they do not naturally infect eukaryotic cells and are not toxic to them. They can be genetically engineered to target nanoparticles, cells, tissues, and organs, and can also be modified with functional abiotic nanomaterials for disease diagnosis and treatment. This Review will summarize the current use of phage structures in many aspects of precision nanomedicine, including ultrasensitive biomarker detection, enhanced bioimaging for disease diagnosis, targeted drug and gene delivery, directed stem cell differentiation, accelerated tissue formation, effective vaccination, and nanotherapeutics for targeted disease treatment. We will also propose future directions in the area of phage-based nanomedicines, and discuss the state of phage-based clinical trials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles

    PubMed Central

    2013-01-01

    Gene therapy provides an efficient approach for treatment of cardiovascular disease. To realize the therapeutic effect, both efficient delivery to the target cells and sustained expression of transgenes are required. Ultrasound targeted microbubble destruction (UTMD) technique has become a potential strategy for target-specific gene and drug delivery. When gene-loaded microbubble is injected, the ultrasound-mediated microbubble destruction may spew the transported gene to the targeted cells or organ. Meanwhile, high amplitude oscillations of microbubbles increase the permeability of capillary and cell membrane, facilitating uptake of the released gene into tissue and cell. Therefore, efficiency of gene therapy can be significantly improved. To date, UTMD has been successfully investigated in many diseases, and it has achieved outstanding progress in the last two decades. Herein, we discuss the current status of gene therapy of cardiovascular diseases, and reviewed the progress of the delivery of genes to cardiovascular system by UTMD. PMID:23594865

  17. Tissue-specific tumorigenesis – Context matters

    PubMed Central

    Schneider, Günter; Schmidt-Supprian, Marc; Rad, Roland; Saur, Dieter

    2018-01-01

    Preface How can we treat cancer more effectively? Traditionally, tumours from the same anatomical site are treated as one tumour entity. This concept has been challenged by recent breakthroughs in cancer genomics and translational research enabling molecular tumour profiling. The identification and validation of cancer drivers, which are shared between different tumour types, spurred the new paradigm to target driver pathways across anatomical sites by off-label drug use, or within so called “basket or umbrella trials”, which are designed to test whether molecular alterations in one tumour entity can be extrapolated to all others. However, recent clinical and preclinical studies suggest that there are tissue- and cell type-specific differences in tumourigenesis and the organization of oncogenic signalling pathways. In this Opinion article, we focus on the molecular, cellular, systemic and environmental determinants of organ-specific tumourigenesis and mechanisms of context-specific oncogenic signalling outputs. Investigation, recognition and in-depth biological understanding of these differences will be vital for the design of next-generation clinical trials and the implementation of molecularly-guided cancer therapies in the future. PMID:28256574

  18. ato-Gal4 fly lines for gene function analysis: Eya is required in late progenitors for eye morphogenesis

    PubMed Central

    Yu, Linlin; Zhou, Qingxiang; Pignoni, Francesca

    2015-01-01

    The Gal4/UAS system is one of the most powerful tools for the study of cellular and developmental processes in Drosophila. Gal4 drivers can be used to induce targeted expression of dominant-negative and dominant-active proteins, histological markers, activity sensors, gene-specific dsRNAs, modulators of cell survival or proliferation, and other reagents. We describe here novel atonal-Gal4 lines that contain regions of the regulatory DNA of atonal, the proneural gene for photoreceptors, stretch receptors, auditory organ and some olfactory sensilla. During neurogenesis, the atonal gene is expressed at a critical juncture, a time of transition from progenitor cell to developing neuron. Thus, these lines are particularly well suited for the study of the transcription factors and signaling molecules orchestrating this critical transition. To demonstrate their usefulness, we focus on two visual organs, the eye and the Bolwig. We demonstrate the induction of predicted eye phenotypes when expressing the dominant-negative EGF receptor, EGFRDN, or a dsRNA against Notch, NotchRNAi, in the developing eye disc. In another example, we show the deletion of the Bolwig’s organ using the proapoptotic factor Hid. Lastly, we investigate the function of the eye specification factor Eyes absent or Eya in late retinal progenitors, shortly before they begin morphogenesis. We show that Eya is still required in these late progenitors to promote eye formation, and show failure to induce the target gene atonal and consequent lack of neuron formation. PMID:25980363

  19. ato-Gal4 fly lines for gene function analysis: Eya is required in late progenitors for eye morphogenesis.

    PubMed

    Yu, Linlin; Zhou, Qingxiang; Pignoni, Francesca

    2015-06-01

    The Gal4/UAS system is one of the most powerful tools for the study of cellular and developmental processes in Drosophila. Gal4 drivers can be used to induce targeted expression of dominant-negative and dominant-active proteins, histological markers, activity sensors, gene-specific dsRNAs, modulators of cell survival or proliferation, and other reagents. Here, we describe novel atonal-Gal4 lines that contain regions of the regulatory DNA of atonal, the proneural gene for photoreceptors, stretch receptors, auditory organ, and some olfactory sensilla. During neurogenesis, the atonal gene is expressed at a critical juncture, a time of transition from progenitor cell to developing neuron. Thus, these lines are particularly well suited for the study of the transcription factors and signaling molecules orchestrating this critical transition. To demonstrate their usefulness, we focus on two visual organs, the eye and the Bolwig. We demonstrate the induction of predicted eye phenotypes when expressing the dominant-negative EGF receptor or a dsRNA against Notch in the developing eye disc. In another example, we show the deletion of the Bolwig's organ using the proapoptotic factor Hid. Finally, we investigate the function of the eye specification factor Eyes absent or Eya in late retinal progenitors, shortly before they begin morphogenesis. We show that Eya is still required in these late progenitors to promote eye formation, and show failure to induce the target gene atonal and consequent lack of neuron formation. © 2015 Wiley Periodicals, Inc.

  20. Detection of the reemerging agent Burkholderia mallei in a recent outbreak of glanders in the United Arab Emirates by a newly developed fliP-based polymerase chain reaction assay.

    PubMed

    Scholz, Holger C; Joseph, Marina; Tomaso, Herbert; Al Dahouk, Sascha; Witte, Angela; Kinne, Joerg; Hagen, Ralph M; Wernery, Renate; Wernery, Ulrich; Neubauer, Heinrich

    2006-04-01

    A polymerase chain reaction (PCR) assay targeting the flagellin P (fliP)-I S407A genomic region of Burkholderia mallei was developed for the specific detection of this organism in pure cultures and clinical samples from a recent outbreak of equine glanders. Primers deduced from the known fliP-IS407A sequence of B. mallei American Type Culture Collection (ATCC) 23344(T) allowed the specific amplification of a 989-bp fragment from each of the 20 B. mallei strains investigated, whereas other closely related organisms tested negative. The detection limit of the assay was 10 fg for purified DNA of B. mallei ATCC 23344(T). B. mallei DNA was also amplified from various tissues of horses with a generalized B. mallei infection. The developed PCR assay can be used as a simple and rapid tool for the specific and sensitive detection of B. mallei in clinical samples.

  1. Metal-organic gel enhanced fluorescence anisotropy for sensitive detection of prostate specific antigen

    NASA Astrophysics Data System (ADS)

    Zhao, Ting Ting; Peng, Zhe Wei; Yuan, Dan; Zhen, Shu Jun; Huang, Cheng Zhi; Li, Yuan Fang

    2018-03-01

    In this contribution, we demonstrated that Cu-based metal-organic gel (Cu-MOG) was able to serve as a novel amplification platform for fluorescence anisotropy (FA) assay for the first time, which was confirmed by the sensitive detection of a common cancer biomarker, prostate specific antigen (PSA). The dye-labeled probe aptamer (PA) product was adsorbed onto the benzimidazole derivative-containing Cu-MOG via electrostatic incorporation and strong π-π stacking interactions, which significantly increased the FA value due to the enlargement of the molecular volume of the PA/Cu-MOG complex. With the introduction of target PSA, the FA value was obviously decreased on account of the specific recognition between PSA and PA which resulted in the detachment of PA from the surface of MOG. The linear range was from 0.5-8 ng/mL, with a detection limit of 0.33 ng/mL. Our work has thus helped to demonstrate promising application of MOG material in the fields of biomolecules analysis and disease diagnosis.

  2. Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis.

    PubMed

    Cao, Zhongwei; Ye, Tinghong; Sun, Yue; Ji, Gaili; Shido, Koji; Chen, Yutian; Luo, Lin; Na, Feifei; Li, Xiaoyan; Huang, Zhen; Ko, Jane L; Mittal, Vivek; Qiao, Lina; Chen, Chong; Martinez, Fernando J; Rafii, Shahin; Ding, Bi-Sen

    2017-08-30

    The regenerative capacity of lung and liver is sometimes impaired by chronic or overwhelming injury. Orthotopic transplantation of parenchymal stem cells to damaged organs might reinstate their self-repair ability. However, parenchymal cell engraftment is frequently hampered by the microenvironment in diseased recipient organs. We show that targeting both the vascular niche and perivascular fibroblasts establishes "hospitable soil" to foster the incorporation of "seed," in this case, the engraftment of parenchymal cells in injured organs. Specifically, ectopic induction of endothelial cell (EC)-expressed paracrine/angiocrine hepatocyte growth factor (HGF) and inhibition of perivascular NOX4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 4] synergistically enabled reconstitution of mouse and human parenchymal cells in damaged organs. Reciprocally, genetic knockout of Hgf in mouse ECs ( Hgf iΔEC/iΔEC ) aberrantly up-regulated perivascular NOX4 during liver and lung regeneration. Dysregulated HGF and NOX4 pathways subverted the function of vascular and perivascular cells from an epithelially inductive niche to a microenvironment that inhibited parenchymal reconstitution. Perivascular NOX4 induction in Hgf iΔEC/iΔEC mice recapitulated the phenotype of human and mouse liver and lung fibrosis. Consequently, EC-directed HGF and NOX4 inhibitor GKT137831 stimulated regenerative integration of mouse and human parenchymal cells in chronically injured lung and liver. Our data suggest that targeting dysfunctional perivascular and vascular cells in diseased organs can bypass fibrosis and enable reparative cell engraftment to reinstate lung and liver regeneration. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Cooperative gene regulation by microRNA pairs and their identification using a computational workflow

    PubMed Central

    Schmitz, Ulf; Lai, Xin; Winter, Felix; Wolkenhauer, Olaf; Vera, Julio; Gupta, Shailendra K.

    2014-01-01

    MicroRNAs (miRNAs) are an integral part of gene regulation at the post-transcriptional level. Recently, it has been shown that pairs of miRNAs can repress the translation of a target mRNA in a cooperative manner, which leads to an enhanced effectiveness and specificity in target repression. However, it remains unclear which miRNA pairs can synergize and which genes are target of cooperative miRNA regulation. In this paper, we present a computational workflow for the prediction and analysis of cooperating miRNAs and their mutual target genes, which we refer to as RNA triplexes. The workflow integrates methods of miRNA target prediction; triplex structure analysis; molecular dynamics simulations and mathematical modeling for a reliable prediction of functional RNA triplexes and target repression efficiency. In a case study we analyzed the human genome and identified several thousand targets of cooperative gene regulation. Our results suggest that miRNA cooperativity is a frequent mechanism for an enhanced target repression by pairs of miRNAs facilitating distinctive and fine-tuned target gene expression patterns. Human RNA triplexes predicted and characterized in this study are organized in a web resource at www.sbi.uni-rostock.de/triplexrna/. PMID:24875477

  4. PhytoCRISP-Ex: a web-based and stand-alone application to find specific target sequences for CRISPR/CAS editing.

    PubMed

    Rastogi, Achal; Murik, Omer; Bowler, Chris; Tirichine, Leila

    2016-07-01

    With the emerging interest in phytoplankton research, the need to establish genetic tools for the functional characterization of genes is indispensable. The CRISPR/Cas9 system is now well recognized as an efficient and accurate reverse genetic tool for genome editing. Several computational tools have been published allowing researchers to find candidate target sequences for the engineering of the CRISPR vectors, while searching possible off-targets for the predicted candidates. These tools provide built-in genome databases of common model organisms that are used for CRISPR target prediction. Although their predictions are highly sensitive, the applicability to non-model genomes, most notably protists, makes their design inadequate. This motivated us to design a new CRISPR target finding tool, PhytoCRISP-Ex. Our software offers CRIPSR target predictions using an extended list of phytoplankton genomes and also delivers a user-friendly standalone application that can be used for any genome. The software attempts to integrate, for the first time, most available phytoplankton genomes information and provide a web-based platform for Cas9 target prediction within them with high sensitivity. By offering a standalone version, PhytoCRISP-Ex maintains an independence to be used with any organism and widens its applicability in high throughput pipelines. PhytoCRISP-Ex out pars all the existing tools by computing the availability of restriction sites over the most probable Cas9 cleavage sites, which can be ideal for mutant screens. PhytoCRISP-Ex is a simple, fast and accurate web interface with 13 pre-indexed and presently updating phytoplankton genomes. The software was also designed as a UNIX-based standalone application that allows the user to search for target sequences in the genomes of a variety of other species.

