47 CFR 15.323 - Specific requirements for devices operating in the 1920-1930 MHz sub-band.
Code of Federal Regulations, 2010 CFR
2010-10-01
...] (c) Devices must incorporate a mechanism for monitoring the time and spectrum windows that its... transmission, devices must monitor the combined time and spectrum windows in which they intend to transmit for... windows without further monitoring. However, occupation of the same combined time and spectrum windows by...
Liu, Shelley H; Bobb, Jennifer F; Lee, Kyu Ha; Gennings, Chris; Claus Henn, Birgit; Bellinger, David; Austin, Christine; Schnaas, Lourdes; Tellez-Rojo, Martha M; Hu, Howard; Wright, Robert O; Arora, Manish; Coull, Brent A
2018-07-01
The impact of neurotoxic chemical mixtures on children's health is a critical public health concern. It is well known that during early life, toxic exposures may impact cognitive function during critical time intervals of increased vulnerability, known as windows of susceptibility. Knowledge on time windows of susceptibility can help inform treatment and prevention strategies, as chemical mixtures may affect a developmental process that is operating at a specific life phase. There are several statistical challenges in estimating the health effects of time-varying exposures to multi-pollutant mixtures, such as: multi-collinearity among the exposures both within time points and across time points, and complex exposure-response relationships. To address these concerns, we develop a flexible statistical method, called lagged kernel machine regression (LKMR). LKMR identifies critical exposure windows of chemical mixtures, and accounts for complex non-linear and non-additive effects of the mixture at any given exposure window. Specifically, LKMR estimates how the effects of a mixture of exposures change with the exposure time window using a Bayesian formulation of a grouped, fused lasso penalty within a kernel machine regression (KMR) framework. A simulation study demonstrates the performance of LKMR under realistic exposure-response scenarios, and demonstrates large gains over approaches that consider each time window separately, particularly when serial correlation among the time-varying exposures is high. Furthermore, LKMR demonstrates gains over another approach that inputs all time-specific chemical concentrations together into a single KMR. We apply LKMR to estimate associations between neurodevelopment and metal mixtures in Early Life Exposures in Mexico and Neurotoxicology, a prospective cohort study of child health in Mexico City.
Pereira, Telma; Lemos, Luís; Cardoso, Sandra; Silva, Dina; Rodrigues, Ana; Santana, Isabel; de Mendonça, Alexandre; Guerreiro, Manuela; Madeira, Sara C
2017-07-19
Predicting progression from a stage of Mild Cognitive Impairment to dementia is a major pursuit in current research. It is broadly accepted that cognition declines with a continuum between MCI and dementia. As such, cohorts of MCI patients are usually heterogeneous, containing patients at different stages of the neurodegenerative process. This hampers the prognostic task. Nevertheless, when learning prognostic models, most studies use the entire cohort of MCI patients regardless of their disease stages. In this paper, we propose a Time Windows approach to predict conversion to dementia, learning with patients stratified using time windows, thus fine-tuning the prognosis regarding the time to conversion. In the proposed Time Windows approach, we grouped patients based on the clinical information of whether they converted (converter MCI) or remained MCI (stable MCI) within a specific time window. We tested time windows of 2, 3, 4 and 5 years. We developed a prognostic model for each time window using clinical and neuropsychological data and compared this approach with the commonly used in the literature, where all patients are used to learn the models, named as First Last approach. This enables to move from the traditional question "Will a MCI patient convert to dementia somewhere in the future" to the question "Will a MCI patient convert to dementia in a specific time window". The proposed Time Windows approach outperformed the First Last approach. The results showed that we can predict conversion to dementia as early as 5 years before the event with an AUC of 0.88 in the cross-validation set and 0.76 in an independent validation set. Prognostic models using time windows have higher performance when predicting progression from MCI to dementia, when compared to the prognostic approach commonly used in the literature. Furthermore, the proposed Time Windows approach is more relevant from a clinical point of view, predicting conversion within a temporal interval rather than sometime in the future and allowing clinicians to timely adjust treatments and clinical appointments.
Millisecond timing on PCs and Macs.
MacInnes, W J; Taylor, T L
2001-05-01
A real-time, object-oriented solution for displaying stimuli on Windows 95/98, MacOS and Linux platforms is presented. The program, written in C++, utilizes a special-purpose window class (GLWindow), OpenGL, and 32-bit graphics acceleration; it avoids display timing uncertainty by substituting the new window class for the default window code for each system. We report the outcome of tests for real-time capability across PC and Mac platforms running a variety of operating systems. The test program, which can be used as a shell for programming real-time experiments and testing specific processors, is available at http://www.cs.dal.ca/~macinnwj. We propose to provide researchers with a sense of the usefulness of our program, highlight the ability of many multitasking environments to achieve real time, as well as caution users about systems that may not achieve real time, even under optimal conditions.
Yurtkuran, Alkın; Emel, Erdal
2014-01-01
The traveling salesman problem with time windows (TSPTW) is a variant of the traveling salesman problem in which each customer should be visited within a given time window. In this paper, we propose an electromagnetism-like algorithm (EMA) that uses a new constraint handling technique to minimize the travel cost in TSPTW problems. The EMA utilizes the attraction-repulsion mechanism between charged particles in a multidimensional space for global optimization. This paper investigates the problem-specific constraint handling capability of the EMA framework using a new variable bounding strategy, in which real-coded particle's boundary constraints associated with the corresponding time windows of customers, is introduced and combined with the penalty approach to eliminate infeasibilities regarding time window violations. The performance of the proposed algorithm and the effectiveness of the constraint handling technique have been studied extensively, comparing it to that of state-of-the-art metaheuristics using several sets of benchmark problems reported in the literature. The results of the numerical experiments show that the EMA generates feasible and near-optimal results within shorter computational times compared to the test algorithms.
Yurtkuran, Alkın
2014-01-01
The traveling salesman problem with time windows (TSPTW) is a variant of the traveling salesman problem in which each customer should be visited within a given time window. In this paper, we propose an electromagnetism-like algorithm (EMA) that uses a new constraint handling technique to minimize the travel cost in TSPTW problems. The EMA utilizes the attraction-repulsion mechanism between charged particles in a multidimensional space for global optimization. This paper investigates the problem-specific constraint handling capability of the EMA framework using a new variable bounding strategy, in which real-coded particle's boundary constraints associated with the corresponding time windows of customers, is introduced and combined with the penalty approach to eliminate infeasibilities regarding time window violations. The performance of the proposed algorithm and the effectiveness of the constraint handling technique have been studied extensively, comparing it to that of state-of-the-art metaheuristics using several sets of benchmark problems reported in the literature. The results of the numerical experiments show that the EMA generates feasible and near-optimal results within shorter computational times compared to the test algorithms. PMID:24723834
Carey, David L; Blanch, Peter; Ong, Kok-Leong; Crossley, Kay M; Crow, Justin; Morris, Meg E
2017-08-01
(1) To investigate whether a daily acute:chronic workload ratio informs injury risk in Australian football players; (2) to identify which combination of workload variable, acute and chronic time window best explains injury likelihood. Workload and injury data were collected from 53 athletes over 2 seasons in a professional Australian football club. Acute:chronic workload ratios were calculated daily for each athlete, and modelled against non-contact injury likelihood using a quadratic relationship. 6 workload variables, 8 acute time windows (2-9 days) and 7 chronic time windows (14-35 days) were considered (336 combinations). Each parameter combination was compared for injury likelihood fit (using R 2 ). The ratio of moderate speed running workload (18-24 km/h) in the previous 3 days (acute time window) compared with the previous 21 days (chronic time window) best explained the injury likelihood in matches (R 2 =0.79) and in the immediate 2 or 5 days following matches (R 2 =0.76-0.82). The 3:21 acute:chronic workload ratio discriminated between high-risk and low-risk athletes (relative risk=1.98-2.43). Using the previous 6 days to calculate the acute workload time window yielded similar results. The choice of acute time window significantly influenced model performance and appeared to reflect the competition and training schedule. Daily workload ratios can inform injury risk in Australian football. Clinicians and conditioning coaches should consider the sport-specific schedule of competition and training when choosing acute and chronic time windows. For Australian football, the ratio of moderate speed running in a 3-day or 6-day acute time window and a 21-day chronic time window best explained injury risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Carey, David L; Blanch, Peter; Ong, Kok-Leong; Crossley, Kay M; Crow, Justin; Morris, Meg E
2017-01-01
Aims (1) To investigate whether a daily acute:chronic workload ratio informs injury risk in Australian football players; (2) to identify which combination of workload variable, acute and chronic time window best explains injury likelihood. Methods Workload and injury data were collected from 53 athletes over 2 seasons in a professional Australian football club. Acute:chronic workload ratios were calculated daily for each athlete, and modelled against non-contact injury likelihood using a quadratic relationship. 6 workload variables, 8 acute time windows (2–9 days) and 7 chronic time windows (14–35 days) were considered (336 combinations). Each parameter combination was compared for injury likelihood fit (using R2). Results The ratio of moderate speed running workload (18–24 km/h) in the previous 3 days (acute time window) compared with the previous 21 days (chronic time window) best explained the injury likelihood in matches (R2=0.79) and in the immediate 2 or 5 days following matches (R2=0.76–0.82). The 3:21 acute:chronic workload ratio discriminated between high-risk and low-risk athletes (relative risk=1.98–2.43). Using the previous 6 days to calculate the acute workload time window yielded similar results. The choice of acute time window significantly influenced model performance and appeared to reflect the competition and training schedule. Conclusions Daily workload ratios can inform injury risk in Australian football. Clinicians and conditioning coaches should consider the sport-specific schedule of competition and training when choosing acute and chronic time windows. For Australian football, the ratio of moderate speed running in a 3-day or 6-day acute time window and a 21-day chronic time window best explained injury risk. PMID:27789430
Time-marching multi-grid seismic tomography
NASA Astrophysics Data System (ADS)
Tong, P.; Yang, D.; Liu, Q.
2016-12-01
From the classic ray-based traveltime tomography to the state-of-the-art full waveform inversion, because of the nonlinearity of seismic inverse problems, a good starting model is essential for preventing the convergence of the objective function toward local minima. With a focus on building high-accuracy starting models, we propose the so-called time-marching multi-grid seismic tomography method in this study. The new seismic tomography scheme consists of a temporal time-marching approach and a spatial multi-grid strategy. We first divide the recording period of seismic data into a series of time windows. Sequentially, the subsurface properties in each time window are iteratively updated starting from the final model of the previous time window. There are at least two advantages of the time-marching approach: (1) the information included in the seismic data of previous time windows has been explored to build the starting models of later time windows; (2) seismic data of later time windows could provide extra information to refine the subsurface images. Within each time window, we use a multi-grid method to decompose the scale of the inverse problem. Specifically, the unknowns of the inverse problem are sampled on a coarse mesh to capture the macro-scale structure of the subsurface at the beginning. Because of the low dimensionality, it is much easier to reach the global minimum on a coarse mesh. After that, finer meshes are introduced to recover the micro-scale properties. That is to say, the subsurface model is iteratively updated on multi-grid in every time window. We expect that high-accuracy starting models should be generated for the second and later time windows. We will test this time-marching multi-grid method by using our newly developed eikonal-based traveltime tomography software package tomoQuake. Real application results in the 2016 Kumamoto earthquake (Mw 7.0) region in Japan will be demonstrated.
Liu, Xue-Li; Gai, Shuang-Shuang; Zhang, Shi-Le; Wang, Pu
2015-01-01
Background An important attribute of the traditional impact factor was the controversial 2-year citation window. So far, several scholars have proposed using different citation time windows for evaluating journals. However, there is no confirmation whether a longer citation time window would be better. How did the journal evaluation effects of 3IF, 4IF, and 6IF comparing with 2IF and 5IF? In order to understand these questions, we made a comparative study of impact factors with different citation time windows with the peer-reviewed scores of ophthalmologic journals indexed by Science Citation Index Expanded (SCIE) database. Methods The peer-reviewed scores of 28 ophthalmologic journals were obtained through a self-designed survey questionnaire. Impact factors with different citation time windows (including 2IF, 3IF, 4IF, 5IF, and 6IF) of 28 ophthalmologic journals were computed and compared in accordance with each impact factor’s definition and formula, using the citation analysis function of the Web of Science (WoS) database. An analysis of the correlation between impact factors with different citation time windows and peer-reviewed scores was carried out. Results Although impact factor values with different citation time windows were different, there was a high level of correlation between them when it came to evaluating journals. In the current study, for ophthalmologic journals’ impact factors with different time windows in 2013, 3IF and 4IF seemed the ideal ranges for comparison, when assessed in relation to peer-reviewed scores. In addition, the 3-year and 4-year windows were quite consistent with the cited peak age of documents published by ophthalmologic journals. Research Limitations Our study is based on ophthalmology journals and we only analyze the impact factors with different citation time window in 2013, so it has yet to be ascertained whether other disciplines (especially those with a later cited peak) or other years would follow the same or similar patterns. Originality/ Value We designed the survey questionnaire ourselves, specifically to assess the real influence of journals. We used peer-reviewed scores to judge the journal evaluation effect of impact factors with different citation time windows. The main purpose of this study was to help researchers better understand the role of impact factors with different citation time windows in journal evaluation. PMID:26295157
Liu, Xue-Li; Gai, Shuang-Shuang; Zhang, Shi-Le; Wang, Pu
2015-01-01
An important attribute of the traditional impact factor was the controversial 2-year citation window. So far, several scholars have proposed using different citation time windows for evaluating journals. However, there is no confirmation whether a longer citation time window would be better. How did the journal evaluation effects of 3IF, 4IF, and 6IF comparing with 2IF and 5IF? In order to understand these questions, we made a comparative study of impact factors with different citation time windows with the peer-reviewed scores of ophthalmologic journals indexed by Science Citation Index Expanded (SCIE) database. The peer-reviewed scores of 28 ophthalmologic journals were obtained through a self-designed survey questionnaire. Impact factors with different citation time windows (including 2IF, 3IF, 4IF, 5IF, and 6IF) of 28 ophthalmologic journals were computed and compared in accordance with each impact factor's definition and formula, using the citation analysis function of the Web of Science (WoS) database. An analysis of the correlation between impact factors with different citation time windows and peer-reviewed scores was carried out. Although impact factor values with different citation time windows were different, there was a high level of correlation between them when it came to evaluating journals. In the current study, for ophthalmologic journals' impact factors with different time windows in 2013, 3IF and 4IF seemed the ideal ranges for comparison, when assessed in relation to peer-reviewed scores. In addition, the 3-year and 4-year windows were quite consistent with the cited peak age of documents published by ophthalmologic journals. Our study is based on ophthalmology journals and we only analyze the impact factors with different citation time window in 2013, so it has yet to be ascertained whether other disciplines (especially those with a later cited peak) or other years would follow the same or similar patterns. We designed the survey questionnaire ourselves, specifically to assess the real influence of journals. We used peer-reviewed scores to judge the journal evaluation effect of impact factors with different citation time windows. The main purpose of this study was to help researchers better understand the role of impact factors with different citation time windows in journal evaluation.
Computed Tomography Window Blending: Feasibility in Thoracic Trauma.
Mandell, Jacob C; Wortman, Jeremy R; Rocha, Tatiana C; Folio, Les R; Andriole, Katherine P; Khurana, Bharti
2018-02-07
This study aims to demonstrate the feasibility of processing computed tomography (CT) images with a custom window blending algorithm that combines soft-tissue, bone, and lung window settings into a single image; to compare the time for interpretation of chest CT for thoracic trauma with window blending and conventional window settings; and to assess diagnostic performance of both techniques. Adobe Photoshop was scripted to process axial DICOM images from retrospective contrast-enhanced chest CTs performed for trauma with a window-blending algorithm. Two emergency radiologists independently interpreted the axial images from 103 chest CTs with both blended and conventional windows. Interpretation time and diagnostic performance were compared with Wilcoxon signed-rank test and McNemar test, respectively. Agreement with Nexus CT Chest injury severity was assessed with the weighted kappa statistic. A total of 13,295 images were processed without error. Interpretation was faster with window blending, resulting in a 20.3% time saving (P < .001), with no difference in diagnostic performance, within the power of the study to detect a difference in sensitivity of 5% as determined by post hoc power analysis. The sensitivity of the window-blended cases was 82.7%, compared to 81.6% for conventional windows. The specificity of the window-blended cases was 93.1%, compared to 90.5% for conventional windows. All injuries of major clinical significance (per Nexus CT Chest criteria) were correctly identified in all reading sessions, and all negative cases were correctly classified. All readers demonstrated near-perfect agreement with injury severity classification with both window settings. In this pilot study utilizing retrospective data, window blending allows faster preliminary interpretation of axial chest CT performed for trauma, with no significant difference in diagnostic performance compared to conventional window settings. Future studies would be required to assess the utility of window blending in clinical practice. Copyright © 2018 The Association of University Radiologists. All rights reserved.
Xu, Stanley; Hambidge, Simon J; McClure, David L; Daley, Matthew F; Glanz, Jason M
2013-08-30
In the examination of the association between vaccines and rare adverse events after vaccination in postlicensure observational studies, it is challenging to define appropriate risk windows because prelicensure RCTs provide little insight on the timing of specific adverse events. Past vaccine safety studies have often used prespecified risk windows based on prior publications, biological understanding of the vaccine, and expert opinion. Recently, a data-driven approach was developed to identify appropriate risk windows for vaccine safety studies that use the self-controlled case series design. This approach employs both the maximum incidence rate ratio and the linear relation between the estimated incidence rate ratio and the inverse of average person time at risk, given a specified risk window. In this paper, we present a scan statistic that can identify appropriate risk windows in vaccine safety studies using the self-controlled case series design while taking into account the dependence of time intervals within an individual and while adjusting for time-varying covariates such as age and seasonality. This approach uses the maximum likelihood ratio test based on fixed-effects models, which has been used for analyzing data from self-controlled case series design in addition to conditional Poisson models. Copyright © 2013 John Wiley & Sons, Ltd.
Sensors and Clinical Mastitis—The Quest for the Perfect Alert
Hogeveen, Henk; Kamphuis, Claudia; Steeneveld, Wilma; Mollenhorst, Herman
2010-01-01
When cows on dairy farms are milked with an automatic milking system or in high capacity milking parlors, clinical mastitis (CM) cannot be adequately detected without sensors. The objective of this paper is to describe the performance demands of sensor systems to detect CM and evaluats the current performance of these sensor systems. Several detection models based on different sensors were studied in the past. When evaluating these models, three factors are important: performance (in terms of sensitivity and specificity), the time window and the similarity of the study data with real farm data. A CM detection system should offer at least a sensitivity of 80% and a specificity of 99%. The time window should not be longer than 48 hours and study circumstances should be as similar to practical farm circumstances as possible. The study design should comprise more than one farm for data collection. Since 1992, 16 peer-reviewed papers have been published with a description and evaluation of CM detection models. There is a large variation in the use of sensors and algorithms. All this makes these results not very comparable. There is a also large difference in performance between the detection models and also a large variation in time windows used and little similarity between study data. Therefore, it is difficult to compare the overall performance of the different CM detection models. The sensitivity and specificity found in the different studies could, for a large part, be explained in differences in the used time window. None of the described studies satisfied the demands for CM detection models. PMID:22163637
Sensors and clinical mastitis--the quest for the perfect alert.
Hogeveen, Henk; Kamphuis, Claudia; Steeneveld, Wilma; Mollenhorst, Herman
2010-01-01
When cows on dairy farms are milked with an automatic milking system or in high capacity milking parlors, clinical mastitis (CM) cannot be adequately detected without sensors. The objective of this paper is to describe the performance demands of sensor systems to detect CM and evaluats the current performance of these sensor systems. Several detection models based on different sensors were studied in the past. When evaluating these models, three factors are important: performance (in terms of sensitivity and specificity), the time window and the similarity of the study data with real farm data. A CM detection system should offer at least a sensitivity of 80% and a specificity of 99%. The time window should not be longer than 48 hours and study circumstances should be as similar to practical farm circumstances as possible. The study design should comprise more than one farm for data collection. Since 1992, 16 peer-reviewed papers have been published with a description and evaluation of CM detection models. There is a large variation in the use of sensors and algorithms. All this makes these results not very comparable. There is a also large difference in performance between the detection models and also a large variation in time windows used and little similarity between study data. Therefore, it is difficult to compare the overall performance of the different CM detection models. The sensitivity and specificity found in the different studies could, for a large part, be explained in differences in the used time window. None of the described studies satisfied the demands for CM detection models.
Low-complexity image processing for real-time detection of neonatal clonic seizures.
Ntonfo, Guy Mathurin Kouamou; Ferrari, Gianluigi; Raheli, Riccardo; Pisani, Francesco
2012-05-01
In this paper, we consider a novel low-complexity real-time image-processing-based approach to the detection of neonatal clonic seizures. Our approach is based on the extraction, from a video of a newborn, of an average luminance signal representative of the body movements. Since clonic seizures are characterized by periodic movements of parts of the body (e.g., the limbs), by evaluating the periodicity of the extracted average luminance signal it is possible to detect the presence of a clonic seizure. The periodicity is investigated, through a hybrid autocorrelation-Yin estimation technique, on a per-window basis, where a time window is defined as a sequence of consecutive video frames. While processing is first carried out on a single window basis, we extend our approach to interlaced windows. The performance of the proposed detection algorithm is investigated, in terms of sensitivity and specificity, through receiver operating characteristic curves, considering video recordings of newborns affected by neonatal seizures.
Herz, Damian M; Little, Simon; Pedrosa, David J; Tinkhauser, Gerd; Cheeran, Binith; Foltynie, Tom; Bogacz, Rafal; Brown, Peter
2018-04-23
To optimally balance opposing demands of speed and accuracy during decision-making, we must flexibly adapt how much evidence we require before making a choice. Such adjustments in decision thresholds have been linked to the subthalamic nucleus (STN), and therapeutic STN deep-brain stimulation (DBS) has been shown to interfere with this function. Here, we performed continuous as well as closed-loop DBS of the STN while Parkinson's disease patients performed a perceptual decision-making task. Closed-loop STN DBS allowed temporally patterned STN stimulation and simultaneous recordings of STN activity. This revealed that DBS only affected patients' ability to adjust decision thresholds if applied in a specific temporally confined time window during deliberation. Only stimulation in that window diminished the normal slowing of response times that occurred on difficult trials when DBS was turned off. Furthermore, DBS eliminated a relative, time-specific increase in STN beta oscillations and compromised its functional relationship with trial-by-trial adjustments in decision thresholds. Together, these results provide causal evidence that the STN is involved in adjusting decision thresholds in distinct, time-limited processing windows during deliberation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Coull, Brent A.; Bellinger, David C.; Kloog, Itai; Schwartz, Joel; Wright, Robert O.; Wright, Rosalind J.
2015-01-01
Background Brain growth and structural organization occurs in stages beginning prenatally. Toxicants may impact neurodevelopment differently dependent upon exposure timing and fetal sex. Objectives We implemented innovative methodology to identify sensitive windows for the associations between prenatal particulate matter with diameter≤2.5μm (PM2.5) and children’s neurodevelopment. Methods We assessed 267 full-term urban children’s prenatal daily PM2.5 exposure using a validated satellite-based spatio-temporally resolved prediction model. Outcomes included IQ (WISC-IV), attention (omission errors [OEs], commission errors [CEs], hit reaction time [HRT], and HRT standard error [HRT-SE] on the Conners’ CPT-II), and memory (general memory [GM] index and its components - verbal [VEM] and visual [VIM] memory, and attention-concentration [AC] indices on the WRAML-2) assessed at age 6.5±0.98 years. To identify the role of exposure timing, we used distributed lag models to examine associations between weekly prenatal PM2.5 exposure and neurodevelopment. Sex-specific associations were also examined. Results Mothers were primarily minorities (60% Hispanic, 25% black); 69% had ≤12 years of education. Adjusting for maternal age, education, race, and smoking, we found associations between higher PM2.5 levels at 31–38 weeks with lower IQ, at 20–26 weeks gestation with increased OEs, at 32–36 weeks with slower HRT, and at 22–40 weeks with increased HRT-SE among boys, while significant associations were found in memory domains in girls (higher PM2.5 exposure at 18–26 weeks with reduced VIM, at 12–20 weeks with reduced GM). Conclusions Increased PM2.5 exposure in specific prenatal windows was associated with poorer function across memory and attention domains with variable associations based on sex. Refined determination of time window- and sex-specific associations may enhance insight into underlying mechanisms and identification of vulnerable subgroups. PMID:26641520
Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Coull, Brent A; Bellinger, David C; Kloog, Itai; Schwartz, Joel; Wright, Robert O; Wright, Rosalind J
2016-02-01
Brain growth and structural organization occurs in stages beginning prenatally. Toxicants may impact neurodevelopment differently dependent upon exposure timing and fetal sex. We implemented innovative methodology to identify sensitive windows for the associations between prenatal particulate matter with diameter ≤ 2.5 μm (PM2.5) and children's neurodevelopment. We assessed 267 full-term urban children's prenatal daily PM2.5 exposure using a validated satellite-based spatio-temporally resolved prediction model. Outcomes included IQ (WISC-IV), attention (omission errors [OEs], commission errors [CEs], hit reaction time [HRT], and HRT standard error [HRT-SE] on the Conners' CPT-II), and memory (general memory [GM] index and its components - verbal [VEM] and visual [VIM] memory, and attention-concentration [AC] indices on the WRAML-2) assessed at age 6.5±0.98 years. To identify the role of exposure timing, we used distributed lag models to examine associations between weekly prenatal PM2.5 exposure and neurodevelopment. Sex-specific associations were also examined. Mothers were primarily minorities (60% Hispanic, 25% black); 69% had ≤12 years of education. Adjusting for maternal age, education, race, and smoking, we found associations between higher PM2.5 levels at 31-38 weeks with lower IQ, at 20-26 weeks gestation with increased OEs, at 32-36 weeks with slower HRT, and at 22-40 weeks with increased HRT-SE among boys, while significant associations were found in memory domains in girls (higher PM2.5 exposure at 18-26 weeks with reduced VIM, at 12-20 weeks with reduced GM). Increased PM2.5 exposure in specific prenatal windows may be associated with poorer function across memory and attention domains with variable associations based on sex. Refined determination of time window- and sex-specific associations may enhance insight into underlying mechanisms and identification of vulnerable subgroups. Copyright © 2015 Elsevier Ltd. All rights reserved.
Windows of sensitivity to toxic chemicals in the motor effects development.
Ingber, Susan Z; Pohl, Hana R
2016-02-01
Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8-17 [rats], GD 12-14 and PND 3-10 [mice]) and motor function performance (insufficient data for rats, GD 12-17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review. Published by Elsevier Inc.
Windows of sensitivity to toxic chemicals in the motor effects development✩
Ingber, Susan Z.; Pohl, Hana R.
2017-01-01
Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8–17 [rats], GD 12–14 and PND 3–10 [mice]) and motor function performance (insufficient data for rats, GD 12–17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review. PMID:26686904
Recalibration of the Multisensory Temporal Window of Integration Results from Changing Task Demands
Mégevand, Pierre; Molholm, Sophie; Nayak, Ashabari; Foxe, John J.
2013-01-01
The notion of the temporal window of integration, when applied in a multisensory context, refers to the breadth of the interval across which the brain perceives two stimuli from different sensory modalities as synchronous. It maintains a unitary perception of multisensory events despite physical and biophysical timing differences between the senses. The boundaries of the window can be influenced by attention and past sensory experience. Here we examined whether task demands could also influence the multisensory temporal window of integration. We varied the stimulus onset asynchrony between simple, short-lasting auditory and visual stimuli while participants performed two tasks in separate blocks: a temporal order judgment task that required the discrimination of subtle auditory-visual asynchronies, and a reaction time task to the first incoming stimulus irrespective of its sensory modality. We defined the temporal window of integration as the range of stimulus onset asynchronies where performance was below 75% in the temporal order judgment task, as well as the range of stimulus onset asynchronies where responses showed multisensory facilitation (race model violation) in the reaction time task. In 5 of 11 participants, we observed audio-visual stimulus onset asynchronies where reaction time was significantly accelerated (indicating successful integration in this task) while performance was accurate in the temporal order judgment task (indicating successful segregation in that task). This dissociation suggests that in some participants, the boundaries of the temporal window of integration can adaptively recalibrate in order to optimize performance according to specific task demands. PMID:23951203
Koštiaková, Vladimíra; Moleti, Arturo; Wimmerová, Soňa; Jusko, Todd A; Palkovičová Murínová, Ľubica; Sisto, Renata; Richterová, Denisa; Kováč, Ján; Čonka, Kamil; Patayová, Henrieta; Tihányi, Juraj; Trnovec, Tomáš
2016-10-01
The study aim was to identify the timing of sensitive windows for ototoxicity related to perinatal exposure to PCBs. A total of 351 and 214 children from a birth cohort in eastern Slovakia underwent otoacoustic testing at 45 and 72 months, respectively, and distortion product otoacoustic emissions (DPOAEs) at 11 frequencies were recorded. Cord and child 6-, 16-, 45-, and 72- month blood samples were analyzed for PCB 153 concentration. The PCB 153 concentration-time profiles were approximated with a system model to calculate area under the PCB*time curves (AUCs) for specific time intervals (3 and 6 months for 45 and 72 months data, respectively). DPOAE amplitudes were correlated (Spearman) with cord serum PCB and AUCs, markers of prenatal and postnatal exposure, respectively. Two exposure critical windows were identified in infants, the first related to prenatal and early postnatal and the second to postnatal exposure to PCBs. Our data have shown tonotopicity, sexual dimorphism, and asymmetry in ototoxicity of PCBs. Copyright © 2016. Published by Elsevier Ltd.
Tapiainen, V; Hartikainen, S; Taipale, H; Tiihonen, J; Tolppanen, A-M
2017-06-01
Studies investigating psychiatric disorders as Alzheimer's disease (AD) risk factors have yielded heterogeneous findings. Differences in time windows between the exposure and outcome could be one explanation. We examined whether (1) mental and behavioral disorders in general or (2) specific mental and behavioral disorder categories increase the risk of AD and (3) how the width of the time window between the exposure and outcome affects the results. A nationwide nested case-control study of all Finnish clinically verified AD cases, alive in 2005 and their age, sex and region of residence matched controls (n of case-control pairs 27,948). History of hospital-treated mental and behavioral disorders was available since 1972. Altogether 6.9% (n=1932) of the AD cases and 6.4% (n=1784) of controls had a history of any mental and behavioral disorder. Having any mental and behavioral disorder (adjusted OR=1.07, 95% CI=1.00-1.16) or depression/other mood disorder (adjusted OR=1.17, 95% CI=1.05-1.30) were associated with higher risk of AD with 5-year time window but not with 10-year time window (adjusted OR, 95% CI 0.99, 0.91-1.08 for any disorder and 1.08, 0.96-1.23 for depression). The associations between mental and behavioral disorders and AD were modest and dependent on the time window. Therefore, some of the disorders may represent misdiagnosed prodromal symptoms of AD, which underlines the importance of proper differential diagnostics among older persons. These findings also highlight the importance of appropriate time window in psychiatric and neuroepidemiology research. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Long, Tom; Johnson, Ted; Ollison, Will
2002-05-01
Researchers have developed a variety of computer-based models to estimate population exposure to air pollution. These models typically estimate exposures by simulating the movement of specific population groups through defined microenvironments. Exposures in the motor vehicle microenvironment are significantly affected by air exchange rate, which in turn is affected by vehicle speed, window position, vent status, and air conditioning use. A pilot study was conducted in Houston, Texas, during September 2000 for a specific set of weather, vehicle speed, and road type conditions to determine whether useful information on the position of windows, sunroofs, and convertible tops could be obtained through the use of video cameras. Monitoring was conducted at three sites (two arterial roads and one interstate highway) on the perimeter of Harris County located in or near areas not subject to mandated Inspection and Maintenance programs. Each site permitted an elevated view of vehicles as they proceeded through a turn, thereby exposing all windows to the stationary video camera. Five videotaping sessions were conducted over a two-day period in which the Heat Index (HI)-a function of temperature and humidity-varied from 80 to 101 degrees F and vehicle speed varied from 30 to 74 mph. The resulting videotapes were processed to create a master database listing vehicle-specific data for site location, date, time, vehicle type (e.g., minivan), color, window configuration (e.g., four windows and sunroof), number of windows in each of three position categories (fully open, partially open, and closed), HI, and speed. Of the 758 vehicles included in the database, 140 (18.5 percent) were labeled as "open," indicating a window, sunroof, or convertible top was fully or partially open. The results of a series of stepwise linear regression analyses indicated that the probability of a vehicle in the master database being "open" was weakly affected by time of day, vehicle type, vehicle color, vehicle speed, and HI. In particular, open windows occurred more frequently when vehicle speed was less than 50 mph during periods when HI exceeded 99.9 degrees F and the vehicle was a minivan or passenger van. Overall, the pilot study demonstrated that data on factors affecting vehicle window position could be acquired through a relatively simple experimental protocol using a single video camera. Limitations of the study requiring further research include the inability to determine the status of the vehicle air conditioning system; lack of a wide range of weather, vehicle speed, and road type conditions; and the need to exclude some vehicles from statistical analyses due to ambiguous window positions.
Automatic Multi-sensor Data Quality Checking and Event Detection for Environmental Sensing
NASA Astrophysics Data System (ADS)
LIU, Q.; Zhang, Y.; Zhao, Y.; Gao, D.; Gallaher, D. W.; Lv, Q.; Shang, L.
2017-12-01
With the advances in sensing technologies, large-scale environmental sensing infrastructures are pervasively deployed to continuously collect data for various research and application fields, such as air quality study and weather condition monitoring. In such infrastructures, many sensor nodes are distributed in a specific area and each individual sensor node is capable of measuring several parameters (e.g., humidity, temperature, and pressure), providing massive data for natural event detection and analysis. However, due to the dynamics of the ambient environment, sensor data can be contaminated by errors or noise. Thus, data quality is still a primary concern for scientists before drawing any reliable scientific conclusions. To help researchers identify potential data quality issues and detect meaningful natural events, this work proposes a novel algorithm to automatically identify and rank anomalous time windows from multiple sensor data streams. More specifically, (1) the algorithm adaptively learns the characteristics of normal evolving time series and (2) models the spatial-temporal relationship among multiple sensor nodes to infer the anomaly likelihood of a time series window for a particular parameter in a sensor node. Case studies using different data sets are presented and the experimental results demonstrate that the proposed algorithm can effectively identify anomalous time windows, which may resulted from data quality issues and natural events.
Zhong, Zhentao; Yu, Yue; Jin, Shufang; Pan, Jinming
2018-01-01
The hatch window that varies from 24 to 48 h is known to influence post-hatch performance of chicks. A narrow hatch window is needed for commercial poultry industry to acquire a high level of uniformity of chick quality. Hatching synchronization observed in avian species presents possibilities in altering hatch window in artificial incubation. Layer eggs which were laid on the same day by a single breeder flock and stored for no more than two days started incubation 12 h apart to obtain developmental distinction. The eggs of different initial incubation time were mixed as rows adjacent to rows on day 12 of incubation. During the hatching period (since day 18), hatching time of individual eggs and hatch window were obtained by video recordings. Embryonic development (day 18 and 20) and post-hatch performance up to day 7 were measured. The manipulation of mixing eggs of different initial incubation time shortened the hatch window of late incubated eggs in the manipulated group by delaying the onset of hatching process, and improved the hatchability. Compared to the control groups, chick embryos or chicks in the egg redistribution group showed no significant difference in embryonic development and post-hatch performance up to day 7. We have demonstrated that eggs that were incubated with advanced eggs performed a narrow spread of hatch with higher hatchability, normal embryonic development as well as unaffected chick quality. This specific manipulation is applicable in industrial poultry production to shorten hatch window and improve the uniformity of chick quality.
NASA Astrophysics Data System (ADS)
Zhao, Jianhua; Zeng, Haishan; Kalia, Sunil; Lui, Harvey
2017-02-01
Background: Raman spectroscopy is a non-invasive optical technique which can measure molecular vibrational modes within tissue. A large-scale clinical study (n = 518) has demonstrated that real-time Raman spectroscopy could distinguish malignant from benign skin lesions with good diagnostic accuracy; this was validated by a follow-up independent study (n = 127). Objective: Most of the previous diagnostic algorithms have typically been based on analyzing the full band of the Raman spectra, either in the fingerprint or high wavenumber regions. Our objective in this presentation is to explore wavenumber selection based analysis in Raman spectroscopy for skin cancer diagnosis. Methods: A wavenumber selection algorithm was implemented using variably-sized wavenumber windows, which were determined by the correlation coefficient between wavenumbers. Wavenumber windows were chosen based on accumulated frequency from leave-one-out cross-validated stepwise regression or least and shrinkage selection operator (LASSO). The diagnostic algorithms were then generated from the selected wavenumber windows using multivariate statistical analyses, including principal component and general discriminant analysis (PC-GDA) and partial least squares (PLS). A total cohort of 645 confirmed lesions from 573 patients encompassing skin cancers, precancers and benign skin lesions were included. Lesion measurements were divided into training cohort (n = 518) and testing cohort (n = 127) according to the measurement time. Result: The area under the receiver operating characteristic curve (ROC) improved from 0.861-0.891 to 0.891-0.911 and the diagnostic specificity for sensitivity levels of 0.99-0.90 increased respectively from 0.17-0.65 to 0.20-0.75 by selecting specific wavenumber windows for analysis. Conclusion: Wavenumber selection based analysis in Raman spectroscopy improves skin cancer diagnostic specificity at high sensitivity levels.
An Evidence-Based Forensic Taxonomy of Windows Phone Communication Apps.
Cahyani, Niken Dwi Wahyu; Martini, Ben; Choo, Kim-Kwang Raymond; Ab Rahman, Nurul Hidayah; Ashman, Helen
2018-05-01
Communication apps can be an important source of evidence in a forensic investigation (e.g., in the investigation of a drug trafficking or terrorism case where the communications apps were used by the accused persons during the transactions or planning activities). This study presents the first evidence-based forensic taxonomy of Windows Phone communication apps, using an existing two-dimensional Android forensic taxonomy as a baseline. Specifically, 30 Windows Phone communication apps, including Instant Messaging (IM) and Voice over IP (VoIP) apps, are examined. Artifacts extracted using physical acquisition are analyzed, and seven digital evidence objects of forensic interest are identified, namely: Call Log, Chats, Contacts, Locations, Installed Applications, SMSs and User Accounts. Findings from this study would help to facilitate timely and effective forensic investigations involving Windows Phone communication apps. © 2017 American Academy of Forensic Sciences.
Schüpbach, Jörg; Gebhardt, Martin D.; Scherrer, Alexandra U.; Bisset, Leslie R.; Niederhauser, Christoph; Regenass, Stephan; Yerly, Sabine; Aubert, Vincent; Suter, Franziska; Pfister, Stefan; Martinetti, Gladys; Andreutti, Corinne; Klimkait, Thomas; Brandenberger, Marcel; Günthard, Huldrych F.
2013-01-01
Background Tests for recent infections (TRIs) are important for HIV surveillance. We have shown that a patient's antibody pattern in a confirmatory line immunoassay (Inno-Lia) also yields information on time since infection. We have published algorithms which, with a certain sensitivity and specificity, distinguish between incident (< = 12 months) and older infection. In order to use these algorithms like other TRIs, i.e., based on their windows, we now determined their window periods. Methods We classified Inno-Lia results of 527 treatment-naïve patients with HIV-1 infection < = 12 months according to incidence by 25 algorithms. The time after which all infections were ruled older, i.e. the algorithm's window, was determined by linear regression of the proportion ruled incident in dependence of time since infection. Window-based incident infection rates (IIR) were determined utilizing the relationship ‘Prevalence = Incidence x Duration’ in four annual cohorts of HIV-1 notifications. Results were compared to performance-based IIR also derived from Inno-Lia results, but utilizing the relationship ‘incident = true incident + false incident’ and also to the IIR derived from the BED incidence assay. Results Window periods varied between 45.8 and 130.1 days and correlated well with the algorithms' diagnostic sensitivity (R2 = 0.962; P<0.0001). Among the 25 algorithms, the mean window-based IIR among the 748 notifications of 2005/06 was 0.457 compared to 0.453 obtained for performance-based IIR with a model not correcting for selection bias. Evaluation of BED results using a window of 153 days yielded an IIR of 0.669. Window-based IIR and performance-based IIR increased by 22.4% and respectively 30.6% in 2008, while 2009 and 2010 showed a return to baseline for both methods. Conclusions IIR estimations by window- and performance-based evaluations of Inno-Lia algorithm results were similar and can be used together to assess IIR changes between annual HIV notification cohorts. PMID:23990968
Qiu, Zheng; Chen, Jianghai; Xu, Hanmei; Van den Steen, Philippe E.; Opdenakker, Ghislain; Wang, Min
2014-01-01
Endotoxin shock is a life-threatening disorder, associated with the rapid release of neutrophil enzymes, including neutrophil collagenase/matrix metalloproteinase-8 (MMP-8) and gelatinase B/matrix metalloproteinase-9 (MMP-9). After activation, these enzymes cleave extracellular matrix components and cytokines and thus may contribute to shock syndrome development. MMP inhibitors have been suggested as immunotherapy of endotoxin shock. However, little is known about the therapeutic time window of MMP inhibition. Here, a sublethal endotoxin shock mouse model was used to evaluate the effect of an MMP inhibiting peptide (P2) after intravenous or intraperitoneal injection and to study the time window between LPS and inhibitor injections. With the use of a specific ELISA the plasma P2 concentrations were monitored. Whereas we corroborated the treatment strategy of MMP targeting in endotoxin shock with a new inhibitor, we also demonstrated that the time window, within which effective MMP inhibition increased the survival rates, is rather limited. PMID:25762310
Wildfire cluster detection using space-time scan statistics
NASA Astrophysics Data System (ADS)
Tonini, M.; Tuia, D.; Ratle, F.; Kanevski, M.
2009-04-01
The aim of the present study is to identify spatio-temporal clusters of fires sequences using space-time scan statistics. These statistical methods are specifically designed to detect clusters and assess their significance. Basically, scan statistics work by comparing a set of events occurring inside a scanning window (or a space-time cylinder for spatio-temporal data) with those that lie outside. Windows of increasing size scan the zone across space and time: the likelihood ratio is calculated for each window (comparing the ratio "observed cases over expected" inside and outside): the window with the maximum value is assumed to be the most probable cluster, and so on. Under the null hypothesis of spatial and temporal randomness, these events are distributed according to a known discrete-state random process (Poisson or Bernoulli), which parameters can be estimated. Given this assumption, it is possible to test whether or not the null hypothesis holds in a specific area. In order to deal with fires data, the space-time permutation scan statistic has been applied since it does not require the explicit specification of the population-at risk in each cylinder. The case study is represented by Florida daily fire detection using the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product during the period 2003-2006. As result, statistically significant clusters have been identified. Performing the analyses over the entire frame period, three out of the five most likely clusters have been identified in the forest areas, on the North of the country; the other two clusters cover a large zone in the South, corresponding to agricultural land and the prairies in the Everglades. Furthermore, the analyses have been performed separately for the four years to analyze if the wildfires recur each year during the same period. It emerges that clusters of forest fires are more frequent in hot seasons (spring and summer), while in the South areas they are widely present along the whole year. The analysis of fires distribution to evaluate if they are statistically more frequent in some area or/and in some period of the year, can be useful to support fire management and to focus on prevention measures.
Oscillatory integration windows in neurons
Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark
2016-01-01
Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking. PMID:27976720
Attenuating fearful memories: effect of cued extinction on intrusions.
Marks, Elizabeth H; Zoellner, Lori A
2014-12-01
Exposure-based therapies for posttraumatic stress disorder are thought to reduce intrusive memories through extinction processes. Methods that enhance extinction may translate to improved treatment. Rat research suggests retrieving a memory via a conditioned stimulus (CS) cue, and then modifying the retrieved memory within a specific reconsolidation window may enhance extinction. In humans, studies (e.g., Kindt & Soeter, 2013; Schiller et al., 2010) using basic learning paradigms show discrepant findings. Using a distressing film paradigm, participants (N = 148) completed fear acquisition and extinction. At extinction, they were randomized to 1 of 3 groups: CS cue within reconsolidation window, CS cue outside window, or non-CS cue within window. Intrusions were assessed 24 hr after extinction. Participants receiving the CS cue and completing extinction within the reconsolidation window had more intrusions (M = 2.40, SD = 2.54) than those cued outside (M = 1.65, SD = 1.70) or those receiving a non-CS cue (M = 1.24, SD = 1.26), F(2, 145) = 4.52, p = .01, d = 0.55. Consistent with the reconsolidation hypothesis, presenting a CS cue does appear to activate a specific period of time during which a memory can be updated. However, the CS cue caused increased, rather than decreased, frequency of intrusions. Understanding parameters of preextinction cueing may help us better understand reconsolidation as a potential memory updating mechanism.
Face perception is tuned to horizontal orientation in the N170 time window.
Jacques, Corentin; Schiltz, Christine; Goffaux, Valerie
2014-02-07
The specificity of face perception is thought to reside both in its dramatic vulnerability to picture-plane inversion and its strong reliance on horizontally oriented image content. Here we asked when in the visual processing stream face-specific perception is tuned to horizontal information. We measured the behavioral performance and scalp event-related potentials (ERP) when participants viewed upright and inverted images of faces and cars (and natural scenes) that were phase-randomized in a narrow orientation band centered either on vertical or horizontal orientation. For faces, the magnitude of the inversion effect (IE) on behavioral discrimination performance was significantly reduced for horizontally randomized compared to vertically or nonrandomized images, confirming the importance of horizontal information for the recruitment of face-specific processing. Inversion affected the processing of nonrandomized and vertically randomized faces early, in the N170 time window. In contrast, the magnitude of the N170 IE was much smaller for horizontally randomized faces. The present research indicates that the early face-specific neural representations are preferentially tuned to horizontal information and offers new perspectives for a description of the visual information feeding face-specific perception.
NASA Technical Reports Server (NTRS)
Roberts, Floyd E., III
1994-01-01
Software provides for control and acquisition of data from optical pyrometer. There are six individual programs in PYROLASER package. Provides quick and easy way to set up, control, and program standard Pyrolaser. Temperature and emisivity measurements either collected as if Pyrolaser in manual operating mode or displayed on real-time strip charts and stored in standard spreadsheet format for posttest analysis. Shell supplied to allow macros, which are test-specific, added to system easily. Written using Labview software for use on Macintosh-series computers running System 6.0.3 or later, Sun Sparc-series computers running Open-Windows 3.0 or MIT's X Window System (X11R4 or X11R5), and IBM PC or compatible computers running Microsoft Windows 3.1 or later.
Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang
2014-01-01
Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing. PMID:25146672
Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang
2014-08-22
Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing.
A high-fidelity weather time series generator using the Markov Chain process on a piecewise level
NASA Astrophysics Data System (ADS)
Hersvik, K.; Endrerud, O.-E. V.
2017-12-01
A method is developed for generating a set of unique weather time-series based on an existing weather series. The method allows statistically valid weather variations to take place within repeated simulations of offshore operations. The numerous generated time series need to share the same statistical qualities as the original time series. Statistical qualities here refer mainly to the distribution of weather windows available for work, including durations and frequencies of such weather windows, and seasonal characteristics. The method is based on the Markov chain process. The core new development lies in how the Markov Process is used, specifically by joining small pieces of random length time series together rather than joining individual weather states, each from a single time step, which is a common solution found in the literature. This new Markov model shows favorable characteristics with respect to the requirements set forth and all aspects of the validation performed.
lcps: Light curve pre-selection
NASA Astrophysics Data System (ADS)
Schlecker, Martin
2018-05-01
lcps searches for transit-like features (i.e., dips) in photometric data. Its main purpose is to restrict large sets of light curves to a number of files that show interesting behavior, such as drops in flux. While lcps is adaptable to any format of time series, its I/O module is designed specifically for photometry of the Kepler spacecraft. It extracts the pre-conditioned PDCSAP data from light curves files created by the standard Kepler pipeline. It can also handle csv-formatted ascii files. lcps uses a sliding window technique to compare a section of flux time series with its surroundings. A dip is detected if the flux within the window is lower than a threshold fraction of the surrounding fluxes.
Alkaline battery operational methodology
Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael
2016-08-16
Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.
Guo, Chao; Zhu, Yanrong; Weng, Yan; Wang, Shiquan; Guan, Yue; Wei, Guo; Yin, Ying; Xi, Miaomaio; Wen, Aidong
2014-01-01
Breviscapine injection is a Chinese herbal medicine standardized product extracted from Erigeron breviscapus (Vant.) Hand.-Mazz. It has been widely used for treating cardiovascular and cerebrovascular diseases. However, the therapeutic time window and the action mechanism of breviscapine are still unclear. The present study was designed to investigate the therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemic/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 2h followed by 24h of reperfusion. Experiment part 1 was used to investigate the therapeutic time window of breviscapine. Rats were injected intravenously with 50mg/kg breviscapine at different time-points of reperfusion. After 24h of reperfusion, neurologic score, infarct volume, brain water content and serum level of neuron specific enolase (NSE) were measured in a masked fashion. Part 2 was used to explore the therapeutic mechanism of breviscapine. 4-Hydroxy-2-nonenal (4-HNE), 8-hydroxyl-2'- deoxyguanosine (8-OHdG) and the antioxidant capacity of ischemia cortex were measured by ELISA and ferric-reducing antioxidant power (FRAP) assay, respectively. Immunofluorescence and western blot analysis were used to analyze the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Part 1: breviscapine injection significantly ameliorated neurologic deficit, reduced infarct volume and water content, and suppressed the levels of NSE in a time-dependent manner. Part 2: breviscapine inhibited the increased levels of 4-HNE and 8-OHdG, and enhanced the antioxidant capacity of cortex tissue. Moreover, breviscapine obviously raised the expression of Nrf2 and HO-1 proteins after 24h of reperfusion. The therapeutic time window of breviscapine injection for cerebral ischemia/reperfusion injury seemed to be within 5h after reperfusion. By up-regulating the expression of Nrf2/HO-1 pathway might be involved in the therapeutic mechanism of breviscapine injection. © 2013 Elsevier Ireland Ltd. All rights reserved.
Hester, Nathan; Li, Ke; Schramski, John R; Crittenden, John
2012-04-30
Globally, residential energy consumption continues to rise due to a variety of trends such as increasing access to modern appliances, overall population growth, and the overall increase of electricity distribution. Currently, residential energy consumption accounts for approximately one-fifth of total U.S. energy consumption. This research analyzes the effectiveness of a range of energy-saving measures for residential houses in semi-arid climates. These energy-saving measures include: structural insulated panels (SIP) for exterior wall construction, daylight control, increased window area, efficient window glass suitable for the local weather, and several combinations of these. Our model determined that energy consumption is reduced by up to 6.1% when multiple energy savings technologies are combined. In addition, pre-construction technologies (structural insulated panels (SIPs), daylight control, and increased window area) provide roughly 4 times the energy savings when compared to post-construction technologies (window blinds and efficient window glass). The model also illuminated the importance variations in local climate and building configuration; highlighting the site-specific nature of this type of energy consumption quantification for policy and building code considerations. Published by Elsevier Ltd.
