Sample records for specific tissue uptake

  1. Contrasting effects of exercise and NOS inhibition on tissue-specific fatty acid and glucose uptake in mice.

    PubMed

    Rottman, Jeffrey N; Bracy, Deanna; Malabanan, Carlo; Yue, Zou; Clanton, Jeff; Wasserman, David H

    2002-07-01

    Isotopic techniques were used to test the hypothesis that exercise and nitric oxide synthase (NOS) inhibition have distinct effects on tissue-specific fatty acid and glucose uptakes in a conscious, chronically catheterized mouse model. Uptakes were measured using the radioactive tracers (125)I-labeled beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) and deoxy-[2-(3)H]glucose (DG) during treadmill exercise with and without inhibition of NOS. [(125)I]BMIPP uptake at rest differed substantially among tissues with the highest levels in heart. With exercise, [(125)I]BMIPP uptake increased in both heart and skeletal muscles. In sedentary mice, NOS inhibition induced by nitro-L-arginine methyl ester (L-NAME) feeding increased heart and soleus [(125)I]BMIPP uptake. In contrast, exercise, but not L-NAME feeding, resulted in increased heart and skeletal muscle [2-(3)H]DG uptake. Significant interactions were not observed in the effects of combined exercise and L-NAME feeding on [(125)I]BMIPP and [2-(3)H]DG uptakes. In the conscious mouse, exercise and NOS inhibition produce distinct patterns of tissue-specific fatty acid and glucose uptake; NOS is not required for important components of exercise-associated metabolic signaling, or other mechanisms compensate for the absence of this regulatory mechanism.

  2. The Role of Transporters in the Toxicity of Nucleoside and Nucleotide Analogs

    PubMed Central

    Koczor, Christopher A; Torres, Rebecca A

    2013-01-01

    Introduction Two families of nucleoside analogs have been developed to treat viral infections and cancer, but these compounds can cause tissue and cell-specific toxicity related to their uptake and subcellular activity which are dictated by host enzymes and transporters. Cellular uptake of these compounds requires nucleoside transporters that share functional similarities but differ in substrate specificity. Tissue-specific cellular expression of these transporters enables nucleoside analogs to produce their tissue specific toxic effects, a limiting factor in the treatment of retroviruses and cancer. Areas Covered This review discusses the families of nucleoside transporters and how they mediate cellular uptake of nucleoside analogs. Specific focus is placed on examples of known cases of transporter-mediated cellular toxicity and classification of the toxicities resulting. Efflux transporters are also explored as a contributor to analog toxicity and cell-specific effects. Expert Opinion Efforts to modulate transporter uptake/clearance remain long-term goals of oncologists and virologists. Accordingly, subcellular approaches that either increase or decrease intracellular nucleoside analog concentrations are eagerly sought and include transporter inhibitors and targeting transporter expression. However, additional understanding of nucleoside transporter kinetics, tissue expression, and genetic polymorphisms are required to design better molecules and better therapies. PMID:22509856

  3. Transport of Gold Nanoparticles by Vascular Endothelium from Different Human Tissues

    PubMed Central

    Gromnicova, Radka; Kaya, Mehmet; Romero, Ignacio A.; Williams, Phil; Satchell, Simon; Sharrack, Basil; Male, David

    2016-01-01

    The selective entry of nanoparticles into target tissues is the key factor which determines their tissue distribution. Entry is primarily controlled by microvascular endothelial cells, which have tissue-specific properties. This study investigated the cellular properties involved in selective transport of gold nanoparticles (<5 nm) coated with PEG-amine/galactose in two different human vascular endothelia. Kidney endothelium (ciGENC) showed higher uptake of these nanoparticles than brain endothelium (hCMEC/D3), reflecting their biodistribution in vivo. Nanoparticle uptake and subcellular localisation was quantified by transmission electron microscopy. The rate of internalisation was approximately 4x higher in kidney endothelium than brain endothelium. Vesicular endocytosis was approximately 4x greater than cytosolic uptake in both cell types, and endocytosis was blocked by metabolic inhibition, whereas cytosolic uptake was energy-independent. The cellular basis for the different rates of internalisation was investigated. Morphologically, both endothelia had similar profiles of vesicles and cell volumes. However, the rate of endocytosis was higher in kidney endothelium. Moreover, the glycocalyces of the endothelia differed, as determined by lectin-binding, and partial removal of the glycocalyx reduced nanoparticle uptake by kidney endothelium, but not brain endothelium. This study identifies tissue-specific properties of vascular endothelium that affects their interaction with nanoparticles and rate of transport. PMID:27560685

  4. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hu, Fanghao; Chen, Zhixing; Zhang, Luyuan; Shen, Yihui; Wei, Lu; Min, Wei

    2016-03-01

    Glucose is consumed as an energy source by virtually all living organisms, from bacteria to humans. Its uptake activity closely reflects the cellular metabolic status in various pathophysiological transformations, such as diabetes and cancer. Extensive efforts such as positron emission tomography, magnetic resonance imaging and fluorescence microscopy have been made to specifically image glucose uptake activity but all with technical limitations. Here, we report a new platform to visualize glucose uptake activity in live cells and tissues with subcellular resolution and minimal perturbation. A novel glucose analogue with a small alkyne tag (carbon-carbon triple bond) is developed to mimic natural glucose for cellular uptake, which can be imaged with high sensitivity and specificity by targeting the strong and characteristic alkyne vibration on stimulated Raman scattering (SRS) microscope to generate a quantitative three dimensional concentration map. Cancer cells with differing metabolic characteristics can be distinguished. Heterogeneous uptake patterns are observed in tumor xenograft tissues, neuronal culture and mouse brain tissues with clear cell-cell variations. Therefore, by offering the distinct advantage of optical resolution but without the undesirable influence of bulky fluorophores, our method of coupling SRS with alkyne labeled glucose will be an attractive tool to study energy demands of living systems at the single cell level.

  5. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice.

    PubMed

    Coomans, Claudia P; Biermasz, Nienke R; Geerling, Janine J; Guigas, Bruno; Rensen, Patrick C N; Havekes, Louis M; Romijn, Johannes A

    2011-12-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.

  6. Optical monitoring of glucose demand and vascular delivery in a preclinical murine model

    NASA Astrophysics Data System (ADS)

    Frees, Amy; Rajaram, Narasimhan; McCachren, Sam; Vaz, Alex; Dewhirst, Mark; Ramanujam, Nimmi

    2014-03-01

    Targeted therapies such as PI3K inhibition can affect tumor vasculature, and hence delivery of imaging agents like FDG, while independently modifying intrinsic glucose demand. Therefore, it is important to identify whether perceived changes in glucose uptake are caused by vascular or true metabolic changes. This study sought to develop an optical strategy for quantifying tissue glucose uptake free of cross-talk from tracer delivery effects. Glucose uptake kinetics were measured using a fluorescent D-glucose derivative 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-deoxy-Dglucose (2-NBDG), and 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-deoxy-L-glucose (2-NBDLG) was used as a control to report on non-specific uptake. Vascular oxygenation (SO2) was calculated from wavelength-dependent hemoglobin absorption. We have previously shown that the rate of 2-NBDG delivery in vivo profoundly affects perceived demand. In this study, we investigated the potential of the ratio of 2-NBDG uptake to the rate of delivery (2-NBDG60/RD) to report on 2-NBDG demand in vivo free from confounding delivery effects. In normal murine tissue, we show that 2-NBDG60/RD can distinguish specific uptake from non-specific cell membrane binding, whereas fluorescence intensity alone cannot. The ratio 2-NBDG60/RD also correlates with blood glucose more strongly than 2-NBDG60 does in normal murine tissue. Additionally, 2-NBDG60/RD can distinguish normal murine tissue from a murine metastatic tumor across a range of SO2 values. The results presented here indicate that the ratio of 2-NBDG uptake to the rate of 2-NBDG delivery (2- NBDG60/RD) is superior to 2-NBDG intensity alone for quantifying changes in glucose demand.

  7. Effects of ovariectomy and intrinsic aerobic capacity on tissue-specific insulin sensitivity

    PubMed Central

    Park, Young-Min; Rector, R. Scott; Thyfault, John P.; Zidon, Terese M.; Padilla, Jaume; Welly, Rebecca J.; Meers, Grace M.; Morris, Matthew E.; Britton, Steven L.; Koch, Lauren G.; Booth, Frank W.; Kanaley, Jill A.

    2015-01-01

    High-capacity running (HCR) rats are protected against the early (i.e., ∼11 wk postsurgery) development of ovariectomy (OVX)-induced insulin resistance (IR) compared with low-capacity running (LCR) rats. The purpose of this study was to utilize the hyperinsulinemic euglycemic clamp to determine whether 1) HCR rats remain protected from OVX-induced IR when the time following OVX is extended to 27 wk and 2) tissue-specific glucose uptake differences are responsible for the protection in HCR rats under sedentary conditions. Female HCR and LCR rats (n = 40; aged ∼22 wk) randomly received either OVX or sham (SHM) surgeries and then underwent the clamp 27 wk following surgeries. [3-3H]glucose was used to determine glucose clearance, whereas 2-[14C]deoxyglucose (2-DG) was used to assess glucose uptake in skeletal muscle, brown adipose tissue (BAT), subcutaneous white adipose tissue (WAT), and visceral WAT. OVX decreased the glucose infusion rate and glucose clearance in both lines, but HCR had better insulin sensitivity than LCR (P < 0.05). In both lines, OVX significantly reduced glucose uptake in soleus and gastrocnemius muscles; however, HCR showed ∼40% greater gastrocnemius glucose uptake compared with LCR (P < 0.05). HCR also exhibited greater glucose uptake in BAT and visceral WAT compared with LCR (P < 0.05), yet these tissues were not affected by OVX in either line. In conclusion, OVX impairs insulin sensitivity in both HCR and LCR rats, likely driven by impairments in insulin-mediated skeletal muscle glucose uptake. HCR rats have greater skeletal muscle, BAT, and WAT insulin-mediated glucose uptake, which may aid in protection against OVX-associated insulin resistance. PMID:26646101

  8. On-tissue Direct Monitoring of Global Hydrogen/Deuterium Exchange by MALDI Mass Spectrometry: Tissue Deuterium Exchange Mass Spectrometry (TDXMS)*

    PubMed Central

    Quanico, Jusal; Franck, Julien

    2016-01-01

    Hydrogen/deuterium exchange mass spectrometric (H/DXMS) methods for protein structural analysis are conventionally performed in solution. We present Tissue Deuterium Exchange Mass Spectrometry (TDXMS), a method to directly monitor deuterium uptake on tissue, as a means to better approximate the deuterium exchange behavior of proteins in their native microenvironment. Using this method, a difference in deuterium uptake behavior was observed when the same proteins were monitored in solution and on tissue. The higher maximum deuterium uptake at equilibrium for all proteins analyzed in solution suggests a more open conformation in the absence of interacting partners normally observed on tissue. We also demonstrate a difference in the deuterium uptake behavior of a few proteins across different morphological regions of the same tissue section. Modifications of the total number of hydrogens exchanged, as well as the kinetics of exchange, were both observed. These results provide information on the implication of protein interactions with partners as well as on the conformational changes related to these interactions, and illustrate the importance of examining protein deuterium exchange behavior in the presence of its specific microenvironment directly at the level of tissues. PMID:27512083

  9. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism

    NASA Technical Reports Server (NTRS)

    Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.

    1999-01-01

    The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.

  10. Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging.

    PubMed

    Onda, Nobuhiko; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto

    2016-08-01

    Indocyanine green (ICG) is a fluorescent agent approved for clinical applications by the Food and Drug Administration and European Medicines Agency. This study examined the mechanism of tumor imaging using intravenously administered ICG. The in vivo kinetics of intravenously administered ICG were determined in tumor xenografts using microscopic approaches that enabled both spatio-temporal and high-magnification analyses. The mechanism of ICG-based tumor imaging was examined at the cellular level in six phenotypically different human colon cancer cell lines exhibiting different grades of epithelioid organization. ICG fluorescence imaging detected xenograft tumors, even those < 1 mm in size, based on their preferential cellular uptake and retention of the dye following its rapid tissue-non-specific delivery, in contrast to its rapid clearance by normal tissue. Live-cell imaging revealed that cellular ICG uptake is temperature-dependent and occurs after ICG binding to the cellular membrane, a pattern suggesting endocytic uptake as the mechanism. Cellular ICG uptake correlated inversely with the formation of tight junctions. Intracellular ICG was entrapped in the membrane traffic system, resulting in its slow turnover and prolonged retention by tumor cells. Our results suggest that tumor-specific imaging by ICG involves non-specific delivery of the dye to tissues followed by preferential tumor cellular uptake and retention. The tumor cell-preference of ICG is driven by passive tumor cell-targeting, the inherent ability of ICG to bind to cell membranes, and the high endocytic activity of tumor cells in association with the disruption of their tight junctions. © 2016 UICC.

  11. Factors affecting the oral uptake and translocation of polystyrene nanoparticles: histological and analytical evidence.

    PubMed

    Florence, A T; Hillery, A M; Hussain, N; Jani, P U

    1995-01-01

    Quantitative and qualitative evidence from our laboratories on the absorption and translocation of polystyrene latex nanoparticles both by histological (qualitative) and analytical measurement of levels of polystyrene (quantitative) is briefly reviewed in this paper. We have previously compared the uptake of nonionized polystyrene latex ranging in size from 50nm to 3 microns, and made some comparisons of uptake between carboxylated microspheres and nonionic systems, showing the lower uptake of the former through the lymphoid tissue of the gastrointestinal tract. Size is a key parameter, uptake increasing with decreasing particle diameter. Early evidence suggested that uptake is by way of the Peyer's patches and other elements of the gut associated lymphoid tissue (GALT). Adsorption of hydrophilic block-copolymers onto polystyrene markedly reduces the uptake by intestinal GALT. Modification of the surface with specific ligands such as by covalent attachment of tomato lectin molecules has indicated widespread uptake by non-GALT tissues, following their binding to and internalisation by enterocytes. The ability to decrease and increase uptake is clear evidence of a phenomenon which has the potential for further control to allow it to be exploited fully for drug or vaccine delivery. The evidence to date with nanoparticles as carriers systems for labile drugs such as proteins by the oral route remains to be substantiated.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corley, Richard A.; Kabilan, Senthil; Kuprat, Andrew P.

    Coupling computational fluid dynamics (CFD) with physiologically based pharmacokinetic (PBPK) models is useful for predicting site-specific dosimetry of airborne materials in the respiratory tract and elucidating the importance of species differences in anatomy, physiology, and breathing patterns. Historically, these models were limited to discrete regions of the respiratory system. CFD/PBPK models have now been developed for the rat, monkey, and human that encompass airways from the nose or mouth to the lung. A PBPK model previously developed to describe acrolein uptake in nasal tissues was adapted to the extended airway models as an example application. Model parameters for each anatomicmore » region were obtained from the literature, measured directly, or estimated from published data. Airflow and site-specific acrolein uptake patterns were determined under steadystate inhalation conditions to provide direct comparisons with prior data and nasalonly simulations. Results confirmed that regional uptake was dependent upon airflow rates and acrolein concentrations with nasal extraction efficiencies predicted to be greatest in the rat, followed by the monkey, then the human. For human oral-breathing simulations, acrolein uptake rates in oropharyngeal and laryngeal tissues were comparable to nasal tissues following nasal breathing under the same exposure conditions. For both breathing modes, higher uptake rates were predicted for lower tracheo-bronchial tissues of humans than either the rat or monkey. These extended airway models provide a unique foundation for comparing dosimetry across a significantly more extensive range of conducting airways in the rat, monkey, and human than prior CFD models.« less

  13. Bone scintigraphy in the investigation of occult lameness in the dog.

    PubMed

    Schwarz, T; Johnson, V S; Voute, L; Sullivan, M

    2004-05-01

    99mTechnetium methylene diphosphonate (99mTc-MDP) scintigraphy was performed in 14 dogs of different breeds after clinical lameness examination, radiography and synovial fluid analysis failed to localise lameness to a specific area of pain. The scintigraphic protocol included an intravenous injection of 17 MBq 99mTc-MDP/kg bodyweight and vascular, soft tissue and bone phase scans in standardised positions with a low-energy all-purpose collimator. Confirmation of diagnosis was achieved in nine dogs by arthroscopy, repeated lesion-orientated radiography, computed tomography and response to treatment. In seven cases, bone phase scans showed single elbow uptakes, in two cases unilateral limb uptake, and in one case each a single shoulder and tibia uptake; in three cases there was no increased uptake. Vascular and soft tissue phase images did not reveal additional information. Diagnosis of humeral condyle fissures, a fragmented medial coronoid process, panosteitis and arthropathy was possible in nine cases. Skeletal pathology was ruled out in three normal scintigrams. In two dogs with unilateral uptake of multiple joints, no diagnostic benefit was gained from scintigraphy. The highly sensitive and relatively specific uptake allowed localisation and characterisation or exclusion of skeletal lesions in most dogs.

  14. An exposure system for measuring nasal and lung uptake of vapors in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, A.R.; Brookins, L.K.; Gerde, P.

    1995-12-01

    Inhaled gases and vapors often produce biological damage in the nasal cavity and lower respiratory tract. The specific site within the respirator tract at which a gas or vapor is absorbed strongly influences the tissues at risk to potential toxic effects; to predict or to explain tissue or cell specific toxicity of inhaled gases or vapors, the sites at which they are absorbed must be known. The purpose of the work reported here was to develop a system for determining nose and lung absorption of vapors in rats, an animal commonly used in inhalation toxicity studies. In summary, the exposuremore » system described allows us to measure in the rate: (1) nasal absorption and desorption of vapors; (2) net lung uptake of vapors; and (3) the effects of changed breathing parameters on vapor uptake.« less

  15. Androgen Effects on Adipose Tissue Architecture and Function in Nonhuman Primates

    PubMed Central

    Varlamov, Oleg; White, Ashley E.; Carroll, Julie M.; Bethea, Cynthia L.; Reddy, Arubala; Slayden, Ov; O'Rourke, Robert W.

    2012-01-01

    The differential association of hypoandrogenism in men and hyperandrogenism in women with insulin resistance and obesity suggests that androgens may exert sex-specific effects on adipose and other tissues, although the underlying mechanisms remain poorly understood. Moreover, recent studies also suggest that rodents and humans may respond differently to androgen imbalance. To achieve better insight into clinically relevant sex-specific mechanisms of androgen action, we used nonhuman primates to investigate the direct effects of gonadectomy and hormone replacement on white adipose tissue. We also employed a novel ex vivo approach that provides a convenient framework for understanding of adipose tissue physiology under a controlled tissue culture environment. In vivo androgen deprivation of males did not result in overt obesity or insulin resistance but did induce the appearance of very small, multilocular white adipocytes. Testosterone replacement restored normal cell size and a unilocular phenotype and stimulated adipogenic gene transcription and improved insulin sensitivity of male adipose tissue. Ex vivo studies demonstrated sex-specific effects of androgens on adipocyte function. Female adipose tissue treated with androgens displayed elevated basal but reduced insulin-dependent fatty acid uptake. Androgen-stimulated basal uptake was greater in adipose tissue of ovariectomized females than in adipose tissue of intact females and ovariectomized females replaced with estrogen and progesterone in vivo. Collectively, these data demonstrate that androgens are essential for normal adipogenesis in males and can impair essential adipocyte functions in females, thus strengthening the experimental basis for sex-specific effects of androgens in adipose tissue. PMID:22547568

  16. Tissue-specific uptake and bioconcentration of the oral contraceptive norethindrone in two freshwater fishes.

    PubMed

    Nallani, Gopinath C; Paulos, Peter M; Venables, Barney J; Edziyie, Regina E; Constantine, Lisa A; Huggett, Duane B

    2012-02-01

    The environmental presence of the oral contraceptive norethindrone (NET) has been reported and shown to have reproductive effects in fish at environmentally realistic exposure levels. The current study examined bioconcentration potential of NET in fathead minnow (Pimephales promelas) and channel catfish (Ictalurus punctatus). Fathead minnows were exposed to 50 μg/l NET for 28 days and allowed to depurate in clean water for 14 days. In a minimized 14-day test design, catfish were exposed to 100 μg/l NET for 7 days followed by 7-day depuration. In the fathead test, tissues (muscle, liver, and kidneys) were sampled during the uptake (days 1, 3, 7, 14, and 28) and depuration (days 35 and 42) phases. In the catfish test, muscle, liver, gill, brain, and plasma were collected during the uptake (days 1, 3, and 7) and depuration (day 14) stages. NET tissue levels were determined by gas chromatography-mass spectrometry (GC-MS). Accumulation of NET in tissues was greatest in liver followed by plasma, gill, brain, and muscle. Tissue-specific bioconcentration factors (BCFs) ranged from 2.6 to 40.8. Although NET has been reported to elicit reproductive effects in fish, the present study indicated a low potential to bioconcentrate in aquatic biota.

  17. Effect of specific activity on neuroblastoma uptake of I-123-meta-iodobenzylguanidine in nude mice xenografted with SK-N-SH cells.

    PubMed

    Farahati, J; Coenen, H; Dutschka, K; Stuben, G; Knuhmann, K; Budach, W; Kremens, B; Reiners, C

    1997-01-01

    The effect of specific activity of meta[I-123]iodobenzylguanidine ([I-123]MIBG) on neuroblastoma uptake was studied in a nude mouse model (NMRI nu/nu) xenografted subcutaneously with SK-N-SH cells. Groups of eight animals received [I-123]MIBG intravenously with a specific activity of greater than or equal to 260 GBq/mu mol (no-carrier-added), 3.7 GBq/mu mol, 37 MBq/mu mol, and 0.37 MBq/mu mol, respectively. All animals in the group injected with 0.37 MBq/mu mol died immediately after the injection. Al 4 and 24 h, there was no significant effect of specific activity on tumor uptake of [I-123]MIBG in the different groups. The uptake of non-tumor tissue was in general lower with 37 MBq/mu mol compared to higher specific activities. The differences in blood, heart, liver, spleen and lungs were statistically significant at 24 h, whereas at 4 h significant differences were only present in the heart, liver and lungs. The results suggest that for the treatment of children with neuroblastoma a lower specific activity of radioiodinated MIBG may minimize the radiation exposure to non-tumor tissue but not to the tumor. Higher mass of MIBG >0.5 mu mol/g, however, is considered as lethal dose in our nude mice model and corresponding doses may cause toxic side effects in human.

  18. Water Uptake along the Length of Grapevine Fine Roots: Developmental anatomy, tissue specific aquaporin expression, and pathways of water transport

    USDA-ARS?s Scientific Manuscript database

    To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine fine roots- from the tip to secondary growth zones. Our characterization included localization of suberized structures an...

  19. The effects of temperature and salinity on 17-α-ethynylestradiol uptake and its relationship to oxygen consumption in the model euryhaline teleost (Fundulus heteroclitus).

    PubMed

    Blewett, Tamzin; MacLatchy, Deborah L; Wood, Chris M

    2013-02-01

    The synthetic estrogen 17-α-ethynylestradiol (EE2), a component of birth control and hormone replacement therapy, is discharged into the environment via wastewater treatment plant (WWTP) effluents. The present study employed radiolabeled EE2 to examine impacts of temperature and salinity on EE2 uptake in male killifish (Fundulus heteroclitus). Fish were exposed to a nominal concentration of 100ng/L EE2 for 2h. The rate of EE2 uptake was constant over the 2h period. Oxygen consumption rates (MO(2)), whole body uptake rates, and tissue-specific EE2 distribution were determined. In killifish acclimated to 18°C at 16ppt (50% sea water), MO(2) and EE2 uptake were both lower after 24h exposure to 10°C and 4°C, and increased after 24h exposure to 26°C. Transfer to fresh water (FW) for 24h lowered EE2 uptake rate, and long-term acclimation to fresh water reduced it by 70%. Both long-term acclimation to 100% sea water (32ppt) and a 24h transfer to 100% sea water also reduced EE2 uptake rate by 50% relative to 16ppt. Tissue-specific accumulation of EE2 was highest (40-60% of the total) in the liver plus gall bladder across all exposures, and the vast majority of this was in the bile at 2h, regardless of temperature or salinity. The carcass was the next highest accumulator (30-40%), followed by the gut (10-20%) with only small amounts in gill and spleen. Killifish chronically exposed (15 days) to 100ng/L EE2 displayed no difference in EE2 uptake rate or tissue-specific distribution. Drinking rate, measured with radiolabeled polyethylene glycol-4000, was about 25 times greater in 16ppt-acclimated killifish relative to FW-acclimated animals. However, drinking accounted for less than 30% of gut accumulation, and therefore a negligible percentage of whole body EE2 uptake rates. In general, there were strong positive relationships between EE2 uptake rates and MO(2), suggesting similar uptake pathways of these lipophilic molecules across the gills. These data will be useful in developing a predictive model of how key environmental parameter variations (salinity, temperature, dissolved oxygen) affect EE2 uptake in estuarine fish, to determine optimal timing and location of WWTP discharges. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Quantitative analysis of [99mTc]C2A-GST distribution in the area at risk after myocardial ischemia and reperfusion using a compartmental model.

    PubMed

    Audi, Said; Poellmann, Michael; Zhu, Xiaoguang; Li, Zhixin; Zhao, Ming

    2007-11-01

    It was recently demonstrated that the radiolabeled C2A domain of synaptotagmin I accumulates avidly in the area at risk after ischemia and reperfusion. The objective was to quantitatively characterize the dynamic uptake of radiolabeled C2A in normal and ischemically injured myocardia using a compartmental model. To induce acute myocardial infarction, the left descending coronary artery was ligated for 18 min, followed by reperfusion. [99mTc]C2A-GST or its inactivated form, [99mTc]C2A-GST-NHS, was injected intravenously at 2 h after reperfusion. A group of four rats was sacrificed at 10, 30, 60 and 180 after injection. Uptake of [99mTc]C2A-GST and [99mTc]C2A-GST-NHS in the area at risk and in the normal myocardium were determined by gamma counting. A compartmental model was developed to quantitatively interpret myocardial uptake kinetic data. The model consists of two physical spaces (vascular space and tissue space), with plasma activity as input. The model allows for [99mTc]C2A-GST and [99mTc]C2A-GST-NHS diffusion between vascular and tissue spaces, as well as for [99mTc]C2A-GST sequestration in vascular and tissue spaces via specific binding. [99mTc]C2A-GST uptake in the area at risk was significantly higher than that for [99mTc]C2A-GST-NHS at all time points. The compartmental model separated [99mTc]C2A-GST uptake in the area at risk due to passive retention from that due to specific binding. The maximum amount of [99mTc]C2A-GST that could be sequestered in the area at risk due to specific binding was estimated at a total of 0.048 nmol/g tissue. The rate of [99mTc]C2A-GST sequestration within the tissue space of the area at risk was 0.012 ml/min. Modeling results also revealed that the diffusion rate of radiotracer between vascular and tissue spaces is the limiting factor of [99mTc]C2A-GST sequestration within the tissue space of the area at risk. [99mTc]C2A-GST is sequestered in the ischemically injured myocardium in a well-defined dynamic profile. Model parameters will be valuable indicators for gauging and guiding the development of future-generation molecular probes.

  1. Comparative Computational Modeling of Airflows and Vapor Dosimetry in the Respiratory Tracts of Rat, Monkey, and Human

    PubMed Central

    Corley, Richard A.

    2012-01-01

    Computational fluid dynamics (CFD) models are useful for predicting site-specific dosimetry of airborne materials in the respiratory tract and elucidating the importance of species differences in anatomy, physiology, and breathing patterns. We improved the imaging and model development methods to the point where CFD models for the rat, monkey, and human now encompass airways from the nose or mouth to the lung. A total of 1272, 2172, and 135 pulmonary airways representing 17±7, 19±9, or 9±2 airway generations were included in the rat, monkey and human models, respectively. A CFD/physiologically based pharmacokinetic model previously developed for acrolein was adapted for these anatomically correct extended airway models. Model parameters were obtained from the literature or measured directly. Airflow and acrolein uptake patterns were determined under steady-state inhalation conditions to provide direct comparisons with prior data and nasal-only simulations. Results confirmed that regional uptake was sensitive to airway geometry, airflow rates, acrolein concentrations, air:tissue partition coefficients, tissue thickness, and the maximum rate of metabolism. Nasal extraction efficiencies were predicted to be greatest in the rat, followed by the monkey, and then the human. For both nasal and oral breathing modes in humans, higher uptake rates were predicted for lower tracheobronchial tissues than either the rat or monkey. These extended airway models provide a unique foundation for comparing material transport and site-specific tissue uptake across a significantly greater range of conducting airways in the rat, monkey, and human than prior CFD models. PMID:22584687

  2. Identification of a cardiac specific protein transduction domain by in vivo biopanning using a M13 phage peptide display library in mice.

    PubMed

    Zahid, Maliha; Phillips, Brett E; Albers, Sean M; Giannoukakis, Nick; Watkins, Simon C; Robbins, Paul D

    2010-08-17

    A peptide able to transduce cardiac tissue specifically, delivering cargoes to the heart, would be of significant therapeutic potential for delivery of small molecules, proteins and nucleic acids. In order to identify peptide(s) able to transduce heart tissue, biopanning was performed in cell culture and in vivo with a M13 phage peptide display library. A cardiomyoblast cell line, H9C2, was incubated with a M13 phage 12 amino acid peptide display library. Internalized phage was recovered, amplified and then subjected to a total of three rounds of in vivo biopanning where infectious phage was isolated from cardiac tissue following intravenous injection. After the third round, 60% of sequenced plaques carried the peptide sequence APWHLSSQYSRT, termed cardiac targeting peptide (CTP). We demonstrate that CTP was able to transduce cardiomyocytes functionally in culture in a concentration and cell-type dependent manner. Mice injected with CTP showed significant transduction of heart tissue with minimal uptake by lung and kidney capillaries, and no uptake in liver, skeletal muscle, spleen or brain. The level of heart transduction by CTP also was greater than with a cationic transduction domain. Biopanning using a peptide phage display library identified a peptide able to transduce heart tissue in vivo efficiently and specifically. CTP could be used to deliver therapeutic peptides, proteins and nucleic acid specifically to the heart.

  3. Precursors to radiopharmaceutical agents for tissue imaging

    DOEpatents

    Srivastava, Prem C.; Knapp, Jr., Furn F.

    1988-01-01

    A class of radiolabeled compounds to be used in tissue imaging that exhibits rapid brain uptake, good brain:blood radioactivity ratios, and long retention times. The imaging agents are more specifically radioiodinated aromatic amines attached to dihydropyridine carriers, that exhibit heart as well as brain specificity. In addition to the radiolabeled compounds, classes of compounds are also described that are used as precursors and intermediates in the preparation of the imaging agents.