  5. Listeriolysin S Is a Streptolysin S-Like Virulence Factor That Targets Exclusively Prokaryotic Cells In Vivo.

    PubMed

    Quereda, Juan J; Nahori, Marie A; Meza-Torres, Jazmín; Sachse, Martin; Titos-Jiménez, Patricia; Gomez-Laguna, Jaime; Dussurget, Olivier; Cossart, Pascale; Pizarro-Cerdá, Javier

    2017-04-04

    Streptolysin S (SLS)-like virulence factors from clinically relevant Gram-positive pathogens have been proposed to behave as potent cytotoxins, playing key roles in tissue infection. Listeriolysin S (LLS) is an SLS-like hemolysin/bacteriocin present among Listeria monocytogenes strains responsible for human listeriosis outbreaks. As LLS cytotoxic activity has been associated with virulence, we investigated the LLS-specific contribution to host tissue infection. Surprisingly, we first show that LLS causes only weak red blood cell (RBC) hemolysis in vitro and neither confers resistance to phagocytic killing nor favors survival of L. monocytogenes within the blood cells or in the extracellular space (in the plasma). We reveal that LLS does not elicit specific immune responses, is not cytotoxic for eukaryotic cells, and does not impact cell infection by L. monocytogenes Using in vitro cell infection systems and a murine intravenous infection model, we actually demonstrate that LLS expression is undetectable during infection of cells and murine inner organs. Importantly, upon intravenous animal inoculation, L. monocytogenes is found in the gastrointestinal system, and only in this environment LLS expression is detected in vivo Finally, we confirm that LLS production is associated with destruction of target bacteria. Our results demonstrate therefore that LLS does not contribute to L. monocytogenes tissue injury and virulence in inner host organs as previously reported. Moreover, we describe that LlsB, a putative posttranslational modification enzyme encoded in the LLS operon, is necessary for murine inner organ colonization. Overall, we demonstrate that LLS is the first SLS-like virulence factor targeting exclusively prokaryotic cells during in vivo infections. IMPORTANCE The most severe human listeriosis outbreaks are caused by L. monocytogenes strains harboring listeriolysin S (LLS), previously described as a cytotoxin that plays a critical role in host inner tissue infection. Cytotoxic activities have been proposed as a general mode of action for streptolysin S (SLS)-like toxins, including clostridiolysin S and LLS. We now challenge this dogma by demonstrating that LLS does not contribute to virulence in vivo once the intestinal barrier has been crossed. Importantly, we show that intravenous L. monocytogenes inoculation leads to bacterial translocation to the gastrointestinal system, where LLS is specifically expressed, targeting the host gut microbiota. Our study highlights the heterogeneous modes of action of SLS-like toxins, and we demonstrate for the first time a further level of complexity for SLS-like biosynthetic clusters as we reveal that the putative posttranslational modification enzyme LlsB is actually required for inner organ colonization, independently of the LLS activity. Copyright © 2017 Quereda et al.

  6. Comparison of organ dose and dose equivalent using ray tracing of male and female Voxel phantoms to space flight phantom torso data

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee; Qualls, Garry; Slaba, Tony; Cucinotta, Francis A.

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  7. Comparison of Organ Dose and Dose Equivalent Using Ray Tracing of Male and Female Voxel Phantoms to Space Flight Phantom Torso Data

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Qualls, Garry D.; Cucinotta, Francis A.

    2008-01-01

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  8. Update On The Development, Testing, And Manufacture Of High Density LEU-Foil Targets For The Production Of Mo-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creasy, John T

    2015-05-12

    This project has the objective to reduce and/or eliminate the use of HEU in commerce. Steps in the process include developing a target testing methodology that is bounding for all Mo-99 target irradiators, establishing a maximum target LEU-foil mass, developing a LEU-foil target qualification document, developing a bounding target failure analysis methodology (failure in reactor containment), optimizing safety vs. economics (goal is to manufacture a safe, but relatively inexpensive target to offset the inherent economic disadvantage of using LEU in place of HEU), and developing target material specifications and manufacturing QC test criteria. The slide presentation is organized under themore » following topics: Objective, Process Overview, Background, Team Structure, Key Achievements, Experiment and Activity Descriptions, and Conclusions. The High Density Target project has demonstrated: approx. 50 targets irradiated through domestic and international partners; proof of concept for two front end processing methods; fabrication of uranium foils for target manufacture; quality control procedures and steps for manufacture; multiple target assembly techniques; multiple target disassembly devices; welding of targets; thermal, hydraulic, and mechanical modeling; robust target assembly parametric studies; and target qualification analysis for insertion into very high flux environment. The High Density Target project has tested and proven several technologies that will benefit current and future Mo-99 producers.« less

  9. Tuning polarity and improving charge transport in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Oh, Joon Hak; Han, A.-Reum; Yu, Hojeong; Lee, Eun Kwang; Jang, Moon Jeong

    2013-09-01

    Although state-of-the-art ambipolar polymer semiconductors have been extensively reported in recent years, highperformance ambipolar polymers with tunable dominant polarity are still required to realize on-demand, target-specific, high-performance organic circuitry. Herein, dithienyl-diketopyrrolopyrrole (TDPP)-based polymer semiconductors with engineered side-chains have been synthesized, characterized and employed in ambipolar organic field-effect transistors, in order to achieve controllable and improved electrical properties. Thermally removable tert-butoxycarbonyl (t-BOC) groups and hybrid siloxane-solubilizing groups are introduced as the solubilizing groups, and they are found to enable the tunable dominant polarity and the enhanced ambipolar performance, respectively. Such outstanding performance based on our molecular design strategies makes these ambipolar polymer semiconductors highly promising for low-cost, large-area, and flexible electronics.

  10. DNA-Encoded Chemical Libraries: A Selection System Based on Endowing Organic Compounds with Amplifiable Information.

    PubMed

    Neri, Dario; Lerner, Richard A

    2018-06-20

    The discovery of organic ligands that bind specifically to proteins is a central problem in chemistry, biology, and the biomedical sciences. The encoding of individual organic molecules with distinctive DNA tags, serving as amplifiable identification bar codes, allows the construction and screening of combinatorial libraries of unprecedented size, thus facilitating the discovery of ligands to many different protein targets. Fundamentally, one links powers of genetics and chemical synthesis. After the initial description of DNA-encoded chemical libraries in 1992, several experimental embodiments of the technology have been reduced to practice. This review provides a historical account of important milestones in the development of DNA-encoded chemical libraries, a survey of relevant ongoing research activities, and a glimpse into the future.

  11. The Research and Applications of Quantum Dots as Nano-Carriers for Targeted Drug Delivery and Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Mei-Xia; Zhu, Bing-Jie

    2016-04-01

    Quantum dots (QDs), nano-carriers for drugs, can help realize the targeting of drugs, and improve the bioavailability of drugs in biological fields. And, a QD nano-carrier system for drugs has the potential to realize early detection, monitoring, and localized treatments of specific disease sites. In addition, QD nano-carrier systems for drugs can improve stability of drugs, lengthen circulation time in vivo, enhance targeted absorption, and improve the distribution and metabolism process of drugs in organization. So, the development of QD nano-carriers for drugs has become a hotspot in the fields of nano-drug research in recent years. In this paper, we review the advantages and applications of the QD nano-carriers for drugs in biological fields.

  12. Basis of altered RNA-binding specificity by PUF proteins revealed by crystal structures of yeast Puf4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Matthew T.; Higgin, Joshua J.; Hall, Traci M.Tanaka

    2008-06-06

    Pumilio/FBF (PUF) family proteins are found in eukaryotic organisms and regulate gene expression post-transcriptionally by binding to sequences in the 3' untranslated region of target transcripts. PUF proteins contain an RNA binding domain that typically comprises eight {alpha}-helical repeats, each of which recognizes one RNA base. Some PUF proteins, including yeast Puf4p, have altered RNA binding specificity and use their eight repeats to bind to RNA sequences with nine or ten bases. Here we report the crystal structures of Puf4p alone and in complex with a 9-nucleotide (nt) target RNA sequence, revealing that Puf4p accommodates an 'extra' nucleotide by modestmore » adaptations allowing one base to be turned away from the RNA binding surface. Using structural information and sequence comparisons, we created a mutant Puf4p protein that preferentially binds to an 8-nt target RNA sequence over a 9-nt sequence and restores binding of each protein repeat to one RNA base.« less

  13. Emulsomes Meet S-layer Proteins: An Emerging Targeted Drug Delivery System

    PubMed Central

    Ucisik, Mehmet H.; Sleytr, Uwe B.; Schuster, Bernhard

    2015-01-01

    Here, the use of emulsomes as a drug delivery system is reviewed and compared with other similar lipidic nanoformulations. In particular, we look at surface modification of emulsomes using S-layer proteins, which are self-assembling proteins that cover the surface of many prokaryotic organisms. It has been shown that covering emulsomes with a crystalline S-layer lattice can protect cells from oxidative stress and membrane damage. In the future, the capability to recrystallize S-layer fusion proteins on lipidic nanoformulations may allow the presentation of binding functions or homing protein domains to achieve highly specific targeted delivery of drug-loaded emulsomes. Besides the discussion on several designs and advantages of composite emulsomes, the success of emulsomes for the delivery of drugs to fight against viral and fungal infections, dermal therapy, cancer, and autoimmunity is summarized. Further research might lead to smart, biocompatible emulsomes, which are able to protect and reduce the side effects caused by the drug, but at the same time are equipped with specific targeting molecules to find the desired site of action. PMID:25697368

  14. Pharmacokinetics and metabolism of benzene in Zymbal gland and other key target tissues after oral administration in rats.

    PubMed Central

    Low, L K; Meeks, J R; Norris, K J; Mehlman, M A; Mackerer, C R

    1989-01-01

    Solid tumors have been reported in the Zymbal gland, oral and nasal cavities, and mammary gland of Sprague-Dawley rats following chronic oral administration of benzene. The cause for the specificity of such lesions remains unclear, but it is possible that tissue-specific metabolism or pharmacokinetics of benzene is responsible. Metabolism and pharmacokinetic studies were carried out in our laboratory with 14C-benzene at oral doses of 0.15 to 500 mg/kg to ascertain tissue retention, metabolite profile, and elimination kinetics in target and nontarget organs and in blood. Findings from those studies indicate the following: a) the Zymbal gland is not a sink or a site of accumulation for benzene or its metabolites even after a single high dose (500 mg/kg) or after repeated oral administration; b) the metabolite profile is quantitatively different in target tissues (e.g., Zymbal gland, nasal cavity), nontarget tissues and blood; and (c) pharmacokinetic studies show that the elimination of radioactivity from the Zymbal gland is biphasic. PMID:2792043

  15. Plant extracts as potential mosquito larvicides

    PubMed Central

    Ghosh, Anupam; Chowdhury, Nandita; Chandra, Goutam

    2012-01-01

    Mosquitoes act as a vector for most of the life threatening diseases like malaria, yellow fever, dengue fever, chikungunya ferver, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management (IMM), emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain and adverse effects on environmental quality and non target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are non-toxic, easily available at affordable prices, biodegradable and show broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed. PMID:22771587

  16. Plant extracts as potential mosquito larvicides.

    PubMed

    Ghosh, Anupam; Chowdhury, Nandita; Chandra, Goutam

    2012-05-01

    Mosquitoes act as a vector for most of the life threatening diseases like malaria, yellow fever, dengue fever, chikungunya ferver, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management (IMM), emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain and adverse effects on environmental quality and non target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are non-toxic, easily available at affordable prices, biodegradable and show broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed.

  17. Maternally expressed PGK-Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase.

    PubMed

    Lallemand, Y; Luria, V; Haffner-Krausz, R; Lonai, P

    1998-03-01

    A transgenic mouse strain with early and uniform expression of the Cre site-specific recombinase is described. In this strain, PGK-Crem, Cre is driven by the early acting PGK-1 promoter, but, probably due to cis effects at the integration site, the recombinase is under dominant maternal control. When Cre is transmitted by PGK-Crem females mated to males that carry a reporter transgene flanked by loxP sites, even offspring that do not inherit PGK-Cre delete the target gene. It follows that in the PGK-Crem female Cre activity commences in the diploid phase of oogenesis. In PGK-Crem crosses complete recombination was observed in all organs, including testis and ovary. We prepared a mouse stock that is homozygous for PGK-Crem and at the albino (c) locus. This strain will be useful for the early and uniform induction of ectopic and dominant negative mutations, for the in vivo removal of selective elements from targeted mutations and in connection with the manipulation of targeted loci in 'knock in' and related technologies.