Nonuniform Effects of Reinstatement within the Time Window
ERIC Educational Resources Information Center
Galluccio, Llissa; Rovee-Collier, Carolyn
2006-01-01
A time window is a limited period after an event initially occurs in which additional information can be integrated with the memory of that event. It shuts when the memory is forgotten. The time window hypothesis holds that the impact of a manipulation at different points within the time window is nonuniform. In two operant conditioning…
Due-Window Assignment Scheduling with Variable Job Processing Times
Wu, Yu-Bin
2015-01-01
We consider a common due-window assignment scheduling problem jobs with variable job processing times on a single machine, where the processing time of a job is a function of its position in a sequence (i.e., learning effect) or its starting time (i.e., deteriorating effect). The problem is to determine the optimal due-windows, and the processing sequence simultaneously to minimize a cost function includes earliness, tardiness, the window location, window size, and weighted number of tardy jobs. We prove that the problem can be solved in polynomial time. PMID:25918745
Time and timing in the acoustic recognition system of crickets
Hennig, R. Matthias; Heller, Klaus-Gerhard; Clemens, Jan
2014-01-01
The songs of many insects exhibit precise timing as the result of repetitive and stereotyped subunits on several time scales. As these signals encode the identity of a species, time and timing are important for the recognition system that analyzes these signals. Crickets are a prominent example as their songs are built from sound pulses that are broadcast in a long trill or as a chirped song. This pattern appears to be analyzed on two timescales, short and long. Recent evidence suggests that song recognition in crickets relies on two computations with respect to time; a short linear-nonlinear (LN) model that operates as a filter for pulse rate and a longer integration time window for monitoring song energy over time. Therefore, there is a twofold role for timing. A filter for pulse rate shows differentiating properties for which the specific timing of excitation and inhibition is important. For an integrator, however, the duration of the time window is more important than the precise timing of events. Here, we first review evidence for the role of LN-models and integration time windows for song recognition in crickets. We then parameterize the filter part by Gabor functions and explore the effects of duration, frequency, phase, and offset as these will correspond to differently timed patterns of excitation and inhibition. These filter properties were compared with known preference functions of crickets and katydids. In a comparative approach, the power for song discrimination by LN-models was tested with the songs of over 100 cricket species. It is demonstrated how the acoustic signals of crickets occupy a simple 2-dimensional space for song recognition that arises from timing, described by a Gabor function, and time, the integration window. Finally, we discuss the evolution of recognition systems in insects based on simple sensory computations. PMID:25161622
Long, Tom; Johnson, Ted; Ollison, Will
2004-07-01
Air pollution exposures in the motor vehicle cabin are significantly affected by air exchange rate, a function of vehicle speed, window position, vent status, fan speed, and air conditioning use. A pilot study conducted in Houston, Texas, during September 2000 demonstrated that useful information concerning the position of windows, sunroofs, and convertible tops as a function of temperature and vehicle speed could be obtained through the use of video recorders. To obtain similar data representing a wide range of temperature and traffic conditions, a follow-up study was conducted in and around Chapel Hill, North Carolina at five sites representing a central business district, an arterial road, a low-income commercial district, an interstate highway, and a rural road. Each site permitted an elevated view of vehicles as they proceeded through a turn, thereby exposing all windows to the stationary camcorder. A total of 32 videotaping sessions were conducted between February and October 2001, in which temperature varied from 41 degrees F to 93 degrees F and average vehicle speed varied from 21 to 77 mph. The resulting video tapes were processed to create a vehicle-specific database that included site location, date, time, vehicle type, vehicle color, vehicle age, window configuration, number of windows in each of three position categories (fully open, partially open, and closed), meteorological factors, and vehicle speed. Of the 4715 vehicles included in the database, 1905 (40.4%) were labeled as "open," indicating a window, sunroof, or convertible top was fully or partially open. Stepwise linear regression analyses indicated that "open" window status was affected by wind speed, relative humidity, vehicle speed, cloud cover, apparent temperature, day of week, time of day, vehicle type, vehicle age, vehicle color, number of windows, sunroofs, location, and air quality season. Open windows tended to occur less frequently when relative humidity was high, apparent temperature (a parameter incorporating wind chill and heat index) was below 50 degrees F, or the vehicle was relatively new. Although the effects of the identified parameters were relatively weak, they are statistically significant and should be considered by researchers attempting to model vehicle air exchange rates.
Visual awareness suppression by pre-stimulus brain stimulation; a neural effect.
Jacobs, Christianne; Goebel, Rainer; Sack, Alexander T
2012-01-02
Transcranial magnetic stimulation (TMS) has established the functional relevance of early visual cortex (EVC) for visual awareness with great temporal specificity non-invasively in conscious human volunteers. Many studies have found a suppressive effect when TMS was applied over EVC 80-100 ms after the onset of the visual stimulus (post-stimulus TMS time window). Yet, few studies found task performance to also suffer when TMS was applied even before visual stimulus presentation (pre-stimulus TMS time window). This pre-stimulus TMS effect, however, remains controversially debated and its origin had mainly been ascribed to TMS-induced eye-blinking artifacts. Here, we applied chronometric TMS over EVC during the execution of a visual discrimination task, covering an exhaustive range of visual stimulus-locked TMS time windows ranging from -80 pre-stimulus to 300 ms post-stimulus onset. Electrooculographical (EoG) recordings, sham TMS stimulation, and vertex TMS stimulation controlled for different types of non-neural TMS effects. Our findings clearly reveal TMS-induced masking effects for both pre- and post-stimulus time windows, and for both objective visual discrimination performance and subjective visibility. Importantly, all effects proved to be still present after post hoc removal of eye blink trials, suggesting a neural origin for the pre-stimulus TMS suppression effect on visual awareness. We speculate based on our data that TMS exerts its pre-stimulus effect via generation of a neural state which interacts with subsequent visual input. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Shuang-Long; Liang, Li-Ping; Liu, Hou-De; Xu, Ke-Jun
2018-03-01
Aiming at reducing the estimation error of the sensor frequency response function (FRF) estimated by the commonly used window-based spectral estimation method, the error models of interpolation and transient errors are derived in the form of non-parameter models. Accordingly, window effects on the errors are analyzed and reveal that the commonly used hanning window leads to smaller interpolation error which can also be significantly eliminated by the cubic spline interpolation method when estimating the FRF from the step response data, and window with smaller front-end value can restrain more transient error. Thus, a new dual-cosine window with its non-zero discrete Fourier transform bins at -3, -1, 0, 1, and 3 is constructed for FRF estimation. Compared with the hanning window, the new dual-cosine window has the equivalent interpolation error suppression capability and better transient error suppression capability when estimating the FRF from the step response; specifically, it reduces the asymptotic property of the transient error from O(N-2) of the hanning window method to O(N-4) while only increases the uncertainty slightly (about 0.4 dB). Then, one direction of a wind tunnel strain gauge balance which is a high order, small damping, and non-minimum phase system is employed as the example for verifying the new dual-cosine window-based spectral estimation method. The model simulation result shows that the new dual-cosine window method is better than the hanning window method for FRF estimation, and compared with the Gans method and LPM method, it has the advantages of simple computation, less time consumption, and short data requirement; the actual data calculation result of the balance FRF is consistent to the simulation result. Thus, the new dual-cosine window is effective and practical for FRF estimation.
Warren, Joshua; Fuentes, Montserrat; Herring, Amy; Langlois, Peter
2012-12-01
Exposure to high levels of air pollution during the pregnancy is associated with increased probability of preterm birth (PTB), a major cause of infant morbidity and mortality. New statistical methodology is required to specifically determine when a particular pollutant impacts the PTB outcome, to determine the role of different pollutants, and to characterize the spatial variability in these results. We develop a new Bayesian spatial model for PTB which identifies susceptible windows throughout the pregnancy jointly for multiple pollutants (PM(2.5) , ozone) while allowing these windows to vary continuously across space and time. We geo-code vital record birth data from Texas (2002-2004) and link them with standard pollution monitoring data and a newly introduced EPA product of calibrated air pollution model output. We apply the fully spatial model to a region of 13 counties in eastern Texas consisting of highly urban as well as rural areas. Our results indicate significant signal in the first two trimesters of pregnancy with different pollutants leading to different critical windows. Introducing the spatial aspect uncovers critical windows previously unidentified when space is ignored. A proper inference procedure is introduced to correctly analyze these windows. © 2012, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Cristescu, Constantin P.; Stan, Cristina; Scarlat, Eugen I.; Minea, Teofil; Cristescu, Cristina M.
2012-04-01
We present a novel method for the parameter oriented analysis of mutual correlation between independent time series or between equivalent structures such as ordered data sets. The proposed method is based on the sliding window technique, defines a new type of correlation measure and can be applied to time series from all domains of science and technology, experimental or simulated. A specific parameter that can characterize the time series is computed for each window and a cross correlation analysis is carried out on the set of values obtained for the time series under investigation. We apply this method to the study of some currency daily exchange rates from the point of view of the Hurst exponent and the intermittency parameter. Interesting correlation relationships are revealed and a tentative crisis prediction is presented.
77 FR 12588 - Long Fence & Home, LLLP; Analysis of Proposed Consent Order To Aid Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
... homeowners can realize by replacing their windows, including the home's geographic location, size, insulation... window of a specific composition in a building having a specific level of insulation in a specific region..., energy savings, energy [[Page 12590
Gabler, Christopher A; Siemann, Evan
2013-01-01
The rate of new exotic recruitment following removal of adult invaders (reinvasion pressure) influences restoration outcomes and costs but is highly variable and poorly understood. We hypothesize that broad variation in average reinvasion pressure of Triadica sebifera (Chinese tallow tree, a major invader) arises from differences among habitats in spatiotemporal availability of realized recruitment windows. These windows are periods of variable duration long enough to permit establishment given local environmental conditions. We tested this hypothesis via a greenhouse mesocosm experiment that quantified how the duration of favorable moisture conditions prior to flood or drought stress (window duration), competition and nutrient availability influenced Triadica success in high stress environments. Window duration influenced pre-stress seedling abundance and size, growth during stress and final abundance; it interacted with other factors to affect final biomass and germination during stress. Stress type and competition impacted final size and biomass, plus germination, mortality and changes in size during stress. Final abundance also depended on competition and the interaction of window duration, stress type and competition. Fertilization interacted with competition and stress to influence biomass and changes in height, respectively, but did not affect Triadica abundance. Overall, longer window durations promoted Triadica establishment, competition and drought (relative to flood) suppressed establishment, and fertilization had weak effects. Interactions among factors frequently produced different effects in specific contexts. Results support our 'outgrow the stress' hypothesis and show that temporal availability of abiotic windows and factors that influence growth rates govern Triadica recruitment in stressful environments. These findings suggest that native seed addition can effectively suppress superior competitors in stressful environments. We also describe environmental scenarios where specific management methods may be more or less effective. Our results enable better niche-based estimates of local reinvasion pressure, which can improve restoration efficacy and efficiency by informing site selection and optimal management.
Gabler, Christopher A.; Siemann, Evan
2013-01-01
The rate of new exotic recruitment following removal of adult invaders (reinvasion pressure) influences restoration outcomes and costs but is highly variable and poorly understood. We hypothesize that broad variation in average reinvasion pressure of Triadica sebifera (Chinese tallow tree, a major invader) arises from differences among habitats in spatiotemporal availability of realized recruitment windows. These windows are periods of variable duration long enough to permit establishment given local environmental conditions. We tested this hypothesis via a greenhouse mesocosm experiment that quantified how the duration of favorable moisture conditions prior to flood or drought stress (window duration), competition and nutrient availability influenced Triadica success in high stress environments. Window duration influenced pre-stress seedling abundance and size, growth during stress and final abundance; it interacted with other factors to affect final biomass and germination during stress. Stress type and competition impacted final size and biomass, plus germination, mortality and changes in size during stress. Final abundance also depended on competition and the interaction of window duration, stress type and competition. Fertilization interacted with competition and stress to influence biomass and changes in height, respectively, but did not affect Triadica abundance. Overall, longer window durations promoted Triadica establishment, competition and drought (relative to flood) suppressed establishment, and fertilization had weak effects. Interactions among factors frequently produced different effects in specific contexts. Results support our ‘outgrow the stress’ hypothesis and show that temporal availability of abiotic windows and factors that influence growth rates govern Triadica recruitment in stressful environments. These findings suggest that native seed addition can effectively suppress superior competitors in stressful environments. We also describe environmental scenarios where specific management methods may be more or less effective. Our results enable better niche-based estimates of local reinvasion pressure, which can improve restoration efficacy and efficiency by informing site selection and optimal management. PMID:23967212
Single-machine common/slack due window assignment problems with linear decreasing processing times
NASA Astrophysics Data System (ADS)
Zhang, Xingong; Lin, Win-Chin; Wu, Wen-Hsiang; Wu, Chin-Chia
2017-08-01
This paper studies linear non-increasing processing times and the common/slack due window assignment problems on a single machine, where the actual processing time of a job is a linear non-increasing function of its starting time. The aim is to minimize the sum of the earliness cost, tardiness cost, due window location and due window size. Some optimality results are discussed for the common/slack due window assignment problems and two O(n log n) time algorithms are presented to solve the two problems. Finally, two examples are provided to illustrate the correctness of the corresponding algorithms.
A window-based time series feature extraction method.
Katircioglu-Öztürk, Deniz; Güvenir, H Altay; Ravens, Ursula; Baykal, Nazife
2017-10-01
This study proposes a robust similarity score-based time series feature extraction method that is termed as Window-based Time series Feature ExtraCtion (WTC). Specifically, WTC generates domain-interpretable results and involves significantly low computational complexity thereby rendering itself useful for densely sampled and populated time series datasets. In this study, WTC is applied to a proprietary action potential (AP) time series dataset on human cardiomyocytes and three precordial leads from a publicly available electrocardiogram (ECG) dataset. This is followed by comparing WTC in terms of predictive accuracy and computational complexity with shapelet transform and fast shapelet transform (which constitutes an accelerated variant of the shapelet transform). The results indicate that WTC achieves a slightly higher classification performance with significantly lower execution time when compared to its shapelet-based alternatives. With respect to its interpretable features, WTC has a potential to enable medical experts to explore definitive common trends in novel datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Horton, Rachael Jane; Minniti, Antoinette; Mireylees, Stewart; McEntegart, Damian
2008-11-01
Non-compliance in clinical studies is a significant issue, but causes remain unclear. Utilizing the Elaboration Likelihood Model of persuasion, this study assessed the psychophysical peripheral cue 'Interactive Voice Response System (IVRS) call frequency' on compliance. 71 participants were randomized to once daily (OD), twice daily (BID) or three times daily (TID) call schedules over two weeks. Participants completed 30-item cognitive function tests at each call. Compliance was defined as proportion of expected calls within a narrow window (+/- 30 min around scheduled time), and within a relaxed window (-30 min to +4 h). Data were analyzed by ANOVA and pairwise comparisons adjusted by the Bonferroni correction. There was a relationship between call frequency and compliance. Bonferroni adjusted pairwise comparisons showed significantly higher compliance (p=0.03) for the BID (51.0%) than TID (30.3%) for the narrow window; for the extended window, compliance was higher (p=0.04) with OD (59.5%), than TID (38.4%). The IVRS psychophysical peripheral cue call frequency supported the ELM as a route to persuasion. The results also support OD strategy for optimal compliance. Models suggest specific indicators to enhance compliance with medication dosing and electronic patient diaries to improve health outcomes and data integrity respectively.
Code of Federal Regulations, 2010 CFR
2010-04-01
... under the HUD building product standard and certification program for fenestration products (windows and... fenestration products (windows and doors). (a) Applicable standards. (1) All windows and doors shall be... Windows and Glass Doors. (2) This standard has been approved by the Director of the Federal Register for...
Robotic Attention Processing And Its Application To Visual Guidance
NASA Astrophysics Data System (ADS)
Barth, Matthew; Inoue, Hirochika
1988-03-01
This paper describes a method of real-time visual attention processing for robots performing visual guidance. This robot attention processing is based on a novel vision processor, the multi-window vision system that was developed at the University of Tokyo. The multi-window vision system is unique in that it only processes visual information inside local area windows. These local area windows are quite flexible in their ability to move anywhere on the visual screen, change their size and shape, and alter their pixel sampling rate. By using these windows for specific attention tasks, it is possible to perform high speed attention processing. The primary attention skills of detecting motion, tracking an object, and interpreting an image are all performed at high speed on the multi-window vision system. A basic robotic attention scheme using the attention skills was developed. The attention skills involved detection and tracking of salient visual features. The tracking and motion information thus obtained was utilized in producing the response to the visual stimulus. The response of the attention scheme was quick enough to be applicable to the real-time vision processing tasks of playing a video 'pong' game, and later using an automobile driving simulator. By detecting the motion of a 'ball' on a video screen and then tracking the movement, the attention scheme was able to control a 'paddle' in order to keep the ball in play. The response was faster than that of a human's, allowing the attention scheme to play the video game at higher speeds. Further, in the application to the driving simulator, the attention scheme was able to control both direction and velocity of a simulated vehicle following a lead car. These two applications show the potential of local visual processing in its use for robotic attention processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draelos, Timothy J.; Ballard, Sanford; Young, Christopher J.
Given a set of observations within a specified time window, a fitness value is calculated at each grid node by summing station-specific conditional fitness values. Assuming each observation was generated by a refracted P wave, these values are proportional to the conditional probabilities that each observation was generated by a seismic event at the grid node. The node with highest fitness value is accepted as a hypothetical event location, subject to some minimal fitness value, and all arrivals within a longer time window consistent with that event are associated with it. During the association step, a variety of different phasesmore » are considered. In addition, once associated with an event, an arrival is removed from further consideration. While unassociated arrivals remain, the search for other events is repeated until none are identified.« less
Forensic Analysis of Windows Hosts Using UNIX-based Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cory Altheide
2004-07-19
Many forensic examiners are introduced to UNIX-based forensic utilities when faced with investigating a UNIX-like operating system for the first time. They will use these utilities for this very specific task, because in many cases these tools are the only ones for the given job. For example, at the time of this writing, given a FreeBSD 5.x file system, the author's only choice is to use The Coroner's Toolkit running on FreeBSD 5.x. However, many of the same tools examiners use for the occasional UNIX-like system investigation are extremely capable when a Windows system is the target. Indeed, the Linuxmore » operating system itself can prove to be an extremely useful forensics platform with very little use of specialized forensics utilities at all.« less
An efficient pseudomedian filter for tiling microrrays.
Royce, Thomas E; Carriero, Nicholas J; Gerstein, Mark B
2007-06-07
Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a O(n2logn) calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution. We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of n numbers to O(nlogn) from O(n2logn). For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space) to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple O(log n) inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets. Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that scale well with genomic feature density. This result not only speeds the current standard analyses, but also makes possible ones where many iterations of the filter may be required, such as might be required in a bootstrap or parameter estimation setting. Source code and executables are available at http://tiling.gersteinlab.org/pseudomedian/.
An efficient pseudomedian filter for tiling microrrays
Royce, Thomas E; Carriero, Nicholas J; Gerstein, Mark B
2007-01-01
Background Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a O(n2logn) calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution. Results We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of n numbers to O(nlogn) from O(n2logn). For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space) to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple O(log n) inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets. Conclusion Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that scale well with genomic feature density. This result not only speeds the current standard analyses, but also makes possible ones where many iterations of the filter may be required, such as might be required in a bootstrap or parameter estimation setting. Source code and executables are available at . PMID:17555595
Radiation attenuation by single-crystal diamond windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guthrie, M.; Pruteanu, C. G.; Donnelly, M. -E.
As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. This article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less
Radiation attenuation by single-crystal diamond windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guthrie, Malcolm; Pruteanu, Ciprian G.; Donnelly, Mary -Ellen
As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. Furthermore, this article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less
Radiation attenuation by single-crystal diamond windows
Guthrie, Malcolm; Pruteanu, Ciprian G.; Donnelly, Mary -Ellen; ...
2017-02-01
As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. Furthermore, this article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less
16 CFR 1201.40 - Interpretation concerning bathtub and shower doors and enclosures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... materials in a window that is located over a bathtub or within a shower stall and in the exterior wall of a...” contain no specific exemption for glazing materials in such windows. If read literally, the Standard could include glazing materials in an exterior wall window located above a bathtub because that window could be...
Colonius, Hans; Diederich, Adele
2011-07-01
The concept of a "time window of integration" holds that information from different sensory modalities must not be perceived too far apart in time in order to be integrated into a multisensory perceptual event. Empirical estimates of window width differ widely, however, ranging from 40 to 600 ms depending on context and experimental paradigm. Searching for theoretical derivation of window width, Colonius and Diederich (Front Integr Neurosci 2010) developed a decision-theoretic framework using a decision rule that is based on the prior probability of a common source, the likelihood of temporal disparities between the unimodal signals, and the payoff for making right or wrong decisions. Here, this framework is extended to the focused attention task where subjects are asked to respond to signals from a target modality only. Evoking the framework of the time-window-of-integration (TWIN) model, an explicit expression for optimal window width is obtained. The approach is probed on two published focused attention studies. The first is a saccadic reaction time study assessing the efficiency with which multisensory integration varies as a function of aging. Although the window widths for young and older adults differ by nearly 200 ms, presumably due to their different peripheral processing speeds, neither of them deviates significantly from the optimal values. In the second study, head saccadic reactions times to a perfectly aligned audiovisual stimulus pair had been shown to depend on the prior probability of spatial alignment. Intriguingly, they reflected the magnitude of the time-window widths predicted by our decision-theoretic framework, i.e., a larger time window is associated with a higher prior probability.
A novel configurable VLSI architecture design of window-based image processing method
NASA Astrophysics Data System (ADS)
Zhao, Hui; Sang, Hongshi; Shen, Xubang
2018-03-01
Most window-based image processing architecture can only achieve a certain kind of specific algorithms, such as 2D convolution, and therefore lack the flexibility and breadth of application. In addition, improper handling of the image boundary can cause loss of accuracy, or consume more logic resources. For the above problems, this paper proposes a new VLSI architecture of window-based image processing operations, which is configurable and based on consideration of the image boundary. An efficient technique is explored to manage the image borders by overlapping and flushing phases at the end of row and the end of frame, which does not produce new delay and reduce the overhead in real-time applications. Maximize the reuse of the on-chip memory data, in order to reduce the hardware complexity and external bandwidth requirements. To perform different scalar function and reduction function operations in pipeline, this can support a variety of applications of window-based image processing. Compared with the performance of other reported structures, the performance of the new structure has some similarities to some of the structures, but also superior to some other structures. Especially when compared with a systolic array processor CWP, this structure at the same frequency of approximately 12.9% of the speed increases. The proposed parallel VLSI architecture was implemented with SIMC 0.18-μm CMOS technology, and the maximum clock frequency, power consumption, and area are 125Mhz, 57mW, 104.8K Gates, respectively, furthermore the processing time is independent of the different window-based algorithms mapped to the structure
Bloomfield, Rachel C; Gillespie, Graeme R; Kerswell, Keven J; Butler, Kym L; Hemsworth, Paul H
2015-01-01
The window of the visitor viewing area adjacent to an animal platform in an orangutan enclosure was altered to produce three viewing treatments in a randomized controlled experiment. These treatments were window uncovered, left side of the window covered or right side of the window covered. Observations were conducted on the orangutans present on the platform, and on their location (left or right side), and orientation (towards or away from the window) while on the platform. The partial covering of the window had little effect on the proportion of time orangutans spent on the viewing platform, or on the direction they faced when on the platform. When the orangutans were facing towards the window, and the right side was uncovered, irrespective of whether the left side was covered, they spent about three quarters of the time on the right side, suggesting a preference for the right side of the platform. However, when the right side was covered and the left side uncovered, the animals facing towards the window spent only about a quarter of the time on the right side, that is, they spent more time on the uncovered side. The results suggest that the orangutans have a preference to position themselves to face the window of the visitor viewing area. © 2015 Wiley Periodicals, Inc.
DOT National Transportation Integrated Search
1997-07-01
This report provides estimates of the numbers of persons injured as a result of : hazards involving four specific motor vehicle components: radiators, batteries, : power windows, and power roofs. The injury estimates are based upon data from : the Co...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-01
... unclear how expanded monitoring, in the absence of specific experimental design, would empirically verify..., designed to minimize disturbance to harbor seals within the action area in consideration of timing... February (i.e., within the designated in-water work window designed to reduce impacts to fish species in...
Mars Reconnaissance Orbiter Uplink Analysis Tool
NASA Technical Reports Server (NTRS)
Khanampompan, Teerapat; Gladden, Roy; Fisher, Forest; Hwang, Pauline
2008-01-01
This software analyzes Mars Reconnaissance Orbiter (MRO) orbital geometry with respect to Mars Exploration Rover (MER) contact windows, and is the first tool of its kind designed specifically to support MRO-MER interface coordination. Prior to this automated tool, this analysis was done manually with Excel and the UNIX command line. In total, the process would take approximately 30 minutes for each analysis. The current automated analysis takes less than 30 seconds. This tool resides on the flight machine and uses a PHP interface that does the entire analysis of the input files and takes into account one-way light time from another input file. Input flies are copied over to the proper directories and are dynamically read into the tool s interface. The user can then choose the corresponding input files based on the time frame desired for analysis. After submission of the Web form, the tool merges the two files into a single, time-ordered listing of events for both spacecraft. The times are converted to the same reference time (Earth Transmit Time) by reading in a light time file and performing the calculations necessary to shift the time formats. The program also has the ability to vary the size of the keep-out window on the main page of the analysis tool by inputting a custom time for padding each MRO event time. The parameters on the form are read in and passed to the second page for analysis. Everything is fully coded in PHP and can be accessed by anyone with access to the machine via Web page. This uplink tool will continue to be used for the duration of the MER mission's needs for X-band uplinks. Future missions also can use the tools to check overflight times as well as potential site observation times. Adaptation of the input files to the proper format, and the window keep-out times, would allow for other analyses. Any operations task that uses the idea of keep-out windows will have a use for this program.
Foo, Lee Kien; McGree, James; Duffull, Stephen
2012-01-01
Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models. Copyright © 2012 John Wiley & Sons, Ltd.
Highly Insulating Windows Volume Purchase Program Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-04-01
This report documents the development, execution outcomes and lessons learned of the Highly Insulating Windows Volume Purchase (WVP) Program carried out over a three-year period from 2009 through 2012. The primary goals of the program were met: 1) reduce the incremental cost of highly insulating windows compared to ENERGY STAR windows; and 2) raise the public and potential buyers’ awareness of highly insulating windows and their benefits. A key outcome of the program is that the 2013 ENERGY STAR Most Efficient criteria for primary residential windows were adopted from the technical specifications set forth in the WVP program.
Optimization of simultaneous tritium–radiocarbon internal gas proportional counting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonicalzi, R. M.; Aalseth, C. E.; Day, A. R.
Specific environmental applications can benefit from dual tritium and radiocarbon measurements in a single compound. Assuming typical environmental levels, it is often the low tritium activity relative to the higher radiocarbon activity that limits the dual measurement. In this paper, we explore the parameter space for a combined tritium and radiocarbon measurement using a methane sample mixed with an argon fill gas in low-background proportional counters of a specific design. We present an optimized methane percentage, detector fill pressure, and analysis energy windows to maximize measurement sensitivity while minimizing count time. The final optimized method uses a 9-atm fill ofmore » P35 (35% methane, 65% argon), and a tritium analysis window from 1.5 to 10.3 keV, which stops short of the tritium beta decay endpoint energy of 18.6 keV. This method optimizes tritium counting efficiency while minimizing radiocarbon beta decay interference.« less
Draelos, Timothy J.; Ballard, Sanford; Young, Christopher J.; ...
2015-10-01
Given a set of observations within a specified time window, a fitness value is calculated at each grid node by summing station-specific conditional fitness values. Assuming each observation was generated by a refracted P wave, these values are proportional to the conditional probabilities that each observation was generated by a seismic event at the grid node. The node with highest fitness value is accepted as a hypothetical event location, subject to some minimal fitness value, and all arrivals within a longer time window consistent with that event are associated with it. During the association step, a variety of different phasesmore » are considered. In addition, once associated with an event, an arrival is removed from further consideration. While unassociated arrivals remain, the search for other events is repeated until none are identified.« less
Zhang, Zhengyi; Zhang, Gaoyan; Zhang, Yuanyuan; Liu, Hong; Xu, Junhai; Liu, Baolin
2017-12-01
This study aimed to investigate the functional connectivity in the brain during the cross-modal integration of polyphonic characters in Chinese audio-visual sentences. The visual sentences were all semantically reasonable and the audible pronunciations of the polyphonic characters in corresponding sentences contexts varied in four conditions. To measure the functional connectivity, correlation, coherence and phase synchronization index (PSI) were used, and then multivariate pattern analysis was performed to detect the consensus functional connectivity patterns. These analyses were confined in the time windows of three event-related potential components of P200, N400 and late positive shift (LPS) to investigate the dynamic changes of the connectivity patterns at different cognitive stages. We found that when differentiating the polyphonic characters with abnormal pronunciations from that with the appreciate ones in audio-visual sentences, significant classification results were obtained based on the coherence in the time window of the P200 component, the correlation in the time window of the N400 component and the coherence and PSI in the time window the LPS component. Moreover, the spatial distributions in these time windows were also different, with the recruitment of frontal sites in the time window of the P200 component, the frontal-central-parietal regions in the time window of the N400 component and the central-parietal sites in the time window of the LPS component. These findings demonstrate that the functional interaction mechanisms are different at different stages of audio-visual integration of polyphonic characters.
A multimodal logistics service network design with time windows and environmental concerns
Zhang, Dezhi; He, Runzhong; Wang, Zhongwei
2017-01-01
The design of a multimodal logistics service network with customer service time windows and environmental costs is an important and challenging issue. Accordingly, this work established a model to minimize the total cost of multimodal logistics service network design with time windows and environmental concerns. The proposed model incorporates CO2 emission costs to determine the optimal transportation mode combinations and investment selections for transfer nodes, which consider transport cost, transport time, carbon emission, and logistics service time window constraints. Furthermore, genetic and heuristic algorithms are proposed to set up the abovementioned optimal model. A numerical example is provided to validate the model and the abovementioned two algorithms. Then, comparisons of the performance of the two algorithms are provided. Finally, this work investigates the effects of the logistics service time windows and CO2 emission taxes on the optimal solution. Several important management insights are obtained. PMID:28934272
A multimodal logistics service network design with time windows and environmental concerns.
Zhang, Dezhi; He, Runzhong; Li, Shuangyan; Wang, Zhongwei
2017-01-01
The design of a multimodal logistics service network with customer service time windows and environmental costs is an important and challenging issue. Accordingly, this work established a model to minimize the total cost of multimodal logistics service network design with time windows and environmental concerns. The proposed model incorporates CO2 emission costs to determine the optimal transportation mode combinations and investment selections for transfer nodes, which consider transport cost, transport time, carbon emission, and logistics service time window constraints. Furthermore, genetic and heuristic algorithms are proposed to set up the abovementioned optimal model. A numerical example is provided to validate the model and the abovementioned two algorithms. Then, comparisons of the performance of the two algorithms are provided. Finally, this work investigates the effects of the logistics service time windows and CO2 emission taxes on the optimal solution. Several important management insights are obtained.
Iterated local search algorithm for solving the orienteering problem with soft time windows.
Aghezzaf, Brahim; Fahim, Hassan El
2016-01-01
In this paper we study the orienteering problem with time windows (OPTW) and the impact of relaxing the time windows on the profit collected by the vehicle. The way of relaxing time windows adopted in the orienteering problem with soft time windows (OPSTW) that we study in this research is a late service relaxation that allows linearly penalized late services to customers. We solve this problem heuristically by considering a hybrid iterated local search. The results of the computational study show that the proposed approach is able to achieve promising solutions on the OPTW test instances available in the literature, one new best solution is found. On the newly generated test instances of the OPSTW, the results show that the profit collected by the OPSTW is better than the profit collected by the OPTW.
A note on windowing for the waveform relaxation
NASA Technical Reports Server (NTRS)
Zhang, Hong
1994-01-01
The technique of windowing has been often used in the implementation of the waveform relaxations for solving ODE's or time dependent PDE's. Its efficiency depends upon problem stiffness and operator splitting. Using model problems, the estimates for window length and convergence rate are derived. The electiveness of windowing is then investigated for non-stiff and stiff cases respectively. lt concludes that for the former, windowing is highly recommended when a large discrepancy exists between the convergence rate on a time interval and the ones on its subintervals. For the latter, windowing does not provide any computational advantage if machine features are disregarded. The discussion is supported by experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Geun Young; Steemers, Koen
2010-07-15
This paper investigates occupant behaviour of window-use in night-time naturally ventilated offices on the basis of a pilot field study, conducted during the summers of 2006 and 2007 in Cambridge, UK, and then demonstrates the effects of employing night-time ventilation on indoor thermal conditions using predictive models of occupant window-use. A longitudinal field study shows that occupants make good use of night-time natural ventilation strategies when provided with openings that allow secure ventilation, and that there is a noticeable time of day effect in window-use patterns (i.e. increased probability of action on arrival and departure). We develop logistic models ofmore » window-use for night-time naturally ventilated offices, which are subsequently applied to a behaviour algorithm, including Markov chains and Monte Carlo methods. The simulations using the behaviour algorithm demonstrate a good agreement with the observational data of window-use, and reveal how building design and occupant behaviour collectively affect the thermal performance of offices. They illustrate that the provision of secure ventilation leads to more frequent use of the window, and thus contributes significantly to the achievement of a comfortable indoor environment during the daytime occupied period. For example, the maximum temperature for a night-time ventilated office is found to be 3 C below the predicted value for a daytime-only ventilated office. (author)« less
NASA Astrophysics Data System (ADS)
Kang, Jae-sik; Oh, Eun-Joo; Bae, Min-Jung; Song, Doo-Sam
2017-12-01
Given that the Korean government is implementing what has been termed the energy standards and labelling program for windows, window companies will be required to assign window ratings based on the experimental results of their product. Because this has added to the cost and time required for laboratory tests by window companies, the simulation system for the thermal performance of windows has been prepared to compensate for time and cost burdens. In Korea, a simulator is usually used to calculate the thermal performance of a window through WINDOW/THERM, complying with ISO 15099. For a single window, the simulation results are similar to experimental results. A double window is also calculated using the same method, but the calculation results for this type of window are unreliable. ISO 15099 should not recommend the calculation of the thermal properties of an air cavity between window sashes in a double window. This causes a difference between simulation and experimental results pertaining to the thermal performance of a double window. In this paper, the thermal properties of air cavities between window sashes in a double window are analyzed through computational fluid dynamics (CFD) simulations with the results compared to calculation results certified by ISO 15099. The surface temperature of the air cavity analyzed by CFD is compared to the experimental temperatures. These results show that an appropriate calculation method for an air cavity between window sashes in a double window should be established for reliable thermal performance results for a double window.
Process Flow Features as a Host-Based Event Knowledge Representation
2012-06-14
an executing process during a window of time called a process flow. Process flows are calculated from key process data structures extracted from...for Cluster 98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.9. Davies- Boldin Dunn Index Sliding Window 5 on Windows 7...82 4.10. Davies- Boldin Dunn Index Sliding Window 10 on Windows 7 . 83 4.11. Davies- Boldin Dunn Index Sliding Window 20 on Windows 7 . 83 ix List of
Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)
Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.
2002-01-01
Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Luo, Victor; Khanampornpan, Teerapat; Boehmer, Rudy A.; Kim, Rachel Y.
2011-01-01
This software graphically displays all pertinent information from a Predicted Events File (PEF) using the Java Swing framework, which allows for multi-platform support. The PEF is hard to weed through when looking for specific information and it is a desire for the MRO (Mars Reconn aissance Orbiter) Mission Planning & Sequencing Team (MPST) to have a different way to visualize the data. This tool will provide the team with a visual way of reviewing and error-checking the sequence product. The front end of the tool contains much of the aesthetically appealing material for viewing. The time stamp is displayed in the top left corner, and highlighted details are displayed in the bottom left corner. The time bar stretches along the top of the window, and the rest of the space is allotted for blocks and step functions. A preferences window is used to control the layout of the sections along with the ability to choose color and size of the blocks. Double-clicking on a block will show information contained within the block. Zooming into a certain level will graphically display that information as an overlay on the block itself. Other functions include using hotkeys to navigate, an option to jump to a specific time, enabling a vertical line, and double-clicking to zoom in/out. The back end involves a configuration file that allows a more experienced user to pre-define the structure of a block, a single event, or a step function. The individual will have to determine what information is important within each block and what actually defines the beginning and end of a block. This gives the user much more flexibility in terms of what the tool is searching for. In addition to the configurability, all the settings in the preferences window are saved in the configuration file as well
Prism Window for Optical Alignment
NASA Technical Reports Server (NTRS)
Tang, Hong
2008-01-01
A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.
Simulation of a Real-Time Brain Computer Interface for Detecting a Self-Paced Hitting Task.
Hammad, Sofyan H; Kamavuako, Ernest N; Farina, Dario; Jensen, Winnie
2016-12-01
An invasive brain-computer interface (BCI) is a promising neurorehabilitation device for severely disabled patients. Although some systems have been shown to work well in restricted laboratory settings, their utility must be tested in less controlled, real-time environments. Our objective was to investigate whether a specific motor task could be reliably detected from multiunit intracortical signals from freely moving animals in a simulated, real-time setting. Intracortical signals were first obtained from electrodes placed in the primary motor cortex of four rats that were trained to hit a retractable paddle (defined as a "Hit"). In the simulated real-time setting, the signal-to-noise-ratio was first increased by wavelet denoising. Action potentials were detected, and features were extracted (spike count, mean absolute values, entropy, and combination of these features) within pre-defined time windows (200 ms, 300 ms, and 400 ms) to classify the occurrence of a "Hit." We found higher detection accuracy of a "Hit" (73.1%, 73.4%, and 67.9% for the three window sizes, respectively) when the decision was made based on a combination of features rather than on a single feature. However, the duration of the window length was not statistically significant (p = 0.5). Our results showed the feasibility of detecting a motor task in real time in a less restricted environment compared to environments commonly applied within invasive BCI research, and they showed the feasibility of using information extracted from multiunit recordings, thereby avoiding the time-consuming and complex task of extracting and sorting single units. © 2016 International Neuromodulation Society.
Perceptual learning shapes multisensory causal inference via two distinct mechanisms.
McGovern, David P; Roudaia, Eugenie; Newell, Fiona N; Roach, Neil W
2016-04-19
To accurately represent the environment, our brains must integrate sensory signals from a common source while segregating those from independent sources. A reasonable strategy for performing this task is to restrict integration to cues that coincide in space and time. However, because multisensory signals are subject to differential transmission and processing delays, the brain must retain a degree of tolerance for temporal discrepancies. Recent research suggests that the width of this 'temporal binding window' can be reduced through perceptual learning, however, little is known about the mechanisms underlying these experience-dependent effects. Here, in separate experiments, we measure the temporal and spatial binding windows of human participants before and after training on an audiovisual temporal discrimination task. We show that training leads to two distinct effects on multisensory integration in the form of (i) a specific narrowing of the temporal binding window that does not transfer to spatial binding and (ii) a general reduction in the magnitude of crossmodal interactions across all spatiotemporal disparities. These effects arise naturally from a Bayesian model of causal inference in which learning improves the precision of audiovisual timing estimation, whilst concomitantly decreasing the prior expectation that stimuli emanate from a common source.
Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Wilson, Ander; Coull, Brent A; Pendo, Mathew P; Baccarelli, Andrea; Kloog, Itai; Schwartz, Joel; Wright, Robert O; Taveras, Elsie M; Wright, Rosalind J
2017-10-01
Evolving animal studies and limited epidemiological data show that prenatal air pollution exposure is associated with childhood obesity. Timing of exposure and child sex may play an important role in these associations. We applied an innovative method to examine sex-specific sensitive prenatal windows of exposure to PM 2.5 on anthropometric measures in preschool-aged children. Analyses included 239 children born ≥ 37 weeks gestation in an ethnically-mixed lower-income urban birth cohort. Prenatal daily PM 2.5 exposure was estimated using a validated satellite-based spatio-temporal model. Body mass index z-score (BMI-z), fat mass, % body fat, subscapular and triceps skinfold thickness, waist and hip circumferences and waist-to-hip ratio (WHR) were assessed at age 4.0 ± 0.7 years. Using Bayesian distributed lag interaction models (BDLIMs), we examined sex differences in sensitive windows of weekly averaged PM 2.5 levels on these measures, adjusting for child age, maternal age, education, race/ethnicity, and pre-pregnancy BMI. Mothers were primarily Hispanic (55%) or Black (26%), had ≤ 12 years of education (66%) and never smoked (80%). Increased PM 2.5 exposure 8-17 and 15-22 weeks gestation was significantly associated with increased BMI z-scores and fat mass in boys, but not in girls. Higher PM 2.5 exposure 10-29 weeks gestation was significantly associated with increased WHR in girls, but not in boys. Prenatal PM 2.5 was not significantly associated with other measures of body composition. Estimated cumulative effects across pregnancy, accounting for sensitive windows and within-window effects, were 0.21 (95%CI = 0.01-0.37) for BMI-z and 0.36 (95%CI = 0.12-0.68) for fat mass (kg) in boys, and 0.02 (95%CI = 0.01-0.03) for WHR in girls, all per µg/m 3 increase in PM 2.5 . Increased prenatal PM 2.5 exposure was more strongly associated with indices of increased whole body size in boys and with an indicator of body shape in girls. Methods to better characterize vulnerable windows may provide insight into underlying mechanisms contributing to sex-specific associations. Copyright © 2017 Elsevier Inc. All rights reserved.
Is Latency to Test Deadline a Predictor of Student Test Performance?
ERIC Educational Resources Information Center
Landrum, R. Eric; Gurung, Regan A. R.
2013-01-01
When students are given a period or window of time to take an exam, is taking an exam earlier in the window (high latency to deadline) related to test scores? In Study 1, students (n = 236) were given windows of time to take online each of 13 quizzes and 4 exams. In Study 2, students (n = 251) similarly took 4 exams online within a test window. In…
Baczkowski, Blazej M; Johnstone, Tom; Walter, Henrik; Erk, Susanne; Veer, Ilya M
2017-06-01
We evaluated whether sliding-window analysis can reveal functionally relevant brain network dynamics during a well-established fear conditioning paradigm. To this end, we tested if fMRI fluctuations in amygdala functional connectivity (FC) can be related to task-induced changes in physiological arousal and vigilance, as reflected in the skin conductance level (SCL). Thirty-two healthy individuals participated in the study. For the sliding-window analysis we used windows that were shifted by one volume at a time. Amygdala FC was calculated for each of these windows. Simultaneously acquired SCL time series were averaged over time frames that corresponded to the sliding-window FC analysis, which were subsequently regressed against the whole-brain seed-based amygdala sliding-window FC using the GLM. Surrogate time series were generated to test whether connectivity dynamics could have occurred by chance. In addition, results were contrasted against static amygdala FC and sliding-window FC of the primary visual cortex, which was chosen as a control seed, while a physio-physiological interaction (PPI) was performed as cross-validation. During periods of increased SCL, the left amygdala became more strongly coupled with the bilateral insula and anterior cingulate cortex, core areas of the salience network. The sliding-window analysis yielded a connectivity pattern that was unlikely to have occurred by chance, was spatially distinct from static amygdala FC and from sliding-window FC of the primary visual cortex, but was highly comparable to that of the PPI analysis. We conclude that sliding-window analysis can reveal functionally relevant fluctuations in connectivity in the context of an externally cued task. Copyright © 2017 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
... replacement rear windows manufactured for model year 2006 through 2009 Honda Civic two-door coupe passenger... approximately 206 replacement rear windows (National Auto Glass Specifications (NAGS) part number FB22692GTY...: Pilkington explains that the noncompliance for the 205 replacement rear windows exists due to Pilkington's...
High performance sapphire windows
NASA Technical Reports Server (NTRS)
Bates, Stephen C.; Liou, Larry
1993-01-01
High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.
High performance sapphire windows
NASA Astrophysics Data System (ADS)
Bates, Stephen C.; Liou, Larry
1993-02-01
High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.
Transparency of 2μ m window of Titan's atmosphere
NASA Astrophysics Data System (ADS)
Rannou, P.; Seignovert, B.; Le Mouélic, S.; Maltagliati, L.; Rey, M.; Sotin, C.
2018-02-01
Titan's atmosphere is optically thick and hides the surface and the lower layers from the view at almost all wavelengths. However, because gaseous absorptions are spectrally selective, some narrow spectral intervals are relatively transparent and allow to probe the surface. To use these intervals (called windows) a good knowledge of atmospheric absorption is necessary. Once gas spectroscopic linelists are well established, the absorption inside windows depends on the way the far wings of the methane absorption lines are cut-off. We know that the intensity in all the windows can be explained with the same cut-off parameters, except for the window at 2 μm. This discrepancy is generally treated with a workaround which consists in using a different cut-off description for this specific window. This window is relatively transparent and surface may have specific spectral signatures that could be detected. Thus, a good knowledge of atmosphere opacities is essential and our scope is to better understand what causes the difference between the 2 μm window and the other windows. In this work, we used scattered light at the limb and transmissions in occultation observed with VIMS (Visual Infrared Mapping Spectrometer) onboard Cassini, around the 2 μm window. Data shows an absorption feature that participates to the shape of this window. Our atmospheric model fits well the VIMS data at 2 μm with the same cut-off than for the other windows, provided an additional absorption is introduced in the middle of the window around ≃ 2.065 μm. It explains well the discrepency between the cut-off used at 2 μm, and we show that a gas with a fairly constant mixing ratio, possibly ethane, may be the cause of this absorption. Finally, we studied the impact of this absorption on the retrieval of the surface reflectivity and found that it is significant.
Geiss, Karla; Meyer, Martin
2013-09-01
Standardized mortality ratios and standardized incidence ratios are widely used in cohort studies to compare mortality or incidence in a study population to that in the general population on a age-time-specific basis, but their computation is not included in standard statistical software packages. Here we present a user-friendly Microsoft Windows program for computing standardized mortality ratios and standardized incidence ratios based on calculation of exact person-years at risk stratified by sex, age and calendar time. The program offers flexible import of different file formats for input data and easy handling of general population reference rate tables, such as mortality or incidence tables exported from cancer registry databases. The application of the program is illustrated with two examples using empirical data from the Bavarian Cancer Registry. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Zhang, Jinshui; Yuan, Zhoumiqi; Shuai, Guanyuan; Pan, Yaozhong; Zhu, Xiufang
2017-04-26
This paper developed an approach, the window-based validation set for support vector data description (WVS-SVDD), to determine optimal parameters for support vector data description (SVDD) model to map specific land cover by integrating training and window-based validation sets. Compared to the conventional approach where the validation set included target and outlier pixels selected visually and randomly, the validation set derived from WVS-SVDD constructed a tightened hypersphere because of the compact constraint by the outlier pixels which were located neighboring to the target class in the spectral feature space. The overall accuracies for wheat and bare land achieved were as high as 89.25% and 83.65%, respectively. However, target class was underestimated because the validation set covers only a small fraction of the heterogeneous spectra of the target class. The different window sizes were then tested to acquire more wheat pixels for validation set. The results showed that classification accuracy increased with the increasing window size and the overall accuracies were higher than 88% at all window size scales. Moreover, WVS-SVDD showed much less sensitivity to the untrained classes than the multi-class support vector machine (SVM) method. Therefore, the developed method showed its merits using the optimal parameters, tradeoff coefficient ( C ) and kernel width ( s ), in mapping homogeneous specific land cover.
Zheng, Xiangrong; Zhang, Weishe; Lu, Chan; Norbäck, Dan; Deng, Qihong
2018-05-01
It is well known that exposure to thermal stress during pregnancy can lead to an increased incidence of premature births. However, there is little known regarding window(s) of susceptibility during the course of a pregnancy. We attempted to identify possible windows of susceptibility in a cohort study of 3604 children in Changsha with a hot-summer and cold winter climatic characteristics. We examined the association between PTB and ambient temperature during different timing windows of pregnancy: conception month, three trimesters, birth month and entire pregnancy. We found a U-shaped relation between the prevalence of PTB and mean ambient temperature during pregnancy. Both high and low temperatures were associated with PTB risk, adjusted OR (95% CI) respectively 2.57 (1.98-3.33) and 2.39 (1.93-2.95) for 0.5 °C increase in high temperature range (>18.2°C) and 0.5°C decrease in low temperature range (< 18.2°C). Specifically, PTB was significantly associated with ambient temperature and extreme heat/cold days during conception month and the third trimester. Sensitivity analysis indicated that female fetus were more susceptible to the risk of ambient temperature. Our study indicates that the risk of preterm birth due to high or low temperature may exist early during the conception month. Copyright © 2018 Elsevier Ltd. All rights reserved.
Letter-sound processing deficits in children with developmental dyslexia: An ERP study.
Moll, Kristina; Hasko, Sandra; Groth, Katharina; Bartling, Jürgen; Schulte-Körne, Gerd
2016-04-01
The time course during letter-sound processing was investigated in children with developmental dyslexia (DD) and typically developing (TD) children using electroencephalography. Thirty-eight children with DD and 25 TD children participated in a visual-auditory oddball paradigm. Event-related potentials (ERPs) elicited by standard and deviant stimuli in an early (100-190 ms) and late (560-750 ms) time window were analysed. In the early time window, ERPs elicited by the deviant stimulus were delayed and less left lateralized over fronto-temporal electrodes for children with DD compared to TD children. In the late time window, children with DD showed higher amplitudes extending more over right frontal electrodes. Longer latencies in the early time window and stronger right hemispheric activation in the late time window were associated with slower reading and naming speed. Additionally, stronger right hemispheric activation in the late time window correlated with poorer phonological awareness skills. Deficits in early stages of letter-sound processing influence later more explicit cognitive processes during letter-sound processing. Identifying the neurophysiological correlates of letter-sound processing and their relation to reading related skills provides insight into the degree of automaticity during letter-sound processing beyond behavioural measures of letter-sound-knowledge. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Casagrande, Mirelle A; Haubrich, Josué; Pedraza, Lizeth K; Popik, Bruno; Quillfeldt, Jorge A; de Oliveira Alvares, Lucas
2018-04-01
Memories are not instantly created in the brain, requiring a gradual stabilization process called consolidation to be stored and persist in a long-lasting manner. However, little is known whether this time-dependent process is dynamic or static, and the factors that might modulate it. Here, we hypothesized that the time-course of consolidation could be affected by specific learning parameters, changing the time window where memory is susceptible to retroactive interference. In the rodent contextual fear conditioning paradigm, we compared weak and strong training protocols and found that in the latter memory is susceptible to post-training hippocampal inactivation for a shorter period of time. The accelerated consolidation process triggered by the strong training was mediated by glucocorticoids, since this effect was blocked by pre-training administration of metyrapone. In addition, we found that pre-exposure to the training context also accelerates fear memory consolidation. Hence, our results demonstrate that the time window in which memory is susceptible to post-training interferences varies depending on fear conditioning intensity and contextual familiarity. We propose that the time-course of memory consolidation is dynamic, being directly affected by attributes of the learning experiences. Copyright © 2018 Elsevier Inc. All rights reserved.