  4. Kinetics and biodistribution in relation to tumour detection with 111In-labelled OV-TL 3 F(ab')2 in patients with ovarian cancer.

    PubMed

    Massuger, L F; Claessens, R A; Kenemans, P; Verheijen, R H; Boerman, O C; Meeuwis, A P; Schijf, C P; Buijs, W C; Hanselaar, T G; Corstens, F H

    1991-07-01

    The biological behaviour of 111In-labelled OV-TL 3 F(ab')2 was studied in 22 patients with suspected ovarian cancer. After i.v. injection with 140 MBq 111In-OV-TL 3 F(ab')2 (1 mg) blood samples were taken up to 96 h and urine and faeces were collected throughout the whole study. At surgery, 5 to 7 days post-injection, primary and metastatic tumour tissues, as well as fragments of several normal tissues, were removed and 111In uptake was measured. Blood activity disappeared with half-life values of 6.1 +/- 1.1 and 17.9 +/- 6.5 h. Within 96 h excretion in urine and faeces was 16.1 +/- 2.0% i.d. (mean +/- S.D.) and 3.1 +/- 1.9% i.d., respectively. Mean tissue uptake, expressed as % i.d. kg-1 was 3.9 +/- 1.0 for primary tumour, 11.5 +/- 5.0 for liver and 0.4 +/- 0.1 for several normal background tissues. Higher tumour uptake correlated with a higher detection rate at immunoscintigraphy. However, no strict correlation was found between the amount of tumour uptake and the expression of the monoclonal antibody defined OA3 antigen. Quantitation of organ activity, using region of interest analysis, resulted in mean peak organ activities for the liver of 16% i.d., spleen 9% i.d. and kidney 4% i.d. Distribution data indicate that besides specific antibody-antigen interaction several other mechanisms play a role in uptake in tumour and other tissues.

  5. Diagnostic PET Imaging of Mammary Microcalcifications Using 64Cu-DOTA-Alendronate in a Rat Model of Breast Cancer.

    PubMed

    Ahrens, Bradley J; Li, Lin; Ciminera, Alexandra K; Chea, Junie; Poku, Erasmus; Bading, James R; Weist, Michael R; Miller, Marcia M; Colcher, David M; Shively, John E

    2017-09-01

    The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64 Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64 Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64 Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague-Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64 Cu-DOTA-alendronate. Results: 64 Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64 Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64 Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64 Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64 Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as well as the differentiation of malignant versus benign tumors based on absolute labeling uptake. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  6. Diagnostic PET Imaging of Mammary Microcalcifications Using 64Cu-DOTA-Alendronate in a Rat Model of Breast Cancer

    PubMed Central

    Ahrens, Bradley J.; Li, Lin; Ciminera, Alexandra K.; Chea, Junie; Poku, Erasmus; Bading, James R.; Weist, Michael R.; Miller, Marcia M.; Colcher, David M.

    2017-01-01

    The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague–Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64Cu-DOTA-alendronate. Results: 64Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as well as the differentiation of malignant versus benign tumors based on absolute labeling uptake. PMID:28450564

  7. Tissue distribution of co-planar and non-planar tetra- and hexa-chlorobiphenyl isomers in guinea pigs after oral ingestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan, J.; Logar, B.; Jan, J.

    1996-03-01

    Food ingestion is the most important route for the uptake of lipophilic organochlorine contaminants. Uptake and transfer of the contaminants from the digestive tract to target organs can be used for risk evaluation. The bioconcentration and migration of polychlorobiphenyls (PCBs) is highly structure - dependent. Bioconcentration is correlated with lipophilicity on the basis of the n-octanol/water partition coefficient in its logarithmic form - logKow. However, some factors e.g. diffusion through cell membranes, accumulation in specific organs and tissues, uptake and deputation kinetics and metabolism can also influence the bioconcentration. Individual PCB compounds of commercial PCB preparation are taken up bymore » organisms to markedly different extents. Until now little is known about the distribution of non-planar and co-planar PCBs in different tissues. Co-planar PCBs have dioxin - like toxicity. This study examines differences in the bioconcentration of two pairs of tetra and hexa chlorobiphenyls from the digestive tract and their distribution in different tissues of guinea pigs.« less

  8. Uptake and metabolism of 14C-palmitate by fetal rabbit tissues.

    PubMed

    Hudson, D G; Hull, D

    1977-01-01

    The uptake and esterification of 14C-palmitate into lipid classes in placenta, fetal brown adipose tissue (BAT) and liver of rabbits were investigated in vitro. Fetal BAT showed a high rate of fatty acid uptake, 8.5 mumol-a-1 tissue-h-1. From 5 min onwards, the majority of incorporated label was in the triglyceride fraction. The placenta and fetal liver also incorporated I-[14C]-palmitate into both FFA and esterified lipid fractions, although at much lower rates than observed for BAT. In the liver, triglycerides, but in the placenta phospholipids, contained the majority of the label after 1 h incubation. BAT from both fetal and newborn rabbits released 14CO2 and the production of 14 CO2 was greater in the presence of noradrenaline. The specific activity of the CO2 was the same in stimulated and unstimulated tissue. It is concluded that BAT as well as the liver are important sites of free fatty acid removal from the fetal circulation. The potential for fatty acid oxidation is present in BAT of the 28-day rabbit fetus.

  9. The significance of folic acid, tissue iron stores, and tissue viability in determining iron uptake from serum by thyroid tissue slices

    PubMed Central

    Buchanan, W. M.

    1971-01-01

    This paper describes an attempt to measure in vitro iron uptake from serum by human thyroid slices and to relate the uptake to tissue iron stores, folic acid status, and tissue viability. It is an extension of work previously reported (Buchanan, 1969). Thyroids were obtained from patients undergoing partial thyroidectomy for colloid goitre and serum from clinically normal healthy adults. The haemoglobin, serum iron, and folic acid levels of both thyroid and serum donors were measured and thyroids examined histologically for the presence of stainable iron. Viable and non-viable tissue slices were incubated in sera treated with radioactive iron so as to produce high and normal levels of transferrin saturation. Iron was taken up both from sera with normal and high transferrin saturation but the amount was, in almost all cases, greater from the more highly saturated. The uptake by non-viable tissue was appreciable but did not vary to any great extent from one serum to the next, and was attributed to simple diffusion of ionic iron into the tissue. There was, however, marked variation in uptake from different sera by viable tissue. It was concluded therefore that viability is a factor affecting the uptake. As the variation in uptake by viable tissue incubated in a single serum was significantly less than tissue incubated in a number of different sera it was further concluded that there was also a factor in the serum itself affecting iron uptake. The nature of the factor was not elucidated but neither folic acid nor levels of iron stores appeared to influence uptake because no correlation was found between iron uptake and iron stores or folic acid. Images PMID:5556118

  10. Olanzapine promotes fat accumulation in male rats by decreasing physical activity, repartitioning energy and increasing adipose tissue lipogenesis while impairing lipolysis.

    PubMed

    Albaugh, V L; Judson, J G; She, P; Lang, C H; Maresca, K P; Joyal, J L; Lynch, C J

    2011-05-01

    Olanzapine and other atypical antipsychotics cause metabolic side effects leading to obesity and diabetes; although these continue to be an important public health concern, their underlying mechanisms remain elusive. Therefore, an animal model of these side effects was developed in male Sprague-Dawley rats. Chronic administration of olanzapine elevated fasting glucose, impaired glucose and insulin tolerance, increased fat mass but, in contrast to female rats, did not increase body weight or food intake. Acute studies were conducted to delineate the mechanisms responsible for these effects. Olanzapine markedly decreased physical activity without a compensatory decline in food intake. It also acutely elevated fasting glucose and worsened oral glucose and insulin tolerance, suggesting that these effects are adiposity independent. Hyperinsulinemic-euglycemic clamp studies measuring (14)C-2-deoxyglucose uptake revealed tissue-specific insulin resistance. Insulin sensitivity was impaired in skeletal muscle, but either unchanged or increased in adipose tissue depots. Consistent with the olanzapine-induced hyperglycemia, there was a tendency for increased (14)C-2-deoxyglucose uptake into fat depots of fed rats and, surprisingly, free fatty acid (FFA) uptake into fat depots was elevated approximately twofold. The increased glucose and FFA uptake into adipose tissue was coupled with increased adipose tissue lipogenesis. Finally, olanzapine lowered fasting plasma FFA, and as it had no effect on isoproterenol-stimulated rises in plasma glucose, it blunted isoproterenol-stimulated in vivo lipolysis in fed rats. Collectively, these results suggest that olanzapine exerts several metabolic effects that together favor increased accumulation of fuel into adipose tissue, thereby increasing adiposity.

  11. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.

    PubMed

    Xu, Jiaqiang; Li, Gao; Wang, Zhuoyi; Si, Luqin; He, Sijie; Cai, Jialing; Huang, Jiangeng; Donovan, Maureen D

    2016-02-01

    Glyphosate is one of the most commonly used herbicides worldwide due to its broad spectrum of activity and reported low toxicity to humans. Glyphosate has an amino acid-like structure that is highly polar and shows low bioavailability following oral ingestion and low systemic toxicity following intravenous exposures. Spray applications of glyphosate in agricultural or residential settings can result in topical or inhalation exposures to the herbicide. Limited systemic exposure to glyphosate occurs following skin contact, and pulmonary exposure has also been reported to be low. The results of nasal inhalation exposures, however, have not been evaluated. To investigate the mechanisms of glyphosate absorption across epithelial tissues, the permeation of glyphosate across Caco-2 cells, a gastrointestinal epithelium model, was compared with permeation across nasal respiratory and olfactory tissues excised from cows. Saturable glyphosate uptake was seen in all three tissues, indicating the activity of epithelial transporters. The uptake was shown to be ATP and Na(+) independent, and glyphosate permeability could be significantly reduced by the inclusion of competitive amino acids or specific LAT1/LAT2 transporter inhibitors. The pattern of inhibition of glyphosate permeability across Caco-2 and nasal mucosal tissues suggests that LAT1/2 play major roles in the transport of this amino-acid-like herbicide. Enhanced uptake into the epithelial cells at barrier mucosae, including the respiratory and gastrointestinal tracts, may result in more significant local and systemic effects than predicted from glyphosate's passive permeability, and enhanced uptake by the olfactory mucosa may result in further CNS disposition, potentially increasing the risk for brain-related toxicities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Herniated Thoracic Spleen Mimicking Lung Metastasis on 68Ga-Labeled Prostate-Specific Membrane Antigen PET/CT in a Patient With Prostate Cancer.

    PubMed

    Malik, Dharmender; Basher, Rajender K; Sood, Apurva; Devana, Sudheer Kumar; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2017-06-01

    We report a case of clinically asymptomatic patient of prostate cancer who was previously subjected to radical prostatectomy presenting with a rising serum prostate-specific antigen level of 6.6 ng/mL. Whole-body PET/CT with Ga-labeled prostate-specific membrane antigen ligand was performed to assess for disease recurrence, which revealed an intense tracer uptake in a soft tissue mass in left hemithorax mimicking lung metastasis; which later turned out to be splenic tissue.

  13. In situ detection of the activation of Rac1 and RalA small GTPases in mouse adipocytes by immunofluorescent microscopy following in vivo and ex vivo insulin stimulation.

    PubMed

    Takenaka, Nobuyuki; Nihata, Yuma; Ueda, Sho; Satoh, Takaya

    2017-11-01

    Rac1 has been implicated in insulin-dependent glucose uptake by mechanisms involving plasma membrane translocation of the glucose transporter GLUT4 in skeletal muscle. Although the uptake of glucose is also stimulated by insulin in adipose tissue, the role for Rac1 in adipocyte insulin signaling remains controversial. As a step to reveal the role for Rac1 in adipocytes, we aimed to establish immunofluorescent microscopy to detect the intracellular distribution of activated Rac1. The epitope-tagged Rac1-binding domain of a Rac1-specific target was utilized as a probe that specifically recognizes the activated form of Rac1. Rac1 activation in response to ex vivo and in vivo insulin stimulations in primary adipocyte culture and mouse white adipose tissue, respectively, was successfully observed by immunofluorescent microscopy. These Rac1 activations were mediated by phosphoinositide 3-kinase. Another small GTPase RalA has also been implicated in insulin-stimulated glucose uptake in skeletal muscle and adipose tissue. Similarly to Rac1, immunofluorescent microscopy using an activated RalA-specific polypeptide probe allowed us to detect intracellular distribution of insulin-activated RalA in adipocytes. These novel approaches to visualize the activation status of small GTPases in adipocytes will largely contribute to the understanding of signal transduction mechanisms particularly for insulin action. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Preclinical PET imaging of EGFR levels: pairing a targeting with a non-targeting Sel-tagged Affibody-based tracer to estimate the specific uptake.

    PubMed

    Cheng, Qing; Wållberg, Helena; Grafström, Jonas; Lu, Li; Thorell, Jan-Olov; Hägg Olofsson, Maria; Linder, Stig; Johansson, Katarina; Tegnebratt, Tetyana; Arnér, Elias S J; Stone-Elander, Sharon; Ahlzén, Hanna-Stina Martinsson; Ståhl, Stefan

    2016-12-01

    Though overexpression of epidermal growth factor receptor (EGFR) in several forms of cancer is considered to be an important prognostic biomarker related to poor prognosis, clear correlations between biomarker assays and patient management have been difficult to establish. Here, we utilize a targeting directly followed by a non-targeting tracer-based positron emission tomography (PET) method to examine some of the aspects of determining specific EGFR binding in tumors. The EGFR-binding Affibody molecule ZEGFR:2377 and its size-matched non-binding control ZTaq:3638 were recombinantly fused with a C-terminal selenocysteine-containing Sel-tag (ZEGFR:2377-ST and ZTaq:3638-ST). The proteins were site-specifically labeled with DyLight488 for flow cytometry and ex vivo tissue analyses or with (11)C for in vivo PET studies. Kinetic scans with the (11)C-labeled proteins were performed in healthy mice and in mice bearing xenografts from human FaDu (squamous cell carcinoma) and A431 (epidermoid carcinoma) cell lines. Changes in tracer uptake in A431 xenografts over time were also monitored, followed by ex vivo proximity ligation assays (PLA) of EGFR expressions. Flow cytometry and ex vivo tissue analyses confirmed EGFR targeting by ZEGFR:2377-ST-DyLight488. [Methyl-(11)C]-labeled ZEGFR:2377-ST-CH3 and ZTaq:3638-ST-CH3 showed similar distributions in vivo, except for notably higher concentrations of the former in particularly the liver and the blood. [Methyl-(11)C]-ZEGFR:2377-ST-CH3 successfully visualized FaDu and A431 xenografts with moderate and high EGFR expression levels, respectively. However, in FaDu tumors, the non-specific uptake was large and sometimes equally large, illustrating the importance of proper controls. In the A431 group observed longitudinally, non-specific uptake remained at same level over the observation period. Specific uptake increased with tumor size, but changes varied widely over time in individual tumors. Total (membranous and cytoplasmic) EGFR in excised sections increased with tumor growth. There was no positive correlation between total EGFR and specific tracer uptake, which, since ZEGFR:2377 binds extracellularly and is slowly internalized, indicates a discordance between available membranous and total EGFR expression levels. Same-day in vivo dual tracer imaging enabled by the Sel-tag technology and (11)C-labeling provides a method to non-invasively monitor membrane-localized EGFR as well as factors affecting non-specific uptake of the PET ligand.

  15. Optimizing fluorescently tethered Hsp90 inhibitor dose for maximal specific uptake by breast tumors

    NASA Astrophysics Data System (ADS)

    Crouch, Brian T.; Duer, Joy; Wang, Roujia; Gallagher, Jennifer; Hall, Allison; Soo, Mary Scott; Hughes, Philip; Haystead, Timothy A. J.; Ramanujam, Nirmala

    2018-03-01

    Despite improvements in surgical resection, 20-40% of patients undergoing breast conserving surgery require at least one additional re-excision. Leveraging the unique surface expression of heat shock protein 90 (Hsp90), a chaperone protein involved in several key hallmarks of cancer, in breast cancer provides an exciting opportunity to identify residual disease during surgery. We developed a completely non-destructive strategy using HS-27, a fluorescently-tethered Hsp90 inhibitor, to assay surface Hsp90 expression on intact tissue specimens using a fluorescence microendoscope with a field of view of 750 μm and subcellular resolution of 4 μm. HS-27 consists of an FDA approved Hsp90 inhibitor tethered to fluorescein isothiocyanate (EX 488nm, EM 525nm). Here, we optimized ex vivo HS-27 administration in pre-clinical breast cancer models and validated our approach on 21 patients undergoing standard of care ultrasound guided core needle biopsy. HS-27 administration time was fixed at 1- minute to minimize imaging impact on clinical workflow. HS-27 and HS-217 (non-specific control) doses were modulated from 1 μM up to 100 μM to identify the dose maximizing the ratio of specific uptake (HS-27 fluorescence) to non-specific uptake (HS-217 fluorescence). The specificity ratio was maximized at 100 μM and was significantly greater than all other doses (p<0.05). We applied our optimized imaging protocol to clinical samples and demonstrated significantly greater uptake of HS-27 by tumor than non-tumor tissue (p<0.05). The ubiquitous nature of HS-27 binding to all subtypes of breast cancer makes this technology attractive for assessing tumor margins, as one agent can be used for all subtypes.

  16. Glucose uptake of the muscle and adipose tissues in diabetes and obesity disease models: evaluation of insulin and β3-adrenergic receptor agonist effects by 18F-FDG.

    PubMed

    Ishino, Seigo; Sugita, Taku; Kondo, Yusuke; Okai, Mika; Tsuchimori, Kazue; Watanabe, Masanori; Mori, Ikuo; Hosoya, Masaki; Horiguchi, Takashi; Kamiguchi, Hidenori

    2017-06-01

    One of the major causes of diabetes and obesity is abnormality in glucose metabolism and glucose uptake in the muscle and adipose tissue based on an insufficient action of insulin. Therefore, many of the drug discovery programs are based on the concept of stimulating glucose uptake in these tissues. Improvement of glucose metabolism has been assessed based on blood parameters, but these merely reflect the systemic reaction to the drug administered. We have conducted basic studies to investigate the usefulness of glucose uptake measurement in various muscle and adipose tissues in pharmacological tests using disease-model animals. A radiotracer for glucose, 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG), was administered to Wistar fatty rats (type 2 diabetes model), DIO mouse (obese model), and the corresponding control animals, and the basal glucose uptake in the muscle and adipose (white and brown) tissues were compared using biodistribution method. Moreover, insulin and a β3 agonist (CL316,243), which are known to stimulate glucose uptake in the muscle and adipose tissues, were administered to assess their effect. 18 F-FDG uptake in each tissue was measured as the radioactivity and the distribution was confirmed by autoradiography. In Wistar fatty rats, all the tissues measured showed a decrease in the basal level of glucose uptake when compared to Wistar lean rats. On the other hand, the same trend was observed only in the white adipose tissue in DIO mice, while brown adipose tissue showed increments in the basal glucose uptake in this model. Insulin administration stimulated glucose uptake in both Wistar lean and fatty rats, although the responses were inhibited in Wistar fatty rats. The same tendency was shown also in control mice, but clear increments in glucose uptake were not observed in the muscle and brown adipose tissue of DIO mice after insulin administration. β3 agonist administration showed the similar trend in Wistar lean and fatty rats as insulin, while the responses were inhibited in the adipose tissues of Wistar fatty rats. A system to monitor tissue glucose uptake with 18 F-FDG enabled us to detect clear differences in basal glucose uptake between disease-model animals and their corresponding controls. The responses in the tissues to insulin or β3 agonist could be identified. Taken as a whole, the biodistribution method with 18 F-FDG was confirmed to be useful for pharmacological evaluation of anti-diabetic or anti-obesity drugs using disease-model animals.

  17. Modification of meta-iodobenzylguanidine uptake in neuroblastoma cells by elevated temperature.

    PubMed Central

    Armour, A.; Mairs, R. J.; Gaze, M. N.; Wheldon, T. E.

    1994-01-01

    Successful imaging or treatment of neuroblastoma with 131I-meta-iodobenzylguanidine (131I-mIBG) depends on the selectivity of active (type 1) uptake of mIBG in neuroblastoma cells relative to passive (type 2) uptake present in most normal tissues. This study investigates the effects of moderately elevated temperature (39-41 degrees C) on the cellular uptake of 131I-mIBG in two neuroblastoma cell lines [SK-N-BE(2c) and IMR-32] and in a non-neuronal (ovarian carcinoma) cell line (A2780). In SK-N-BE(2c), a cell line with high active uptake capacity, the specific (type 1) uptake was reduced by 75% (P < 0.001) at 39 degrees C. Both IMR-32 and A2780 have a low capacity for accumulation of mIBG by active uptake. These cell lines demonstrated a statistically significant increase in accumulation at 39 degrees C, mainly as a result of increased non-specific transport. At 41 degrees C uptake of 131I-mIBG was reduced in all cell lines. Thus, the active component of mIBG uptake is more vulnerable to increased temperature than the passive component. It seems probable that moderately increased temperature will have an unfavourable effect on the therapeutic differential for targeted radiotherapy of neuroblastoma using radiolabelled mIBG. PMID:8080728

  18. Design of a Highly Specific And Noninvasive Biosensor Suitable for Real-Time in Vivo Imaging of Mercury (II) Uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapleau, R.R.; Blomberg, R.; Ford, P.C.

    2009-05-12

    Mercury is a ubiquitous pollutant that when absorbed is extremely toxic to a wide variety of biochemical processes. Mercury (II) is a strong, invisible poison that is rapidly absorbed by tissues of the intestinal tract, kidneys, and liver upon ingestion. In this study, a novel fluorescence-based biosensor is presented that allows for the direct monitoring of the uptake and distribution of the metal under noninvasive in vivo conditions. With the introduction of a cysteine residue at position 205, located in close proximity to the chromophore, the green fluorescent protein (GFP) from Aequorea victoria was converted into a highly specific biosensormore » for this metal ion. The mutant protein exhibits a dramatic absorbance and fluorescence change upon mercuration at neutral pH. Absorbance and fluorescence properties with respect to the metal concentration exhibit sigmoidal binding behavior with a detection limit in the low nanomolar range. Time-resolved binding studies indicate rapid subsecond binding of the metal to the protein. The crystal structures obtained of mutant eGFP205C indicate a possible access route of the metal into the core of the protein. To our knowledge, this engineered protein is a first example of a biosensor that allows for noninvasive and real-time imaging of mercury uptake in a living cell. A major advantage is that its expression can be genetically controlled in many organisms to enable unprecedented studies of tissue specific mercury uptake.« less

  19. (68)Ga small peptide imaging: comparison of NOTA and PCTA.

    PubMed

    Ferreira, Cara L; Yapp, Donald T T; Mandel, Derek; Gill, Rajanvir K; Boros, Eszter; Wong, May Q; Jurek, Paul; Kiefer, Garry E

    2012-11-21

    In this study, a bifunctional version of the chelate PCTA was compared to the analogous NOTA derivative for peptide conjugation, (68)Ga radiolabeling, and small peptide imaging. Both p-SCN-Bn-PCTA and p-SCN-Bn-NOTA were conjugated to cyclo-RGDyK. The resulting conjugates, PCTA-RGD and NOTA-RGD, retained their affinity for the peptide target, the α(v)β(3) receptor. Both PCTA-RGD and NOTA-RGD could be radiolabeled with (68)Ga in >95% radiochemical yield (RCY) at room temperature within 5 min. For PCTA-RGD, higher effective specific activities, up to 55 MBq/nmol, could be achieved in 95% RCY with gentle heating at 40 °C. The (68)Ga-radiolabeled conjugates were >90% stable in serum and in the presence of excess apo-transferrin over 4 h; (68)Ga-PCTA-RGD did have slightly lower stability than (68)Ga-NOTA-RGD, 93 ± 2% compared to 98 ± 1%, at the 4 h time point. Finally, the tumor and nontarget organ uptake and clearance of (68)Ga-radiolabeled PCTA-RGD and NOTA-RGD was compared in mice bearing HT-29 colorectal tumor xenografts. Activity cleared quickly from the blood and muscle tissue with >90% and >70% of the initial activity cleared within the first 40 min, respectively. The majority of activity was observed in the kidney, liver, and tumor tissue. The observed tumor uptake was specific with up to 75% of the tumor uptake blocked when the mice were preinjected with 160 nmol (100 μg) of unlabeled peptide. Uptake observed in the blocked tumors was not significantly different than the background activity observed in muscle tissue. The only significant difference between the two (68)Ga-radiolabeled bioconjugates in vivo was the kidney uptake. (68)Ga-radiolabeled PCTA-RGD had significantly lower (p < 0.05) kidney uptake (1.1 ± 0.5%) at 2 h postinjection compared to (68)Ga-radiolabeled NOTA-RGD (2.7 ± 1.3%). Overall, (68)Ga-radiolabeled PCTA-RGD and NOTA-RGD performed similarly, but the lower kidney uptake for (68)Ga-radiolabeled PCTA-RGD may be advantageous in some imaging applications.

  20. Time-course of effects of external beam radiation on [18F]FDG uptake in healthy tissue and bone marrow.

    PubMed

    Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei-Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes; Silverman, Daniel H S

    2008-06-23

    The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time-course of [18F]FDG uptake in normal tissues using small animal-dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG-PET scans were acquired for each mouse at 0 (pre-radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non-irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time-course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3-12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p < 0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2-8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p = 0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time-course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually.

  1. Time‐course of effects of external beam radiation on [18F]FDG uptake in healthy tissue and bone marrow

    PubMed Central

    Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei‐Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes

    2008-01-01

    The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time‐course of [18F]FDG uptake in normal tissues using small animal‐dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG‐PET scans were acquired for each mouse at 0 (pre‐radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non‐irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time‐course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3–12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p<0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2–8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p=0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time‐course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually. PACs Number: 87.50.‐a

  2. Influence of inhibitors of serotonin uptake on intestinal epithelium and colorectal carcinomas.

    PubMed

    Tutton, P J; Barkla, D H

    1982-08-01

    Previous studies have shown that in certain tissues, including colonic carcinomas, cell proliferation may be promoted by serotonin, and indirect evidence suggests that the effects of this amine on colonic tumours involves a cellular-uptake mechanism. In the present study, two specific inhibitors of serotonin uptake, Citalopram and Fluoxetine, are examined for their effects on cell proliferation and tumour growth. Each of the agents was found to suppress cell division in dimethylhydrazine-induced colonic tumours in rats, and to retard the growth of 2 out of 3 lines of human colonic tumours propagated as xenografts in immune-deprived mice.

  3. Aetiology of extrahepatic epithelial iron deposits in siderosis in Bantu

    PubMed Central

    Buchanan, W. M.

    1969-01-01

    Twenty-seven specimens of human tissue, obtained by operation, were tested to evaluate the theory that iron uptake by tissues from serum is greater when transferrin is nearly completely saturated than when the degree of saturation is normal. Samples of each tissue were incubated in autologous serum so prepared that in one instance the transferrin was 50% saturated and in the second 90% saturated with iron containing 59Fe. In all samples the uptake of iron was greater from the transferrin which was 90% saturated. The uptake by tissues of epithelial origin was significantly greater than that by non-epithelial tissues. Considerable variation in uptake was noted between samples of the same tissue from different individuals. The role of iron stores in the tissue and folic acid deficiency are discussed. It is concluded that the degree of transferrin saturation is important in determining iron uptake by tissues, especially in those of epithelial origin, and that such uptake may be modified by tissue stores and folic acid deficiency. It is felt that these factors are probably responsible for the extrahepatic parenchymal deposits of iron sometimes found in Bantu subjects with siderosis. PMID:5784982

  4. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals

    PubMed Central

    Wang, Shu; Su, Rui; Nie, Shufang; Sun, Ming; Zhang, Jia; Wu, Dayong; Moustaid-Moussa, Naima

    2013-01-01

    Nanotechnology is an innovative approach that has potential applications in nutraceutical research. Phytochemicals have promising potential for maintaining and promoting health, as well as preventing and potentially treating some diseases. However, the generally low solubility, stability, bioavailability and target specificity, together with the side-effects seen when used at high levels, have limited their application. Indeed, nanoparticles can increase solubility and stability of phytochemicals, enhance their absorption, protect them from premature degradation in the body, and prolong their circulation time. Moreover, these nanoparticles exhibit high differential uptake efficiency in the target cells (or tissue) over normal cells (or tissue)through preventing them from prematurely interacting with the biological environment, enhanced permeation and retention effect in disease tissues, and improving their cellular uptake, resulting in decreased toxicity, In this review we outline the commonly used biocompatible and biodegradable nanoparticles including liposomes, emulsions, solid lipid nanoparticles, nanostructured lipid carriers, micelles and poly (lactic-co-glycolic acid) (PLGA) nanoparticles. We then summarize studies that have used these nanoparticles as carriers for EGCG, quercetin, resveratrol and curcuminadministration to enhance their aqueous solubility, stability, bioavailability, target specificity, and bioactivities. PMID:24406273

  5. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, Nipun; Black, Paul N.; Montefusco, David

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC{sub 50} 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models formore » intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC{sub 50} 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of {sup 13}C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata.« less

  6. Quantitative Evaluation of Segmentation- and Atlas-Based Attenuation Correction for PET/MR on Pediatric Patients.

    PubMed

    Bezrukov, Ilja; Schmidt, Holger; Gatidis, Sergios; Mantlik, Frédéric; Schäfer, Jürgen F; Schwenzer, Nina; Pichler, Bernd J

    2015-07-01

    Pediatric imaging is regarded as a key application for combined PET/MR imaging systems. Because existing MR-based attenuation-correction methods were not designed specifically for pediatric patients, we assessed the impact of 2 potentially influential factors: inter- and intrapatient variability of attenuation coefficients and anatomic variability. Furthermore, we evaluated the quantification accuracy of 3 methods for MR-based attenuation correction without (SEGbase) and with bone prediction using an adult and a pediatric atlas (SEGwBONEad and SEGwBONEpe, respectively) on PET data of pediatric patients. The variability of attenuation coefficients between and within pediatric (5-17 y, n = 17) and adult (27-66 y, n = 16) patient collectives was assessed on volumes of interest (VOIs) in CT datasets for different tissue types. Anatomic variability was assessed on SEGwBONEad/pe attenuation maps by computing mean differences to CT-based attenuation maps for regions of bone tissue, lungs, and soft tissue. PET quantification was evaluated on VOIs with physiologic uptake and on 80% isocontour VOIs with elevated uptake in the thorax and abdomen/pelvis. Inter- and intrapatient variability of the bias was assessed for each VOI group and method. Statistically significant differences in mean VOI Hounsfield unit values and linear attenuation coefficients between adult and pediatric collectives were found in the lungs and femur. The prediction of attenuation maps using the pediatric atlas showed a reduced error in bone tissue and better delineation of bone structure. Evaluation of PET quantification accuracy showed statistically significant mean errors in mean standardized uptake values of -14% ± 5% and -23% ± 6% in bone marrow and femur-adjacent VOIs with physiologic uptake for SEGbase, which could be reduced to 0% ± 4% and -1% ± 5% using SEGwBONEpe attenuation maps. Bias in soft-tissue VOIs was less than 5% for all methods. Lung VOIs showed high SDs in the range of 15% for all methods. For VOIs with elevated uptake, mean and SD were less than 5% except in the thorax. The use of a dedicated atlas for the pediatric patient collective resulted in improved attenuation map prediction in osseous regions and reduced interpatient bias variation in femur-adjacent VOIs. For the lungs, in which intrapatient variation was higher for the pediatric collective, a patient- or group-specific attenuation coefficient might improve attenuation map accuracy. Mean errors of -14% and -23% in bone marrow and femur-adjacent VOIs can affect PET quantification in these regions when bone tissue is ignored. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Pharmacokinetics of differently designed immunoliposome formulations in rats with or without hepatic colon cancer metastases.