  18. Trojan Horse Strategy for Non-invasive Interference of Clock Gene in the Oyster Crassostrea gigas.

    PubMed

    Payton, Laura; Perrigault, Mickael; Bourdineaud, Jean-Paul; Marcel, Anjara; Massabuau, Jean-Charles; Tran, Damien

    2017-08-01

    RNA interference is a powerful method to inhibit specific gene expression. Recently, silencing target genes by feeding has been successfully carried out in nematodes, insects, and small aquatic organisms. A non-invasive feeding-based RNA interference is reported here for the first time in a mollusk bivalve, the pacific oyster Crassostrea gigas. In this Trojan horse strategy, the unicellular alga Heterocapsa triquetra is the food supply used as a vector to feed oysters with Escherichia coli strain HT115 engineered to express the double-stranded RNA targeting gene. To test the efficacy of the method, the Clock gene, a central gene of the circadian clock, was targeted for knockout. Results demonstrated specific and systemic efficiency of the Trojan horse strategy in reducing Clock mRNA abundance. Consequences of Clock disruption were observed in Clock-related genes (Bmal, Tim1, Per, Cry1, Cry2, Rev.-erb, and Ror) and triploid oysters were more sensitive than diploid to the interference. This non-invasive approach shows an involvement of the circadian clock in oyster bioaccumulation of toxins produced by the harmful alga Alexandrium minutum.

  19. Improving customer satisfaction: emerging lessons about strategy and implementation, Part 2.

    PubMed

    Morton, J

    1995-01-01

    This article describes a six-phase strategy designed to systematically improve customer satisfaction across an entire managed care system. Part 1 (Spring 1995) of this two-part series summarized the theoretical underpinnings of the approach and highlighted the first two phases of the improvement strategy. Those phases involve systematically listening to the organization's customers and using customer information to strategically target key areas for improvement. This article describes the specifics of the last four phases of the strategy; these phases involve achieving and sustaining unprecedented levels of improvement in targeted areas. Initial results and emerging lessons associated with the implementation of this strategy are summarized.

  20. Photodynamic cell-kill analysis of breast tumor cells with a tamoxifen-pyropheophorbide conjugate.

    PubMed

    Fernandez Gacio, Ana; Fernandez-Marcos, Carlos; Swamy, Narasimha; Dunn, Darra; Ray, Rahul

    2006-10-15

    We hypothesized that estrogen receptor (ER) in hormone-sensitive breast cancer cells could be targeted for selective photodynamic killing of tumor cell with antiestrogen-porphyrin conjugates by combining the over-expression of ER in hormone-sensitive breast cancer cells and tumor-retention property of porphyrin photosensitizers. In this study we describe that a tamoxifen (TAM)-pyropheophorbide conjugate that specifically binds to ER alpha, caused selective cell-kill in MCF-7 breast cancer cells upon light exposure. Therefore, it is a potential candidate for ER-targeted photodynamic therapy of cancers (PDT) of tissues and organs that respond to estrogens/antiestrogens. 2006 Wiley-Liss, Inc.

  1. Utilizing Laser-Induced Breakdown Spectroscopy Method to recognize chemical composition of low-carbon steel in NH3(NO)4 material

    NASA Astrophysics Data System (ADS)

    Saud Oraibi, Nissan

    2018-05-01

    A standoff laser Induced Break down Spectroscopy (L.I.B.S) technique has been used to characterization the organic material such as NH3(NO)4, a Q-switched Nd:YAG laser (1064 nm wavelength, 9 ns pulse width and 1 Hz repetition rate, 300 mJ is focused to the targets to generate plasma. HR 4000 CG-UV-NIR spectrum analyzer was used to collect the generated plasma emissions, specific signature of each targets material can be obtained by analysis the plasma emission spectrum Peak ratio analysis technique is used for the identification of energetic materials.

  2. Analytical applications of aptamers

    NASA Astrophysics Data System (ADS)

    Tombelli, S.; Minunni, M.; Mascini, M.

    2007-05-01

    Aptamers are single stranded DNA or RNA ligands which can be selected for different targets starting from a library of molecules containing randomly created sequences. Aptamers have been selected to bind very different targets, from proteins to small organic dyes. Aptamers are proposed as alternatives to antibodies as biorecognition elements in analytical devices with ever increasing frequency. This in order to satisfy the demand for quick, cheap, simple and highly reproducible analytical devices, especially for protein detection in the medical field or for the detection of smaller molecules in environmental and food analysis. In our recent experience, DNA and RNA aptamers, specific for three different proteins (Tat, IgE and thrombin), have been exploited as bio-recognition elements to develop specific biosensors (aptasensors). These recognition elements have been coupled to piezoelectric quartz crystals and surface plasmon resonance (SPR) devices as transducers where the aptamers have been immobilized on the gold surface of the crystals electrodes or on SPR chips, respectively.

  3. Progress in molecular imaging in endoscopy and endomicroscopy for cancer imaging

    PubMed Central

    Khondee, Supang; Wang, Thomas D.

    2014-01-01

    Imaging is an essential tool for effective cancer management. Endoscopes are important medical instruments for performing in vivo imaging in hollow organs. Early detection of cancer can be achieved with surveillance using endoscopy, and has been shown to reduce mortality and to improve outcomes. Recently, great advancements have been made in endoscopic instruments, including new developments in optical designs, light sources, optical fibers, miniature scanners, and multimodal systems, allowing for improved resolution, greater tissue penetration, and multispectral imaging. In addition, progress has been made in the development of highly-specific optical probes, allowing for improved specificity for molecular targets. Integration of these new endoscopic instruments with molecular probes provides a unique opportunity for significantly improving patient outcomes and has potential to further improve early detection, image guided therapy, targeted therapy, and personalized medicine. This work summarizes current and evolving endoscopic technologies, and provides an overview of various promising optical molecular probes. PMID:23502247

  4. A-to-I RNA editing independent of ADARs in filamentous fungi

    PubMed Central

    Wang, Chenfang; Xu, Jin-Rong; Liu, Huiquan

    2016-01-01

    ABSTRACT ADAR mediated A-to-I RNA editing is thought to be unique to animals and occurs mainly in the non-coding regions. Recently filamentous fungi such as Fusarium graminearum were found to lack orthologs of animal ADARs but have stage-specific A-to-I editing during sexual reproduction. Unlike animals, majority of editing sites are in the coding regions and often result in missense and stop loss changes in fungi. Furthermore, whereas As in RNA stems are targeted by animal ADARs, RNA editing in fungi preferentially targets As in hairpin loops, implying that fungal RNA editing involves mechanisms related to editing of the anticodon loop by ADATs. Identification and characterization of fungal adenosine deaminases and their stage-specific co-factors may be helpful to understand the evolution of human ADARs. Fungi also can be used to study biological functions of missense and stop loss RNA editing events in eukaryotic organisms. PMID:27533598

  5. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta.

    PubMed

    Coffinier, Catherine; Gresh, Lionel; Fiette, Laurence; Tronche, François; Schütz, Günther; Babinet, Charles; Pontoglio, Marco; Yaniv, Moshe; Barra, Jacqueline

    2002-04-01

    The inactivation of the Hnf1beta gene identified an essential role in epithelial differentiation of the visceral endoderm and resulted in early embryonic death. In the present study, we have specifically inactivated this gene in hepatocytes and bile duct cells using the Cre/loxP system. Mutant animals exhibited severe jaundice caused by abnormalities of the gallbladder and intrahepatic bile ducts (IHBD). The paucity of small IHBD was linked to a failure in the organization of duct structures during liver organogenesis, suggesting an essential function of Hnf1b in bile duct morphogenesis. Mutant mice also lacked interlobular arteries. As HNF1beta is not expressed in these cells, it further emphasizes the link between arterial and biliary formation. Hepatocyte metabolism was also affected and we identified hepatocyte-specific HNF1beta target genes involved in bile acids sensing and in fatty acid oxidation.

  6. Evolution and Structural Analyses of Glossina morsitans (Diptera; Glossinidae) Tetraspanins

    PubMed Central

    Murungi, Edwin K.; Kariithi, Henry M.; Adunga, Vincent; Obonyo, Meshack; Christoffels, Alan

    2014-01-01

    Tetraspanins are important conserved integral membrane proteins expressed in many organisms. Although there is limited knowledge about the full repertoire, evolution and structural characteristics of individual members in various organisms, data obtained so far show that tetraspanins play major roles in membrane biology, visual processing, memory, olfactory signal processing, and mechanosensory antennal inputs. Thus, these proteins are potential targets for control of insect pests. Here, we report that the genome of the tsetse fly, Glossina morsitans (Diptera: Glossinidae) encodes at least seventeen tetraspanins (GmTsps), all containing the signature features found in the tetraspanin superfamily members. Whereas six of the GmTsps have been previously reported, eleven could be classified as novel because their amino acid sequences do not map to characterized tetraspanins in the available protein data bases. We present a model of the GmTsps by using GmTsp42Ed, whose presence and expression has been recently detected by transcriptomics and proteomics analyses of G. morsitans. Phylogenetically, the identified GmTsps segregate into three major clusters. Structurally, the GmTsps are largely similar to vertebrate tetraspanins. In view of the exploitation of tetraspanins by organisms for survival, these proteins could be targeted using specific antibodies, recombinant large extracellular loop (LEL) domains, small-molecule mimetics and siRNAs as potential novel and efficacious putative targets to combat African trypanosomiasis by killing the tsetse fly vector. PMID:26462947

  7. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy.

    PubMed

    Zhan, Changyou; Li, Chong; Wei, Xiaoli; Lu, Wuyuan; Lu, Weiyue

    2015-08-01

    Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. [Targeted public funding for health research in the Netherlands].

    PubMed

    Viergever, Roderik F; Hendriks, Thom C C

    2014-01-01

    The Dutch government funds health research in several ways. One component of public funding consists of funding programmes issued by the Netherlands Organisation for Health Research and Development (ZonMw). The majority of ZonMw's programmes provide funding for research in specific health research areas. Such targeted funding plays an important role in addressing knowledge gaps and in generating products for which there is a need. Good governance of the allocation of targeted funding for health research requires three elements: a research agenda, an overview of the health research currently being conducted, and a transparent decision-making process regarding the distribution of funds. In this article, we describe how public funding for health research is organized in the Netherlands and how the allocation of targeted funds is governed. By describing the questions that the current model of governance raises, we take a first step towards a debate about the governance of targeted public funding for health research in the Netherlands.

  9. Position statement of the Australian Diabetes Society: individualisation of glycated haemoglobin targets for adults with diabetes mellitus.

    PubMed

    Cheung, N Wah; Conn, Jennifer J; d'Emden, Michael C; Gunton, Jenny E; Jenkins, Alicia J; Ross, Glynis P; Sinha, Ashim K; Andrikopoulos, Sofianos; Colagiuri, Stephen; Twigg, Stephen M

    2009-09-21

    Tight glycaemic control reduces the risk of development and progression of organ complications in people with type 1 or type 2 diabetes. In this position statement, the Australian Diabetes Society recommends a general target glycated haemoglobin (HbA(1c)) level of

  10. Autoinhibition of ankyrin-B/G membrane target bindings by intrinsically disordered segments from the tail regions

    PubMed Central

    Wang, Chao; Wei, Zhiyi

    2017-01-01

    Ankyrins together with their spectrin partners are the master organizers of micron-scale membrane domains in diverse tissues. The 24 ankyrin (ANK) repeats of ankyrins bind to numerous membrane proteins, linking them to spectrin-based cytoskeletons at specific membrane microdomains. The accessibility of the target binding groove of ANK repeats must be regulated to achieve spatially defined functions of ankyrins/target complexes in different tissues, though little is known in this regard. Here we systemically investigated the autoinhibition mechanism of ankyrin-B/G by combined biochemical, biophysical and structural biology approaches. We discovered that the entire ANK repeats are inhibited by combinatorial and quasi-independent bindings of multiple disordered segments located in the ankyrin-B/G linkers and tails, suggesting a mechanistic basis for differential regulations of membrane target bindings by ankyrins. In addition to elucidating the autoinhibition mechanisms of ankyrins, our study may also shed light on regulations on target bindings by other long repeat-containing proteins. PMID:28841137

  11. Structural Insights into the Molecular Design of Flutolanil Derivatives Targeted for Fumarate Respiration of Parasite Mitochondria.

    PubMed

    Inaoka, Daniel Ken; Shiba, Tomoo; Sato, Dan; Balogun, Emmanuel Oluwadare; Sasaki, Tsuyoshi; Nagahama, Madoka; Oda, Masatsugu; Matsuoka, Shigeru; Ohmori, Junko; Honma, Teruki; Inoue, Masayuki; Kita, Kiyoshi; Harada, Shigeharu

    2015-07-07

    Recent studies on the respiratory chain of Ascaris suum showed that the mitochondrial NADH-fumarate reductase system composed of complex I, rhodoquinone and complex II plays an important role in the anaerobic energy metabolism of adult A. suum. The system is the major pathway of energy metabolism for adaptation to a hypoxic environment not only in parasitic organisms, but also in some types of human cancer cells. Thus, enzymes of the pathway are potential targets for chemotherapy. We found that flutolanil is an excellent inhibitor for A. suum complex II (IC50 = 0.058 μM) but less effectively inhibits homologous porcine complex II (IC50 = 45.9 μM). In order to account for the specificity of flutolanil to A. suum complex II from the standpoint of structural biology, we determined the crystal structures of A. suum and porcine complex IIs binding flutolanil and its derivative compounds. The structures clearly demonstrated key interactions responsible for its high specificity to A. suum complex II and enabled us to find analogue compounds, which surpass flutolanil in both potency and specificity to A. suum complex II. Structures of complex IIs binding these compounds will be helpful to accelerate structure-based drug design targeted for complex IIs.