Armfield, Brooke A.; Cohn, Martin J.
2015-01-01
Congenital penile anomalies (CPAs) are among the most common human birth defects. Reports of CPAs, which include hypospadias, chordee, micropenis, and ambiguous genitalia, have risen sharply in recent decades, but the causes of these malformations are rarely identified. Both genetic anomalies and environmental factors, such as antiandrogenic and estrogenic endocrine disrupting chemicals (EDCs), are suspected to cause CPAs; however, little is known about the temporal window(s) of sensitivity to EDCs, or the tissue-specific roles and downstream targets of the androgen receptor (AR) in external genitalia. Here, we show that the full spectrum of CPAs can be produced by disrupting AR at different developmental stages and in specific cell types in the mouse genital tubercle. Inactivation of AR during a narrow window of prenatal development results in hypospadias and chordee, whereas earlier disruptions cause ambiguous genitalia and later disruptions cause micropenis. The neonatal phase of penile development is controlled by the balance of AR to estrogen receptor α (ERα) activity; either inhibition of androgen or augmentation of estrogen signaling can induce micropenis. AR and ERα have opposite effects on cell division, apoptosis, and regulation of Hedgehog, fibroblast growth factor, bone morphogenetic protein, and Wnt signaling in the genital tubercle. We identify Indian hedgehog (Ihh) as a novel downstream target of AR in external genitalia and show that conditional deletion of Ihh inhibits penile masculinization. These studies reveal previously unidentified cellular and molecular mechanisms by which antiandrogenic and estrogenic signals induce penile malformations and demonstrate that the timing of endocrine disruption can determine the type of CPA. PMID:26598695
DUBROVSKY, J. G.; GAMBETTA, G. A.; HERNÁNDEZ-BARRERA, A.; SHISHKOVA, S.; GONZÁLEZ, I.
2006-01-01
• Background and Aims The basic regulatory mechanisms that control lateral root (LR) initiation are still poorly understood. An attempt is made to characterize the pattern and timing of LR initiation, to define a developmental window in which LR initiation takes place and to address the question of whether LR initiation is predictable. • Methods The spatial patterning of LRs and LR primordia (LRPs) on cleared root preparations were characterized. New measures of LR and LRP densities (number of LRs and/or LRPs divided by the length of the root portions where they are present) were introduced and illustrate the shortcomings of the more customarily used measure through a comparative analysis of the mutant aux1-7. The enhancer trap line J0121 was used to monitor LR initiation in time-lapse experiments and a plasmolysis-based method was developed to determine the number of pericycle cells between successive LRPs. • Key Results LRP initiation occurred strictly acropetally and no de novo initiation events were found between already developed LRs or LRPs. However, LRPs did not become LRs in a similar pattern. The longitudinal spacing of lateral organs was variable and the distance between lateral organs was proportional to the number of cells and the time between initiations of successive LRPs. There was a strong tendency towards alternation in LR initiation between the two pericycle cell files adjacent to the protoxylem poles. LR density increased with time due to the emergence of slowly developing LRPs and appears to be unique for individual Arabidopsis accessions. • Conclusions. In Arabidopsis there is a narrow developmental window for LR initiation, and no specific cell-count or distance-measuring mechanisms have been found that determine the site of successive initiation events. Nevertheless, the branching density and lateral organ density (density of LRs and LRPs) are accession-specific, and based on the latter density the average distance between successive LRs can be predicted. PMID:16390845
Double-Windows-Based Motion Recognition in Multi-Floor Buildings Assisted by a Built-In Barometer.
Liu, Maolin; Li, Huaiyu; Wang, Yuan; Li, Fei; Chen, Xiuwan
2018-04-01
Accelerometers, gyroscopes and magnetometers in smartphones are often used to recognize human motions. Since it is difficult to distinguish between vertical motions and horizontal motions in the data provided by these built-in sensors, the vertical motion recognition accuracy is relatively low. The emergence of a built-in barometer in smartphones improves the accuracy of motion recognition in the vertical direction. However, there is a lack of quantitative analysis and modelling of the barometer signals, which is the basis of barometer's application to motion recognition, and a problem of imbalanced data also exists. This work focuses on using the barometers inside smartphones for vertical motion recognition in multi-floor buildings through modelling and feature extraction of pressure signals. A novel double-windows pressure feature extraction method, which adopts two sliding time windows of different length, is proposed to balance recognition accuracy and response time. Then, a random forest classifier correlation rule is further designed to weaken the impact of imbalanced data on recognition accuracy. The results demonstrate that the recognition accuracy can reach 95.05% when pressure features and the improved random forest classifier are adopted. Specifically, the recognition accuracy of the stair and elevator motions is significantly improved with enhanced response time. The proposed approach proves effective and accurate, providing a robust strategy for increasing accuracy of vertical motions.
Villani, Daniela; Iannello, Paola; Cipresso, Pietro; Antonietti, Alessandro
2017-01-01
Empirical research on well-being has rapidly increased in recent years. One of the most dominant issue concerns the degree of cross-situational consistency and stability of well-being across time, and this is of particular relevance to women life. The aim of this study was to verify the stability of women well-being in short windows of time, specifically across menstrual cycle phases. A within-subject design with 25 normally cycling women (range: 19-26 years) was carried out. The multidimensional assessment of well-being included the administration of psychological well-being, self-esteem, and emotional self-efficacy beliefs questionnaires during both high and low-fertility phases. The results showed the stability of the level of individual well-being across menstrual cycle phases. Albeit preliminary, results indicated that women representations of their well-being do not change according to menstrual cycle. Rather, an effective organization and integration of the entire self-system appears sustained by the stability of well-being measured through a multi-componential assessment over short periods of time.
Milanzi, Edith B; Brunekreef, Bert; Koppelman, Gerard H; Wijga, Alet H; van Rossem, Lenie; Vonk, Judith M; Smit, Henriëtte A; Gehring, Ulrike
2017-02-23
Secondhand smoke (SHS) exposure is a modifiable risk factor associated with childhood asthma. Associations with adolescent asthma and the relevance of the timing and patterns of exposure are unclear. Knowledge of critical windows of exposure is important for targeted interventions. We used data until age 17 from 1454 children of the Dutch population-based PIAMA birth cohort. Residential SHS exposure was assessed through parental questionnaires completed at ages 3 months, 1-8 (yearly), 11, 14, and 17 years. Lifetime exposure was determined as; a) time window-specific exposure (prenatal, infancy, preschool, primary school, and secondary school); b) lifetime cumulative exposure; c) longitudinal exposure patterns using latent class growth modeling (LCGM). Generalized estimation equations and logistic regression were used to analyze associations between exposure and asthma at ages 4 to 17 years, adjusting for potential confounders. With all three methods, we consistently found no association between SHS exposure and asthma at ages 4 to 17 years e.g. adjusted overall odds ratio (95% confidence interval) 0.67 (0.41-1.12), 1.00 (0.66-1.51) and 0.67 (0.41-1.11) for prenatal maternal active smoking, infancy, and preschool school time window exposures, respectively. We assessed lifetime SHS exposure using different methods. Different timing and patterns of SHS exposure were not associated with an increased risk of asthma in childhood and adolescence in our study. More longitudinal studies could investigate effects of lifetime SHS exposure on asthma in adolescence and later life.
Song Perception by Professional Singers and Actors: An MEG Study
Rosslau, Ken; Herholz, Sibylle C.; Knief, Arne; Ortmann, Magdalene; Deuster, Dirk; Schmidt, Claus-Michael; Zehnhoff-Dinnesen, Antoinetteam; Pantev, Christo; Dobel, Christian
2016-01-01
The cortical correlates of speech and music perception are essentially overlapping, and the specific effects of different types of training on these networks remain unknown. We compared two groups of vocally trained professionals for music and speech, singers and actors, using recited and sung rhyme sequences from German art songs with semantic and/ or prosodic/melodic violations (i.e. violations of pitch) of the last word, in order to measure the evoked activation in a magnetoencephalographic (MEG) experiment. MEG data confirmed the existence of intertwined networks for the sung and spoken modality in an early time window after word violation. In essence for this early response, higher activity was measured after melodic/prosodic than semantic violations in predominantly right temporal areas. For singers as well as for actors, modality-specific effects were evident in predominantly left-temporal lateralized activity after semantic expectancy violations in the spoken modality, and right-dominant temporal activity in response to melodic violations in the sung modality. As an indication of a special group-dependent audiation process, higher neuronal activity for singers appeared in a late time window in right temporal and left parietal areas, both after the recited and the sung sequences. PMID:26863437
A test of multiple correlation temporal window characteristic of non-Markov processes
NASA Astrophysics Data System (ADS)
Arecchi, F. T.; Farini, A.; Megna, N.
2016-03-01
We introduce a sensitive test of memory effects in successive events. The test consists of a combination K of binary correlations at successive times. K decays monotonically from K = 1 for uncorrelated events as a Markov process. For a monotonic memory fading, K<1 always. Here we report evidence of a K>1 temporal window in cognitive tasks consisting of the visual identification of the front face of the Necker cube after a previous presentation of the same. We speculate that memory effects provide a temporal window with K>1 and this experiment could be a possible first step towards a better comprehension of this phenomenon. The K>1 behaviour is maximal at an inter-measurement time τ around 2s with inter-subject differences. The K>1 persists over a time window of 1s around τ; outside this window the K<1 behaviour is recovered. The universal occurrence of a K>1 window in pairs of successive perceptions suggests that, at variance with single visual stimuli eliciting a suitable response, a pair of stimuli shortly separated in time displays mutual correlations.
A technical assessment of the market for wood windows in Japanese post and beam construction
J. Roos; P. Boardman; I. Eastin
2004-01-01
This research was conducted to develop a better understanding of the problems and opportunities confronting U.S. wood window manufacturers in the post and beam segment of the Japanese residential construction industry. The specific objectives of this research were to (1) provide a description of the Japanese market for wood windows; (2) survey Japanese builders...
Neuronal synchronization and selective color processing in the human brain.
Müller, Matthias M; Keil, Andreas
2004-04-01
In the present study, subjects selectively attended to the color of checkerboards in a feature-based attention paradigm. Induced gamma band responses (GBRs), the induced alpha band, and the event-related potential (ERP) were analyzed to uncover neuronal dynamics during selective feature processing. Replicating previous ERP findings, the selection negativity (SN) with a latency of about 160 msec was extracted. Furthermore, and similarly to previous EEG studies, a gamma band peak in a time window between 290 and 380 msec was found. This peak had its major energy in the 55- to 70-Hz range and was significantly larger for the attended color. Contrary to previous human induced gamma band studies, a much earlier 40- to 50-Hz peak in a time window between 160 and 220 msec after stimulus onset and, thus, concurrently to the SN was prominent with significantly more energy for attended as opposed to unattended color. The induced alpha band (9.8-11.7 Hz), on the other hand, exhibited a marked suppression for attended color in a time window between 450 and 600 msec after stimulus onset. A comparison of the time course of the 40- to 50-Hz and 55- to 70-Hz induced GBR, the induced alpha band, and the ERP revealed temporal coincidences for changes in the morphology of these brain responses. Despite these similarities in the time domain, the cortical source configuration was found to discriminate between induced GBRs and the SN. Our results suggest that large-scale synchronous high-frequency brain activity as measured in the human GBR play a specific role in attentive processing of stimulus features.
75 FR 11841 - Repowering Assistance Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... application window. SUMMARY: RBS is announcing a new application window to submit applications for the...-time application window for remaining FY 2009 funds. Paperwork Reduction Act In accordance with the... allocate all of the FY 2009 authorized funds. Therefore, the Agency is opening a new application window to...
Exclusive queueing model including the choice of service windows
NASA Astrophysics Data System (ADS)
Tanaka, Masahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro
2018-01-01
In a queueing system involving multiple service windows, choice behavior is a significant concern. This paper incorporates the choice of service windows into a queueing model with a floor represented by discrete cells. We contrived a logit-based choice algorithm for agents considering the numbers of agents and the distances to all service windows. Simulations were conducted with various parameters of agent choice preference for these two elements and for different floor configurations, including the floor length and the number of service windows. We investigated the model from the viewpoint of transit times and entrance block rates. The influences of the parameters on these factors were surveyed in detail and we determined that there are optimum floor lengths that minimize the transit times. In addition, we observed that the transit times were determined almost entirely by the entrance block rates. The results of the presented model are relevant to understanding queueing systems including the choice of service windows and can be employed to optimize facility design and floor management.
Correlates of avian building strikes at a glass façade museum surrounded by avian habitat
NASA Astrophysics Data System (ADS)
Kahle, L.; Flannery, M.; Dumbacher, J. P.
2013-12-01
Bird window collisions are the second largest anthropogenic cause of bird deaths in the world. Effective mitigation requires an understanding of which birds are most likely to strike, when, and why. Here, we examine five years of avian window strike data from the California Academy of Sciences - a relatively new museum with significant glass façade situated in Golden Gate Park, San Francisco. We examine correlates of window-killed birds, including age, sex, season, and migratory or sedentary tendencies of the birds. We also examine correlates of window kills such as presence of habitat surrounding the building and overall window area. We found that males are almost three times more likely than females to mortally strike windows, and immature birds are three times more abundant than adults in our window kill dataset. Among seasons, strikes were not notably different in spring, summer, and fall; however they were notably reduced in winter. There was no statistical effect of building orientation (north, south, east, or west), and the presence of avian habitat directly adjacent to windows had a minor effect. We also report ongoing studies examining various efforts to reduce window kill (primarily external decals and large electronic window blinds.) We hope that improving our understanding of the causes of the window strikes will help us strategically reduce window strikes.
Data in support of energy performance of double-glazed windows.
Shakouri, Mahmoud; Banihashemi, Saeed
2016-06-01
This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy ("Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network" (Shakouri Hassanabadi and Banihashemi Namini, 2012) [1], "Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates" (Banihashemi et al., 2015) [2]). A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.
Asha, Stephen Edward; Cooke, Andrew
2015-09-01
Suspected body packers may be brought to emergency departments (EDs) close to international airports for abdominal computed tomography (CT) scanning. Senior emergency clinicians may be asked to interpret these CT scans. Missing concealed drug packages have important clinical and forensic implications. The accuracy of emergency clinician interpretation of abdominal CT scans for concealed drugs is not known. Limited evidence suggests that accuracy for identification of concealed packages can be increased by viewing CT images on "lung window" settings. To determine the accuracy of senior emergency clinicians in interpreting abdominal CT scans for concealed drugs, and to determine if this accuracy was improved by viewing scans on both abdominal and lung window settings. Emergency clinicians blinded to all patient identifiers and the radiology report interpreted CT scans of suspected body packers using standard abdominal window settings and then with the addition of lung window settings. The reference standard was the radiologist's report. Fifty-five emergency clinicians reported 235 CT scans. The sensitivity, specificity, and accuracy of interpretation using abdominal windows was 89.9% (95% confidence interval [CI] 83.0-94.7), 81.9% (95% CI 73.7-88.4), and 86.0% (95% CI 81.5-90.4), respectively, and with both window settings was 94.1% (95% CI 88.3-97.6), 76.7% (95% CI 68.0-84.1), 85.5% (95% CI 81.0-90.0), respectively. Diagnostic accuracy was similar regardless of the clinician's experience. Interrater reliability was moderate (kappa 0.46). The accuracy of interpretation of abdominal CT scans performed for the purpose of detecting concealed drug packages by emergency clinicians is not high enough to safely discharge these patients from the ED. The use of lung windows improved sensitivity, but at the expense of specificity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
The impact of water loading on postglacial decay times in Hudson Bay
NASA Astrophysics Data System (ADS)
Han, Holly Kyeore; Gomez, Natalya
2018-05-01
Ongoing glacial isostatic adjustment (GIA) due to surface loading (ice and water) variations during the last glacial cycle has been contributing to sea-level changes globally throughout the Holocene, especially in regions like Canada that were heavily glaciated during the Last Glacial Maximum (LGM). The spatial and temporal distribution of GIA, as manifested in relative sea-level (RSL) change, are sensitive to the ice history and the rheological structure of the solid Earth, both of which are uncertain. It has been shown that RSL curves near the center of previously glaciated regions with no ongoing surface loading follow an exponential-like form, with the postglacial decay times associated with that form having a weak sensitivity to the details of the ice loading history. Postglacial decay time estimates thus provide a powerful datum for constraining the Earth's viscous structure and improving GIA predictions. We explore spatial patterns of postglacial decay time predictions in Hudson Bay by decomposing numerically modeled RSL changes into contributions from water and ice loading effects, and computing their relative impact on the decay times. We demonstrate that ice loading can contribute a strong geographic trend on the decay time estimates if the time window used to compute decay times includes periods that are temporally close to (i.e. contemporaneous with, or soon after) periods of active loading. This variability can be avoided by choosing a suitable starting point for the decay time window. However, more surprisingly, we show that across any adopted time window, water loading effects associated with inundation into, and postglacial flux out of, Hudson Bay and James Bay will impart significant geographic variability onto decay time estimates. We emphasize this issue by considering both maps of predicted decay times across the region and site-specific estimates, and we conclude that variability in observed decay times (whether based on existing or future data sets) may reflect this water loading signal.
Wang, Bing; Baby, Varghese; Tong, Wilson; Xu, Lei; Friedman, Michelle; Runser, Robert; Glesk, Ivan; Prucnal, Paul
2002-01-14
A novel optical switch based on cascading two terahertz optical asymmetric demultiplexers (TOAD) is presented. By utilizing the sharp edge of the asymmetric TOAD switching window profile, two TOAD switching windows are overlapped to produce a narrower aggregate switching window, not limited by the pulse propagation time in the SOA of the TOAD. Simulations of the cascaded TOAD switching window show relatively constant window amplitude for different window sizes. Experimental results on cascading two TOADs, each with a switching window of 8ps, but with the SOA on opposite sides of the fiber loop, show a minimum switching window of 2.7ps.
A customizable commercial miniaturized 320×256 indium gallium arsenide shortwave infrared camera
NASA Astrophysics Data System (ADS)
Huang, Shih-Che; O'Grady, Matthew; Groppe, Joseph V.; Ettenberg, Martin H.; Brubaker, Robert M.
2004-10-01
The design and performance of a commercial short-wave-infrared (SWIR) InGaAs microcamera engine is presented. The 0.9-to-1.7 micron SWIR imaging system consists of a room-temperature-TEC-stabilized, 320x256 (25 μm pitch) InGaAs focal plane array (FPA) and a high-performance, highly customizable image-processing set of electronics. The detectivity, D*, of the system is greater than 1013 cm-√Hz/W at 1.55 μm, and this sensitivity may be adjusted in real-time over 100 dB. It features snapshot-mode integration with a minimum exposure time of 130 μs. The digital video processor provides real time pixel-to-pixel, 2-point dark-current subtraction and non-uniformity compensation along with defective-pixel substitution. Other features include automatic gain control (AGC), gamma correction, 7 preset configurations, adjustable exposure time, external triggering, and windowing. The windowing feature is highly flexible; the region of interest (ROI) may be placed anywhere on the imager and can be varied at will. Windowing allows for high-speed readout enabling such applications as target acquisition and tracking; for example, a 32x32 ROI window may be read out at over 3500 frames per second (fps). Output video is provided as EIA170-compatible analog, or as 12-bit CameraLink-compatible digital. All the above features are accomplished in a small volume < 28 cm3, weight < 70 g, and with low power consumption < 1.3 W at room temperature using this new microcamera engine. Video processing is based on a field-programmable gate array (FPGA) platform with a soft-embedded processor that allows for ease of integration/addition of customer-specific algorithms, processes, or design requirements. The camera was developed with the high-performance, space-restricted, power-conscious application in mind, such as robotic or UAV deployment.
On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2011-01-01
This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.
2000 survey of window manufacturers on the subject of switchable glass
NASA Astrophysics Data System (ADS)
LaPointe, Michael R.; Sottile, Gregory M.
2001-11-01
The results of a 2000 survey of United States window manufacturers on the subject of switchable glass are discussed. The areas covered in this paper include awareness of the overall product category of switchable glass and various types of switchable glass, attitudes toward specific features of switchable glass, expectations for manufacturer production of such products, expectations for market penetration rates among end-product consumers, levels of price sensitivity among window manufacturers regarding switchable glass, and expectations for the pace of new product development within the window industry over the next five years.
Development of a spectro-electrochemical cell for soft X-ray photon-in photon-out spectroscopy
NASA Astrophysics Data System (ADS)
Ishihara, Tomoko; Tokushima, Takashi; Horikawa, Yuka; Kato, Masaru; Yagi, Ichizo
2017-10-01
We developed a spectro-electrochemical cell for X-ray absorption and X-ray emission spectroscopy, which are element-specific methods to study local electronic structures in the soft X-ray region. In the usual electrochemical measurement setup, the electrode is placed in solution, and the surface/interface region of the electrode is not normally accessible by soft X-rays that have low penetration depth in liquids. To realize soft X-ray observation of electrochemical reactions, a 15-nm-thick Pt layer was deposited on a 150-nm-thick film window with an adhesive 3-nm-thick Ti layer for use as both the working electrode and the separator window between vacuum and a sample liquid under atmospheric pressure. The designed three-electrode electrochemical cell consists of a Pt film on a SiC window, a platinized Pt wire, and a commercial Ag|AgCl electrode as the working, counter, and reference electrodes, respectively. The functionality of the cell was tested by cyclic voltammetry and X-ray absorption and emission spectroscopy. As a demonstration, the electroplating of Pb on the Pt/SiC membrane window was measured by X-ray absorption and real-time monitoring of fluorescence intensity at the O 1s excitation.
Dye laser amplifier including an improved window configuration for its dye beam
O'Neil, R.W.; Davin, J.M.
1992-12-01
A dye laser amplifier in which a continuously replenished supply of dye is excited with a first light beam in order to amplify the intensity of a second different light beam passing therethrough is disclosed herein. This amplifier includes a cell though which a continuous stream of the dye is caused to pass, and means for directing the first beam into the cell while the second beam is directed into and through the same cell. There is also disclosed herein a specific improvement to this amplifier which resides in the use of a pair of particularly configured windows through which the second beam passes along fixed paths as the second beam enters and exits the dye cell. Each of these windows has a relatively thick main section which is substantially larger in dimensions transverse to its beam path than the cross section of the second beam itself, whereby to add structural integrity to the overall window. At the same time, the latter includes a second section which is disposed entirely within the confines of the main section and through which the second beam is intended to pass in its entirety. This second section is made substantially thinner than the main section in order to reduce optical distortion as the second beam passes therethrough. 4 figs.
Dye laser amplifier including an improved window configuration for its dye beam
O'Neil, Richard W.; Davin, James M.
1992-01-01
A dye laser amplifier in which a continuously replenished supply of dye is excited with a first light beam in order to amplify the intensity of a second different light beam passing therethrough is disclosed herein. This amplifier includes a cell though which a continuous stream of the dye is caused to pass, and means for directing the first beam into the cell while the second beam is directed into and through the same cell. There is also disclosed herein a specific improvement to this amplifier which resides in the use of a pair of particularly configured windows through which the second beam passes along fixed paths as the second beam enters and exits the dye cell. Each of these windows has a relatively thick main section which is substantially larger in dimensions transverse to its beam path than the cross section of the second beam itself, whereby to add structural integrity to the overall window. At the same time, the latter includes a second section which is disposed entirely within the confines of the main section and through which the second beam is intended to pass in its entirety. This second section is made substantially thinner than the main section in order to reduce optical distortion as the second beam passes therethrough.
High-Reliability Waveguide Vacuum/Pressure Window
NASA Technical Reports Server (NTRS)
Britcliffe, Michael J.; Hanson, Theodore R.; Long, Ezra M.; Montanez, Steven
2013-01-01
The NASA Deep Space Network (DSN) uses commercial waveguide windows on the output waveguide of Ka-band (32 GHz) low-noise amplifiers. Mechanical failure of these windows resulted in an unacceptable loss in tracking time. To address this issue, a new Ka-band WR-28 waveguide window has been designed, fabricated, and tested. The window uses a slab of low-loss, low-dielectric constant foam that is bonded into a 1/2-wave-thick waveguide/flange. The foam is a commercially available, rigid, closed-cell polymethacrylimide. It has excellent electrical properties with a dielectric constant of 1.04, and a loss tangent of 0.01. It is relatively strong with a tensile strength of 1 MPa. The material is virtually impermeable to helium. The finished window exhibits a leak rate of less than 3x10(exp -3)cu cm/s with helium. The material is also chemically resistant and can be cleaned with acetone. The window is constructed by fabricating a window body by brazing a short length of WR-28 copper waveguide into a standard rectangular flange, and machining the resulting part to a thickness of 4.6 mm. The foam is machined to a rectangular shape with a dimension of 7.06x3.53 mm. The foam is bonded into the body with a two-part epoxy. After curing, the excess glue and foam are knife-trimmed by hand. The finished window has a loss of less than 0.08 dB (2%) and a return loss of greater than 25 dB at 32 GHz. This meets the requirements for the DSN application. The window is usable for most applications over the entire 26-to-40-GHz waveguide band. The window return loss can be tuned to a required frequency by var y in g the thickness of the window slightly. Most standard waveguide windows use a thin membrane of material bonded into a recess in a waveguide flange, or sandwiched between two flanges with a polymer seal. Designs using the recessed window are prone to mechanical failure over time due to constraints on the dimensions of the recess that allow the bond to fail. Designs using the sandwich method are often permeable to helium, which prohibits the use of helium leak detection. At the time of this reporting, 40 windows have been produced. Twelve are in operation with a combined operating time of over 30,000 hours without a failure.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
... maintenance window for the Gulf individual fishing quota (IFQ) programs, and removing obsolete codified text..., etc.), extends the IFQ maintenance window an additional 8 hours to allow for more time to conduct end... maintenance window. All electronic IFQ transactions must be completed by December 31 at 6 p.m. eastern time...
Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas
2016-02-10
Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide.
Self spectrum window method in wigner-ville distribution.
Liu, Zhongguo; Liu, Changchun; Liu, Boqiang; Lv, Yangsheng; Lei, Yinsheng; Yu, Mengsun
2005-01-01
Wigner-Ville distribution (WVD) is an important type of time-frequency analysis in biomedical signal processing. The cross-term interference in WVD has a disadvantageous influence on its application. In this research, the Self Spectrum Window (SSW) method was put forward to suppress the cross-term interference, based on the fact that the cross-term and auto-WVD- terms in integral kernel function are orthogonal. With the Self Spectrum Window (SSW) algorithm, a real auto-WVD function was used as a template to cross-correlate with the integral kernel function, and the Short Time Fourier Transform (STFT) spectrum of the signal was used as window function to process the WVD in time-frequency plane. The SSW method was confirmed by computer simulation with good analysis results. Satisfactory time- frequency distribution was obtained.
Fully automatic time-window selection using machine learning for global adjoint tomography
NASA Astrophysics Data System (ADS)
Chen, Y.; Hill, J.; Lei, W.; Lefebvre, M. P.; Bozdag, E.; Komatitsch, D.; Tromp, J.
2017-12-01
Selecting time windows from seismograms such that the synthetic measurements (from simulations) and measured observations are sufficiently close is indispensable in a global adjoint tomography framework. The increasing amount of seismic data collected everyday around the world demands "intelligent" algorithms for seismic window selection. While the traditional FLEXWIN algorithm can be "automatic" to some extent, it still requires both human input and human knowledge or experience, and thus is not deemed to be fully automatic. The goal of intelligent window selection is to automatically select windows based on a learnt engine that is built upon a huge number of existing windows generated through the adjoint tomography project. We have formulated the automatic window selection problem as a classification problem. All possible misfit calculation windows are classified as either usable or unusable. Given a large number of windows with a known selection mode (select or not select), we train a neural network to predict the selection mode of an arbitrary input window. Currently, the five features we extract from the windows are its cross-correlation value, cross-correlation time lag, amplitude ratio between observed and synthetic data, window length, and minimum STA/LTA value. More features can be included in the future. We use these features to characterize each window for training a multilayer perceptron neural network (MPNN). Training the MPNN is equivalent to solve a non-linear optimization problem. We use backward propagation to derive the gradient of the loss function with respect to the weighting matrices and bias vectors and use the mini-batch stochastic gradient method to iteratively optimize the MPNN. Numerical tests show that with a careful selection of the training data and a sufficient amount of training data, we are able to train a robust neural network that is capable of detecting the waveforms in an arbitrary earthquake data with negligible detection error compared to existing selection methods (e.g. FLEXWIN). We will introduce in detail the mathematical formulation of the window-selection-oriented MPNN and show very encouraging results when applying the new algorithm to real earthquake data.
Prediction of CpG-island function: CpG clustering vs. sliding-window methods
2010-01-01
Background Unmethylated stretches of CpG dinucleotides (CpG islands) are an outstanding property of mammal genomes. Conventionally, these regions are detected by sliding window approaches using %G + C, CpG observed/expected ratio and length thresholds as main parameters. Recently, clustering methods directly detect clusters of CpG dinucleotides as a statistical property of the genome sequence. Results We compare sliding-window to clustering (i.e. CpGcluster) predictions by applying new ways to detect putative functionality of CpG islands. Analyzing the co-localization with several genomic regions as a function of window size vs. statistical significance (p-value), CpGcluster shows a higher overlap with promoter regions and highly conserved elements, at the same time showing less overlap with Alu retrotransposons. The major difference in the prediction was found for short islands (CpG islets), often exclusively predicted by CpGcluster. Many of these islets seem to be functional, as they are unmethylated, highly conserved and/or located within the promoter region. Finally, we show that window-based islands can spuriously overlap several, differentially regulated promoters as well as different methylation domains, which might indicate a wrong merge of several CpG islands into a single, very long island. The shorter CpGcluster islands seem to be much more specific when concerning the overlap with alternative transcription start sites or the detection of homogenous methylation domains. Conclusions The main difference between sliding-window approaches and clustering methods is the length of the predicted islands. Short islands, often differentially methylated, are almost exclusively predicted by CpGcluster. This suggests that CpGcluster may be the algorithm of choice to explore the function of these short, but putatively functional CpG islands. PMID:20500903
Measured Rattle Threshold of Residential House Windows
NASA Technical Reports Server (NTRS)
Sizov, Natalia; Schultz, Troy; Hobbs, Christopher; Klos, Jacob
2008-01-01
Window rattle is a common indoor noise effect in houses exposed to low frequency noise from such sources as railroads, blast noise and sonic boom. Human perception of rattle can be negative that is a motivating factor of the current research effort to study sonic boom induced window rattle. A rattle study has been conducted on residential houses containing windows of different construction at a variety of geographic locations within the United States. Windows in these houses were excited by a portable, high-powered loudspeaker and enclosure specifically designed to be mounted on the house exterior to cover an entire window. Window vibration was measured with accelerometers placed on different window components. Reference microphones were also placed inside the house and inside of the loudspeaker box. Swept sine excitation was used to identify the vibration threshold at which the response of the structure becomes non-linear and begins to rattle. Initial results from this study are presented and discussed. Future efforts will continue to explore the rattle occurrence in windows of residential houses exposed to sonic booms.
The state of the Java universe
Gosling, James
2018-05-22
Speaker Bio: James Gosling received a B.Sc. in computer science from the University of Calgary, Canada in 1977. He received a Ph.D. in computer science from Carnegie-Mellon University in 1983. The title of his thesis was The Algebraic Manipulation of Constraints. He has built satellite data acquisition systems, a multiprocessor version of UNIX®, several compilers, mail systems, and window managers. He has also built a WYSIWYG text editor, a constraint-based drawing editor, and a text editor called Emacs, for UNIX systems. At Sun his early activity was as lead engineer of the NeWS window system. He did the original design of the Java programming language and implemented its original compiler and virtual machine. He has recently been a contributor to the Real-Time Specification for Java.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosling, James
Speaker Bio: James Gosling received a B.Sc. in computer science from the University of Calgary, Canada in 1977. He received a Ph.D. in computer science from Carnegie-Mellon University in 1983. The title of his thesis was The Algebraic Manipulation of Constraints. He has built satellite data acquisition systems, a multiprocessor version of UNIX®, several compilers, mail systems, and window managers. He has also built a WYSIWYG text editor, a constraint-based drawing editor, and a text editor called Emacs, for UNIX systems. At Sun his early activity was as lead engineer of the NeWS window system. He did the original designmore » of the Java programming language and implemented its original compiler and virtual machine. He has recently been a contributor to the Real-Time Specification for Java.« less
Zhang, Mingjing; Wen, Ming; Zhang, Zhi-Min; Lu, Hongmei; Liang, Yizeng; Zhan, Dejian
2015-03-01
Retention time shift is one of the most challenging problems during the preprocessing of massive chromatographic datasets. Here, an improved version of the moving window fast Fourier transform cross-correlation algorithm is presented to perform nonlinear and robust alignment of chromatograms by analyzing the shifts matrix generated by moving window procedure. The shifts matrix in retention time can be estimated by fast Fourier transform cross-correlation with a moving window procedure. The refined shift of each scan point can be obtained by calculating the mode of corresponding column of the shifts matrix. This version is simple, but more effective and robust than the previously published moving window fast Fourier transform cross-correlation method. It can handle nonlinear retention time shift robustly if proper window size has been selected. The window size is the only one parameter needed to adjust and optimize. The properties of the proposed method are investigated by comparison with the previous moving window fast Fourier transform cross-correlation and recursive alignment by fast Fourier transform using chromatographic datasets. The pattern recognition results of a gas chromatography mass spectrometry dataset of metabolic syndrome can be improved significantly after preprocessing by this method. Furthermore, the proposed method is available as an open source package at https://github.com/zmzhang/MWFFT2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Free-breathing 3D Cardiac MRI Using Iterative Image-Based Respiratory Motion Correction
Moghari, Mehdi H.; Roujol, Sébastien; Chan, Raymond H.; Hong, Susie N.; Bello, Natalie; Henningsson, Markus; Ngo, Long H.; Goddu, Beth; Goepfert, Lois; Kissinger, Kraig V.; Manning, Warren J.; Nezafat, Reza
2012-01-01
Respiratory motion compensation using diaphragmatic navigator (NAV) gating with a 5 mm gating window is conventionally used for free-breathing cardiac MRI. Due to the narrow gating window, scan efficiency is low resulting in long scan times, especially for patients with irregular breathing patterns. In this work, a new retrospective motion compensation algorithm is presented to reduce the scan time for free-breathing cardiac MRI that increasing the gating window to 15 mm without compromising image quality. The proposed algorithm iteratively corrects for respiratory-induced cardiac motion by optimizing the sharpness of the heart. To evaluate this technique, two coronary MRI datasets with 1.3 mm3 resolution were acquired from 11 healthy subjects (7 females, 25±9 years); one using a NAV with a 5 mm gating window acquired in 12.0±2.0 minutes and one with a 15 mm gating window acquired in 7.1±1.0 minutes. The images acquired with a 15 mm gating window were corrected using the proposed algorithm and compared to the uncorrected images acquired with the 5 mm and 15 mm gating windows. The image quality score, sharpness, and length of the three major coronary arteries were equivalent between the corrected images and the images acquired with a 5 mm gating window (p-value>0.05), while the scan time was reduced by a factor of 1.7. PMID:23132549
Improvement of the user interface of multimedia applications by automatic display layout
NASA Astrophysics Data System (ADS)
Lueders, Peter; Ernst, Rolf
1995-03-01
Multimedia research has mainly focussed on real-time data capturing and display combined with compression, storage and transmission of these data. However, there is another problem considering real-time selecting and arranging a possibly large amount of data from multiple media on the computer screen together with textual and graphical data of regular software. This problem has already been known from complex software systems, such as CASE and hypertest, and will even be aggravated in multimedia systems. The aim of our work is to alleviate the user from the burden of continuously selecting, placing and sizing windows and their contents, but without introducing solutions limited to only few applications. We present an experimental system which controls the computer screen contents and layouts, directed by a user and/or tool provided information filter and prioritization. To be application independent, the screen layout is based on general layout optimization algorithms adapted from the VLSI layout which are controlled by application specific objective functions. In this paper, we discuss the problems of a comprehensible screen layout including the stability of optical information in time, the information filtering, the layout algorithms and the adaptation of the objective function to include a specific application. We give some examples of different standard applications with layout problems ranging from hierarchical graph layout to window layout. The results show that the automatic tool independent display layout will be possible in a real time interactive environment.
State-of-the-art software for window energy-efficiency rating and labeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arasteh, D.; Finlayson, E.; Huang, J.
1998-07-01
Measuring the thermal performance of windows in typical residential buildings is an expensive proposition. Not only is laboratory testing expensive, but each window manufacturer typically offers hundreds of individual products, each of which has different thermal performance properties. With over a thousand window manufacturers nationally, a testing-based rating system would be prohibitively expensive to the industry and to consumers. Beginning in the early 1990s, simulation software began to be used as part of a national program for rating window U-values. The rating program has since been expanded to include Solar Hear Gain Coefficients and is now being extended to annualmore » energy performance. This paper describes four software packages available to the public from Lawrence Berkeley National Laboratory (LBNL). These software packages are used to evaluate window thermal performance: RESFEN (for evaluating annual energy costs), WINDOW (for calculating a product`s thermal performance properties), THERM (a preprocessor for WINDOW that determines two-dimensional heat-transfer effects), and Optics (a preprocessor for WINDOW`s glass database). Software not only offers a less expensive means than testing to evaluate window performance, it can also be used during the design process to help manufacturers produce windows that will meet target specifications. In addition, software can show small improvements in window performance that might not be detected in actual testing because of large uncertainties in test procedures.« less
Kim, Jung Hyup; Rothrock, Ling; Laberge, Jason
2014-05-01
This paper provides a case study of Signal Detection Theory (SDT) as applied to a continuous monitoring dual-task environment. Specifically, SDT was used to evaluate the independent contributions of sensitivity and bias to different qualitative gauges used in process control. To assess detection performance in monitoring the gauges, we developed a Time Window-based Human-In-The-Loop (TWHITL) simulation bed. Through this test bed, we were able to generate a display similar to those monitored by console operators in oil and gas refinery plants. By using SDT and TWHITL, we evaluated the sensitivity, operator bias, and response time of flow, level, pressure, and temperature gauge shapes developed by Abnormal Situation Management(®) (ASM(®)) Consortium (www.asmconsortium.org). Our findings suggest that display density influences the effectiveness of participants in detecting abnormal shapes. Furthermore, results suggest that some shapes elicit better detection performance than others. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Tutorial Guide: Computer-Aided Structural Modeling (CASM). Version 5.00
1994-04-01
2-3 SITE-SPECIFIC DATA DIALOG WINDOW ................. 2-4 SAVING PROJECT DATA ....................... 2-7 PRINTING PROJECT CRITERIA DATA...you to the main CASM screen without saving changes. REGIONAL DATA DIALOG WINDOW The Regonal• Dtadlalg windtow contim ms0•twrmofogoik hronimdon.The...Information so that It will be Included In your hardcopy output. 3. Select OK to save your Regional Data entries. The Regional Data dalog window will disappear
Bordel, Sergio
2018-04-13
In order to choose optimal personalized anticancer treatments, transcriptomic data should be analyzed within the frame of biological networks. The best known human biological network (in terms of the interactions between its different components) is metabolism. Cancer cells have been known to have specific metabolic features for a long time and currently there is a growing interest in characterizing new cancer specific metabolic hallmarks. In this article it is presented a method to find personalized therapeutic windows using RNA-seq data and Genome Scale Metabolic Models. This method is implemented in the python library, pyTARG. Our predictions showed that the most anticancer selective (affecting 27 out of 34 considered cancer cell lines and only 1 out of 6 healthy mesenchymal stem cell lines) single metabolic reactions are those involved in cholesterol biosynthesis. Excluding cholesterol biosynthesis, all the considered cell lines can be selectively affected by targeting different combinations (from 1 to 5 reactions) of only 18 metabolic reactions, which suggests that a small subset of drugs or siRNAs combined in patient specific manners could be at the core of metabolism based personalized treatments.
Dong, Jie; Wang, Dawei; Ma, Zhenshen; Deng, Guodong; Wang, Lanhua; Zhang, Jiandong
2017-01-01
The aim of the study was evaluate the 3.0 T magnetic resonance (MR) perfusion imaging scanning time window following contrast injection for differentiating benign and malignant breast lesions and to determine the optimum scanning time window for increased scanner usage efficiency and reduced diagnostic adverse risk factors. A total of 52 women with breast abnormalities were selected for conventional MR imaging and T1 dynamic-enhanced imaging. Quantitative parameters [volume transfer constant (Ktrans), rate constant (Kep) and extravascular extracellular volume fraction (Ve)] were calculated at phases 10, 20, 30, 40 and 50, which represented time windows at 5, 10, 15, 20 and 25 min, respectively, following injection of contrast agent. The association of the parameters at different phases with benign and malignant tumor diagnosis was analyzed. MR perfusion imaging was verified as an effective modality in the diagnosis of breast malignancies and the best scanning time window was identified: i) Values of Ktrans and Kep at all phases were statistically significant in differentiating benign and malignant tumors (P<0.05), while the value of Ve had statistical significance only at stage 10, but not at any other stages (P>0.05); ii) values of Ve in benign tumors increased with phase number, but achieved no obvious changes at different phases in malignant tumors; iii) the optimum scanning time window of breast perfusion imaging with 3.0 T MR was between phases 10 and 30 (i.e., between 5 and 15 min after contrast agent injection). The variation trend of Ve values at different phases may serve as a diagnostic reference for differentiating benign and malignant breast abnormalities. The most efficient scanning time window was indicated to be 5 min after contrast injection, based on the observation that the Ve value only had statistical significance in diagnosis at stage 10. However, the optimal scanning time window is from 5 to 15 min following the injection of contrast agent, since that the variation trend of Ve is able to serve as a diagnostic reference. PMID:28450944
Dong, Jie; Wang, Dawei; Ma, Zhenshen; Deng, Guodong; Wang, Lanhua; Zhang, Jiandong
2017-03-01
The aim of the study was evaluate the 3.0 T magnetic resonance (MR) perfusion imaging scanning time window following contrast injection for differentiating benign and malignant breast lesions and to determine the optimum scanning time window for increased scanner usage efficiency and reduced diagnostic adverse risk factors. A total of 52 women with breast abnormalities were selected for conventional MR imaging and T1 dynamic-enhanced imaging. Quantitative parameters [volume transfer constant (K trans ), rate constant (K ep ) and extravascular extracellular volume fraction (V e )] were calculated at phases 10, 20, 30, 40 and 50, which represented time windows at 5, 10, 15, 20 and 25 min, respectively, following injection of contrast agent. The association of the parameters at different phases with benign and malignant tumor diagnosis was analyzed. MR perfusion imaging was verified as an effective modality in the diagnosis of breast malignancies and the best scanning time window was identified: i) Values of K trans and K ep at all phases were statistically significant in differentiating benign and malignant tumors (P<0.05), while the value of V e had statistical significance only at stage 10, but not at any other stages (P>0.05); ii) values of V e in benign tumors increased with phase number, but achieved no obvious changes at different phases in malignant tumors; iii) the optimum scanning time window of breast perfusion imaging with 3.0 T MR was between phases 10 and 30 (i.e., between 5 and 15 min after contrast agent injection). The variation trend of V e values at different phases may serve as a diagnostic reference for differentiating benign and malignant breast abnormalities. The most efficient scanning time window was indicated to be 5 min after contrast injection, based on the observation that the V e value only had statistical significance in diagnosis at stage 10. However, the optimal scanning time window is from 5 to 15 min following the injection of contrast agent, since that the variation trend of V e is able to serve as a diagnostic reference.
Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience.
Wu, Paul Pao-Yen; Mengersen, Kerrie; McMahon, Kathryn; Kendrick, Gary A; Chartrand, Kathryn; York, Paul H; Rasheed, Michael A; Caley, M Julian
2017-11-02
Better mitigation of anthropogenic stressors on marine ecosystems is urgently needed to address increasing biodiversity losses worldwide. We explore opportunities for stressor mitigation using whole-of-systems modelling of ecological resilience, accounting for complex interactions between stressors, their timing and duration, background environmental conditions and biological processes. We then search for ecological windows, times when stressors minimally impact ecological resilience, defined here as risk, recovery and resistance. We show for 28 globally distributed seagrass meadows that stressor scheduling that exploits ecological windows for dredging campaigns can achieve up to a fourfold reduction in recovery time and 35% reduction in extinction risk. Although the timing and length of windows vary among sites to some degree, global trends indicate favourable windows in autumn and winter. Our results demonstrate that resilience is dynamic with respect to space, time and stressors, varying most strongly with: (i) the life history of the seagrass genus and (ii) the duration and timing of the impacting stress.
Platform for Postprocessing Waveform-Based NDE
NASA Technical Reports Server (NTRS)
Roth, Don
2008-01-01
Taking advantage of the similarities that exist among all waveform-based non-destructive evaluation (NDE) methods, a common software platform has been developed containing multiple- signal and image-processing techniques for waveforms and images. The NASA NDE Signal and Image Processing software has been developed using the latest versions of LabVIEW, and its associated Advanced Signal Processing and Vision Toolkits. The software is useable on a PC with Windows XP and Windows Vista. The software has been designed with a commercial grade interface in which two main windows, Waveform Window and Image Window, are displayed if the user chooses a waveform file to display. Within these two main windows, most actions are chosen through logically conceived run-time menus. The Waveform Window has plots for both the raw time-domain waves and their frequency- domain transformations (fast Fourier transform and power spectral density). The Image Window shows the C-scan image formed from information of the time-domain waveform (such as peak amplitude) or its frequency-domain transformation at each scan location. The user also has the ability to open an image, or series of images, or a simple set of X-Y paired data set in text format. Each of the Waveform and Image Windows contains menus from which to perform many user actions. An option exists to use raw waves obtained directly from scan, or waves after deconvolution if system wave response is provided. Two types of deconvolution, time-based subtraction or inverse-filter, can be performed to arrive at a deconvolved wave set. Additionally, the menu on the Waveform Window allows preprocessing of waveforms prior to image formation, scaling and display of waveforms, formation of different types of images (including non-standard types such as velocity), gating of portions of waves prior to image formation, and several other miscellaneous and specialized operations. The menu available on the Image Window allows many further image processing and analysis operations, some of which are found in commercially-available image-processing software programs (such as Adobe Photoshop), and some that are not (removing outliers, Bscan information, region-of-interest analysis, line profiles, and precision feature measurements).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
.... Actual pile driving time during this work window will depend on a number of factors, such as sediments... period beginning in November 2010, and ending in February 2011. This work window was selected to coincide.... The work window also coincides with the USFWS' required construction work window to avoid the peak...
ERIC Educational Resources Information Center
Roman, Harry T.
2010-01-01
Skyscrapers sure do have a lot of windows, and these windows are cleaned and checked regularly. All this takes time, money, and puts workers at potential risk. Might there be a better way to do it? In this article, the author discusses a window-washing challenge and describes how students can tackle this task, pick up the challenge, and creatively…
Multiscale field-aligned current analyzer
NASA Astrophysics Data System (ADS)
Bunescu, C.; Marghitu, O.; Constantinescu, D.; Narita, Y.; Vogt, J.; Blǎgǎu, A.
2015-11-01
The magnetosphere-ionosphere coupling is achieved, essentially, by a superposition of quasi-stationary and time-dependent field-aligned currents (FACs), over a broad range of spatial and temporal scales. The planarity of the FAC structures observed by satellite data and the orientation of the planar FAC sheets can be investigated by the well-established minimum variance analysis (MVA) of the magnetic perturbation. However, such investigations are often constrained to a predefined time window, i.e., to a specific scale of the FAC. The multiscale field-aligned current analyzer, introduced here, relies on performing MVA continuously and over a range of scales by varying the width of the analyzing window, appropriate for the complexity of the magnetic field signatures above the auroral oval. The proposed technique provides multiscale information on the planarity and orientation of the observed FACs. A new approach, based on the derivative of the largest eigenvalue of the magnetic variance matrix with respect to the length of the analysis window, makes possible the inference of the current structures' location (center) and scale (thickness). The capabilities of the FAC analyzer are explored analytically for the magnetic field profile of the Harris sheet and tested on synthetic FAC structures with uniform current density and infinite or finite geometry in the cross-section plane of the FAC. The method is illustrated with data observed by the Cluster spacecraft on crossing the nightside auroral region, and the results are cross checked with the optical observations from the Time History of Events and Macroscale Interactions during Substorms ground network.
NASA Astrophysics Data System (ADS)
Tong, Qiujie; Wang, Qianqian; Li, Xiaoyang; Shan, Bin; Cui, Xuntai; Li, Chenyu; Peng, Zhong
2016-11-01
In order to satisfy the requirements of the real-time and generality, a laser target simulator in semi-physical simulation system based on RTX+LabWindows/CVI platform is proposed in this paper. Compared with the upper-lower computers simulation platform architecture used in the most of the real-time system now, this system has better maintainability and portability. This system runs on the Windows platform, using Windows RTX real-time extension subsystem to ensure the real-time performance of the system combining with the reflective memory network to complete some real-time tasks such as calculating the simulation model, transmitting the simulation data, and keeping real-time communication. The real-time tasks of simulation system run under the RTSS process. At the same time, we use the LabWindows/CVI to compile a graphical interface, and complete some non-real-time tasks in the process of simulation such as man-machine interaction, display and storage of the simulation data, which run under the Win32 process. Through the design of RTX shared memory and task scheduling algorithm, the data interaction between the real-time tasks process of RTSS and non-real-time tasks process of Win32 is completed. The experimental results show that this system has the strongly real-time performance, highly stability, and highly simulation accuracy. At the same time, it also has the good performance of human-computer interaction.
Polishing techniques for MEGARA pupil elements optics
NASA Astrophysics Data System (ADS)
Izazaga, R.; Carrasco, E.; Aguirre, D.; Salas, A.; Gil de Paz, A.; Gallego, J.; Iglesias, J.; Arroyo, J. M.; Hernández, M.; López, N.; López, V.; Quechol, J. T.; Salazar, M. F.; Carballo, C.; Cruz, E.; Arriaga, J.; De la Luz, J. A.; Huepa, A.; Jaimes, G. L.; Reyes, J.