    PubMed

    Koning, G A; Morselt, H W; Gorter, A; Allen, T M; Zalipsky, S; Kamps, J A; Scherphof, G L

    2001-09-01

    Compare pharmacokinetics of tumor-directed immunoliposomes in healthy and tumor-bearing rats (hepatic colon cancer metastases). A tumor cell-specific monoclonal antibody was attached to polyethyleneglycol-stabilized liposomes, either in a random orientation via a lipid anchor (MPB-PEG-liposomes) or uniformly oriented at the distal end of the PEG chains (Hz-PEG-liposomes). Pharmacokinetics and tissue distribution were determined using [3H]cholesteryloleylether or bilayer-anchored 5-fluoro[3H]deoxyuridine-dipalmitate ([3H]FUdR-dP) as a marker. In healthy animals clearance of PEG-(immuno)liposomes was almost log-linear and only slightly affected by antibody attachment; in tumor-bearing animals all liposomes displayed biphasic clearance. In normal and tumor animals blood elimination increased with increasing antibody density; particularly for the Hz-PEG-liposomes, and was accompanied by increased hepatic uptake, probably due to increased numbers of macrophages induced by tumor growth. The presence of antibodies on the liposomes enhanced tumor accumulation: uptake per gram tumor tissue (2-4% of dose) was similar to that of liver. Remarkably, this applied to tumor-specific and irrelevant antibody. Increased immunoliposome uptake by trypsin-treated Kupffer cells implicated involvement of high-affinity Fc-receptors on activated macrophages. Tumor growth and immunoliposome characteristics (antibody density and orientation) determine immunoliposome pharmacokinetics. Although with a long-circulating immunoliposome formulation, efficiently retaining the prodrug FUdR-dP, we achieved enhanced uptake by hepatic metastases, this was probably not mediated by specific interaction with the tumor cells, but rather by tumor-associated macrophages.

  8. Side-by-Side Comparison of Commonly Used Biomolecules That Differ in Size and Affinity on Tumor Uptake and Internalization

    PubMed Central

    Leelawattanachai, Jeerapond; Kwon, Keon-Woo; Michael, Praveesuda; Ting, Richard; Kim, Ju-Young; Jin, Moonsoo M.

    2015-01-01

    The ability to use a systemically injected agent to image tumor is influenced by tumor characteristics such as permeability and vascularity, and the size, shape, and affinity of the imaging agent. In this study, six different imaging biomolecules, with or without specificity to tumor, were examined for tumor uptake and internalization at the whole body, ex-vivo tissue, and cellular levels: antibodies, antibody fragments (Fab), serum albumin, and streptavidin. The time of peak tumor uptake was dependent solely on the size of molecules, suggesting that molecular size is the major factor that influences tumor uptake by its effect on systemic clearance and diffusion into tumor. Affinity to tumor antigen failed to augment tumor uptake of Fab above non-specific accumulation, which suggests that Fab fragments of typical monoclonal antibodies may fall below an affinity threshold for use as molecular imaging agents. Despite abundant localization into the tumor, albumin and streptavidin were not found on cell surface or inside cells. By comparing biomolecules differing in size and affinity, our study highlights that while pharmacokinetics are a dominant factor in tumor uptake for biomolecules, affinity to tumor antigen is required for tumor binding and internalization. PMID:25901755

  9. Influence of inhibitors of serotonin uptake on intestinal epithelium and colorectal carcinomas.

    PubMed Central

    Tutton, P. J.; Barkla, D. H.

    1982-01-01

    Previous studies have shown that in certain tissues, including colonic carcinomas, cell proliferation may be promoted by serotonin, and indirect evidence suggests that the effects of this amine on colonic tumours involves a cellular-uptake mechanism. In the present study, two specific inhibitors of serotonin uptake, Citalopram and Fluoxetine, are examined for their effects on cell proliferation and tumour growth. Each of the agents was found to suppress cell division in dimethylhydrazine-induced colonic tumours in rats, and to retard the growth of 2 out of 3 lines of human colonic tumours propagated as xenografts in immune-deprived mice. PMID:6983886

  10. Quantification of human and rodent brown adipose tissue function using 99mTc-methoxyisobutylisonitrile SPECT/CT and 18F-FDG PET/CT.

    PubMed

    Cypess, Aaron M; Doyle, Ashley N; Sass, Christina A; Huang, Tian Lian; Mowschenson, Peter M; Rosen, Harold N; Tseng, Yu-Hua; Palmer, Edwin L; Kolodny, Gerald M

    2013-11-01

    For brown adipose tissue (BAT) to be effective at consuming calories, its blood flow must increase enough to provide sufficient fuel to sustain energy expenditure and also transfer the heat created to avoid thermal injury. Here we used a combination of human and rodent models to assess changes in BAT blood flow and glucose utilization. (99m)Tc-methoxyisobutylisonitrile (MIBI) SPECT (n = 7) and SPECT/CT (n = 74) scans done in adult humans for parathyroid imaging were reviewed for uptake in regions consistent with human BAT. Site-directed biopsies of subcutaneous and deep neck fat were obtained for electron microscopy and gene expression profiling. In mice, tissue perfusion was measured with (99m)Tc-MIBI (n = 16) and glucose uptake with (18)F-FDG (n = 16). Animals were kept fasting overnight, anesthetized with pentobarbital, and given intraperitoneally either the β3-adrenergic receptor agonist CL-316,243, 1 mg/kg (n = 8), or saline (n = 8) followed by radiotracer injection 5 min later. After 120 min, the mice were imaged using SPECT/CT or PET/CT. Vital signs were recorded over 30 min during the imaging. BAT, white adipose tissue (WAT), muscle, liver, and heart were resected, and tissue uptake of both (99m)Tc-MIBI and (18)F-FDG was quantified by percentage injected dose per gram of tissue and normalized to total body weight. In 5.4% of patients (4/74), (99m)Tc-MIBI SPECT/CT showed increased retention in cervical and supraclavicular fat that displayed multilocular lipid droplets, dense capillary investment, and a high concentration of ovoid mitochondria. Expression levels of the tissue-specific uncoupling protein-1 were 180 times higher in BAT than in subcutaneous WAT (P < 0.001). In mice, BAT tissue perfusion increased by 61% (P < 0.01), with no significant changes in blood flow to WAT, muscle, heart, or liver. CL-316,243 increased glucose uptake in BAT even more, by 440% (P < 0.01). Pharmacologic activation of BAT requires increased blood flow to deliver glucose and oxygen for thermogenesis. However, the glucose consumption far exceeds the vascular response. These findings demonstrate that activated BAT increases glucose uptake beyond what might occur by increased blood flow alone and suggest that activated BAT likely uses glucose for nonthermogenic purposes.

  11. Understanding the in vivo uptake kinetics of a phosphatidylethanolamine-binding agent 99mTc-Duramycin

    PubMed Central

    Audi, Said; Li, Zhixin; Capacete, Joseph; Liu, Yu; Fang, Wei; Shu, Laura G.; Zhao, Ming

    2013-01-01

    Introduction 99mTc-Duramycin is a peptide-based molecular probe that binds specifically to phosphatidylethanolamine (PE). The goal was to characterize the kinetics of molecular interactions between 99mTc-Duramycin and the target tissue. Methods High level of accessible PE is induced in cardiac tissues by myocardial ischemia (30 min) and reperfusion (120 min) in Sprague Dawley rats. Target binding and biodistribution of 99mTc-duramycin was captured using SPECT/CT. To quantify the binding kinetics, the presence of radioactivity in ischemic versus normal cardiac tissues was measured by gamma counting at 3, 10, 20, 60 and 180 min after injection. A partially inactivated form of 99mTc-Duramycin was analyzed in the same fashion. A compartment model was developed to quantify the uptake kinetics of 99mTc-Duramycin in normal and ischemic myocardial tissue. Results 99mTc-duramycin binds avidly to the damaged tissue with a high target-to-background radio. Compartment modeling shows that accessibility of binding sites in myocardial tissue to 99mTc-Duramycin is not a limiting factor and the rate constant of target binding in the target tissue is at 2.2 ml/nmol/min/g. The number of available binding sites for 99mTc-Duramycin in ischemic myocardium was estimated at 0.14 nmol/g. Covalent modification of D15 resulted in a 9 fold reduction in binding affinity. Conclusion 99mTc-Duramycin accumulates avidly in target tissues in a PE-dependent fashion. Model results reflect an efficient uptake mechanism, consistent with the low molecular weight of the radiopharmaceutical and the relatively high density of available binding sites. These data help better define the imaging utilities of 99mTc-Duramycin as a novel PE-binding agent. PMID:22534031

  12. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors.

    PubMed

    Yi, Hyunjung; Ghosh, Debadyuti; Ham, Moon-Ho; Qi, Jifa; Barone, Paul W; Strano, Michael S; Belcher, Angela M

    2012-03-14

    Second near-infrared (NIR) window light (950-1400 nm) is attractive for in vivo fluorescence imaging due to its deep penetration depth in tissues and low tissue autofluorescence. Here we show genetically engineered multifunctional M13 phage can assemble fluorescent single-walled carbon nanotubes (SWNTs) and ligands for targeted fluorescence imaging of tumors. M13-SWNT probe is detectable in deep tissues even at a low dosage of 2 μg/mL and up to 2.5 cm in tissue-like phantoms. Moreover, targeted probes show specific and up to 4-fold improved uptake in prostate specific membrane antigen positive prostate tumors compared to control nontargeted probes. This M13 phage-based second NIR window fluorescence imaging probe has great potential for specific detection and therapy monitoring of hard-to-detect areas. © 2012 American Chemical Society

  13. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors

    PubMed Central

    HAM, MOON-HO; QI, JIFA; BARONE, PAUL W.; STRANO, MICHAEL S.; BELCHER, ANGELA M.

    2014-01-01

    Second near-infrared (NIR) window light (950-1,400 nm) is attractive for in vivo fluorescence imaging due to its deep penetration depth in tissues and low tissue autofluorescence. Here we show genetically engineered multifunctional M13 phage can assemble fluorescent single-walled carbon nanotubes (SWNTs) and ligands for targeted fluorescence imaging of tumors. M13-SWNT probe is detectable in deep tissues even at a low dosage of 2 μg/mL and up to 2.5 cm in tissue-like phantoms. Moreover, targeted probes show specific and up to four-fold improved uptake in prostate specific membrane antigen positive prostate tumors compared to control non-targeted probes. This M13 phage-based second NIR window fluorescence imaging probe has great potential for specific detection and therapy monitoring of hard-to-detect areas. PMID:22268625

  14. In ovo uptake, metabolism, and tissue-specific distribution of chiral PCBs and PBDEs in developing chicken embryos

    PubMed Central

    Li, Zong-Rui; Luo, Xiao-Jun; Huang, Li-Qian; Mai, Bi-Xian

    2016-01-01

    Fertilized chicken eggs were injected with environmental doses of 4 chiral polychlorinated biphenyls (PCBs) and 8 polybrominated biphenyl ethers (PBDEs) to investigate their uptake, metabolism in the embryo, and distribution in the neonate chicken. PCB95 uptake was the most efficient (80%) whereas BDE209 was the least (56%). Embryos metabolized approximately 52% of the PCBs absorbed. Though some degree of metabolism in the first 18 days, most of the PCBs and PBDEs was metabolized in the last three days, when BDE85, 99, 153, and 209 decrease by 11–37%. Enantioselective metabolism of the (+) enantiomers of PCB95, 149, and 132 and the (−) enantiomer of PCB91 was observed. The enantioselective reactivity was higher with the two penta-PCBs than the two tetra-PCBs. Liver, exhibited high affinity for high lipophilic chemicals, enrich all chemicals that was deflected in other tissues except for some special chemicals in a given tissues. Lipid composition, time of organ formation, and metabolism contribute to the distribution of chemicals in the neonate chicken. The result of this study will improve our understanding on the fate and potential adverse effects of PCBs and PBDEs in the neonate chicken. PMID:27819361

  15. Studies of nontarget-mediated distribution of human full-length IgG1 antibody and its FAb fragment in cardiovascular and metabolic-related tissues.

    PubMed

    Davidsson, Pia; Söderling, Ann-Sofi; Svensson, Lena; Ahnmark, Andrea; Flodin, Christine; Wanag, Ewa; Screpanti-Sundqvist, Valentina; Gennemark, Peter

    2015-05-01

    Tissue distribution and pharmacokinetics (PK) of full-length nontargeted antibody and its antigen-binding fragment (FAb) were evaluated for a range of tissues primarily of interest for cardiovascular and metabolic diseases. Mice were intravenously injected with a dose of 10 mg/kg of either human IgG1or its FAb fragment; perfused tissues were collected at a range of time points over 3 weeks for the human IgG1 antibody and 1 week for the human FAb antibody. Tissues were homogenized and antibody concentrations were measured by specific immunoassays on the Gyros system. Exposure in terms of maximum concentration (Cmax ) and area under the curve was assessed for all nine tissues. Tissue exposure of full-length antibody relative to plasma exposure was found to be between 1% and 10%, except for brain (0.2%). Relative concentrations of FAb antibody were the same, except for kidney tissue, where the antibody concentration was found to be ten times higher than in plasma. However, the absolute tissue uptake of full-length IgG was significantly higher than the absolute tissue uptake of the FAb antibody. This study provides a reference PK state for full-length whole and FAb antibodies in tissues related to cardiovascular and metabolic diseases that do not include antigen or antibody binding. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Metabolic Control of Tobacco Pollination by Sugars and Invertases1

    PubMed Central

    Goetz, Marc; Hirsche, Jörg; Bauerfeind, Martin Andreas; González, María-Cruz; Hyun, Tae Kyung; Eom, Seung Hee; Chriqui, Dominique; Engelke, Thomas; Großkinsky, Dominik K.; Roitsch, Thomas

    2017-01-01

    Pollination in flowering plants is initiated by germination of pollen grains on stigmas followed by fast growth of pollen tubes representing highly energy-consuming processes. The symplastic isolation of pollen grains and tubes requires import of Suc available in the apoplast. We show that the functional coupling of Suc cleavage by invertases and uptake of the released hexoses by monosaccharide transporters are critical for pollination in tobacco (Nicotiana tabacum). Transcript profiling, in situ hybridization, and immunolocalization of extracellular invertases and two monosaccharide transporters in vitro and in vivo support the functional coupling in supplying carbohydrates for pollen germination and tube growth evidenced by spatiotemporally coordinated expression. Detection of vacuolar invertases in maternal tissues by these approaches revealed metabolic cross talk between male and female tissues and supported the requirement for carbohydrate supply in transmitting tissue during pollination. Tissue-specific expression of an invertase inhibitor and addition of the chemical invertase inhibitor miglitol strongly reduced extracellular invertase activity and impaired pollen germination. Measurements of (competitive) uptake of labeled sugars identified two import pathways for exogenously available Suc into the germinating pollen operating in parallel: direct Suc uptake and via the hexoses after cleavage by extracellular invertase. Reduction of extracellular invertase activity in pollen decreases Suc uptake and severely compromises pollen germination. We further demonstrate that Glc as sole carbon source is sufficient for pollen germination, whereas Suc is supporting tube growth, revealing an important regulatory role of both the invertase substrate and products contributing to a potential metabolic and signaling-based multilayer regulation of pollination by carbohydrates. PMID:27923989

  17. Inert gas transport in blood and tissues.

    PubMed

    Baker, A Barry; Farmery, Andrew D

    2011-04-01

    This article establishes the basic mathematical models and the principles and assumptions used for inert gas transfer within body tissues-first, for a single compartment model and then for a multicompartment model. From these, and other more complex mathematical models, the transport of inert gases between lungs, blood, and other tissues is derived and compared to known experimental studies in both animals and humans. Some aspects of airway and lung transfer are particularly important to the uptake and elimination of inert gases, and these aspects of gas transport in tissues are briefly described. The most frequently used inert gases are those that are administered in anesthesia, and the specific issues relating to the uptake, transport, and elimination of these gases and vapors are dealt with in some detail showing how their transfer depends on various physical and chemical attributes, particularly their solubilities in blood and different tissues. Absorption characteristics of inert gases from within gas cavities or tissue bubbles are described, and the effects other inhaled gas mixtures have on the composition of these gas cavities are discussed. Very brief consideration is given to the effects of hyper- and hypobaric conditions on inert gas transport. © 2011 American Physiological Society. Compr Physiol 1:569-592, 2011.

  18. Quantitative cumulative biodistribution of antibodies in mice: effect of modulating binding affinity to the neonatal Fc receptor.

    PubMed

    Yip, Victor; Palma, Enzo; Tesar, Devin B; Mundo, Eduardo E; Bumbaca, Daniela; Torres, Elizabeth K; Reyes, Noe A; Shen, Ben Q; Fielder, Paul J; Prabhu, Saileta; Khawli, Leslie A; Boswell, C Andrew

    2014-01-01

    The neonatal Fc receptor (FcRn) plays an important and well-known role in antibody recycling in endothelial and hematopoietic cells and thus it influences the systemic pharmacokinetics (PK) of immunoglobulin G (IgG). However, considerably less is known about FcRn's role in the metabolism of IgG within individual tissues after intravenous administration. To elucidate the organ distribution and gain insight into the metabolism of humanized IgG1 antibodies with different binding affinities FcRn, comparative biodistribution studies in normal CD-1 mice were conducted. Here, we generated variants of herpes simplex virus glycoprotein D-specific antibody (humanized anti-gD) with increased and decreased FcRn binding affinity by genetic engineering without affecting antigen specificity. These antibodies were expressed in Chinese hamster ovary cell lines, purified and paired radiolabeled with iodine-125 and indium-111. Equal amounts of I-125-labeled and In-111-labeled antibodies were mixed and intravenously administered into mice at 5 mg/kg. This approach allowed us to measure both the real-time IgG uptake (I-125) and cumulative uptake of IgG and catabolites (In-111) in individual tissues up to 1 week post-injection. The PK and distribution of the wild-type IgG and the variant with enhanced binding for FcRn were largely similar to each other, but vastly different for the rapidly cleared low-FcRn-binding variant. Uptake in individual tissues varied across time, FcRn binding affinity, and radiolabeling method. The liver and spleen emerged as the most concentrated sites of IgG catabolism in the absence of FcRn protection. These data provide an increased understanding of FcRn's role in antibody PK and catabolism at the tissue level.

  19. Quantitative cumulative biodistribution of antibodies in mice

    PubMed Central

    Yip, Victor; Palma, Enzo; Tesar, Devin B; Mundo, Eduardo E; Bumbaca, Daniela; Torres, Elizabeth K; Reyes, Noe A; Shen, Ben Q; Fielder, Paul J; Prabhu, Saileta; Khawli, Leslie A; Boswell, C Andrew

    2014-01-01

    The neonatal Fc receptor (FcRn) plays an important and well-known role in antibody recycling in endothelial and hematopoietic cells and thus it influences the systemic pharmacokinetics (PK) of immunoglobulin G (IgG). However, considerably less is known about FcRn’s role in the metabolism of IgG within individual tissues after intravenous administration. To elucidate the organ distribution and gain insight into the metabolism of humanized IgG1 antibodies with different binding affinities FcRn, comparative biodistribution studies in normal CD-1 mice were conducted. Here, we generated variants of herpes simplex virus glycoprotein D-specific antibody (humanized anti-gD) with increased and decreased FcRn binding affinity by genetic engineering without affecting antigen specificity. These antibodies were expressed in Chinese hamster ovary cell lines, purified and paired radiolabeled with iodine-125 and indium-111. Equal amounts of I-125-labeled and In-111-labeled antibodies were mixed and intravenously administered into mice at 5 mg/kg. This approach allowed us to measure both the real-time IgG uptake (I-125) and cumulative uptake of IgG and catabolites (In-111) in individual tissues up to 1 week post-injection. The PK and distribution of the wild-type IgG and the variant with enhanced binding for FcRn were largely similar to each other, but vastly different for the rapidly cleared low-FcRn-binding variant. Uptake in individual tissues varied across time, FcRn binding affinity, and radiolabeling method. The liver and spleen emerged as the most concentrated sites of IgG catabolism in the absence of FcRn protection. These data provide an increased understanding of FcRn’s role in antibody PK and catabolism at the tissue level. PMID:24572100

  20. Bioconcentration of two basic pharmaceuticals, verapamil and clozapine, in fish.

    PubMed

    Nallani, Gopinath C; Edziyie, Regina E; Paulos, Peter M; Venables, Barney J; Constantine, Lisa A; Huggett, Duane B

    2016-03-01

    The present study examined the bioconcentration of 2 basic pharmaceuticals: verapamil (a calcium channel blocker) and clozapine (an antipsychotic compound) in 2 fresh water fishes, fathead minnow and channel catfish. In 4 separate bioconcentration factor (BCF) experiments (2 chemicals × 1 exposure concentration × 2 fishes), fathead minnow and channel catfish were exposed to 190 μg/L and 419 μg/L of verapamil (500 μg/L nominal) or 28.5 μg/L and 40 μg/L of clozapine (50 μg/L nominal), respectively. Bioconcentration factor experiments with fathead consisted of 28 d uptake and 14 d depuration, whereas tests conducted on catfish involved a minimized test design, with 7 d each of uptake and depuration. Fish (n = 4-5) were sampled during exposure and depuration to collect different tissues: muscle, liver, gills, kidneys, heart (verapamil tests only), brain (clozapine tests only), and blood plasma (catfish tests only). Verapamil and clozapine concentrations in various tissues of fathead and catfish were analyzed using liquid chromatography-mass spectrometry. In general, higher accumulation rates of the test compounds were observed in tissues with higher perfusion rates. Accumulation was also high in tissues relevant to pharmacological targets in mammals (i.e. heart in verapamil test and brain in the clozapine test). Tissue-specific BCFs (wet wt basis) for verapamil and clozapine ranged from 0.7 to 75 and from 31 to 1226, respectively. Tissue-specific concentration data were used to examine tissue-blood partition coefficients. © 2016 SETAC.

  1. Tissue-Specific Induction of Mouse ZIP8 and ZIP14 Divalent Cation/Bicarbonate Symporters by, and Cytokine Response to, Inflammatory Signals

    PubMed Central

    Gálvez-Peralta, Marina; Wang, Zhifang; Bao, Shengying; Knoell, Daren L; Nebert, Daniel W

    2014-01-01

    Mouse Slc39a8 and Slc39a14 genes encode ZIP8 and ZIP14, respectively, which are ubiquitous divalent cation/(HCO3−)2 symporters responsible for uptake of Zn2+, Fe2+ and Mn2+ into cells. Cd2+ and other toxic nonessential metals can displace essential cations, thereby entering vertebrate cells. Whereas Slc39a8 encodes a single protein, Slc39a14 has two exons 4 which, via alternative splicing, give rise to ZIP14A and ZIP14B; why differences exist in cell-type-specific expression of ZIP14A and ZIP14B remains unknown. Inflammatory stimuli have been associated with ZIP8 and ZIP14 up-regulation, but a systematic study of many tissues simultaneously in a laboratory animal following inflammatory cytokine exposure has not yet been reported. Herein we show that C57BL/6J male mice—treated intraperitoneally with lipopolysaccharide (LPS), or the proinflammatory cytokines tumor necrosis factor (TNF) or interleukin-6 (IL6)—exhibited quantatively very different, highly tissue-specific, and markedly time-dependent up- and down-regulation of ZIP8, ZIP14A and ZIP14B mRNA levels in twelve tissues. Magnitude of the inflammatory response was confirmed by measuring the proinflammatory cytokine TNF, IL6 and interleukin-1β (IL1B) mRNA levels in the same tissues of these animals. Our data suggest that most if not all tissues use ZIP8, ZIP14A and/or ZIP14B) for Zn2+ uptake, some tissues under basal conditions and others moreso when inflammatory stressors are present; collectively, this might lead to substantial alterations in plasma Zn2+ levels, due to Zn2+ redistribution not just in liver, but across many vital organs. In the context of cadmium-mediated toxicity, our data suggest that tissues other than liver, kidney and lung should also be considered. PMID:24728862

  2. Use of direct fluorescence labeling and confocal microscopy to determine the biodistribution of two protein therapeutics, Cerezyme and Ceredase.

    PubMed

    Piepenhagen, Peter A; Vanpatten, Scott; Hughes, Heather; Waire, James; Murray, James; Andrews, Laura; Edmunds, Tim; O'Callaghan, Michael; Thurberg, Beth L

    2010-07-01

    Efficient targeting of therapeutic reagents to tissues and cell types of interest is critical to achieving therapeutic efficacy and avoiding unwanted side effects due to offtarget uptake. To increase assay efficiency and reduce the number of animals used per experiment during preclinical development, we used a combination of direct fluorescence labeling and confocal microscopy to simultaneously examine the biodistribution of two therapeutic proteins, Cerezyme and Ceredase, in the same animals. We show that the fluorescent tags do not interfere with protein uptake and localization. We are able to detect Cerezyme and Ceredase in intact cells and organs and demonstrate colocalization within target cells using confocal microscopy. In addition, the relative amount of protein internalized by different cell types can be quantified using cell type-specific markers and morphometric analysis. This approach provides an easy and straightforward means of assessing the tissue and cell type-specific biodistribution of multiple protein therapeutics in target organs using a minimal number of animals. (c) 2009 Wiley-Liss, Inc.

  3. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    NASA Astrophysics Data System (ADS)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm; Iversen, Frank; Liu, Zhuo; Thomsen, Karen; Pedersen, Michael; Skrydstrup, Troels; Nielsen, Niels Chr.; Ploug, Michael; Kjems, Jørgen

    2013-08-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery.Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr32922d

  4. Quantitative PET Imaging of Tissue Factor Expression Using 18F-Labeled Active Site-Inhibited Factor VII.

    PubMed

    Nielsen, Carsten H; Erlandsson, Maria; Jeppesen, Troels E; Jensen, Mette M; Kristensen, Lotte K; Madsen, Jacob; Petersen, Lars C; Kjaer, Andreas

    2016-01-01

    Tissue factor (TF) is upregulated in many solid tumors, and its expression is linked to tumor angiogenesis, invasion, metastasis, and prognosis. A noninvasive assessment of tumor TF expression status is therefore of obvious clinical relevance. Factor VII is the natural ligand to TF. Here we report the development of a new PET tracer for specific imaging of TF using an (18)F-labeled derivative of factor VII. Active site-inhibited factor VIIa (FVIIai) was obtained by inactivation with phenylalanine-phenylalanine-arginine-chloromethyl ketone. FVIIai was radiolabeled with N-succinimidyl 4-(18)F-fluorobenzoate and purified. The corresponding product, (18)F-FVIIai, was injected into nude mice with subcutaneous human pancreatic xenograft tumors (BxPC-3) and investigated using small-animal PET/CT imaging 1, 2, and 4 h after injection. Ex vivo biodistribution was performed after the last imaging session, and tumor tissue was preserved for molecular analysis. A blocking experiment was performed in a second set of mice. The expression pattern of TF in the tumors was visualized by immunohistochemistry and the amount of TF in tumor homogenates was measured by enzyme-linked immunosorbent assay and correlated with the uptake of (18)F-FVIIai in the tumors measured in vivo by PET imaging. The PET images showed high uptake of (18)F-FVIIai in the tumor regions, with a mean uptake of 2.5 ± 0.3 percentage injected dose per gram (%ID/g) (mean ± SEM) 4 h after injection of 7.3-9.3 MBq of (18)F-FVIIai and with an average maximum uptake in the tumors of 7.1 ± 0.7 %ID/g at 4 h. In comparison, the muscle uptake was 0.2 ± 0.01 %ID/g at 4 h. At 4 h, the tumors had the highest uptake of any organ. Blocking with FVIIai significantly reduced the uptake of (18)F-FVIIai from 2.9 ± 0.1 to 1.4 ± 0.1 %ID/g (P < 0.001). The uptake of (18)F-FVIIai measured in vivo by PET imaging correlated (r = 0.72, P < 0.02) with TF protein level measured ex vivo. (18)F-FVIIai is a promising PET tracer for specific and noninvasive imaging of tumor TF expression. The tracer merits further development and clinical translation, with potential to become a companion diagnostics for emerging TF-targeted therapies. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  5. Glucocorticoid deprivation alters in vivo glucose uptake by muscle and adipose tissues of GTG-obese mice.

    PubMed

    Blair, S C; Caterson, I D; Cooney, G J

    1995-11-01

    The effect of 1 wk of glucocorticoid deprivation by surgical adrenalectomy (ADX) on tissue 2-deoxy(-)[U-14C]glucose (2-DG) uptake and hepatic glucose production (HGP) was assessed in conscious, catheterized mice 5 wk after the induction of obesity with gold thioglucose (GTG). Despite the prevailing hyperglycemia and hyperinsulinemia, glucose uptake by heart, quadriceps muscle, and interscapular brown adipose tissue (BAT) of GTG-obese mice was unchanged compared with controls, suggesting that the hyperglycemia of GTG-obese mice is able to compensate for the insulin resistance of these tissues. In contrast, epididymal white adipose tissue (WAT) of GTG-obese mice showed increased glucose uptake with hyperglycemia and hyperinsulinemia. ADX decreased the hyperglycemia and lowered the elevated glycogen content of the liver of GTG-obese mice. ADX reduced glucose uptake by heart and WAT of control and GTG-obese mice, consistent with the concomitant decrease in insulinemia. Glucose uptake by muscle of control and GTG-obese mice was not significantly decreased after ADX despite the decrease in insulin, and ADX increased glucose uptake by BAT of GTG-obese mice, suggesting increased sympathetically mediated thermogenesis in this tissue. HGP was increased in GTG-obese mice compared with controls, and ADX significantly reduced HGP in both GTG-obese and control mice. These results suggest that the improved glucose tolerance of ADX GTG-obese mice and ADX control mice is due to a decrease in HGP rather than an increase in peripheral glucose uptake.