  12. MicroRNA-127 Promotes Mesendoderm Differentiation of Mouse Embryonic Stem Cells by Targeting Left-Right Determination Factor 2.

    PubMed

    Ma, Haixia; Lin, Yu; Zhao, Zhen-Ao; Lu, Xukun; Yu, Yang; Zhang, Xiaoxin; Wang, Qiang; Li, Lei

    2016-06-03

    Specification of the three germ layers is a fundamental process and is essential for the establishment of organ rudiments. Multiple genetic and epigenetic factors regulate this dynamic process; however, the function of specific microRNAs in germ layer differentiation remains unknown. In this study, we established that microRNA-127 (miR-127) is related to germ layer specification via microRNA array analysis of isolated three germ layers of E7.5 mouse embryos and was verified through differentiation of mouse embryonic stem cells. miR-127 is highly expressed in endoderm and primitive streak. Overexpression of miR-127 increases and inhibition of miR-127 decreases the expression of mesendoderm markers. We further show that miR-127 promotes mesendoderm differentiation through the nodal pathway, a determinative signaling pathway in early embryogenesis. Using luciferase reporter assay, left-right determination factor 2 (Lefty2), an antagonist of nodal, is identified to be a novel target of miR-127. Furthermore, the role of miR-127 in mesendoderm differentiation is attenuated by Lefty2 overexpression. Altogether, our results indicate that miR-127 accelerates mesendoderm differentiation of mouse embryonic stem cells through nodal signaling by targeting Lefty2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Structural Insights into the Molecular Design of Flutolanil Derivatives Targeted for Fumarate Respiration of Parasite Mitochondria

    PubMed Central

    Inaoka, Daniel Ken; Shiba, Tomoo; Sato, Dan; Balogun, Emmanuel Oluwadare; Sasaki, Tsuyoshi; Nagahama, Madoka; Oda, Masatsugu; Matsuoka, Shigeru; Ohmori, Junko; Honma, Teruki; Inoue, Masayuki; Kita, Kiyoshi; Harada, Shigeharu

    2015-01-01

    Recent studies on the respiratory chain of Ascaris suum showed that the mitochondrial NADH-fumarate reductase system composed of complex I, rhodoquinone and complex II plays an important role in the anaerobic energy metabolism of adult A. suum. The system is the major pathway of energy metabolism for adaptation to a hypoxic environment not only in parasitic organisms, but also in some types of human cancer cells. Thus, enzymes of the pathway are potential targets for chemotherapy. We found that flutolanil is an excellent inhibitor for A. suum complex II (IC50 = 0.058 μM) but less effectively inhibits homologous porcine complex II (IC50 = 45.9 μM). In order to account for the specificity of flutolanil to A. suum complex II from the standpoint of structural biology, we determined the crystal structures of A. suum and porcine complex IIs binding flutolanil and its derivative compounds. The structures clearly demonstrated key interactions responsible for its high specificity to A. suum complex II and enabled us to find analogue compounds, which surpass flutolanil in both potency and specificity to A. suum complex II. Structures of complex IIs binding these compounds will be helpful to accelerate structure-based drug design targeted for complex IIs. PMID:26198225

  14. PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia

    PubMed Central

    Mudie, Sharon; Bandarra, Daniel; Batie, Michael; Biddlestone, John; Moniz, Sonia; Ortmann, Brian; Shmakova, Alena; Rocha, Sonia

    2014-01-01

    Hypoxia is an important developmental cue for multicellular organisms but it is also a contributing factor for several human pathologies, such as stroke, cardiovascular diseases and cancer. In cells, hypoxia activates a major transcriptional program coordinated by the Hypoxia Inducible Factor (HIF) family. HIF can activate more than one hundred targets but not all of them are activated at the same time, and there is considerable cell type variability. In this report we identified the paired-like homeodomain pituitary transcription factor (PITX1), as a transcription factor that helps promote specificity in HIF-1α dependent target gene activation. Mechanistically, PITX1 associates with HIF-1β and it is important for the induction of certain HIF-1 dependent genes but not all. In particular, PITX1 controls the HIF-1α-dependent expression of the histone demethylases; JMJD2B, JMJD2A, JMJD2C and JMJD1B. Functionally, PITX1 is required for the survival and proliferation responses in hypoxia, as PITX1 depleted cells have higher levels of apoptotic markers and reduced proliferation. Overall, our study identified PITX1 as a key specificity factor in HIF-1α dependent responses, suggesting PITX1 as a protein to target in hypoxic cancers. PMID:25558831

  15. Multiplex electrochemical DNA platform for femtomolar-level quantification of genetically modified soybean.

    PubMed

    Manzanares-Palenzuela, C Lorena; de-Los-Santos-Álvarez, Noemí; Lobo-Castañón, María Jesús; López-Ruiz, Beatriz

    2015-06-15

    Current EU regulations on the mandatory labeling of genetically modified organisms (GMOs) with a minimum content of 0.9% would benefit from the availability of reliable and rapid methods to detect and quantify DNA sequences specific for GMOs. Different genosensors have been developed to this aim, mainly intended for GMO screening. A remaining challenge, however, is the development of genosensing platforms for GMO quantification, which should be expressed as the number of event-specific DNA sequences per taxon-specific sequences. Here we report a simple and sensitive multiplexed electrochemical approach for the quantification of Roundup-Ready Soybean (RRS). Two DNA sequences, taxon (lectin) and event-specific (RR), are targeted via hybridization onto magnetic beads. Both sequences are simultaneously detected by performing the immobilization, hybridization and labeling steps in a single tube and parallel electrochemical readout. Hybridization is performed in a sandwich format using signaling probes labeled with fluorescein isothiocyanate (FITC) or digoxigenin (Dig), followed by dual enzymatic labeling using Fab fragments of anti-Dig and anti-FITC conjugated to peroxidase or alkaline phosphatase, respectively. Electrochemical measurement of the enzyme activity is finally performed on screen-printed carbon electrodes. The assay gave a linear range of 2-250 pM for both targets, with LOD values of 650 fM (160 amol) and 190 fM (50 amol) for the event-specific and the taxon-specific targets, respectively. Results indicate that the method could be applied for GMO quantification below the European labeling threshold level (0.9%), offering a general approach for the rapid quantification of specific GMO events in foods. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A nanobiosensor composed of Exfoliated Graphene Oxide and Gold Nano-Urchins, for detection of GMO products.

    PubMed

    Aghili, Zahra; Nasirizadeh, Navid; Divsalar, Adeleh; Shoeibi, Shahram; Yaghmaei, Parichehreh

    2017-09-15

    Genetically Modified Organisms, have been entered our food chain and detection of these organisms in market products are still the main challenge for scientists. Among several developed detection/quantification methods for detection of these organisms, the electrochemical nanobiosensors are the most attended which are combining the advantages of using nanomaterials, electrochemical methods and biosensors. In this research, a novel and sensitive electrochemical nanobiosensor for detection/quantification of these organisms have been developed using nanomaterials; Exfoliated Graphene Oxide and Gold Nano-Urchins for modification of the screen-printed carbon electrode, and also applying a specific DNA probe as well as hematoxylin for electrochemical indicator. Application time period and concentration of the components have been optimized and also several reliable methods have been used to assess the correct assembling of the nanobiosensor e.g. field emission scanning electron microscope, cyclic voltammetry and electrochemical impedance spectroscopy. The results shown the linear range of the sensor was 40.0-1100.0 femtomolar and the limit of detection calculated as 13.0 femtomolar. Besides, the biosensor had good selectivity towards the target DNA over the non-specific sequences and also it was cost and time-effective and possess ability to be used in real sample environment of extracted DNA of Genetically Modified Organism products. Therefore, the superiority of the aforementioned specification to the other previously published methods was proved adequate. Copyright © 2017. Published by Elsevier B.V.

  17. Targeted Therapeutics in Patients With High-Grade Gliomas: Past, Present, and Future.

    PubMed

    Chen, Ricky; Cohen, Adam L; Colman, Howard

    2016-08-01

    High-grade gliomas remain incurable despite current therapies, which are plagued by high morbidity and mortality. Molecular categorization of glioma subtypes using mutations in isocitrate dehydrogenase 1/2 (IDH1/2), TP53, and ATRX; codeletion of chromosomes 1p and 19q; DNA methylation; and amplification of genes such as epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor, alpha polypeptide provides a more accurate prognostication and biologic classification than classical histopathological diagnoses, and a number of molecular markers are being incorporated in the new World Health Organization classification of gliomas. However, despite the improved understanding of the molecular subtypes of gliomas and the underlying alterations in specific signaling pathways, these observations have so far failed to result in the successful application of targeted therapies, as has occurred in other solid tumors. To date, the only targeted therapy for gliomas approved by the US Food and Drug Administration is bevacizumab, which targets vascular endothelial growth factor. EGFR remains a dominant molecular alteration in specific glioma subtypes and represents a potentially promising target, with drugs of multiple types targeting EGFR in development including vaccines, antibody drug conjugates, and chimeric antigen receptor (CAR) T cells, despite the prior failures of EGFR tyrosine kinase inhibitors. Immune therapies under investigation include checkpoint inhibitors, vaccines against tumor-associated antigens and tumor-specific antigens, pulsed dendritic cells, heat shock protein-tumor conjugates, and CAR T cells. Mutations in the IDH1/2 genes are central to gliomagenesis in a high proportion of grade II and III gliomas, and ongoing trials are examining vaccines against IDH1, small molecular inhibitors of IDH1 and IDH2, and metabolic components including NAD+ depletion to target IDH-mutated gliomas. The central role of DNA methylation in a subset of gliomas may be targetable, but better understanding of the relation between epigenetic alterations and resulting tumor biology appears necessary. Ultimately, given the prior failure of single-agent targeted therapy in high-grade gliomas, it appears that novel combinatorial therapy or targeted drugs with immunomodulatory or epigenetic approaches will likely be necessary to successfully combat these challenging tumors.

  18. [Strategy Development for International Cooperation in the Clinical Laboratory Field].

    PubMed

    Kudo, Yoshiko; Osawa, Susumu

    2015-10-01

    The strategy of international cooperation in the clinical laboratory field was analyzed to improve the quality of intervention by reviewing documents from international organizations and the Japanese government. Based on the world development agenda, the target of action for health has shifted from communicable diseases to non-communicable diseases (NCD). This emphasizes the importance of comprehensive clinical laboratories instead of disease-specific examinations in developing countries. To achieve this goal, the World Health Organization (WHO) has disseminated to the African and Asian regions the Laboratory Quality Management System (LQMS), which is based on the same principles of the International Organization of Standardization (ISO) 15189. To execute this strategy, international experts must have competence in project management, analyze information regarding the target country, and develop a strategy for management of the LQMS with an understanding of the technical aspects of laboratory work. However, there is no appropriate pre- and post-educational system of international health for Japanese international workers. Universities and academic organizations should cooperate with the government to establish a system of education for international workers. Objectives of this education system must include: (1) training for the organization and understanding of global health issues, (2) education of the principles regarding comprehensive management of clinical laboratories, and (3) understanding the LQMS which was employed based on WHO's initiative. Achievement of these objectives will help improve the quality of international cooperation in the clinical laboratory field.

  19. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis

    PubMed Central

    Platre, Matthieu Pierre; Barberon, Marie; Caillieux, Erwann; Colot, Vincent

    2016-01-01

    Summary Multicellular organisms are composed of many cell types that acquire their specific fate through a precisely controlled pattern of gene expression in time and space dictated in part by cell type-specific promoter activity. Understanding the contribution of highly specialized cell types in the development of a whole organism requires the ability to isolate or analyze different cell types separately. We have characterized and validated a large collection of root cell type-specific promoters and have generated cell type-specific marker lines. These benchmarked promoters can be readily used to evaluate cell type-specific complementation of mutant phenotypes, or to knockdown gene expression using targeted expression of artificial miRNA. We also generated vectors and characterized transgenic lines for cell type-specific induction of gene expression and cell type-specific isolation of nuclei for RNA and chromatin profiling. Vectors and seeds from transgenic Arabidopsis plants will be freely available, and will promote rapid progress in cell type-specific functional genomics. We demonstrate the power of this promoter set for analysis of complex biological processes by investigating the contribution of root cell types in the IRT1-dependent root iron uptake. Our findings revealed the complex spatial expression pattern of IRT1 in both root epidermis and phloem companion cells and the requirement for IRT1 to be expressed in both cell types for proper iron homeostasis. PMID:26662936

  20. A mobile app for military operational entomology pesticide applications.

    PubMed

    Britch, Seth C; Linthicum, Kenneth J; Aldridge, Robert L; Yans, Matthew W; Hill, David W; Obenauer, Peter J; Hoffman, Eric R

    2014-09-01

    Multiple field studies conducted for the Deployed War-Fighter Protection (DWFP) research program have generated more than 80 specific guidance points for innovative combinations of pesticide application equipment, pesticide formulations, and application techniques for aerosol and residual pesticide treatments in 6 ecological regions against a range of mosquito, sand fly, and filth fly nuisance and disease-vector threats. To synthesize and operationalize these DWFP field and laboratory efficacy data we developed an interactive iOS and Android mobile software application, the Pesticide App, consisting of specific pesticide application guidance organized by environment and target insect vector species.