2016-07-01
MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral-field and multi-object optical spectrograph for the 10.4m Gran Telescopio Canarias.. It will offer RFWHM 6,000, 12,000 and 18,700 for the low- , mid- and high-resolution, respectively in the wavelength range 3650-9700Å. .The dispersive elements are volume phase holographic (VPH) gratings, sandwiched between two flat Fused Silica windows of high optical precision in large apertures. The design, based in VPHs in combination with Ohara PBM2Y prisms allows to keep the collimator and camera angle fixed. Seventy three optical elements are being built in Mexico at INAOE and CIO. For the low resolution modes, the VPHs windows specifications in irregularity is 1 fringe in 210mm x 170mm and 0.5 fringe in 190mm x 160mm. for a window thickness of 25 mm. For the medium and high resolution modes the irregularity specification is 2 fringes in 220mm x 180mm and 1 fringe in 205mm x 160mm, for a window thickness of 20mm. In this work we present a description of the polishing techniques developed at INAOE optical workshop to fabricate the 36 Fused Silica windows and 24 PBM2Y prisms that allows us to achieve such demanding specifications. We include the processes of mounting, cutting, blocking, polishing and testing.
Rapidity window dependences of higher order cumulants and diffusion master equation
NASA Astrophysics Data System (ADS)
Kitazawa, Masakiyo
2015-10-01
We study the rapidity window dependences of higher order cumulants of conserved charges observed in relativistic heavy ion collisions. The time evolution and the rapidity window dependence of the non-Gaussian fluctuations are described by the diffusion master equation. Analytic formulas for the time evolution of cumulants in a rapidity window are obtained for arbitrary initial conditions. We discuss that the rapidity window dependences of the non-Gaussian cumulants have characteristic structures reflecting the non-equilibrium property of fluctuations, which can be observed in relativistic heavy ion collisions with the present detectors. It is argued that various information on the thermal and transport properties of the hot medium can be revealed experimentally by the study of the rapidity window dependences, especially by the combined use, of the higher order cumulants. Formulas of higher order cumulants for a probability distribution composed of sub-probabilities, which are useful for various studies of non-Gaussian cumulants, are also presented.
Prentice, Heather A.; Price, Matthew A.; Porter, Travis R.; Cormier, Emmanuel; Mugavero, Michael J.; Kamali, Anatoli; Karita, Etienne; Lakhi, Shabir; Sanders, Eduard J.; Anzala, Omu; Amornkul, Pauli N.; Allen, Susan; Hunter, Eric; Kaslow, Richard A.; Gilmour, Jill; Tang, Jianming
2014-01-01
In HIV-1 infection, plasma viral load (VL) has dual implications for pathogenesis and public health. Based on well-known patterns of HIV-1 evolution and immune escape, we hypothesized that VL is an evolving quantitative trait that depends heavily on duration of infection (DOI), demographic features, human leukocyte antigen (HLA) genotypes and viral characteristics. Prospective data from 421 African seroconverters with at least four eligible visits did show relatively steady VL beyond 3 months of untreated infection, but host and viral factors independently associated with cross-sectional and longitudinal VL often varied by analytical approaches and sliding time windows. Specifically, the effects of age, HLA-B*53 and infecting HIV-1 subtypes (A1, C and others) on VL were either sporadic or highly sensitive to time windows. These observations were strengthened by the addition of 111 seroconverters with 2–3 eligible VL results, suggesting that DOI should be a critical parameter in epidemiological and clinical studies. PMID:24418560
Chauhan, Preeti; Cerdá, Magdalena; Messner, Steven F.; Tracy, Melissa; Tardiff, Kenneth; Galea, Sandro
2012-01-01
The current study evaluated a range of social influences including misdemeanor arrests, drug arrests, cocaine consumption, alcohol consumption, firearm availability, and incarceration that may be associated with changes in gun-related homicides by racial/ethnic group in New York City (NYC) from 1990 to 1999. Using police precincts as the unit of analysis, we used cross-sectional, time series data to examine changes in Black, White, and Hispanic homicides, separately. Bayesian hierarchical models with a spatial error term indicated that an increase in cocaine consumption was associated with an increase in Black homicides. An increase in firearm availability was associated with an increase in Hispanic homicides. Last, there were no significant predictors for White homicides. Support was found for the crack cocaine hypotheses but not for the broken windows hypothesis. Examining racially/ethnically disaggregated data can shed light on group-sensitive mechanisms that may explain changes in homicide over time. PMID:22328820
NASA Astrophysics Data System (ADS)
Bernstein, V.; Kolodney, E.
2017-10-01
We have recently observed, both experimentally and computationally, the phenomenon of postcollision multifragmentation in sub-keV surface collisions of a C60 projectile. Namely, delayed multiparticle breakup of a strongly impact deformed and vibrationally excited large cluster collider into several large fragments, after leaving the surface. Molecular dynamics simulations with extensive statistics revealed a nearly simultaneous event, within a sub-psec time window. Here we study, computationally, additional essential aspects of this new delayed collisional fragmentation which were not addressed before. Specifically, we study here the delayed (binary) fission channel for different impact energies both by calculating mass distributions over all fission events and by calculating and analyzing lifetime distributions of the scattered projectile. We observe an asymmetric fission resulting in a most probable fission channel and we find an activated exponential (statistical) decay. Finally, we also calculate and discuss the fragment mass distribution in (triple) multifragmentation over different time windows, in terms of most abundant fragments.
Downsampling Photodetector Array with Windowing
NASA Technical Reports Server (NTRS)
Patawaran, Ferze D.; Farr, William H.; Nguyen, Danh H.; Quirk, Kevin J.; Sahasrabudhe, Adit
2012-01-01
In a photon counting detector array, each pixel in the array produces an electrical pulse when an incident photon on that pixel is detected. Detection and demodulation of an optical communication signal that modulated the intensity of the optical signal requires counting the number of photon arrivals over a given interval. As the size of photon counting photodetector arrays increases, parallel processing of all the pixels exceeds the resources available in current application-specific integrated circuit (ASIC) and gate array (GA) technology; the desire for a high fill factor in avalanche photodiode (APD) detector arrays also precludes this. Through the use of downsampling and windowing portions of the detector array, the processing is distributed between the ASIC and GA. This allows demodulation of the optical communication signal incident on a large photon counting detector array, as well as providing architecture amenable to algorithmic changes. The detector array readout ASIC functions as a parallel-to-serial converter, serializing the photodetector array output for subsequent processing. Additional downsampling functionality for each pixel is added to this ASIC. Due to the large number of pixels in the array, the readout time of the entire photodetector is greater than the time between photon arrivals; therefore, a downsampling pre-processing step is done in order to increase the time allowed for the readout to occur. Each pixel drives a small counter that is incremented at every detected photon arrival or, equivalently, the charge in a storage capacitor is incremented. At the end of a user-configurable counting period (calculated independently from the ASIC), the counters are sampled and cleared. This downsampled photon count information is then sent one counter word at a time to the GA. For a large array, processing even the downsampled pixel counts exceeds the capabilities of the GA. Windowing of the array, whereby several subsets of pixels are designated for processing, is used to further reduce the computational requirements. The grouping of the designated pixel frame as the photon count information is sent one word at a time to the GA, the aggregation of the pixels in a window can be achieved by selecting only the designated pixel counts from the serial stream of photon counts, thereby obviating the need to store the entire frame of pixel count in the gate array. The pixel count se quence from each window can then be processed, forming lower-rate pixel statistics for each window. By having this processing occur in the GA rather than in the ASIC, future changes to the processing algorithm can be readily implemented. The high-bandwidth requirements of a photon counting array combined with the properties of the optical modulation being detected by the array present a unique problem that has not been addressed by current CCD or CMOS sensor array solutions.
Optical Evaluation of DMDs with UV-Grade FS, Sapphire, MgF2 Windows and Reflectance of Bare Devices
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Heap, Sara; Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan; Roberto, Massimo
2016-01-01
Digital Micro-mirror Devices (DMDs) have been identified as an alternative to microshutter arrays for space-based multi-object spectrometers (MOS). Specifically, the MOS at the heart of a proposed Galactic Evolution Spectroscopic Explorer (GESE) that uses the DMD as a reprogrammable slit mask. Unfortunately, the protective borosilicate windows limit the use of DMDs in the UV and IR regimes, where the glass has insufficient throughput. In this work, we present our efforts to replace standard DMD windows with custom windows made from UV-grade fused silica, Low Absorption Optical Sapphire (LAOS) and magnesium fluoride. We present reflectance measurements of the antireflection coated windows and a reflectance study of the DMDs active area (window removed). Furthermore, we investigated the long-term stability of the DMD reflectance and recoating device with fresh Al coatings.
Optimization of ramp area aircraft push back time windows in the presence of uncertainty
NASA Astrophysics Data System (ADS)
Coupe, William Jeremy
It is well known that airport surface traffic congestion at major airports is responsible for increased taxi-out times, fuel burn and excess emissions and there is potential to mitigate these negative consequences through optimizing airport surface traffic operations. Due to a highly congested voice communication channel between pilots and air traffic controllers and a data communication channel that is used only for limited functions, one of the most viable near-term strategies for improvement of the surface traffic is issuing a push back advisory to each departing aircraft. This dissertation focuses on the optimization of a push back time window for each departing aircraft. The optimization takes into account both spatial and temporal uncertainties of ramp area aircraft trajectories. The uncertainties are described by a stochastic kinematic model of aircraft trajectories, which is used to infer distributions of combinations of push back times that lead to conflict among trajectories from different gates. The model is validated and the distributions are included in the push back time window optimization. Under the assumption of a fixed taxiway spot schedule, the computed push back time windows can be integrated with a higher level taxiway scheduler to optimize the flow of traffic from the gate to the departure runway queue. To enable real-time decision making the computational time of the push back time window optimization is critical and is analyzed throughout.
Osadchii, Oleg E.
2014-01-01
Normal hearts exhibit a positive time difference between the end of ventricular contraction and the end of QT interval, which is referred to as the electromechanical (EM) window. Drug-induced prolongation of repolarization may lead to the negative EM window, which was proposed to be a novel proarrhythmic marker. This study examined whether abnormal changes in the EM window may account for arrhythmogenic effects produced by hypokalemia. Left ventricular pressure, electrocardiogram, and epicardial monophasic action potentials were recorded in perfused hearts from guinea-pig and rabbit. Hypokalemia (2.5 mM K+) was found to prolong repolarization, reduce the EM window, and promote tachyarrhythmia. Nevertheless, during both regular pacing and extrasystolic excitation, the increased QT interval invariably remained shorter than the duration of mechanical systole, thus yielding positive EM window values. Hypokalemia-induced arrhythmogenicity was associated with slowed ventricular conduction, and shortened effective refractory periods, which translated to a reduced excitation wavelength index. Hypokalemia also evoked non-uniform prolongation of action potential duration in distinct epicardial regions, which resulted in increased spatial variability in the repolarization time. These findings suggest that arrhythmogenic effects of hypokalemia are not accounted for by the negative EM window, and are rather attributed to abnormal changes in ventricular conduction times, refractoriness, excitation wavelength, and spatial repolarization gradients. PMID:25141124
NASA Technical Reports Server (NTRS)
Shih, Y. H.; Sergienko, A. V.; Rubin, M. H.
1993-01-01
A pair of correlated photons generated from parametric down conversion was sent to two independent Michelson interferometers. Second order interference was studied by means of a coincidence measurement between the outputs of two interferometers. The reported experiment and analysis studied this second order interference phenomena from the point of view of Einstein-Podolsky-Rosen paradox. The experiment was done in two steps. The first step of the experiment used 50 psec and 3 nsec coincidence time windows simultaneously. The 50 psec window was able to distinguish a 1.5 cm optical path difference in the interferometers. The interference visibility was measured to be 38 percent and 21 percent for the 50 psec time window and 22 percent and 7 percent for the 3 nsec time window, when the optical path difference of the interferometers were 2 cm and 4 cm, respectively. By comparing the visibilities between these two windows, the experiment showed the non-classical effect which resulted from an E.P.R. state. The second step of the experiment used a 20 psec coincidence time window, which was able to distinguish a 6 mm optical path difference in the interferometers. The interference visibilities were measured to be 59 percent for an optical path difference of 7 mm. This is the first observation of visibility greater than 50 percent for a two interferometer E.P.R. experiment which demonstrates nonclassical correlation of space-time variables.
Rubin, Beverly S.; Paranjpe, Maneesha; DaFonte, Tracey; Schaeberle, Cheryl; Soto, Ana M.; Obin, Martin; Greenberg, Andrew S.
2017-01-01
Body weight (BW) and body composition were examined in CD-1 mice exposed perinatally or perinatally and peripubertally to 0, 0.25, 2.5, 25, or 250 μg BPA/kg BW/day. Our goal was to identify the BPA dose (s) and the exposure window(s) that increased BW and adiposity, and to assess potential sex differences in this response. Both perinatal exposure alone and perinatal plus peripubertal exposure to environmentally relevant levels of BPA resulted in lasting effects on body weight and body composition. The effects were dose specific and sex specific and were influenced by the precise window of BPA exposure. The addition of peripubertal BPA exposure following the initial perinatal exposure exacerbated adverse effects in the females but appeared to reduce differences in body weight and body composition between control and BPA exposed males. Some effects of BPA on body weight and body composition showed a non-linear dose response. PMID:27496714
Exploring Heuristics for the Vehicle Routing Problem with Split Deliveries and Time Windows
2014-09-18
a traveling 2 salesman problem (TSP). Therefore in the remainder of this document, the VRP refers to a capacitated VRP. 1.3 Military...specifically investigated the SDVRPTW. Stutzle [63] investigates the effects of several LS operators on the traveling salesman problem , the quadratic...34 Traveling salesman -type combinatorial problems and their relation to the logistics of regional blood banking," Northwestern University, Evanston, IL
Matsumoto, Atsushi; Kakigi, Ryusuke
2014-01-01
Recent neuroimaging experiments have revealed that subliminal priming of a target stimulus leads to the reduction of neural activity in specific regions concerned with processing the target. Such findings lead to questions about the degree to which the subliminal priming effect is based only on decreased activity in specific local brain regions, as opposed to the influence of neural mechanisms that regulate communication between brain regions. To address this question, this study recorded EEG during performance of a subliminal semantic priming task. We adopted an information-based approach that used independent component analysis and multivariate autoregressive modeling. Results indicated that subliminal semantic priming caused significant modulation of alpha band activity in the left inferior frontal cortex and modulation of gamma band activity in the left inferior temporal regions. The multivariate autoregressive approach confirmed significant increases in information flow from the inferior frontal cortex to inferior temporal regions in the early time window that was induced by subliminal priming. In the later time window, significant enhancement of bidirectional causal flow between these two regions underlying subliminal priming was observed. Results suggest that unconscious processing of words influences not only local activity of individual brain regions but also the dynamics of neural communication between those regions.
Sparsely sampling the sky: Regular vs. random sampling
NASA Astrophysics Data System (ADS)
Paykari, P.; Pires, S.; Starck, J.-L.; Jaffe, A. H.
2015-09-01
Aims: The next generation of galaxy surveys, aiming to observe millions of galaxies, are expensive both in time and money. This raises questions regarding the optimal investment of this time and money for future surveys. In a previous work, we have shown that a sparse sampling strategy could be a powerful substitute for the - usually favoured - contiguous observation of the sky. In our previous paper, regular sparse sampling was investigated, where the sparse observed patches were regularly distributed on the sky. The regularity of the mask introduces a periodic pattern in the window function, which induces periodic correlations at specific scales. Methods: In this paper, we use a Bayesian experimental design to investigate a "random" sparse sampling approach, where the observed patches are randomly distributed over the total sparsely sampled area. Results: We find that in this setting, the induced correlation is evenly distributed amongst all scales as there is no preferred scale in the window function. Conclusions: This is desirable when we are interested in any specific scale in the galaxy power spectrum, such as the matter-radiation equality scale. As the figure of merit shows, however, there is no preference between regular and random sampling to constrain the overall galaxy power spectrum and the cosmological parameters.
Wilson, Ander; Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Wright, Robert O; Wright, Rosalind J; Coull, Brent A
2017-07-01
Epidemiological research supports an association between maternal exposure to air pollution during pregnancy and adverse children's health outcomes. Advances in exposure assessment and statistics allow for estimation of both critical windows of vulnerability and exposure effect heterogeneity. Simultaneous estimation of windows of vulnerability and effect heterogeneity can be accomplished by fitting a distributed lag model (DLM) stratified by subgroup. However, this can provide an incomplete picture of how effects vary across subgroups because it does not allow for subgroups to have the same window but different within-window effects or to have different windows but the same within-window effect. Because the timing of some developmental processes are common across subpopulations of infants while for others the timing differs across subgroups, both scenarios are important to consider when evaluating health risks of prenatal exposures. We propose a new approach that partitions the DLM into a constrained functional predictor that estimates windows of vulnerability and a scalar effect representing the within-window effect directly. The proposed method allows for heterogeneity in only the window, only the within-window effect, or both. In a simulation study we show that a model assuming a shared component across groups results in lower bias and mean squared error for the estimated windows and effects when that component is in fact constant across groups. We apply the proposed method to estimate windows of vulnerability in the association between prenatal exposures to fine particulate matter and each of birth weight and asthma incidence, and estimate how these associations vary by sex and maternal obesity status in a Boston-area prospective pre-birth cohort study. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Jian, Wang; Xiaohong, Meng; Hong, Liu; Wanqiu, Zheng; Yaning, Liu; Sheng, Gui; Zhiyang, Wang
2017-03-01
Full waveform inversion and reverse time migration are active research areas for seismic exploration. Forward modeling in the time domain determines the precision of the results, and numerical solutions of finite difference have been widely adopted as an important mathematical tool for forward modeling. In this article, the optimum combined of window functions was designed based on the finite difference operator using a truncated approximation of the spatial convolution series in pseudo-spectrum space, to normalize the outcomes of existing window functions for different orders. The proposed combined window functions not only inherit the characteristics of the various window functions, to provide better truncation results, but also control the truncation error of the finite difference operator manually and visually by adjusting the combinations and analyzing the characteristics of the main and side lobes of the amplitude response. Error level and elastic forward modeling under the proposed combined system were compared with outcomes from conventional window functions and modified binomial windows. Numerical dispersion is significantly suppressed, which is compared with modified binomial window function finite-difference and conventional finite-difference. Numerical simulation verifies the reliability of the proposed method.
Yi, Hyunjung; Ghosh, Debadyuti; Ham, Moon-Ho; Qi, Jifa; Barone, Paul W; Strano, Michael S; Belcher, Angela M
2012-03-14
Second near-infrared (NIR) window light (950-1400 nm) is attractive for in vivo fluorescence imaging due to its deep penetration depth in tissues and low tissue autofluorescence. Here we show genetically engineered multifunctional M13 phage can assemble fluorescent single-walled carbon nanotubes (SWNTs) and ligands for targeted fluorescence imaging of tumors. M13-SWNT probe is detectable in deep tissues even at a low dosage of 2 μg/mL and up to 2.5 cm in tissue-like phantoms. Moreover, targeted probes show specific and up to 4-fold improved uptake in prostate specific membrane antigen positive prostate tumors compared to control nontargeted probes. This M13 phage-based second NIR window fluorescence imaging probe has great potential for specific detection and therapy monitoring of hard-to-detect areas. © 2012 American Chemical Society
HAM, MOON-HO; QI, JIFA; BARONE, PAUL W.; STRANO, MICHAEL S.; BELCHER, ANGELA M.
2014-01-01
Second near-infrared (NIR) window light (950-1,400 nm) is attractive for in vivo fluorescence imaging due to its deep penetration depth in tissues and low tissue autofluorescence. Here we show genetically engineered multifunctional M13 phage can assemble fluorescent single-walled carbon nanotubes (SWNTs) and ligands for targeted fluorescence imaging of tumors. M13-SWNT probe is detectable in deep tissues even at a low dosage of 2 μg/mL and up to 2.5 cm in tissue-like phantoms. Moreover, targeted probes show specific and up to four-fold improved uptake in prostate specific membrane antigen positive prostate tumors compared to control non-targeted probes. This M13 phage-based second NIR window fluorescence imaging probe has great potential for specific detection and therapy monitoring of hard-to-detect areas. PMID:22268625
Alternative Fuels Data Center: Hydrogen Drive
, contact Greater Washington Region Clean Cities Coalition. Download QuickTime Video QuickTime (.mov ) Download Windows Media Video Windows Media (.wmv) Video Download Help Text version See more videos provided
Launch window analysis of satellites in high eccentricity or large circular orbits
NASA Technical Reports Server (NTRS)
Renard, M. L.; Bhate, S. K.; Sridharan, R.
1973-01-01
Numerical methods and computer programs for studying the stability and evolution of orbits of large eccentricity are presented. Methods for determining launch windows and target dates are developed. Mathematical models are prepared to analyze the characteristics of specific missions.
Pedersen, Mangor; Omidvarnia, Amir; Zalesky, Andrew; Jackson, Graeme D
2018-06-08
Correlation-based sliding window analysis (CSWA) is the most commonly used method to estimate time-resolved functional MRI (fMRI) connectivity. However, instantaneous phase synchrony analysis (IPSA) is gaining popularity mainly because it offers single time-point resolution of time-resolved fMRI connectivity. We aim to provide a systematic comparison between these two approaches, on both temporal and topological levels. For this purpose, we used resting-state fMRI data from two separate cohorts with different temporal resolutions (45 healthy subjects from Human Connectome Project fMRI data with repetition time of 0.72 s and 25 healthy subjects from a separate validation fMRI dataset with a repetition time of 3 s). For time-resolved functional connectivity analysis, we calculated tapered CSWA over a wide range of different window lengths that were temporally and topologically compared to IPSA. We found a strong association in connectivity dynamics between IPSA and CSWA when considering the absolute values of CSWA. The association between CSWA and IPSA was stronger for a window length of ∼20 s (shorter than filtered fMRI wavelength) than ∼100 s (longer than filtered fMRI wavelength), irrespective of the sampling rate of the underlying fMRI data. Narrow-band filtering of fMRI data (0.03-0.07 Hz) yielded a stronger relationship between IPSA and CSWA than wider-band (0.01-0.1 Hz). On a topological level, time-averaged IPSA and CSWA nodes were non-linearly correlated for both short (∼20 s) and long (∼100 s) windows, mainly because nodes with strong negative correlations (CSWA) displayed high phase synchrony (IPSA). IPSA and CSWA were anatomically similar in the default mode network, sensory cortex, insula and cerebellum. Our results suggest that IPSA and CSWA provide comparable characterizations of time-resolved fMRI connectivity for appropriately chosen window lengths. Although IPSA requires narrow-band fMRI filtering, we recommend the use of IPSA given that it does not mandate a (semi-)arbitrary choice of window length and window overlap. A code for calculating IPSA is provided. Copyright © 2018. Published by Elsevier Inc.
Intelligent windows using new thermotropic layers with long-term stability
NASA Astrophysics Data System (ADS)
Watanabe, Haruo
1995-08-01
This paper concerns the autonomous responsive type light adjustment window (intelligent windows) among smart windows which adjust the light upon receiving environmental energy. More specifically, this is a thermotropic window panel that laminates and seals a new type of highly viscous polymer aqueous solution gel. A conventional thermotropic window panel has never been put to practical use since the reversible change between the colorless, transparent state (water-clear) and translucent scattered state (paper-white) with uniformity was not possible. The change involved phase separation and generated non-uniformity. The author, after fundamental studies of hydrophobic bonding, successfully solved the problem by developing a polymer aqueous solution gel with amphiphatic molecule as the third component in addition to water and water-soluble polymer with hydrophobic radical, based on the molecular spacer concept. In addition, the author established peripheral technologies and succeeded in experimentally fabricating a panel type 'Affinity's Intelligent Window (AIW)' that has attained the level of practical use.
Burriel-Valencia, Jordi; Martinez-Roman, Javier; Sapena-Bano, Angel
2018-01-01
The aim of this paper is to introduce a new methodology for the fault diagnosis of induction machines working in the transient regime, when time-frequency analysis tools are used. The proposed method relies on the use of the optimized Slepian window for performing the short time Fourier transform (STFT) of the stator current signal. It is shown that for a given sequence length of finite duration, the Slepian window has the maximum concentration of energy, greater than can be reached with a gated Gaussian window, which is usually used as the analysis window. In this paper, the use and optimization of the Slepian window for fault diagnosis of induction machines is theoretically introduced and experimentally validated through the test of a 3.15-MW induction motor with broken bars during the start-up transient. The theoretical analysis and the experimental results show that the use of the Slepian window can highlight the fault components in the current’s spectrogram with a significant reduction of the required computational resources. PMID:29316650
Burriel-Valencia, Jordi; Puche-Panadero, Ruben; Martinez-Roman, Javier; Sapena-Bano, Angel; Pineda-Sanchez, Manuel
2018-01-06
The aim of this paper is to introduce a new methodology for the fault diagnosis of induction machines working in the transient regime, when time-frequency analysis tools are used. The proposed method relies on the use of the optimized Slepian window for performing the short time Fourier transform (STFT) of the stator current signal. It is shown that for a given sequence length of finite duration, the Slepian window has the maximum concentration of energy, greater than can be reached with a gated Gaussian window, which is usually used as the analysis window. In this paper, the use and optimization of the Slepian window for fault diagnosis of induction machines is theoretically introduced and experimentally validated through the test of a 3.15-MW induction motor with broken bars during the start-up transient. The theoretical analysis and the experimental results show that the use of the Slepian window can highlight the fault components in the current's spectrogram with a significant reduction of the required computational resources.
NASA Astrophysics Data System (ADS)
Cheng, Z.; Chen, Y.; Liu, Y.; Liu, W.; Zhang, G.
2015-12-01
Among those hydrocarbon reservoir detection techniques, the time-frequency analysis based approach is one of the most widely used approaches because of its straightforward indication of low-frequency anomalies from the time-frequency maps, that is to say, the low-frequency bright spots usually indicate the potential hydrocarbon reservoirs. The time-frequency analysis based approach is easy to implement, and more importantly, is usually of high fidelity in reservoir prediction, compared with the state-of-the-art approaches, and thus is of great interest to petroleum geologists, geophysicists, and reservoir engineers. The S transform has been frequently used in obtaining the time-frequency maps because of its better performance in controlling the compromise between the time and frequency resolutions than the alternatives, such as the short-time Fourier transform, Gabor transform, and continuous wavelet transform. The window function used in the majority of previous S transform applications is the symmetric Gaussian window. However, one problem with the symmetric Gaussian window is the degradation of time resolution in the time-frequency map due to the long front taper. In our study, a bi-Gaussian S transform that substitutes the symmetric Gaussian window with an asymmetry bi-Gaussian window is proposed to analyze the multi-channel seismic data in order to predict hydrocarbon reservoirs. The bi-Gaussian window introduces asymmetry in the resultant time-frequency spectrum, with time resolution better in the front direction, as compared with the back direction. It is the first time that the bi-Gaussian S transform is used for analyzing multi-channel post-stack seismic data in order to predict hydrocarbon reservoirs since its invention in 2003. The superiority of the bi-Gaussian S transform over traditional S transform is tested on a real land seismic data example. The performance shows that the enhanced temporal resolution can help us depict more clearly the edge of the hydrocarbon reservoir, especially when the thickness of the reservoir is small (such as the thin beds).
Single-agent parallel window search
NASA Technical Reports Server (NTRS)
Powley, Curt; Korf, Richard E.
1991-01-01
Parallel window search is applied to single-agent problems by having different processes simultaneously perform iterations of Iterative-Deepening-A(asterisk) (IDA-asterisk) on the same problem but with different cost thresholds. This approach is limited by the time to perform the goal iteration. To overcome this disadvantage, the authors consider node ordering. They discuss how global node ordering by minimum h among nodes with equal f = g + h values can reduce the time complexity of serial IDA-asterisk by reducing the time to perform the iterations prior to the goal iteration. Finally, the two ideas of parallel window search and node ordering are combined to eliminate the weaknesses of each approach while retaining the strengths. The resulting approach, called simply parallel window search, can be used to find a near-optimal solution quickly, improve the solution until it is optimal, and then finally guarantee optimality, depending on the amount of time available.
Levenson, M.
1960-10-25
A cave window is described. It is constructed of thick glass panes arranged so that interior panes have smaller windowpane areas and exterior panes have larger areas. Exterior panes on the radiation exposure side are remotely replaceable when darkened excessively. Metal shutters minimize exposure time to extend window life.
Physical activity classification with dynamic discriminative methods.
Ray, Evan L; Sasaki, Jeffer E; Freedson, Patty S; Staudenmayer, John
2018-06-19
A person's physical activity has important health implications, so it is important to be able to measure aspects of physical activity objectively. One approach to doing that is to use data from an accelerometer to classify physical activity according to activity type (e.g., lying down, sitting, standing, or walking) or intensity (e.g., sedentary, light, moderate, or vigorous). This can be formulated as a labeled classification problem, where the model relates a feature vector summarizing the accelerometer signal in a window of time to the activity type or intensity in that window. These data exhibit two key characteristics: (1) the activity classes in different time windows are not independent, and (2) the accelerometer features have moderately high dimension and follow complex distributions. Through a simulation study and applications to three datasets, we demonstrate that a model's classification performance is related to how it addresses these aspects of the data. Dynamic methods that account for temporal dependence achieve better performance than static methods that do not. Generative methods that explicitly model the distribution of the accelerometer signal features do not perform as well as methods that take a discriminative approach to establishing the relationship between the accelerometer signal and the activity class. Specifically, Conditional Random Fields consistently have better performance than commonly employed methods that ignore temporal dependence or attempt to model the accelerometer features. © 2018, The International Biometric Society.
Optical Property Requirements for Glasses, Ceramics and Plastics in Spacecraft Window Systems
NASA Technical Reports Server (NTRS)
Estes, Lynda
2011-01-01
This is a preliminary draft of a standard published by the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) that is intended to provide uniform window optical design requirements in support of the development of human-rated spaceflight hardware. The material covered in this standard is based on data from extensive testing by the Advanced Sensing and Optical Measurement Branch at NASA Langley Research Center, and compiled into requirements format by the NASA JSC Structural Engineering Division. At the time of this initial document release, a broader technical community has not reviewed this standard. The technical content of this standard is primarily based on the Constellation Program Orion Crew Exploration Vehicle Window Optical Properties Requirements, CxP 72407, Baseline. Unlike other optical requirements documents available for human rated spacecraft, this document includes requirements that ensure functionality for windows that contain glass/ceramic and/or plastic window substrate materials. These requirements were derived by measuring the optical properties of fused silica and aluminosilicate glass window assemblies and ensuring that the performance of any window assembly that includes a plastic pane or panes will meet the performance level of the all-glass assemblies. The resulting requirements are based upon the performance and parameter metrology testing of a variety of materials, including glass, transparent ceramics, acrylics, and polycarbonates. In general, these requirements are minimum specifications for each optical parameter in order to achieve the function specified for each functional category, A through D. Because acrylic materials perform at a higher level than polycarbonates in the optics regime, and CxP/Orion is planning to use acrylic in the Orion spacecraft, these requirements are based heavily on metrology from that material. As a result, two of the current Category D requirements for plastics are cited in such a way that will result in the screening out of polycarbonates. It is acknowledged that many polycarbonates can perform the functions of Category D, such as piloting and imagery with lens with apertures up to 25mm, without performance issues. Therefore, this forward warns users that certain requirements, such as birefringence and wavefront, for Category D plastics need to be revised to allow those polycarbonates that perform adequately in Category D to be accepted, while at the same time, screen out those materials that do not perform up to par. At the time of document release, the requirements in question have been identified by a TBD beside the proposed requirement criteria (which is based upon acrylic performance). Vehicles that are designed with acrylic materials for windowpanes are encouraged to use the values presented in this document for all requirements, in order to ensure adequate optical performance.
Sojoudi, Alireza; Goodyear, Bradley G
2016-12-01
Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Developmental windows of breast cancer risk provide opportunities for targeted chemoprevention
Martinson, Holly A.; Lyons, Traci R.; Giles, Erin D.; Borges, Virginia F.; Schedin, Pepper
2014-01-01
The magnitude of the breast cancer problem implores researchers to aggressively investigate prevention strategies. However, several barriers currently reduce the feasibility of breast cancer prevention. These barriers include the inability to accurately predict future breast cancer diagnosis at the individual level, the need for improved understanding of when to implement interventions, uncertainty with respect to optimal duration of treatment, and negative side effects associated with currently approved chemoprevention therapies. None-the-less, the unique biology of the mammary gland, with its postnatal development and conditional terminal differentiation, may permit the resolution of many of these barriers. Specifically, lifecycle-specific windows of breast cancer risk have been identified that may be amenable to risk-reducing strategies. Here, we argue for prevention research focused on two of these lifecycle windows of risk: postpartum mammary gland involution and peri-menopause. We provide evidence that these windows are highly amenable to targeted, limited duration treatments. Such approaches could result in the prevention of postpartum and postmenopausal breast cancers, correspondingly. PMID:23664839
NASA Technical Reports Server (NTRS)
Zeigler, Bernard P.
1989-01-01
It is shown how systems can be advantageously represented as discrete-event models by using DEVS (discrete-event system specification), a set-theoretic formalism. Such DEVS models provide a basis for the design of event-based logic control. In this control paradigm, the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by its DEVS model of the system under control. The event-based contral paradigm is applied in advanced robotic and intelligent automation, showing how classical process control can be readily interfaced with rule-based symbolic reasoning systems.
NASA Astrophysics Data System (ADS)
Xin, Meiting; Li, Bing; Yan, Xiao; Chen, Lei; Wei, Xiang
2018-02-01
A robust coarse-to-fine registration method based on the backpropagation (BP) neural network and shift window technology is proposed in this study. Specifically, there are three steps: coarse alignment between the model data and measured data, data simplification based on the BP neural network and point reservation in the contour region of point clouds, and fine registration with the reweighted iterative closest point algorithm. In the process of rough alignment, the initial rotation matrix and the translation vector between the two datasets are obtained. After performing subsequent simplification operations, the number of points can be reduced greatly. Therefore, the time and space complexity of the accurate registration can be significantly reduced. The experimental results show that the proposed method improves the computational efficiency without loss of accuracy.
Developmental time windows for axon growth influence neuronal network topology.
Lim, Sol; Kaiser, Marcus
2015-04-01
Early brain connectivity development consists of multiple stages: birth of neurons, their migration and the subsequent growth of axons and dendrites. Each stage occurs within a certain period of time depending on types of neurons and cortical layers. Forming synapses between neurons either by growing axons starting at similar times for all neurons (much-overlapped time windows) or at different time points (less-overlapped) may affect the topological and spatial properties of neuronal networks. Here, we explore the extreme cases of axon formation during early development, either starting at the same time for all neurons (parallel, i.e., maximally overlapped time windows) or occurring for each neuron separately one neuron after another (serial, i.e., no overlaps in time windows). For both cases, the number of potential and established synapses remained comparable. Topological and spatial properties, however, differed: Neurons that started axon growth early on in serial growth achieved higher out-degrees, higher local efficiency and longer axon lengths while neurons demonstrated more homogeneous connectivity patterns for parallel growth. Second, connection probability decreased more rapidly with distance between neurons for parallel growth than for serial growth. Third, bidirectional connections were more numerous for parallel growth. Finally, we tested our predictions with C. elegans data. Together, this indicates that time windows for axon growth influence the topological and spatial properties of neuronal networks opening up the possibility to a posteriori estimate developmental mechanisms based on network properties of a developed network.
Investigation of Fuel Oil/Lube Oil Spray Fires On Board Vessels. Volume 3.
1998-11-01
U.S. Coast Guard Research and Development Center 1082 Shennecossett Road, Groton, CT 06340-6096 Report No. CG-D-01-99, III Investigation of Fuel ...refinery). Developed the technical and mathematical specifications for BRAVO™2.0, a state-of-the-art Windows program for performing event tree and fault...tree analyses. Also managed the development of and prepared the technical specifications for QRA ROOTS™, a Windows program for storing, searching K-4
Sunlight Responsive Thermochromic Window System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millett, F,A; Byker,H, J
2006-10-27
Pleotint has embarked on a novel approach with our Sunlight Responsive Thermochromic, SRT™, windows. We are integrating dynamic sunlight control, high insulation values and low solar heat gain together in a high performance window. The Pleotint SRT window is dynamic because it reversibly changes light transmission based on thermochromics activated directly by the heating effect of sunlight. We can achieve a window package with low solar heat gain coefficient (SHGC), a low U value and high insulation. At the same time our windows provide good daylighting. Our innovative window design offers architects and building designers the opportunity to choose theirmore » desired energy performance, excellent sound reduction, external pane can be self-cleaning, or a resistance to wind load, blasts, bullets or hurricanes. SRT windows would provide energy savings that are estimated at up to 30% over traditional window systems. Glass fabricators will be able to use existing equipment to make the SRT window while adding value and flexibility to the basic design. Glazing installers will have the ability to fit the windows with traditional methods without wires, power supplies and controllers. SRT windows can be retrofit into existing buildings,« less
Threshold network of a financial market using the P-value of correlation coefficients
NASA Astrophysics Data System (ADS)
Ha, Gyeong-Gyun; Lee, Jae Woo; Nobi, Ashadun
2015-06-01
Threshold methods in financial networks are important tools for obtaining important information about the financial state of a market. Previously, absolute thresholds of correlation coefficients have been used; however, they have no relation to the length of time. We assign a threshold value depending on the size of the time window by using the P-value concept of statistics. We construct a threshold network (TN) at the same threshold value for two different time window sizes in the Korean Composite Stock Price Index (KOSPI). We measure network properties, such as the edge density, clustering coefficient, assortativity coefficient, and modularity. We determine that a significant difference exists between the network properties of the two time windows at the same threshold, especially during crises. This implies that the market information depends on the length of the time window when constructing the TN. We apply the same technique to Standard and Poor's 500 (S&P500) and observe similar results.
Effect of the time window on the heat-conduction information filtering model
NASA Astrophysics Data System (ADS)
Guo, Qiang; Song, Wen-Jun; Hou, Lei; Zhang, Yi-Lu; Liu, Jian-Guo
2014-05-01
Recommendation systems have been proposed to filter out the potential tastes and preferences of the normal users online, however, the physics of the time window effect on the performance is missing, which is critical for saving the memory and decreasing the computation complexity. In this paper, by gradually expanding the time window, we investigate the impact of the time window on the heat-conduction information filtering model with ten similarity measures. The experimental results on the benchmark dataset Netflix indicate that by only using approximately 11.11% recent rating records, the accuracy could be improved by an average of 33.16% and the diversity could be improved by 30.62%. In addition, the recommendation performance on the dataset MovieLens could be preserved by only considering approximately 10.91% recent records. Under the circumstance of improving the recommendation performance, our discoveries possess significant practical value by largely reducing the computational time and shortening the data storage space.
Du, Yifeng; Kemper, Timothy; Qiu, Jiange; Jiang, Jianxiong
2016-01-01
Neuroinflammation is a common feature in nearly all neurological and some psychiatric disorders. Resembling its extraneural counterpart, neuroinflammation can be both beneficial and detrimental depending on the responding molecules. The overall effect of inflammation on disease progression is highly dependent on the extent of inflammatory mediator production and the duration of inflammatory induction. The time-dependent aspect of inflammatory responses suggests that the therapeutic time window for quelling neuroinflammation might vary with molecular targets and injury types. Therefore, it is important to define the therapeutic time window for anti-inflammatory therapeutics, as contradicting or negative results might arise when different treatment regimens are utilized even in similar animal models. Herein, we discuss a few critical factors that can help define the therapeutic time window and optimize treatment paradigm for suppressing the cyclooxygenase-2/prostaglandin-mediated inflammation after status epilepticus. These determinants should also be relevant to other anti-inflammatory therapeutic strategies for the CNS diseases. PMID:26689339
Calibration of Safecast dose rate measurements.
Cervone, Guido; Hultquist, Carolynne
2018-10-01
A methodology is presented to calibrate contributed Safecast dose rate measurements acquired between 2011 and 2016 in the Fukushima prefecture of Japan. The Safecast data are calibrated using observations acquired by the U.S. Department of Energy at the time of the 2011 Fukushima Daiichi power plant nuclear accident. The methodology performs a series of interpolations between the U.S. government and contributed datasets at specific temporal windows and at corresponding spatial locations. The coefficients found for all the different temporal windows are aggregated and interpolated using quadratic regressions to generate a time dependent calibration function. Normal background radiation, decay rates, and missing values are taken into account during the analysis. Results show that the standard Safecast static transformation function overestimates the official measurements because it fails to capture the presence of two different Cesium isotopes and their changing magnitudes with time. A model is created to predict the ratio of the isotopes from the time of the accident through 2020. The proposed time dependent calibration takes into account this Cesium isotopes ratio, and it is shown to reduce the error between U.S. government and contributed data. The proposed calibration is needed through 2020, after which date the errors introduced by ignoring the presence of different isotopes will become negligible. Copyright © 2018 Elsevier Ltd. All rights reserved.
Smart windows with functions of reflective display and indoor temperature-control
NASA Astrophysics Data System (ADS)
Lee, I.-Hui; Chao, Yu-Ching; Hsu, Chih-Cheng; Chang, Liang-Chao; Chiu, Tien-Lung; Lee, Jiunn-Yih; Kao, Fu-Jen; Lee, Chih-Kung; Lee, Jiun-Haw
2010-02-01
In this paper, a switchable window based on cholestreric liquid crystal (CLC) was demonstrated. Under different applied voltages, incoming light at visible and infrared wavelengths was modulated, respectively. A mixture of CLC with a nematic liquid crystal and a chiral dopant selectively reflected infrared light without bias, which effectively reduced the indoor temperature under sunlight illumination. At this time, transmission at visible range was kept at high and the windows looked transparent. With increasing the voltage to 15V, CLC changed to focal conic state and can be used as a reflective display, a privacy window, or a screen for projector. Under a high voltage (30V), homeotropic state was achieved. At this time, both infrared and visible light can transmit which acted as a normal window, which permitted infrared spectrum of winter sunlight to enter the room so as to reduce the heating requirement. Such a device can be used as a switchable window in smart buildings, green houses and windshields.
Pulling the Internet Together with Mosaic.
ERIC Educational Resources Information Center
Sheehan, Mark
1995-01-01
Presents the history of the Internet with specific emphasis on Mosaic; discusses hypertext and hypermedia information; and describes software and hardware requirements. Sidebars include information on the National Center for Super Computing Applications (NCSA); World Wide Web browsers for use in Windows, Macintosh, and X-Windows (UNIX); and…
Kahle, Logan Q; Flannery, Maureen E; Dumbacher, John P
2016-01-01
Bird-window collisions are a major and poorly-understood generator of bird mortality. In North America, studies of this topic tend to be focused east of the Mississippi River, resulting in a paucity of data from the Western flyways. Additionally, few available data can critically evaluate factors such as time of day, sex and age bias, and effect of window pane size on collisions. We collected and analyzed 5 years of window strike data from a 3-story building in a large urban park in San Francisco, California. To evaluate our window collision data in context, we collected weekly data on local bird abundance in the adjacent parkland. Our study asks two overarching questions: first-what aspects of a bird's biology might make them more likely to fatally strike windows; and second, what characteristics of a building's design contribute to bird-window collisions. We used a dataset of 308 fatal bird strikes to examine the relationships of strikes relative to age, sex, time of day, time of year, and a variety of other factors, including mitigation efforts. We found that actively migrating birds may not be major contributors to collisions as has been found elsewhere. We found that males and young birds were both significantly overrepresented relative to their abundance in the habitat surrounding the building. We also analyzed the effect of external window shades as mitigation, finding that an overall reduction in large panes, whether covered or in some way broken up with mullions, effectively reduced window collisions. We conclude that effective mitigation or design will be required in all seasons, but that breeding seasons and migratory seasons are most critical, especially for low-rise buildings and other sites away from urban migrant traps. Finally, strikes occur throughout the day, but mitigation may be most effective in the morning and midday.
Kahle, Logan Q.; Flannery, Maureen E.; Dumbacher, John P.
2016-01-01
Bird-window collisions are a major and poorly-understood generator of bird mortality. In North America, studies of this topic tend to be focused east of the Mississippi River, resulting in a paucity of data from the Western flyways. Additionally, few available data can critically evaluate factors such as time of day, sex and age bias, and effect of window pane size on collisions. We collected and analyzed 5 years of window strike data from a 3-story building in a large urban park in San Francisco, California. To evaluate our window collision data in context, we collected weekly data on local bird abundance in the adjacent parkland. Our study asks two overarching questions: first–what aspects of a bird’s biology might make them more likely to fatally strike windows; and second, what characteristics of a building’s design contribute to bird-window collisions. We used a dataset of 308 fatal bird strikes to examine the relationships of strikes relative to age, sex, time of day, time of year, and a variety of other factors, including mitigation efforts. We found that actively migrating birds may not be major contributors to collisions as has been found elsewhere. We found that males and young birds were both significantly overrepresented relative to their abundance in the habitat surrounding the building. We also analyzed the effect of external window shades as mitigation, finding that an overall reduction in large panes, whether covered or in some way broken up with mullions, effectively reduced window collisions. We conclude that effective mitigation or design will be required in all seasons, but that breeding seasons and migratory seasons are most critical, especially for low-rise buildings and other sites away from urban migrant traps. Finally, strikes occur throughout the day, but mitigation may be most effective in the morning and midday. PMID:26731417
Thrombolysis in Acute Ischaemic Stroke: An Update
Robinson, Thompson; Zaheer, Zahid; Mistri, Amit K.
2011-01-01
Stroke is a major cause of mortality and morbidity, and thrombolysis has served as a catalyst for major changes in the management of acute ischaemic stroke. Intravenous alteplase (recombinant tissue plasminogen activator) is the only approved thrombolytic agent at present indicated for acute ischaemic stoke. While the licensed time window extends to 3h from symptom onset, recent data suggest that the trial window can be extended up to 4.5 h with overall benefit. Nonetheless, 'time is brain' and every effort must be made to reduce the time delay to thrombolysis. Intracranial haemorrhage is the major complication associated with thrombolysis, and key factors increasing risk of haemorrhage include increasing age, high blood pressure, diabetes and stroke severity. Currently, there is no direct evidence to support thrombolysis in patients >80 years of age, with a few case series indicating no overt harm. Identification of viable penumbra based on computed tomography/magnetic resonance imaging may allow future extension of the time window. Adjuvant transcranial Doppler ultrasound has the potential to improve reperfusion rates. While intra-arterial thrombolysis has been in vogue for a few decades, there is no clear advantage over intravenous thrombolysis. The evidence base for thrombolysis in specific situations (e.g. dissection, pregnancy) is inadequate, and individualized decisions are needed, with a clear indication to the patient/carer about the lack of direct evidence, and the risk-benefit balance. Patient-friendly information leaflets may facilitate the process of consent for thrombolysis. This article summarizes the recent advances in thrombolysis for acute ischaemic stroke. Key questions faced by clinicians during the decision-making process are answered based on the evidence available. PMID:23251746
Optimizing read-out of the NECTAr front-end electronics
NASA Astrophysics Data System (ADS)
Vorobiov, S.; Feinstein, F.; Bolmont, J.; Corona, P.; Delagnes, E.; Falvard, A.; Gascón, D.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Ribo, M.; Sanuy, A.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.
2012-12-01
We describe the optimization of the read-out specifications of the NECTAr front-end electronics for the Cherenkov Telescope Array (CTA). The NECTAr project aims at building and testing a demonstrator module of a new front-end electronics design, which takes an advantage of the know-how acquired while building the cameras of the CAT, H.E.S.S.-I and H.E.S.S.-II experiments. The goal of the optimization work is to define the specifications of the digitizing electronics of a CTA camera, in particular integration time window, sampling rate, analog bandwidth using physics simulations. We employed for this work real photomultiplier pulses, sampled at 100 ps with a 600 MHz bandwidth oscilloscope. The individual pulses are drawn randomly at the times at which the photo-electrons, originating from atmospheric showers, arrive at the focal planes of imaging atmospheric Cherenkov telescopes. The timing information is extracted from the existing CTA simulations on the GRID and organized in a local database, together with all the relevant physical parameters (energy, primary particle type, zenith angle, distance from the shower axis, pixel offset from the optical axis, night-sky background level, etc.), and detector configurations (telescope types, camera/mirror configurations, etc.). While investigating the parameter space, an optimal pixel charge integration time window, which minimizes relative error in the measured charge, has been determined. This will allow to gain in sensitivity and to lower the energy threshold of CTA telescopes. We present results of our optimizations and first measurements obtained using the NECTAr demonstrator module.
Optimal Window and Lattice in Gabor Transform. Application to Audio Analysis.
Lachambre, Helene; Ricaud, Benjamin; Stempfel, Guillaume; Torrésani, Bruno; Wiesmeyr, Christoph; Onchis-Moaca, Darian
2015-01-01
This article deals with the use of optimal lattice and optimal window in Discrete Gabor Transform computation. In the case of a generalized Gaussian window, extending earlier contributions, we introduce an additional local window adaptation technique for non-stationary signals. We illustrate our approach and the earlier one by addressing three time-frequency analysis problems to show the improvements achieved by the use of optimal lattice and window: close frequencies distinction, frequency estimation and SNR estimation. The results are presented, when possible, with real world audio signals.
An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization.
Nisar, Shibli; Khan, Omar Usman; Tariq, Muhammad
2016-01-01
Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection.
The Utility of Stage-specific Mid-to-late Drosophila Follicle Isolation
Spracklen, Andrew J.; Tootle, Tina L.
2013-01-01
Drosophila oogenesis or follicle development has been widely used to advance the understanding of complex developmental and cell biologic processes. This methods paper describes how to isolate mid-to-late stage follicles (Stage 10B-14) and utilize them to provide new insights into the molecular and morphologic events occurring during tight windows of developmental time. Isolated follicles can be used for a variety of experimental techniques, including in vitro development assays, live imaging, mRNA expression analysis and western blot analysis of proteins. Follicles at Stage 10B (S10B) or later will complete development in culture; this allows one to combine genetic or pharmacologic perturbations with in vitro development to define the effects of such manipulations on the processes occurring during specific periods of development. Additionally, because these follicles develop in culture, they are ideally suited for live imaging studies, which often reveal new mechanisms that mediate morphological events. Isolated follicles can also be used for molecular analyses. For example, changes in gene expression that result from genetic perturbations can be defined for specific developmental windows. Additionally, protein level, stability, and/or posttranslational modification state during a particular stage of follicle development can be examined through western blot analyses. Thus, stage-specific isolation of Drosophila follicles provides a rich source of information into widely conserved processes of development and morphogenesis. PMID:24326735
Horndasch, Stefanie; Heinrich, Hartmut; Kratz, Oliver; Moll, Gunther H
2012-12-01
In anorexia nervosa (AN), aspects of motivational salience and reward are increasingly discussed. Event related potentials, particularly the late positive potential (LPP), have been investigated as a marker for motivational salience of stimuli, for example in addictive disorders. The aim of this study was to assess the LPP as a possible indicator of motivated attention towards disease-specific pictures of underweight female bodies in adolescents with AN in comparison to typically developing (TD) adolescent girls. 13 girls with AN and 18 TD adolescent girls (aged 12 to 18 years) viewed pictures of underweight, normal-weight and overweight women while EEG activity was recorded. An earlier (450-680 ms after stimulus onset) as well as a later time window (850-1250 ms after stimulus onset) of the LPP were examined for the different picture categories. Participants were also asked to rate subjective emotions (fear, disgust, happiness) elicited by the pictures. Subjective ratings showed no differential experience of emotions for the two groups. For AN patients, highest LPP amplitudes were found for underweight women in the earlier as well as in the later time window. In TD girls, highest amplitudes for pictures of overweight women were observed in the earlier time window. A differential LPP pattern for girls with AN and TD girls when viewing pictures of women's bodies of different weight categories was obtained. Highest amplitudes in AN patients for pictures of underweight women may reflect motivational significance of strongly underweight body shapes. Copyright © 2012 Elsevier Inc. All rights reserved.