  6. 68Ga-PSMA-11 PET/CT in Newly Diagnosed Carcinoma of the Prostate: Correlation of Intraprostatic PSMA Uptake with Several Clinical Parameters.

    PubMed

    Koerber, Stefan A; Utzinger, Maximilian T; Kratochwil, Clemens; Kesch, Claudia; Haefner, Matthias F; Katayama, Sonja; Mier, Walter; Iagaru, Andrei H; Herfarth, Klaus; Haberkorn, Uwe; Debus, Juergen; Giesel, Frederik L

    2017-12-01

    68 Ga-prostate-specific membrane antigen (PSMA) PET/CT is a promising diagnostic tool for patients with prostate cancer. Our study evaluates SUVs in benign prostate tissue and malignant, intraprostatic tumor lesions and correlates results with several clinical parameters. Methods: One hundred four men with newly diagnosed prostate carcinoma and no previous therapy were included in this study. SUV max was measured and correlated with biopsy findings and MRI. Afterward, data were compared with current prostate-specific antigen (PSA) values, Gleason score (GS), and d'Amico risk classification. Results: In this investigation a mean SUV max of 1.88 ± 0.44 in healthy prostate tissue compared with 10.77 ± 8.45 in malignant prostate lesions ( P < 0.001) was observed. Patients with higher PSA, higher GS, and higher d'Amico risk score had statistically significant higher PSMA uptake on PET/CT ( P < 0.001 each). Conclusion: PSMA PET/CT is well suited for detecting the intraprostatic malignant lesion in patients with newly diagnosed prostate cancer. Our findings indicate a significant correlation of PSMA uptake with PSA, GS, and risk classification according to the d'Amico scale. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  7. Copper retention, calcium release and ultrastructural evidence indicate specific Cuprolinic Blue uptake and peculiar modifications in mineralizing aortic valves.

    PubMed

    Ortolani, F; Tubaro, F; Petrelli, L; Gandaglia, A; Spina, M; Marchini, M

    2002-01-01

    Previously, reactions with copper phthalocyanines at 0.05 M critical electrolyte concentration were found to cause demineralization in calcifying porcine aortic valves after subdermal implantation in rat, as well as simultaneous visualization of peculiar phthalocyanine-positive layers around cells and cell-derived matrix vesicles. In the present investigation, an appraisal was made of the mechanism and specificity of reactions with Cuprolinic Blue by comparing quantitatively calcium release and copper retention by calcified aortic valves reacted with this phthalocyanine under different critical electrolyte concentration conditions, and the corresponding ultrastructural patterns. It was found that (i) decalcifying properties are inversely proportional to salt molarity; (ii) reactivity to Cuprolinic Blue is critical electrolyte concentration-dependent, since the greatest copper retention occurred in 0.05 M critical electrolyte concentration Cuprolinic Blue-reacted samples, the only ones that also exhibited phthalocyanine-positive layers; (iii) the appearance of phthalocyanine-positive layers depends on Cuprolinic Blue uptake, revealing pericellular clustering of calcium-binding, anionic molecules; and (iv) minor Cuprolinic Blue uptake occurs by residual proteoglycans which still remain in the extracellular matrix after 6-week-long subdermal implantation. The present results indicate that this method is appropriate for the study of mineralized tissues and illustrate peculiar tissue modifications occurring at least in the experimental conditions used here.

  8. The effect of sulfate on selenate bioaccumulation in two freshwater primary producers: A duckweed (Lemna minor) and a green alga (Pseudokirchneriella subcapitata).

    PubMed

    Lo, Bonnie P; Elphick, James R; Bailey, Howard C; Baker, Josh A; Kennedy, Christopher J

    2015-12-01

    Predicting selenium bioaccumulation is complicated because site-specific conditions, including the ionic composition of water, affect the bioconcentration of inorganic selenium into the food web. Selenium tissue concentrations were measured in Lemna minor and Pseudokirchneriella subcapitata following exposure to selenate and sulfate. Selenium accumulation differed between species, and sulfate reduced selenium uptake in both species, indicating that ionic constituents, in particular sulfate, are important in modifying selenium uptake by primary producers. © 2015 SETAC.

  9. ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue.

    PubMed

    Miki, Takashi; Minami, Kohtaro; Zhang, Li; Morita, Mizuo; Gonoi, Tohru; Shiuchi, Tetsuya; Minokoshi, Yasuhiko; Renaud, Jean-Marc; Seino, Susumu

    2002-12-01

    ATP-sensitive potassium (K(ATP)) channels are known to be critical in the control of both insulin and glucagon secretion, the major hormones in the maintenance of glucose homeostasis. The involvement of K(ATP) channels in glucose uptake in the target tissues of insulin, however, is not known. We show here that Kir6.2(-/-) mice lacking Kir6.2, the pore-forming subunit of these channels, have no K(ATP) channel activity in their skeletal muscles. A 2-deoxy-[(3)H]glucose uptake experiment in vivo showed that the basal and insulin-stimulated glucose uptake in skeletal muscles and adipose tissues of Kir6.2(-/-) mice is enhanced compared with that in wild-type (WT) mice. In addition, in vitro measurement of glucose uptake indicates that disruption of the channel increases the basal glucose uptake in Kir6.2(-/-) extensor digitorum longus and the insulin-stimulated glucose uptake in Kir6.2(-/-) soleus muscle. In contrast, glucose uptake in adipose tissue, measured in vitro, was similar in Kir6.2(-/-) and WT mice, suggesting that the increase in glucose uptake in Kir6.2(-/-) adipocytes is mediated by altered extracellular hormonal or neuronal signals altered by disruption of the K(ATP) channels.

  10. Immunological Evidence for the Existence of a Carrier Protein for Sucrose Transport in Tonoplast Vesicles from Red Beet (Beta vulgaris L.) Root Storage Tissue.

    PubMed Central

    Getz, H. P.; Grosclaude, J.; Kurkdjian, A.; Lelievre, F.; Maretzki, A.; Guern, J.

    1993-01-01

    Monoclonal antibodies were raised in mice against a highly purified tonoplast fraction from isolated red beet (Beta vulgaris L. ssp. conditiva) root vacuoles. Positive hybridoma clones and sub-clones were identified by prescreening using an enzyme-linked immunosorbent assay (ELISA) and by postscreening using a functional assay. This functional assay consisted of testing the impact of hybridoma supernatants and antibody-containing ascites fluids on basal and ATP-stimulated sugar uptake in vacuoles, isolated from protoplasts, as well as in tonoplast vesicles, prepared from tissue homogenates of red beet roots. Antibodies from four clones were particularly positive in ELISAs and they inhibited sucrose uptake significantly. These antibodies were specific inhibitors of sucrose transport, but they exhibited relatively low membrane and species specificity since uptake into red beet root protoplasts and sugarcane tonoplast vesicles was inhibited as well. Fast protein liquid chromatography assisted size exclusion chromatography on Superose 6 columns yielded two major peaks in the 55 to 65-kD regions and in the 110- to 130-kD regions of solubilized proteins from red beet root tonoplasts, which reacted positively in immunoglobulin-M(IgM)-specific ELISAs with anti-sugarcane tonoplast monoclonal IgM antibodies. Only reconstituted proteoliposomes containing polypeptides from the 55- to 65-kD band took up [14C]-sucrose with linear rates for 2 min, suggesting that this fraction contains the tonoplast sucrose carrier. PMID:12231863

  11. Cell-Type Specificity of the Expression of Os BOR1, a Rice Efflux Boron Transporter Gene, Is Regulated in Response to Boron Availability for Efficient Boron Uptake and Xylem Loading

    PubMed Central

    Nakagawa, Yuko; Hanaoka, Hideki; Kobayashi, Masaharu; Miyoshi, Kazumaru; Miwa, Kyoko; Fujiwara, Toru

    2007-01-01

    We describe a boron (B) transporter, Os BOR1, in rice (Oryza sativa). Os BOR1 is a plasma membrane–localized efflux transporter of B and is required for normal growth of rice plants under conditions of limited B supply (referred to as -B). Disruption of Os BOR1 reduced B uptake and xylem loading of B. The accumulation of Os BOR1 transcripts was higher in roots than that in shoots and was not affected by B deprivation; however, Os BOR1 was detected in the roots of wild-type plants under -B conditions, but not under normal conditions, suggesting regulation of protein accumulation in response to B nutrition. Interestingly, tissue specificity of Os BOR1 expression is affected by B treatment. Transgenic rice plants containing an Os BOR1 promoter–β-glucuronidase (GUS) fusion construct grown with a normal B supply showed the strongest GUS activity in the steles, whereas after 3 d of -B treatment, GUS activity was elevated in the exodermis. After 6 d of -B treatment, GUS activity was again strong in the stele. Our results demonstrate that Os BOR1 is required both for efficient B uptake and for xylem loading of B. Possible roles of the temporal changes in tissue-specific patterns of Os BOR1 expression in response to B condition are discussed. PMID:17675406

  12. Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs

    PubMed Central

    Fouladi, Farnaz; Steffen, Kristine J.; Mallik, Sanku

    2017-01-01

    Liposomes are nanocarriers that deliver the payloads at the target site, leading to therapeutic drug concentrations at the diseased site and reduced toxic effects in healthy tissues. Several approaches have been used to enhance the ability of the nanocarrier to target the specific tissues, including ligand-targeted liposomes and stimuli-responsive liposomes. Ligand-targeted liposomes exhibit higher uptake by the target tissue due to the targeting ligand attached to the surface, while, the stimuli-responsive liposomes do not release their cargo unless they expose to an endogenous or exogenous stimulant at the target site. In this review, we mainly focus on the liposomes that are responsive to pathologically increased levels of enzymes at the target site. Enzyme-responsive liposomes release their cargo upon contact with the enzyme through several destabilization mechanisms: a) structural perturbation in the lipid bilayer, b) removal of a shielding polymer from the surface and increased cellular uptake, c) cleavage of a lipopeptide or lipopolymer incorporated in the bilayer, and d) activation of a prodrug in the liposomes. PMID:28201868

  13. Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs.

    PubMed

    Fouladi, Farnaz; Steffen, Kristine J; Mallik, Sanku

    2017-04-19

    Liposomes are nanocarriers that deliver the payloads at the target site, leading to therapeutic drug concentrations at the diseased site and reduced toxic effects in healthy tissues. Several approaches have been used to enhance the ability of the nanocarrier to target the specific tissues, including ligand-targeted liposomes and stimuli-responsive liposomes. Ligand-targeted liposomes exhibit higher uptake by the target tissue due to the targeting ligand attached to the surface, while the stimuli-responsive liposomes do not release their cargo unless they expose to an endogenous or exogenous stimulant at the target site. In this review, we mainly focus on the liposomes that are responsive to pathologically increased levels of enzymes at the target site. Enzyme-responsive liposomes release their cargo upon contact with the enzyme through several destabilization mechanisms: (1) structural perturbation in the lipid bilayer, (2) removal of a shielding polymer from the surface and increased cellular uptake, (3) cleavage of a lipopeptide or lipopolymer incorporated in the bilayer, and (4) activation of a prodrug in the liposomes.

  14. [11C]choline uptake in regenerating liver after partial hepatectomy or CCl4-administration.

    PubMed

    Sasaki, Toru

    2004-02-01

    To characterize [methyl-(11)C]choline ([(11)C]choline) as an oncologic PET radiopharmaceutical, [(11)C]choline uptake in regenerating livers after partial hepatectomy as a model of typical proliferating tissue and after CCl(4) insult as that of proliferating tissue with inflammation, was studied in rats. [(11)C]Choline, [(18)F]2-fluoro-2-deoxy-D-glucose ([(18)F]FDG) and [2-(14)C]thymidine ([(14)C]TdR) uptake was studied in regenerating rat liver after 70% partial hepatectomy or CCl(4)-administration. [(11)C]Choline uptake in regenerating liver after partial hepatectomy was significantly increased with [(14)C]TdR uptake as a marker of DNA synthesis at 18 hours after surgery. On the other hand, the uptake was not accelerated by CCl(4)-administration, though it significantly increased [(14)C]TdR uptake. There were no differences of [(11)C]choline uptake acceleration following partial hepatectomy among the three parts of the regenerating liver. [(18)F]FDG uptake was accelerated in the regenerating liver on either partial hepatectomy or CCl(4)-administration. The magnitude of the increase in [(18)F]FDG uptake in the regenerating liver induced by partial hepatectomy was greater than that for [(11)C]choline. [(11)C]Choline uptake in the liver was accelerated by partial hepatectomy, but not by CCl(4)-administration. This might be expected given that the differentiation between proliferating tissues such as tumor and inflammatory tissue was possible by [(11)C]choline-PET.

  15. Endotoxin reduces specific pulmonary uptake of radiolabeled monoclonal antibody to angiotensin-converting enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzykantov, V.R.; Puchnina, E.A.; Atochina, E.N.

    The biodistribution of radiolabeled monoclonal antibody (Mab) to angiotensin-converting enzyme (ACE) was examined in normal and endotoxin-treated rats. Endotoxin administration at a dose of 4 mg/kg induced mild or middle pulmonary edema. The ACE activity in lung homogenate remained virtually unchanged, while the activity of serum ACE increased 15 hr after endotoxin infusion. In normal rats, anti-ACE Mab accumulates specifically in the lung after i.v. injection. Endotoxin injection induces reduction of specific pulmonary uptake of this antibody. Even in non-edematous endotoxemia, the accumulation of anti-ACE Mab antibody (Mab 9B9) decreased from 19.02 to 11.91% of ID/g of tissue without anymore » change in accumulation of control nonspecific IgG. The antibody distribution in other organs and its blood level were almost the same as in the control. In a case of endotoxemia accompanied by increased microvascular permeability, the lung accumulation of Mab 9B9 was reduced to 9.17% of ID/g of tissue, while the accumulation of nonspecific IgG increased to 1.44% versus 0.89% in the control.« less

  16. Evaluation of an [(18)F]AlF-NOTA Analog of Exendin-4 for Imaging of GLP-1 Receptor in Insulinoma.

    PubMed

    Kiesewetter, Dale O; Guo, Ning; Guo, Jinxia; Gao, Haokao; Zhu, Lei; Ma, Ying; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    The GLP-1 receptor plays an important role in glucose homeostasis and thus is a very important target for diabetes therapy. The receptor is also overexpressed in insulinoma, a tumor of pancreatic beta-cells. We previously evaluated two fluorine-18-labeled analogs of exendin-4 prepared by conjugation with [(18)F]FBEM (N-[2-(4-[(18)F]fluorobenzamide)ethyl]maleimide). Both compounds demonstrated good tumor uptake, but the synthesis of the radiotracers was time consuming. To overcome this challenge, we developed a NOTA analog and performed radiolabeling using aluminum [(18)F]fluoride complexation. Cys(40)-exendin-4 was conjugated with NOTA mono N-ethylmaleimide. [(18)F]AlF conjugation was conducted and the radiolabeled product purified by preparative HPLC. Dynamic and static PET imaging scans were conducted on nude mice with established INS-1 xenografts. Uptake of tumor and other major organs in static images was quantitated (%ID/g) and comparison with blocking studies was made. PET quantification was also compared with ex vivo biodistribution results. The radiosynthesis provided [(18)F]AlF-NOTA-MAL-cys(40)-exendin-4 in 23.6 ± 2.4 % radiochemical yield (uncorrected, n = 3) after HPLC; the process required about 55 min. The specific activity at time of injection ranged from 19.6 to 31.4 GBq (0.53-0.85 Ci)/µmol. Tumor uptake had reached its maximum (16.09 ± 1.18% ID/g, n = 4) by 5 min and remained nearly constant for the duration of the study. Kidney uptake continued to increase throughout the entire one hour time course. Pre-injection of exendin-4 caused a marked reduction in tissue uptake with the major exception of liver and kidneys, in which uptake was not affected. HPLC analysis of the radioactive components in extracts of the tumor and plasma showed primarily parent compound at 60 min post-injection, whereas extracts of kidney and urine contained exclusively one polar radioactive component. The radiotracer is prepared in a simple one-step procedure and obtained in high specific activity after HPLC purification. [(18)F]AlF-NOTA-MAL-exendin-4 shows high tumor uptake and highly selective GLP-1 tissue uptake (INS-1 tumor, lung, pancreas), but still suffers from high kidney uptake.

  17. Longitudinal observation of [11C]4DST uptake in turpentine-induced inflammatory tissue.

    PubMed

    Toyohara, Jun; Sakata, Muneyuki; Oda, Keiichi; Ishii, Kenji; Ishiwata, Kiichi

    2013-02-01

    Longitudinal changes of 4'-[methyl-(11)C]thiothymidine ([(11)C]4DST) uptake were evaluated in turpentine-induced inflammation. Turpentine (0.1 ml) was injected intramuscularly into the right hind leg of male Wistar rats. Longitudinal [(11)C]4DST uptake was evaluated by the tissue dissection method at 1, 2, 4, 7, and 14 days after turpentine injection (n=5). The tumor selectivity index was calculated using the previously published biodistribution data in C6 glioma-bearing rats. Dynamic PET scan was performed on day 4 when maximum [(11)C]4DST uptake was observed during the longitudinal study. Histopathological analysis and Ki-67 immunostaining were also performed. The uptake of [(11)C]4DST in inflammatory tissue was significantly increased on days 2-4 after turpentine injection, and then decreased. On day 14, tracer uptake returned to the day 1 level. The maximum SUV of inflamed muscle was 0.6 and was 3 times higher than that of the contralateral healthy muscle on days 2-4 after turpentine injection. However, tumor selectivity index remains very high (>10) because of the low inflammation uptake. A dynamic PET scan showed that the radioactivity in inflammatory tissues peaked at 5 min after [(11)C]4DST injection, and then washed out until 20 min. At intervals >20 min, radioactivity levels were constant and double that of healthy muscle. The changes in Ki-67 index were paralleled with those of [(11)C]4DST uptake, indicating cell proliferation-dependent uptake of [(11)C]4DST in inflammatory tissues. In our animal model, low but significant levels of [(11)C]4DST uptake were observed in subacute inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Harnessing Solute Carrier Transporters for Precision Oncology.

    PubMed

    Nyquist, Michael D; Prasad, Bhagwat; Mostaghel, Elahe A

    2017-03-28

    Solute Carrier (SLC) transporters are a large superfamily of transmembrane carriers involved in the regulated transport of metabolites, nutrients, ions and drugs across cellular membranes. A subset of these solute carriers play a significant role in the cellular uptake of many cancer therapeutics, ranging from chemotherapeutics such as antimetabolites, topoisomerase inhibitors, platinum-based drugs and taxanes to targeted therapies such as tyrosine kinase inhibitors. SLC transporters are co-expressed in groups and patterns across normal tissues, suggesting they may comprise a coordinated regulatory circuit serving to mediate normal tissue functions. In cancer however, there are dramatic changes in expression patterns of SLC transporters. This frequently serves to feed the increased metabolic demands of the tumor cell for amino acids, nucleotides and other metabolites, but also presents a therapeutic opportunity, as increased transporter expression may serve to increase intracellular concentrations of substrate drugs. In this review, we examine the regulation of drug transporters in cancer and how this impacts therapy response, and discuss novel approaches to targeting therapies to specific cancers via tumor-specific aberrations in transporter expression. We propose that among the oncogenic changes in SLC transporter expression there exist emergent vulnerabilities that can be exploited therapeutically, extending the application of precision medicine from tumor-specific drug targets to tumor-specific determinants of drug uptake.

  19. Distribution volumes of macromolecules in human ovarian and endometrial cancers--effects of extracellular matrix structure.

    PubMed

    Haslene-Hox, Hanne; Oveland, Eystein; Woie, Kathrine; Salvesen, Helga B; Tenstad, Olav; Wiig, Helge

    2015-01-01

    Elements of the extracellular matrix (ECM), notably collagen and glucosaminoglycans, will restrict part of the space available for soluble macromolecules simply because the molecules cannot occupy the same space. This phenomenon may influence macromolecular drug uptake. To study the influence of steric and charge effects of the ECM on the distribution volumes of macromolecules in human healthy and malignant gynecologic tissues we used as probes 15 abundant plasma proteins quantified by high-resolution mass spectrometry. The available distribution volume (VA) of albumin was increased in ovarian carcinoma compared with healthy ovarian tissue. Furthermore, VA of plasma proteins between 40 and 190 kDa decreased with size for endometrial carcinoma and healthy ovarian tissue, but was independent of molecular weight for the ovarian carcinomas. An effect of charge on distribution volume was only found in healthy ovaries, which had lower hydration and high collagen content, indicating that a condensed interstitium increases the influence of negative charges. A number of earlier suggested biomarker candidates were detected in increased amounts in malignant tissue, e.g., stathmin and spindlin-1, showing that interstitial fluid, even when unfractionated, can be a valuable source for tissue-specific proteins. We demonstrate that the distribution of abundant plasma proteins in the interstitium can be elucidated by mass spectrometry methods and depends markedly on hydration and ECM structure. Our data can be used in modeling of drug uptake, and give indications on ECM components to be targeted to increase the uptake of macromolecular substances. Copyright © 2015 the American Physiological Society.

  20. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways.

    PubMed

    Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter

    2016-08-01

    The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell interactions in the airways. The method also holds the potential to be used during diagnostic procedures in humans if integrated into a bronchoscope.

  1. Screening phage display libraries for organ-specific vascular immunotargeting in vivo

    PubMed Central

    Valadon, Philippe; Garnett, Jeff D.; Testa, Jacqueline E.; Bauerle, Marc; Oh, Phil; Schnitzer, Jan E.

    2006-01-01

    The molecular diversity of the luminal endothelial cell surface arising in vivo from local variations in genetic expression and tissue microenvironment may create opportunities for achieving targeted molecular imaging and therapies. Here, we describe a strategy to identify probes and their cognate antigens for targeting vascular endothelia of specific organs in vivo. We differentially screen phage libraries to select organ-targeting antibodies by using luminal endothelial cell plasma membranes isolated directly from tissue and highly enriched in natively expressed proteins exposed to the bloodstream. To obviate liver uptake of intravenously injected phage, we convert the phage-displayed antibodies into scFv-Fc fusion proteins, which then are able to rapidly target select organ(s) in vivo as visualized directly by γ-scintigraphic whole-body imaging. Mass spectrometry helps identify the antigen targets. This comprehensive strategy provides new promise for harnessing the power of phage display for mapping vascular endothelia natively in tissue and for achieving vascular targeting of specific tissues in vivo. PMID:16384919

  2. Mechanisms of Chemical Carcinogenesis in the Kidneys

    PubMed Central

    Radford, Robert; Frain, Helena; Ryan, Michael P.; Slattery, Craig; McMorrow, Tara

    2013-01-01

    Chemical carcinogens are substances which induce malignant tumours, increase their incidence or decrease the time taken for tumour formation. Often, exposure to chemical carcinogens results in tissue specific patterns of tumorigenicity. The very same anatomical, biochemical and physiological specialisations which permit the kidney to perform its vital roles in maintaining tissue homeostasis may in fact increase the risk of carcinogen exposure and contribute to the organ specific carcinogenicity observed with numerous kidney carcinogens. This review will address the numerous mechanisms which play a role in the concentration, bioactivation, and uptake of substances from both the urine and blood which significantly increase the risk of cancer in the kidney. PMID:24071941

  3. Amperozide, a putative anti-psychotic drug: Uptake inhibition and release of dopamine in vitro in the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksson, E.

    1990-01-01

    The effects of amperozide (a diphenylbutylpiperazinecarboxamide derivative) on the uptake and release of {sup 3}H-dopamine in vitro were investigated. Amperozide inhibited the amphetamine-stimulated release of dopamine from perfused rat striatal tissue in a dose-dependent manner. With 1 and 10 {mu}m amperozide there was significant inhibition of the amphetamine-stimulated release of dopamine, to 44 and 36 % of control. In contrast, 10 {mu}M amperozide significantly strengthened the electrically stimulated release of dopamine from perfused striatal slices. Amperozide 1-10 {mu}M had no significant effect on the potassium-stimulated release of dopamine, 10 {mu}M amperozide also slightly increased the basal release of {sup 3}H-dopaminemore » from perfused striatal tissue. These effects on various types of release are similar to those reported for uptake inhibitors. The uptake of dopamine in striatal tissue was inhibited by amperozide with IC{sub 50} values of 18 {mu}M for uptake in chopped tissue and 1.0 {mu}M for uptake in synaptosomes. Amperozide also inhibited the uptake of serotonin in synaptosomes from frontal cortex, IC{sub 50} = 0.32 {mu}M and the uptake of noradrenaline in cortical synaptosomes, IC{sub 50} = 0.78 {mu}M.« less

  4. Impaired Thermogenesis and a Molecular Signature for Brown Adipose Tissue in Id2 Null Mice

    PubMed Central

    Zhou, Peng; Robles-Murguia, Maricela; Mathew, Deepa; Duffield, Giles E.

    2016-01-01

    Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated that Id2 null mice have sex-specific elevated glucose uptake in brown adipose tissue (BAT). Here we further explored the role of Id2 in the regulation of core body temperature over the circadian cycle and the impact of Id2 deficiency on genes involved in insulin signaling and adipogenesis in BAT. We discovered a reduced core body temperature in Id2−/− mice. Moreover, in Id2−/− BAT, 30 genes including Irs1, PPARs, and PGC-1s were identified as differentially expressed in a sex-specific pattern. These data provide valuable insights into the impact of Id2 deficiency on energy homeostasis of mice in a sex-specific manner. PMID:27144179

  5. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato.

    PubMed Central

    Lauter, F R; Ninnemann, O; Bucher, M; Riesmeier, J W; Frommer, W B

    1996-01-01

    Root hairs as specialized epidermal cells represent part of the outermost interface between a plant and its soil environment. They make up to 70% of the root surface and, therefore, are likely to contribute significantly to nutrient uptake. To study uptake systems for mineral nitrogen, three genes homologous to Arabidopsis nitrate and ammonium transporters (AtNrt1 and AtAmt1) were isolated from a root hair-specific tomato cDNA library. Accumulation of LeNrt1-1, LeNrt1-2, and LeAmt1 transcripts was root-specific, with no detectable transcripts in stems or leaves. Expression was root cell type-specific and regulated by nitrogen availability. LeNrt1-2 mRNA accumulation was restricted to root hairs that had been exposed to nitrate. In contrast, LeNrt1-1 transcripts were detected in root hairs as well as other root tissues under all nitrogen treatments applied. Analogous to LeNrt1-1, the gene LeAmt1 was expressed under all nitrogen conditions tested, and root hair-specific mRNA accumulation was highest following exposure to ammonium. Expression of LeAMT1 in an ammonium uptake-deficient yeast strain restored growth on low ammonium medium, confirming its involvement in ammonium transport. Root hair specificity and characteristics of substrate regulation suggest an important role of the three genes in uptake of mineral nitrogen. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8755617

  6. Tissue-specific changes of glutamine synthetase activity in oats after rhizosphere infestation by Pseudomonas syringae pv. tabaci. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, T.J.; Temple, S.; Sengupta-Gopalan, C.

    1996-05-15

    Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels ofmore » GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.« less

  7. Fate and Uptake of Pharmaceuticals in Soil–Plant Systems

    PubMed Central

    2014-01-01

    Pharmaceuticals have been detected in the soil environment where there is the potential for uptake into crops. This study explored the fate and uptake of pharmaceuticals (carbamazepine, diclofenac, fluoxetine, propranolol, sulfamethazine) and a personal care product (triclosan) in soil–plant systems using radish (Raphanus sativus) and ryegrass (Lolium perenne). Five of the six chemicals were detected in plant tissue. Carbamazepine was taken up to the greatest extent in both the radish (52 μg/g) and ryegrass (33 μg/g), whereas sulfamethazine uptake was below the limit of quantitation (LOQ) (<0.01 μg/g). In the soil, concentrations of diclofenac and sulfamethazine dropped below the LOQ after 7 days. However, all pharmaceuticals were still detectable in the pore water at the end of the experiment. The results demonstrate the ability of plant species to accumulate pharmaceuticals from soils with uptake apparently specific to both plant species and chemical. Results can be partly explained by the hydrophobicity and extent of ionization of each chemical in the soil. PMID:24405013

  8. Evaluation of Populus and Salix continuously irrigated with landfill leachate I. Genotype-specific elemental phytoremediation.

    PubMed

    Zalesny, Ronald S; Bauer, Edmund O

    2007-01-01

    There is a need for the identification and selection of specific tree genotypes that can sequester elements from contaminated soils, with elevated rates of uptake. We irrigated Populus (DN17, DN182, DN34, NM2, NM6) and Salix (94003, 94012, S287, S566, SX61) genotypes planted in large soil-filled containers with landfill leachate or municipal water and tested for differences in inorganic element concentrations (P, K, Ca, Mg, S, Zn, B, Mn, Fe, Cu, Al, Na, and Cl) in the leaves, stems, and roots. Trees were irrigated with leachate or water during the final 12 wk of the 18-wk study. Genotype-specific uptake existed. For genera, tissue concentrations exhibited four responses. First, Populus had the greatest uptake of P, K, S, Cu, and Cl. Second, Salix exhibited the greatest uptake of Zn, B, Fe, and Al. Third, Salix had greater concentrations of Ca and Mg in leaves, while Populus had greater concentrations in stems and roots. Fourth, Populus had greater concentrations of Mn and Na in leaves and stems, while Salix had greater concentrations in roots. Populus deltoides x P. nigra clones exhibited better overall phytoremediation than the P. nigra x P. maximowiczii genotypes tested. Phytoremediation for S. purpurea clones 94003 and 94012 was generally less than for other Salix genotypes. Overall, concentrations of elements in the leaves, stems, and roots corroborated those in the plant-sciences literature. Uptake was dependent upon the specific genotype for most elements. Our results corroborated the need for further testing and selecting of specific clones for various phytoremediation needs, while providing a baseline for future researchers developing additional studies and resource managers conducting on-site remediation.

  9. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region.