  1. 2A4 binds soluble and insoluble light chain aggregates from AL amyloidosis patients and promotes clearance of amyloid deposits by phagocytosis †

    PubMed Central

    Renz, Mark; Torres, Ronald; Dolan, Philip J.; Tam, Stephen J.; Tapia, Jose R.; Li, Lauri; Salmans, Joshua R.; Barbour, Robin M.; Shughrue, Paul J.; Nijjar, Tarlochan; Schenk, Dale; Kinney, Gene G.; Zago, Wagner

    2016-01-01

    Abstract Amyloid light chain (AL) amyloidosis is characterized by misfolded light chain (LC) (amyloid) deposition in various peripheral organs, leading to progressive dysfunction and death. There are no regulatory agency–approved treatments for AL amyloidosis, and none of the available standard of care approaches directly targets the LC protein that constitutes the amyloid. NEOD001, currently in late-stage clinical trials, is a conformation-specific, anti-LC antibody designed to specifically target misfolded LC aggregates and promote phagocytic clearance of AL amyloid deposits. The present study demonstrated that the monoclonal antibody 2A4, the murine form of NEOD001, binds to patient-derived soluble and insoluble LC aggregates and induces phagocytic clearance of AL amyloid in vitro. 2A4 specifically labeled all 21 fresh-frozen organ samples studied, which were derived from 10 patients representing both κ and λ LC amyloidosis subtypes. 2A4 immunoreactivity largely overlapped with thioflavin T–positive labeling, and 2A4 bound both soluble and insoluble LC aggregates extracted from patient tissue. Finally, 2A4 induced macrophage engagement and phagocytic clearance of AL amyloid deposits in vitro. These findings provide further evidence that 2A4/NEOD001 can effectively clear and remove human AL-amyloid from tissue and further support the rationale for the evaluation of NEOD001 in patients with AL amyloidosis. PMID:27494229

  2. Development of a 5'-nuclease real-time PCR assay targeting fliP for the rapid identification of Burkholderia mallei in clinical samples.

    PubMed

    Tomaso, Herbert; Scholz, Holger C; Al Dahouk, Sascha; Eickhoff, Meike; Treu, Thomas M; Wernery, Renate; Wernery, Ulrich; Neubauer, Heinrich

    2006-02-01

    Burkholderia mallei is a potential biological agent that causes glanders or farcy in solipeds, a disease notifiable to the Office International des Epizooties (OIE). The number of reported outbreaks has increased steadily during the last decade, but diagnosis is hampered by the low bacterial load in infected tissues and excretions. We developed a B. mallei-specific 5'-nuclease real-time PCR assay that targets the fliP gene of B. mallei and includes an internal amplification control. Specificity was assessed with 19 B. mallei strains, 27 Burkholderia pseudomallei strains, other Burkholderia strains of 29 species, and clinically relevant non-Burkholderia organisms. Amplification products were observed in all B. mallei strains but in no other bacteria. The linear range of the B. mallei real-time PCR covered concentrations from 240 pg to 70 fg of bacterial DNA/reaction. The detection limit was 60 fg of B. mallei DNA. The clinical applicability of the assay was demonstrated by use of organ samples from diseased horses of a recent outbreak that was reported to the OIE by the United Arab Emirates in 2004. Compared with conventional PCR, our rapid 5'-nuclease real-time PCR assay for the specific identification of B. mallei has a lower risk of carryover contamination and eliminates the need for post-PCR manipulations. This real-time PCR assay also shortens the turnaround time for results and has the potential for automation.

  3. Deregulated Cardiac Specific MicroRNAs in Postnatal Heart Growth.

    PubMed

    Yu, Pujiao; Wang, Hongbao; Xie, Yuan; Zhou, Jinzhe; Yao, Jianhua; Che, Lin

    2016-01-01

    The heart is recognized as an organ that is terminally differentiated by adulthood. However, during the process of human development, the heart is the first organ with function in the embryo and grows rapidly during the postnatal period. MicroRNAs (miRNAs, miRs), as regulators of gene expression, play important roles during the development of multiple systems. However, the role of miRNAs in postnatal heart growth is still unclear. In this study, by using qRT-PCR, we compared the expression of seven cardiac- or muscle-specific miRNAs that may be related to heart development in heart tissue from mice at postnatal days 0, 3, 8, and 14. Four miRNAs-miR-1a-3p, miR-133b-3p, miR-208b-3p, and miR-206-3p-were significantly decreased while miR-208a-3p was upregulated during the postnatal heart growth period. Based on these results, GeneSpring GX was used to predict potential downstream targets by performing a 3-way comparison of predictions from the miRWalk, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to identify potential functional annotations and signaling pathways related to postnatal heart growth. This study describes expression changes of cardiac- and muscle-specific miRNAs during postnatal heart growth and may provide new therapeutic targets for cardiovascular diseases.

  4. In vivo targeting of dead tumor cells in a murine tumor model using a monoclonal antibody specific for the La autoantigen.

    PubMed

    Al-Ejeh, Fares; Darby, Jocelyn M; Pensa, Katherine; Diener, Kerrilyn R; Hayball, John D; Brown, Michael P

    2007-09-15

    To investigate the potential of the La-specific monoclonal antibody (mAb) 3B9 as an in vivo tumor-targeting agent. The murine EL4 lymphoma cell line was used for in vitro studies and the EL4 model in which apoptosis was induced with cyclophosphamide and etoposide was used for in vivo studies. In vitro studies compared 3B9 binding in the EL4 cell with that in its counterpart primary cell type of the thymocyte. For in vivo studies, 3B9 was intrinsically or extrinsically labeled with carbon-14 or 1,4,7,10-tetra-azacylododecane-N,N',N'',N''''-tetraacetic acid-indium-111, respectively, and biodistribution of the radiotracers was investigated in EL4 tumor-bearing mice, which were treated or not with chemotherapy. La-specific 3B9 mAb bound EL4 cells rather than thymocytes, and binding was detergent resistant. 3B9 binding to dead EL4 cells in vitro was specific, rapid, and saturable. Significantly, more 3B9 bound dead EL4 tumor explant cells after host mice were treated with chemotherapy, which suggested that DNA damage induced 3B9 binding. Tumor binding of 3B9 in vivo was antigen specific and increased significantly after chemotherapy. Tumor accumulation of 3B9 peaked at approximately 50% of the injected dose per gram of tumor 72 h after chemotherapy and correlated with increased tumor cell death. Tumor/organ ratios of 3B9 biodistribution, which included the tumor/blood ratio, exceeded unity 48 or more hours after chemotherapy. La-specific mAb selectively targeted dead tumor cells in vivo, and targeting was augmented by cytotoxic chemotherapy. This novel cell death radioligand may be useful both for radioimmunoscintigraphy and radioimmunotherapy.

  5. Rapid Screening of Natural Plant Extracts with Calcium Diacetate for Differential Effects Against Foodborne Pathogens and a Probiotic Bacterium.

    PubMed

    Colonna, William; Brehm-Stecher, Byron; Shetty, Kalidas; Pometto, Anthony

    2017-12-01

    This study focused on advancing a rapid turbidimetric bioassay to screen antimicrobials using specific cocktails of targeted foodborne bacterial pathogens. Specifically, to show the relevance of this rapid screening tool, the antimicrobial potential of generally recognized as safe calcium diacetate (DAX) and blends with cranberry (NC) and oregano (OX) natural extracts was evaluated. Furthermore, the same extracts were evaluated against beneficial lactic acid bacteria. The targeted foodborne pathogens evaluated were Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus using optimized initial cocktails (∼10 8 colony-forming unit/mL) containing strains isolated from human food outbreaks. Of all extracts evaluated, 0.51% (w/v) DAX in ethanol was the most effective against all four pathogens. However, DAX when reduced to 0.26% and with added blends from ethanol extractions consisting of DAX:OX (3:1), slightly outperformed or was equal to same levels of DAX alone. Subculture of wells in which no growth occurred after 1 week indicated that all water and ethanol extracts were bacteriostatic against the pathogens tested. All the targeted antimicrobials had no effect on the probiotic organism Lactobacillus plantarum. The use of such rapid screening methods combined with the use of multistrain cocktails of targeted foodborne pathogens from outbreaks will allow rapid large-scale screening of antimicrobials and enable further detailed studies in targeted model food systems.

  6. E-TALEN: a web tool to design TALENs for genome engineering.

    PubMed

    Heigwer, Florian; Kerr, Grainne; Walther, Nike; Glaeser, Kathrin; Pelz, Oliver; Breinig, Marco; Boutros, Michael

    2013-11-01

    Use of transcription activator-like effector nucleases (TALENs) is a promising new technique in the field of targeted genome engineering, editing and reverse genetics. Its applications span from introducing knockout mutations to endogenous tagging of proteins and targeted excision repair. Owing to this wide range of possible applications, there is a need for fast and user-friendly TALEN design tools. We developed E-TALEN (http://www.e-talen.org), a web-based tool to design TALENs for experiments of varying scale. E-TALEN enables the design of TALENs against a single target or a large number of target genes. We significantly extended previously published design concepts to consider genomic context and different applications. E-TALEN guides the user through an end-to-end design process of de novo TALEN pairs, which are specific to a certain sequence or genomic locus. Furthermore, E-TALEN offers a functionality to predict targeting and specificity for existing TALENs. Owing to the computational complexity of many of the steps in the design of TALENs, particular emphasis has been put on the implementation of fast yet accurate algorithms. We implemented a user-friendly interface, from the input parameters to the presentation of results. An additional feature of E-TALEN is the in-built sequence and annotation database available for many organisms, including human, mouse, zebrafish, Drosophila and Arabidopsis, which can be extended in the future.

  7. Targeted genome editing in a quail cell line using a customized CRISPR/Cas9 system.

    PubMed

    Ahn, Jinsoo; Lee, Joonbum; Park, Ju Yeon; Oh, Keon Bong; Hwang, Seongsoo; Lee, Chang-Won; Lee, Kichoon

    2017-05-01

    Soon after RNA-guided Cas9 (CRISPR-associated protein 9) endonuclease opened a new era of targeted genome editing, the CRISPR/Cas9 platform began to be extensively used to modify genes in various types of cells and organisms. However, successful CRISPR/Cas9-mediated insertion/deletion (indel) mutation remains to be demonstrated in avian cell lines. The objective of this study was to design a poultry-specific CRISPR/Cas9 system to efficiently introduce targeted deletion mutation in chromosomes of the quail muscle clone 7 (QM7) cell line using a customized quail CRISPR vector. In this study, two avian-specific promoters, quail 7SK (q7SK) promoter and CBh promoter, the hybrid form of cytomegalovirus and chicken β-actin promoters, were cloned into a CRISPR vector for the expression of guide RNA and Cas9 protein, respectively. Then, guide RNA, which was designed to target 20-base pair (bp) nucleotides in the quail melanophilin (MLPH) locus, was ligated to the modified CRISPR vector and transfected to QM7 cells. Our results showed multiple indel mutations in the quail MLPH locus in nearly half of the alleles being tested, suggesting the high efficiency of the system for targeted gene modification. The new CRISPR vector developed from this study has the potential application to generate knockout avian cell lines and knockout poultry. © 2016 Poultry Science Association Inc.