Ecrh on Asdex Upgrade - System Extension, New Modes of Operation, Plasma Physics Results
NASA Astrophysics Data System (ADS)
Stober, J.; Wagner, D.; Giannone, L.; Leuterer, F.; Marascheck, M.; Mlynek, A.; Monaco, F.; Münich, M.; Poli, E.; Reich, M.; Schmid-Lorch, D.; Schütz, H.; Schweinzer, J.; Treutterer, W.; Zohm, H.; Meier, A.; Scherer, Th.; Flamm, J.; Thumm, M.; Höhnle, H.; Kasparek, W.; Stroth, U.; Chirkov, A. V.; Denisov, G. G.; Litvak, A.; Malygin, S. A.; Myasnikov, V. E.; Nichiporenko, V. O.; Popov, L. G.; Soluyanova, E. A.; Tai, E. M.
2011-02-01
The ECRH system at ASDEX Upgrade is currently extended from 1.6 MW to 5 MW. The extension so far consists of 2-frequency units, which use single diamond-disk vacuum-windows to transmit power at the natural resonances of these disks (105 & 140 GHz). For the last unit of this extension two additional intermediate non-resonant frequencies are foreseen, requiring new window concepts. For the torus a polarisation-independent double-disk window has been developed. For the gyrotron a grooved diamond disk is actually favoured, for which the grooved surfaces act as anti-reflective coating. Since ASDEX Upgrade operates with completely W-covered plasma facing components, central ECRH is often applied to suppresses W-accumulation in the plasma center. In order to extend the operational range for central ECRH, X3- and O2-heating schemes were developed. Both are characterized by incomplete single-path absorption. For X3 heating, the X2 resonance at the pedestal on the high field side is used as a 'beam-dump', for the O2 scheme a specific reflector tile on the inner heat shield enforces a second path through the plasma center. The geometry for NTM control had to be modified to allow simultaneous central heating. In real-time the ECRH position can be determined either by ray-tracing based on real-time equilibria and density profiles or from ECE for modulated ECRH power. Fast real-time ECE also allows to determine the NTM position. Further major physics applications of the system are summarized.
Communicating likelihoods and probabilities in forecasts of volcanic eruptions
NASA Astrophysics Data System (ADS)
Doyle, Emma E. H.; McClure, John; Johnston, David M.; Paton, Douglas
2014-02-01
The issuing of forecasts and warnings of natural hazard events, such as volcanic eruptions, earthquake aftershock sequences and extreme weather often involves the use of probabilistic terms, particularly when communicated by scientific advisory groups to key decision-makers, who can differ greatly in relative expertise and function in the decision making process. Recipients may also differ in their perception of relative importance of political and economic influences on interpretation. Consequently, the interpretation of these probabilistic terms can vary greatly due to the framing of the statements, and whether verbal or numerical terms are used. We present a review from the psychology literature on how the framing of information influences communication of these probability terms. It is also unclear as to how people rate their perception of an event's likelihood throughout a time frame when a forecast time window is stated. Previous research has identified that, when presented with a 10-year time window forecast, participants viewed the likelihood of an event occurring ‘today’ as being of less than that in year 10. Here we show that this skew in perception also occurs for short-term time windows (under one week) that are of most relevance for emergency warnings. In addition, unlike the long-time window statements, the use of the phrasing “within the next…” instead of “in the next…” does not mitigate this skew, nor do we observe significant differences between the perceived likelihoods of scientists and non-scientists. This finding suggests that effects occurring due to the shorter time window may be ‘masking’ any differences in perception due to wording or career background observed for long-time window forecasts. These results have implications for scientific advice, warning forecasts, emergency management decision-making, and public information as any skew in perceived event likelihood towards the end of a forecast time window may result in an underestimate of the likelihood of an event occurring ‘today’ leading to potentially inappropriate action choices. We thus present some initial guidelines for communicating such eruption forecasts.
Rubin, Beverly S; Paranjpe, Maneesha; DaFonte, Tracey; Schaeberle, Cheryl; Soto, Ana M; Obin, Martin; Greenberg, Andrew S
2017-03-01
Body weight (BW) and body composition were examined in CD-1 mice exposed perinatally or perinatally and peripubertally to 0, 0.25, 2.5, 25, or 250μg BPA/kg BW/day. Our goal was to identify the BPA dose (s) and the exposure window(s) that increased BW and adiposity, and to assess potential sex differences in this response. Both perinatal exposure alone and perinatal plus peripubertal exposure to environmentally relevant levels of BPA resulted in lasting effects on body weight and body composition. The effects were dose specific and sex specific and were influenced by the precise window of BPA exposure. The addition of peripubertal BPA exposure following the initial perinatal exposure exacerbated adverse effects in the females but appeared to reduce differences in body weight and body composition between control and BPA exposed males. Some effects of BPA on body weight and body composition showed a non-linear dose response. Copyright © 2016. Published by Elsevier Inc.
Interview with Violet Oaklander, Author of "Windows to Our Children."
ERIC Educational Resources Information Center
Campbell, Chari A.
1993-01-01
Presents interview with Dr. Violent Oaklander, experienced child therapist and author of "Windows to Our Children: A Gestalt Therapy with Children and Adolescents." Discusses critical components of successful therapy with children. Explains how developmental stage of child affects therapeutic process, and provides specific examples of working with…
Detection of Early Ischemic Changes in Noncontrast CT Head Improved with "Stroke Windows".
Mainali, Shraddha; Wahba, Mervat; Elijovich, Lucas
2014-01-01
Introduction. Noncontrast head CT (NCCT) is the standard radiologic test for patients presenting with acute stroke. Early ischemic changes (EIC) are often overlooked on initial NCCT. We determine the sensitivity and specificity of improved EIC detection by a standardized method of image evaluation (Stroke Windows). Methods. We performed a retrospective chart review to identify patients with acute ischemic stroke who had NCCT at presentation. EIC was defined by the presence of hyperdense MCA/basilar artery sign; sulcal effacement; basal ganglia/subcortical hypodensity; and loss of cortical gray-white differentiation. NCCT was reviewed with standard window settings and with specialized Stroke Windows. Results. Fifty patients (42% females, 58% males) with a mean NIHSS of 13.4 were identified. EIC was detected in 9 patients with standard windows, while EIC was detected using Stroke Windows in 35 patients (18% versus 70%; P < 0.0001). Hyperdense MCA sign was the most commonly reported EIC; it was better detected with Stroke Windows (14% and 36%; P < 0.0198). Detection of the remaining EIC also improved with Stroke Windows (6% and 46%; P < 0.0001). Conclusions. Detection of EIC has important implications in diagnosis and treatment of acute ischemic stroke. Utilization of Stroke Windows significantly improved detection of EIC.
Longhi, M. Paula; Hoti, Mimoza; Patel, Minal B.; O’Dwyer, Michael; Nourshargh, Sussan; Barnes, Michael R.; Brohi, Karim
2017-01-01
Background Severe trauma induces a widespread response of the immune system. This “genomic storm” can lead to poor outcomes, including Multiple Organ Dysfunction Syndrome (MODS). MODS carries a high mortality and morbidity rate and adversely affects long-term health outcomes. Contemporary management of MODS is entirely supportive, and no specific therapeutics have been shown to be effective in reducing incidence or severity. The pathogenesis of MODS remains unclear, and several models are proposed, such as excessive inflammation, a second-hit insult, or an imbalance between pro- and anti-inflammatory pathways. We postulated that the hyperacute window after trauma may hold the key to understanding how the genomic storm is initiated and may lead to a new understanding of the pathogenesis of MODS. Methods and findings We performed whole blood transcriptome and flow cytometry analyses on a total of 70 critically injured patients (Injury Severity Score [ISS] ≥ 25) at The Royal London Hospital in the hyperacute time period within 2 hours of injury. We compared transcriptome findings in 36 critically injured patients with those of 6 patients with minor injuries (ISS ≤ 4). We then performed flow cytometry analyses in 34 critically injured patients and compared findings with those of 9 healthy volunteers. Immediately after injury, only 1,239 gene transcripts (4%) were differentially expressed in critically injured patients. By 24 hours after injury, 6,294 transcripts (21%) were differentially expressed compared to the hyperacute window. Only 202 (16%) genes differentially expressed in the hyperacute window were still expressed in the same direction at 24 hours postinjury. Pathway analysis showed principally up-regulation of pattern recognition and innate inflammatory pathways, with down-regulation of adaptive responses. Immune deconvolution, flow cytometry, and modular analysis suggested a central role for neutrophils and Natural Killer (NK) cells, with underexpression of T- and B cell responses. In the transcriptome cohort, 20 critically injured patients later developed MODS. Compared with the 16 patients who did not develop MODS (NoMODS), maximal differential expression was seen within the hyperacute window. In MODS versus NoMODS, 363 genes were differentially expressed on admission, compared to only 33 at 24 hours postinjury. MODS transcripts differentially expressed in the hyperacute window showed enrichment among diseases and biological functions associated with cell survival and organismal death rather than inflammatory pathways. There was differential up-regulation of NK cell signalling pathways and markers in patients who would later develop MODS, with down-regulation of neutrophil deconvolution markers. This study is limited by its sample size, precluding more detailed analyses of drivers of the hyperacute response and different MODS phenotypes, and requires validation in other critically injured cohorts. Conclusions In this study, we showed how the hyperacute postinjury time window contained a focused, specific signature of the response to critical injury that led to widespread genomic activation. A transcriptomic signature for later development of MODS was present in this hyperacute window; it showed a strong signal for cell death and survival pathways and implicated NK cells and neutrophil populations in this differential response. PMID:28715416
Shakil, Sadia; Lee, Chin-Hui; Keilholz, Shella Dawn
2016-01-01
A promising recent development in the study of brain function is the dynamic analysis of resting-state functional MRI scans, which can enhance understanding of normal cognition and alterations that result from brain disorders. One widely used method of capturing the dynamics of functional connectivity is sliding window correlation (SWC). However, in the absence of a “gold standard” for comparison, evaluating the performance of the SWC in typical resting-state data is challenging. This study uses simulated networks (SNs) with known transitions to examine the effects of parameters such as window length, window offset, window type, noise, filtering, and sampling rate on the SWC performance. The SWC time course was calculated for all node pairs of each SN and then clustered using the k-means algorithm to determine how resulting brain states match known configurations and transitions in the SNs. The outcomes show that the detection of state transitions and durations in the SWC is most strongly influenced by the window length and offset, followed by noise and filtering parameters. The effect of the image sampling rate was relatively insignificant. Tapered windows provide less sensitivity to state transitions than rectangular windows, which could be the result of the sharp transitions in the SNs. Overall, the SWC gave poor estimates of correlation for each brain state. Clustering based on the SWC time course did not reliably reflect the underlying state transitions unless the window length was comparable to the state duration, highlighting the need for new adaptive window analysis techniques. PMID:26952197
Peng, Sijia; Wang, Wenjuan; Chen, Chunlai
2018-05-10
Fluorescence correlation spectroscopy is a powerful single-molecule tool that is able to capture kinetic processes occurring at the nanosecond time scale. However, the upper limit of its time window is restricted by the dwell time of the molecule of interest in the confocal detection volume, which is usually around submilliseconds for a freely diffusing biomolecule. Here, we present a simple and easy-to-implement method, named surface transient binding-based fluorescence correlation spectroscopy (STB-FCS), which extends the upper limit of the time window to seconds. We further demonstrated that STB-FCS enables capture of both intramolecular and intermolecular kinetic processes whose time scales cross several orders of magnitude.
Defining window-boundaries for genomic analyses using smoothing spline techniques
Beissinger, Timothy M.; Rosa, Guilherme J.M.; Kaeppler, Shawn M.; ...
2015-04-17
High-density genomic data is often analyzed by combining information over windows of adjacent markers. Interpretation of data grouped in windows versus at individual locations may increase statistical power, simplify computation, reduce sampling noise, and reduce the total number of tests performed. However, use of adjacent marker information can result in over- or under-smoothing, undesirable window boundary specifications, or highly correlated test statistics. We introduce a method for defining windows based on statistically guided breakpoints in the data, as a foundation for the analysis of multiple adjacent data points. This method involves first fitting a cubic smoothing spline to the datamore » and then identifying the inflection points of the fitted spline, which serve as the boundaries of adjacent windows. This technique does not require prior knowledge of linkage disequilibrium, and therefore can be applied to data collected from individual or pooled sequencing experiments. Moreover, in contrast to existing methods, an arbitrary choice of window size is not necessary, since these are determined empirically and allowed to vary along the genome.« less
Design and Verification of Critical Pressurised Windows for Manned Spaceflight
NASA Astrophysics Data System (ADS)
Lamoure, Richard; Busto, Lara; Novo, Francisco; Sinnema, Gerben; Leal, Mendes M.
2014-06-01
The Window Design for Manned Spaceflight (WDMS) project was tasked with establishing the state-of-art and explore possible improvements to the current structural integrity verification and fracture control methodologies for manned spacecraft windows.A critical review of the state-of-art in spacecraft window design, materials and verification practice was conducted. Shortcomings of the methodology in terms of analysis, inspection and testing were identified. Schemes for improving verification practices and reducing conservatism whilst maintaining the required safety levels were then proposed.An experimental materials characterisation programme was defined and carried out with the support of the 'Glass and Façade Technology Research Group', at the University of Cambridge. Results of the sample testing campaign were analysed, post-processed and subsequently applied to the design of a breadboard window demonstrator.Two Fused Silica glass window panes were procured and subjected to dedicated analyses, inspection and testing comprising both qualification and acceptance programmes specifically tailored to the objectives of the activity.Finally, main outcomes have been compiled into a Structural Verification Guide for Pressurised Windows in manned spacecraft, incorporating best practices and lessons learned throughout this project.
Region of interest and windowing-based progressive medical image delivery using JPEG2000
NASA Astrophysics Data System (ADS)
Nagaraj, Nithin; Mukhopadhyay, Sudipta; Wheeler, Frederick W.; Avila, Ricardo S.
2003-05-01
An important telemedicine application is the perusal of CT scans (digital format) from a central server housed in a healthcare enterprise across a bandwidth constrained network by radiologists situated at remote locations for medical diagnostic purposes. It is generally expected that a viewing station respond to an image request by displaying the image within 1-2 seconds. Owing to limited bandwidth, it may not be possible to deliver the complete image in such a short period of time with traditional techniques. In this paper, we investigate progressive image delivery solutions by using JPEG 2000. An estimate of the time taken in different network bandwidths is performed to compare their relative merits. We further make use of the fact that most medical images are 12-16 bits, but would ultimately be converted to an 8-bit image via windowing for display on the monitor. We propose a windowing progressive RoI technique to exploit this and investigate JPEG 2000 RoI based compression after applying a favorite or a default window setting on the original image. Subsequent requests for different RoIs and window settings would then be processed at the server. For the windowing progressive RoI mode, we report a 50% reduction in transmission time.
Human Mars Mission: Launch Window from Earth Orbit. Pt. 1
NASA Technical Reports Server (NTRS)
Young, Archie
1999-01-01
The determination of orbital window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a DELTA V penalty. Usually, because of the DELTA V penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: (1) One impulsive maneuver from a Highly Elliptical Orbit (HEO) (2) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO) (3) One impulsive maneuver from a Low Earth Orbit (LEO) (4) Two impulsive maneuvers from LEO (5) Three impulsive maneuvers from LEO.
Tabelow, Karsten; König, Reinhard; Polzehl, Jörg
2016-01-01
Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning. PMID:27303809
Boswell, Paul G.; Abate-Pella, Daniel; Hewitt, Joshua T.
2015-01-01
Compound identification by liquid chromatography-mass spectrometry (LC-MS) is a tedious process, mainly because authentic standards must be run on a user’s system to be able to confidently reject a potential identity from its retention time and mass spectral properties. Instead, it would be preferable to use shared retention time/index data to narrow down the identity, but shared data cannot be used to reject candidates with an absolute level of confidence because the data are strongly affected by differences between HPLC systems and experimental conditions. However, a technique called “retention projection” was recently shown to account for many of the differences. In this manuscript, we discuss an approach to calculate appropriate retention time tolerance windows for projected retention times, potentially making it possible to exclude candidates with an absolute level of confidence, without needing to have authentic standards of each candidate on hand. In a range of multi-segment gradients and flow rates run among seven different labs, the new approach calculated tolerance windows that were significantly more appropriate for each retention projection than global tolerance windows calculated for retention projections or linear retention indices. Though there were still some small differences between the labs that evidently were not taken into account, the calculated tolerance windows only needed to be relaxed by 50% to make them appropriate for all labs. Even then, 42% of the tolerance windows calculated in this study without standards were narrower than those required by WADA for positive identification, where standards must be run contemporaneously. PMID:26292624
Boswell, Paul G; Abate-Pella, Daniel; Hewitt, Joshua T
2015-09-18
Compound identification by liquid chromatography-mass spectrometry (LC-MS) is a tedious process, mainly because authentic standards must be run on a user's system to be able to confidently reject a potential identity from its retention time and mass spectral properties. Instead, it would be preferable to use shared retention time/index data to narrow down the identity, but shared data cannot be used to reject candidates with an absolute level of confidence because the data are strongly affected by differences between HPLC systems and experimental conditions. However, a technique called "retention projection" was recently shown to account for many of the differences. In this manuscript, we discuss an approach to calculate appropriate retention time tolerance windows for projected retention times, potentially making it possible to exclude candidates with an absolute level of confidence, without needing to have authentic standards of each candidate on hand. In a range of multi-segment gradients and flow rates run among seven different labs, the new approach calculated tolerance windows that were significantly more appropriate for each retention projection than global tolerance windows calculated for retention projections or linear retention indices. Though there were still some small differences between the labs that evidently were not taken into account, the calculated tolerance windows only needed to be relaxed by 50% to make them appropriate for all labs. Even then, 42% of the tolerance windows calculated in this study without standards were narrower than those required by WADA for positive identification, where standards must be run contemporaneously. Copyright © 2015 Elsevier B.V. All rights reserved.
A fast algorithm for vertex-frequency representations of signals on graphs
Jestrović, Iva; Coyle, James L.; Sejdić, Ervin
2016-01-01
The windowed Fourier transform (short time Fourier transform) and the S-transform are widely used signal processing tools for extracting frequency information from non-stationary signals. Previously, the windowed Fourier transform had been adopted for signals on graphs and has been shown to be very useful for extracting vertex-frequency information from graphs. However, high computational complexity makes these algorithms impractical. We sought to develop a fast windowed graph Fourier transform and a fast graph S-transform requiring significantly shorter computation time. The proposed schemes have been tested with synthetic test graph signals and real graph signals derived from electroencephalography recordings made during swallowing. The results showed that the proposed schemes provide significantly lower computation time in comparison with the standard windowed graph Fourier transform and the fast graph S-transform. Also, the results showed that noise has no effect on the results of the algorithm for the fast windowed graph Fourier transform or on the graph S-transform. Finally, we showed that graphs can be reconstructed from the vertex-frequency representations obtained with the proposed algorithms. PMID:28479645
Dhakar, Rajkumar; Sarath Chandran, M A; Nagar, Shivani; Visha Kumari, V
2017-11-23
A new methodology for crop-growth stage-specific assessment of agricultural drought risk under a variable sowing window is proposed for the soybean crop. It encompasses three drought indices, which include Crop-Specific Drought Index (CSDI), Vegetation Condition Index (VCI), and Standardized Precipitation Evapotranspiration Index (SPEI). The unique features of crop-growth stage-specific nature and spatial and multi-scalar coverage provide a comprehensive assessment of agricultural drought risk. This study was conducted in 10 major soybean-growing districts of Madhya Pradesh state of India. These areas contribute about 60% of the total soybean production for the country. The phenophase most vulnerable to agricultural drought was identified (germination and flowering in our case) for each district across four sowing windows. The agricultural drought risk was quantified at various severity levels (moderate, severe, and very severe) for each growth stage and sowing window. Validation of the proposed new methodology also yielded results with a high correlation coefficient between percent probability of agricultural drought risk and yield risk (r = 0.92). Assessment by proximity matrix yielded a similar statistic. Expectations for the proposed methodology are better mitigation-oriented management and improved crop contingency plans for planners and decision makers.
Falconi, Dominic; Aubin, Jane E
2007-08-01
LIF arrests osteogenesis in fetal rat calvaria cells in a differentiation stage-specific manner. Differential display identified HAS2 as a LIF-induced gene and its product, HA, modulated osteoblast differentiation similarly to LIF. Our data suggest that LIF arrests osteoblast differentiation by altering HA content of the extracellular matrix. Leukemia inhibitory factor (LIF) elicits both anabolic and catabolic effects on bone. We previously showed in the fetal rat calvaria (RC) cell system that LIF inhibits osteoblast differentiation at the late osteoprogenitor/early osteoblast stage. To uncover potential molecular mediators of this inhibitory activity, we used a positive-negative genome-wide differential display screen to identify LIF-induced changes in the developing osteoblast transcriptome. Although LIF signaling is active throughout the RC cell proliferation-differentiation sequence, only a relatively small number of genes, in several different functional clusters, are modulated by LIF specifically during the LIF-sensitive inhibitory time window. Based on their known and predicted functions, most of the LIF-regulated genes identified are plausible candidates to be involved in the LIF-induced arrest of osteoprogenitor differentiation. To test this hypothesis, we further analyzed the function of one of the genes identified, hyaluronan synthase 2 (HAS2), in the LIF-induced inhibition. Synthesis of hyaluronan (HA), the product of HAS enzymatic activity, was stimulated by LIF and mimicked the HAS2 expression profile, with highest expression in early/proliferative and late/maturing cultures and lowest levels in intermediate/late osteoprogenitor-early osteoblast cultures. Exogenously added high molecular weight HA, the product of HAS2, dose-dependently inhibited osteoblast differentiation, with pulse-treatment effective in the same differentiation stage-specific inhibitory window as seen with LIF. In addition, however, pulse treatment with HA in early cultures slightly increased bone nodule formation. Treatment with hyaluronidase, on the other hand, stimulated bone nodule formation in early cultures but caused a small dose-dependent inhibition of osteoblast differentiation in the LIF- and HA-sensitive late time window. Together the data suggest that osteoblast differentiation is acutely sensitive to HA levels and that LIF inhibits osteoblast development at least in part by stimulating high molecular weight HA synthesis through HAS2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew
The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 x 48 pixels, each 130 mu m x 130 mu m x 520 mu m thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gatingmore » time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... defines a remotely managed Post Office (RMPO) as a Post Office that offers part-time window service hours... Administrative Post Office. The final rule also defines a part-time Post Office (PTPO) as a Post Office that offers part-time window service hours, is staffed by a Postal Service employee, and reports to a district...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L; Shen, C; Wang, J
Purpose: To reduce cone beam CT (CBCT) imaging dose, we previously proposed a progressive dose control (PDC) scheme to employ temporal correlation between CBCT images at different fractions for image quality enhancement. A temporal non-local means (TNLM) method was developed to enhance quality of a new low-dose CBCT using existing high-quality CBCT. To enhance a voxel value, the TNLM method searches for similar voxels in a window. Due to patient deformation among the two CBCTs, a large searching window was required, reducing image quality and computational efficiency. This abstract proposes a deformation-assisted TNLM (DA-TNLM) method to solve this problem. Methods:more » For a low-dose CBCT to be enhanced using a high-quality CBCT, we first performed deformable image registration between the low-dose CBCT and the high-quality CBCT to approximately establish voxel correspondence between the two. A searching window for a voxel was then set based on the deformation vector field. Specifically, the search window for each voxel was shifted by the deformation vector. A TNLM step was then applied using only voxels within this determined window to correct image intensity at the low-dose CBCT. Results: We have tested the proposed scheme on simulated CIRS phantom data and real patient data. The CITS phantom was scanned on Varian onboard imaging CBCT system with coach shifting and dose reducing for each time. The real patient data was acquired in four fractions with dose reduced from standard CBCT dose to 12.5% of standard dose. It was found that the DA-TNLM method can reduce total dose by over 75% on average in the first four fractions. Conclusion: We have developed a PDC scheme which can enhance the quality of image scanned at low dose using a DA-TNLM method. Tests in phantom and patient studies demonstrated promising results.« less
Optical performance of segmented aperture windows for solar tower receivers
NASA Astrophysics Data System (ADS)
Buck, Reiner
2017-06-01
Segmented quartz windows are a concept to build larger windows for receivers that require a closed aperture. Reflection losses are a significant loss factor for such solar receivers. Without any additional measures, the reflection loss can reach about 12%. One important measure to improve transmission is the application of anti-reflective coatings, which is beneficial in any case. Another option is modifying the window geometry, especially the edge surfaces of the glass segments. A certain fraction of the reflection losses are caused by a light-guide effect in the glass body, for rays entering through the front surface. Changing the cut surfaces in a way reducing the light-guide effect can significantly improve transmission of a segmented window. Several possible configurations are evaluated and discussed. The results of ray-tracing simulations verify the improvement. The final selection of the window configuration depends on the optical properties and on mechanical strength, manufacturing and cost considerations. This has to be evaluated for any specific receiver design.
Wang, Xin; Jen, Philip H-S; Wu, Fei-Jian; Chen, Qi-Cai
2007-09-05
In acoustic communication, animals must extract biologically relevant signals that are embedded in noisy environment. The present study examines how weak noise may affect the auditory sensitivity of neurons in the central nucleus of the mouse inferior colliculus (IC) which receives convergent excitatory and inhibitory inputs from both lower and higher auditory centers. Specifically, we studied the frequency sensitivity and minimum threshold of IC neurons using a pure tone probe and a weak white noise masker under forward masking paradigm. For most IC neurons, probe-elicited response was decreased by a weak white noise that was presented at a specific gap (i.e. time window). When presented within this time window, weak noise masking sharpened the frequency tuning curve and increased the minimum threshold of IC neurons. The degree of weak noise masking of these two measurements increased with noise duration. Sharpening of the frequency tuning curve and increasing of the minimum threshold of IC neurons during weak noise masking were mostly mediated through GABAergic inhibition. In addition, sharpening of frequency tuning curve by the weak noise masker was more effective at the high than at low frequency limb. These data indicate that in the real world the ambient noise may improve frequency sensitivity of IC neurons through GABAergic inhibition while inevitably decrease the frequency response range and sensitivity of IC neurons.
Time course of brain activation elicited by basic emotions.
Hot, Pascal; Sequeira, Henrique
2013-11-13
Whereas facial emotion recognition protocols have shown that each discrete emotion has a specific time course of brain activation, there is no electrophysiological evidence to support these findings for emotional induction by complex pictures. Our objective was to specify the differences between the time courses of brain activation elicited by feelings of happiness and, with unpleasant pictures, by feelings of disgust and sadness. We compared event-related potentials (ERPs) elicited by the watching of high-arousing pictures from the International Affective Picture System, selected to induce specific emotions. In addition to a classical arousal effect on late positive components, we found specific ERP patterns for each emotion in early temporal windows (<200 ms). Disgust was the first emotion to be associated with different brain processing after 140 ms, whereas happiness and sadness differed in ERPs elicited at the frontal and central sites after 160 ms. Our findings highlight the limits of the classical averaging of ERPs elicited by different emotions inside the same valence and suggest that each emotion could elicit a specific temporal pattern of brain activation, similar to those observed with emotional face recognition.
Imaging windows for long-term intravital imaging
Alieva, Maria; Ritsma, Laila; Giedt, Randy J; Weissleder, Ralph; van Rheenen, Jacco
2014-01-01
Intravital microscopy is increasingly used to visualize and quantitate dynamic biological processes at the (sub)cellular level in live animals. By visualizing tissues through imaging windows, individual cells (e.g., cancer, host, or stem cells) can be tracked and studied over a time-span of days to months. Several imaging windows have been developed to access tissues including the brain, superficial fascia, mammary glands, liver, kidney, pancreas, and small intestine among others. Here, we review the development of imaging windows and compare the most commonly used long-term imaging windows for cancer biology: the cranial imaging window, the dorsal skin fold chamber, the mammary imaging window, and the abdominal imaging window. Moreover, we provide technical details, considerations, and trouble-shooting tips on the surgical procedures and microscopy setups for each imaging window and explain different strategies to assure imaging of the same area over multiple imaging sessions. This review aims to be a useful resource for establishing the long-term intravital imaging procedure. PMID:28243510
Imaging windows for long-term intravital imaging: General overview and technical insights.
Alieva, Maria; Ritsma, Laila; Giedt, Randy J; Weissleder, Ralph; van Rheenen, Jacco
2014-01-01
Intravital microscopy is increasingly used to visualize and quantitate dynamic biological processes at the (sub)cellular level in live animals. By visualizing tissues through imaging windows, individual cells (e.g., cancer, host, or stem cells) can be tracked and studied over a time-span of days to months. Several imaging windows have been developed to access tissues including the brain, superficial fascia, mammary glands, liver, kidney, pancreas, and small intestine among others. Here, we review the development of imaging windows and compare the most commonly used long-term imaging windows for cancer biology: the cranial imaging window, the dorsal skin fold chamber, the mammary imaging window, and the abdominal imaging window. Moreover, we provide technical details, considerations, and trouble-shooting tips on the surgical procedures and microscopy setups for each imaging window and explain different strategies to assure imaging of the same area over multiple imaging sessions. This review aims to be a useful resource for establishing the long-term intravital imaging procedure.
Brain response during the M170 time interval is sensitive to socially relevant information.
Arviv, Oshrit; Goldstein, Abraham; Weeting, Janine C; Becker, Eni S; Lange, Wolf-Gero; Gilboa-Schechtman, Eva
2015-11-01
Deciphering the social meaning of facial displays is a highly complex neurological process. The M170, an event related field component of MEG recording, like its EEG counterpart N170, was repeatedly shown to be associated with structural encoding of faces. However, the scope of information encoded during the M170 time window is still being debated. We investigated the neuronal origin of facial processing of integrated social rank cues (SRCs) and emotional facial expressions (EFEs) during the M170 time interval. Participants viewed integrated facial displays of emotion (happy, angry, neutral) and SRCs (indicated by upward, downward, or straight head tilts). We found that the activity during the M170 time window is sensitive to both EFEs and SRCs. Specifically, highly prominent activation was observed in response to SRC connoting dominance as compared to submissive or egalitarian head cues. Interestingly, the processing of EFEs and SRCs appeared to rely on different circuitry. Our findings suggest that vertical head tilts are processed not only for their sheer structural variance, but as social information. Exploring the temporal unfolding and brain localization of non-verbal cues processing may assist in understanding the functioning of the social rank biobehavioral system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Improving EEG-Based Motor Imagery Classification for Real-Time Applications Using the QSA Method.
Batres-Mendoza, Patricia; Ibarra-Manzano, Mario A; Guerra-Hernandez, Erick I; Almanza-Ojeda, Dora L; Montoro-Sanjose, Carlos R; Romero-Troncoso, Rene J; Rostro-Gonzalez, Horacio
2017-01-01
We present an improvement to the quaternion-based signal analysis (QSA) technique to extract electroencephalography (EEG) signal features with a view to developing real-time applications, particularly in motor imagery (IM) cognitive processes. The proposed methodology (iQSA, improved QSA) extracts features such as the average, variance, homogeneity, and contrast of EEG signals related to motor imagery in a more efficient manner (i.e., by reducing the number of samples needed to classify the signal and improving the classification percentage) compared to the original QSA technique. Specifically, we can sample the signal in variable time periods (from 0.5 s to 3 s, in half-a-second intervals) to determine the relationship between the number of samples and their effectiveness in classifying signals. In addition, to strengthen the classification process a number of boosting-technique-based decision trees were implemented. The results show an 82.30% accuracy rate for 0.5 s samples and 73.16% for 3 s samples. This is a significant improvement compared to the original QSA technique that offered results from 33.31% to 40.82% without sampling window and from 33.44% to 41.07% with sampling window, respectively. We can thus conclude that iQSA is better suited to develop real-time applications.
Formal analysis and evaluation of the back-off procedure in IEEE802.11P VANET
NASA Astrophysics Data System (ADS)
Jin, Li; Zhang, Guoan; Zhu, Xiaojun
2017-07-01
The back-off procedure is one of the media access control technologies in 802.11P communication protocol. It plays an important role in avoiding message collisions and allocating channel resources. Formal methods are effective approaches for studying the performances of communication systems. In this paper, we establish a discrete time model for the back-off procedure. We use Markov Decision Processes (MDPs) to model the non-deterministic and probabilistic behaviors of the procedure, and use the probabilistic computation tree logic (PCTL) language to express different properties, which ensure that the discrete time model performs their basic functionality. Based on the model and PCTL specifications, we study the effect of contention window length on the number of senders in the neighborhood of given receivers, and that on the station’s expected cost required by the back-off procedure to successfully send packets. The variation of the window length may increase or decrease the maximum probability of correct transmissions within a time contention unit. We propose to use PRISM model checker to describe our proposed back-off procedure for IEEE802.11P protocol in vehicle network, and define different probability properties formulas to automatically verify the model and derive numerical results. The obtained results are helpful for justifying the values of the time contention unit.
Improving EEG-Based Motor Imagery Classification for Real-Time Applications Using the QSA Method
Batres-Mendoza, Patricia; Guerra-Hernandez, Erick I.; Almanza-Ojeda, Dora L.; Montoro-Sanjose, Carlos R.
2017-01-01
We present an improvement to the quaternion-based signal analysis (QSA) technique to extract electroencephalography (EEG) signal features with a view to developing real-time applications, particularly in motor imagery (IM) cognitive processes. The proposed methodology (iQSA, improved QSA) extracts features such as the average, variance, homogeneity, and contrast of EEG signals related to motor imagery in a more efficient manner (i.e., by reducing the number of samples needed to classify the signal and improving the classification percentage) compared to the original QSA technique. Specifically, we can sample the signal in variable time periods (from 0.5 s to 3 s, in half-a-second intervals) to determine the relationship between the number of samples and their effectiveness in classifying signals. In addition, to strengthen the classification process a number of boosting-technique-based decision trees were implemented. The results show an 82.30% accuracy rate for 0.5 s samples and 73.16% for 3 s samples. This is a significant improvement compared to the original QSA technique that offered results from 33.31% to 40.82% without sampling window and from 33.44% to 41.07% with sampling window, respectively. We can thus conclude that iQSA is better suited to develop real-time applications. PMID:29348744
Advanced Chemistry Collection, 2nd Edition
NASA Astrophysics Data System (ADS)
2001-11-01
Software requirements are given in Table 3. Some programs have additional special requirements. Please see the individual program abstracts at JCE Online or the documentation included on the CD-ROM for more specific information. Table 3. General software requirements for the Advanced Chemistry Collection.
| Computer | System | Other Software(Required by one or more programs) |
| Mac OS compatible | System 7.6.1 or higher | Acrobat Reader (included)Mathcad; Mathematica;MacMolecule2; QuickTime 4; HyperCard Player |
| Windows Compatible | Windows 2000, 98, 95, NT 4 | Acrobat Reader (included)Mathcad; Mathematica;PCMolecule2; QuickTime 4;HyperChem; Excel |
Real-time camera-based face detection using a modified LAMSTAR neural network system
NASA Astrophysics Data System (ADS)
Girado, Javier I.; Sandin, Daniel J.; DeFanti, Thomas A.; Wolf, Laura K.
2003-03-01
This paper describes a cost-effective, real-time (640x480 at 30Hz) upright frontal face detector as part of an ongoing project to develop a video-based, tetherless 3D head position and orientation tracking system. The work is specifically targeted for auto-stereoscopic displays and projection-based virtual reality systems. The proposed face detector is based on a modified LAMSTAR neural network system. At the input stage, after achieving image normalization and equalization, a sub-window analyzes facial features using a neural network. The sub-window is segmented, and each part is fed to a neural network layer consisting of a Kohonen Self-Organizing Map (SOM). The output of the SOM neural networks are interconnected and related by correlation-links, and can hence determine the presence of a face with enough redundancy to provide a high detection rate. To avoid tracking multiple faces simultaneously, the system is initially trained to track only the face centered in a box superimposed on the display. The system is also rotationally and size invariant to a certain degree.
Posfai, Eszter; Petropoulos, Sophie; de Barros, Flavia Regina Oliveira; Schell, John Paul; Jurisica, Igor; Sandberg, Rickard; Lanner, Fredrik; Rossant, Janet
2017-01-01
The segregation of the trophectoderm (TE) from the inner cell mass (ICM) in the mouse blastocyst is determined by position-dependent Hippo signaling. However, the window of responsiveness to Hippo signaling, the exact timing of lineage commitment and the overall relationship between cell commitment and global gene expression changes are still unclear. Single-cell RNA sequencing during lineage segregation revealed that the TE transcriptional profile stabilizes earlier than the ICM and prior to blastocyst formation. Using quantitative Cdx2-eGFP expression as a readout of Hippo signaling activity, we assessed the experimental potential of individual blastomeres based on their level of Cdx2-eGFP expression and correlated potential with gene expression dynamics. We find that TE specification and commitment coincide and occur at the time of transcriptional stabilization, whereas ICM cells still retain the ability to regenerate TE up to the early blastocyst stage. Plasticity of both lineages is coincident with their window of sensitivity to Hippo signaling. DOI: http://dx.doi.org/10.7554/eLife.22906.001 PMID:28226240
Reconfigurable vision system for real-time applications
NASA Astrophysics Data System (ADS)
Torres-Huitzil, Cesar; Arias-Estrada, Miguel
2002-03-01
Recently, a growing community of researchers has used reconfigurable systems to solve computationally intensive problems. Reconfigurability provides optimized processors for systems on chip designs, and makes easy to import technology to a new system through reusable modules. The main objective of this work is the investigation of a reconfigurable computer system targeted for computer vision and real-time applications. The system is intended to circumvent the inherent computational load of most window-based computer vision algorithms. It aims to build a system for such tasks by providing an FPGA-based hardware architecture for task specific vision applications with enough processing power, using the minimum amount of hardware resources as possible, and a mechanism for building systems using this architecture. Regarding the software part of the system, a library of pre-designed and general-purpose modules that implement common window-based computer vision operations is being investigated. A common generic interface is established for these modules in order to define hardware/software components. These components can be interconnected to develop more complex applications, providing an efficient mechanism for transferring image and result data among modules. Some preliminary results are presented and discussed.
Forecast Based Financing for Managing Weather and Climate Risks to Reduce Potential Disaster Impacts
NASA Astrophysics Data System (ADS)
Arrighi, J.
2017-12-01
There is a critical window of time to reduce potential impacts of a disaster after a forecast for heightened risk is issued and before an extreme event occurs. The concept of Forecast-based Financing focuses on this window of opportunity. Through advanced preparation during system set-up, tailored methodologies are used to 1) analyze a range of potential extreme event forecasts, 2) identify emergency preparedness measures that can be taken when factoring in forecast lead time and inherent uncertainty and 3) develop standard operating procedures that are agreed on and tied to guaranteed funding sources to facilitate emergency measures led by the Red Cross or government actors when preparedness measures are triggered. This presentation will focus on a broad overview of the current state of theory and approaches used in developing a forecast-based financing systems - with a specific focus on hydrologic events, case studies of success and challenges in various contexts where this approach is being piloted, as well as what is on the horizon to be further explored and developed from a research perspective as the application of this approach continues to expand.
Tailored emails prompt electric vehicle owners to engage with tariff switching information
NASA Astrophysics Data System (ADS)
Nicolson, Moira; Huebner, Gesche M.; Shipworth, David; Elam, Simon
2017-06-01
The carbon intensity of the electricity used to charge an electric vehicle (EV) is dependent on when in the day charging occurs. However, persuading EV owners to adopt incentives to charge during off-peak hours is challenging. Here we show that governments could exploit the 'window of opportunity' created when people purchase their first EV to promote time-of-use tariffs. Email recipients (n = 7,038 EV owners) were more likely to click-through to an information webpage when the email emphasized specific reductions in home-charging costs versus general bill savings. However, the 'window of opportunity' for maximizing potential adoption is short; email open rates declined from over 70% immediately after purchase to 40% for recipients owning their EV for over three months. These results demonstrate the potential of prompts to change behaviours for which opt-out enrolment (where enrolment is automatic unless people explicitly opt out) would be unethical or less effective.
Global crop production forecasting: An analysis of the data system problems and their solutions
NASA Technical Reports Server (NTRS)
Neiers, J.; Graf, H.
1978-01-01
Data related problems in the acquisition and use of satellite data necessary for operational forecasting of global crop production are considered for the purpose of establishing a measurable baseline. For data acquisition the world was divided into 37 crop regions in 22 countries. These regions represent approximately 95 percent of the total world production of the selected crops of interest, i.e., wheat, corn, soybeans, and rice. Targets were assigned to each region. Limited time periods during which data could be taken (windows) were assigned to each target. Each target was assigned to a cloud region. The DSDS was used to measure the success of obtaining data for each target during the specified windows for the regional cloud conditions and the specific alternatives being analyzed. The results of this study suggest several approaches for an operational system that will perform satisfactorily with two LANDSAT type satellites.
Photorefractive-based adaptive optical windows
NASA Astrophysics Data System (ADS)
Liu, Yuexin; Yang, Yi; Wang, Bo; Fu, John Y.; Yin, Shizhuo; Guo, Ruyan; Yu, Francis T.
2004-10-01
Optical windows have been widely used in optical spectrographic processing system. In this paper, various window profiles, such as rectangular, triangular, Hamming, Hanning, and Blackman etc., have been investigated in detail, regarding their effect on the generated spectrograms, such as joint time-frequency resolution ΔtΔw, the sidelobe amplitude attenuation etc.. All of these windows can be synthesized in a photorefractive crystal by angular multiplexing holographic technique, which renders the system more adaptive. Experimental results are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, P; Tsai, Y; Nien, H
2015-06-15
Purpose: Four dimensional computed tomography (4DCT) scans reliably record whole respiratory phase and generate internal target volumes (ITV) for radiotherapy planning. However, image guiding with cone-beam computed tomography (CBCT) cannot acquire all or specific respiratory phases. This study was designed to investigate the correlation between average CT and Maximum Intensity Projection (MIP) from 4DCT and CBCT. Methods: Retrospective respiratory gating were performed by GE Discovery CT590 RT. 4DCT and CBCT data from CRIS Dynamic Thorax Phantom with simulated breathing mode were analyzed. The lung tissue equivalent material encompassed 3 cm sphere tissue equivalent material. Simulated breathing cycle period was setmore » as 4 seconds, 5 seconds and 6 seconds for representing variation of patient breathing cycle time, and the sphere material moved toward inferior and superior direction with 1 cm amplitude simulating lung tumor motion during respiration. Results: Under lung window, the volume ratio of CBCT scans to ITVs derived from 10 phases average scans was 1.00 ± 0.02, and 1.03 ± 0.03 for ratio of CBCT scans to MIP scans. Under abdomen window, the ratio of CBCT scans to ITVs derived from 10 phases average scans was 0.39 ± 0.06, and 0.06 ± 0.00 for ratio of CBCT scans to MIP scans. There was a significant difference between lung window Result and abdomen window Result. For reducing image guiding uncertainty, CBCT window was set with width 500 and level-250. The ratio of CBCT scans to ITVs derived from 4 phases average scans with abdomen window was 1.19 ± 0.02, and 1.06 ± 0.01 for ratio of CBCT to MIP scans. Conclusion: CBCT images with suitable window width and level can efficiently reduce image guiding uncertainty for patient with mobile tumor. By our setting, we can match motion tumor to gating tumor location on planning CT more accurately neglecting other motion artifacts during CBCT scans.« less
Noise normalization and windowing functions for VALIDAR in wind parameter estimation
NASA Astrophysics Data System (ADS)
Beyon, Jeffrey Y.; Koch, Grady J.; Li, Zhiwen
2006-05-01
The wind parameter estimates from a state-of-the-art 2-μm coherent lidar system located at NASA Langley, Virginia, named VALIDAR (validation lidar), were compared after normalizing the noise by its estimated power spectra via the periodogram and the linear predictive coding (LPC) scheme. The power spectra and the Doppler shift estimates were the main parameter estimates for comparison. Different types of windowing functions were implemented in VALIDAR data processing algorithm and their impact on the wind parameter estimates was observed. Time and frequency independent windowing functions such as Rectangular, Hanning, and Kaiser-Bessel and time and frequency dependent apodized windowing function were compared. The briefing of current nonlinear algorithm development for Doppler shift correction subsequently follows.
Proper Installation of Replacement Windows | Efficient Windows
. Quality installation is critical for an airtight fit and a continuous water barrier to prevent drafts , water damage and condensation. The complexity of the installation depends on whether you are considering and specifications. Install level, plumb, and square. Install water tight: water must be prevented
Single molecule optical measurements of orientation and rotations of biological macromolecules.
Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E
2016-11-22
Subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measurement of their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, review the relevant types of probes and labeling techniques, and highlight the advantages and disadvantages of these technologies for addressing specific inquiries.
High-impact resistance optical sensor windows
NASA Astrophysics Data System (ADS)
Askinazi, Joel; Ceccorulli, Mark L.; Goldman, Lee
2011-06-01
Recent field experience with optical sensor windows on both ground and airborne platforms has shown a significant increase in window fracturing from foreign object debris (FOD) impacts and as a by-product of asymmetrical warfare. Common optical sensor window materials such as borosilicate glass do not typically have high impact resistance. Emerging advanced optical window materials such as aluminum oxynitride offer the potential for a significant improvement in FOD impact resistance due to their superior surface hardness, fracture toughness and strength properties. To confirm the potential impact resistance improvement achievable with these emerging materials, Goodrich ISR Systems in collaboration with Surmet Corporation undertook a set of comparative FOD impact tests of optical sensor windows made from borosilicate glass and from aluminum oxynitride. It was demonstrated that the aluminum oxynitride windows could withstand up to three times the FOD impact velocity (as compared with borosilicate glass) before fracture would occur. These highly encouraging test results confirm the utility of this new highly viable window solution for use on new ground and airborne window multispectral applications as well as a retrofit to current production windows. We believe that this solution can go a long way to significantly reducing the frequency and life cycle cost of window replacement.
Application of MEMS-based x-ray optics as tuneable nanosecond choppers
NASA Astrophysics Data System (ADS)
Chen, Pice; Walko, Donald A.; Jung, Il Woong; Li, Zhilong; Gao, Ya; Shenoy, Gopal K.; Lopez, Daniel; Wang, Jin
2017-08-01
Time-resolved synchrotron x-ray measurements often rely on using a mechanical chopper to isolate a set of x-ray pulses. We have started the development of micro electromechanical systems (MEMS)-based x-ray optics, as an alternate method to manipulate x-ray beams. In the application of x-ray pulse isolation, we recently achieved a pulse-picking time window of half a nanosecond, which is more than 100 times faster than mechanical choppers can achieve. The MEMS device consists of a comb-drive silicon micromirror, designed for efficiently diffracting an x-ray beam during oscillation. The MEMS devices were operated in Bragg geometry and their oscillation was synchronized to x-ray pulses, with a frequency matching subharmonics of the cycling frequency of x-ray pulses. The microscale structure of the silicon mirror in terms of the curvature and the quality of crystallinity ensures a narrow angular spread of the Bragg reflection. With the discussion of factors determining the diffractive time window, this report showed our approaches to narrow down the time window to half a nanosecond. The short diffractive time window will allow us to select single x-ray pulse out of a train of pulses from synchrotron radiation facilities.
Nguyen, Duc-Loc; Wimberley, Catriona; Truillet, Charles; Jego, Benoit; Caillé, Fabien; Pottier, Géraldine; Boisgard, Raphaël; Buvat, Irène; Bouilleret, Viviane
2018-06-01
Mesiotemporal lobe epilepsy is the most common type of drug-resistant partial epilepsy, with a specific history that often begins with status epilepticus due to various neurological insults followed by a silent period. During this period, before the first seizure occurs, a specific lesion develops, described as unilateral hippocampal sclerosis (HS). It is still challenging to determine which drugs, administered at which time point, will be most effective during the formation of this epileptic process. Neuroinflammation plays an important role in pathophysiological mechanisms in epilepsy, and therefore brain inflammation biomarkers such as translocator protein 18 kDa (TSPO) can be potent epilepsy biomarkers. TSPO is associated with reactive astrocytes and microglia. A unilateral intrahippocampal kainate injection mouse model can reproduce the defining features of human temporal lobe epilepsy with unilateral HS and the pattern of chronic pharmacoresistant temporal seizures. We hypothesized that longitudinal imaging using TSPO positron emission tomography (PET) with 18 F-DPA-714 could identify optimal treatment windows in a mouse model during the formation of HS. The model was induced into the right dorsal hippocampus of male C57/Bl6 mice. Micro-PET/computed tomographic scanning was performed before model induction and along the development of the HS at 7 days, 14 days, 1 month, and 6 months. In vitro autoradiography and immunohistofluorescence were performed on additional mice at each time point. TSPO PET uptake reached peak at 7 days and mostly related to microglial activation, whereas after 14 days, reactive astrocytes were shown to be the main cells expressing TSPO, reflected by a continuing increased PET uptake. TSPO-targeted PET is a highly potent longitudinal biomarker of epilepsy and could be of interest to determine the therapeutic windows in epilepsy and to monitor response to treatment. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... impact of eliminating the correction window from the electronic grant application submission process on... process a temporary error correction window to ensure a smooth and successful transition for applicants. This window provides applicants a period of time beyond the grant application due date to correct any...