    PubMed

    Hany, Thomas F; Gharehpapagh, Esmaiel; Kamel, Ehab M; Buck, Alfred; Himms-Hagen, Jean; von Schulthess, Gustav K

    2002-10-01

    Increased symmetrical fluorine-18 fluorodeoxyglucose (FDG) uptake in the cervical and thoracic spine region is well known and has been attributed to muscular uptake. The purpose of this study was to re-evaluate this FDG uptake pattern by means of co-registered positron emission tomography (PET) and computed tomography (CT) imaging, which allowed exact localisation of this uptake. Between April and November 2001, 638 consecutive patients referred for PET/CT were imaged on an in-line PET/CT system (GEMS). This system combines an advanced GE PET scanner and a multirow-detector computer tomograph (Lightspeed, GEMS). The examination included PET with FDG and one CT acquisition with 80 mA. For CT, the following parameters were used: 140 kV, 80 mA, reconstructed slice thickness 5 mm, scan length 867 mm, AT 22.5 s. CT data were used for attenuation correction as well as image co-registration. Image analysis was performed on an Entegra work-station (ELGEMS). All patients with symmetrical uptake within the neck, thorax and shoulder regions were selected and the exact localisation of uptake determined (muscle, bone, fatty tissue or articulation). In 17 of the 638 patients (2.5%), increased, symmetrical FDG uptake in the shoulder region in a typical pattern was found. If extensive, this pattern included FDG activity comparable to brain activity in the lower cervical spine, the shoulder region and the upper thoracic spine in the costovertebral region. A less extensive pattern only involved intermediate FDG uptake in the lower cervical spine and shoulder region or in the shoulder region alone. In seven female patients (average 32.3 years), the extensive uptake pattern was seen. The average body mass index (BMI) was 19.0 (range 16.8-23.4). In the other ten patients (two male, eight female, average age 37.1 years), the average BMI was 22.7 (18.7-27.7). In all patients, the soft tissue uptake was clearly localised within the fatty tissue of the shoulders as demonstrated by PET/CT co-registration. The uptake in the region of the thoracic spine was localised in the region of the costovertebral joints. Symmetrical FDG uptake in the shoulder, neck and thoracic spine region is probably related to uptake in adipose tissue, especially in underweight patients. Hypothetically, this FDG uptake could represent activated brown adipose tissue during increased sympathetic nerve system (SNS) activity due to cold stress.

  10. Glycyrrhetinic Acid Liposomes Containing Mannose-Diester Lauric Diacid-Cholesterol Conjugate Synthesized by Lipase-Catalytic Acylation for Liver-Specific Delivery.

    PubMed

    Chen, Jing; Chen, Yuchao; Cheng, Yi; Gao, Youheng

    2017-09-24

    Mannose-diester lauric diacid-cholesterol (Man-DLD-Chol), as a liposomal target ligand, was synthesized by lipase catalyzed in a non-aqueous medium. Its chemical structure was confirmed by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Glycyrrhetinic acid (GA) liposomes containing Man-DLD-Chol (Man-DLD-Chol-GA-Lp) were prepared by the film-dispersion method. We evaluated the characterizations of liposomes, drug-release in vitro, the hemolytic test, cellular uptake, pharmacokinetics, and the tissue distributions. The cellular uptake in vitro suggested that the uptake of Man-DLD-Chol-modified liposomes was significantly higher than that of unmodified liposomes in HepG2 cells. Pharmacokinetic parameters indicated that Man-DLD-Chol-GA-Lp was eliminated more rapidly than GA-Lp. In tissue distributions, the targeting efficiency (Te) of Man-DLD-Chol-GA-Lp on liver was 54.67%, relative targeting efficiency (R Te ) was 3.39, relative uptake rate (Re) was 4.78, and peak concentration ratio (Ce) was 3.46. All these results supported the hypothesis that Man-DLD-Chol would be an efficient liposomal carrier, and demonstrated that Man-DLD-Chol-GA-Lp has potential as a drug delivery for liver-targeting therapy.

  11. A novel Tc-99m and fluorescence labeled peptide as a multimodal imaging agent for targeting angiogenesis in a murine hindlimb ischemia model.

    PubMed

    Hyoun Kim, Myoung; Kim, Seul-Gi; Guhn Kim, Chang; Kim, Dae-Weung

    2017-03-01

    The serine-aspartic acid-valine (SDV) peptide binds specifically to integrin αvβ3. We developed a Tc-99m and TAMRA labeled peptide, Tc-99m SDV-ECG-K-TAMRA for multimodal imaging of angiogenesis. Tc-99m SDV-ECG-K-TAMRA was prepared in high yield (>96%) and showed low cytotoxicity. Tc-99m tetrofosmin images 1 week after operation, revealed significantly decreased perfusion of the ischemic hindlimb, and the perfusion recovered gradually for 4 weeks. In contrast, Tc-99m SDV-ECG-K-TAMRA uptake was maximal 1 week after the operation (ischemic-to-non-ischemic uptake ratio =5.03±1.01) and decreased gradually. The ischemic-to-non-ischemic ratio of Tc-99m SDV-ECG-K-TAMRA and Tc-99m tetrofosmin was strongly negatively correlated (r =-0.94). A postmortem analysis revealed increased angiogenesis markers and uptake of Tc-99m SDV-ECG-K-TAMRA by ischemic tissue. Our in vivo and in vitro studies revealed substantial uptake of Tc-99m SDV-ECG-K-TAMRA by ischemic tissue. Tc-99m SDV-ECG-K-TAMRA could be a good candidate dual-modality imaging agent to assess angiogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Understanding the in vivo uptake kinetics of a phosphatidylethanolamine-binding agent (99m)Tc-Duramycin.

    PubMed

    Audi, Said; Li, Zhixin; Capacete, Joseph; Liu, Yu; Fang, Wei; Shu, Laura G; Zhao, Ming

    2012-08-01

    (99m)Tc-Duramycin is a peptide-based molecular probe that binds specifically to phosphatidylethanolamine (PE). The goal was to characterize the kinetics of molecular interactions between (99m)Tc-Duramycin and the target tissue. High level of accessible PE is induced in cardiac tissues by myocardial ischemia (30 min) and reperfusion (120 min) in Sprague-Dawley rats. Target binding and biodistribution of (99m)Tc-duramycin were captured using SPECT/CT. To quantify the binding kinetics, the presence of radioactivity in ischemic versus normal cardiac tissues was measured by gamma counting at 3, 10, 20, 60 and 180 min after injection. A partially inactivated form of (99m)Tc-Duramycin was analyzed in the same fashion. A compartment model was developed to quantify the uptake kinetics of (99m)Tc-Duramycin in normal and ischemic myocardial tissue. (99m)Tc-duramycin binds avidly to the damaged tissue with a high target-to-background radio. Compartment modeling shows that accessibility of binding sites in myocardial tissue to (99m)Tc-Duramycin is not a limiting factor and the rate constant of target binding in the target tissue is at 2.2 ml/nmol/min/g. The number of available binding sites for (99m)Tc-Duramycin in ischemic myocardium was estimated at 0.14 nmol/g. Covalent modification of D15 resulted in a 9-fold reduction in binding affinity. (99m)Tc-Duramycin accumulates avidly in target tissues in a PE-dependent fashion. Model results reflect an efficient uptake mechanism, consistent with the low molecular weight of the radiopharmaceutical and the relatively high density of available binding sites. These data help better define the imaging utilities of (99m)Tc-Duramycin as a novel PE-binding agent. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    PubMed

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  14. Calcium transport in the early conceptus and associated maternal tissues in the rabbit

    PubMed Central

    McIntosh, J. E. A.; Lutwak-Mann, C.

    1974-01-01

    1. The kinetics of calcium transport were studied in unmated (oestrous) and pregnant rabbits in the first half of gestation, with the aim of establishing evidence of hormonal (ovarian) influence on the pattern of transport. 2. The following tissues were examined at short- (45min and 2h) and long-duration (4, 16 and 48h) intervals after parenteral administration of 45Ca or 47Ca: maternal blood plasma, endometrium, uterine fluid, placental tissues, two developmentally disparate stages of rabbit conceptus, namely the unattached blastocyst and the early post-implantation foetus, and bone (femur). 3. Marked variability in calcium content characterized rabbit tissues and body fluids. 4. Compartmental analysis was applied to measurements of specific radioactivity. Oestrous endometrium had the largest rapidly exchanging calcium fraction (turnover time of 12min) and the highest value for calcium flux (500μg of Ca exchanged/h per g fresh wt. of tissue). A marked downward gradient in values of flux existed between the progestational endometrium, uterine fluid and blastocyst; there was a similar gradient between placental tissues and foetus. 5. An hormonal influence on calcium transport was evident in (i) the decrease in specific radioactivity of rabbit blood plasma with advancing pregnancy, (ii) the extraordinarily rapid calcium transport between blood plasma and endometrium, especially in the oestrous stage, and (iii) the effectiveness of ovarian hormone substitution in ovariectomized rabbits. 6. The very low specific radioactivity recorded for bone indicated that only a minute fraction of its calcium was exchanging with that of blood plasma under the experimental conditions examined. 7. The rate of uptake of 45Ca by rabbit blastocysts growing in vitro was one-tenth of that of 22Na, or that recorded for calcium in vivo. 8. Inhibition of carbonic anhydrase activity with acetazolamide in vivo, in maternal erythrocytes, endometrium and placental tissues, produced no appreciable changes in calcium uptake in these tissues or other systems examined as a routine on either day 6 or days 12–14 of gestation. PMID:4840840

  15. Determination of muscle-specific glucose flux using radioactive stereoisomers and microdialysis

    NASA Technical Reports Server (NTRS)

    MacLean, D. A.; Ettinger, S. M.; Sinoway, L. I.; Lanoue, K. F.

    2001-01-01

    The purpose of the present study was to evaluate a novel approach for determining skeletal muscle-specific glucose flux using radioactive stereoisomers and the microdialysis technique. Microdialysis probes were inserted into the vastus lateralis muscle of human subjects and perfused (4 microl/min) with a Ringer solution containing small amounts of radioactive D- and L-glucose as the internal reference markers for determining probe recovery as well as varying concentrations of insulin (0-10 microM). The rationale behind this approach was that both stereoisomers would be equally affected by the factors that determine probe recovery, with the exception of L-glucose, which is nonmetabolizable and would not be influenced by tissue uptake. Therefore, any differences in the probe recovery ratios between the D- and L-stereoisomers represent changes in skeletal muscle glucose uptake directly at the tissue level. There were no differences in probe recovery between the D- (42.3 +/- 3.5%) and L- (41.2 +/- 3.5) stereoisomers during the control period (no insulin), which resulted in a D/L ratio of 1.04 +/- 0.03. However, during insulin perfusion (1 microM), The D/L ratio increased to 1.62 +/- 0.08 and 1.58 +/- 0.07 (P < 0.05) during the two collection (0-15 and 15-30 min) periods, respectively. This was accomplished solely by an increase (P < 0.05) in D-glucose probe recovery, as L-glucose probe recovery remained unchanged. In a second set of experiments, the perfusion of 10 microM insulin did not increase the D/L ratio (1.40 +/- 0.11) above that observed during 1.0 microM (1.41 +/- 0.07) insulin perfusion. These data suggest that this method is sufficiently sensitive to detect differences in insulin-stimulated glucose uptake; thus the use of radioactive stereoisomers in conjunction with the microdialysis technique provides a novel and useful technique for determining tissue-specific glucose flux and insulin sensitivity.

  16. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity.

    PubMed

    Shi, Hao; Munk, Alexander; Nielsen, Thomas S; Daughtry, Morgan R; Larsson, Louise; Li, Shize; Høyer, Kasper F; Geisler, Hannah W; Sulek, Karolina; Kjøbsted, Rasmus; Fisher, Taylor; Andersen, Marianne M; Shen, Zhengxing; Hansen, Ulrik K; England, Eric M; Cheng, Zhiyong; Højlund, Kurt; Wojtaszewski, Jørgen F P; Yang, Xiaoyong; Hulver, Matthew W; Helm, Richard F; Treebak, Jonas T; Gerrard, David E

    2018-05-01

    Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. Positron emission mammography in the diagnosis of breast cancer. Is maximum PEM uptake value a valuable threshold for malignant breast cancer detection?

    PubMed

    Müller, F H H; Farahati, J; Müller, A G; Gillman, E; Hentschel, M

    2016-01-01

    To evaluate the diagnostic value (sensitivity, specificity) of positron emission mammography (PEM) in a single site non-interventional study using the maximum PEM uptake value (PUVmax). In a singlesite, non-interventional study, 108 patients (107 women, 1 man) with a total of 151 suspected lesions were scanned with a PEM Flex Solo II (Naviscan) at 90 min p.i. with 3.5 MBq 18F-FDG per kg of body weight. In this ROI(region of interest)-based analysis, maximum PEM uptake value (PUV) was determined in lesions, tumours (PUVmaxtumour), benign lesions (PUVmaxnormal breast) and also in healthy tissues on the contralateral side (PUVmaxcontralateral breast). These values were compared and contrasted. In addition, the ratios of PUVmaxtumour / PUVmaxcontralateral breast and PUVmaxnormal breast / PUVmaxcontralateral breast were compared. The image data were interpreted independently by two experienced nuclear medicine physicians and compared with histology in cases of suspected carcinoma. Based on a criteria of PUV>1.9, 31 out of 151 lesions in the patient cohort were found to be malignant (21%). A mean PUVmaxtumour of 3.78 ± 2.47 was identified in malignant tumours, while a mean PUVmaxnormal breast of 1.17 ± 0.37 was reported in the glandular tissue of the healthy breast, with the difference being statistically significant (p < 0.001). Similarly, the mean ratio between tumour and healthy glandular tissue in breast cancer patients (3.15 ± 1.58) was found to be significantly higher than the ratio for benign lesions (1.17 ± 0.41, p < 0.001). PEM is capable of differentiating breast tumours from benign lesions with 100% sensitivity along with a high specificity of 96%, when a threshold of PUVmax >1.9 is applied.

  18. A Radiofluorinated Divalent Cystine Knot Peptide for Tumor PET Imaging

    DOE PAGES

    Jiang, Lei; Kimura, Richard H.; Ma, Xiaowei; ...

    2014-04-09

    A divalent knottin containing two separate integrin binding epitopes (RGD) in the adjacent loops, 3-4A, was recently developed and reported in our previous publication. In the current study, 3-4A was radiofluorinated with a 4-nitrophenyl 2- 18F-fluoropropinate ( 18F-NFP) group and the resulting divalent positron emission tomography (PET) probe, 18F-FP–3-4A, was evaluated as a novel imaging probe to detect integrin αvβ3 positive tumors in living animals. Knottin 3-4A was synthesized by solid phase peptide synthesis, folded, and site-specifically conjugated with 18/19F-NFP to produce the fluorinated peptide 18/19F-fluoropropinate-3-4A ( 18/19F-FP–3-4A). The stability of 18F-FP–3-4A was tested in both phosphate buffered saline (PBS)more » buffer and mouse serum. Cell uptake assays of the radiolabeled peptides were performed using U87MG cells. In addition, small animal PET imaging and biodistribution studies of 18F-FP–3-4A were performed in U87MG tumor-bearing mice. The receptor targeting specificity of the radiolabeled peptide was also verified by coinjecting the probe with a blocking peptide cyclo(RGDyK). Our study showed that 18F-FP–3-4A exhibited excellent stability in PBS buffer (pH 7.4) and mouse serum. Small animal PET imaging and biodistribution data revealed that 18F-FP–3-4A exhibited rapid and good tumor uptake (3.76 ± 0.59% ID/g and 2.22 ± 0.62% ID/g at 0.5 and 1 h, respectively). 18F-FP–3-4A was rapidly cleared from the normal tissues, resulting in excellent tumor-to-normal tissue contrasts. For example, liver uptake was only 0.39 ± 0.07% ID/g and the tumor to liver ratio was 5.69 at 1 h p.i. Furthermore, coinjection of cyclo(RGDyK) with 18F-FP–3-4A significantly inhibited tumor uptake (0.41 ± 0.12 vs 1.02 ± 0.19% ID/g at 2.5 h) in U87MG xenograft models, demonstrating specific accumulation of the probe in the tumor. In summary, the divalent probe 18F-FP–3-4A is characterized by rapid and high tumor uptake and excellent tumor-to-normal tissue ratios. 18F-FP–3-4A is a highly promising knottin based PET probe for translating into clinical imaging of tumor angiogenesis.« less

  19. Identification and localization of the bilitranslocase homologue in white grape berries (Vitis vinifera L.) during ripening

    PubMed Central

    Bertolini, Alberto; Peresson, Carlo; Petrussa, Elisa; Braidot, Enrico; Passamonti, Sabina; Macrì, Francesco; Vianello, Angelo

    2009-01-01

    A homologue of the mammalian bilirubin transporter bilitranslocase (BTL) (TCDB 2.A.65.1.1), able to perform an apparent secondary active transport of flavonoids, has previously been found in carnation petals and red grape berries. In the present work, a BTL homologue was also shown in white berries from Vitis vinifera L. cv. Tocai/Friulano, using anti-sequence antibodies specific for rat liver BTL. This transporter, similarly to what found in red grape, was localized in the first layers of the epidermal tissue and in the vascular bundle cells of the mesocarp. In addition, a strong immunochemical reaction was detected in the placental tissue and particularly in peripheral integuments of the seed. The protein was expressed during the last maturation stages in both skin and pulp tissues and exhibited an apparent molecular mass of c. 31 kDa. Furthermore, the transport activity of such a carrier, measured as bromosulphophthalein (BSP) uptake, was detected in berry pulp microsomes, where it was inhibited by specific anti-BTL antibodies. The BTL homologue activity exhibited higher values, for both Km and Vmax, than those found in the red cultivar. Moreover, two non-pigmented flavonoids, such as quercetin (a flavonol) and eriodictyol (a flavanone), inhibited the uptake of BSP in an uncompetitive manner. Such results strengthen the hypothesis that this BTL homologue acts as a carrier involved also in the membrane transport of colourless flavonoids and demonstrate the presence of such a carrier in different organs and tissues. PMID:19596699

  20. Diagnostic value of 18F-FDG-PET/CT for the follow-up and restaging of soft tissue sarcomas in adults.

    PubMed

    Kassem, T W; Abdelaziz, O; Emad-Eldin, S

    2017-10-01

    The purpose of this study was to evaluate the clinical utility of 2-[ 18 F] fluoro-2-deoxy-D-glucose ( 18 FDG) positron emission tomography (PET)/computed tomography (CT) ( 18 F-FDG-PET/CT) in the follow-up of adult patients with soft tissue sarcomas. We prospectively evaluated 37 consecutive patients with known soft tissue sarcoma with 18 F-FDG-PET/CT examination for suspected recurrence of disease. They were 21 men and 16 women with a mean age of 49.6±10.6 (SD) years (range, 34-75years). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of 18 F-FDG-PET/CT examination were calculated on a per patient basis. 18 F-FDG-PET/CT showed an overall diagnostic accuracy of 91.8%, sensitivity of 90% and a specificity of 100%. The positive predictive value and negative predictive value were 100 and 70%, respectively. The 18 F-FDG-PET/CT interpretations were correct in 34/37 patients (91.8%). Incorrect interpretations occurred in three patients (8.1%). Reasons for false negative findings were low 18 F-FDG uptake of local recurrence in one patient and low 18 F-FDG uptake of subcentimetric inguinal lymph node metastases. 18 F-FDG-PET/CT has a high diagnostic value in the follow-up of patients with soft tissue sarcoma. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  1. Increased Dynamics of Tricarboxylic Acid Cycle and Glutamate Synthesis in Obese Adipose Tissue

    PubMed Central

    Nagao, Hirofumi; Nishizawa, Hitoshi; Bamba, Takeshi; Nakayama, Yasumune; Isozumi, Noriyoshi; Nagamori, Shushi; Kanai, Yoshikatsu; Tanaka, Yoshimitsu; Kita, Shunbun; Fukuda, Shiro; Funahashi, Tohru; Maeda, Norikazu; Fukusaki, Eiichiro; Shimomura, Iichiro

    2017-01-01

    Obesity is closely associated with various metabolic disorders. However, little is known about abnormalities in the metabolic change of obese adipose tissue. Here we use static metabolic analysis and in vivo metabolic turnover analysis to assess metabolic dynamics in obese mice. The static metabolic analyses showed that glutamate and constitutive metabolites of the TCA cycle were increased in the white adipose tissue (WAT) of ob/ob and diet-induced obesity mice but not in the liver or skeletal muscle of these obese mice. Moreover, in vivo metabolic turnover analyses demonstrated that these glucose-derived metabolites were dynamically and specifically produced in obese WAT compared with lean WAT. Glutamate rise in obese WAT was associated with down-regulation of glutamate aspartate transporter (GLAST), a major glutamate transporter for adipocytes, and low uptake of glutamate into adipose tissue. In adipocytes, glutamate treatment reduced adiponectin secretion and insulin-mediated glucose uptake and phosphorylation of Akt. These data suggest that a high intra-adipocyte glutamate level potentially relates to adipocyte dysfunction in obesity. This study provides novel insights into metabolic dysfunction in obesity through comprehensive application of in vivo metabolic turnover analysis in two obese animal models. PMID:28119455

  2. Androgen dynamics in vitro in the human prostate gland. Effect of cyproterone and cyproterone acetate

    PubMed Central

    Giorgi, Eleonora P.; Shirley, I. M.; Grant, J. K.; Stewart, Joan C.

    1973-01-01

    Hyperplastic and adenocarcinomatous human prostatic tissue was superfused in vitro with radioactively labelled androst-4-ene-3,17-dione, testosterone and 5α-dihydrotestosterone (17β-hydroxy-5α-androstan-3-one), with and without addition of the anti-androgens cyproterone and cyproterone acetate. Cyproterone competitively inhibited the entry of the androgens into the majority of the tissues, whereas cyproterone acetate increased this entry. These findings indicated that transport of androstenedione, testosterone and 5α-dihydrotestosterone into prostatic tissue is performed by a specific mechanism, possibly involving a carrier situated in the cell membrane. The extent of metabolism of the three androgens was also modified: formation of 5α-dihydrotestosterone from testosterone, and of the latter from androstenedione, was decreased by cyproterone and increased by the acetate. Acetate was more effective than cyproterone in decreasing the `uptake' of the perfused androgens by the tissue; at the same time, it increased the androgen clearance from the tissue. As cyproterone acetate is the more potent of the two anti-androgens, the possibility that these findings in vitro are related to the different anti-androgenic potency exhibited by the two compounds in vivo is discussed. `Uptake' of the two anti-androgens and the response to their action on androgen dynamics were similar in adenocarcinomatous and hyperplastic glands. PMID:4125095

  3. Muscle contraction increases carnitine uptake via translocation of OCTN2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuichi, Yasuro; Sugiura, Tomoko; Kato, Yukio

    Highlights: Black-Right-Pointing-Pointer Muscle contraction augmented carnitine uptake into rat hindlimb muscles. Black-Right-Pointing-Pointer An increase in carnitine uptake was due to an intrinsic clearance, not blood flow. Black-Right-Pointing-Pointer Histochemical analysis showed sarcolemmal OCTN2 was emphasized after contraction. Black-Right-Pointing-Pointer OCTN2 protein in sarcolemmal fraction was increased in contracting muscles. -- Abstract: Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity.more » The tissue uptake clearance (CL{sub uptake}) of L-[{sup 3}H]carnitine during muscle contraction was examined in vivo using integration plot analysis. The CL{sub uptake} of [{sup 14}C]iodoantipyrine (IAP) was also determined as an index of tissue blood flow. To test the hypothesis that increased carnitine uptake involves the translocation of OCTN2, contraction-induced alteration in the subcellular localization of OCTN2 was examined. The CL{sub uptake} of L-[{sup 3}H]carnitine in the contracting muscles increased 1.4-1.7-fold as compared to that in the contralateral resting muscles (p < 0.05). The CL{sub uptake} of [{sup 14}C]IAP was much higher than that of L-[{sup 3}H]carnitine, but no association between the increase in carnitine uptake and blood flow was obtained. Co-immunostaining of OCTN2 and dystrophin (a muscle plasma membrane marker) showed an increase in OCTN2 signal in the plasma membrane after muscle contraction. Western blotting showed that the level of sarcolemmal OCTN2 was greater in contracting muscles than in resting muscles (p < 0.05). The present study showed that muscle contraction facilitated carnitine uptake in skeletal muscles, possibly via the contraction-induced translocation of its specific transporter OCTN2 to the plasma membrane.« less

  4. Effect of elicitation on growth, respiration, and nutrient uptake of root and cell suspension cultures of Hyoscyamus muticus.

    PubMed

    Carvalho, Edgard B; Curtis, Wayne R

    2002-01-01

    The elicitation of Hyoscyamus muticus root and cell suspension cultures by fungal elicitor from Rhizoctonia solani causes dramatic changes in respiration, nutrient yields, and growth. Cells and mature root tissues have similar specific oxygen uptake rates (SOUR) before and after the onset of the elicitation process. Cell suspension SOUR were 11 and 18 micromol O2/g FW x h for non-elicited control and elicited cultures, respectively. Mature root SOUR were 11 and 24 micromol O2/g FW x h for control and elicited tissue, respectively. Tissue growth is significantly reduced upon the addition of elicitor to these cultures. Inorganic yield remains fairly constant, whereas yield on sugar is reduced from 0.532 to 0.352 g dry biomass per g sugar for roots and 0.614 to 0.440 g dry biomass per g sugar for cells. This reduction in yield results from increased energy requirements for the defense response. Growth reduction is reflected in a reduction in root meristem (tip) SOUR, which decreased from 189 to 70 micromol O2/g FW x h upon elicitation. Therefore, despite the increase in total respiration, the maximum local oxygen fluxes are reduced as a result of the reduction in metabolic activity at the meristem. This distribution of oxygen uptake throughout the mature tissue could reduce mass transfer requirements during elicited production. However, this was not found to be the case for sesquiterpene elicitation, where production of lubimin and solavetivone were found to increase linearly up to oxygen partial pressures of 40% O2 in air. SOUR is shown to similarly increase in both bubble column and tubular reactors despite severe mass transfer limitations, suggesting the possibility of metabolically induced increases in tissue convective transport during elicitation.

  5. Zinc transport in rabbit tissues. Some hormonal aspects of the turnover of zinc in female reproductive organs, liver and body fluids

    PubMed Central

    McIntosh, J. E. A.; Lutwak-Mann, C.

    1972-01-01

    1. To investigate the influence of hormonal conditions upon the kinetics of zinc transport, specific radioactivity of 65Zn was determined in certain tissues and fluids from unmated or pregnant rabbits during the first half of gestation. 2. Compartmental analysis was used to find the simplest mathematical model that simulated satisfactorily tracer behaviour. Models were fitted to experimental results by a numerical procedure using a computer. 3. The kinetics of zinc exchange in most tissues investigated could adequately be described by a three-compartment model, in which total tissue zinc content was divided into a rapidly exchanging pool, with a turnover time of about 1h, and a slowly exchanging pool, the turnover time of which was in liver 15h, in peak-stage corpus luteum 8h, and in the other tissues 30–70h. 4. In rabbit endometrium zinc transport varied with hormonal conditions, the turnover rate being higher in non-pregnant than pregnant endometrium. 5. Uptake of 65Zn by uterine fluid was slow, and in the free-lying embryos (blastocysts) slower still, in keeping with uterine fluid acting as carrier of zinc into the unimplanted embryos. 6. In placental tissue zinc transport varied with gestational stage. Foetal placenta exchanged zinc with blood plasma four times faster than maternal placenta. In foetuses zinc turnover time and flux equalled that of the slow zinc compartment in foetal placenta. 7. Corpus luteum on days 5–6 of gestation showed peak specific radioactivity and zinc flux values, which exceeded those of all other tissues. 8. In liver the slow zinc compartment had a higher rate of turnover than corresponding compartments in tissues other than peak-stage corpus luteum, but no hormone-dependent changes were observed. 9. Zinc uptake by erythrocytes was the slowest of all examined. PMID:5073239

  6. ¹¹¹In-anti-F4/80-A3-1 antibody: a novel tracer to image macrophages.

    PubMed

    Terry, Samantha Y A; Boerman, Otto C; Gerrits, Danny; Franssen, Gerben M; Metselaar, Josbert M; Lehmann, Steffi; Oyen, Wim J G; Gerdes, Christian A; Abiraj, Keelara

    2015-08-01

    Here, the expression of F4/80 on the cell surface of murine macrophages was exploited to develop a novel imaging tracer that could visualize macrophages in vivo. The immunoreactive fraction and IC50 of anti-F4/80-A3-1, conjugated with diethylenetriaminepentaacetic acid (DTPA) and radiolabelled with (111)In, were determined in vitro using murine bone marrow-derived macrophages. In vivo biodistribution studies were performed with (111)In-anti-F4/80-A3-1 and isotype-matched control antibody (111)In-rat IgG2b at 24 and 72 h post-injection (p.i.) in SCID/Beige mice bearing orthotopic MDA-MB-231 xenografts. In some studies mice were also treated with liposomal clodronate. Macrophage content in tissues was determined immunohistochemically. Micro-single photon emission computed tomography (SPECT)/CT images were also acquired. In vitro binding assays showed that (111)In-anti-F4/80-A3-1 specifically binds F4/80 receptor-positive macrophages. The immunoreactivity of anti-F4/80-A3-1 was 75 % and IC50 was 0.58 nM. In vivo, injection of 10 or 100 μg (111)In-anti-F4/80-A3-1 resulted in splenic uptake of 78 %ID/g and 31 %ID/g, respectively, and tumour uptake of 1.38 %ID/g and 4.08 %ID/g, respectively (72 h p.i.). Liposomal clodronate treatment reduced splenic uptake of 10 μg (111)In-anti-F4/80-A3-1 from 248 %ID/g to 114 %ID/g and reduced (111)In-anti-F4/80-A3-1 uptake in the liver and femur (24 h p.i.). Tracer retention in the blood and tumour uptake increased (24 h p.i.). Tumour uptake of (111)In-anti-F4/80-A3-1 was visualized by microSPECT/CT. Macrophage density in the spleen and liver decreased in mice treated with liposomal clodronate. Uptake of (111)In-rat IgG2b was lower in the spleen, liver and femur when compared to (111)In-anti-F4/80-A3-1. Radiolabelled anti-F4/80-A3-1 antibodies specifically localize in tissues infiltrated by macrophages in mice and can be used to visualize tumours. The liver and spleen act as antigen sink organs for macrophage-specific tracers.

  7. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro--a quantitative study.

    PubMed

    Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje

    2010-01-25

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Utilization of a Model for Uptake of Cadmium by Plants as a Phytoremediation Assessment Tool

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Furbish, D. J.; Clarke, J.