  8. Antigen-Specific Immune Modulation Targets mTORC1 Function To Drive Chemokine Receptor-Mediated T Cell Tolerance.

    PubMed

    Chen, Weirong; Wan, Xiaoxiao; Ukah, Tobechukwu K; Miller, Mindy M; Barik, Subhasis; Cattin-Roy, Alexis N; Zaghouani, Habib

    2016-11-01

    To contain autoimmunity, pathogenic T cells must be eliminated or diverted from reaching the target organ. Recently, we defined a novel form of T cell tolerance whereby treatment with Ag downregulates expression of the chemokine receptor CXCR3 and prevents diabetogenic Th1 cells from reaching the pancreas, leading to suppression of type 1 diabetes (T1D). This report defines the signaling events underlying Ag-induced chemokine receptor-mediated tolerance. Specifically, we show that the mammalian target of rapamycin complex 1 (mTORC1) is a major target for induction of CXCR3 downregulation and crippling of Th1 cells. Indeed, Ag administration induces upregulation of programmed death-ligand 1 on dendritic cells in a T cell-dependent manner. In return, programmed death-ligand 1 interacts with the constitutively expressed programmed death-1 on the target T cells and stimulates docking of Src homology 2 domain-containing tyrosine phosphatase 2 phosphatase to the cytoplasmic tail of programmed death-1. Active Src homology 2 domain-containing tyrosine phosphatase 2 impairs the signaling function of the PI3K/protein kinase B (AKT) pathway, leading to functional defect of mTORC1, downregulation of CXCR3 expression, and suppression of T1D. Thus, mTORC1 component of the metabolic pathway serves as a target for chemokine receptor-mediated T cell tolerance and suppression of T1D. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. C-peptide replacement therapy as an emerging strategy for preventing diabetic vasculopathy.

    PubMed

    Bhatt, Mahendra Prasad; Lim, Young-Cheol; Ha, Kwon-Soo

    2014-11-01

    Lack of C-peptide, along with insulin, is the main feature of Type 1 diabetes mellitus (DM) and is also observed in progressive β-cell loss in later stage of Type 2 DM. Therapeutic approaches to hyperglycaemic control have been ineffective in preventing diabetic vasculopathy, and alternative therapeutic strategies are necessary to target both hyperglycaemia and diabetic complications. End-stage organ failure in DM seems to develop primarily due to vascular dysfunction and damage, leading to two types of organ-specific diseases, such as micro- and macrovascular complications. Numerous studies in diabetic patients and animals demonstrate that C-peptide treatment alone or in combination with insulin has physiological functions and might be beneficial in preventing diabetic complications. Current evidence suggests that C-peptide replacement therapy might prevent and ameliorate diabetic vasculopathy and organ-specific complications through conservation of vascular function, as well as prevention of endothelial cell death, microvascular permeability, vascular inflammation, and neointima formation. In this review, we describe recent advances on the beneficial role of C-peptide replacement therapy for preventing diabetic complications, such as retinopathy, nephropathy, neuropathy, impaired wound healing, and inflammation, and further discuss potential beneficial effects of combined C-peptide and insulin supplement therapy to control hyperglycaemia and to prevent organ-specific complications. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  10. Biomechanical Model for Computing Deformations for Whole-Body Image Registration: A Meshless Approach

    PubMed Central

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam

    2016-01-01

    Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2-D models and computing single organ deformations. In this study, 3-D comprehensive patient-specific non-linear biomechanical models implemented using Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithms are applied to predict a 3-D deformation field for whole-body image registration. Unlike a conventional approach which requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the Fuzzy C-Means (FCM) algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. PMID:26791945

  11. US Food Industry Progress During the National Salt Reduction Initiative: 2009-2014.

    PubMed

    Curtis, Christine J; Clapp, Jenifer; Niederman, Sarah A; Ng, Shu Wen; Angell, Sonia Y

    2016-10-01

    To assess the US packaged food industry's progress from 2009 to 2014, when the National Salt Reduction Initiative had voluntary, category-specific sodium targets with the goal of reducing sodium in packaged and restaurant foods by 25% over 5 years. Using the National Salt Reduction Initiative Packaged Food Database, we assessed target achievement and change in sales-weighted mean sodium density in top-selling products in 61 food categories in 2009 (n = 6336), 2012 (n = 6898), and 2014 (n = 7396). In 2009, when the targets were established, no categories met National Salt Reduction Initiative 2012 or 2014 targets. By 2014, 26% of categories met 2012 targets and 3% met 2014 targets. From 2009 to 2014, the sales-weighted mean sodium density declined significantly in almost half of all food categories (43%; 26/61 categories). Overall, sales-weighted mean sodium density declined significantly (by 6.8%; P < .001). National target setting with monitoring through a partnership of local, state, and national health organizations proved feasible, but industry progress was modest. The US Food and Drug Administration's proposed voluntary targets will be an important step in achieving more substantial sodium reductions.

  12. Organic Carbamates in Drug Design and Medicinal Chemistry

    PubMed Central

    2016-01-01

    The carbamate group is a key structural motif in many approved drugs and prodrugs. There is an increasing use of carbamates in medicinal chemistry and many derivatives are specifically designed to make drug–target interactions through their carbamate moiety. In this Perspective, we present properties and stabilities of carbamates, reagents and chemical methodologies for the synthesis of carbamates, and recent applications of carbamates in drug design and medicinal chemistry. PMID:25565044

  13. Organic carbamates in drug design and medicinal chemistry.

    PubMed

    Ghosh, Arun K; Brindisi, Margherita

    2015-04-09

    The carbamate group is a key structural motif in many approved drugs and prodrugs. There is an increasing use of carbamates in medicinal chemistry and many derivatives are specifically designed to make drug-target interactions through their carbamate moiety. In this Perspective, we present properties and stabilities of carbamates, reagents and chemical methodologies for the synthesis of carbamates, and recent applications of carbamates in drug design and medicinal chemistry.

  14. Neurocomputation by Reaction Diffusion

    NASA Astrophysics Data System (ADS)

    Liang, Ping

    1995-08-01

    This Letter demonstrates the possible role nonsynaptic diffusion neurotransmission may play in neurocomputation using an artificial neural network model. A reaction-diffusion neural network model with field-based information-processing mechanisms is proposed. The advantages of nonsynaptic field neurotransmission from a computational viewpoint demonstrated in this Letter include long-range inhibition using only local interaction, nonhardwired and changeable (target specific) long-range communication pathways, and multiple simultaneous spatiotemporal organization processes in the same medium.

  15. Risk assessment in the management of newly diagnosed classical Hodgkin lymphoma.

    PubMed

    Connors, Joseph M

    2015-03-12

    Treatment of Hodgkin lymphoma is associated with 2 major types of risk: that the treatment may fail to cure the disease or that the treatment will prove unacceptably toxic. Careful assessment of the amount of the lymphoma (tumor burden), its behavior (extent of invasion or specific organ compromise), and host related factors (age; coincident systemic infection; and organ dysfunction, especially hematopoietic, cardiac, or pulmonary) is essential to optimize outcome. Elaborately assembled prognostic scoring systems, such as the International Prognostic Factors Project score, have lost their accuracy and value as increasingly effective chemotherapy and supportive care have been developed. Identification of specific biomarkers derived from sophisticated exploration of Hodgkin lymphoma biology is bringing promise of further improvement in targeted therapy in which effectiveness is increased at the same time off-target toxicity is diminished. Parallel developments in functional imaging are providing additional potential to evaluate the efficacy of treatment while it is being delivered, allowing dynamic assessment of risk during chemotherapy and adaptation of the therapy in real time. Risk assessment in Hodgkin lymphoma is continuously evolving, promising ever greater precision and clinical relevance. This article explores the past usefulness and the emerging potential of risk assessment for this imminently curable malignancy. © 2015 by The American Society of Hematology.

  16. Application of Adverse Outcome Pathways (AOPs) in Human ...

    EPA Pesticide Factsheets

    The adverse outcome pathway (AOP) framework was developed to help organize and disseminate existing knowledge concerning the means through which specific perturbations of biological pathways can lead to adverse outcomes considered relevant to risk-based regulatory decision-making. Because many fundamental molecular and cellular pathways are conserved across taxa, data from assays that screen chemicals for their ability to interact with specific biomolecular targets can often be credibly applied to a broad range of species, even if the apical outcomes of those perturbations may differ. Information concerning the different trajectories of adversity that molecular initiating events may take in different taxa, life stages, and sexes of organisms can be captured in the form of an AOP network. As an example, AOPs documenting divergent consequences of thyroid peroxidase (TPO) and deiodinase (DIO) inhibition in mammals, amphibians, and fish have been developed. These AOPs provide the foundation for using data from common in vitro assays for TPO or DIO activity to inform both human health and ecological risk assessments. They also provide the foundation for an integrated approach to testing and assessment, where available information and biological understanding can be integrated in order to formulate plausible and testable hypotheses which can be used to target in vivo testing on the endpoints of greatest concern. Application of this AOP knowledge in several different r

  17. Expression of Tissue Factor by Melanoma Cells Promotes Efficient Hematogenous Metastasis

    NASA Astrophysics Data System (ADS)

    Mueller, Barbara M.; Reisfeld, Ralph A.; Edgington, Thomas S.; Ruf, Wolfram

    1992-12-01

    Metastasis is a multistep process which requires highly adapted interactions of tumor cells with host target organs. Compared with nonmetastatic cells, metastatic human melanoma cells express 1000-fold higher levels of tissue factor (TF), the major cellular initiator of the plasma coagulation protease cascades. To explore whether TF may contribute to metastatic tumor dissemination, we analyzed the effect of specific inhibition of TF function on human melanoma metastasis in severe combined immunodeficient (SCID) mice. Using species-specific antibodies to TF, we demonstrate that initial adherence is insufficient for successful tumor cell implantation in a target organ. Rapid arrest of human tumor cells in the lungs of mice was not diminished by inhibition of TF. However, inhibition of TF receptor function and consequent reduction in local protease generation abolished prolonged adherence of tumor cells, resulting in significantly reduced numbers of tumor cells retained in the vasculature of the lungs. The growth of pulmonary metastases was also significantly inhibited by a blocking anti-TF monoclonal antibody and Fab fragments thereof, whereas a noninhibitory antibody lacked antimetastatic effects. Cell surface expression of functional TF thus contributes to melanoma progression by allowing metastatic cells to provide requisite signals for prolonged adhesive interactions and/or transmigration of tumor cells across the endothelium, resulting in successful metastatic tumor implantation.

  18. Application of adverse outcome pathways (AOPs) in human ...

    EPA Pesticide Factsheets

    The adverse outcome pathway (AOP) framework was developed to help organize and disseminate existing knowledge concerning the means through which specific perturbations of biological pathways can lead to adverse outcomes considered relevant to risk-based regulatory decision-making. Because many fundamental molecular and cellular pathways are conserved across taxa, data from assays that screen chemicals for their ability to interact with specific biomolecular targets can often be credibly applied to a broad range of species, even if the apical outcomes of those perturbations may differ. Information concerning the different trajectories of adversity that molecular initiating events may take in different taxa, life stages, and sexes of organisms can be captured in the form of an AOP network. As an example, AOPs documenting divergent consequences of thyroid peroxidase (TPO) and deiodinase (DIO) inhibition in mammals, amphibians, and fish have been developed. These AOPs provide the foundation for using data from common in vitro assays for TPO or DIO activity to inform both human health and ecological risk assessments. They also provide the foundation for an integrated approach to testing and assessment, where available information and biological understanding can be integrated in order to formulate plausible and testable hypotheses which can be used to target in vivo testing on the endpoints of greatest concern. Application of this AOP knowledge in several different r

  19. TALEN-Based Gene Disruption in the Dengue Vector Aedes aegypti

    PubMed Central

    Aryan, Azadeh; Anderson, Michelle A. E.; Myles, Kevin M.; Adelman, Zach N.

    2013-01-01

    In addition to its role as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other bloodfeeding mosquitoes, due to its ease of colonization, maintenance and reproductive productivity. Though its genome has been sequenced, functional characterization of many Ae. aegypti genes, pathways and behaviors has been slow. TALE nucleases (TALENs) have been used with great success in a number of organisms to generate site-specific DNA lesions. We evaluated the ability of a TALEN pair to target the Ae. aegypti kmo gene, whose protein product is essential in the production of eye pigmentation. Following injection into pre-blastoderm embryos, 20–40% of fertile survivors produced kmo alleles that failed to complement an existing khw mutation. Most of these individuals produced more than 20% white-eyed progeny, with some producing up to 75%. Mutant alleles were associated with lesions of 1–7 bp specifically at the selected target site. White-eyed individuals could also be recovered following a blind intercross of G1 progeny, yielding several new white-eyed strains in the genetic background of the sequenced Liverpool strain. We conclude that TALENs are highly active in the Ae. aegypti germline, and have the potential to transform how reverse genetic experiments are performed in this important disease vector. PMID:23555893

  20. Challenges and opportunities in suicide prevention in South-East Asia.

    PubMed

    Vijayakumar, Lakshmi

    2017-04-01

    Suicide is a global public health problem, with over 800 000 people worldwide dying by suicide in 2012, according to the World Health Organization (WHO). The WHO South-East Asia Region is especially affected, with 39% of global suicides occurring in the 11 countries in this region. Women are a particularly vulnerable population, for a variety of social and cultural reasons. In India specifically, deaths by suicide for women peak in the age range 15-29 years. There is sufficient evidence to show that reduction of easy access to means of suicide is an effective prevention strategy. A common method of suicide in the region is by ingestion of pesticides. Strategies that have targeted limiting access to pesticides as a means of preventing suicide, such as the use of central storage and locked boxes, have shown promising results. Given the limited human and economic resources in these countries, it is essential to involve all stakeholders, including health services, voluntary and community organizations, teachers, social workers, traditional healers and other gatekeepers, in suicide prevention. A multisectoral approach, specifically targeting women and reducing easy access to pesticides, should be the way forward to reducing suicides in this region. In addition, more research is needed, to identify cost-effective and sustainable strategies.