Evaluation of SNS Beamline Shielding Configurations using MCNPX Accelerated by ADVANTG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Risner, Joel M; Johnson, Seth R.; Remec, Igor
2015-01-01
Shielding analyses for the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory pose significant computational challenges, including highly anisotropic high-energy sources, a combination of deep penetration shielding and an unshielded beamline, and a desire to obtain well-converged nearly global solutions for mapping of predicted radiation fields. The majority of these analyses have been performed using MCNPX with manually generated variance reduction parameters (source biasing and cell-based splitting and Russian roulette) that were largely based on the analyst's insight into the problem specifics. Development of the variance reduction parameters required extensive analyst time, and was often tailored to specific portionsmore » of the model phase space. We previously applied a developmental version of the ADVANTG code to an SNS beamline study to perform a hybrid deterministic/Monte Carlo analysis and showed that we could obtain nearly global Monte Carlo solutions with essentially uniform relative errors for mesh tallies that cover extensive portions of the model with typical voxel spacing of a few centimeters. The use of weight window maps and consistent biased sources produced using the FW-CADIS methodology in ADVANTG allowed us to obtain these solutions using substantially less computer time than the previous cell-based splitting approach. While those results were promising, the process of using the developmental version of ADVANTG was somewhat laborious, requiring user-developed Python scripts to drive much of the analysis sequence. In addition, limitations imposed by the size of weight-window files in MCNPX necessitated the use of relatively coarse spatial and energy discretization for the deterministic Denovo calculations that we used to generate the variance reduction parameters. We recently applied the production version of ADVANTG to this beamline analysis, which substantially streamlined the analysis process. We also tested importance function collapsing (in space and energy) capabilities in ADVANTG. These changes, along with the support for parallel Denovo calculations using the current version of ADVANTG, give us the capability to improve the fidelity of the deterministic portion of the hybrid analysis sequence, obtain improved weight-window maps, and reduce both the analyst and computational time required for the analysis process.« less
The twilight zone: ambient light levels trigger activity in primitive ants.
Narendra, Ajay; Reid, Samuel F; Hemmi, Jan M
2010-05-22
Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables. We show that the Australian bull ant, Myrmecia pyriformis, starts foraging only during evening twilight throughout the year. The onset occurs neither at a specific temperature nor at a specific time relative to sunset, but at a specific ambient light intensity. Foraging onset occurs later when light intensities at sunset are brighter than normal or earlier when light intensities at sunset are darker than normal. By modifying ambient light intensity experimentally, we provide clear evidence that ants indeed measure light levels and do not rely on an internal rhythm to begin foraging. We suggest that the reason for restricting the foraging onset to twilight and measuring light intensity to trigger activity is to optimize the trade-off between predation risk and ease of navigation.
The twilight zone: ambient light levels trigger activity in primitive ants
Narendra, Ajay; Reid, Samuel F.; Hemmi, Jan M.
2010-01-01
Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables. We show that the Australian bull ant, Myrmecia pyriformis, starts foraging only during evening twilight throughout the year. The onset occurs neither at a specific temperature nor at a specific time relative to sunset, but at a specific ambient light intensity. Foraging onset occurs later when light intensities at sunset are brighter than normal or earlier when light intensities at sunset are darker than normal. By modifying ambient light intensity experimentally, we provide clear evidence that ants indeed measure light levels and do not rely on an internal rhythm to begin foraging. We suggest that the reason for restricting the foraging onset to twilight and measuring light intensity to trigger activity is to optimize the trade-off between predation risk and ease of navigation. PMID:20129978
Human Mars Mission: Launch Window from Earth Orbit. Pt. 1
NASA Technical Reports Server (NTRS)
Young, Archie
1999-01-01
The determination of orbital window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to the earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a delta V penalty. Usually, because of the delta V penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: 1) One impulsive maneuver from a Highly Elliptical Orbit (HEO); 2) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO); 3) One impulsive maneuver from a Low Earth Orbit (LEO); 4) Two impulsive maneuvers form LEO; and 5) Three impulsive maneuvers form LEO. The formulation of these five different launch window modes provides a rapid means of generating realistic parametric data for space exploration studies. Also the formulation provides vector and geometrical data sufficient for use as a good starting point in detail trajectory analysis based on calculus of variations, steepest descent, or parameter optimization program techniques.
Human Exploration Missions Study Launch Window from Earth Orbit
NASA Technical Reports Server (NTRS)
Young, Archie
2001-01-01
The determination of orbital launch window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a Delta(V) penalty. Usually, because of the Delta(V) penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: (1) One impulsive maneuver from a Low Earth Orbit (LEO), (2) Two impulsive maneuvers from LEO, (3) Three impulsive maneuvers from LEO, (4) One impulsive maneuvers from a Highly Elliptical Orbit (HEO), (5) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO) The formulation of these five different launch window modes provides a rapid means of generating realistic parametric data for space exploration studies. Also the formulation provides vector and geometrical data sufficient for use as a good starting point in detail trajectory analysis based on calculus of variations, steepest descent, or parameter optimization program techniques.
GlastCam: A Telemetry-Driven Spacecraft Visualization Tool
NASA Technical Reports Server (NTRS)
Stoneking, Eric T.; Tsai, Dean
2009-01-01
Developed for the GLAST project, which is now the Fermi Gamma-ray Space Telescope, GlastCam software ingests telemetry from the Integrated Test and Operations System (ITOS) and generates four graphical displays of geometric properties in real time, allowing visual assessment of the attitude, configuration, position, and various cross-checks. Four windows are displayed: a "cam" window shows a 3D view of the satellite; a second window shows the standard position plot of the satellite on a Mercator map of the Earth; a third window displays star tracker fields of view, showing which stars are visible from the spacecraft in order to verify star tracking; and the fourth window depicts
NASA Astrophysics Data System (ADS)
Taira, T.; Kato, A.
2013-12-01
A high-resolution Vp/Vs ratio estimate is one of the key parameters to understand spatial variations of composition and physical state within the Earth. Lin and Shearer (2007, BSSA) recently developed a methodology to obtain local Vp/Vs ratios in individual similar earthquake clusters, based on P- and S-wave differential times. A waveform cross-correlation approach is typically employed to measure those differential times for pairs of seismograms from similar earthquakes clusters, at narrow time windows around the direct P and S waves. This approach effectively collects P- and S-wave differential times and however requires the robust P- and S-wave time windows that are extracted based on either manually or automatically picked P- and S-phases. We present another technique to estimate P- and S-wave differential times by exploiting temporal properties of delayed time as a function of elapsed time on the seismograms with a moving-window cross-correlation analysis (e.g., Snieder, 2002, Phys. Rev. E; Niu et al. 2003, Nature). Our approach is based on the principle that the delayed time for the direct S wave differs from that for the direct P wave. Two seismograms aligned by the direct P waves from a pair of similar earthquakes yield that delayed times become zero around the direct P wave. In contrast, delayed times obtained from time windows including the direct S wave have non-zero value. Our approach, in principle, is capable of measuring both P- and S-wave differential times from single-component seismograms. In an ideal case, the temporal evolution of delayed time becomes a step function with its discontinuity at the onset of the direct S wave. The offset in the resulting step function would be the S-wave differential time, relative to the P-wave differential time as the two waveforms are aligned by the direct P wave. We apply our moving-window cross-correlation technique to the two different data sets collected at: 1) the Wakayama district, Japan and 2) the Geysers geothermal field, California. The both target areas are characterized by earthquake swarms that provide a number of similar events clusters. We use the following automated procedure to systematically analyze the two data sets: 1) the identification of the direct P arrivals by using an Akaike Information Criterion based phase picking algorithm introduced by Zhang and Thurber (2003, BSSA), 2) the waveform alignment by the P-wave with a waveform cross-correlation to obtain P-wave differential time, 3) the moving-time window analysis to estimate the S-differential time. Kato et al. (2010, GRL) have estimated the Vp/Vs ratios for a few similar earthquake clusters from the Wakayama data set, by a conventional approach to obtain differential times. We find that the resulting Vp/Vs ratios from our approach for the same earthquake clusters are comparable with those obtained from Kato et al. (2010, GRL). We show that the moving-window cross-correlation technique effectively measures both P- and S-wave differential times for the seismograms in which the clear P and S phases are not observed. We will show spatial distributions in Vp/Vs ratios in our two target areas.
Rosales, Francisco J.; Reznick, J. Steven; Zeisel, Steven H.
2009-01-01
The pre-school years (i.e., 1–5 years of age) is a time of rapid and dramatic postnatal brain development, i.e., neural plasticity, and of fundamental acquisition of cognitive development i.e., working memory, attention and inhibitory control. Also, it is a time of transition from a direct maternal mediation/selection of diet-based nutrition to food selection that is more based on self-selection and self-gratification. However, there have been fewer published studies in pre-school children than in infants or school-aged children that examined the role of nutrition in brain/mental development (i.e., 125 studies vs. 232 and 303 studies, respectively during the last 28 years, Figure 1). This may arise because of age-related variability, in terms of individual differences in temperament, linguistic ability, and patterns of neural activity that may affect assessment of neural and cognitive development in pre-school children. In this review, we suggest several approaches for assessing brain function in children that can be refined. It would be desirable if the discipline developed some common elements to be included in future studies of diet and brain function, with the idea that they would complement more targeted measures based on time of exposure and understanding of data from animal models. Underlining this approach is the concepts of “window of sensitivity” during which nutrients may affect postnatal neural development: investigators and expert panels need to specifically look for region-specific changes and do so with understanding of the likely time window during which the nutrient was, or was not available. (244 words) PMID:19761650
Variability in functional brain networks predicts expertise during action observation.
Amoruso, Lucía; Ibáñez, Agustín; Fonseca, Bruno; Gadea, Sebastián; Sedeño, Lucas; Sigman, Mariano; García, Adolfo M; Fraiman, Ricardo; Fraiman, Daniel
2017-02-01
Observing an action performed by another individual activates, in the observer, similar circuits as those involved in the actual execution of that action. This activation is modulated by prior experience; indeed, sustained training in a particular motor domain leads to structural and functional changes in critical brain areas. Here, we capitalized on a novel graph-theory approach to electroencephalographic data (Fraiman et al., 2016) to test whether variability in functional brain networks implicated in Tango observation can discriminate between groups differing in their level of expertise. We found that experts and beginners significantly differed in the functional organization of task-relevant networks. Specifically, networks in expert Tango dancers exhibited less variability and a more robust functional architecture. Notably, these expertise-dependent effects were captured within networks derived from electrophysiological brain activity recorded in a very short time window (2s). In brief, variability in the organization of task-related networks seems to be a highly sensitive indicator of long-lasting training effects. This finding opens new methodological and theoretical windows to explore the impact of domain-specific expertise on brain plasticity, while highlighting variability as a fruitful measure in neuroimaging research. Copyright © 2016 Elsevier Inc. All rights reserved.
Windows Into the Real World From a Virtual Globe
NASA Astrophysics Data System (ADS)
Rich, J.; Urban-Rich, J.
2007-12-01
Virtual globes such as Google Earth can be great tools for learning about the geographical variation of the earth. The key to virtual globes is the use of satellite imagery to provide a highly accurate view of the earth's surface. However, because the images are not updated regularly, variations in climate and vegetation over time can not be easily seen. In order to enhance the view of the earth and observe these changes by region and over time we are working to add near real time "windows" into the real world from a virtual globe. For the past 4 years we have been installing web cameras in areas of the world that will provide long term monitoring of global changes. By archiving hourly images from arctic, temperate and tropical regions we are creating a visual data set that is already beginning to tell the story of climate variability. The cameras are currently installed in 10 elementary schools in 3 countries and show the student's view out each window. The Windows Around the World program (http://www.WindowsAroundTheWorld.org) uses the images from these cameras to help students gain a better understanding of earth process and variability in climate and vegetation between different regions and over time. Previously we have used standard web based technologies such as DHTML and AJAX to provide near real-time access to these images and also provide enhanced functionality such as dynamic time lapse movies that allow users to see changes over months, days or hours up to the current hour (http://www.windowsaroundtheworld.org/north_america.aspx). We have integrated the camera images from Windows Around the World into Google Earth. Through network links and models we are creating a way for students to "fly" to another school in the program and see what the current view is out the window. By using a model as a screen, the image can be viewed from the same direction as the students who are sitting in a classroom at the participating school. Once at the school, visiting students can move around the area in three dimensions and gain a better understanding of what they are seeing out the window. Currently time-lapse images can be viewed at a lower resolution for all schools on the globe or when flying into an individual school, higher resolution time-lapse images can be seen. The observation of shadows, precipitation, movement of the sun and changes in vegetation allows the viewer to gain a better understanding of how the earth works and how the environment changes between regions and over time. World.org
Comprehensive, Multi-Source Cyber-Security Events Data Set
Kent, Alexander D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-05-21
This data set represents 58 consecutive days of de-identified event data collected from five sources within Los Alamos National Laboratory’s corporate, internal computer network. The data sources include Windows-based authentication events from both individual computers and centralized Active Directory domain controller servers; process start and stop events from individual Windows computers; Domain Name Service (DNS) lookups as collected on internal DNS servers; network flow data as collected on at several key router locations; and a set of well-defined red teaming events that present bad behavior within the 58 days. In total, the data set is approximately 12 gigabytes compressed across the five data elements and presents 1,648,275,307 events in total for 12,425 users, 17,684 computers, and 62,974 processes. Specific users that are well known system related (SYSTEM, Local Service) were not de-identified though any well-known administrators account were still de-identified. In the network flow data, well-known ports (e.g. 80, 443, etc) were not de-identified. All other users, computers, process, ports, times, and other details were de-identified as a unified set across all the data elements (e.g. U1 is the same U1 in all of the data). The specific timeframe used is not disclosed for security purposes. In addition, no data that allows association outside of LANL’s network is included. All data starts with a time epoch of 1 using a time resolution of 1 second. In the authentication data, failed authentication events are only included for users that had a successful authentication event somewhere within the data set.
Reducing Sensor Noise in MEG and EEG Recordings Using Oversampled Temporal Projection.
Larson, Eric; Taulu, Samu
2018-05-01
Here, we review the theory of suppression of spatially uncorrelated, sensor-specific noise in electro- and magentoencephalography (EEG and MEG) arrays, and introduce a novel method for suppression. Our method requires only that the signals of interest are spatially oversampled, which is a reasonable assumption for many EEG and MEG systems. Our method is based on a leave-one-out procedure using overlapping temporal windows in a mathematical framework to project spatially uncorrelated noise in the temporal domain. This method, termed "oversampled temporal projection" (OTP), has four advantages over existing methods. First, sparse channel-specific artifacts are suppressed while limiting mixing with other channels, whereas existing linear, time-invariant spatial operators can spread such artifacts to other channels with a spatial distribution which can be mistaken for one produced by an electrophysiological source. Second, OTP minimizes distortion of the spatial configuration of the data. During source localization (e.g., dipole fitting), many spatial methods require corresponding modification of the forward model to avoid bias, while OTP does not. Third, noise suppression factors at the sensor level are maintained during source localization, whereas bias compensation removes the denoising benefit for spatial methods that require such compensation. Fourth, OTP uses a time-window duration parameter to control the tradeoff between noise suppression and adaptation to time-varying sensor characteristics. OTP efficiently optimizes noise suppression performance while controlling for spatial bias of the signal of interest. This is important in applications where sensor noise significantly limits the signal-to-noise ratio, such as high-frequency brain oscillations.
Liebherr, Magnus; Weiland-Breckle, Hanna; Grewe, Tanja; Schumacher, Petra B
2018-04-01
We often walk around when we have to think about something, but suddenly stop when we are confronted with a demanding cognitive task, such as calculating 1540*24. While previous neurophysiological research investigated cognitive and motor performance separately, findings that combine both are rare. To get a deeper understanding of the influence of motor demands as well as the difficulty of a simultaneously performed cognitive task, we investigated 20 healthy individuals. Participants performed two cognitive tasks with different levels of difficulty while sitting or standing on one leg. In addition to behavioral data, we recorded the electroencephalogram from 26Ag/AgCI scalp electrodes. The critical time-windows, predefined by visual inspection, yielded an early (200-300 ms, P2) and a subsequent positivity (350-500 ms, P3). Statistical analysis of the early time window registered a motor × cognition interaction. Resolution of this interaction revealed an effect of the cognitive task in the one-legged stance motor condition, with a more pronounced positivity for the difficult task. No significant differences between cognitive tasks emerged for the simple motor condition. The time-window between 350 and 500 ms registered main effects of the motor task and a trend for the cognitive task. While the influence of cognitive task difficulty (in the P3) is in accordance with previous studies, the motor task effect is specific to one-legged stance (cf. no effects for running in previous research). The motor-cognition interaction found in the P2 indicates that the more difficult motor task (one-legged stance) facilitates cognitive task performance. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Lowe, Phyllis; And Others
This module, one of ten competency based modules developed for vocational home economics teachers, is based on a job cluster in window treatment services. It can be used for various types of learners such as the handicapped, slowlearners, high school students, and adults including senior citizens. Focusing on the specific job title of window…
Time course of word production in fast and slow speakers: a high density ERP topographic study.
Laganaro, Marina; Valente, Andrea; Perret, Cyril
2012-02-15
The transformation of an abstract concept into an articulated word is achieved through a series of encoding processes, which time course has been repeatedly investigated in the psycholinguistic and neuroimaging literature on single word production. The estimates of the time course issued from previous investigations represent the timing of process duration for mean processing speed: as production speed varies significantly across speakers, a crucial question is how the timing of encoding processing varies with speed. Here we investigated whether between-subjects variability in the speed of speech production is distributed along all encoding processes or if it is accounted for by a specific processing stage. We analysed event-related electroencephalographical (ERP) correlates during overt picture naming in 45 subjects divided into three speed subgroups according to their production latencies. Production speed modulated waveform amplitudes in the time window ranging from about 200 to 350 ms after picture presentation and the duration of a stable electrophysiological spatial configuration in the same time period. The remaining time windows from picture onset to 200 ms before articulation were unaffected by speed. By contrast, the manipulation of a psycholinguistic variable, word age-of-acquisition, modulated ERPs in all speed subgroups in a different and later time period, starting at around 400 ms after picture presentation, associated with phonological encoding processes. These results indicate that the between-subject variability in the speed of single word production is principally accounted for by the timing of a stable electrophysiological activity in the 200-350 ms time period, presumably associated with lexical selection. Copyright © 2011 Elsevier Inc. All rights reserved.
Time Is Brain: The Stroke Theory of Relativity.
Gomez, Camilo R
2018-04-25
Since the introduction of the philosophical tenet "Time is Brain!," multiple lines of research have demonstrated that other factors contribute to the degree of ischemic injury at any one point in time, and it is now clear that the therapeutic window of acute ischemic stroke is more protracted than it was first suspected. To define a more realistic relationship between time and the ischemic process, we used computational modeling to assess how these 2 variables are affected by collateral circulatory competence. Starting from the premise that the expression "Time=Brain" is mathematically false, we reviewed the existing literature on the attributes of cerebral ischemia over time, with particular attention to relevant clinical parameters, and the effect of different variables, particularly collateral circulation, on the time-ischemia relationship. We used this information to construct a theoretical computational model and applied it to categorically different yet abnormal cerebral perfusion scenarios, allowing comparison of their behavior both overall (i.e., final infarct volume) and in real-time (i.e., instantaneous infarct growth rate). Optimal collateral circulatory competence was predictably associated with slower infarct growth rates and prolongation of therapeutic window. Modeling of identifiable specific types of perfusion maps allows forecasting of the fate of the ischemic process over time. Distinct cerebral perfusion map patterns can be readily identified in patients with acute ischemic stroke. These patterns have inherently different behaviors relative to the time-ischemia construct, allowing the possibility of improving parsing and treatment allocation. It is clearly evident that the effect of time on the ischemic process is relative. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Seismic signal time-frequency analysis based on multi-directional window using greedy strategy
NASA Astrophysics Data System (ADS)
Chen, Yingpin; Peng, Zhenming; Cheng, Zhuyuan; Tian, Lin
2017-08-01
Wigner-Ville distribution (WVD) is an important time-frequency analysis technology with a high energy distribution in seismic signal processing. However, it is interfered by many cross terms. To suppress the cross terms of the WVD and keep the concentration of its high energy distribution, an adaptive multi-directional filtering window in the ambiguity domain is proposed. This begins with the relationship of the Cohen distribution and the Gabor transform combining the greedy strategy and the rotational invariance property of the fractional Fourier transform in order to propose the multi-directional window, which extends the one-dimensional, one directional, optimal window function of the optimal fractional Gabor transform (OFrGT) to a two-dimensional, multi-directional window in the ambiguity domain. In this way, the multi-directional window matches the main auto terms of the WVD more precisely. Using the greedy strategy, the proposed window takes into account the optimal and other suboptimal directions, which also solves the problem of the OFrGT, called the local concentration phenomenon, when encountering a multi-component signal. Experiments on different types of both the signal models and the real seismic signals reveal that the proposed window can overcome the drawbacks of the WVD and the OFrGT mentioned above. Finally, the proposed method is applied to a seismic signal's spectral decomposition. The results show that the proposed method can explore the space distribution of a reservoir more precisely.
Air transparent soundproof window
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sang-Hoon, E-mail: shkim@mmu.ac.kr; Lee, Seong-Hyun
2014-11-15
A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. Themore » sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.« less
Kairisto, V; Poola, A
1995-01-01
GraphROC for Windows is a program for clinical test evaluation. It was designed for the handling of large datasets obtained from clinical laboratory databases. In the user interface, graphical and numerical presentations are combined. For simplicity, numerical data is not shown unless requested. Relevant numbers can be "picked up" from the graph by simple mouse operations. Reference distributions can be displayed by using automatically optimized bin widths. Any percentile of the distribution with corresponding confidence limits can be chosen for display. In sensitivity-specificity analysis, both illness- and health-related distributions are shown in the same graph. The following data for any cutoff limit can be shown in a separate click window: clinical sensitivity and specificity with corresponding confidence limits, positive and negative likelihood ratios, positive and negative predictive values and efficiency. Predictive values and clinical efficiency of the cutoff limit can be updated for any prior probability of disease. Receiver Operating Characteristics (ROC) curves can be generated and combined into the same graph for comparison of several different tests. The area under the curve with corresponding confidence interval is calculated for each ROC curve. Numerical results of analyses and graphs can be printed or exported to other Microsoft Windows programs. GraphROC for Windows also employs a new method, developed by us, for the indirect estimation of health-related limits and change limits from mixed distributions of clinical laboratory data.
Alternative Fuels Data Center: Schwan's Home Service Delivers With
distribute products across the United States. For information about this project, contact Twin Cities Clean Cities Coalition. Download QuickTime Video QuickTime (.mov) Download Windows Media Video Windows Media (.wmv) Video Download Help Text version See more videos provided by Clean Cities TV and FuelEconomy.gov
Displaying Special Characters and Symbols in Computer-Controlled Reaction Time Experiments.
ERIC Educational Resources Information Center
Friel, Brian M.; Kennison, Shelia M.
A procedure for using MEL2 (Version 2.0 of Microcomputer Experimental Laboratory) and FontWINDOW to present special characters and symbols in computer-controlled reaction time experiments is described. The procedure permits more convenience and flexibility than in tachistocopic and projection techniques. FontWINDOW allows researchers to design…
Attosecond light sources in the water window
NASA Astrophysics Data System (ADS)
Ren, Xiaoming; Li, Jie; Yin, Yanchun; Zhao, Kun; Chew, Andrew; Wang, Yang; Hu, Shuyuan; Cheng, Yan; Cunningham, Eric; Wu, Yi; Chini, Michael; Chang, Zenghu
2018-02-01
As a compact and burgeoning alternative to synchrotron radiation and free-electron lasers, high harmonic generation (HHG) has proven its superiority in static and time-resolved extreme ultraviolet spectroscopy for the past two decades and has recently gained many interests and successes in generating soft x-ray emissions covering the biologically important water window spectral region. Unlike synchrotron and free-electron sources, which suffer from relatively long pulse width or large time jitter, soft x-ray sources from HHG could offer attosecond time resolution and be synchronized with their driving field to investigate time-resolved near edge absorption spectroscopy, which could reveal rich structural and dynamical information of the interrogated samples. In this paper, we review recent progresses on generating and characterizing attosecond light sources in the water window region. We show our development of an energetic, two-cycle, carrier-envelope phase stable laser source at 1.7 μm and our achievement in producing a 53 as soft x-ray pulse covering the carbon K-edge in the water window. Such source paves the ways for the next generation x-ray spectroscopy with unprecedented temporal resolution.
Ultrasound-guided identification of cardiac imaging windows.
Liu, Garry; Qi, Xiu-Ling; Robert, Normand; Dick, Alexander J; Wright, Graham A
2012-06-01
Currently, the use of cine magnetic resonance imaging (MRI) to identify cardiac quiescent periods relative to the electrocardiogram (ECG) signal is insufficient for producing submillimeter-resolution coronary MR angiography (MRA) images. In this work, the authors perform a time series comparison between tissue Doppler echocardiograms of the interventricular septum (IVS) and concurrent biplane x-ray angiograms. Our results indicate very close agreement between the diastasis gating windows identified by both the IVS and x-ray techniques. Seven cath lab patients undergoing diagnostic angiograms were simultaneously scanned during a breath hold by ultrasound and biplane x-ray for six to eight heartbeats. The heart rate of each patient was stable. Dye was injected into either the left or right-coronary vasculature. The IVS was imaged using color tissue Doppler in an apical four-chamber view. Diastasis was estimated on the IVS velocity curve. On the biplane angiograms, proximal, mid, and distal regions were identified on the coronary artery (CA). Frame by frame correlation was used to derive displacement, and then velocity, for each region. The quiescent periods for a CA and its subsegments were estimated based on velocity. Using Pearson's correlation coefficient and Bland-Altman analysis, the authors compared the start and end times of the diastasis windows as estimated from the IVS and CA velocities. The authors also estimated the vessel blur across the diastasis windows of multiple sequential heartbeats of each patient. In total, 17 heartbeats were analyzed. The range of heart rate observed across patients was 47-79 beats per minute (bpm) with a mean of 57 bpm. Significant correlations (R > 0.99; p < 0.01) were observed between the IVS and x-ray techniques for the identification of the start and end times of diastasis windows. The mean difference in the starting times between IVS and CA quiescent windows was -12.0 ms. The mean difference in end times between IVS and CA quiescent windows was -3.5 ms. In contrast, the correlation between RR interval and both the start and duration of the x-ray gating windows were relatively weaker: R = 0.63 (p = 0.13) and R = 0.86 (p = 0.01). For IVS gating windows, the average estimated vessel blurs during single and multiple heartbeats were 0.5 and 0.66 mm, respectively. For x-ray gating windows, the corresponding values were 0.26 and 0.44 mm, respectively. In this study, the authors showed that IVS velocity can be used to identify periods of diastasis for coronary arteries. Despite variability in mid-diastolic rest positions over multiple steady rate heartbeats, vessel blurring of 0.5-1 mm was found to be achievable using the IVS gating technique. The authors envision this leading to a new cardiac gating system that, compared with conventional ECG gating, provides better resolution and shorter scan times for coronary MRA. © 2012 American Association of Physicists in Medicine.
Image-guided adaptive gating of lung cancer radiotherapy: a computer simulation study
NASA Astrophysics Data System (ADS)
Aristophanous, Michalis; Rottmann, Joerg; Park, Sang-June; Nishioka, Seiko; Shirato, Hiroki; Berbeco, Ross I.
2010-08-01
The purpose of this study is to investigate the effect that image-guided adaptation of the gating window during treatment could have on the residual tumor motion, by simulating different gated radiotherapy techniques. There are three separate components of this simulation: (1) the 'Hokkaido Data', which are previously measured 3D data of lung tumor motion tracks and the corresponding 1D respiratory signals obtained during the entire ungated radiotherapy treatments of eight patients, (2) the respiratory gating protocol at our institution and the imaging performed under that protocol and (3) the actual simulation in which the Hokkaido Data are used to select tumor position information that could have been collected based on the imaging performed under our gating protocol. We simulated treatments with a fixed gating window and a gating window that is updated during treatment. The patient data were divided into different fractions, each with continuous acquisitions longer than 2 min. In accordance to the imaging performed under our gating protocol, we assume that we have tumor position information for the first 15 s of treatment, obtained from kV fluoroscopy, and for the rest of the fractions the tumor position is only available during the beam-on time from MV imaging. The gating window was set according to the information obtained from the first 15 s such that the residual motion was less than 3 mm. For the fixed gating window technique the gate remained the same for the entire treatment, while for the adaptive technique the range of the tumor motion during beam-on time was measured and used to adapt the gating window to keep the residual motion below 3 mm. The algorithm used to adapt the gating window is described. The residual tumor motion inside the gating window was reduced on average by 24% for the patients with regular breathing patterns and the difference was statistically significant (p-value = 0.01). The magnitude of the residual tumor motion depended on the regularity of the breathing pattern suggesting that image-guided adaptive gating should be combined with breath coaching. The adaptive gating window technique was able to track the exhale position of the breathing cycle quite successfully. Out of a total of 53 fractions the duty cycle was greater than 20% for 42 fractions for the fixed gating window technique and for 39 fractions for the adaptive gating window technique. The results of this study suggest that real-time updating of the gating window can result in reliably low residual tumor motion and therefore can facilitate safe margin reduction.
Multi-Window Controllers for Autonomous Space Systems
NASA Technical Reports Server (NTRS)
Lurie, B, J.; Hadaegh, F. Y.
1997-01-01
Multi-window controllers select between elementary linear controllers using nonlinear windows based on the amplitude and frequency content of the feedback error. The controllers are relatively simple to implement and perform much better than linear controllers. The commanders for such controllers only order the destination point and are freed from generating the command time-profiles. The robotic missions rely heavily on the tasks of acquisition and tracking. For autonomous and optimal control of the spacecraft, the control bandwidth must be larger while the feedback can (and, therefore, must) be reduced.. Combining linear compensators via multi-window nonlinear summer guarantees minimum phase character of the combined transfer function. It is shown that the solution may require using several parallel branches and windows. Several examples of multi-window nonlinear controller applications are presented.
De Silva, Anurika Priyanjali; Moreno-Betancur, Margarita; De Livera, Alysha Madhu; Lee, Katherine Jane; Simpson, Julie Anne
2017-07-25
Missing data is a common problem in epidemiological studies, and is particularly prominent in longitudinal data, which involve multiple waves of data collection. Traditional multiple imputation (MI) methods (fully conditional specification (FCS) and multivariate normal imputation (MVNI)) treat repeated measurements of the same time-dependent variable as just another 'distinct' variable for imputation and therefore do not make the most of the longitudinal structure of the data. Only a few studies have explored extensions to the standard approaches to account for the temporal structure of longitudinal data. One suggestion is the two-fold fully conditional specification (two-fold FCS) algorithm, which restricts the imputation of a time-dependent variable to time blocks where the imputation model includes measurements taken at the specified and adjacent times. To date, no study has investigated the performance of two-fold FCS and standard MI methods for handling missing data in a time-varying covariate with a non-linear trajectory over time - a commonly encountered scenario in epidemiological studies. We simulated 1000 datasets of 5000 individuals based on the Longitudinal Study of Australian Children (LSAC). Three missing data mechanisms: missing completely at random (MCAR), and a weak and a strong missing at random (MAR) scenarios were used to impose missingness on body mass index (BMI) for age z-scores; a continuous time-varying exposure variable with a non-linear trajectory over time. We evaluated the performance of FCS, MVNI, and two-fold FCS for handling up to 50% of missing data when assessing the association between childhood obesity and sleep problems. The standard two-fold FCS produced slightly more biased and less precise estimates than FCS and MVNI. We observed slight improvements in bias and precision when using a time window width of two for the two-fold FCS algorithm compared to the standard width of one. We recommend the use of FCS or MVNI in a similar longitudinal setting, and when encountering convergence issues due to a large number of time points or variables with missing values, the two-fold FCS with exploration of a suitable time window.
NASA Astrophysics Data System (ADS)
Leavey, Anna; Reed, Nathan; Patel, Sameer; Bradley, Kevin; Kulkarni, Pramod; Biswas, Pratim
2017-10-01
Advanced automobile technology, developed infrastructure, and changing economic markets have resulted in increasing commute times. Traffic is a major source of harmful pollutants and consequently daily peak exposures tend to occur near roadways or while travelling on them. The objective of this study was to measure simultaneous real-time particulate matter (particle numbers, lung-deposited surface area, PM2.5, particle number size distributions) and CO concentrations outside and in-cabin of an on-road car during regular commutes to and from work. Data was collected for different ventilation parameters (windows open or closed, fan on, AC on), whilst travelling along different road-types with varying traffic densities. Multiple predictor variables were examined using linear mixed-effects models. Ambient pollutants (NOx, PM2.5, CO) and meteorological variables (wind speed, temperature, relative humidity, dew point) explained 5-44% of outdoor pollutant variability, while the time spent travelling behind a bus was statistically significant for PM2.5, lung-deposited SA, and CO (adj-R2 values = 0.12, 0.10, 0.13). The geometric mean diameter (GMD) for outdoor aerosol was 34 nm. Larger cabin GMDs were observed when windows were closed compared to open (b = 4.3, p-value = <0.01). When windows were open, cabin total aerosol concentrations tracked those outdoors. With windows closed, the pollutants took longer to enter the vehicle cabin, but also longer to exit it. Concentrations of pollutants in cabin were influenced by outdoor concentrations, ambient temperature, and the window/ventilation parameters. As expected, particle number concentrations were impacted the most by changes to window position/ventilation, and PM2.5 the least. Car drivers can expect their highest exposures when driving with windows open or the fan on, and their lowest exposures during windows closed or the AC on. Final linear mixed-effects models could explain between 88 and 97% of cabin pollutant concentration variability. An individual may control their commuting exposure by applying dynamic behavior modification to adapt to changing pollutant scenarios.
Leavey, Anna; Reed, Nathan; Patel, Sameer; Bradley, Kevin; Kulkarni, Pramod; Biswas, Pratim
2017-01-01
Advanced automobile technology, developed infrastructure, and changing economic markets have resulted in increasing commute times. Traffic is a major source of harmful pollutants and consequently daily peak exposures tend to occur near roadways or while traveling on them. The objective of this study was to measure simultaneous real-time particulate matter (particle numbers, lung-deposited surface area, PM2.5, particle number size distributions) and CO concentrations outside and in-cabin of an on-road car during regular commutes to and from work. Data was collected for different ventilation parameters (windows open or closed, fan on, AC on), whilst traveling along different road-types with varying traffic densities. Multiple predictor variables were examined using linear mixed-effects models. Ambient pollutants (NOx, PM2.5, CO) and meteorological variables (wind speed, temperature, relative humidity, dew point) explained 5–44% of outdoor pollutant variability, while the time spent travelling behind a bus was statistically significant for PM2.5, lung-deposited SA, and CO (adj-R2 values = 0.12, 0.10, 0.13). The geometric mean diameter (GMD) for outdoor aerosol was 34 nm. Larger cabin GMDs were observed when windows were closed compared to open (b = 4.3, p-value = <0.01). When windows were open, cabin total aerosol concentrations tracked those outdoors. With windows closed, the pollutants took longer to enter the vehicle cabin, but also longer to exit it. Concentrations of pollutants in cabin were influenced by outdoor concentrations, ambient temperature, and the window/ventilation parameters. As expected, particle number concentrations were impacted the most by changes to window position / ventilation, and PM2.5 the least. Car drivers can expect their highest exposures when driving with windows open or the fan on, and their lowest exposures during windows closed or the AC on. Final linear mixed-effects models could explain between 88–97% of cabin pollutant concentration variability. An individual may control their commuting exposure by applying dynamic behavior modification to adapt to changing pollutant scenarios. PMID:29284988
Leavey, Anna; Reed, Nathan; Patel, Sameer; Bradley, Kevin; Kulkarni, Pramod; Biswas, Pratim
2017-10-01
Advanced automobile technology, developed infrastructure, and changing economic markets have resulted in increasing commute times. Traffic is a major source of harmful pollutants and consequently daily peak exposures tend to occur near roadways or while traveling on them. The objective of this study was to measure simultaneous real-time particulate matter (particle numbers, lung-deposited surface area, PM 2.5 , particle number size distributions) and CO concentrations outside and in-cabin of an on-road car during regular commutes to and from work. Data was collected for different ventilation parameters (windows open or closed, fan on, AC on), whilst traveling along different road-types with varying traffic densities. Multiple predictor variables were examined using linear mixed-effects models. Ambient pollutants (NO x , PM 2.5 , CO) and meteorological variables (wind speed, temperature, relative humidity, dew point) explained 5-44% of outdoor pollutant variability, while the time spent travelling behind a bus was statistically significant for PM 2.5, lung-deposited SA, and CO (adj-R 2 values = 0.12, 0.10, 0.13). The geometric mean diameter (GMD) for outdoor aerosol was 34 nm. Larger cabin GMDs were observed when windows were closed compared to open (b = 4.3, p-value = <0.01). When windows were open, cabin total aerosol concentrations tracked those outdoors. With windows closed, the pollutants took longer to enter the vehicle cabin, but also longer to exit it. Concentrations of pollutants in cabin were influenced by outdoor concentrations, ambient temperature, and the window/ventilation parameters. As expected, particle number concentrations were impacted the most by changes to window position / ventilation, and PM 2.5 the least. Car drivers can expect their highest exposures when driving with windows open or the fan on, and their lowest exposures during windows closed or the AC on. Final linear mixed-effects models could explain between 88-97% of cabin pollutant concentration variability. An individual may control their commuting exposure by applying dynamic behavior modification to adapt to changing pollutant scenarios.
Carreiro, André V; Amaral, Pedro M T; Pinto, Susana; Tomás, Pedro; de Carvalho, Mamede; Madeira, Sara C
2015-12-01
Amyotrophic Lateral Sclerosis (ALS) is a devastating disease and the most common neurodegenerative disorder of young adults. ALS patients present a rapidly progressive motor weakness. This usually leads to death in a few years by respiratory failure. The correct prediction of respiratory insufficiency is thus key for patient management. In this context, we propose an innovative approach for prognostic prediction based on patient snapshots and time windows. We first cluster temporally-related tests to obtain snapshots of the patient's condition at a given time (patient snapshots). Then we use the snapshots to predict the probability of an ALS patient to require assisted ventilation after k days from the time of clinical evaluation (time window). This probability is based on the patient's current condition, evaluated using clinical features, including functional impairment assessments and a complete set of respiratory tests. The prognostic models include three temporal windows allowing to perform short, medium and long term prognosis regarding progression to assisted ventilation. Experimental results show an area under the receiver operating characteristics curve (AUC) in the test set of approximately 79% for time windows of 90, 180 and 365 days. Creating patient snapshots using hierarchical clustering with constraints outperforms the state of the art, and the proposed prognostic model becomes the first non population-based approach for prognostic prediction in ALS. The results are promising and should enhance the current clinical practice, largely supported by non-standardized tests and clinicians' experience. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hong, Guosong; Zou, Yingping; Antaris, Alexander L.; Diao, Shuo; Wu, Di; Cheng, Kai; Zhang, Xiaodong; Chen, Changxin; Liu, Bo; He, Yuehui; Wu, Justin Z.; Yuan, Jun; Zhang, Bo; Tao, Zhimin; Fukunaga, Chihiro; Dai, Hongjie
2014-06-01
In vivo fluorescence imaging in the second near-infrared window (1.0-1.7 μm) can afford deep tissue penetration and high spatial resolution, owing to the reduced scattering of long-wavelength photons. Here we synthesize a series of low-bandgap donor/acceptor copolymers with tunable emission wavelengths of 1,050-1,350 nm in this window. Non-covalent functionalization with phospholipid-polyethylene glycol results in water-soluble and biocompatible polymeric nanoparticles, allowing for live cell molecular imaging at >1,000 nm with polymer fluorophores for the first time. Importantly, the high quantum yield of the polymer allows for in vivo, deep-tissue and ultrafast imaging of mouse arterial blood flow with an unprecedented frame rate of >25 frames per second. The high time-resolution results in spatially and time resolved imaging of the blood flow pattern in cardiogram waveform over a single cardiac cycle (~200 ms) of a mouse, which has not been observed with fluorescence imaging in this window before.
Fluctuation scaling of quotation activities in the foreign exchange market
NASA Astrophysics Data System (ADS)
Sato, Aki-Hiro; Nishimura, Maiko; Hołyst, Janusz A.
2010-07-01
We study the scaling behavior of quotation activities for various currency pairs in the foreign exchange market. The components’ centrality is estimated from multiple time series and visualized as a currency pair network. The power-law relationship between a mean of quotation activity and its standard deviation for each currency pair is found. The scaling exponent α and the ratio between common and specific fluctuations η increase with the length of the observation time window Δt. The result means that although for Δt=1 (min), the market dynamics are governed by specific processes, and at a longer time scale Δt>100 (min) the common information flow becomes more important. We point out that quotation activities are not independently Poissonian for Δt=1 (min), and temporally or mutually correlated activities of quotations can happen even at this time scale. A stochastic model for the foreign exchange market based on a bipartite graph representation is proposed.
Low-E Storm Windows Gain Acceptance as a Home Weatherization Measure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbride, Theresa L.; Cort, Katherine A.
This article for Home Energy Magazine describes work by the U.S. Department of Energy to develop low-emissivity storm windows as an energy efficiency-retrofit option for existing homes. The article describes the low-emissivity invisible silver metal coatings on the glass, which reflect heat back into the home in winter or back outside in summer and the benefits of low-e storm windows including insulation, air sealing, noise blocking, protection of antique windows, etc. The article also describes Pacific Northwest National Laboratory's efforts on behalf of DOE to overcome market barriers to adoption of the technology, including performance validation studies in the PNNLmore » Lab Homes, cost effectiveness analysis, production of reports, brochures, how-to guides on low-e storm window installation for the Building America Solution Center, and a video posted on YouTube. PNNL's efforts were reviewed by the Pacific Northwest Regional Technical Forum (RTF), which serves as the advisory board to the Pacific Northwest Electric Power Planning Council and Bonneville Power Administration. In late July 2015, the RTF approved the low-e storm window measure’s savings and specifications, a critical step in integrating low-e storm windows into energy-efficiency planning and utility weatherization and incentive programs. PNNL estimates that more than 90 million homes in the United States with single-pane or low-performing double-pane windows would benefit from the technology. Low-e storm windows are suitable not only for private residences but also for small commercial buildings, historic properties, and facilities that house residents, such as nursing homes, dormitories, and in-patient facilities. To further assist in the market transformation of low-e storm windows and other high-efficiency window attachments, DOE helped found the window Attachment Energy Rating Council (AERC) in 2015. AERC is an independent, public interest, non-profit organization whose mission is to rate, label, and certify the performance of window attachments.« less
Smart glass as the method of improving the energy efficiency of high-rise buildings
NASA Astrophysics Data System (ADS)
Gamayunova, Olga; Gumerova, Eliza; Miloradova, Nadezda
2018-03-01
The question that has to be answered in high-rise building is glazing and its service life conditions. Contemporary market offers several types of window units, for instance, wooden, aluminum, PVC and combined models. Wooden and PVC windows become the most widespread and competitive between each other. In recent times design engineers choose smart glass. In this article, the advantages and drawbacks of all types of windows are reviewed, and the recommendations are given according to choice of window type in order to improve energy efficiency of buildings.
Electrophysiological evidence for phonological priming in Spanish Sign Language lexical access.
Gutiérrez, Eva; Müller, Oliver; Baus, Cristina; Carreiras, Manuel
2012-06-01
Interactive activation models of lexical access assume that the presentation of a given word activates not only its lexical representation but also those corresponding to words similar in form. Current theories are based on data from oral and written languages, and therefore signed languages represent a special challenge for existing theories of word recognition and lexical access since they allow us to question what the genuine fundamentals of human language are and what might be modality-specific adaptation. The aim of the present study is to determine the electrophysiological correlates and time course of phonological processing of Spanish Sign Language (LSE). Ten deaf native LSE signers and ten deaf non-native but highly proficient LSE signers participated in the experiment. We used the ERP methodology and form-based priming in the context of a delayed lexical decision task, manipulating phonological overlap (i.e. related prime-target pairs shared either handshape or location parameters). Results showed that both parameters under study modulated brain responses to the stimuli in different time windows. Phonological priming of location resulted in a higher amplitude of the N400 component (300-500 ms window) for signs but not for non-signs. This effect may be explained in terms of initial competition among candidates. Moreover, the fact that a higher amplitude N400 for related pairs was found for signs but not for non-signs points to an effect at the lexical level. Handshape overlap produced a later effect (600-800 ms window). In this window, a more negative-going wave for the related condition than for the unrelated condition was found for non-signs in the native signers group. The findings are discussed in relation to current models of lexical access and word recognition. Finally, differences between native and non-native signers point to a less efficient use of phonological information among the non-native signers. Copyright © 2012 Elsevier Ltd. All rights reserved.
Smith, Lauren H; Hargrove, Levi J; Lock, Blair A; Kuiken, Todd A
2011-04-01
Pattern recognition-based control of myoelectric prostheses has shown great promise in research environments, but has not been optimized for use in a clinical setting. To explore the relationship between classification error, controller delay, and real-time controllability, 13 able-bodied subjects were trained to operate a virtual upper-limb prosthesis using pattern recognition of electromyogram (EMG) signals. Classification error and controller delay were varied by training different classifiers with a variety of analysis window lengths ranging from 50 to 550 ms and either two or four EMG input channels. Offline analysis showed that classification error decreased with longer window lengths (p < 0.01 ). Real-time controllability was evaluated with the target achievement control (TAC) test, which prompted users to maneuver the virtual prosthesis into various target postures. The results indicated that user performance improved with lower classification error (p < 0.01 ) and was reduced with longer controller delay (p < 0.01 ), as determined by the window length. Therefore, both of these effects should be considered when choosing a window length; it may be beneficial to increase the window length if this results in a reduced classification error, despite the corresponding increase in controller delay. For the system employed in this study, the optimal window length was found to be between 150 and 250 ms, which is within acceptable controller delays for conventional multistate amplitude controllers.
The nature of earthquake prediction
Lindh, A.G.
1991-01-01
Earthquake prediction is inherently statistical. Although some people continue to think of earthquake prediction as the specification of the time, place, and magnitude of a future earthquake, it has been clear for at least a decade that this is an unrealistic and unreasonable definition. the reality is that earthquake prediction starts from the long-term forecasts of place and magnitude, with very approximate time constraints, and progresses, at least in principle, to a gradual narrowing of the time window as data and understanding permit. Primitive long-term forecasts are clearly possible at this time on a few well-characterized fault systems. Tightly focuses monitoring experiments aimed at short-term prediction are already underway in Parkfield, California, and in the Tokai region in Japan; only time will tell how much progress will be possible.
Hamuro, Yoshitomo
2017-03-01
A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Hamuro, Yoshitomo
2017-03-01
A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification.
Statistical tests for power-law cross-correlated processes
NASA Astrophysics Data System (ADS)
Podobnik, Boris; Jiang, Zhi-Qiang; Zhou, Wei-Xing; Stanley, H. Eugene
2011-12-01
For stationary time series, the cross-covariance and the cross-correlation as functions of time lag n serve to quantify the similarity of two time series. The latter measure is also used to assess whether the cross-correlations are statistically significant. For nonstationary time series, the analogous measures are detrended cross-correlations analysis (DCCA) and the recently proposed detrended cross-correlation coefficient, ρDCCA(T,n), where T is the total length of the time series and n the window size. For ρDCCA(T,n), we numerically calculated the Cauchy inequality -1≤ρDCCA(T,n)≤1. Here we derive -1≤ρDCCA(T,n)≤1 for a standard variance-covariance approach and for a detrending approach. For overlapping windows, we find the range of ρDCCA within which the cross-correlations become statistically significant. For overlapping windows we numerically determine—and for nonoverlapping windows we derive—that the standard deviation of ρDCCA(T,n) tends with increasing T to 1/T. Using ρDCCA(T,n) we show that the Chinese financial market's tendency to follow the U.S. market is extremely weak. We also propose an additional statistical test that can be used to quantify the existence of cross-correlations between two power-law correlated time series.
X-ray characterization of a multichannel smart-pixel array detector.
Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric
2016-01-01
The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 × 48 pixels, each 130 µm × 130 µm × 520 µm thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.
Digitization of medical documents: an X-Windows application for fast scanning.
Muñoz, A; Salvador, C H; Gonzalez, M A; Dueñas, A
1992-01-01
This paper deals with digitization, using a commercial scanner, of medical documents as still images for introduction into a computer-based Information System. Document management involves storing, editing and transmission. This task has usually been approached from the perspective of the difficulties posed by radiologic images because of their indisputable qualitative and quantitative significance. However, healthcare activities require the management of many other types of documents and involve the requirements of numerous users. One key to document management will be the availability of a digitizer to deal with the greatest possible number of different types of documents. This paper describes the relevant aspects of documents and the technical specifications that digitizers must fulfill. The concept of document type is introduced as the ideal set of digitizing parameters for a given document. The use of document type parameters can drastically reduce the time the user spends in scanning sessions. Presentation is made of an application based on Unix, X-Windows and OSF/Motif, with a GPIB interface, implemented around the document type concept. Finally, the results of the evaluation of the application are presented, focusing on the user interface, as well as on the viewing of color images in an X-Windows environment and the use of lossy algorithms in the compression of medical images.
Dalbøge, Annett; Frost, Poul; Andersen, Johan Hviid; Svendsen, Susanne Wulff
2014-11-01
The primary aim was to examine exposure-response relationships between cumulative occupational shoulder exposures and surgery for subacromial impingement syndrome (SIS), and to compare sex-specific exposure-response relationships. The secondary aim was to examine the time window of relevant exposures. We conducted a nationwide register study of all persons born in Denmark (1933-1977), who had at least 5 years of full-time employment. In the follow-up period (2003-2008), we identified first-time events of surgery for SIS. Cumulative exposure estimates for a 10-year exposure time window with a 1-year lag time were obtained by linking occupational codes with a job exposure matrix. The exposure estimates were expressed as, for example, arm-elevation-years in accordance with the pack-year concept of tobacco consumption. We used a multivariable logistic regression technique equivalent to discrete survival analysis. The adjusted OR (ORadj) increased to a maximum of 2.1 for arm-elevation-years, repetition-years and force-years, and to 1.5 for hand-arm-vibration-years. Sex-specific exposure-response relationships were similar for men and women, when assessed using a relative risk scale. The ORadj increased gradually with the number of years contributing to the cumulative exposure estimates. The excess fraction was 24%. Cumulative occupational shoulder exposures carried an increase in risk of surgery for SIS with similar exposure-response curves for men and women. The risk of surgery for SIS increased gradually, when the period of exposure assessment was extended. In the general working population, a substantial fraction of all first-time operations for SIS could be related to occupational exposures. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Windowed time-reversal music technique for super-resolution ultrasound imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lianjie; Labyed, Yassin
Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements.