    2008-12-01

    Some traditional methods of environmental remediation, such as removal and disposal of contaminated soil, are loosing economic favor and public acceptance, while others, such as in situ phytoremediation, are being carefully examined because of their attractiveness as environmentally friendly, low-cost solutions to site clean-up. The success of phytoremediation strategies, however, hinges on the ability of selected plants, or plant communities, to effectively uptake, accumulate and tolerate targeted contaminants. Heavy metals, specifically cadmium (Cd), are not essential nutrients to plants. However, chemically similar zinc (Zn) is a micronutrient and is actively taken up by hyperaccumulators. For this reason, the mechanisms involved in uptake of Cd parallel those of Zn. Ideally, Cd would be allocated to the stem, leaf, and/or flower, where it becomes harvestable. Our modeling work simulates the uptake and the storage of Cd in a growing hyperaccumulator. After uptake, Cd is partitioned between adsorption to plant tissue and upward movement to leaves driven by transpiration. Uptake, adsorption and transport are also regulated by phytotoxicity. Simulations suggest that a young plant with small biomass can quickly reach phytotoxicity, which shuts down the normal operation of the plant. Conversely, mature plants on a mildly contaminated site, if harvested before the plants die due to phytotoxicity or natural cause, not only survive but may occasionally thrive. The immediate aim is to estimate the effectiveness and limitations of Cd uptake by hyperaccumulators. The eventual goal of this study is to expand the model in spatial and temporal scales, from individual plants to the community scale, and from one harvest interval to several generations. Understanding the interface between physical and biological processes, specifically the uptake and release of contaminants, provides scientists and engineers tools to assess whether phytoremediation is a reasonable strategy for a given environment.

  9. Meta-[{sup 211}At]astatobenzylguanidine (MABG): In vivo evaluation in an athymic mouse human neuroblastoma xenograft model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaidyanathan, G.; Friedman, H.S.; Keir, S.T.

    1996-05-01

    Because of the short range and high linear energy transfer of {sup 211}At {alpha}-particles, the MIBG analogue MABG might be useful for the therapy of micrometastatic neuroblastoma and previous in vitro studies have demonstrated that under single-cell conditions, the cytotoxicity of MABG is > 1000 times higher than [{sup 131}I]MIBG. A paired label protocol was used to compare the tissue distribution of MABG and [{sup 131}I]MIBG in athymic mice bearing subcutaneous SK-N-SH human neuroblastoma xenografts from 1-24 hr after injection. In tumor, significantly higher (p < 0.05) uptake was observed for MABG (3.8 {plus_minus} 0.8%ID/g vs 3.1 {plus_minus} 0.7%ID/g atmore » 8 hr). Pretreatment with desipramine reduced tumor uptake of MABG by 43%, suggesting that accumulation was related to the uptake-1 mechanism. Significantly higher uptake of MABG also was observed in normal tissue targets. For example, at 8 hr, heart uptake of MABG was 6.0 {plus_minus} 0.9 % ID/g compared with 4.5 {plus_minus} 0.8%ID/g for [{sup 131}I]MIBG. Two strategies were investigated to increase the tumor-to-hear uptake ratio. Pretreatment of mice with unlabeled MIBG (4 mg/kg) increased MABG tumor uptake by 1.5-fold while reducing uptake in several normal tissues including heart. The vesicular uptake blocker tetrabenazine (TBZ; 20 mg/kg), reduced MABG hear uptake by 30% of control values with not significant decrease in tumor levels. We conclude that MABG deserves further evaluation as a potential agent for the treatment of neuroblastoma, particularly in combination with strategies to minimize radiation dose to normal target tissues.« less

  10. Uptake of ingested bovine lactoferrin and its accumulation in adult mouse tissues.

    PubMed

    Fischer, Romy; Debbabi, Hajer; Blais, Anne; Dubarry, Michel; Rautureau, Michèle; Boyaka, Prosper N; Tome, Daniel

    2007-10-01

    Lactoferrin is a glycoprotein with antimicrobial and immunoregulatory properties, which is found in milk, other external secretions, and in the secondary granules of neutrophils. The present study examined the time course of uptake and the pattern of tissue accumulation of bovine lactoferrin (bLf) following intragastric intubation of a single dose to adult naïve mice or to mice daily fed bLf for 4 weeks. Following ingestion, bLf was transferred from the intestine into peripheral blood in a form with intact molecular weight (80 kDa) and localized within 10 to 20 min after oral administration in the liver, kidneys, gall bladder, spleen, and brain of both groups of mice. Immunoreactive bLf could also be detected in the luminal contents of the stomach, small intestine and colon 1 h after intragastric intubation. Interestingly, serum and tissue accumulation of bLf was approximately 50% lower in mice chronically fed this protein than in those given only the single oral dose. Furthermore, significant levels of bLf-specific IgA and IgG antibodies as well as bLf-containing IgA- and IgG immune complexes were detected in mice chronically fed bLf but not in those fed only once. Taken together, these results indicate that bLf resists major proteolytic degradation in the intestinal lumen and is readily absorbed in an antigenic form in blood and various mouse tissues. Chronic ingestion of lactoferrin reduces its uptake, probably through mechanisms such as immune exclusion, which minimize potential harmful reactions to food products.

  11. Histologic analysis of rabbit liver cancer treated by bulk ultrasound ablation

    NASA Astrophysics Data System (ADS)

    Karunakaran, Chandra Priya; Rudich, Steven M.; Alqadah, Amel; Burgess, Mark T.; Narmoneva, Daria A.; Mast, T. Douglas

    2012-10-01

    VX2 rabbit liver cancer, treated in vivo using bulk ultrasound ablation by miniaturized image-ablate arrays, was histologically analyzed using TTC vital stain and DAPI nucleic acid stain. VX2 cells were implanted into rabbit liver lobes and allowed to grow for 11-21 days. Liver lobes containing solid VX2 tumors were then treated with 4.8 MHz, 22.5-38.5 W/cm2 in situ intensity, unfocused ultrasound for exposure times of 20-120 s. After animal sacrifice, thermal lesions were bisected along the imaging/treatment plane, one face stained with TTC, and the other with DAPI. Levels of TTC uptake (no uptake, partial uptake, and complete uptake) in liver parenchyma corresponded to three discrete regions of tan, pink and red color. By processing images of DAPI-stained parenchymal tissue from these three regions, cellular damage was quantified. A viability index parameter incorporating the size and shape of DAPI-stained nuclei correlated significantly with levels of TTC uptake, and thus with local tissue viability. For ablation of normal liver, viability indices for parenchymal regions of no TTC uptake and partial TTC uptake were significantly different from those for viable tissue. For ablation of VX2 tumor, differences in viability index between regions of no TTC uptake and complete TTC uptake were smaller, but significant overall.

  12. Kinetic Modelling of Infection Tracers [18F]FDG, [68Ga]Ga-Citrate, [11C]Methionine, and [11C]Donepezil in a Porcine Osteomyelitis Model.

    PubMed

    Jødal, Lars; Jensen, Svend B; Nielsen, Ole L; Afzelius, Pia; Borghammer, Per; Alstrup, Aage K O; Hansen, Søren B

    2017-01-01

    Positron emission tomography (PET) is increasingly applied for infection imaging using [ 18 F]FDG as tracer, but uptake is unspecific. The present study compares the kinetics of [ 18 F]FDG and three other PET tracers with relevance for infection imaging. A juvenile porcine osteomyelitis model was used. Eleven pigs underwent PET/CT with 60-minute dynamic PET imaging of [ 18 F]FDG, [ 68 Ga]Ga-citrate, [ 11 C]methionine, and/or [ 11 C]donepezil, along with blood sampling. For infectious lesions, kinetic modelling with one- and two-tissue-compartment models was conducted for each tracer. Irreversible uptake was found for [ 18 F]FDG and [ 68 Ga]Ga-citrate; reversible uptake was found for [ 11 C]methionine (two-tissue model) and [ 11 C]donepezil (one-tissue model). The uptake rate for [ 68 Ga]Ga-citrate was slow and diffusion-limited. For the other tracers, the uptake rate was primarily determined by perfusion (flow-limited uptake). Net uptake rate for [ 18 F]FDG and distribution volume for [ 11 C]methionine were significantly higher for infectious lesions than for correspondingly noninfected tissue. For [ 11 C]donepezil in pigs, labelled metabolite products appeared to be important for the analysis. The kinetics of the four studied tracers in infection was characterized. For clinical applications, [ 18 F]FDG remains the first-choice PET tracer. [ 11 C]methionine may have a potential for detecting soft tissue infections. [ 68 Ga]Ga-citrate and [ 11 C]donepezil were not found useful for imaging of osteomyelitis.

  13. [18F]tetrafluoroborate-PET/CT enables sensitive tumor and metastasis in vivo imaging in a sodium iodide symporter-expressing tumor model.

    PubMed

    Diocou, S; Volpe, A; Jauregui-Osoro, M; Boudjemeline, M; Chuamsaamarkkee, K; Man, F; Blower, P J; Ng, T; Mullen, G E D; Fruhwirth, G O

    2017-04-19

    Cancer cell metastasis is responsible for most cancer deaths. Non-invasive in vivo cancer cell tracking in spontaneously metastasizing tumor models still poses a challenge requiring highest sensitivity and excellent contrast. The goal of this study was to evaluate if the recently introduced PET radiotracer [ 18 F]tetrafluoroborate ([ 18 F]BF 4 - ) is useful for sensitive and specific metastasis detection in an orthotopic xenograft breast cancer model expressing the human sodium iodide symporter (NIS) as a reporter. In vivo imaging was complemented by ex vivo fluorescence microscopy and γ-counting of harvested tissues. Radionuclide imaging with [ 18 F]BF 4 - (PET/CT) was compared to the conventional tracer [ 123 I]iodide (sequential SPECT/CT). We found that [ 18 F]BF 4 - was superior due to better pharmacokinetics, i.e. faster tumor uptake and faster and more complete clearance from circulation. [ 18 F]BF 4 - -PET was also highly specific as in all detected tissues cancer cell presence was confirmed microscopically. Undetected comparable tissues were similarly found to be free of metastasis. Metastasis detection by routine metabolic imaging with [ 18 F]FDG-PET failed due to low standard uptake values and low contrast caused by adjacent metabolically active organs in this model. [ 18 F]BF 4 - -PET combined with NIS expressing disease models is particularly useful whenever preclinical in vivo cell tracking is of interest.

  14. Estimating the contribution of bryophytes to the atmospheric COS budget

    NASA Astrophysics Data System (ADS)

    Gimeno, Teresa; Ogee, Jerome; Wingate, Lisa

    2017-04-01

    In the past decade, global biogeochemical modellers have embraced enthusiastically the potential of carbonyl sulphide (COS) as a tracer for gross primary productivity (GPP). COS is the most abundant sulphur-containing gas in the atmosphere, it is produced mainly in the ocean and it is consumed by the biosphere, with terrestrial vegetation being the most important contributor. Plant COS uptake is proportional to photosynthetic CO2 withdraw and that is why measurements of the biosphere-atmosphere COS flux can serve a proxy for GPP. Plant COS uptake is mediated by the light-independent enzyme carbonic anhydrase that irreversibly hydrolyses COS into H2S, which is quickly utilised as a sulphur source. Currently, there are no described plant-processes with COS as a by-product and hence the atmospheric-plant COS flux is assumed unidirectional. So far, we had focused on characterizing plant COS uptake dynamics on vascular plants and previous studies are consistent with the unidirectional flux assumption. However, although early works on sulphur metabolism suggested non-vascular plants might not abide to this assumption, we lack estimates of COS uptake dynamics for non-vascular communities. Bryophytes are key constituents of biocrusts and non-vascular photoautrophic communities and in temperate and cold latitudes contribute significantly to ecosystem carbon and nutrient cycling. We expect that in these ecosystems the coupling between COS and CO2 uptake will be influenced by specific environmental cues that control gas-exchange in bryophytes. We expect tissue hydration to be the most influential driver on COS uptake. In contrast, light would constrain CO2 but not COS uptake and therefore we expect greater uncoupling of COS and CO2 in the dark than in vascular plants. We characterized COS and CO2 uptake dynamics in two broadly distributed bryophytes, with contrasting life forms and evolutionary origins: the liverwort Marchantia polymorpha and the feather moss Scleropodium purum. We measured CO2 and COS uptake with varying hydration status, light and temperatures. Our results showed that COS uptake is limited by either excess or low tissue water content, similar to photosynthetic CO2 uptake. We found that COS uptake continued in the dark, despite impaired photosynthesis. We demonstrate that the COS flux in bryophytes is not unidirectional and that COS emissions are temperature and not light driven. Our results also suggest that both the uptake and the emission components are subject to seasonal regulation, with both uptakes limited in winter by low temperatures. Our results serve as a first approximation to model seasonal COS fluxes from air temperature and humidity in bryophyte-dominated ecosystems in high latitudes. We suggest that bryophytes might have an unexpected contribution to the ecosystem COS budget: during the day, when photosynthesis dominates the CO2 flux, COS emission are enhanced by warmer temperatures, while COS uptake is limited by tissue hydration and bryophytes act a net COS source; at night when the temperatures are cool and humidity is high, COS uptake dominates and bryophytes would act a net COS sink, while continuing to emit CO2 from respiration.

  15. Molecular Imaging and Pharmacokinetic Analysis of Carbon-11 Labeled Antisense Oligonucleotide LY2181308 in Cancer Patients

    PubMed Central

    Saleem, Azeem; Matthews, Julian C.; Ranson, Malcolm; Callies, Sophie; André, Valérie; Lahn, Michael; Dickinson, Claire; Prenant, Christian; Brown, Gavin; McMahon, Adam; Talbot, Denis C.; Jones, Terry; Price, Patricia M.

    2011-01-01

    Antisense oligonucleotides (ASOs) have potential as anti-cancer agents by specifically modulating genes involved in tumorigenesis. However, little is known about ASO biodistribution and tissue pharmacokinetics (PKs) in humans, including whether sufficient delivery to target tumor tissue may be achieved. In this preliminary study in human subjects, we used combined positron emission and computed tomography (PET-CT) imaging and subsequent modeling analysis of acquired dynamic data, to examine the in vivo biodistribution and PK properties of LY2181308 - a second generation ASO which targets the apoptosis inhibitor protein survivin. Following radiolabeling of LY2181308 with methylated carbon-11 ([11C]methylated-LY2181308), micro-doses (<1mg) were administered to three patients with solid tumors enrolled in a phase I trial. Moderate uptake of [11C]methylated-LY2181308 was observed in tumors (mean=32.5ng*h /mL, per mg administered intravenously). Highest uptake was seen in kidney and liver and lowest uptake was seen in lung and muscle. One patient underwent repeat analysis on day 15 of multiple dose therapy, during administration of LY2181308 (750mg), when altered tissue PKs and a favorable change in biodistribution was seen. [11C]methylated-LY2181308 exposure increased in tumor, lung and muscle, whereas renal and hepatic exposure decreased. This suggests that biological barriers to ASO tumor uptake seen at micro-doses were overcome by therapeutic dosing. In addition, 18F-labeled fluorodeoxyglucose (FDG) scans carried out in the same patient before and after treatment showed up to 40% decreased tumor metabolism. For the development of anti-cancer ASOs, the results provide evidence of LY2181308 tumor tissue delivery and add valuable in vivo pharmacological information. For the development of novel therapeutic agents in general, the study exemplifies the merits of applying PET imaging methodology early in clinical investigations. PMID:21772926

  16. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism

    PubMed Central

    Pan, Youdong; Tian, Tian; Park, Chang Ook; Lofftus, Serena Y.; Mei, Shenglin; Liu, Xing; Luo, Chi; O’Malley, John T.; Gehad, Ahmed; Teague, Jessica E.; Divito, Sherrie J.; Fuhlbrigge, Robert; Puigserver, Pere; Krueger, James G.; Hotamisligil, Gökhan S.; Clark, Rachael A.; Kupper, Thomas S.

    2017-01-01

    Tissue-resident memory T (TRM) cells persist indefinitely in epithelial barrier tissues and protect the host against pathogens1–4. However, the biological pathways that enable the long-term survival of TRM cells are obscure4,5. Here we show that mouse CD8+ TRM cells generated by viral infection of the skin differentially express high levels of several molecules that mediate lipid uptake and intracellular transport, including fatty-acid-binding proteins 4 and 5 (FABP4 and FABP5). We further show that T-cell-specific deficiency of Fabp4 and Fabp5 (Fabp4/Fabp5) impairs exogenous free fatty acid (FFA) uptake by CD8+ TRM cells and greatly reduces their long-term survival in vivo, while having no effect on the survival of central memory T (TCM) cells in lymph nodes. In vitro, CD8+ TRM cells, but not CD8+ TCM, demonstrated increased mitochondrial oxidative metabolism in the presence of exogenous FFAs; this increase was not seen in Fabp4/Fabp5 double-knockout CD8+ TRM cells. The persistence of CD8+ TRM cells in the skin was strongly diminished by inhibition of mitochondrial FFA β-oxidation in vivo. Moreover, skin CD8+ TRM cells that lacked Fabp4/Fabp5 were less effective at protecting mice from cutaneous viral infection, and lung Fabp4/Fabp5 double-knockout CD8+ TRM cells generated by skin vaccinia virus (VACV) infection were less effective at protecting mice from a lethal pulmonary challenge with VACV. Consistent with the mouse data, increased FABP4 and FABP5 expression and enhanced extracellular FFA uptake were also demonstrated in human CD8+ TRM cells in normal and psoriatic skin. These results suggest that FABP4 and FABP5 have a critical role in the maintenance, longevity and function of CD8+ TRM cells, and suggest that CD8+ TRM cells use exogenous FFAs and their oxidative metabolism to persist in tissue and to mediate protective immunity. PMID:28219080

  17. The Search for a Subtype-Selective PET Imaging Agent for the GABAA Receptor Complex: Evaluation of the Radiotracer [11C]ADO in Nonhuman Primates.

    PubMed

    Lin, Shu-Fei; Bois, Frederic; Holden, Daniel; Nabulsi, Nabeel; Pracitto, Richard; Gao, Hong; Kapinos, Michael; Teng, Jo-Ku; Shirali, Anupama; Ropchan, Jim; Carson, Richard E; Elmore, Charles S; Vasdev, Neil; Huang, Yiyun

    2017-01-01

    The myriad physiological functions of γ-amino butyric acid (GABA) are mediated by the GABA-benzodiazepine receptor complex comprising of the GABA A , GABA B , and GABA C groups. The various GABA A subunits with region-specific distributions in the brain subserve different functional and physiological roles. For example, the sedative and anticonvulsive effects of classical benzodiazepines are attributed to the α 1 subunit, and the α 2 and α 3 subunits mediate the anxiolytic effect. To optimize pharmacotherapies with improved efficacy and devoid of undesirable side effects for the treatment of anxiety disorders, subtype-selective imaging radiotracers are required to assess target engagement at GABA sites and determine the dose-receptor occupancy relationships. The goal of this work was to characterize, in nonhuman primates, the in vivo binding profile of a novel positron emission tomography (PET) radiotracer, [ 11 C]ADO, which has been indicated to have functional selectivity for the GABA A α 2 /α 3 subunits. High specific activity [ 11 C]ADO was administrated to 3 rhesus monkeys, and PET scans of 120-minute duration were performed on the Focus-220 scanner. In the blood, [ 11 C]ADO metabolized at a fairly rapid rate, with ∼36% of the parent tracer remaining at 30 minutes postinjection. Uptake levels of [ 11 C]ADO in the brain were high (peak standardized uptake value of ∼3.0) and consistent with GABA A distribution, with highest activity levels in cortical areas, intermediate levels in cerebellum and thalamus, and lowest uptake in striatal regions and amygdala. Tissue kinetics was fast, with peak uptake in all brain regions within 20 minutes of tracer injection. The one-tissue compartment model provided good fits to regional time-activity curves and reliable measurement of kinetic parameters. The absolute test-retest variability of regional distribution volumes ( V T ) was low, ranging from 4.5% to 8.7%. Pretreatment with flumazenil (a subtype nonselective ligand, 0.2 mg/kg, intravenous [IV], n = 1), Ro15-4513 (an α 5 -selective ligand, 0.03 mg/kg, IV, n = 2), and zolpidem (an α 1 -selective ligand, 1.7 mg/kg, IV, n = 1) led to blockade of [ 11 C]ADO binding by 96.5%, 52.5%, and 76.5%, respectively, indicating the in vivo binding specificity of the radiotracer. Using the nondisplaceable volume of distribution ( V ND ) determined from the blocking studies, specific binding signals, as measured by values of regional binding potential ( BP ND ), ranged from 0.6 to 4.4, which are comparable to those of [ 11 C]flumazenil. In conclusion, [ 11 C]ADO was demonstrated to be a specific radiotracer for the GABA A receptors with several favorable properties: high brain uptake, fast tissue kinetics, and high levels of specific binding in nonhuman primates. However, subtype selectivity in vivo is not obvious for the radiotracer, and thus, the search for subtype-selective GABA A radiotracers continues.

  18. Enhanced skeletal muscle insulin sensitivity in year-old rats adapted to hypergravity

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Dolkas, C. B.; Oyama, J.

    1981-01-01

    Rats induced into a hypermetabolic state by exposure to chronic (7 mo) centrifugation at 4.15 g exhibited increased glucose uptake at lower plasma insulin levels than weight-matched control animals following oral glucose administration. In order to determine the insulin sensitivity of specific tissues, the effect of exogenous insulin on glucose uptake by isolated perfused livers and hindlim skeletal muscle from rats adapted to chronic centrifugation for one year was compared with perfused tissue from 2.5 mo-old noncentrifuged control animals of equal body weight. Metabolic glucose clearance by skeletal muscle from hypergravic rats did not prove significantly greater than control muscle when perfused in the absence of insulin (10.6 vs 8.1 microliters/min-g-muscle), but was twice as fast (23.0 vs 9.5) at perfusate insulin levels of 35 micro-U/ml. Conversely, glucose uptake by hypergravic livers was significantly decreased (P is less than 0.001) compared with control livers (10.3 vs 27.8) at perfusate insulin levels of 40 micro-U/ml. Results suggest that skeletal muscle rather than liver is primarily responsible for the enhanced sensitivity to insulin and the increased energy expenditure observed in rats subjected to hypergravity.

  19. Expression and clinical significance of glucose transporter-1 in pancreatic cancer

    PubMed Central

    LU, KAI; YANG, JIAN; LI, DE-CHUN; HE, SONG-BING; ZHU, DONG-MING; ZHANG, LI-FENG; ZHANG, XU; CHEN, XIAO-CHEN; ZHANG, BING; ZHOU, JIAN

    2016-01-01

    Increasing evidence has demonstrated that malignant cells exhibit increased glucose uptake, which facilitates survival and growth in a hypoxic environment. The glucose transporter-1 (GLUT-1) is overexpressed in a variety of malignant tumors. However, the association between GLUT-1 expression and clinicopathological factors, 18F-fluorodeoxyglucose uptake and tumor proliferation in pancreatic cancer has not been investigated to date. In the present study, the expression of GLUT-1 in 53 pancreatic cancer tissues was analyzed, which revealed that GLUT-1 was overexpressed in pancreatic tissue and correlated with poor prognosis and clinicopathological characteristics, including increased tumor size, clinical stage and lymph node metastasis, maximum standardized uptake value (SUVmax) and Ki-67 expression. The receiver operating characteristic curve analysis indicated that a cut-off SUVmax value of 4.830 was associated with optimal sensitivity (88%) and specificity (71.4%) for the detection of strong positive GLUT-1 expression. In addition, as the expression of GLUT-1 was found to correlate with Ki-67 expression, GLUT-1 may exhibit a significant effect on cell proliferation in pancreatic cancer. Overall, these findings indicate that GLUT-1 may represent a prognostic indicator, and a potential therapeutic target for pancreatic cancer. PMID:27347132

  20. Uptake and Accumulation of the Herbicides Chlorsulfuron and Clopyralid in Excised Pea Root Tissue 1

    PubMed Central

    Devine, Malcolm D.; Bestman, Hank D.; Vanden Born, William H.

    1987-01-01

    The herbicides chlorsulfuron and clopyralid were taken up rapidly by excised pea root tissue and accumulated in the tissue to concentrations ten and four times those in the external medium, respectively. Uptake was related linearly to external herbicide concentration over a wide concentration range, implying that transport across the membrane is by nonfacilitated diffusion. Uptake of both compounds was influenced by pH, with greatest uptake at low pH. The pH dependence of uptake suggests that the herbicides (both of which are weak acids) are transported across the plasma membrane in the undissociated form, and accumulate in the cytoplasm by an ion trap mechanism. Most of the absorbed herbicide effluxed from the tissue when it was transferred to herbicide-free buffer, indicating that the accumulation was not due to irreversible binding. Consequently, both herbicides remain available for transfer to the phloem. These results can explain the high reported phloem mobility of clopyralid in intact plants. The low phloem mobility of chlorsulfuron must be accounted for by factors that override its ability to accumulate in the symplast. PMID:16665689

  1. Uptake, elimination, and relative distribution of perchlorate in various tissues of channel catfish

    USGS Publications Warehouse

    Park, J.-W.; Bradford, C.M.; Rinchard, J.; Liu, F.; Wages, M.; Waters, A.; Kendall, R.J.; Anderson, T.A.; Theodorakis, C.W.

    2007-01-01

    This study was undertaken to determine the kinetics of uptake and elimination of perchlorate in channel catfish, Ictalurus punctatus. Perchlorate - an oxidizer used in solid fuel rockets, fireworks, and illuminating munitions - has been shown to effect thyroid function, causing hormone disruption and potential perturbations of metabolic activities. For the uptake study, catfish were exposed to 100 mg/L sodium perchlorate for 12 h to 5 d in the laboratory. Perchlorate in tissues was analyzed using ion chromatography. The highest perchlorate concentrations were found in the head and fillet, indicating that these tissues are the most important tissues to analyze when determining perchlorate uptake into large fish. To calculate uptake and elimination rate constants for fillet, gills, G-I tract, liver, and head, fish were exposed to 100 ppm sodium perchlorate for 5 days, and allowed to depurate in clean water for up to 20 days. The animals rapidly eliminated the perchlorate accumulated showing the highest elimination in fillet (Ke = 1.67 day -1) and lowest elimination in liver (Ke = 0.79 day -1). ?? 2007 American Chemical Society.

  2. Different tissue distribution, elimination, and kinetics of thyroxine and its conformational analog, the synthetic flavonoid EMD 49209 in the rat.

    PubMed

    Schröder-van der Elst, J P; van der Heide, D; Rokos, H; Köhrle, J; Morreale de Escobar, G

    1997-01-01

    The synthetic flavonoids EMD 23188 and EMD 49209, developed as T4 analogs, displace T4 from transthyretin, and in vitro they inhibit 5'-deiodinase activity. In vivo EMD 21388 causes tissue-specific changes in thyroid hormone metabolism. In tissues that are dependent on T3 locally produced from T4, total T3 was diminished. It was not known whether it was the presence of EMD interfering with 5'-deiodinase type II in tissues or the decreased T4 (substrate) availability that caused the lowered T3. To study whether the flavonoids enter tissues and, if this were the case, whether they enter tissues similarly, [125I]EMD 49209 together with [131I]T4 were injected into female rats and rats pretreated with EMD 21388. Tissues were extracted and submitted to HPLC. [125I]EMD 49209 disappeared quickly from plasma and enters peripheral tissues; peak values were reached after 0.25-0.5 h. Then [125I]EMD 49209 appeared in the intestines (after 6 h 40% of the dose). Tissue uptake of [131I]T4 was very rapid. EMD 21388 pretreatment caused an increase in the excretion of [125I]EMD 49209 into the intestines (40% after 0.25 h). The uptake of [131I]T4 increased, but not high enough to ensure normal tissue T4 concentrations. In the 5'-deiodinase type II-expressing tissues, no [125I]EMD 49209 could be detected. We conclude that the decrease in T3 locally produced from T4 is caused by the shortage of T4 as substrate and not to a direct effect of EMD on the activity of 5'-deiodinases I and II.

  3. Glucose uptake and glycolytic flux in adipose tissue from rats adapted to a high-protein, carbohydrate-free diet.

    PubMed

    Brito, S R; Moura, M A; Kawashita, N H; Brito, M N; Kettelhut, I C; Migliorini, R H

    2001-10-01

    Rates of glucose uptake by epididymal and retroperitoneal adipose tissue in vivo, as well as rates of hexose uptake and glycolytic flux in isolated adipocytes, were determined in rats adapted to a high-protein, carbohydrate-free (HP) diet and in control rats fed a balanced (N) diet. Adaptation to the HP diet induced a significant reduction in rates of glucose uptake, estimated with 2-deoxy-[1-(3)H]-glucose, both by adipose tissue (epididymal and retroperitoneal) in vivo and by isolated adipocytes. Twelve hours after replacement of the HP diet with the balanced diet, rates of adipose tissue uptake in vivo in HP-adapted rats returned to levels that did not differ significantly from those in N-fed rats. The rate of flux in the glycolytic pathway, estimated with (3)H[5]-glucose, was also significantly reduced in adipocytes from HP-fed rats. In agreement with the above findings, the activities of hexokinase (HK), phosphofructo-1-kinase (PFK-1), and pyruvate kinase (PK) were markedly reduced in adipose tissue from HP-adapted rats. The activity of pyruvate kinase was partially reverted by diet replacement for 12 hours. The low-plasma insulin and high-glucagon levels in HP-fed rats may have played an important role in the reduction of adipose tissue glucose utilization in these animals. Copyright 2001 by W.B. Saunders Company

  4. Biodistribution of iodine-125 and indium-111 labeled OV-TL 3 intact antibodies and F(ab')2 fragments in tumor-bearing athymic mice.

    PubMed

    Massuger, L F; Boerman, O C; Corstens, F H; Verheijen, R H; Claessens, R A; Poels, L G; van den Broek, W J; Kenemans, P

    1991-01-01

    The monoclonal antibody OV-TL 3, directed against an ovarian carcinoma-associated antigenic determinant, was tested as a vehicle for radioimmunolocalization of ovarian carcinomas in athymic mice bearing NIH:OVCAR-3 xenografts. The biodistribution of intact. OV-TL 3 was compared with the distribution of OC 125. Tumor uptake with OV-TL 3 was significantly higher than with OC 125, and almost 7 times higher than with a non-specific control antibody (OV-TL 19). Administration of a mixture of intact OV-TL 3 and OC 125 did not improve tumor uptake in comparison with OV-TL 3 alone. Subsequently, intact OV-TL 3 and its F(ab')2 fragments were labeled with either 111In or 125I. The highest tumor uptake was obtained with 111In-labeled intact OV-TL 3 (14.7% ID/g, 48 hr p.i.). For both antibody forms uptake of 111In in liver, spleen and kidneys was very high. Furthermore, 111In cleared more slowly from most tissues than 125I. As a result, tumor/tissue ratios with 111In-labeled OV-TL 3 were lower than with 125I-labeled OV-TL 3. The highest tumor/tissue ratios (6.9 to 53) were obtained with 125I-labeled OV-TL 3 F(ab')2 fragments, 48 hr post injection. 111In-labeled OV-TL 3 F(ab')2 has already been shown to be a clinically useful label for the detection of ovarian cancer. The results of our comparative animal study suggest that these clinical results may even be improved by using 123I-labeled OV-TL 3 F(ab')2.