  1. Dual inhibition of mTORC1 and mTORC2 perturbs cytoskeletal organization and impairs endothelial cell elongation.

    PubMed

    Tsuji-Tamura, Kiyomi; Ogawa, Minetaro

    2018-02-26

    Elongation of endothelial cells is an important process in vascular formation and is expected to be a therapeutic target for inhibiting tumor angiogenesis. We have previously demonstrated that inhibition of mTORC1 and mTORC2 impaired endothelial cell elongation, although the mechanism has not been well defined. In this study, we analyzed the effects of the mTORC1-specific inhibitor everolimus and the mTORC1/mTORC2 dual inhibitor KU0063794 on the cytoskeletal organization and morphology of endothelial cell lines. While both inhibitors equally inhibited cell proliferation, KU0063794 specifically caused abnormal accumulation of F-actin and disordered distribution of microtubules, thereby markedly impairing endothelial cell elongation and tube formation. The effects of KU0063794 were phenocopied by paclitaxel treatment, suggesting that KU0063794 might impair endothelial cell morphology through over-stabilization of microtubules. Although mTORC1 is a key signaling molecule in cell proliferation and has been considered a target for preventing angiogenesis, mTORC1 inhibitors have not been sufficient to suppress angiogenesis. Our results suggest that mTORC1/mTORC2 dual inhibition is more effective for anti-angiogenic therapy, as it impairs not only endothelial cell proliferation, but also endothelial cell elongation. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Intracellular delivery of peptide nucleic acid and organic molecules using zeolite-L nanocrystals.

    PubMed

    Bertucci, Alessandro; Lülf, Henning; Septiadi, Dedy; Manicardi, Alex; Corradini, Roberto; De Cola, Luisa

    2014-11-01

    The design and synthesis of smart nanomaterials can provide interesting potential applications for biomedical purposes from bioimaging to drug delivery. Manufacturing multifunctional systems in a way to carry bioactive molecules, like peptide nucleic acids able to recognize specific targets in living cells, represents an achievement towards the development of highly selective tools for both diagnosis and therapeutics. This work describes a very first example of the use of zeolite nanocrystals as multifunctional nanocarriers to deliver simultaneously PNA and organic molecules into living cells. Zeolite-L nanocrystals are functionalized by covalently attaching the PNA probes onto the surface, while the channel system is filled with fluorescent guest molecules. The cellular uptake of the PNA/Zeolite-L hybrid material is then significantly increased by coating the whole system with a thin layer of biodegradable poly-L-lysine. The delivery of DAPI as a model drug molecule, inserted into the zeolite pores, is also demonstrated to occur in the cells, proving the multifunctional ability of the system. Using this zeolite nanosystem carrying PNA probes designed to target specific RNA sequences of interest in living cells could open new possibilities for theranostic and gene therapy applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. FilmArray, an Automated Nested Multiplex PCR System for Multi-Pathogen Detection: Development and Application to Respiratory Tract Infection

    PubMed Central

    Poritz, Mark A.; Blaschke, Anne J.; Byington, Carrie L.; Meyers, Lindsay; Nilsson, Kody; Jones, David E.; Thatcher, Stephanie A.; Robbins, Thomas; Lingenfelter, Beth; Amiott, Elizabeth; Herbener, Amy; Daly, Judy; Dobrowolski, Steven F.; Teng, David H. -F.; Ririe, Kirk M.

    2011-01-01

    The ideal clinical diagnostic system should deliver rapid, sensitive, specific and reproducible results while minimizing the requirements for specialized laboratory facilities and skilled technicians. We describe an integrated diagnostic platform, the “FilmArray”, which fully automates the detection and identification of multiple organisms from a single sample in about one hour. An unprocessed biologic/clinical sample is subjected to nucleic acid purification, reverse transcription, a high-order nested multiplex polymerase chain reaction and amplicon melt curve analysis. Biochemical reactions are enclosed in a disposable pouch, minimizing the PCR contamination risk. FilmArray has the potential to detect greater than 100 different nucleic acid targets at one time. These features make the system well-suited for molecular detection of infectious agents. Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21 common viral and bacterial respiratory pathogens. Initial testing of the system using both cultured organisms and clinical nasal aspirates obtained from children demonstrated an analytical and clinical sensitivity and specificity comparable to existing diagnostic platforms. We demonstrate that automated identification of pathogens from their corresponding target amplicon(s) can be accomplished by analysis of the DNA melting curve of the amplicon. PMID:22039434

  4. Distinct soil microbial diversity under long-term organic and conventional farming

    PubMed Central

    Hartmann, Martin; Frey, Beat; Mayer, Jochen; Mäder, Paul; Widmer, Franco

    2015-01-01

    Low-input agricultural systems aim at reducing the use of synthetic fertilizers and pesticides in order to improve sustainable production and ecosystem health. Despite the integral role of the soil microbiome in agricultural production, we still have a limited understanding of the complex response of microbial diversity to organic and conventional farming. Here we report on the structural response of the soil microbiome to more than two decades of different agricultural management in a long-term field experiment using a high-throughput pyrosequencing approach of bacterial and fungal ribosomal markers. Organic farming increased richness, decreased evenness, reduced dispersion and shifted the structure of the soil microbiota when compared with conventionally managed soils under exclusively mineral fertilization. This effect was largely attributed to the use and quality of organic fertilizers, as differences became smaller when conventionally managed soils under an integrated fertilization scheme were examined. The impact of the plant protection regime, characterized by moderate and targeted application of pesticides, was of subordinate importance. Systems not receiving manure harboured a dispersed and functionally versatile community characterized by presumably oligotrophic organisms adapted to nutrient-limited environments. Systems receiving organic fertilizer were characterized by specific microbial guilds known to be involved in degradation of complex organic compounds such as manure and compost. The throughput and resolution of the sequencing approach permitted to detect specific structural shifts at the level of individual microbial taxa that harbours a novel potential for managing the soil environment by means of promoting beneficial and suppressing detrimental organisms. PMID:25350160

  5. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT.

    PubMed

    Wenz, Holger; Maros, Máté E; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O; Groden, Christoph; Henzler, Thomas

    2016-01-01

    To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1-5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1-5) when compared to sequential cCT with a mean SNR improvement of 44.77% (p < 0.0001). Spiral cCT combined with ATCM and IR allows for significant-radiation dose reduction including a reduce eye lens organ-dose when compared to a tilted sequential cCT while improving subjective and objective image quality.

  6. Target identification of small molecules based on chemical biology approaches.

    PubMed

    Futamura, Yushi; Muroi, Makoto; Osada, Hiroyuki

    2013-05-01

    Recently, a phenotypic approach-screens that assess the effects of compounds on cells, tissues, or whole organisms-has been reconsidered and reintroduced as a complementary strategy of a target-based approach for drug discovery. Although the finding of novel bioactive compounds from large chemical libraries has become routine, the identification of their molecular targets is still a time-consuming and difficult process, making this step rate-limiting in drug development. In the last decade, we and other researchers have amassed a large amount of phenotypic data through progress in omics research and advances in instrumentation. Accordingly, the profiling methodologies using these datasets expertly have emerged to identify and validate specific molecular targets of drug candidates, attaining some progress in current drug discovery (e.g., eribulin). In the case of a compound that shows an unprecedented phenotype likely by inhibiting a first-in-class target, however, such phenotypic profiling is invalid. Under the circumstances, a photo-crosslinking affinity approach should be beneficial. In this review, we describe and summarize recent progress in both affinity-based (direct) and phenotypic profiling (indirect) approaches for chemical biology target identification.

  7. Target-Specificity in Scorpions; Comparing Lethality of Scorpion Venoms across Arthropods and Vertebrates.

    PubMed

    van der Meijden, Arie; Koch, Bjørn; van der Valk, Tom; Vargas-Muñoz, Leidy J; Estrada-Gómez, Sebastian

    2017-10-04

    Scorpions use their venom in defensive situations as well as for subduing prey. Since some species of scorpion use their venom more in defensive situations than others, this may have led to selection for differences in effectiveness in defensive situations. Here, we compared the LD 50 of the venom of 10 species of scorpions on five different species of target organisms; two insects and three vertebrates. We found little correlation between the target species in the efficacy of the different scorpion venoms. Only the two insects showed a positive correlation, indicating that they responded similarly to the panel of scorpion venoms. We discuss the lack of positive correlation between the vertebrate target species in the light of their evolution and development. When comparing the responses of the target systems to individual scorpion venoms pairwise, we found that closely related scorpion species tend to elicit a similar response pattern across the target species. This was further reflected in a significant phylogenetic signal across the scorpion phylogeny for the LD 50 in mice and in zebrafish. We also provide the first mouse LD 50 value for Grosphus grandidieri .

  8. Innovation in organ transplantation: A meeting report.

    PubMed

    Fishman, Jay A; Greenwald, Melissa

    2018-05-09

    This workshop targeted opportunities to stimulate transformative innovation in organ transplantation. Participants reached consensus regarding the following: (1) Mechanisms are needed to improve the coordination of policy and oversight activities, given overlapping responsibilities for transplantation and clinical investigation among federal agencies. Innovative clinical trials span traditional administrative boundaries and include stakeholders with diverse interests. Participants identified the need for a governmental interagency working group to coordinate nationwide transplant-related activities. (2) Improvements are required in clinical metrics for transplantation, with alignment of performance goals across transplantation organizations and any development of data requirements being consistent with those goals. Database coordination among clinical centers, organ procurement organizations, regulatory agencies, and payers would facilitate research and better inform policy. New data requirements should provide actionable insights into clinical performance. (3) Innovative research seen as potentially adversely affecting Program-Specific Reports may reduce centers' participation. Cutting-edge research requires mitigation of risk-aversive behaviors created by reporting of clinical outcomes data. Participants proposed a new review process in advance of implementation of clinical trials to guide "carve-outs" of transplant center outcomes data from Program-Specific Reports. Clinical transplantation will be advanced by the development of a shared and comprehensive research agenda to facilitate coordination of research and policy. © 2018 The American Society of Transplantation and the American Society of Transplant Surgeons.

  9. Nuclear localization signal targeting to macronucleus and micronucleus in binucleated ciliate Tetrahymena thermophila.

    PubMed

    Iwamoto, Masaaki; Mori, Chie; Osakada, Hiroko; Koujin, Takako; Hiraoka, Yasushi; Haraguchi, Tokuko

    2018-06-08

    Ciliated protozoa possess two morphologically and functionally distinct nuclei: a macronucleus (MAC) and a micronucleus (MIC). The MAC is transcriptionally active and functions in all cellular events. The MIC is transcriptionally inactive during cell growth, but functions in meiotic events to produce progeny nuclei. Thus, these two nuclei must be distinguished by the nuclear proteins required for their distinct functions during cellular events such as cell proliferation and meiosis. To understand the mechanism of the nuclear transport specific to either MAC or MIC, we identified specific nuclear localization signals (NLSs) in two MAC- and MIC-specific nuclear proteins, macronuclear histone H1 and micronuclear linker histone-like protein (Mlh1), respectively. By expressing GFP-fused fragments of these proteins in Tetrahymena thermophila cells, two distinct regions in macronuclear histone H1 protein were assigned as independent MAC-specific NLSs and two distinct regions in Mlh1 protein were assigned as independent MIC-specific NLSs. These NLSs contain several essential lysine residues responsible for the MAC- and MIC-specific nuclear transport, but neither contains any consensus sequence with known monopartite or bipartite NLSs in other model organisms. Our findings contribute to understanding how specific nuclear targeting is achieved to perform distinct nuclear functions in binucleated ciliates. © 2018 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  10. Readability of HIV/AIDS educational materials: the role of the medium of communication, target audience, and producer characteristics.

    PubMed

    Wells, J A

    1994-12-01

    The reading difficulty of many HIV/AIDS brochures and pamphlets limits their effectiveness. This analysis addresses correlates of readability in 136 HIV/AIDS educational items. Readability is measured using the SMOG Index. The medium of communication is significantly related to readability: comic books and brochures are, on average, more readable than books and pamphlets (10.9 versus 11.9). The target audience also differentiates readability. Materials for HIV antibody test seekers, the general community, and sexually active adults have a more difficult reading grade, averaging 12.1, whereas materials for ethnic minorities average a more readable 9.2. The producer organization's type and location are unrelated to readability, but an AIDS-specific organizational focus correlates with better readability (grade 10.8 vs. 11.8). These findings remain significant in multivariate analysis. The results indicate that brochures and comics are more likely to be comprehended by low-literacy populations, that an understanding of the literacy of target audiences is needed to produce materials with appropriate reading levels, and that policies to influence producer organizations may result in the creation of more readable materials.