The Golden Cage: Growing up in the Socialist Yugoslavia
ERIC Educational Resources Information Center
Marjanovic-Shane, Ana
2018-01-01
From the mid 1950s through roughly the 1980s, some or many children and youth of the Socialist Yugoslavia, especially those of us in Belgrade, the capital, lived in a curious, almost surreal "window" in the space and time. This surreal window of space-time, offered to children and youth of Yugoslavia, unprecedented opportunities for…
Alternative Fuels Data Center: Maine's Only Biodiesel Manufacturer Powers
this project, contact Maine Clean Communities. Download QuickTime Video QuickTime (.mov) Download Windows Media Video Windows Media (.wmv) Video Download Help Text version See more videos provided by truck Krug Energy Opens Natural Gas Fueling Station in Arkansas June 18, 2016 photo of natural gas
Alternative Fuels Data Center: Texas Taxis Go Hybrid
information about this project, contact Alamo Area Clean Cities (San Antonio). Download QuickTime Video QuickTime (.mov) Download Windows Media Video Windows Media (.wmv) Video Download Help Text version See more car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car Shopping
Iconic Meaning in Music: An Event-Related Potential Study.
Cai, Liman; Huang, Ping; Luo, Qiuling; Huang, Hong; Mo, Lei
2015-01-01
Although there has been extensive research on the processing of the emotional meaning of music, little is known about other aspects of listeners' experience of music. The present study investigated the neural correlates of the iconic meaning of music. Event-related potentials (ERP) were recorded while a group of 20 music majors and a group of 20 non-music majors performed a lexical decision task in the context of implicit musical iconic meaning priming. ERP analysis revealed a significant N400 effect of congruency in time window 260-510 ms following the onset of the target word only in the group of music majors. Time-course analysis using 50 ms windows indicated significant N400 effects both within the time window 410-460 ms and 460-510 ms for music majors, whereas only a partial N400 effect during time window 410-460 ms was observed for non-music majors. There was also a trend for the N400 effects in the music major group to be stronger than those in the non-major group in the sub-windows of 310-360 ms and 410-460 ms. Especially in the sub-window of 410-460 ms, the topographical map of the difference waveforms between congruent and incongruent conditions revealed different N400 distribution between groups; the effect was concentrated in bilateral frontal areas for music majors, but in central-parietal areas for non-music majors. These results imply probable neural mechanism differences underlying automatic iconic meaning priming of music. Our findings suggest that processing of the iconic meaning of music can be accomplished automatically and that musical training may facilitate the understanding of the iconic meaning of music.
Iconic Meaning in Music: An Event-Related Potential Study
Luo, Qiuling; Huang, Hong; Mo, Lei
2015-01-01
Although there has been extensive research on the processing of the emotional meaning of music, little is known about other aspects of listeners’ experience of music. The present study investigated the neural correlates of the iconic meaning of music. Event-related potentials (ERP) were recorded while a group of 20 music majors and a group of 20 non-music majors performed a lexical decision task in the context of implicit musical iconic meaning priming. ERP analysis revealed a significant N400 effect of congruency in time window 260-510 ms following the onset of the target word only in the group of music majors. Time-course analysis using 50 ms windows indicated significant N400 effects both within the time window 410-460 ms and 460-510 ms for music majors, whereas only a partial N400 effect during time window 410-460 ms was observed for non-music majors. There was also a trend for the N400 effects in the music major group to be stronger than those in the non-major group in the sub-windows of 310-360ms and 410-460ms. Especially in the sub-window of 410-460 ms, the topographical map of the difference waveforms between congruent and incongruent conditions revealed different N400 distribution between groups; the effect was concentrated in bilateral frontal areas for music majors, but in central-parietal areas for non-music majors. These results imply probable neural mechanism differences underlying automatic iconic meaning priming of music. Our findings suggest that processing of the iconic meaning of music can be accomplished automatically and that musical training may facilitate the understanding of the iconic meaning of music. PMID:26161561
A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.
Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel
2015-03-01
Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions.
Single molecule optical measurements of orientation and rotations of biological macromolecules
Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E
2016-01-01
The subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measuring their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, we review the relevant types of probes and labeling techniques, and we highlight the advantages and disadvantages of these technologies for addressing specific inquiries. PMID:28192292
Blakes, Jonathan; Twycross, Jamie; Romero-Campero, Francisco Jose; Krasnogor, Natalio
2011-12-01
The Infobiotics Workbench is an integrated software suite incorporating model specification, simulation, parameter optimization and model checking for Systems and Synthetic Biology. A modular model specification allows for straightforward creation of large-scale models containing many compartments and reactions. Models are simulated either using stochastic simulation or numerical integration, and visualized in time and space. Model parameters and structure can be optimized with evolutionary algorithms, and model properties calculated using probabilistic model checking. Source code and binaries for Linux, Mac and Windows are available at http://www.infobiotics.org/infobiotics-workbench/; released under the GNU General Public License (GPL) version 3. Natalio.Krasnogor@nottingham.ac.uk.
Keil, Kimberly P; Vezina, Chad M
2015-01-01
Prostate development, benign hyperplasia and cancer involve androgen and growth factor signaling as well as stromal-epithelial interactions. We review how DNA methylation influences these and related processes in other organ systems such as how proliferation is restricted to specific cell populations during defined temporal windows, how androgens elicit their actions and how cells establish, maintain and remodel DNA methylation in a time and cell specific fashion. We also discuss mechanisms by which hormones and endocrine disrupting chemicals reprogram DNA methylation in the prostate and elsewhere and examine evidence for a reawakening of developmental epigenetic pathways as drivers of prostate cancer and benign prostate hyperplasia.
Keil, Kimberly P; Vezina, Chad M
2015-01-01
Prostate development, benign hyperplasia and cancer involve androgen and growth factor signaling as well as stromal–epithelial interactions. We review how DNA methylation influences these and related processes in other organ systems such as how proliferation is restricted to specific cell populations during defined temporal windows, how androgens elicit their actions and how cells establish, maintain and remodel DNA methylation in a time and cell specific fashion. We also discuss mechanisms by which hormones and endocrine disrupting chemicals reprogram DNA methylation in the prostate and elsewhere and examine evidence for a reawakening of developmental epigenetic pathways as drivers of prostate cancer and benign prostate hyperplasia. PMID:26077429
NASA Technical Reports Server (NTRS)
Yuen, Vincent K.
1989-01-01
The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.
Split delivery vehicle routing problem with time windows: a case study
NASA Astrophysics Data System (ADS)
Latiffianti, E.; Siswanto, N.; Firmandani, R. A.
2018-04-01
This paper aims to implement an extension of VRP so called split delivery vehicle routing problem (SDVRP) with time windows in a case study involving pickups and deliveries of workers from several points of origin and several destinations. Each origin represents a bus stop and the destination represents either site or office location. An integer linear programming of the SDVRP problem is presented. The solution was generated using three stages of defining the starting points, assigning busses, and solving the SDVRP with time windows using an exact method. Although the overall computational time was relatively lengthy, the results indicated that the produced solution was better than the existing routing and scheduling that the firm used. The produced solution was also capable of reducing fuel cost by 9% that was obtained from shorter total distance travelled by the shuttle buses.
Wu, Tiee-Jian; Huang, Ying-Hsueh; Li, Lung-An
2005-11-15
Several measures of DNA sequence dissimilarity have been developed. The purpose of this paper is 3-fold. Firstly, we compare the performance of several word-based or alignment-based methods. Secondly, we give a general guideline for choosing the window size and determining the optimal word sizes for several word-based measures at different window sizes. Thirdly, we use a large-scale simulation method to simulate data from the distribution of SK-LD (symmetric Kullback-Leibler discrepancy). These simulated data can be used to estimate the degree of dissimilarity beta between any pair of DNA sequences. Our study shows (1) for whole sequence similiarity/dissimilarity identification the window size taken should be as large as possible, but probably not >3000, as restricted by CPU time in practice, (2) for each measure the optimal word size increases with window size, (3) when the optimal word size is used, SK-LD performance is superior in both simulation and real data analysis, (4) the estimate beta of beta based on SK-LD can be used to filter out quickly a large number of dissimilar sequences and speed alignment-based database search for similar sequences and (5) beta is also applicable in local similarity comparison situations. For example, it can help in selecting oligo probes with high specificity and, therefore, has potential in probe design for microarrays. The algorithm SK-LD, estimate beta and simulation software are implemented in MATLAB code, and are available at http://www.stat.ncku.edu.tw/tjwu
The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition.
Zhang, Ying; Bilbao, Aivett; Bruderer, Tobias; Luban, Jeremy; Strambio-De-Castillia, Caterina; Lisacek, Frédérique; Hopfgartner, Gérard; Varesio, Emmanuel
2015-10-02
As tryptic peptides and metabolites are not equally distributed along the mass range, the probability of cross fragment ion interference is higher in certain windows when fixed Q1 SWATH windows are applied. We evaluated the benefits of utilizing variable Q1 SWATH windows with regards to selectivity improvement. Variable windows based on equalizing the distribution of either the precursor ion population (PIP) or the total ion current (TIC) within each window were generated by an in-house software, swathTUNER. These two variable Q1 SWATH window strategies outperformed, with respect to quantification and identification, the basic approach using a fixed window width (FIX) for proteomic profiling of human monocyte-derived dendritic cells (MDDCs). Thus, 13.8 and 8.4% additional peptide precursors, which resulted in 13.1 and 10.0% more proteins, were confidently identified by SWATH using the strategy PIP and TIC, respectively, in the MDDC proteomic sample. On the basis of the spectral library purity score, some improvement warranted by variable Q1 windows was also observed, albeit to a lesser extent, in the metabolomic profiling of human urine. We show that the novel concept of "scheduled SWATH" proposed here, which incorporates (i) variable isolation windows and (ii) precursor retention time segmentation further improves both peptide and metabolite identifications.
Simplified Computation for Nonparametric Windows Method of Probability Density Function Estimation.
Joshi, Niranjan; Kadir, Timor; Brady, Michael
2011-08-01
Recently, Kadir and Brady proposed a method for estimating probability density functions (PDFs) for digital signals which they call the Nonparametric (NP) Windows method. The method involves constructing a continuous space representation of the discrete space and sampled signal by using a suitable interpolation method. NP Windows requires only a small number of observed signal samples to estimate the PDF and is completely data driven. In this short paper, we first develop analytical formulae to obtain the NP Windows PDF estimates for 1D, 2D, and 3D signals, for different interpolation methods. We then show that the original procedure to calculate the PDF estimate can be significantly simplified and made computationally more efficient by a judicious choice of the frame of reference. We have also outlined specific algorithmic details of the procedures enabling quick implementation. Our reformulation of the original concept has directly demonstrated a close link between the NP Windows method and the Kernel Density Estimator.
Early Warning for Large Magnitude Earthquakes: Is it feasible?
NASA Astrophysics Data System (ADS)
Zollo, A.; Colombelli, S.; Kanamori, H.
2011-12-01
The mega-thrust, Mw 9.0, 2011 Tohoku earthquake has re-opened the discussion among the scientific community about the effectiveness of Earthquake Early Warning (EEW) systems, when applied to such large events. Many EEW systems are now under-testing or -development worldwide and most of them are based on the real-time measurement of ground motion parameters in a few second window after the P-wave arrival. Currently, we are using the initial Peak Displacement (Pd), and the Predominant Period (τc), among other parameters, to rapidly estimate the earthquake magnitude and damage potential. A well known problem about the real-time estimation of the magnitude is the parameter saturation. Several authors have shown that the scaling laws between early warning parameters and magnitude are robust and effective up to magnitude 6.5-7; the correlation, however, has not yet been verified for larger events. The Tohoku earthquake occurred near the East coast of Honshu, Japan, on the subduction boundary between the Pacific and the Okhotsk plates. The high quality Kik- and K- networks provided a large quantity of strong motion records of the mainshock, with a wide azimuthal coverage both along the Japan coast and inland. More than 300 3-component accelerograms have been available, with an epicentral distance ranging from about 100 km up to more than 500 km. This earthquake thus presents an optimal case study for testing the physical bases of early warning and to investigate the feasibility of a real-time estimation of earthquake size and damage potential even for M > 7 earthquakes. In the present work we used the acceleration waveform data of the main shock for stations along the coast, up to 200 km epicentral distance. We measured the early warning parameters, Pd and τc, within different time windows, starting from 3 seconds, and expanding the testing time window up to 30 seconds. The aim is to verify the correlation of these parameters with Peak Ground Velocity and Magnitude, respectively, as a function of the length of the P-wave window. The entire rupture process of the Tohoku earthquake lasted more than 120 seconds, as shown by the source time functions obtained by several authors. When a 3 second window is used to measure Pd and τc the result is an obvious underestimation of the event size and final PGV. However, as the time window increases up to 27-30 seconds, the measured values of Pd and τc become comparable with those expected for a magnitude M≥8.5 earthquake, according to the τc vs. M and the PGV vs. Pd relationships obtained in a previous work. Since we did not observe any saturation effect for the predominant period and peak displacement measured within a P-wave, 30-seconds window, we infer that, at least from a theoretical point of view, the estimation of earthquake damage potential through the early warning parameters is still feasible for large events, provided that a longer time window is used for parameter measurement. The off-line analysis of the Tohoku event records shows that reliable estimations of the damage potential could have been obtained 40-50 seconds after the origin time, by updating the measurements of the early warning parameters in progressively enlarged P-wave time windows from 3 to 30 seconds.
Identifying a Window of Vulnerability during Fetal Development in a Maternal Iron Restriction Model
Mihaila, Camelia; Schramm, Jordan; Strathmann, Frederick G.; Lee, Dawn L.; Gelein, Robert M.
2011-01-01
It is well acknowledged from observations in humans that iron deficiency during pregnancy can be associated with a number of developmental problems in the newborn and developing child. Due to the obvious limitations of human studies, the stage during gestation at which maternal iron deficiency causes an apparent impairment in the offspring remains elusive. In order to begin to understand the time window(s) during pregnancy that is/are especially susceptible to suboptimal iron levels, which may result in negative effects on the development of the fetus, we developed a rat model in which we were able to manipulate and monitor the dietary iron intake during specific stages of pregnancy and analyzed the developing fetuses. We established four different dietary-feeding protocols that were designed to render the fetuses iron deficient at different gestational stages. Based on a functional analysis that employed Auditory Brainstem Response measurements, we found that maternal iron restriction initiated prior to conception and during the first trimester were associated with profound changes in the developing fetus compared to iron restriction initiated later in pregnancy. We also showed that the presence of iron deficiency anemia, low body weight, and changes in core body temperature were not defining factors in the establishment of neural impairment in the rodent offspring. Our data may have significant relevance for understanding the impact of suboptimal iron levels during pregnancy not only on the mother but also on the developing fetus and hence might lead to a more informed timing of iron supplementation during pregnancy. PMID:21423661
Time-Frequency Distribution Analyses of Ku-Band Radar Doppler Echo Signals
NASA Astrophysics Data System (ADS)
Bujaković, Dimitrije; Andrić, Milenko; Bondžulić, Boban; Mitrović, Srđan; Simić, Slobodan
2015-03-01
Real radar echo signals of a pedestrian, vehicle and group of helicopters are analyzed in order to maximize signal energy around central Doppler frequency in time-frequency plane. An optimization, preserving this concentration, is suggested based on three well-known concentration measures. Various window functions and time-frequency distributions were optimization inputs. Conducted experiments on an analytic and three real signals have shown that energy concentration significantly depends on used time-frequency distribution and window function, for all three used criteria.
Dalbøge, Annett; Frost, Poul; Andersen, Johan Hviid; Svendsen, Susanne Wulff
2018-03-01
We aimed to identify intensities of occupational mechanical exposures (force, arm elevation and repetition) that do not entail an increased risk of surgery for subacromial impingement syndrome (SIS) even after prolonged durations of exposure. Additionally, we wanted to evaluate if exposure to hand-arm vibration (HAV) is an independent risk factor. We used data from a register-based cohort study of the entire Danish working population (n=2 374 403). During follow-up (2003-2008), 14 118 first-time events of surgery for SIS occurred. For each person, we linked register-based occupational codes (1993-2007) to a general population job exposure matrix to obtain year-by-year exposure intensities on measurement scales for force, upper arm elevation >90° and repetition and expert rated intensities of exposure to HAV. For 10-year exposure time windows, we calculated the duration of exposure at specific intensities above minimal (low, medium and high). We used a logistic regression technique equivalent to discrete survival analysis adjusting for cumulative effects of other mechanical exposures. We found indications of safe exposure intensities for repetition (median angular velocity <45°/s), while force exertion ≥10% of maximal voluntary electrical activity and upper arm elevation >90° >2 min/day implied an increased risk reaching ORs of 1.7 and 1.5 after 10 years at low intensities. No associations were found for HAV. We found indications of safe exposure intensities for repetition. Any intensities of force and upper arm elevation >90° above minimal implied an increased risk across 10-year exposure time windows. No independent associations were found for HAV. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
HRCT Correlation with Round Window Identification during Cochlear Implantation in Children.
Pendem, Sai Kiran; Rangasami, Rajeswaran; Arunachalam, Ravi Kumar; Mohanarangam, Venkata Sai Pulivadulu; Natarajan, Paarthipan
2014-01-01
To determine the accuracy of High Resolution Computer Tomography (HRCT) temporal bone measurements in predicting the actual visualization of round window niche as viewed through posterior tympanotomy (i.e. facial recess). This is a prospective study of 37 cochlear implant candidates, aged between 1and 6 years, who were referred for HRCT temporal bone during the period December 2013 to July 2014. Cochlear implantation was done in 37 children (25 in the right ear and 12 in the left ear). The distance between the short process of incus and the round window niche and the distance between the oval window and the round window niche were measured preoperatively on sub-millimeter (0.7 mm) HRCT images. We classified the visibility of round window niche based on the surgical view (i.e. through posterior tympanotomy) during surgery into three types: 1) Type 1- fully visible, 2) Type 2- partially visible, and 3) Type 3- difficult to visualize. The preoperative HRCT measurements were used to predict the type of visualization of round window niche before surgery and correlated with the findings during surgery. The mean and standard deviation for the distance between the short process of incus and the round window niche and for the distance between the oval window and the round window niche for Types 1, 2, and 3 were 8.5 ± 0.2 mm and 3.2 ± 0.2 mm, 8.0 ± 0.4 mm and 3.8 ± 0.2 mm, 7.5 ± 0.2 mm and 4.4 ± 0.2 mm respectively, and showed statistically significant difference (P < 0.01) between them. The preoperative HRCT measurements had a sensitivity and specificity of 92.3% and 96.2%, respectively, in determining the actual visualization of round window niche. This study shows preoperative HRCT temporal bone measurements are useful in predicting the actual visualization of round window niche as viewed through posterior tympanotomy.
USB Storage Device Forensics for Windows 10.
Arshad, Ayesha; Iqbal, Waseem; Abbas, Haider
2018-05-01
Significantly increased use of USB devices due to their user-friendliness and large storage capacities poses various threats for many users/companies in terms of data theft that becomes easier due to their efficient mobility. Investigations for such data theft activities would require gathering critical digital information capable of recovering digital forensics artifacts like date, time, and device information. This research gathers three sets of registry and logs data: first, before insertion; second, during insertion; and the third, after removal of a USB device. These sets are analyzed to gather evidentiary information from Registry and Windows Event log that helps in tracking a USB device. This research furthers the prior research on earlier versions of Microsoft Windows and compares it with latest Windows 10 system. Comparison of Windows 8 and Windows 10 does not show much difference except for new subkey under USB Key in registry. However, comparison of Windows 7 with latest version indicates significant variances. © 2017 American Academy of Forensic Sciences.
Perceptual learning shapes multisensory causal inference via two distinct mechanisms
McGovern, David P.; Roudaia, Eugenie; Newell, Fiona N.; Roach, Neil W.
2016-01-01
To accurately represent the environment, our brains must integrate sensory signals from a common source while segregating those from independent sources. A reasonable strategy for performing this task is to restrict integration to cues that coincide in space and time. However, because multisensory signals are subject to differential transmission and processing delays, the brain must retain a degree of tolerance for temporal discrepancies. Recent research suggests that the width of this ‘temporal binding window’ can be reduced through perceptual learning, however, little is known about the mechanisms underlying these experience-dependent effects. Here, in separate experiments, we measure the temporal and spatial binding windows of human participants before and after training on an audiovisual temporal discrimination task. We show that training leads to two distinct effects on multisensory integration in the form of (i) a specific narrowing of the temporal binding window that does not transfer to spatial binding and (ii) a general reduction in the magnitude of crossmodal interactions across all spatiotemporal disparities. These effects arise naturally from a Bayesian model of causal inference in which learning improves the precision of audiovisual timing estimation, whilst concomitantly decreasing the prior expectation that stimuli emanate from a common source. PMID:27091411
NASA Astrophysics Data System (ADS)
Li, Ming-Xia; Jiang, Zhi-Qiang; Xie, Wen-Jie; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing
2015-02-01
Traders develop and adopt different trading strategies attempting to maximize their profits in financial markets. These trading strategies not only result in specific topological structures in trading networks, which connect the traders with the pairwise buy-sell relationships, but also have potential impacts on market dynamics. Here, we present a detailed analysis on how the market behaviors are correlated with the structures of traders in trading networks based on audit trail data for the Baosteel stock and its warrant at the transaction level from 22 August 2005 to 23 August 2006. In our investigation, we divide each trade day into 48 rolling time windows with a length of 5 min, construct a trading network within each window, and obtain a time series of over 11,600 trading networks. We find that there are strongly simultaneous correlations between the topological metrics (including network centralization, assortative index, and average path length) of trading networks that characterize the patterns of order execution and the financial variables (including return, volatility, intertrade duration, and trading volume) for the stock and its warrant. Our analysis may shed new lights on how the microscopic interactions between elements within complex system affect the system's performance.
van den Akker, Karolien; Nederkoorn, Chantal; Jansen, Anita
2017-08-01
Studies on human appetitive conditioning using food rewards can benefit from including psychophysiological outcome measures. The present study tested whether the skin conductance response can function as a measure of differential responding in an appetitive conditioning paradigm including an acquisition and extinction phase, and examined which time window during a trial is most sensitive to conditioning effects. As a secondary aim, the effects of ambiguous vs. non-ambiguous contingency instructions on conditioned responses (skin conductance responses, US expectancies, chocolate desires, and CS evaluations) were assessed. Results indicated differential skin conductance responses in an anticipatory time window and during unexpected omission of the US in early extinction. Interestingly however, anticipatory responses were only found for participants who received ambiguous contingency instructions - possibly indicating a call for additional processing resources in response to the ambiguous CS+. Further, ambiguous instructions slowed the extinction of US expectancies but did not influence chocolate desires and CS evaluations. It is concluded that skin conductance can function as a sensitive measure of differential responding in appetitive conditioning, though its sensitivity might depend on the specific task context. Copyright © 2017 Elsevier B.V. All rights reserved.
Tsai, Kuo-Ming; Wang, He-Yi
2014-08-20
This study focuses on injection molding process window determination for obtaining optimal imaging optical properties, astigmatism, coma, and spherical aberration using plastic lenses. The Taguchi experimental method was first used to identify the optimized combination of parameters and significant factors affecting the imaging optical properties of the lens. Full factorial experiments were then implemented based on the significant factors to build the response surface models. The injection molding process windows for lenses with optimized optical properties were determined based on the surface models, and confirmation experiments were performed to verify their validity. The results indicated that the significant factors affecting the optical properties of lenses are mold temperature, melt temperature, and cooling time. According to experimental data for the significant factors, the oblique ovals for different optical properties on the injection molding process windows based on melt temperature and cooling time can be obtained using the curve fitting approach. The confirmation experiments revealed that the average errors for astigmatism, coma, and spherical aberration are 3.44%, 5.62%, and 5.69%, respectively. The results indicated that the process windows proposed are highly reliable.
The windows of SETI - Frequency and time in the search for extraterrestrial intelligence
NASA Technical Reports Server (NTRS)
Oliver, Bernard M.
1987-01-01
Since interstellar travel is not economically possible on the time scale of a human lifetime, communication with extraterrestrials can be achieved only by sending some form of energy or matter across space; photons (electromagnetic waves) are best. Of particular interest to SETI is the region from about 1,000-60,000 MHz known as the free-space microwave window. During the course of NASA's Cyclops program, it was pointed out that the hydrogen and hydroxyl lines bounded a band in which there were no other known lines. The threatened loss of the microwave window to earth-based services is discussed.
Bao, Yan; Pöppel, Ernst; Wang, Lingyan; Lin, Xiaoxiong; Yang, Taoxi; Avram, Mihai; Blautzik, Janusch; Paolini, Marco; Silveira, Sarita; Vedder, Aline; Zaytseva, Yuliya; Zhou, Bin
2015-12-01
Synchronizing neural processes, mental activities, and social interactions is considered to be fundamental for the creation of temporal order on the personal and interpersonal level. Several different types of synchronization are distinguished, and for each of them examples are given: self-organized synchronizations on the neural level giving rise to pre-semantically defined time windows of some tens of milliseconds and of approximately 3 s; time windows that are created by synchronizing different neural representations, as for instance in aesthetic appreciations or moral judgments; and synchronization of biological rhythms with geophysical cycles, like the circadian clock with the 24-hr rhythm of day and night. For the latter type of synchronization, an experiment is described that shows the importance of social interactions for sharing or avoiding common time. In a group study with four subjects being completely isolated together for 3 weeks from the external world, social interactions resulted both in intra- and interindividual circadian synchronization and desynchronization. A unique phenomenon in circadian regulation is described, the "beat phenomenon," which has been made visible by the interaction of two circadian rhythms with different frequencies in one body. The separation of the two physiological rhythms was the consequence of social interactions, that is, by the desire of a subject to share and to escape common time during different phases of the long-term experiment. The theoretical arguments on synchronization are summarized with the general statement: "Nothing in cognitive science makes sense except in the light of time windows." The hypothesis is forwarded that time windows that express discrete timing mechanisms in behavioral control and on the level of conscious experiences are the necessary bases to create cognitive order, and it is suggested that time windows are implemented by neural oscillations in different frequency domains. © 2015 The Institute of Psychology, Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
VO2 thermochromic smart window for energy savings and generation
Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling
2013-01-01
The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner. PMID:24157625
VO₂ thermochromic smart window for energy savings and generation.
Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling
2013-10-24
The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.
Optimal pulse design for communication-oriented slow-light pulse detection.
Stenner, Michael D; Neifeld, Mark A
2008-01-21
We present techniques for designing pulses for linear slow-light delay systems which are optimal in the sense that they maximize the signal-to-noise ratio (SNR) and signal-to-noise-plus-interference ratio (SNIR) of the detected pulse energy. Given a communication model in which input pulses are created in a finite temporal window and output pulse energy in measured in a temporally-offset output window, the SNIR-optimal pulses achieve typical improvements of 10 dB compared to traditional pulse shapes for a given output window offset. Alternatively, for fixed SNR or SNIR, window offset (detection delay) can be increased by 0.3 times the window width. This approach also invites a communication-based model for delay and signal fidelity.
Wang, Zhen; Yuan, Xinxin; Cong, Shan; Chen, Zhigang; Li, Qingwen; Geng, Fengxia; Zhao, Zhigang
2018-05-02
Air pollution is one of the most serious issues affecting the world today. Instead of expensive and energy-intensive air filtering devices, a fiber-based transparent air filter coated on a window screen is seen as one of the state-of-the-art filtration technologies to combat the seriously growing problem, delivering the advantages of simplicity, convenience, and high filtering efficiency. However, such a window screen is currently limited to particulate matter (PM) filtration and ineffective with other air pollutants. Here, we report the use of a newfangled type of color-changing fibers, porous Prussian blue analogues (CuHCF)/polymer composite microfibers, for transparent window screens toward air pollutant filtration. To increase pollution filtration, pores and dimples are purposely introduced to the fibers using binary solvent systems through a nonsolvent-induced phase separation mechanism. Such composite microfibers overcome some of the limitations of those previously used fibers and could simultaneously capture PM 2.5 , PM 10 , and NH 3 with high efficiency. More interestingly, a distinct color change is observed upon exposure to air pollutants in such window screens, which provides multifunctional capability of simultaneous pollutant capture and naked eye screening of the pollutant amount. Specifically, in the case of long-term exposure to low-concentration NH 3 , the symbol displayed in such window screens changes from yellow color to brown and the coloration rate is directly controlled by the NH 3 concentration, which may serve as a careful reminder for those people who are repeatedly exposed to low-concentration ammonia gas (referred to as chronic poisoning). In contrast, after short-term exposure to a high concentration of ammonia gas, the yellow symbol immediately becomes blackened, which provides timely information about the risk of acute ammonia poisoning or even ammonia explosion. Further spectroscopic results show that the chromatic behaviors in response to different concentrations of NH 3 are fundamentally different, which is related to the different locations of ammonia in the lattice of CuHCF, either in its interstitial sites or at the Fe(CN) 6 vacancy sites, largely distinguished by the absence or presence of atmospheric moisture.
The Workstation Approach to Laboratory Computing
Crosby, P.A.; Malachowski, G.C.; Hall, B.R.; Stevens, V.; Gunn, B.J.; Hudson, S.; Schlosser, D.
1985-01-01
There is a need for a Laboratory Workstation which specifically addresses the problems associated with computing in the scientific laboratory. A workstation based on the IBM PC architecture and including a front end data acquisition system which communicates with a host computer via a high speed communications link; a new graphics display controller with hardware window management and window scrolling; and an integrated software package is described.
Alternative Fuels Data Center: America's Largest Home Runs on Biodiesel in
Coalition (Western North Carolina). Download QuickTime Video QuickTime (.mov) Download Windows Media Video Windows Media (.wmv) Video Download Help Text version See more videos provided by Clean Cities TV and Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car
Alternative Fuels Data Center: Rhode Island EV Initiative Adds Chargers
Ocean State Clean Cities. Download QuickTime Video QuickTime (.mov) Download Windows Media Video Windows Media (.wmv) Video Download Help Text version See more videos provided by Clean Cities TV and Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car
Alternative Fuels Data Center: Worcester Regional Transit Authority Drives
Clean Cities. Download QuickTime Video QuickTime (.mov) Download Windows Media Video Windows Media (.wmv ) Video Download Help Text version See more videos provided by Clean Cities TV and FuelEconomy.gov Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car Shopping Nov. 4, 2017 Image of
Alternative Fuels Data Center: Propane Powers Airport Shuttles in New
Clean Fuel Partnership. Download QuickTime Video QuickTime (.mov) Download Windows Media Video Windows Media (.wmv) Video Download Help Text version See more videos provided by Clean Cities TV and Vehicles in California Nov. 18, 2017 Photo of a car Smart Car Shopping Nov. 4, 2017 Photo of a truck
Automated variance reduction for MCNP using deterministic methods.
Sweezy, J; Brown, F; Booth, T; Chiaramonte, J; Preeg, B
2005-01-01
In order to reduce the user's time and the computer time needed to solve deep penetration problems, an automated variance reduction capability has been developed for the MCNP Monte Carlo transport code. This new variance reduction capability developed for MCNP5 employs the PARTISN multigroup discrete ordinates code to generate mesh-based weight windows. The technique of using deterministic methods to generate importance maps has been widely used to increase the efficiency of deep penetration Monte Carlo calculations. The application of this method in MCNP uses the existing mesh-based weight window feature to translate the MCNP geometry into geometry suitable for PARTISN. The adjoint flux, which is calculated with PARTISN, is used to generate mesh-based weight windows for MCNP. Additionally, the MCNP source energy spectrum can be biased based on the adjoint energy spectrum at the source location. This method can also use angle-dependent weight windows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen Ph.D., Arild; Goudey, Howdy; Kohler, Christian
2010-06-17
While window frames typically represent 20-30percent of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. The Passivhaus Institute in Germany states that windows (glazing and frames, combined) should have U-values not exceeding 0.80 W/(m??K). This has created a niche market for highly insulating frames, with frame U-values typically around 0.7-1.0 W/(m2 cdot K). The U-values reported are often based on numerical simulationsmore » according to international simulation standards. It is prudent to check the accuracy of these calculation standards, especially for high performance products before more manufacturers begin to use them to improve other product offerings. In this paper the thermal transmittance of five highly insulating window frames (three wooden frames, one aluminum frame and one PVC frame), found from numerical simulations and experiments, are compared. Hot box calorimeter results are compared with numerical simulations according to ISO 10077-2 and ISO 15099. In addition CFD simulations have been carried out, in order to use the most accurate tool available to investigate the convection and radiation effects inside the frame cavities. Our results show that available tools commonly used to evaluate window performance, based on ISO standards, give good overall agreement, but specific areas need improvement.« less
nodeGame: Real-time, synchronous, online experiments in the browser.
Balietti, Stefano
2017-10-01
nodeGame is a free, open-source JavaScript/ HTML5 framework for conducting synchronous experiments online and in the lab directly in the browser window. It is specifically designed to support behavioral research along three dimensions: (i) larger group sizes, (ii) real-time (but also discrete time) experiments, and (iii) batches of simultaneous experiments. nodeGame has a modular source code, and defines an API (application programming interface) through which experimenters can create new strategic environments and configure the platform. With zero-install, nodeGame can run on a great variety of devices, from desktop computers to laptops, smartphones, and tablets. The current version of the software is 3.0, and extensive documentation is available on the wiki pages at http://nodegame.org .
ASTP (SA-210) Launch vehicle operational flight trajectory. Part 3: Final documentation
NASA Technical Reports Server (NTRS)
Carter, A. B.; Klug, G. W.; Williams, N. W.
1975-01-01
Trajectory data are presented for a nominal and two launch window trajectory simulations. These trajectories are designed to insert a manned Apollo spacecraft into a 150/167 km. (81/90 n. mi.) earth orbit inclined at 51.78 degrees for rendezvous with a Soyuz spacecraft, which will be orbiting at approximately 225 km. (121.5 n. mi.). The launch window allocation defined for this launch is 500 pounds of S-IVB stage propellant. The launch window opening trajectory simulation depicts the earliest launch time deviation from a planar flight launch which conforms to this constraint. The launch window closing trajectory simulation was developed for the more stringent Air Force Eastern Test Range (AFETR) flight azimuth restriction of 37.4 degrees east-of-north. These trajectories enclose a 12.09 minute launch window, pertinent features of which are provided in a tabulation. Planar flight data are included for mid-window reference.
Effects of the window openings on the micro-environmental condition in a school bus
NASA Astrophysics Data System (ADS)
Li, Fei; Lee, Eon S.; Zhou, Bin; Liu, Junjie; Zhu, Yifang
2017-10-01
School bus is an important micro-environment for children's health because the level of in-cabin air pollution can increase due to its own exhaust in addition to on-road traffic emissions. However, it has been challenging to understand the in-cabin air quality that is associated with complex airflow patterns inside and outside a school bus. This study conducted Computational Fluid Dynamics (CFD) modeling analyses to determine the effects of window openings on the self-pollution for a school bus. Infiltration through the window gaps is modeled by applying variable numbers of active computational cells as a function of the effective area ratio of the opening. The experimental data on ventilation rates from the literature was used to validate the model. Ultrafine particles (UFPs) and black carbon (BC) concentrations were monitored in ;real world; field campaigns using school buses. This modeling study examined the airflow pattern inside the school bus under four different types of side-window openings at 20, 40, and 60 mph (i.e., a total of 12 cases). We found that opening the driver's window could allow the infiltration of exhaust through window/door gaps in the back of school bus; whereas, opening windows in the middle of the school bus could mitigate this phenomenon. We also found that an increased driving speed (from 20 mph to 60 mph) could result in a higher ventilation rate (up to 3.4 times) and lower mean age of air (down to 0.29 time) inside the bus.
Reconsidering Return-to-Play Times: A Broader Perspective on Concussion Recovery
D’Lauro, Christopher; Johnson, Brian R.; McGinty, Gerald; Allred, C. Dain; Campbell, Darren E.; Jackson, Jonathan C.
2018-01-01
Background: Return-to-play protocols describe stepwise, graduated recoveries for safe return from concussion; however, studies that comprehensively track return-to-play time are expensive to administer and heavily sampled from elite male contact-sport athletes. Purpose: To retrospectively assess probable recovery time for collegiate patients to return to play after concussion, especially for understudied populations, such as women and nonelite athletes. Study Design: Cohort study; Level of evidence, 3. Methods: Medical staff at a military academy logged a total of 512 concussion medical records over 38 months. Of these, 414 records included complete return-to-play protocols with return-to-play time, sex, athletic status, cause, and other data. Results: Overall mean return to play was 29.4 days. Sex and athletic status both affected return-to-play time. Men showed significantly shorter return to play than women, taking 24.7 days (SEM, 1.5 days) versus 35.5 days (SEM, 2.7 days) (P < .001). Intercollegiate athletes also reported quicker return-to-play times than nonintercollegiate athletes: 25.4 days (SEM, 2.6 days) versus 34.7 days (SEM, 1.6 days) (P = .002). These variables did not significantly interact. Conclusion: Mean recovery time across all groups (29.4 days) showed considerably longer return to play than the most commonly cited concussion recovery time window (7-10 days) for collegiate athletes. Understudied groups, such as women and nonelite athletes, demonstrated notably longer recovery times. The diversity of this sample population was associated with longer return-to-play times; it is unclear how other population-specific factors may have contributed. These inclusive return-to-play windows may indicate longer recovery times outside the population of elite athletes. PMID:29568786
Ediebah, D. E.; Coens, C.; Maringwa, J. T.; Quinten, C.; Zikos, E.; Ringash, J.; King, M.; Gotay, C.; Flechtner, H.-H.; Schmucker von Koch, J.; Weis, J.; Smit, E. F.; Köhne, C.-H.; Bottomley, A.
2013-01-01
Background We examined if cancer patients' health-related quality of life (HRQoL) scores on the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30 are affected by the specific time point, before or during treatment, at which the questionnaire is completed, and whether this could bias the overall treatment comparison analyses. Patients and methods A ‘completion-time window’ variable was created on three closed EORTC randomised control trials in lung (non-small cell lung cancer, NSCLC) and colorectal cancer (CRC) to indicate when the QLQ-30 was completed relative to chemotherapy cycle dates, defined as ‘before’, ‘on’ and ‘after’. HRQoL mean scores were calculated using a linear mixed model. Results Statistically significant differences (P < 0.05) were observed on 6 and 5 scales for ‘on’ and ‘after’ comparisons in the NSCLC and two-group CRC trial, respectively. As for the three-group CRC trial, several statistical differences were observed in the ‘before’ to ‘on’ and the ‘on’ to ‘after’ comparisons. For all three trials, including the ‘completion-time window’ variable in the model resulted in a better fit, but no substantial changes in the treatment effects were noted. Conclusions We showed that considering the exact timing of completion within specified windows resulted in statistical and potentially clinically significant differences, but it did not alter the conclusions of treatment comparison in these studies. PMID:22935549
A new concept of imaging system: telescope windows
NASA Astrophysics Data System (ADS)
Bourgenot, Cyril; Cowie, Euan; Young, Laura; Love, Gordon; Girkin, John; Courtial, Johannes
2018-02-01
A Telescope window is a novel concept of transformation-optics consisting of an array of micro-telescopes, in our configuration, of a Galilean type. When the array is considered as one multifaceted device, it acts as a traditional Galilean telescope with distinctive and attractive properties such as compactness and modularity. Each lenslet, can in principle, be independently designed for a specific optical function. In this paper, we report on the design, manufacture and prototyping, by diamond precision machining, of 2 concepts of telescope windows, and discuss both their performances and limitations with a view to use them as potential low vision aid devices to support patients with macular degeneration.
Adhesion signals of phospholipid vesicles at an electrified interface.
DeNardis, Nadica Ivošević; Žutić, Vera; Svetličić, Vesna; Frkanec, Ruža
2012-09-01
General adhesion behavior of phospholipid vesicles was examined in a wide range of potentials at the mercury electrode by recording time-resolved adhesion signals. It was demonstrated that adhesion-based detection is sensitive to polar headgroups in phospholipid vesicles. We identified a narrow potential window around the point of zero charge of the electrode where the interaction of polar headgroups of phosphatidylcholine vesicles with the substrate is manifested in the form of bidirectional signals. The bidirectional signal is composed of the charge flow due to the nonspecific interaction of vesicle adhesion and spreading and of the charge flow due to a specific interaction of the negatively charged electrode and the most exposed positively charged choline headgroups. These signals are expected to appear only when the electrode surface charge density is less than the surface charge density of the choline groups at the contact interface. In comparison, for the negatively charged phosphatidylserine vesicles, we identified the potential window at the mercury electrode where charge compensation takes place, and bidirectional signals were not detected.
Dynamic subcellular imaging of cancer cell mitosis in the brain of live mice.
Momiyama, Masashi; Suetsugu, Atsushi; Kimura, Hiroaki; Chishima, Takashi; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M
2013-04-01
The ability to visualize cancer cell mitosis and apoptosis in the brain in real time would be of great utility in testing novel therapies. In order to achieve this goal, the cancer cells were labeled with green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm, such that mitosis and apoptosis could be clearly imaged. A craniotomy open window was made in athymic nude mice for real-time fluorescence imaging of implanted cancer cells growing in the brain. The craniotomy window was reversibly closed with a skin flap. Mitosis of the individual cancer cells were imaged dynamically in real time through the craniotomy-open window. This model can be used to evaluate brain metastasis and brain cancer at the subcellular level.
Guns, P-J; Johnson, D M; Weltens, E; Lissens, J
2012-09-01
Assessment of the propensity of novel drugs to cause proarrhythmia is essential in the drug development process. It is increasingly recognized, however, that QT prolongation alone is an imperfect surrogate marker for Torsades de Pointes (TdP) arrhythmia prediction. In the present study we investigated the behavior of a novel surrogate marker for TdP, the electro-mechanical (E-M) window, prior to triggering of TdP episodes with sympathetic stimulation after administration of a number of reference compounds. Experiments were carried out in closed chest pentobarbital anesthetized guinea pigs. Test compounds were administered intravenously together with a specific I(Ks) blocker (JNJ303; 0.2 mgkg(-1)min(-1) for 3 min) and adrenaline (0.06 mgkg(-1)min(-1) for 2 min) was applied to trigger TdP. ECG, blood- and left ventricular pressure signals were measured continuously throughout the experiments. The E-M window i.e. the duration of the mechanical systole (QLVP(end) interval) minus the duration of the electrical activity (QT interval) was assessed for individual beats. Drugs with documented TdP liability (quinidine, haloperidol, domperidone, terfenadine, moxifloxacin, ciprofloxacin and dofetilide) produced TdP in the protocol after adrenaline infusion, whereas negative control compounds (verapamil, ranolazine, amiodarone and saline) did not cause TdP arrhythmia, even though increases in repolarization times were observed. TdP were typically preceded by large (greater than -50 ms) negative electro-mechanical windows and were accompanied by aftercontractions. The present study in anesthetized guinea pigs indicates that negative E-M windows are a prerequisite for sympathetically-driven TdP induction after the administration of various agents with known proarrhythmic potential. These data are a first step in the validation of this novel protocol; however we believe that this proarrhythmia model in small animals might be a valuable additional tool in the prediction of TdP risk of new chemical entities at the early stages of drug discovery. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervino, L; Soultan, D; Pettersson, N
2016-06-15
Purpose: to evaluate the dosimetric and radiobiological consequences from having different gating windows, dose rates, and breathing patterns in gated VMAT lung radiotherapy. Methods: A novel 3D-printed moving phantom with central high and peripheral low tracer uptake regions was 4D FDG-PET/CT-scanned using ideal, patient-specific regular, and irregular breathing patterns. A scan of the stationary phantom was obtained as a reference. Target volumes corresponding to different uptake regions were delineated. Simultaneous integrated boost (SIB) 6 MV VMAT plans were produced for conventional and hypofractionated radiotherapy, using 30–70 and 100% cycle gating scenarios. Prescribed doses were 200 cGy with SIB to 240more » cGy to high uptake volume for conventional, and 800 with SIB to 900 cGy for hypofractionated plans. Dose rates of 600 MU/min (conventional and hypofractionated) and flattening filter free 1400 MU/min (hypofractionated) were used. Ion chamber measurements were performed to verify delivered doses. Vials with A549 cells placed in locations matching ion chamber measurements were irradiated using the same plans to measure clonogenic survival. Differences in survival for the different doses, dose rates, gating windows, and breathing patterns were analyzed. Results: Ion chamber measurements agreed within 3% of the planned dose, for all locations, breathing patterns and gating windows. Cell survival depended on dose alone, and not on gating window, breathing pattern, MU rate, or delivery time. The surviving fraction varied from approximately 40% at 2Gy to 1% for 9 Gy and was within statistical uncertainty relative to that observed for the stationary phantom. Conclusions: Use of gated VMAT in PET-driven SIB radiotherapy was validated using ion chamber measurements and cell survival assays for conventional and hypofractionated radiotherapy.« less
Percutaneous window chamber method for chronic intravital microscopy of sensor-tissue interactions.
Koschwanez, Heidi E; Klitzman, Bruce; Reichert, W Monty
2008-11-01
A dorsal, two-sided skin-fold window chamber model was employed previously by Gough in glucose sensor research to characterize poorly understood physiological factors affecting sensor performance. We have extended this work by developing a percutaneous one-sided window chamber model for the rodent dorsum that offers both a larger subcutaneous area and a less restrictive tissue space than previous animal models. A surgical procedure for implanting a sensor into the subcutis beneath an acrylic window (15 mm diameter) is presented. Methods to quantify changes in the microvascular network and red blood cell perfusion around the sensors using noninvasive intravital microscopy and laser Doppler flowmetry are described. The feasibility of combining interstitial glucose monitoring from an implanted sensor with intravital fluorescence microscopy was explored using a bolus injection of fluorescein and dextrose to observe real-time mass transport of a small molecule at the sensor-tissue interface. The percutaneous window chamber provides an excellent model for assessing the influence of different sensor modifications, such as surface morphologies, on neovascularization using real-time monitoring of the microvascular network and tissue perfusion. However, the tissue response to an implanted sensor was variable, and some sensors migrated entirely out of the field of view and could not be observed adequately. A percutaneous optical window provides direct, real-time images of the development and dynamics of microvascular networks, microvessel patency, and fibrotic encapsulation at the tissue-sensor interface. Additionally, observing microvessels following combined bolus injections of a fluorescent dye and glucose in the local sensor environment demonstrated a valuable technique to visualize mass transport at the sensor surface.
Near real-time vaccine safety surveillance with partially accrued data.
Greene, Sharon K; Kulldorff, Martin; Yin, Ruihua; Yih, W Katherine; Lieu, Tracy A; Weintraub, Eric S; Lee, Grace M
2011-06-01
The Vaccine Safety Datalink (VSD) Project conducts near real-time vaccine safety surveillance using sequential analytic methods. Timely surveillance is critical in identifying potential safety problems and preventing additional exposure before most vaccines are administered. For vaccines that are administered during a short period, such as influenza vaccines, timeliness can be improved by undertaking analyses while risk windows following vaccination are ongoing and by accommodating predictable and unpredictable data accrual delays. We describe practical solutions to these challenges, which were adopted by the VSD Project during pandemic and seasonal influenza vaccine safety surveillance in 2009/2010. Adjustments were made to two sequential analytic approaches. The Poisson-based approach compared the number of pre-defined adverse events observed following vaccination with the number expected using historical data. The expected number was adjusted for the proportion of the risk window elapsed and the proportion of inpatient data estimated to have accrued. The binomial-based approach used a self-controlled design, comparing the observed numbers of events in risk versus comparison windows. Events were included in analysis only if they occurred during a week that had already passed for both windows. Analyzing data before risk windows fully elapsed improved the timeliness of safety surveillance. Adjustments for data accrual lags were tailored to each data source and avoided biasing analyses away from detecting a potential safety problem, particularly early during surveillance. The timeliness of vaccine and drug safety surveillance can be improved by properly accounting for partially elapsed windows and data accrual delays. Copyright © 2011 John Wiley & Sons, Ltd.
Towards component-based validation of GATE: aspects of the coincidence processor
Moraes, Eder R.; Poon, Jonathan K.; Balakrishnan, Karthikayan; Wang, Wenli; Badawi, Ramsey D.
2014-01-01
GATE is public domain software widely used for Monte Carlo simulation in emission tomography. Validations of GATE have primarily been performed on a whole-system basis, leaving the possibility that errors in one sub-system may be offset by errors in others. We assess the accuracy of the GATE PET coincidence generation sub-system in isolation, focusing on the options most closely modeling the majority of commercially available scanners. Independent coincidence generators were coded by teams at Toshiba Medical Research Unit (TMRU) and UC Davis. A model similar to the Siemens mCT scanner was created in GATE. Annihilation photons interacting with the detectors were recorded. Coincidences were generated using GATE, TMRU and UC Davis code and results compared to “ground truth” obtained from the history of the photon interactions. GATE was tested twice, once with every qualified single event opening a time window and initiating a coincidence check (the “multiple window method”), and once where a time window is opened and a coincidence check initiated only by the first single event to occur after the end of the prior time window (the “single window method”). True, scattered and random coincidences were compared. Noise equivalent count rates were also computed and compared. The TMRU and UC Davis coincidence generators agree well with ground truth. With GATE, reasonable accuracy can be obtained if the single window method option is chosen and random coincidences are estimated without use of the delayed coincidence option. However in this GATE version, other parameter combinations can result in significant errors. PMID:25240897
Solving the chemical master equation using sliding windows
2010-01-01
Background The chemical master equation (CME) is a system of ordinary differential equations that describes the evolution of a network of chemical reactions as a stochastic process. Its solution yields the probability density vector of the system at each point in time. Solving the CME numerically is in many cases computationally expensive or even infeasible as the number of reachable states can be very large or infinite. We introduce the sliding window method, which computes an approximate solution of the CME by performing a sequence of local analysis steps. In each step, only a manageable subset of states is considered, representing a "window" into the state space. In subsequent steps, the window follows the direction in which the probability mass moves, until the time period of interest has elapsed. We construct the window based on a deterministic approximation of the future behavior of the system by estimating upper and lower bounds on the populations of the chemical species. Results In order to show the effectiveness of our approach, we apply it to several examples previously described in the literature. The experimental results show that the proposed method speeds up the analysis considerably, compared to a global analysis, while still providing high accuracy. Conclusions The sliding window method is a novel approach to address the performance problems of numerical algorithms for the solution of the chemical master equation. The method efficiently approximates the probability distributions at the time points of interest for a variety of chemically reacting systems, including systems for which no upper bound on the population sizes of the chemical species is known a priori. PMID:20377904
Window-Based Channel Impulse Response Prediction for Time-Varying Ultra-Wideband Channels.
Al-Samman, A M; Azmi, M H; Rahman, T A; Khan, I; Hindia, M N; Fattouh, A
2016-01-01
This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk-1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method.
Window-Based Channel Impulse Response Prediction for Time-Varying Ultra-Wideband Channels
Al-Samman, A. M.; Azmi, M. H.; Rahman, T. A.; Khan, I.; Hindia, M. N.; Fattouh, A.