  5. Analyses of Mitochondrial Calcium Influx in Isolated Mitochondria and Cultured Cells.

    PubMed

    Maxwell, Joshua T; Tsai, Chin-Hsien; Mohiuddin, Tahmina A; Kwong, Jennifer Q

    2018-04-27

    Ca 2+ handling by mitochondria is a critical function regulating both physiological and pathophysiological processes in a broad spectrum of cells. The ability to accurately measure the influx and efflux of Ca 2+ from mitochondria is important for determining the role of mitochondrial Ca 2+ handling in these processes. In this report, we present two methods for the measurement of mitochondrial Ca 2+ handling in both isolated mitochondria and cultured cells. We first detail a plate reader-based platform for measuring mitochondrial Ca 2+ uptake using the Ca 2+ sensitive dye calcium green-5N. The plate reader-based format circumvents the need for specialized equipment, and the calcium green-5N dye is ideally suited for measuring Ca 2+ from isolated tissue mitochondria. For our application, we describe the measurement of mitochondrial Ca 2+ uptake in mitochondria isolated from mouse heart tissue; however, this procedure can be applied to measure mitochondrial Ca 2+ uptake in mitochondria isolated from other tissues such as liver, skeletal muscle, and brain. Secondly, we describe a confocal microscopy-based assay for measurement of mitochondrial Ca 2+ in permeabilized cells using the Ca 2+ sensitive dye Rhod-2/AM and imaging using 2-dimensional laser-scanning microscopy. This permeabilization protocol eliminates cytosolic dye contamination, allowing for specific recording of changes in mitochondrial Ca 2+ . Moreover, laser-scanning microscopy allows for high frame rates to capture rapid changes in mitochondrial Ca 2+ in response to various drugs or reagents applied in the external solution. This protocol can be applied to measure mitochondrial Ca 2+ uptake in many cell types including primary cells such as cardiac myocytes and neurons, and immortalized cell lines.

  6. Structure Dependence of Long-Chain [18F]Fluorothia Fatty Acids as Myocardial Fatty Acid Oxidation Probes

    PubMed Central

    Pandey, Mukesh K.; Belanger, Anthony P.; Wang, Shuyan; DeGrado, Timothy R.

    2012-01-01

    In-vivo imaging of regional fatty acid oxidation (FAO) rates would have considerable potential for evaluation of mammalian diseases. We have synthe sized and evaluated 18F-labeled thia fatty acid analogues as metabolically trapped FAO probes to understand the effect of chain length, degree of unsaturation and placement of the thia-substituent on myocardial uptake and retention. 18-[18F]fluoro-4-thia-(9Z)-octadec-9-enoic acid (3) showed excellent heart:background radioactivity concentration ratios along with highest retention in heart and liver. Pretreatment of rats with the CPT-1 inhibitor, POCA, caused >80% reduction in myocardial uptake of 16-[18F]fluoro-4-thia-hexadecanoic acid (2), and 3 indicating high specificity for FAO. In contrast, 18-[18F]fluoro-4-thia-octadecanoic acid (4), showed dramatically reduced myocardial uptake and blunted response to POCA. 18-[18F]fluoro-6-thia-octadecanoic acid (5), showed moderate myocardial uptake and no sensitivity of myocardial uptake to POCA. The results demonstrate relationships between structures of 18F-labelled thia fatty acid and uptake, and their utility as FAO probes in various tissues. PMID:23153307

  7. Analysis of factors that influence rates of carbon monoxide uptake, distribution, and washout from blood and extravascular tissues using a multicompartment model.

    PubMed

    Bruce, Margaret C; Bruce, Eugene N

    2006-04-01

    To better understand factors that influence carbon monoxide (CO) washout rates, we utilized a multicompartment mathematical model to predict rates of CO uptake, distribution in vascular and extravascular (muscle vs. other soft tissue) compartments, and washout over a range of exposure and washout conditions with varied subject-specific parameters. We fitted this model to experimental data from 15 human subjects, for whom subject-specific parameters were known, multiple washout carboxyhemoglobin (COHb) levels were available, and CO exposure conditions were identical, to investigate the contributions of exposure conditions and individual variability to CO washout from blood. We found that CO washout from venous blood was biphasic and that postexposure times at which COHb samples were obtained significantly influenced the calculated CO half times (P < 0.0001). The first, more rapid, phase of CO washout from the blood reflected the loss of CO to the expired air and to a slow uptake by the muscle compartment, whereas the second, slower washout phase was attributable to CO flow from the muscle compartment back to the blood and removal from blood via the expired air. When the model was used to predict the effects of varying exposure conditions for these subjects, the CO exposure duration, concentration, peak COHb levels, and subject-specific parameters each influenced washout half times. Blood volume divided by ventilation correlated better with half-time predictions than did cardiac output, muscle mass, or ventilation, but it explained only approximately 50% of half-time variability. Thus exposure conditions, COHb sampling times, and individual parameters should be considered when estimating CO washout rates for poisoning victims.

  8. Comparison of sarcoplasmic reticulum capabilities in toadfish (Opsanus tau) sonic muscle and rat fast twitch muscle.

    PubMed

    Feher, J J; Waybright, T D; Fine, M L

    1998-08-01

    The sonic muscle of the oyster toadfish, Opsanus tau, can produce unfused contractions at 300 Hz. Electron microscopy shows a great abundance of the Sarcoplasmic reticulum (SR) in this muscle, but no functional characterization of the capabilities of the SR has been reported. We measured the oxalate-supported Ca2+ uptake rate and capacities of homogenates of toadfish sonic muscle and rat extensor digitorum longus (EDL) muscle, and estimated the number of pump units by titration with thapsigargin, a high-affinity, specific inhibitor of the SR Ca-ATPase. The Ca2+ uptake rate averaged 70.9 +/- 9.5 mumol min -1 per g tissue for the toad fish sonic muscle, and 73.5 +/- 3.7 mumol min -1 g-1 for rat EDL. The capacity for Ca2+ -oxalate uptake was 161 +/- 20 mumol g -1 and 33 +/- 2 mumol g -1 for toadfish sonic muscle and rat EDL, respectively. Thus, the rates of Ca2+ uptake were similar in the two muscles, but the toadfish sonic muscle had about five times the capacity of the rat EDL. The number of pumps as estimated by thapsigargin titration was 68 +/- 4 nmol of Ca-ATPase per g tissue in the toadfish, and 42 +/- 5 nmol Ca-ATPase per g tissue in the rat EDL. The turnover number, defined as the Ca2+ uptake divided by the number of pumps, was 1065 +/- 150 min -1 for toadfish and 1786 +/- 230 min -1 for rat EDL (p < 0.05) at 37 degrees C. The Ca2+ uptake rate of toadfish sonic muscle at 22 degree C, a typical temperature for calling toadfish, averaged 42 +/- 1% of its rate at 37 degree C. At these operating temperatures, the toadfish SR is likely to be slower than the rat fast-twitch SR, yet the toadfish sonic muscle supports more rapid contractions. One explanation for this is that the voluminous SR provides activator Ca2+ for contraction, but the abundant parvalbumin plays a major role in relaxation.

  9. Acute Hypercortisolemia Exerts Depot-Specific Effects on Abdominal and Femoral Adipose Tissue Function

    PubMed Central

    O’Reilly, Michael W.; Bujalska, Iwona J.; Tomlinson, Jeremy W.; Arlt, Wiebke

    2017-01-01

    Context: Glucocorticoids have pleiotropic metabolic functions, and acute glucocorticoid excess affects fatty acid metabolism, increasing systemic lipolysis. Whether glucocorticoids exert adipose tissue depot-specific effects remains unclear. Objective: To provide an in vivo assessment of femoral and abdominal adipose tissue responses to acute glucocorticoid administration. Design and Outcome Measures: Nine healthy male volunteers were studied on two occasions, after a hydrocortisone infusion (0.2 mg/kg/min for 14 hours) and a saline infusion, respectively, given in randomized double-blind order. The subjects were studied in the fasting state and after a 75-g glucose drink with an in vivo assessment of femoral adipose tissue blood flow (ATBF) using radioactive xenon washout and of lipolysis and glucose uptake using the arteriovenous difference technique. In a separate study (same infusion design), eight additional healthy male subjects underwent assessment of fasting abdominal ATBF and lipolysis only. Lipolysis was assessed as the net release of nonesterified fatty acids (NEFAs) from femoral and abdominal subcutaneous adipose tissue. Results: Acute hypercortisolemia significantly increased basal and postprandial ATBF in femoral adipose tissue, but the femoral net NEFA release did not change. In abdominal adipose tissue, hypercortisolemia induced substantial increases in basal ATBF and NEFA release. Conclusions: Acute hypercortisolemia induces differential lipolysis and ATBF responses in abdominal and femoral adipose tissue, suggesting depot-specific glucocorticoid effects. Abdominal, but not femoral, adipose tissue contributes to the hypercortisolemia-induced systemic NEFA increase, with likely contributions from other adipose tissue sources and intravascular triglyceride hydrolysis. PMID:28323916

  10. Endothelial cell leptin receptor mutant mice have hyperleptinemia and reduced tissue uptake

    PubMed Central

    Hsuchou, Hung; Jayaram, Bhavaani; Kastin, Abba J.; Wang, Yuping; Ouyang, Suidong; Pan, Weihong

    2014-01-01

    Hyperleptinemia is usually associated with obesity and leptin resistance. Endothelial cell leptin receptor knockout (ELKO) mice without a signaling membrane-bound leptin receptor in endothelia, however, have profound hyperleptinemia without signs of leptin resistance. Leptin mRNA in adipose tissue was unchanged. To test the hypothesis that the ELKO mutation results in delayed degradation and slowed excretion, we determined the kinetics of leptin transfer in groups of ELKO and wildtype mice after intravenous bolus injection of 125I-leptin and the reference substance 131I-albumin. The degradation pattern of 125I-leptin in serum and brain homogenates at different time points between 10-60 min was measured by HPLC and acid precipitation. Although ELKO mice had reduced uptake of 125I-leptin uptake by the brain and several peripheral organs, leptin was more stable in blood and tissue. There was no change in the rate of renal excretion. ELISA showed that serum soluble leptin receptor, known to antagonize leptin transport, had a 400-fold increase, probably contributing to the hyperleptinemia and reduced tissue uptake. Thus, the ELKO mutation unexpectedly increased the stability of leptin but suppressed its tissue uptake. These changes probably contribute to the known partial resistance of the ELKO mice to diet-induced obesity. PMID:23359322

  11. Endothelial cell leptin receptor mutant mice have hyperleptinemia and reduced tissue uptake.

    PubMed

    Hsuchou, Hung; Jayaram, Bhavaani; Kastin, Abba J; Wang, Yuping; Ouyang, Suidong; Pan, Weihong

    2013-07-01

    Hyperleptinemia is usually associated with obesity and leptin resistance. Endothelial cell leptin receptor knockout (ELKO) mice without a signaling membrane-bound leptin receptor in endothelia, however, have profound hyperleptinemia without signs of leptin resistance. Leptin mRNA in adipose tissue was unchanged. To test the hypothesis that the ELKO mutation results in delayed degradation and slowed excretion, we determined the kinetics of leptin transfer in groups of ELKO and wildtype mice after intravenous bolus injection of (125) I-leptin and the reference substance (131) I-albumin. The degradation pattern of (125) I-leptin in serum and brain homogenates at different time points between 10 and 60 min was measured by HPLC and acid precipitation. Although ELKO mice had reduced uptake of (125) I-leptin uptake by the brain and several peripheral organs, leptin was more stable in blood and tissue. There was no change in the rate of renal excretion. ELISA showed that serum soluble leptin receptor, known to antagonize leptin transport, had a 400-fold increase, probably contributing to the hyperleptinemia and reduced tissue uptake. Thus, the ELKO mutation unexpectedly increased the stability of leptin but suppressed its tissue uptake. These changes probably contribute to the known partial resistance of the ELKO mice to diet-induced obesity. Copyright © 2013 Wiley Periodicals, Inc.

  12. Fatty Acids as Therapeutic Auxiliaries for Oral and Parenteral Formulations

    PubMed Central

    Hackett, Michael J.; Zaro, Jennica L.; Shen, Wei-Chiang; Guley, Patrick C.; Cho, Moo J.

    2012-01-01

    Many drugs have decreased therapeutic activity due to issues with absorption, distribution, metabolism and excretion. The co-formulation or covalent attachment of drugs with fatty acids has demonstrated some capacity to overcome these issues by improving intestinal permeability, slowing clearance and binding serum proteins for selective tissue uptake and metabolism. For orally administered drugs, albeit at low level of availability, the presence of fatty acids and triglycerides in the intestinal lumen may promote intestinal uptake of small hydrophilic molecules. Small lipophilic drugs or acylated hydrophilic drugs also show increased lymphatic uptake and enhanced passive diffusional uptake. Fatty acid conjugation of small and large proteins or peptides have exhibited protracted plasma half-lives, site-specific delivery and sustained release upon parenteral administration. These improvements are most likely due to associations with lipid-binding serum proteins, namely albumin, LDL and HDL. These molecular interactions, although not fully characterized, could provide the ability of using the endogenous carrier systems for improving therapeutic outcomes. PMID:22921839

  13. Metabolism and possible health effects of aluminum.

    PubMed Central

    Ganrot, P O

    1986-01-01

    Literature regarding the biochemistry of aluminum and eight similar ions is reviewed. Close and hitherto unknown similarities were found. A hypothetical model is presented for the metabolism, based on documented direct observations of Al3+ and analogies from other ions. Main characteristics are low intestinal absorption, rapid urinary excretion, and slow tissue uptake, mostly in skeleton and reticuloendothelial cells. Intracellular Al3+ is probably first confined in the lysosomes but then slowly accumulates in the cell nucleus and chromatin. Large, long-lived cells, e.g., neurons, may be the most liable to this accumulation. In heterochromatin, Al3+ levels can be found comparable to those used in leather tannage. It is proposed that an accumulation may take place at a subcellular level without any significant increase in the corresponding tissue concentration. The possible effects of this accumulation are discussed. As Al3+ is neurotoxic, the brain metabolism is most interesting. The normal and the lethally toxic brain levels of Al3+ are well documented and differ only by a factor of 3-10. The normal brain uptake of Al3+ is estimated from data on intestinal uptake of Al3+ and brain uptake of radionuclides of similar ions administered intravenously. The uptake is very slow, 1 mg in 36 years, and is consistent with an assumption that Al3+ taken up by the brain cannot be eliminated and is therefore accumulated. The possibility that Al3+ may cause or contribute to some specific diseases, most of them related to aging, is discussed with the proposed metabolic picture in mind. PMID:2940082

  14. Preliminary Evidence for Adipocytokine Signals in Skeletal Muscle Glucose Uptake.

    PubMed

    Kudoh, Akihiro; Satoh, Hiroaki; Hirai, Hiroyuki; Watanabe, Tsuyoshi; Shimabukuro, Michio

    2018-01-01

    The cross talk between the adipose tissue and insulin target tissues is a key mechanism for obesity-associated insulin resistance. However, the precise role of the interaction between the skeletal muscle and adipose tissue for insulin signaling and glucose uptake is questionable. L6 myocytes were co-cultured with or without 3T3-L1 adipocytes (~5 × 10 3 cells/cm 2 ) up to 24 h. Glucose uptake was evaluated by 2-[ 3 H] deoxyglucose uptake assay. Levels of mRNA expression of Glut1 and Glut4 and mitochondrial enzymes were analyzed by quantitative real-time reverse transcription polymerase chain reaction. Levels of Glut1 and Glut4 protein and phosphorylation of Akt (Ser473 and Thr308) were analyzed by immunoblotting. Study 1: co-culture with 3T3-L1 adipocytes increased glucose uptake in dose- and time-dependent manner in L6 myocytes under insulin-untreated conditions. When co-cultured with 3T3-L1 cells, reactive oxygen species production and levels of Glut1 mRNA and protein were increased in L6 cells, while these changes were abrogated and the glucose uptake partially inhibited by antioxidant treatment. Study 2: co-culture with 3T3-L1 adipocytes suppressed insulin-stimulated glucose uptake in L6 myocytes. Insulin-induced Akt phosphorylation at Ser473 decreased, which was proportional to 3T3-L1 density. Antioxidant treatment partially reversed this effect. Interactions between skeletal muscle and adipose tissues are important for glucose uptake under insulin-untreated or -treated condition through oxygen stress mechanism.

  15. Activation of SF1 Neurons in the Ventromedial Hypothalamus by DREADD Technology Increases Insulin Sensitivity in Peripheral Tissues.

    PubMed

    Coutinho, Eulalia A; Okamoto, Shiki; Ishikawa, Ayako Wendy; Yokota, Shigefumi; Wada, Nobuhiro; Hirabayashi, Takahiro; Saito, Kumiko; Sato, Tatsuya; Takagi, Kazuyo; Wang, Chen-Chi; Kobayashi, Kenta; Ogawa, Yoshihiro; Shioda, Seiji; Yoshimura, Yumiko; Minokoshi, Yasuhiko

    2017-09-01

    The ventromedial hypothalamus (VMH) regulates glucose and energy metabolism in mammals. Optogenetic stimulation of VMH neurons that express steroidogenic factor 1 (SF1) induces hyperglycemia. However, leptin acting via the VMH stimulates whole-body glucose utilization and insulin sensitivity in some peripheral tissues, and this effect of leptin appears to be mediated by SF1 neurons. We examined the effects of activation of SF1 neurons with DREADD (designer receptors exclusively activated by designer drugs) technology. Activation of SF1 neurons by an intraperitoneal injection of clozapine- N -oxide (CNO), a specific hM3Dq ligand, reduced food intake and increased energy expenditure in mice expressing hM3Dq in SF1 neurons. It also increased whole-body glucose utilization and glucose uptake in red-type skeletal muscle, heart, and interscapular brown adipose tissue, as well as glucose production and glycogen phosphorylase a activity in the liver, thereby maintaining blood glucose levels. During hyperinsulinemic-euglycemic clamp, such activation of SF1 neurons increased insulin-induced glucose uptake in the same peripheral tissues and tended to enhance insulin-induced suppression of glucose production by suppressing gluconeogenic gene expression and glycogen phosphorylase a activity in the liver. DREADD technology is thus an important tool for studies of the role of the brain in the regulation of insulin sensitivity in peripheral tissues. © 2017 by the American Diabetes Association.

  16. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration

    NASA Technical Reports Server (NTRS)

    Mukherjee, D.; Wong, J.; Griffin, B.; Ellis, S. G.; Porter, T.; Sen, S.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: In this study, the feasibility of delivering and enhancing the uptake of vascular endothelial growth factor (VEGF) into the intact endothelium by using ultrasound (US) facilitation was determined. BACKGROUND: A limitation of tissue-targeted drug delivery is the need for direct arterial cannulation. We postulate a mechanism by which agents injected intravenously may be targeted to a tissue using US and ultrasonic contrast agents. METHODS: We used a rat model to test the ability of US and an ultrasonic contrast agent perflurocarbon exposed sonicated dextrose albumin (PESDA) to increase uptake of VEGF in the myocardium. Continuous wave Doppler US (0.6 W/cm2 at 1 MHz for 15 min) was applied to the chest wall overlying the myocardium during intravenous injection with either VEGF (100 microg/kg) alone or a combination of VEGF and PESDA (0.1%). Control rats had VEGF infused without US or PESDA. The VEGF uptake was measured quantitatively in the heart, lung, liver and kidneys by enzyme-linked immunosorbent assay (ng/g of tissue) and morphologically by fluorescence microscopy. RESULTS: There was an eight-fold increase in VEGF uptake in the heart by US alone (16.86 +/- 1.56 vs. 2.11 +/- 0.953 ng/g of tissue, p < 0.0001) and a 13-fold increase with US + PESDA (26.78 +/- 2.88 vs. 2.11 +/- 0.953 ng/g of tissue, p < 0.0001) compared with control rats. Fluorescence microscopy revealed deposition of VEGF in the endothelium of small intramyocardial arterioles. CONCLUSIONS: These results show a marked increase in endothelial VEGF uptake with US and US + PESDA. Thus, US may be used to augment endothelial VEGF uptake 10-fold to 13-fold.

  17. Maximizing tumour exposure to anti-neuropilin-1 antibody requires saturation of non-tumour tissue antigenic sinks in mice

    PubMed Central

    Bumbaca, Daniela; Xiang, Hong; Boswell, C Andrew; Port, Ruediger E; Stainton, Shannon L; Mundo, Eduardo E; Ulufatu, Sheila; Bagri, Anil; Theil, Frank-Peter; Fielder, Paul J; Khawli, Leslie A; Shen, Ben-Quan

    2012-01-01

    BACKGROUND AND PURPOSE Neuropilin-1 (NRP1) is a VEGF receptor that is widely expressed in normal tissues and is involved in tumour angiogenesis. MNRP1685A is a rodent and primate cross-binding human monoclonal antibody against NRP1 that exhibits inhibition of tumour growth in NPR1-expressing preclinical models. However, widespread NRP1 expression in normal tissues may affect MNRP1685A tumour uptake. The objective of this study was to assess MNRP1685A biodistribution in tumour-bearing mice to understand the relationships between dose, non-tumour tissue uptake and tumour uptake. EXPERIMENTAL APPROACH Non-tumour-bearing mice were given unlabelled MNRP1685A at 10 mg·kg−1. Tumour-bearing mice were given 111In-labelled MNRP1685A along with increasing amounts of unlabelled antibody. Blood and tissues were collected from all animals to determine drug concentration (unlabelled) or radioactivity level (radiolabelled). Some animals were imaged using single photon emission computed tomography – X-ray computed tomography. KEY RESULTS MNRP1685A displayed faster serum clearance than pertuzumab, indicating that target binding affected MNRP1685A clearance. I.v. administration of 111In-labelled MNRP1685A to tumour-bearing mice yielded minimal radioactivity in the plasma and tumour, but high levels in the lungs and liver. Co-administration of unlabelled MNRP1685A with the radiolabelled antibody was able to competitively block lungs and liver radioactivity uptake in a dose-dependent manner while augmenting plasma and tumour radioactivity levels. CONCLUSIONS AND IMPLICATIONS These results indicate that saturation of non-tumour tissue uptake is required in order to achieve tumour uptake and acceptable exposure to antibody. Utilization of a rodent and primate cross-binding antibody allows for translation of these results to clinical settings. PMID:22074316

  18. A General Map of Iron Metabolism and Tissue-specific Subnetworks

    PubMed Central

    Hower, Valerie; Mendes, Pedro; Torti, Frank M.; Laubenbacher, Reinhard; Akman, Steven; Shulaev, Vladmir; Torti, Suzy V.

    2009-01-01

    Iron is required for survival of mammalian cells. Recently, understanding of iron metabolism and trafficking has increased dramatically, revealing a complex, interacting network largely unknown just a few years ago. This provides an excellent model for systems biology development and analysis. The first step in such an analysis is the construction of a structural network of iron metabolism, which we present here. This network was created using CellDesigner version 3.5.2 and includes reactions occurring in mammalian cells of numerous tissue types. The iron metabolic network contains 151 chemical species and 107 reactions and transport steps. Starting from this general model, we construct iron networks for specific tissues and cells that are fundamental to maintaining body iron homeostasis. We include subnetworks for cells of the intestine and liver, tissues important in iron uptake and storage, respectively; as well as the reticulocyte and macrophage, key cells in iron utilization and recycling. The addition of kinetic information to our structural network will permit the simulation of iron metabolism in different tissues as well as in health and disease. PMID:19381358

  19. Increased technetium-99 m hydroxy diphosphonate soft tissue uptake on bone scintigraphy in chronic kidney disease patients with secondary hyperparathyroidism: correlation with hyperphosphataemia.

    PubMed

    Enevoldsen, Lotte Hahn; Heaf, James; Højgaard, Liselotte; Zerahn, Bo; Hasbak, Philip

    2017-03-01

    In bone scan patients with dialysis-treated chronic kidney disease (CKD) and hyperparathyroidism, soft tissue accumulation of technetium-99 m hydroxy/methylene diphosphonate (Tc-99 m-HDP/MDP) has been reported primarily in case reports and usually explained by hypercalcaemia and/or hyperphosphataemia. As human vascular smooth muscle cells produce hydroxyapatite during cell culture with increased phosphate levels and as Tc-99 m-HDP/MDP primarily binds to hydroxyapatite, we hypothesized that soft tissue accumulation would be found in patients with hyperphosphataemia. We identified 63 CKD patients diagnosed with secondary hyperparathyroidism admitted for Tc-99 m-HDP bone scan. Baseline characteristics and mean concentrations of biochemical markers (including P-calcium and P-phosphate) taken 0-3 months prior to the bone scans were collected. Soft tissue uptake was detected on bone scans in 37 of 63 (59%) patients. Primary locations were in the heart (27/37 = 73%), muscles (12/37 = 32%), lung (9/37 = 24%) and gastrointestinal tract (6/37 = 16%), and 13 of 37 (35%) patients had simultaneous uptake in more than one location. Regarding biochemical markers, patients with soft tissue uptake only differed from patients without in terms of plasma phosphate levels (1·95 ± 0·15 (n = 37) versus 1·27 ± 0·08 (n = 26), P = 0·0012). All patients with myocardial uptake (n = 27) had a coronary arteriography-verified history of coronary artery disease (CAD), whereas CAD was only present in six of the 36 patients without myocardial uptake. In conclusion, dialysis-treated CKD patients with secondary hyperparathyroidism have a high incidence of soft tissue uptake, and this finding is strongly correlated with elevated phosphate, but not calcium values. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  20. Detection of bladder metabolic artifacts in (18)F-FDG PET imaging.

    PubMed

    Roman-Jimenez, Geoffrey; Crevoisier, Renaud De; Leseur, Julie; Devillers, Anne; Ospina, Juan David; Simon, Antoine; Terve, Pierre; Acosta, Oscar

    2016-04-01

    Positron emission tomography using (18)F-fluorodeoxyglucose ((18)F-FDG-PET) is a widely used imaging modality in oncology. It enables significant functional information to be included in analyses of anatomical data provided by other image modalities. Although PET offers high sensitivity in detecting suspected malignant metabolism, (18)F-FDG uptake is not tumor-specific and can also be fixed in surrounding healthy tissue, which may consequently be mistaken as cancerous. PET analyses may be particularly hampered in pelvic-located cancers by the bladder׳s physiological uptake potentially obliterating the tumor uptake. In this paper, we propose a novel method for detecting (18)F-FDG bladder artifacts based on a multi-feature double-step classification approach. Using two manually defined seeds (tumor and bladder), the method consists of a semi-automated double-step clustering strategy that simultaneously takes into consideration standard uptake values (SUV) on PET, Hounsfield values on computed tomography (CT), and the distance to the seeds. This method was performed on 52 PET/CT images from patients treated for locally advanced cervical cancer. Manual delineations of the bladder on CT images were used in order to evaluate bladder uptake detection capability. Tumor preservation was evaluated using a manual segmentation of the tumor, with a threshold of 42% of the maximal uptake within the tumor. Robustness was assessed by randomly selecting different initial seeds. The classification averages were 0.94±0.09 for sensitivity, 0.98±0.01 specificity, and 0.98±0.01 accuracy. These results suggest that this method is able to detect most (18)F-FDG bladder metabolism artifacts while preserving tumor uptake, and could thus be used as a pre-processing step for further non-parasitized PET analyses. Copyright © 2016. Published by Elsevier Ltd.

  1. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    PubMed Central

    Chaudhary, Suman; Smith, Carol Anne; del Pino, Pablo; de la Fuente, Jesus M.; Mullin, Margaret; Hursthouse, Andrew; Stirling, David; Berry, Catherine C.

    2013-01-01

    Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs) have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation) blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake. PMID:24275948

  2. Histochemical detection of lead and zinc in plant tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, G.; Temple, P.J.

    1975-01-01

    Histochemical studies on uptake and localization of lead and zinc in plant tissues were carried out. A histochemical stain technique was developed to differentiate zinc from lead. Lead was detected in plant tissues by soaking fresh plant materials in freshly prepared sodium rhodizonate stain (0.2% Na rhodizonate acidified to pH3 with glacial acetic acid). Samples were evacuated 5 min and soaked for 30 min before embedding in the congealed stain, then sectioned with a cryostat and examined under a light microscope. Lead particles in plant tissues were stained scarlet-red. Gelatinous, proteinaceous or saccharic embedding materials normally used to prepare plantmore » sampled for sectioning in the cryostat interfered with the color reaction. Sectioning plant samples without staining whole tissues resulted in a weakened response to the stain. Color of stained sample materials were retained for several months if stored in a frozen condition. This technique was used to detect lead both inside and on the surface of plant samples collected in the vicinity of highway and industrial lead sources and to trace the pathways of lead uptake from the air or from contaminated soils. A sodium rhodizonate technique was also developed to be specific for zinc in plant tissues. Plant samples were soaked in a neutral Na-rhodizonate in phosphate buffer at pH 7.5 for observation. The color of zinc developed to produce a purplish or reddish-brown color.« less

  3. Spatiotemporal distribution modeling of PET tracer uptake in solid tumors.

    PubMed

    Soltani, Madjid; Sefidgar, Mostafa; Bazmara, Hossein; Casey, Michael E; Subramaniam, Rathan M; Wahl, Richard L; Rahmim, Arman

    2017-02-01

    Distribution of PET tracer uptake is elaborately modeled via a general equation used for solute transport modeling. This model can be used to incorporate various transport parameters of a solid tumor such as hydraulic conductivity of the microvessel wall, transvascular permeability as well as interstitial space parameters. This is especially significant because tracer delivery and drug delivery to solid tumors are determined by similar underlying tumor transport phenomena, and quantifying the former can enable enhanced prediction of the latter. We focused on the commonly utilized FDG PET tracer. First, based on a mathematical model of angiogenesis, the capillary network of a solid tumor and normal tissues around it were generated. The coupling mathematical method, which simultaneously solves for blood flow in the capillary network as well as fluid flow in the interstitium, is used to calculate pressure and velocity distributions. Subsequently, a comprehensive spatiotemporal distribution model (SDM) is applied to accurately model distribution of PET tracer uptake, specifically FDG in this work, within solid tumors. The different transport mechanisms, namely convention and diffusion from vessel to tissue and in tissue, are elaborately calculated across the domain of interest and effect of each parameter on tracer distribution is investigated. The results show the convection terms to have negligible effect on tracer transport and the SDM can be solved after eliminating these terms. The proposed framework of spatiotemporal modeling for PET tracers can be utilized to comprehensively assess the impact of various parameters on the spatiotemporal distribution of PET tracers.