  11. E-RNAi: a web application for the multi-species design of RNAi reagents—2010 update

    PubMed Central

    Horn, Thomas; Boutros, Michael

    2010-01-01

    The design of RNA interference (RNAi) reagents is an essential step for performing loss-of-function studies in many experimental systems. The availability of sequenced and annotated genomes greatly facilitates RNAi experiments in an increasing number of organisms that were previously not genetically tractable. The E-RNAi web-service, accessible at http://www.e-rnai.org/, provides a computational resource for the optimized design and evaluation of RNAi reagents. The 2010 update of E-RNAi now covers 12 genomes, including Drosophila, Caenorhabditis elegans, human, emerging model organisms such as Schmidtea mediterranea and Acyrthosiphon pisum, as well as the medically relevant vectors Anopheles gambiae and Aedes aegypti. The web service calculates RNAi reagents based on the input of target sequences, sequence identifiers or by visual selection of target regions through a genome browser interface. It identifies optimized RNAi target-sites by ranking sequences according to their predicted specificity, efficiency and complexity. E-RNAi also facilitates the design of secondary RNAi reagents for validation experiments, evaluation of pooled siRNA reagents and batch design. Results are presented online, as a downloadable HTML report and as tab-delimited files. PMID:20444868

  12. Development and validation of a multiplex real-time PCR method to simultaneously detect 47 targets for the identification of genetically modified organisms.

    PubMed

    Cottenet, Geoffrey; Blancpain, Carine; Sonnard, Véronique; Chuah, Poh Fong

    2013-08-01

    Considering the increase of the total cultivated land area dedicated to genetically modified organisms (GMO), the consumers' perception toward GMO and the need to comply with various local GMO legislations, efficient and accurate analytical methods are needed for their detection and identification. Considered as the gold standard for GMO analysis, the real-time polymerase chain reaction (RTi-PCR) technology was optimised to produce a high-throughput GMO screening method. Based on simultaneous 24 multiplex RTi-PCR running on a ready-to-use 384-well plate, this new procedure allows the detection and identification of 47 targets on seven samples in duplicate. To comply with GMO analytical quality requirements, a negative and a positive control were analysed in parallel. In addition, an internal positive control was also included in each reaction well for the detection of potential PCR inhibition. Tested on non-GM materials, on different GM events and on proficiency test samples, the method offered high specificity and sensitivity with an absolute limit of detection between 1 and 16 copies depending on the target. Easy to use, fast and cost efficient, this multiplex approach fits the purpose of GMO testing laboratories.

  13. How do public health policies tackle alcohol-related harm: a review of 12 developed countries.

    PubMed

    Crombie, Iain K; Irvine, Linda; Elliott, Lawrence; Wallace, Hilary

    2007-01-01

    To identify how current public health policies of 12 developed countries assess alcohol-related problems, the goals and targets that are set and the strategic directives proposed. Policy documents on alcohol and on general public heath were obtained through repeated searches of government websites. Documents were reviewed by two independent observers. All the countries studied state that alcohol causes substantial harm to individual health and family well-being, increases crime and social disruption, and results in economic loss through lost productivity. All are concerned about consumption of alcohol by young adults and by heavy and problem drinkers. Few aim to reduce total consumption. Only five of the countries set specific targets for changes in drinking behaviour. Countries vary in their commitment to intervene, particularly on taxation, drink-driving, the drinking environment and for high-risk groups. Australia and New Zealand stand out as having coordinated intervention programmes in most areas. Policies differ markedly in their organization, the goals and targets that are set, the strategic approaches proposed and areas identified for intervention. Most countries could improve their policies by following the recommendations in the World Heath Organization's European Alcohol Action Plan.

  14. Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor.

    PubMed

    Paul, Jonathan W; Hua, Susan; Ilicic, Marina; Tolosa, Jorge M; Butler, Trent; Robertson, Sarah; Smith, Roger

    2017-03-01

    The ability to provide safe and effective pharmacotherapy during obstetric complications, such as preterm labor or postpartum hemorrhage, is hampered by the systemic toxicity of therapeutic agents leading to adverse side effects in the mother and fetus. Development of novel strategies to target tocolytic and uterotonic agents specifically to uterine myocytes would improve therapeutic efficacy while minimizing the risk of side effects. Ligand-targeted liposomes have emerged as a reliable and versatile platform for targeted drug delivery to specific cell types, tissues or organs. Our objective was to develop a targeted drug delivery system for the uterus utilizing an immunoliposome platform targeting the oxytocin receptor. We conjugated liposomes to an antibody that recognizes an extracellular domain of the oxytocin receptor. We then examined the ability of oxytocin receptor-targeted liposomes to deliver contraction-blocking (nifedipine, salbutamol and rolipram) or contraction-enhancing (dofetilide) agents to strips of spontaneously contracting myometrial tissue in vitro (human and mouse). We evaluated the ability of oxytocin receptor-targeted liposomes to localize to uterine tissue in vivo, and assessed if targeted liposomes loaded with indomethacin were capable of preventing lipopolysaccharide-induced preterm birth in mice. Oxytocin receptor-targeted liposomes loaded with nifedipine, salbutamol or rolipram consistently abolished human myometrial contractions in vitro, while oxytocin receptor-targeted liposomes loaded with dofetilide increased contraction duration. Nontargeted control liposomes loaded with these agents had no effect. Similar results were observed in mouse uterine strips. Following in vivo administration to pregnant mice, oxytocin receptor-targeted liposomes localized specifically to the uterine horns and mammary tissue. Targeting increased localization to the uterus 7-fold. Localization was not detected in the maternal brain or fetus. Targeted and nontargeted liposomes also localized to the liver. Oxytocin receptor-targeted liposomes loaded with indomethacin were effective in reducing rates of preterm birth in mice, whereas nontargeted liposomes loaded with indomethacin had no effect. Our results demonstrate that oxytocin receptor-targeted liposomes can be used to either inhibit or enhance human uterine contractions in vitro. In vivo, the liposomes localized to the uterine tissue of pregnant mice and were effective in delivering agents for the prevention of inflammation-induced preterm labor. The potential clinical advantage of targeted liposomal drug delivery to the myometrium is reduced dose and reduced toxicity to both mother and fetus. Copyright © 2016. Published by Elsevier Inc.

  15. Organic food consumption by athletes in Lithuania

    PubMed Central

    Stukas, Rimantas; Tubelis, Linas; Žagminas, Kęstutis; Šurkienė, Genė; Dobrovolskij, Valerij; Jakubauskienė, Marija; Giedraitis, Vincentas Rolandas

    2015-01-01

    Background With environmental pollution increasing, interest in organic farming and organic foodstuffs has been growing all over the world. Data on organic food consumption by Lithuanian athletes is not yet available. This lack of data determined the aim of this study: to identify the particulars of organic foodstuff consumption among athletes. Methods In September–November 2012, we polled 158 of the best-performing athletes of the Olympic sports team through direct interviews. An approved questionnaire was used to identify the specifics of organic foodstuff consumption among athletes. Results The survey results showed that 97% of athletes consume organic foodstuffs, and 80% of athletes highlighted the positive impact of organic food on health. Nevertheless, a slim majority of athletes (51.7%) consume organic foodstuffs seldomly, 2–3 times per week. The range of organic foodstuffs consumed depends on the gender of athletes, and the consumption of some products depends on monthly incomes. Conclusions Survey results confirm the need for the production and expansion of the variety of organic foodstuffs. In the course of the development of the organic food market, it should be beneficial for manufacturers to target high-performance athletes and physically active people. PMID:28352693

  16. Motivational pathways of occupational and organizational turnover intention among newly registered nurses in Canada.

    PubMed

    Fernet, Claude; Trépanier, Sarah-Geneviève; Demers, Mireille; Austin, Stéphanie

    Staff turnover is a major issue for health care systems. In a time of labor shortage, it is critical to understand the motivational factors that underlie turnover intention in newly licensed nurses. To examine whether different forms of motivation (the reasons for which nurses engage in their work) predict intention to quit the occupation and organization through distinct forms (affective and continuance) and targets (occupation and organization) of commitment. Cross-sectional data were collected from a sample of 572 French-Canadian newly registered nurses working in public health care in the province of Quebec, Canada. The hypothesized model was tested by structural equation modeling. Autonomous motivation (nurses accomplish their work primarily out of a sense of pleasure and satisfaction or because they personally endorse the importance or value of their work) negatively predicts intention to quit the profession and organization through target-specific affective commitment. However, although controlled motivation (nurses accomplish their work mainly because of internal or external pressure) is positively associated with continuance commitment to the occupation and organization, it directly predicts, positively so, intention to quit the occupation and organization. These results highlight the complexity of the motivational processes at play in the turnover intention of novice nurses, revealing distinct forms of commitment that explain how motivation quality is related simultaneously to intention to quit the occupation and organization. Health care organizations are advised to promote autonomous over controlled motivation to retain newly recruited nurses and sustain the future of the nursing workforce. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Genome organization and long-range regulation of gene expression by enhancers.

    PubMed

    Smallwood, Andrea; Ren, Bing

    2013-06-01

    It is now well accepted that cell-type specific gene regulation is under the purview of enhancers. Great strides have been made recently to characterize and identify enhancers both genetically and epigenetically for multiple cell types and species, but efforts have just begun to link enhancers to their target promoters. Mapping these interactions and understanding how the 3D landscape of the genome constrains such interactions is fundamental to our understanding of mammalian gene regulation. Here, we review recent progress in mapping long-range regulatory interactions in mammalian genomes, focusing on transcriptional enhancers and chromatin organization principles. Copyright © 2013. Published by Elsevier Ltd.

  18. Multistate and phase change selection in constitutional multivalent systems.

    PubMed

    Barboiu, Mihail

    2012-01-01

    Molecular architectures and materials can be constitutionally self-sorted in the presence of different biomolecular targets or external physical stimuli or chemical effectors, thus responding to an external selection pressure. The high selectivity and specificity of different bioreceptors or self-correlated internal interactions may be used to describe the complex constitutional behaviors through multistate component selection from a dynamic library. The self-selection may result in the dynamic amplification of self-optimized architectures during the phase change process. The sol-gel resolution of dynamic molecular/supramolecular libraries leads to higher self-organized constitutional hybrid materials, in which organic (supramolecular)/inorganic domains are reversibily connected.

  19. [Helminth migration in the host].

    PubMed

    Horák, Petr

    2006-08-01

    Helminths belong to important human pathogens in tropical and subtropical countries. They have simple one-host life cycles or they use several hosts for their development. There are two main entry points for human helminths: the skin and the oral cavity. Skin penetration is followed by tissue migration of helminth stages towards target organs. Also some perorally acquired helminths migrate throughout the human body and then (a) they return to and mature in the intestine or (b) they search for specific final location in other (extraintestinal) tissues/organs. Particular developmental stages having different migration routes, and different roles of human beings as final, intermediate and paratenic hosts are briefly mentioned.

  20. Comparative Analysis of Predicted Plastid-Targeted Proteomes of Sequenced Higher Plant Genomes

    PubMed Central

    Schaeffer, Scott; Harper, Artemus; Raja, Rajani; Jaiswal, Pankaj; Dhingra, Amit

    2014-01-01

    Plastids are actively involved in numerous plant processes critical to growth, development and adaptation. They play a primary role in photosynthesis, pigment and monoterpene synthesis, gravity sensing, starch and fatty acid synthesis, as well as oil, and protein storage. We applied two complementary methods to analyze the recently published apple genome (Malus × domestica) to identify putative plastid-targeted proteins, the first using TargetP and the second using a custom workflow utilizing a set of predictive programs. Apple shares roughly 40% of its 10,492 putative plastid-targeted proteins with that of the Arabidopsis (Arabidopsis thaliana) plastid-targeted proteome as identified by the Chloroplast 2010 project and ∼57% of its entire proteome with Arabidopsis. This suggests that the plastid-targeted proteomes between apple and Arabidopsis are different, and interestingly alludes to the presence of differential targeting of homologs between the two species. Co-expression analysis of 2,224 genes encoding putative plastid-targeted apple proteins suggests that they play a role in plant developmental and intermediary metabolism. Further, an inter-specific comparison of Arabidopsis, Prunus persica (Peach), Malus × domestica (Apple), Populus trichocarpa (Black cottonwood), Fragaria vesca (Woodland Strawberry), Solanum lycopersicum (Tomato) and Vitis vinifera (Grapevine) also identified a large number of novel species-specific plastid-targeted proteins. This analysis also revealed the presence of alternatively targeted homologs across species. Two separate analyses revealed that a small subset of proteins, one representing 289 protein clusters and the other 737 unique protein sequences, are conserved between seven plastid-targeted angiosperm proteomes. Majority of the novel proteins were annotated to play roles in stress response, transport, catabolic processes, and cellular component organization. Our results suggest that the current state of knowledge regarding plastid biology, preferentially based on model systems is deficient. New plant genomes are expected to enable the identification of potentially new plastid-targeted proteins that will aid in studying novel roles of plastids. PMID:25393533

Top