2016-01-01
This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk−1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method. PMID:27992445
NASA Astrophysics Data System (ADS)
Moliner, L.; Correcher, C.; Gimenez-Alventosa, V.; Ilisie, V.; Alvarez, J.; Sanchez, S.; Rodríguez-Alvarez, M. J.
2017-11-01
Nowadays, with the increase of the computational power of modern computers together with the state-of-the-art reconstruction algorithms, it is possible to obtain Positron Emission Tomography (PET) images in practically real time. These facts open the door to new applications such as radio-pharmaceuticals tracking inside the body or the use of PET for image-guided procedures, such as biopsy interventions, among others. This work is a proof of concept that aims to improve the user experience with real time PET images. Fixed, incremental, overlapping, sliding and hybrid windows are the different statistical combinations of data blocks used to generate intermediate images in order to follow the path of the activity in the Field Of View (FOV). To evaluate these different combinations, a point source is placed in a dedicated breast PET device and moved along the FOV. These acquisitions are reconstructed according to the different statistical windows, resulting in a smoother transition of positions for the image reconstructions that use the sliding and hybrid window.
NASA Astrophysics Data System (ADS)
Reil, Frank; Thomas, John E.
2002-05-01
For the first time we are able to observe the time-resolved Wigner function of enhanced backscatter from a random medium using a novel two-window technique. This technique enables us to directly verify the phase-conjugating properties of random media. An incident divergent beam displays a convergent enhanced backscatter cone. We measure the joint position and momentum (x, p) distributions of the light field as a function of propagation time in the medium. The two-window technique allows us to independently control the resolutions for position and momentum, thereby surpassing the uncertainty limit associated with Fourier transform pairs. By using a low-coherence light source in a heterodyne detection scheme, we observe enhanced backscattering resolved by path length in the random medium, providing information about the evolution of optical coherence as a function of penetration depth in the random medium.
2013-03-01
interacted with (15). 4.3.3 Experimental Procedure Two MgAl2O4 spinel samples with nominal 0.6- and 1.6-μm mean grain sizes were tested using advanced...unable to make specific quantitative predictions at this time. Due to the nature of the experimental process, this technique is suitable only for...Information From Spherical Indentation; ARL-TR-4229; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, 2007. 24. ASTM E112. Standard Test
Analysis of oil-pipeline distribution of multiple products subject to delivery time-windows
NASA Astrophysics Data System (ADS)
Jittamai, Phongchai
This dissertation defines the operational problems of, and develops solution methodologies for, a distribution of multiple products into oil pipeline subject to delivery time-windows constraints. A multiple-product oil pipeline is a pipeline system composing of pipes, pumps, valves and storage facilities used to transport different types of liquids. Typically, products delivered by pipelines are petroleum of different grades moving either from production facilities to refineries or from refineries to distributors. Time-windows, which are generally used in logistics and scheduling areas, are incorporated in this study. The distribution of multiple products into oil pipeline subject to delivery time-windows is modeled as multicommodity network flow structure and mathematically formulated. The main focus of this dissertation is the investigation of operating issues and problem complexity of single-source pipeline problems and also providing solution methodology to compute input schedule that yields minimum total time violation from due delivery time-windows. The problem is proved to be NP-complete. The heuristic approach, a reversed-flow algorithm, is developed based on pipeline flow reversibility to compute input schedule for the pipeline problem. This algorithm is implemented in no longer than O(T·E) time. This dissertation also extends the study to examine some operating attributes and problem complexity of multiple-source pipelines. The multiple-source pipeline problem is also NP-complete. A heuristic algorithm modified from the one used in single-source pipeline problems is introduced. This algorithm can also be implemented in no longer than O(T·E) time. Computational results are presented for both methodologies on randomly generated problem sets. The computational experience indicates that reversed-flow algorithms provide good solutions in comparison with the optimal solutions. Only 25% of the problems tested were more than 30% greater than optimal values and approximately 40% of the tested problems were solved optimally by the algorithms.
NASA Astrophysics Data System (ADS)
Hu, Shan
This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of other planar supercapacitors in literature by more than one order of magnitude. All-solution fabrication processes were developed for both generations to achieve economical and scalable production. In addition to carbon nanotubes, nickel/nickel oxide core-shell nanowires were also studied as electrode materials for supercapacitors, for which high specific capacitance but low working voltage were obtained. Semi-transparent solar cells with carbon nanotube counter electrodes are developed to power the active noise cancellation system. They can be directly mounted on the glass panes and become part of the home window. The 2.67% efficiency achieved is higher than the 1.8% efficiency required for harvesting adequate energy to cancel noise of 70dB Day-Night-Level, which impacts on a north-facing window. In summary, this project develops several fundamental technologies that together can contribute to a solar-powered active noise cancellation system for a building window. At the same time, since the component technologies being developed are fundamental, it is also likely that they will have wider applications in other domains beyond building windows.
Validation of accelerometer wear and nonwear time classification algorithm.
Choi, Leena; Liu, Zhouwen; Matthews, Charles E; Buchowski, Maciej S
2011-02-01
the use of movement monitors (accelerometers) for measuring physical activity (PA) in intervention and population-based studies is becoming a standard methodology for the objective measurement of sedentary and active behaviors and for the validation of subjective PA self-reports. A vital step in PA measurement is the classification of daily time into accelerometer wear and nonwear intervals using its recordings (counts) and an accelerometer-specific algorithm. the purpose of this study was to validate and improve a commonly used algorithm for classifying accelerometer wear and nonwear time intervals using objective movement data obtained in the whole-room indirect calorimeter. we conducted a validation study of a wear or nonwear automatic algorithm using data obtained from 49 adults and 76 youth wearing accelerometers during a strictly monitored 24-h stay in a room calorimeter. The accelerometer wear and nonwear time classified by the algorithm was compared with actual wearing time. Potential improvements to the algorithm were examined using the minimum classification error as an optimization target. the recommended elements in the new algorithm are as follows: 1) zero-count threshold during a nonwear time interval, 2) 90-min time window for consecutive zero or nonzero counts, and 3) allowance of 2-min interval of nonzero counts with the upstream or downstream 30-min consecutive zero-count window for detection of artifactual movements. Compared with the true wearing status, improvements to the algorithm decreased nonwear time misclassification during the waking and the 24-h periods (all P values < 0.001). the accelerometer wear or nonwear time algorithm improvements may lead to more accurate estimation of time spent in sedentary and active behaviors.
Window Performance in Extreme Cold,
1982-12-01
outdoor temperatures ranging between -40 and 20*F Alaska that have undergone an extensive window re- as shown in Table 2. We made these observations in...good predictor of when We made icing and condensation observations over moisture or ice would occur on a window pane. the temperature spectrum shown...tions were made during the daytime, it was often likely sashes or frames, and 4) vapor-loose indoor sashes that ATIo at the time of observation would
2.5-month-old infants' reasoning about when objects should and should not be occluded.
Aguiar, A; Baillargeon, R
1999-09-01
The present research examined 2.5-month-old infants' reasoning about occlusion events. Three experiments investigated infants' ability to predict whether an object should remain continuously hidden or become temporarily visible when passing behind an occluder with an opening in its midsection. In Experiment 1, the infants were habituated to a short toy mouse that moved back and forth behind a screen. Next, the infants saw two test events that were identical to the habituation event except that a portion of the screen's midsection was removed to create a large window. In one event (high-window event), the window extended from the screen's upper edge; the mouse was shorter than the bottom of the window and thus did not become visible when passing behind the screen. In the other event (low-window event), the window extended from the screen's lower edge; although the mouse was shorter than the top of the window and hence should have become fully visible when passing behind the screen, it never appeared in the window. The infants tended to look equally at the high- and low-window events, suggesting that they were not surprised when the mouse failed to appear in the low window. However, positive results were obtained in Experiment 2 when the low-window event was modified: a portion of the screen above the window was removed so that the left and right sections of the screen were no longer connected (two-screens event). The infants looked reliably longer at the two-screens than at the high-window event. Together, the results of Experiments 1 and 2 suggested that, at 2.5 months of age, infants possess only very limited expectations about when objects should and should not be occluded. Specifically, infants expect objects (1) to become visible when passing between occluders and (2) to remain hidden when passing behind occluders, irrespective of whether these have openings extending from their upper or lower edges. Experiment 3 provided support for this interpretation. The implications of these findings for models of the origins and development of infants' knowledge about occlusion events are discussed. Copyright 1999 Academic Press.
Design and comparison of laser windows for high-power lasers
NASA Astrophysics Data System (ADS)
Niu, Yanxiong; Liu, Wenwen; Liu, Haixia; Wang, Caili; Niu, Haisha; Man, Da
2014-11-01
High-power laser systems are getting more and more widely used in industry and military affairs. It is necessary to develop a high-power laser system which can operate over long periods of time without appreciable degradation in performance. When a high-energy laser beam transmits through a laser window, it is possible that the permanent damage is caused to the window because of the energy absorption by window materials. So, when we design a high-power laser system, a suitable laser window material must be selected and the laser damage threshold of the window must be known. In this paper, a thermal analysis model of high-power laser window is established, and the relationship between the laser intensity and the thermal-stress field distribution is studied by deducing the formulas through utilizing the integral-transform method. The influence of window radius, thickness and laser intensity on the temperature and stress field distributions is analyzed. Then, the performance of K9 glass and the fused silica glass is compared, and the laser-induced damage mechanism is analyzed. Finally, the damage thresholds of laser windows are calculated. The results show that compared with K9 glass, the fused silica glass has a higher damage threshold due to its good thermodynamic properties. The presented theoretical analysis and simulation results are helpful for the design and selection of high-power laser windows.
Marginal regression analysis of recurrent events with coarsened censoring times.
Hu, X Joan; Rosychuk, Rhonda J
2016-12-01
Motivated by an ongoing pediatric mental health care (PMHC) study, this article presents weakly structured methods for analyzing doubly censored recurrent event data where only coarsened information on censoring is available. The study extracted administrative records of emergency department visits from provincial health administrative databases. The available information of each individual subject is limited to a subject-specific time window determined up to concealed data. To evaluate time-dependent effect of exposures, we adapt the local linear estimation with right censored survival times under the Cox regression model with time-varying coefficients (cf. Cai and Sun, Scandinavian Journal of Statistics 2003, 30, 93-111). We establish the pointwise consistency and asymptotic normality of the regression parameter estimator, and examine its performance by simulation. The PMHC study illustrates the proposed approach throughout the article. © 2016, The International Biometric Society.
Novel windowing technique realized in FPGA for radar system
NASA Astrophysics Data System (ADS)
Escamilla-Hernandez, E.; Kravchenko, V. F.; Ponomaryov, V. I.; Ikuo, Arai
2006-02-01
To improve the weak target detection ability in radar applications a pulse compression is usually used that in the case linear FM modulation can improve the SNR. One drawback in here is that it can add the range side-lobes in reflectivity measurements. Using weighting window processing in time domain it is possible to decrease significantly the side-lobe level (SLL) and resolve small or low power targets those are masked by powerful ones. There are usually used classical windows such as Hamming, Hanning, etc. in window processing. Additionally to classical ones in this paper we also use a novel class of windows based on atomic functions (AF) theory. For comparison of simulation and experimental results we applied the standard parameters, such as coefficient of amplification, maximum level of side-lobe, width of main lobe, etc. To implement the compression-windowing model on hardware level it has been employed FPGA. This work aims at demonstrating a reasonably flexible implementation of FM-linear signal, pulse compression and windowing employing FPGA's. Classical and novel AF window technique has been investigated to reduce the SLL taking into account the noise influence and increasing the detection ability of the small or weak targets in the imaging radar. Paper presents the experimental hardware results of windowing in pulse compression radar resolving several targets for rectangular, Hamming, Kaiser-Bessel, (see manuscript for formula) functions windows. The windows created by use the atomic functions offer sufficiently better decreasing of the SLL in case of noise presence and when we move away of the main lobe in comparison with classical windows.
climwin: An R Toolbox for Climate Window Analysis.
Bailey, Liam D; van de Pol, Martijn
2016-01-01
When studying the impacts of climate change, there is a tendency to select climate data from a small set of arbitrary time periods or climate windows (e.g., spring temperature). However, these arbitrary windows may not encompass the strongest periods of climatic sensitivity and may lead to erroneous biological interpretations. Therefore, there is a need to consider a wider range of climate windows to better predict the impacts of future climate change. We introduce the R package climwin that provides a number of methods to test the effect of different climate windows on a chosen response variable and compare these windows to identify potential climate signals. climwin extracts the relevant data for each possible climate window and uses this data to fit a statistical model, the structure of which is chosen by the user. Models are then compared using an information criteria approach. This allows users to determine how well each window explains variation in the response variable and compare model support between windows. climwin also contains methods to detect type I and II errors, which are often a problem with this type of exploratory analysis. This article presents the statistical framework and technical details behind the climwin package and demonstrates the applicability of the method with a number of worked examples.
Alternative Fuels Data Center: Kentucky Charges Forward with All-Electric
Partnership. Download QuickTime Video QuickTime (.mov) Download Windows Media Video Windows Media (.wmv) Video Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car Shopping Nov. 4, 2017 Image of Photo of a truck Natural Gas Fuels School Buses and Refuse Trucks in Tulsa, Oklahoma Feb. 18, 2017 Photo
Study of wavefront error and polarization of a side mounted infrared window
NASA Astrophysics Data System (ADS)
Liu, Jiaguo; Li, Lin; Hu, Xinqi; Yu, Xin
2008-03-01
The wavefront error and polarization of a side mounted infrared window made of ZnS are studied. The Infrared windows suffer from temperature gradient and stress during their launch process. Generally, the gradient in temperature changes the refractive index of the material whereas stress produces deformation and birefringence. In this paper, a thermal finite element analysis (FEA) of an IR window is presented. For this purpose, we employed an FEA program Ansys to obtain the time-varying temperature field. The deformation and stress of the window are derived from a structural FEA with the aerodynamic force and the temperature field previously obtained as being the loads. The deformation, temperature field, stress field, ray tracing and Jones Calculus are used to calculate the wavefront error and the change of polarization state.
Magnesium Object Manager Sandbox, A More Effective Sandbox Method for Windows 7
2012-03-01
keys, synchronization primitives , etc.). The object body is specific to, and the same for, each object type; it contains information common to each...the Object Directory Specific Rights Synchronization Object (Event, Mutex, Semaphore , Timer) Synchronization objects allow multiple threads to... Synchronization Object Specific Rights . . . . . . . . . . . . . . . . . . . . . 19 2.5 File Object Specific Rights
Real-time image sequence segmentation using curve evolution
NASA Astrophysics Data System (ADS)
Zhang, Jun; Liu, Weisong
2001-04-01
In this paper, we describe a novel approach to image sequence segmentation and its real-time implementation. This approach uses the 3D structure tensor to produce a more robust frame difference signal and uses curve evolution to extract whole objects. Our algorithm is implemented on a standard PC running the Windows operating system with video capture from a USB camera that is a standard Windows video capture device. Using the Windows standard video I/O functionalities, our segmentation software is highly portable and easy to maintain and upgrade. In its current implementation on a Pentium 400, the system can perform segmentation at 5 frames/sec with a frame resolution of 160 by 120.
Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K.; Wells, Sam; Wikswo, John P.; Zijlstra, Andries; Richmond, Ann
2016-01-01
ABSTRACT We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment. PMID:28243517
Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K; Wells, Sam; Wikswo, John P; Zijlstra, Andries; Richmond, Ann
2016-01-01
We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment.
Latitudinal and photic effects on diel foraging and predation risk in freshwater pelagic ecosystems
Hansen, Adam G.; Beauchamp, David A.
2014-01-01
1. Clark & Levy (American Naturalist, 131, 1988, 271–290) described an antipredation window for smaller planktivorous fish during crepuscular periods when light permits feeding on zooplankton, but limits visual detection by piscivores. Yet, how the window is influenced by the interaction between light regime, turbidity and cloud cover over a broad latitudinal gradi- ent remains unexplored. 2. We evaluated how latitudinal and seasonal shifts in diel light regimes alter the foraging- risk environment for visually feeding planktivores and piscivores across a natural range of turbidities and cloud covers. Pairing a model of aquatic visual feeding with a model of sun and moon illuminance, we estimated foraging rates of an idealized planktivore and piscivore over depth and time across factorial combinations of latitude (0–70°), turbidity (01–5 NTU) and cloud cover (clear to overcast skies) during the summer solstice and autumnal equinox. We evaluated the foraging-risk environment based on changes in the magnitude, duration and peak timing of the antipredation window. 3. The model scenarios generated up to 10-fold shifts in magnitude, 24-fold shifts in duration and 55-h shifts in timing of the peak antipredation window. The size of the window increased with latitude. This pattern was strongest during the solstice. In clear water at low turbidity (01–05 NTU), peaks in the magnitude and duration of the window formed at 57–60° latitude, before falling to near zero as surface waters became saturated with light under a midnight sun and clear skies at latitudes near 70°. Overcast dampened the midnight sun enough to allow larger windows to form in clear water at high latitudes. Conversely, at turbidities ≥2 NTU, greater reductions in the visual range of piscivores than planktivores created a window for long periods at high latitudes. Latitudinal dependencies were essentially lost during the equinox, indicating a progressive compression of the window from early summer into autumn. 4. Model results show that diel-seasonal foraging and predation risk in freshwater pelagic ecosystems changes considerably with latitude, turbidity and cloud cover. These changes alter the structure of pelagic predator–prey interactions, and in turn, the broader role of pelagic consumers in habitat coupling in lakes.
High-Temperature Optical Window Design
NASA Technical Reports Server (NTRS)
Roeloffs, Norman; Taranto, Nick
1995-01-01
A high-temperature optical window is essential to the optical diagnostics of high-temperature combustion rigs. Laser Doppler velocimetry, schlieren photography, light sheet visualization, and laser-induced fluorescence spectroscopy are a few of the tests that require optically clear access to the combustor flow stream. A design was developed for a high-temperature window that could withstand the severe environment of the NASA Lewis 3200 F Lean Premixed Prevaporized (LPP) Flame Tube Test Rig. The development of this design was both time consuming and costly. This report documents the design process and the lessons learned, in an effort to reduce the cost of developing future designs for high-temperature optical windows.
Caldwell, Robert R
2011-12-28
The challenge to understand the physical origin of the cosmic acceleration is framed as a problem of gravitation. Specifically, does the relationship between stress-energy and space-time curvature differ on large scales from the predictions of general relativity. In this article, we describe efforts to model and test a generalized relationship between the matter and the metric using cosmological observations. Late-time tracers of large-scale structure, including the cosmic microwave background, weak gravitational lensing, and clustering are shown to provide good tests of the proposed solution. Current data are very close to proving a critical test, leaving only a small window in parameter space in the case that the generalized relationship is scale free above galactic scales.
Photon counting phosphorescence lifetime imaging with TimepixCam.
Hirvonen, Liisa M; Fisher-Levine, Merlin; Suhling, Klaus; Nomerotski, Andrei
2017-01-01
TimepixCam is a novel fast optical imager based on an optimized silicon pixel sensor with a thin entrance window and read out by a Timepix Application Specific Integrated Circuit. The 256 × 256 pixel sensor has a time resolution of 15 ns at a sustained frame rate of 10 Hz. We used this sensor in combination with an image intensifier for wide-field time-correlated single photon counting imaging. We have characterised the photon detection capabilities of this detector system and employed it on a wide-field epifluorescence microscope to map phosphorescence decays of various iridium complexes with lifetimes of about 1 μs in 200 μm diameter polystyrene beads.
Photon counting phosphorescence lifetime imaging with TimepixCam
NASA Astrophysics Data System (ADS)
Hirvonen, Liisa M.; Fisher-Levine, Merlin; Suhling, Klaus; Nomerotski, Andrei
2017-01-01
TimepixCam is a novel fast optical imager based on an optimized silicon pixel sensor with a thin entrance window and read out by a Timepix Application Specific Integrated Circuit. The 256 × 256 pixel sensor has a time resolution of 15 ns at a sustained frame rate of 10 Hz. We used this sensor in combination with an image intensifier for wide-field time-correlated single photon counting imaging. We have characterised the photon detection capabilities of this detector system and employed it on a wide-field epifluorescence microscope to map phosphorescence decays of various iridium complexes with lifetimes of about 1 μs in 200 μm diameter polystyrene beads.
Choy, G.L.; Boatwright, J.
2007-01-01
The rupture process of the Mw 9.1 Sumatra-Andaman earthquake lasted for approximately 500 sec, nearly twice as long as the teleseismic time windows between the P and PP arrival times generally used to compute radiated energy. In order to measure the P waves radiated by the entire earthquake, we analyze records that extend from the P-wave to the S-wave arrival times from stations at distances ?? >60??. These 8- to 10-min windows contain the PP, PPP, and ScP arrivals, along with other multiply reflected phases. To gauge the effect of including these additional phases, we form the spectral ratio of the source spectrum estimated from extended windows (between TP and TS) to the source spectrum estimated from normal windows (between TP and TPP). The extended windows are analyzed as though they contained only the P-pP-sP wave group. We analyze four smaller earthquakes that occurred in the vicinity of the Mw 9.1 mainshock, with similar depths and focal mechanisms. These smaller events range in magnitude from an Mw 6.0 aftershock of 9 January 2005 to the Mw 8.6 Nias earthquake that occurred to the south of the Sumatra-Andaman earthquake on 28 March 2005. We average the spectral ratios for these four events to obtain a frequency-dependent operator for the extended windows. We then correct the source spectrum estimated from the extended records of the 26 December 2004 mainshock to obtain a complete or corrected source spectrum for the entire rupture process (???600 sec) of the great Sumatra-Andaman earthquake. Our estimate of the total seismic energy radiated by this earthquake is 1.4 ?? 1017 J. When we compare the corrected source spectrum for the entire earthquake to the source spectrum from the first ???250 sec of the rupture process (obtained from normal teleseismic windows), we find that the mainshock radiated much more seismic energy in the first half of the rupture process than in the second half, especially over the period range from 3 sec to 40 sec.
Chang, Andrew; Eastwood, Hayden; Sly, David; James, David; Richardson, Rachael; O'Leary, Stephen
2009-09-01
To protect hearing in an experimental model of cochlear implantation by the application of dexamethasone to the round window prior to surgery. The present study examined the dosage and timing relationships required to optimise the hearing protection. Dexamethasone or saline (control) was absorbed into a pledget of the carboxymethylcellulose and hyaluronic acid and applied to the round window of the guinea pig prior to cochlear implantation. The treatment groups were 2% w/v dexamethasone for 30, 60 and 120min; 20% dexamethasone applied for 30min. Auditory sensitivity was determined pre-operatively, and at 1 week after surgery, with pure-tone auditory brainstem response audiometry (2-32kHz). Cochlear implantation was performed via a cochleostomy drilled into the basal turn of the cochlea, into which a miniature cochlear implant dummy electrode was inserted using soft-surgery techniques. ABR thresholds were elevated after cochlear implantation, maximally at 32kHz and to a lesser extent at lower frequencies. Thresholds were less elevated after dexamethasone treatment, and the hearing protection improved when 2% dexamethasone was applied to the round window for longer periods of time prior to implantation. The time that dexamethasone need be applied to achieve hearing protection could be reduced by increasing the concentration of steroid, with a 20% application for 30min achieving similar levels of protection to a 60min application of 2% dexamethasone. Hearing protection is improved by increasing the time that dexamethasone is applied to the round window prior to cochlear implantation, and the waiting time can be reduced by increasing the steroid concentration. These results suggest that the diffusion dexamethasone through the cochlea is the prime determinant of the extent of hearing protection.
NASA Astrophysics Data System (ADS)
Spry, James A.; Beaudet, Robert; Schubert, Wayne
Dry heat microbial reduction (DHMR) is the primary method currently used to reduce the microbial load of spacecraft and component parts to comply with planetary protection re-quirements. However, manufacturing processes often involve heating flight hardware to high temperatures for purposes other than planetary protection DHMR. At present, the specifica-tion in NASA document NPR8020.12, describing the process lethality on B. atrophaeus (ATCC 9372) bacterial spores, does not allow for additional planetary protection bioburden reduction credit for processing outside a narrow temperature, time and humidity window. Our results from a comprehensive multi-year laboratory research effort have generated en-hanced data sets on four aspects of the current specification: time and temperature effects in combination, the effect that humidity has on spore lethality, and the lethality for spores with exceptionally high thermal resistance (so called "hardies"). This paper describes potential modifications to the specification, based on the data set gener-ated in the referenced studies. The proposed modifications are intended to broaden the scope of the current specification while still maintaining confidence in a conservative interpretation of the lethality of the DHMR process on microorganisms.
Sapphire Viewports for a Venus Probe
NASA Technical Reports Server (NTRS)
Bates, Stephen
2012-01-01
A document discusses the creation of a viewport suitable for use on the surface of Venus. These viewports are rated for 500 C and 100 atm pressure with appropriate safety factors and reliability required for incorporation into a Venus Lander. Sapphire windows should easily withstand the chemical, pressure, and temperatures of the Venus surface. Novel fixture designs and seals appropriate to the environment are incorporated, as are materials compatible with exploration vessels. A test cell was fabricated, tested, and leak rate measured. The window features polish specification of the sides and corners, soft metal padding of the sapphire, and a metal C-ring seal. The system safety factor is greater than 2, and standard mechanical design theory was used to size the window, flange, and attachment bolts using available material property data. Maintenance involves simple cleaning of the window aperture surfaces. The only weakness of the system is its moderate rather than low leak rate for vacuum applications.
Delay of cognitive gamma responses in Alzheimer's disease
Başar, Erol; Emek-Savaş, Derya Durusu; Güntekin, Bahar; Yener, Görsev G.
2016-01-01
Event-related oscillations (EROs) reflect cognitive brain dynamics, while sensory-evoked oscillations (SEOs) reflect sensory activities. Previous reports from our lab have shown that those with Alzheimer's disease (AD) or mild cognitive impairment (MCI) have decreased activity and/or coherence in delta, theta, alpha and beta cognitive responses. In the current study, we investigated gamma responses in visual SEO and ERO in 15 patients with AD and in 15 age-, gender- and education-matched healthy controls. The following parameters were analyzed over the parietal-occipital regions in both groups: (i) latency of the maximum gamma response over a 0–800 ms time window; (ii) the maximum peak-to-peak amplitudes for each participant's averaged SEO and ERO gamma responses in 3 frequency ranges (25–30, 30–35, 40–48 Hz); and (iii) the maximum peak-to-peak amplitudes for each participant's averaged SEO and ERO gamma responses over a 0–800 ms time block containing four divided time windows (0–200, 200–400, 400–600, and 600–800 ms). There were main group effects in terms of both latency and peak-to-peak amplitudes of gamma ERO. However, peak-to-peak gamma ERO amplitude differences became noticeable only when the time block was divided into four time windows. SEO amplitudes in the 25–30 Hz frequency range of the 0–200 ms time window over the left hemisphere were greater in the healthy controls than in those with AD. Gamma target ERO latency was delayed up to 138 ms in AD patients when compared to healthy controls. This finding may be an effect of lagged neural signaling in cognitive circuits, which is reflected by the delayed gamma responses in those with AD. Based on the results of this study, we propose that gamma responses should be examined in a more detailed fashion using multiple frequency and time windows. PMID:26937378
Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin
2016-09-02
For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method.
Beyond the Time Window of Intravenous Thrombolysis: Standing by or by Stenting?
Liu, Xinfeng
2012-01-01
Intravenous administration of tissue plasminogen activator within 4.5 h of symptom onset is presently the ‘golden rule’ for treating acute ischemic stroke. However, many patients miss the time window and others reject this treatment due to a long list of contraindications. Mechanical embolectomy has recently progressed as a potential alternative for treating patients beyond the time window for IV thrombolysis. In this paper, recent progress in mechanical embolectomy, angioplasty, and stenting in acute stroke is reviewed. Despite worries concerning the long-term clinical outcomes and increased risk of intracranial hemorrhage, favorable clinical outcomes may be achieved after mechanical embolectomy in carefully selected patients even 4.5 h after stroke onset. Potential steps should be prepared and attempted in these patients whose opportunity for recovery will elapse in a flash. PMID:25187761
Hardware Implementation of a Bilateral Subtraction Filter
NASA Technical Reports Server (NTRS)
Huertas, Andres; Watson, Robert; Villalpando, Carlos; Goldberg, Steven
2009-01-01
A bilateral subtraction filter has been implemented as a hardware module in the form of a field-programmable gate array (FPGA). In general, a bilateral subtraction filter is a key subsystem of a high-quality stereoscopic machine vision system that utilizes images that are large and/or dense. Bilateral subtraction filters have been implemented in software on general-purpose computers, but the processing speeds attainable in this way even on computers containing the fastest processors are insufficient for real-time applications. The present FPGA bilateral subtraction filter is intended to accelerate processing to real-time speed and to be a prototype of a link in a stereoscopic-machine- vision processing chain, now under development, that would process large and/or dense images in real time and would be implemented in an FPGA. In terms that are necessarily oversimplified for the sake of brevity, a bilateral subtraction filter is a smoothing, edge-preserving filter for suppressing low-frequency noise. The filter operation amounts to replacing the value for each pixel with a weighted average of the values of that pixel and the neighboring pixels in a predefined neighborhood or window (e.g., a 9 9 window). The filter weights depend partly on pixel values and partly on the window size. The present FPGA implementation of a bilateral subtraction filter utilizes a 9 9 window. This implementation was designed to take advantage of the ability to do many of the component computations in parallel pipelines to enable processing of image data at the rate at which they are generated. The filter can be considered to be divided into the following parts (see figure): a) An image pixel pipeline with a 9 9- pixel window generator, b) An array of processing elements; c) An adder tree; d) A smoothing-and-delaying unit; and e) A subtraction unit. After each 9 9 window is created, the affected pixel data are fed to the processing elements. Each processing element is fed the pixel value for its position in the window as well as the pixel value for the central pixel of the window. The absolute difference between these two pixel values is calculated and used as an address in a lookup table. Each processing element has a lookup table, unique for its position in the window, containing the weight coefficients for the Gaussian function for that position. The pixel value is multiplied by the weight, and the outputs of the processing element are the weight and pixel-value weight product. The products and weights are fed to the adder tree. The sum of the products and the sum of the weights are fed to the divider, which computes the sum of products the sum of weights. The output of the divider is denoted the bilateral smoothed image. The smoothing function is a simple weighted average computed over a 3 3 subwindow centered in the 9 9 window. After smoothing, the image is delayed by an additional amount of time needed to match the processing time for computing the bilateral smoothed image. The bilateral smoothed image is then subtracted from the 3 3 smoothed image to produce the final output. The prototype filter as implemented in a commercially available FPGA processes one pixel per clock cycle. Operation at a clock speed of 66 MHz has been demonstrated, and results of a static timing analysis have been interpreted as suggesting that the clock speed could be increased to as much as 100 MHz.
Yang, Peihua; Sun, Peng; Chai, Zhisheng; Huang, Langhuan; Cai, Xiang; Tan, Shaozao; Song, Jinhui; Mai, Wenjie
2014-10-27
Multifunctional glass windows that combine energy storage and electrochromism have been obtained by facile thermal evaporation and electrodeposition methods. For example, WO3 films that had been deposited on fluorine-doped tin oxide (FTO) glass exhibited a high specific capacitance of 639.8 F g(-1). Their color changed from transparent to deep blue with an abrupt decrease in optical transmittance from 91.3% to 15.1% at a wavelength of 633 nm when a voltage of -0.6 V (vs. Ag/AgCl) was applied, demonstrating its excellent energy-storage and electrochromism properties. As a second example, a polyaniline-based pseudocapacitive glass was also developed, and its color can change from green to blue. A large-scale pseudocapacitive WO3-based glass window (15×15 cm(2)) was fabricated as a prototype. Such smart pseudocapacitive glass windows show great potential in functioning as electrochromic windows and concurrently powering electronic devices, such as mobile phones or laptops. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Activity Recognition on Streaming Sensor Data.
Krishnan, Narayanan C; Cook, Diane J
2014-02-01
Many real-world applications that focus on addressing needs of a human, require information about the activities being performed by the human in real-time. While advances in pervasive computing have lead to the development of wireless and non-intrusive sensors that can capture the necessary activity information, current activity recognition approaches have so far experimented on either a scripted or pre-segmented sequence of sensor events related to activities. In this paper we propose and evaluate a sliding window based approach to perform activity recognition in an on line or streaming fashion; recognizing activities as and when new sensor events are recorded. To account for the fact that different activities can be best characterized by different window lengths of sensor events, we incorporate the time decay and mutual information based weighting of sensor events within a window. Additional contextual information in the form of the previous activity and the activity of the previous window is also appended to the feature describing a sensor window. The experiments conducted to evaluate these techniques on real-world smart home datasets suggests that combining mutual information based weighting of sensor events and adding past contextual information into the feature leads to best performance for streaming activity recognition.
Gras, Florian; Marintschev, Ivan; Grossterlinden, Lars; Rossmann, Markus; Graul, Isabel; Hofmann, Gunther O; Rueger, Johannes M; Lehmann, Wolfgang
2017-07-01
Anatomical acetabular plates the anterior intrapelvic approach (AIP) were recently introduced to fix acetabular fractures through the intrapelvic approach. Therefore, we asked the following: (1) Does the preshaped 3-dimensional suprapectineal plate interfere with or even impair the fracture reduction quality? (2) How often does the AIP approach need to be extended by the first (lateral) window of the ilioinguinal approach? Observational case series. Two Level 1 trauma centers. Patients with unstable acetabular fractures in 2014. Fracture fixation with anatomical-preshaped, 3-dimensional suprapectineal plates through the AIP approach ± the first window of the ilioinguinal approach. Fracture reduction results were measured in computed tomography scans and graded according to the Matta quality of reduction. Intraoperative parameters and perioperative complications were recorded. Radiological results (according to Matta) and functional outcome (modified Merle d'Aubigné score) were evaluated at 1-year follow-up. Thirty patients (9 women + 21 men; mean age ± SE: 64 ± 8 years) were included. The intrapelvic approach was solely used in 19 cases, and in 11 cases, an additional extension with the first window of the ilioinguinal approach (preferential for 2-column fractures) was performed. The mean operating time was 202 ± 59 minutes; the fluoroscopic time was 66 ± 48 seconds. Fracture gaps and steps in preoperative versus postoperative computed tomography scans were 12.4 ± 9.8 versus 2.0 ± 1.5 and 6.0 ± 5.5 versus 1.3 ± 1.7 mm, respectively. At 13.4 ± 2.9 months follow-up, the Matta grading was excellent in 50%, good in 25%, fair in 11%, and poor in 14% of cases. The modified Merle d'Aubigné score was excellent in 17%, good in 37%, fair in 33%, and poor in 13% of cases. The AIP approach using approach-specific instruments and an anatomical-preshaped, 3-dimensional suprapectineal plate became the standard procedure in our departments. Radiological and functional early results justify joint preserving surgery in most cases. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
WINCADRE INORGANIC (WINDOWS COMPUTER-AIDED DATA REVIEW AND EVALUATION)
WinCADRE (Computer-Aided Data Review and Evaluation) is a Windows -based program designed for computer-assisted data validation. WinCADRE is a powerful tool which significantly decreases data validation turnaround time. The electronic-data-deliverable format has been designed in...
14 CFR 1214.117 - Launch and orbit parameters for a standard launch.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Launch at a time, selected by NASA, from a launch window of not less than 1 hour (a more restrictive launch window may be provided as an optional service). (b) For shared flights from KSC to the standard...
Cecere, Roberto; Gross, Joachim; Thut, Gregor
2016-06-01
The ability to integrate auditory and visual information is critical for effective perception and interaction with the environment, and is thought to be abnormal in some clinical populations. Several studies have investigated the time window over which audiovisual events are integrated, also called the temporal binding window, and revealed asymmetries depending on the order of audiovisual input (i.e. the leading sense). When judging audiovisual simultaneity, the binding window appears narrower and non-malleable for auditory-leading stimulus pairs and wider and trainable for visual-leading pairs. Here we specifically examined the level of independence of binding mechanisms when auditory-before-visual vs. visual-before-auditory input is bound. Three groups of healthy participants practiced audiovisual simultaneity detection with feedback, selectively training on auditory-leading stimulus pairs (group 1), visual-leading stimulus pairs (group 2) or both (group 3). Subsequently, we tested for learning transfer (crossover) from trained stimulus pairs to non-trained pairs with opposite audiovisual input. Our data confirmed the known asymmetry in size and trainability for auditory-visual vs. visual-auditory binding windows. More importantly, practicing one type of audiovisual integration (e.g. auditory-visual) did not affect the other type (e.g. visual-auditory), even if trainable by within-condition practice. Together, these results provide crucial evidence that audiovisual temporal binding for auditory-leading vs. visual-leading stimulus pairs are independent, possibly tapping into different circuits for audiovisual integration due to engagement of different multisensory sampling mechanisms depending on leading sense. Our results have implications for informing the study of multisensory interactions in healthy participants and clinical populations with dysfunctional multisensory integration. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Panagiotidi, Maria; Overton, Paul G; Stafford, Tom
2017-11-01
Abnormalities in multimodal processing have been found in many developmental disorders such as autism and dyslexia. However, surprisingly little empirical work has been conducted to test the integrity of multisensory integration in Attention Deficit Hyperactivity Disorder (ADHD). The main aim of the present study was to examine links between symptoms of ADHD (as measured using a self-report scale in a healthy adult population) and the temporal aspects of multisensory processing. More specifically, a Simultaneity Judgement (SJ) and a Temporal Order Judgement (TOJ) task were used in participants with low and high levels of ADHD-like traits to measure the temporal integration window and Just-Noticeable Difference (JND) (respectively) between the timing of an auditory beep and a visual pattern presented over a broad range of stimulus onset asynchronies. The Point of Subjective Similarity (PSS) was also measured in both cases. In the SJ task, participants with high levels of ADHD-like traits considered significantly fewer stimuli to be simultaneous than participants with high levels of ADHD-like traits, and the former were found to have significantly smaller temporal windows of integration (although no difference was found in the PSS in the SJ or TOJ tasks, or the JND in the latter). This is the first study to identify an abnormal temporal integration window in individuals with ADHD-like traits. Perceived temporal misalignment of two or more modalities can lead to distractibility (e.g., when the stimulus components from different modalities occur separated by too large of a temporal gap). Hence, an abnormality in the perception of simultaneity could lead to the increased distractibility seen in ADHD. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mori, Shinichiro; Furukawa, Takuji
2016-05-01
To shorten treatment time in pencil beam scanning irradiation, we developed rapid phase-controlled rescanning (rPCR), which irradiates two or more isoenergy layers in a single gating window. Here, we evaluated carbon-ion beam dose distribution with rapid and conventional PCR (cPCR). 4 dimensional computed tomography (4DCT) imaging was performed on 12 subjects with lung or liver tumors. To compensate for intrafractional range variation, the field-specific target volume (FTV) was calculated using 4DCT within the gating window (T20-T80). We applied an amplitude-based gating strategy, in which the beam is on when the tumor is within the gating window defined by treatment planning. Dose distributions were calculated for layered phase-controlled rescanning under an irregular respiratory pattern, although a single 4DCT data set was used. The number of rescannings was eight times. The prescribed doses were 48 Gy(RBE)/1 fr (where RBE is relative biological effectiveness) delivered via four beam ports to the FTV for the lung cases and 45 Gy(RBE)/2 fr delivered via two beam ports to the FTV for the liver cases. In the liver cases, the accumulated dose distributions showed an increased magnitude of hot/cold spots with rPCR compared with cPCR. The results of the dose assessment metrics for the cPCR and rPCR were very similar. The D 95, D max, and D min values (cPCR/rPCR) averaged over all the patients were 96.3 ± 0.9%/96.0 ± 1.2%, 107.3 ± 3.6%/107.1 ± 2.9%, and 88.8 ± 3.2%/88.1 ± 3.1%, respectively. The treatment times in cPCR and rPCR were 110.7 s and 53.5 s, respectively. rPCR preserved dose conformation under irregular respiratory motion and reduced the total treatment time compared with cPCR.
Heidlmayr, Karin; Hemforth, Barbara; Moutier, Sylvain; Isel, Frédéric
2015-01-01
The present study was designed to examine the impact of bilingualism on the neuronal activity in different executive control processes namely conflict monitoring, control implementation (i.e., interference suppression and conflict resolution) and overcoming of inhibition. Twenty-two highly proficient but non-balanced successive French-German bilingual adults and 22 monolingual adults performed a combined Stroop/Negative priming task while event-related potential (ERP) were recorded online. The data revealed that the ERP effects were reduced in bilinguals in comparison to monolinguals but only in the Stroop task and limited to the N400 and the sustained fronto-central negative-going potential time windows. This result suggests that bilingualism may impact the process of control implementation rather than the process of conflict monitoring (N200). Critically, our study revealed a differential time course of the involvement of the anterior cingulate cortex (ACC) and the prefrontal cortex (PFC) in conflict processing. While the ACC showed major activation in the early time windows (N200 and N400) but not in the latest time window (late sustained negative-going potential), the PFC became unilaterally active in the left hemisphere in the N400 and the late sustained negative-going potential time windows. Taken together, the present electroencephalography data lend support to a cascading neurophysiological model of executive control processes, in which ACC and PFC may play a determining role.
Heidlmayr, Karin; Hemforth, Barbara; Moutier, Sylvain; Isel, Frédéric
2015-01-01
The present study was designed to examine the impact of bilingualism on the neuronal activity in different executive control processes namely conflict monitoring, control implementation (i.e., interference suppression and conflict resolution) and overcoming of inhibition. Twenty-two highly proficient but non-balanced successive French–German bilingual adults and 22 monolingual adults performed a combined Stroop/Negative priming task while event-related potential (ERP) were recorded online. The data revealed that the ERP effects were reduced in bilinguals in comparison to monolinguals but only in the Stroop task and limited to the N400 and the sustained fronto-central negative-going potential time windows. This result suggests that bilingualism may impact the process of control implementation rather than the process of conflict monitoring (N200). Critically, our study revealed a differential time course of the involvement of the anterior cingulate cortex (ACC) and the prefrontal cortex (PFC) in conflict processing. While the ACC showed major activation in the early time windows (N200 and N400) but not in the latest time window (late sustained negative-going potential), the PFC became unilaterally active in the left hemisphere in the N400 and the late sustained negative-going potential time windows. Taken together, the present electroencephalography data lend support to a cascading neurophysiological model of executive control processes, in which ACC and PFC may play a determining role. PMID:26124740
Robust sliding-window reconstruction for Accelerating the acquisition of MR fingerprinting.
Cao, Xiaozhi; Liao, Congyu; Wang, Zhixing; Chen, Ying; Ye, Huihui; He, Hongjian; Zhong, Jianhui
2017-10-01
To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. A sliding-window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed-contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed-contrast dictionary. The effectiveness and performance of this new method, dubbed SW-MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters. Compared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW-MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T 1 , T 2 , and proton density of comparable quality could be achieved with a two-fold or more reduction in acquisition time. The effect of sliding-window width on dictionary sensitivity was also estimated. The novel SW-MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time-critical clinical settings. Magn Reson Med 78:1579-1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Circulating Influenza Virus and Adverse Pregnancy Outcomes: A Time-Series Study.
Fell, Deshayne B; Buckeridge, David L; Platt, Robert W; Kaufman, Jay S; Basso, Olga; Wilson, Kumanan
2016-08-01
Individual-level epidemiologic studies of pregnancy outcomes after maternal influenza are limited in number and quality and have produced inconsistent results. We used a time-series design to investigate whether fluctuation in influenza virus circulation was associated with short-term variation in population-level rates of preterm birth, stillbirth, and perinatal death in Ontario between 2003 and 2012. Using Poisson regression, we assessed the association between weekly levels of circulating influenza virus and counts of outcomes offset by the number of at-risk gestations during 3 gestational exposure windows. The rate of preterm birth was not associated with circulating influenza level in the week preceding birth (adjusted rate ratio = 1.01, 95% confidence interval: 1.00, 1.02) or in any other exposure window. These findings were robust to alternate specifications of the model and adjustment for potential confounding. Stillbirth and perinatal death rates were similarly not associated with gestational exposure to influenza circulation during late pregnancy. We could not assess mortality outcomes relative to early gestational exposure because of missing dates of conception for many stillbirths. In this time-series study, population-level influenza circulation was not associated with short-term variation in rates of preterm birth, stillbirth, or perinatal death. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Predicting Visual Distraction Using Driving Performance Data
Kircher, Katja; Ahlstrom, Christer
2010-01-01
Behavioral variables are often used as performance indicators (PIs) of visual or internal distraction induced by secondary tasks. The objective of this study is to investigate whether visual distraction can be predicted by driving performance PIs in a naturalistic setting. Visual distraction is here defined by a gaze based real-time distraction detection algorithm called AttenD. Seven drivers used an instrumented vehicle for one month each in a small scale field operational test. For each of the visual distraction events detected by AttenD, seven PIs such as steering wheel reversal rate and throttle hold were calculated. Corresponding data were also calculated for time periods during which the drivers were classified as attentive. For each PI, means between distracted and attentive states were calculated using t-tests for different time-window sizes (2 – 40 s), and the window width with the smallest resulting p-value was selected as optimal. Based on the optimized PIs, logistic regression was used to predict whether the drivers were attentive or distracted. The logistic regression resulted in predictions which were 76 % correct (sensitivity = 77 % and specificity = 76 %). The conclusion is that there is a relationship between behavioral variables and visual distraction, but the relationship is not strong enough to accurately predict visual driver distraction. Instead, behavioral PIs are probably best suited as complementary to eye tracking based algorithms in order to make them more accurate and robust. PMID:21050615
Towards component-based validation of GATE: aspects of the coincidence processor.
Moraes, Eder R; Poon, Jonathan K; Balakrishnan, Karthikayan; Wang, Wenli; Badawi, Ramsey D
2015-02-01
GATE is public domain software widely used for Monte Carlo simulation in emission tomography. Validations of GATE have primarily been performed on a whole-system basis, leaving the possibility that errors in one sub-system may be offset by errors in others. We assess the accuracy of the GATE PET coincidence generation sub-system in isolation, focusing on the options most closely modeling the majority of commercially available scanners. Independent coincidence generators were coded by teams at Toshiba Medical Research Unit (TMRU) and UC Davis. A model similar to the Siemens mCT scanner was created in GATE. Annihilation photons interacting with the detectors were recorded. Coincidences were generated using GATE, TMRU and UC Davis code and results compared to "ground truth" obtained from the history of the photon interactions. GATE was tested twice, once with every qualified single event opening a time window and initiating a coincidence check (the "multiple window method"), and once where a time window is opened and a coincidence check initiated only by the first single event to occur after the end of the prior time window (the "single window method"). True, scattered and random coincidences were compared. Noise equivalent count rates were also computed and compared. The TMRU and UC Davis coincidence generators agree well with ground truth. With GATE, reasonable accuracy can be obtained if the single window method option is chosen and random coincidences are estimated without use of the delayed coincidence option. However in this GATE version, other parameter combinations can result in significant errors. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Can a national dataset generate a nomogram for necrotizing enterocolitis onset?
Gordon, P V; Clark, R; Swanson, J R; Spitzer, A
2014-10-01
Mother's own milk and donor human milk use is increasing as a means of necrotizing enterocolitis (NEC) prevention. Early onset of enteral feeding has been associated with improvement of many outcomes but has not been shown to reduce the incidence of NEC. Better definition of the window of risk for NEC by gestational strata should improve resource management with respect to donor human milk and enhance our understanding of NEC timing and pathogenesis. Our objective was to establish a NEC dataset of sufficient size and quality, then build a generalizable model of NEC onset from the dataset across gestational strata. We used de-identified data from the Pediatrix national dataset and filtered out all diagnostic confounders that could be identified by either specific diagnoses or logical exclusions (example dual diagnoses), with a specific focus on NEC and spontaneous intestinal perforation (SIP) as the outcomes of interest. The median day of onset was plotted against the gestational age for each of these diagnoses and analyzed for similarities and differences in the day of diagnosis. Onset time of medical NEC was inversely proportional to gestation in a linear relationship across all gestational ages. We found the medical NEC dataset displayed characteristics most consistent with a homogeneous disease entity, whereas there was a skew towards early presentation in the youngest gestation groups of surgical NEC (suggesting probable SIP contamination). Our national dataset demonstrates that NEC onset occurs in an inverse stereotypic, linear relationship with gestational age at birth. Medical NEC is the most reliable sub-cohort for the purpose of determining the temporal window of NEC risk.
Wutz, Andreas; Weisz, Nathan; Braun, Christoph; Melcher, David
2014-01-22
Dynamic vision requires both stability of the current perceptual representation and sensitivity to the accumulation of sensory evidence over time. Here we study the electrophysiological signatures of this intricate balance between temporal segregation and integration in vision. Within a forward masking paradigm with short and long stimulus onset asynchronies (SOA), we manipulated the temporal overlap of the visual persistence of two successive transients. Human observers enumerated the items presented in the second target display as a measure of the informational capacity read-out from this partly temporally integrated visual percept. We observed higher β-power immediately before mask display onset in incorrect trials, in which enumeration failed due to stronger integration of mask and target visual information. This effect was timescale specific, distinguishing between segregation and integration of visual transients that were distant in time (long SOA). Conversely, for short SOA trials, mask onset evoked a stronger visual response when mask and targets were correctly segregated in time. Examination of the target-related response profile revealed the importance of an evoked α-phase reset for the segregation of those rapid visual transients. Investigating this precise mapping of the temporal relationships of visual signals onto electrophysiological responses highlights how the stream of visual information is carved up into discrete temporal windows that mediate between segregated and integrated percepts. Fragmenting the stream of visual information provides a means to stabilize perceptual events within one instant in time.
General Chemistry Collection for Students, 6th Edition
NASA Astrophysics Data System (ADS)
2002-05-01
System requirements are given in Tables 2a and b. Some programs have additional special requirements. Please see the individual program abstracts at JCE Online or the documentation included on the CD-ROM for more specific information.
Table 2a. Hardware Required| Computer | CPU | RAM | Drives | Graphics |
|---|---|---|---|---|
| Mac OS | Power Macintosh | ≥ 64 MB | CD-ROMHard Drive | ≥ 256 colors;≥ 800x600 |
| Windows | Pentium | ≥ 64 MB | CD-ROMHard Drive | SVGA;≥ 256 colors;≥ 800x600 |
| Computer | Operating System | Other(required by one or more programs) |
|---|---|---|
| Mac OS | System 8.6 or higher | Acrobat Reader (included); Internet Browser such as Netscape Navigator or Internet Explorer; MacMolecule2; QuickTime 4 or higher; HyperCard Player |
| Windows | Windows XP, ME, 2000, 98, 95, NT 4 | Acrobat Reader (included); Internet Browser such as Netscape Navigator or Internet Explorer; PCMolecule2; QuickTime 4 or higher |