  4. Comparative Risks of Aldehyde Constituents in Cigarette Smoke Using Transient Computational Fluid Dynamics/Physiologically Based Pharmacokinetic Models of the Rat and Human Respiratory Tracts

    PubMed Central

    Corley, Richard A.; Kabilan, Senthil; Kuprat, Andrew P.; Carson, James P.; Jacob, Richard E.; Minard, Kevin R.; Teeguarden, Justin G.; Timchalk, Charles; Pipavath, Sudhakar; Glenny, Robb; Einstein, Daniel R.

    2015-01-01

    Computational fluid dynamics (CFD) modeling is well suited for addressing species-specific anatomy and physiology in calculating respiratory tissue exposures to inhaled materials. In this study, we overcame prior CFD model limitations to demonstrate the importance of realistic, transient breathing patterns for predicting site-specific tissue dose. Specifically, extended airway CFD models of the rat and human were coupled with airway region-specific physiologically based pharmacokinetic (PBPK) tissue models to describe the kinetics of 3 reactive constituents of cigarette smoke: acrolein, acetaldehyde and formaldehyde. Simulations of aldehyde no-observed-adverse-effect levels for nasal toxicity in the rat were conducted until breath-by-breath tissue concentration profiles reached steady state. Human oral breathing simulations were conducted using representative aldehyde yields from cigarette smoke, measured puff ventilation profiles and numbers of cigarettes smoked per day. As with prior steady-state CFD/PBPK simulations, the anterior respiratory nasal epithelial tissues received the greatest initial uptake rates for each aldehyde in the rat. However, integrated time- and tissue depth-dependent area under the curve (AUC) concentrations were typically greater in the anterior dorsal olfactory epithelium using the more realistic transient breathing profiles. For human simulations, oral and laryngeal tissues received the highest local tissue dose with greater penetration to pulmonary tissues than predicted in the rat. Based upon lifetime average daily dose comparisons of tissue hot-spot AUCs (top 2.5% of surface area-normalized AUCs in each region) and numbers of cigarettes smoked/day, the order of concern for human exposures was acrolein > formaldehyde > acetaldehyde even though acetaldehyde yields were 10-fold greater than formaldehyde and acrolein. PMID:25858911

  5. Nitrate uptake and nitrite release by tomato roots in response to anoxia.

    PubMed

    Morard, Philippe; Silvestre, Jérôme; Lacoste, Ludovic; Caumes, Edith; Lamaze, Thierry

    2004-07-01

    Excised root systems of tomato plants (early fruiting stage, 2nd flush) were subjected to a gradual transition from normoxia to anoxia by seating the hydroponic root medium while aeration was stopped. Oxygen level in the medium and respiration rate decreased and reached very low values after 12 h of treatment, indicating that the tissues were anoxic thereafter. Nitrate loss from the nutrient solution was strongly stimulated by anoxia (after 26 h) concomitantly with a release of nitrite starting only after 16 h of treatment. This effect was not observed in the absence of roots or in the presence of tungstate, but occurred with whole plants or with sterile in vitro cultured root tissues. These results indicate that biochemical processes in the root involve nitrate reductase. NR activity assayed in tomato roots increased during anoxia. This phenomenon appeared in intact plants and in root tissues of detopped plants. The stimulating effect of oxygen deprivation on nitrate uptake was specific; anoxia simultaneously entailed a release of orthophosphate, sulfate, and potassium by the roots. Anoxia enhanced nitrate reduction by root tissues, and nitrite ions were released into xylem sap and into medium culture. In terms of the overall balance, the amount of nitrite recovered represented only half of the amount of nitrate utilized. Nitrite reduction into nitric oxide and perhaps into nitrogen gas could account for this discrepancy. These results appear to be the first report of an increase in nitrate uptake by plant roots under anoxia of tomato at the early fruiting stage, and the rates of nitrite release in nutrient medium by the asphyxiated roots are the fastest yet reported.

  6. Synthesis and evaluation of [64Cu]PSMA-617 targeted for prostate-specific membrane antigen in prostate cancer.

    PubMed

    Cui, Can; Hanyu, Masayuki; Hatori, Akiko; Zhang, Yiding; Xie, Lin; Ohya, Tomoya; Fukada, Masami; Suzuki, Hisashi; Nagatsu, Kotaro; Jiang, Cuiping; Luo, Rui; Shao, Guoqiang; Zhang, Mingrong; Wang, Feng

    2017-01-01

    We radiolabeled a ligand, PSMA-617, of prostate-specific membrane antigen (PSMA) with copper-64 ( 64 Cu), to evaluate the metabolism, biodistribution, and potential of [ 64 Cu]PSMA-617 for PET imaging of prostate cancer. [ 64 Cu]PSMA-617 was synthesized by heating PSMA-617 with [ 64 Cu]CuCl 2 in buffer solution at 90°C for 5 min. In vitro uptake was determined in two cell lines of prostate cancer. In vivo regional distributions were determined in normal and tumor-bearing mice. High radiolabeling efficiency of 64 Cu for PSMA-617 yielded [ 64 Cu]PSMA-617 with >99% radiochemical purity. In vitro cellular uptake experiments demonstrated the specificity of [ 64 Cu]PSMA-617 for PSMA-positive LNCaP cells. Biodistribution observations of normal mice revealed high uptake of radioactivity in the kidney and liver. PET with [ 64 Cu]PSMA-617 visualized tumor areas implanted by PSMA-positive LNCaP cells in the mice. Two hours after the injection of [ 64 Cu]PSMA-617 into mice, a radiolabeled metabolite was observed in the blood, liver, urine, and LNCaP tumor tissues. [ 64 Cu]PSMA-617 was easily synthesized, and exhibited a favorable biodistribution in PSMA-positive tumors. Although this radioligand shows slow clearance for kidney and high liver uptake, change of its chelator moiety and easy radiolabeling may enable development of new 64 Cu or 67 Cu-labeled PSMA ligands for imaging and radiotherapy.

  7. Synthesis and evaluation of [64Cu]PSMA-617 targeted for prostate-specific membrane antigen in prostate cancer

    PubMed Central

    Cui, Can; Hanyu, Masayuki; Hatori, Akiko; Zhang, Yiding; Xie, Lin; Ohya, Tomoya; Fukada, Masami; Suzuki, Hisashi; Nagatsu, Kotaro; Jiang, Cuiping; Luo, Rui; Shao, Guoqiang; Zhang, Mingrong; Wang, Feng

    2017-01-01

    We radiolabeled a ligand, PSMA-617, of prostate-specific membrane antigen (PSMA) with copper-64 (64Cu), to evaluate the metabolism, biodistribution, and potential of [64Cu]PSMA-617 for PET imaging of prostate cancer. [64Cu]PSMA-617 was synthesized by heating PSMA-617 with [64Cu]CuCl2 in buffer solution at 90°C for 5 min. In vitro uptake was determined in two cell lines of prostate cancer. In vivo regional distributions were determined in normal and tumor-bearing mice. High radiolabeling efficiency of 64Cu for PSMA-617 yielded [64Cu]PSMA-617 with >99% radiochemical purity. In vitro cellular uptake experiments demonstrated the specificity of [64Cu]PSMA-617 for PSMA-positive LNCaP cells. Biodistribution observations of normal mice revealed high uptake of radioactivity in the kidney and liver. PET with [64Cu]PSMA-617 visualized tumor areas implanted by PSMA-positive LNCaP cells in the mice. Two hours after the injection of [64Cu]PSMA-617 into mice, a radiolabeled metabolite was observed in the blood, liver, urine, and LNCaP tumor tissues. [64Cu]PSMA-617 was easily synthesized, and exhibited a favorable biodistribution in PSMA-positive tumors. Although this radioligand shows slow clearance for kidney and high liver uptake, change of its chelator moiety and easy radiolabeling may enable development of new 64Cu or 67Cu-labeled PSMA ligands for imaging and radiotherapy. PMID:28533936

  8. Insulin resistance in striated muscle-specific integrin receptor beta1-deficient mice.

    PubMed

    Zong, Haihong; Bastie, Claire C; Xu, Jun; Fassler, Reinhard; Campbell, Kevin P; Kurland, Irwin J; Pessin, Jeffrey E

    2009-02-13

    Integrin receptor plays key roles in mediating both inside-out and outside-in signaling between cells and the extracellular matrix. We have observed that the tissue-specific loss of the integrin beta1 subunit in striated muscle results in a near complete loss of integrin beta1 subunit protein expression concomitant with a loss of talin and to a lesser extent, a reduction in F-actin content. Muscle-specific integrin beta1-deficient mice had no significant difference in food intake, weight gain, fasting glucose, and insulin levels with their littermate controls. However, dynamic analysis of glucose homeostasis using euglycemichyperinsulinemic clamps demonstrated a 44 and 48% reduction of insulin-stimulated glucose infusion rate and glucose clearance, respectively. The whole body insulin resistance resulted from a specific inhibition of skeletal muscle glucose uptake and glycogen synthesis without any significant effect on the insulin suppression of hepatic glucose output or insulin-stimulated glucose uptake in adipose tissue. The reduction in skeletal muscle insulin responsiveness occurred without any change in GLUT4 protein expression levels but was associated with an impairment of the insulin-stimulated protein kinase B/Akt serine 473 phosphorylation but not threonine 308. The inhibition of insulin-stimulated serine 473 phosphorylation occurred concomitantly with a decrease in integrin-linked kinase expression but with no change in the mTOR.Rictor.LST8 complex (mTORC2). These data demonstrate an in vivo crucial role of integrin beta1 signaling events in mediating cross-talk to that of insulin action.

  9. PET-based compartmental modeling of (124)I-A33 antibody: quantitative characterization of patient-specific tumor targeting in colorectal cancer.

    PubMed

    Zanzonico, Pat; Carrasquillo, Jorge A; Pandit-Taskar, Neeta; O'Donoghue, Joseph A; Humm, John L; Smith-Jones, Peter; Ruan, Shutian; Divgi, Chaitanya; Scott, Andrew M; Kemeny, Nancy E; Fong, Yuman; Wong, Douglas; Scheinberg, David; Ritter, Gerd; Jungbluth, Achem; Old, Lloyd J; Larson, Steven M

    2015-10-01

    The molecular specificity of monoclonal antibodies (mAbs) directed against tumor antigens has proven effective for targeted therapy of human cancers, as shown by a growing list of successful antibody-based drug products. We describe a novel, nonlinear compartmental model using PET-derived data to determine the "best-fit" parameters and model-derived quantities for optimizing biodistribution of intravenously injected (124)I-labeled antitumor antibodies. As an example of this paradigm, quantitative image and kinetic analyses of anti-A33 humanized mAb (also known as "A33") were performed in 11 colorectal cancer patients. Serial whole-body PET scans of (124)I-labeled A33 and blood samples were acquired and the resulting tissue time-activity data for each patient were fit to a nonlinear compartmental model using the SAAM II computer code. Excellent agreement was observed between fitted and measured parameters of tumor uptake, "off-target" uptake in bowel mucosa, blood clearance, tumor antigen levels, and percent antigen occupancy. This approach should be generally applicable to antibody-antigen systems in human tumors for which the masses of antigen-expressing tumor and of normal tissues can be estimated and for which antibody kinetics can be measured with PET. Ultimately, based on each patient's resulting "best-fit" nonlinear model, a patient-specific optimum mAb dose (in micromoles, for example) may be derived.

  10. Functional Analysis of Arabidopsis Sucrose Transporters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John M. Ward

    2009-03-31

    Sucrose is the main photosynthetic product that is transported in the vasculature of plants. The long-distance transport of carbohydrates is required to support the growth and development of net-importing (sink) tissues such as fruit, seeds and roots. This project is focused on understanding the transport mechanism sucrose transporters (SUTs). These are proton-coupled sucrose uptake transporters (membrane proteins) that are required for transport of sucrose in the vasculature and uptake into sink tissues. The accomplishments of this project included: 1) the first analysis of substrate specificity for any SUT. This was accomplished using electrophysiology to analyze AtSUC2, a sucrose transporter frommore » companion cells in Arabidopsis. 2) the first analysis of the transport activity for a monocot SUT. The transport kinetics and substrate specificity of HvSUT1 from barley were studied. 3) the first analysis of a sucrose transporter from sugarcane. and 4) the first analysis of transport activity of a sugar alcohol transporter homolog from plants, AtPLT5. During this period four primary research papers, funded directly by the project, were published in refereed journals. The characterization of several sucrose transporters was essential for the current effort in the analysis of structure/function for this gene family. In particular, the demonstration of strong differences in substrate specificity between type I and II SUTs was important to identify targets for site-directed mutagenesis.« less

  11. Randomized Clinical Trial of Brewed Green and Black Tea in Men with Prostate Cancer Prior to Prostatectomy

    PubMed Central

    Henning, Susanne M.; Wang, Piwen; Said, Jonathan W.; Huang, Min; Grogan, Tristan; Elashoff, David; Carpenter, Catherine L.; Heber, David; Aronson, William J.

    2014-01-01

    Background Preclinical and epidemiologic studies suggest chemopreventive effects of green tea (GT) and black tea (BT) in prostate cancer. In the current study we determined the effect of GT and BT consumption on biomarkers related to prostate cancer development and progression. Methods In this exploratory, open label, phase II trial 113 men diagnosed with prostate cancer were randomized to consume six cups daily of brewed GT, BT or water (control) prior to radical prostatectomy (RP). The primary endpoint was prostate tumor markers of cancer development and progression determined by tissue immunostaining of proliferation (Ki67), apoptosis (Bcl-2, Bax, Tunel), inflammation [nuclear and cytoplasmic nuclear factor kappa B (NFκB)] and oxidation [8-hydroxydeoxy- guanosine (8OHdG)]. Secondary endpoints of urinary oxidation, tea polyphenol uptake in prostate tissue, and serum prostate specific antigen (PSA) were evaluated by high performance liquid chromatography and ELISA analysis. Results Ninety three patients completed the intervention. There was no significant difference in markers of proliferation, apoptosis and oxidation in RP tissue comparing GT and BT to water control. Nuclear staining of NFkB was significantly decreased in RP tissue of men consuming GT (p=0.013) but not BT (p=0.931) compared to water control. Tea polyphenols were detected in prostate tissue from 32 of 34 men consuming GT but not in the other groups. Evidence of a systemic antioxidant effect was observed (reduced urinary 8OHdG) only with GT consumption (p=0.03). GT, but not BT or water, also led to a small but statistically significant decrease in serum prostate-specific antigen (PSA) levels (p=0.04). Conclusion Given the GT-induced changes in NFkB and systemic oxidation, and uptake of GT polyphenols in prostate tissue, future longer-term studies are warranted to further examine the role of GT for prostate cancer prevention and treatment, and possibly for other prostate conditions such as prostatitis. PMID:25545744

  12. A novel approach to breast cancer diagnosis via PET imaging of microcalcifications using 18F-NaF

    PubMed Central

    Wilson, George H.; Gore, John C.; Yankeelov, Thomas E.; Barnes, Stephanie; Peterson, Todd E.; True, Jarrod M.; Shokouhi, Sepideh; McIntyre, J. Oliver.; Sanders, Melinda; Abramson, Vandana; Ngyuen, The-Quyen; Mahadevan-Jansen, Anita; Tantawy, Mohammed N.

    2015-01-01

    Rationale Current radiological methods for diagnosing breast cancer detect specific morphological features of solid tumors and/or any associated calcium deposits. These deposits originate from an early molecular microcalcification process which consists of two types: type 1 is calcium oxylate (CO) and type II is carbonated calcium hydroxyapetite (HAP). Type I microcalcifications are mainly associated with benign tumors while type II have been shown to be produced, internally, by malignant cells. No current non-invasive in vivo techniques are available for detecting intratumoral microcalcifications. Such a technique would have a significant impact on breast cancer diagnosis and prognosis in preclinical and clinical settings. 18F-NaF PET has been solely used for bone imaging by targeting the bone HAP. In this work, we provide preliminary evidence that 18F-NaF PET imaging can be used to detect breast cancer by targeting the HAP lattice within the tumor microenvironment with high specificity and soft-tissue contrast-to-background ratio, while delineating tumors from inflammation. METHODS Mice were injected with approximately 106 MDA-MB-231 cells subcutaneously and imaged with 18F-NaF PET/CT in a 120 min dynamic sequence when the tumors reached a size of ~250 mm3. Regions-of-interest (ROIs) were drawn around the tumor, muscle, and bone. The concentration of the radiotracer within those ROIs were compared to one another. For comparison to inflammation, rats with inflammatory paws were subjected to 18F-NaF PET imaging. RESULTS Tumor uptake of 18F− was significantly higher (p<0.05) than muscle uptake where the tumor-to-muscle ratio was ~3.5. The presence of type II microcalcification in the MDA-MB-231 cell line was confirmed histologically using alizarin red S and von Kossa staining as well as Raman microspectroscopy. No uptake of 18F− was observed in the rat inflamed tissue. Lack of HAP in the inflamed tissue was verified histologically. CONCLUSIONS This study provides preliminary evidence suggesting that specific targeting of the HAP within the tumor microenvironment with 18F may be able to distinguishing between inflammation and cancer. PMID:24833491

  13. Immunolocalization of a Unique Form of Maize Kernel Glutamine Synthetase Using a Monoclonal Antibody.

    PubMed Central

    Muhitch, M. J.; Felker, F. C.; Taliercio, E. W.; Chourey, P. S.

    1995-01-01

    The pedicel (basal maternal tissue) of maize (Zea mays L.) kernels contains a physically and kinetically unique form of glutamine synthetase (GSp1) that is involved in the conversion of transport forms of nitrogen into glutamine for uptake by the developing endosperm (M.J. Muhitch [1989] Plant Physiol 91: 868-875). A monoclonal antibody has been raised against this kernel-specific GS that does not cross-react either with a second GS isozyme found in the pedicel or with the GS isozymes from the embryo, roots, or leaves. When used as a probe for tissue printing, the antibody labeled the pedicel tissue uniformly and also labeled some of the pericarp surrounding the lower endosperm. Silver-enhanced immunogold staining of whole-kernel paraffin sections revealed the presence of GSp1 in both the vascular tissue that terminates in the pedicel and the pedicel parenchyma cells, which are located between the vascular tissue and the basal endosperm transfer cells. Light staining of the subaleurone was also noted. The tissue-specific localization of GSp1 within the pedicel is consistent with its role in the metabolism of nitrogenous transport compounds as they are unloaded from the phloem. PMID:12228400

  14. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Veronica; Saraff, Kumuda; Medh, Jheem D., E-mail: jheem.medh@csun.edu

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted inmore » a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.« less

  15. Systemic Glucoregulation by Glucose-Sensing Neurons in the Ventromedial Hypothalamic Nucleus (VMH).

    PubMed

    Shimazu, Takashi; Minokoshi, Yasuhiko

    2017-05-01

    The ventromedial hypothalamic nucleus (VMH) regulates glucose production in the liver as well as glucose uptake and utilization in peripheral tissues, including skeletal muscle and brown adipose tissue, via efferent sympathetic innervation and neuroendocrine mechanisms. The action of leptin on VMH neurons also increases glucose uptake in specific peripheral tissues through the sympathetic nervous system, with improved insulin sensitivity. On the other hand, subsets of VMH neurons, such as those that express steroidogenic factor 1 (SF1), sense changes in the ambient glucose concentration and are characterized as glucose-excited (GE) and glucose-inhibited (GI) neurons whose action potential frequency increases and decreases, respectively, as glucose levels rise. However, how these glucose-sensing (GE and GI) neurons in the VMH contribute to systemic glucoregulation remains poorly understood. In this review, we provide historical background and discuss recent advances related to glucoregulation by VMH neurons. In particular, the article describes the role of GE neurons in the control of peripheral glucose utilization and insulin sensitivity, which depend on mitochondrial uncoupling protein 2 of the neurons, as well as that of GI neurons in the control of hepatic glucose production through hypoglycemia-induced counterregulatory mechanisms.

  16. Abscisic acid triggers whole-plant and fruit-specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit.

    PubMed

    de Freitas, Sergio Tonetto; Shackel, Kenneth A; Mitcham, Elizabeth J

    2011-05-01

    Calcium (Ca) uptake into fruit and leaves is dependent on xylemic water movement, and hence presumably driven by transpiration and growth. High leaf transpiration is thought to restrict Ca movement to low-transpiring tomato fruit, which may increase fruit susceptibility to the Ca-deficiency disorder, blossom end rot (BER). The objective of this study was to analyse the effect of reduced leaf transpiration in abscisic acid (ABA)-treated plants on fruit and leaf Ca uptake and BER development. Tomato cultivars Ace 55 (Vf) and AB2 were grown in a greenhouse environment under Ca-deficit conditions and plants were treated weekly after pollination with water (control) or 500 mg l(-1) ABA. BER incidence was completely prevented in the ABA-treated plants and reached values of 30-45% in the water-treated controls. ABA-treated plants had higher stem water potential, lower leaf stomatal conductance, and lower whole-plant water loss than water-treated plants. ABA treatment increased total tissue and apoplastic water-soluble Ca concentrations in the fruit, and decreased Ca concentrations in leaves. In ABA-treated plants, fruit had a higher number of Safranin-O-stained xylem vessels at early stages of growth and development. ABA treatment reduced the phloem/xylem ratio of fruit sap uptake. The results indicate that ABA prevents BER development by increasing fruit Ca uptake, possibly by a combination of whole-plant and fruit-specific mechanisms.

  17. Insulin action in adipose tissue and muscle in hypothyroidism.

    PubMed

    Dimitriadis, George; Mitrou, Panayota; Lambadiari, Vaia; Boutati, Eleni; Maratou, Eirini; Panagiotakos, Demosthenes B; Koukkou, Efi; Tzanela, Marinela; Thalassinos, Nikos; Raptis, Sotirios A

    2006-12-01

    Although insulin resistance in thyroid hormone excess is well documented, information on insulin action in hypothyroidism is limited. To investigate this, a meal was given to 11 hypothyroid (HO; aged 45 +/- 3 yr) and 10 euthyroid subjects (EU; aged 42 +/- 4 yr). Blood was withdrawn for 360 min from veins (V) draining the anterior abdominal sc adipose tissue and the forearm and from the radial artery (A). Blood flow (BF) in adipose tissue was measured with 133Xe and in forearm with strain-gauge plethysmography. Tissue glucose uptake was calculated as (A-V)glucose(BF), lipoprotein lipase as (A-V)Triglycerides(BF), and lipolysis as [(V-A)glycerol(BF)]-lipoprotein lipase. The HO group had higher glucose and insulin levels than the EU group (P < 0.05). In HO vs. EU after meal ingestion (area under curve 0-360 min): 1) BF (1290 +/- 79 vs. 1579 +/- 106 ml per 100 ml tissue in forearm and 706 +/- 105 vs. 1340 +/- 144 ml per 100 ml tissue in adipose tissue) and glucose uptake (464 +/- 74 vs. 850 +/- 155 micromol per 100 ml tissue in forearm and 208 +/- 42 vs. 406 +/- 47 micromol per 100 ml tissue in adipose tissue) were decreased (P < 0.05), but fractional glucose uptake was similar (28 +/- 6 vs. 33 +/- 6% per minute in forearm and 17 +/- 4 vs. 14 +/- 3% per minute in adipose tissue); 2) suppression of lipolysis by insulin was similar; and 3) plasma triglycerides were elevated (489 +/- 91 vs. 264 +/- 36 nmol/liter.min, P < 0.05), whereas adipose tissue lipoprotein lipase (42 +/- 11 vs. 80 +/- 21 micromol per 100 ml tissue) and triglyceride clearance (45 +/- 10 vs. 109 +/- 21 ml per 100 ml tissue) were decreased in HO (P < 0.05). In hypothyroidism: 1) glucose uptake in muscle and adipose tissue is resistant to insulin; 2) suppression of lipolysis by insulin is not impaired; and 3) hypertriglyceridemia is due to decreased clearance by the adipose tissue.

  18. Imaging vascular endothelial growth factor (VEGF) receptors in turpentine-induced sterile thigh abscesses with radiolabeled single-chain VEGF.

    PubMed

    Levashova, Zoia; Backer, Marina; Backer, Joseph M; Blankenberg, Francis G

    2009-12-01

    Angiogenesis plays a central role in the pathogenesis of chronic inflammatory disorders. Vascular endothelial growth factor (VEGF) and its receptors are the most important regulators of angiogenesis. We wished to determine whether labeled forms of single-chain VEGF (scVEGF) could be used to image VEGF receptors in a well-characterized model of sterile soft-tissue inflammation induced by intramuscular injection of turpentine. Anesthetized adult male Swiss-Webster mice received a 20-microL intramuscular injection of turpentine into the right thigh. At 4, 7, or 10 d later, groups of 3-5 mice were injected via the tail vein with 50 microg of either scVEGF that had been site specifically labeled with Cy5.5 (scVEGF/Cy) or inactivated scVEGF/Cy (inVEGF/Cy) and then examined by fluorescence imaging. At 3, 4, 6, 7, 9, 10, or 12 d, additional groups of 3-5 mice were injected via the tail vein with 74-111 MBq of (99m)Tc-scVEGF (or (99m)Tc-inVEGF) and then examined by SPECT imaging. On days 3 through 10, both forms of scVEGF (scVEGF/Cy and (99m)Tc-scVEGF) showed significantly higher uptake (P < 0.05) in the right (abscessed) thigh than in the contralateral thigh (and higher uptake than the inactivated tracer). Peak uptake occurred on day 7 (3.67 +/- 1.79 [ratio of uptake in abscessed thigh to uptake in normal thigh, mean +/- SD] and 0.72 +/- 0.01 for scVEGF/Cy and inVEGF/Cy, respectively, and 3.49 +/- 1.22 and 1.04 +/- 0.41 for (99m)Tc-scVEGF and (99m)Tc-inVEGF, respectively) and slowly decreased thereafter. Autoradiography revealed peak tracer uptake in the thick irregular angiogenic rim of the abscess cavity on day 9 (5.83 x 10(-7) +/- 9.22 x 10(-8) and 5.85 x 10(-8) +/- 5.95 x 10(-8) percentage injected dose per pixel for (99m)Tc-scVEGF and (99m)Tc-inVEGF, respectively); in comparison, a thin circumscribed rim of uptake was seen with (99m)Tc-inVEGF. Immunostaining revealed that VEGFR-2 (VEGF receptor) colocalized with CD31 (endothelial cell marker) at all time points in the abscess rim, whereas F4/80 (macrophage) immunostaining reached a maximum at day 7 and decreased by day 10. The uptake of scVEGF in turpentine-induced abscesses was specific and directly related to VEGFR-2 expression in the neovasculature of the angiogenic rim. Peak tracer uptake coincided with maximum macrophage infiltration, suggesting that scVEGF imaging may be useful for the detection, localization, and monitoring of chronic inflammation in bone, joints, or soft tissues.

  19. Matrix metalloproteinase-9 (MMP-9) as an activator of nanosystems for targeted drug delivery in pancreatic cancer.

    PubMed

    Grünwald, Barbara; Vandooren, Jennifer; Locatelli, Erica; Fiten, Pierre; Opdenakker, Ghislain; Proost, Paul; Krüger, Achim; Lellouche, Jean Paul; Israel, Liron Limor; Shenkman, Louis; Comes Franchini, Mauro

    2016-10-10

    Specific cancer cell targeting is a pre-requisite for efficient drug delivery as well as for high-resolution imaging and still represents a major technical challenge. Tumor-associated enzyme-assisted targeting is a new concept that takes advantage of the presence of a specific activity in the tumor entity. MMP-9 is a protease found to be upregulated in virtually all malignant tumors. Consequently, we hypothesized that its presence can provide a de-shielding activity for targeted delivery of drugs by nanoparticles (NPs) in pancreatic cancer. Here, we describe synthesis and characterization of an optimized MMP-9-cleavable linker mediating specific removal of a PEG shield from a PLGA-b-PEG-based polymeric nanocarrier (Magh@PNPs-PEG-RegaCP-PEG) leading to specific uptake of the smaller PNPs with their cargo into cells. The specific MMP-9-cleavable linker was designed based on the degradation efficiency of peptides derived from the collagen type II sequence. MMP-9-dependent uptake of the Magh@PNPs-PEG-RegaCP-PEG was demonstrated in pancreatic cancer cells in vitro. Accumulation of the Magh@PNPs-PEG-RegaCP-PEG in pancreatic tissues in the clinically relevant KPC mouse model of pancreatic cancer, as a proof-of-concept, was tumor-specific and MMP-9-dependent, indicating that MMP-9 has a strong potential as a specific mediator of PNP de-shielding for tumor-specific uptake. Pre-treatment of mice with Magh@PNPs-PEG-RegaCP-PEG led to reduction of liver metastasis and drastically decreased average colony size. In conclusion, the increased tumor-specific presence and activity of MMP-9 can be exploited to deliver an MMP-9-activatable NP to pancreatic tumors specifically, effectively, and safely. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Report: An ex vivo up-take of levamisole molecules by cestode (Monezia expensa) of goat (Capra hirsa) and its detection through RP-HPLC.

    PubMed

    Ayaz, Muhammad Mazhar; Sajid, Muhammad; Das, Sanjota Nirmal; Hanif, Muhammad

    2018-05-01

    Detection of various molecules of drugs remained a prime issue especially in tissues of animals, humans and in their target parasites. The cestode/tapeworms pose a dilemma because of their weird body composition and uptake pattern of nutrients and medicines especially through absorption by tegument. We selected levamisole; thought to be potent antiparasitic/ani-cestodal drug. The uptake of levamisole (LEV) through cestodeal tissues is studied through HPCL in this paper. High performance liquid chromatography technique has been utilized to know the uptake of levamisole in tissues of cestodes of Goat (Monezia expensa) in small ruminants. The drug was exposed to M. expensa by in vitro till its death or a parasite ceases its movement. The tissue/ part of proglattids of the M. expensa were homogenized with some modifications and levamisole extraction was performed with liquid phase extraction method. The evaporation of solvent was done and the residual cestodal tissues were cleaned by solid phase. After the solid phase extraction method, the recovery of drug, detection and quantification of levamisole from cestodal tissues was determined through Reverse Phase Column High Performance Liquid Chromatography (RP-HPLC). Levamisole (LEV) molecules assay was obtained on a C18 reverse-phase (20um, 6mm x 150mm) column at flow rate of 1ml/min using acetonitrile and ammonium acetate as mobile phase and UV detection was done at 254nm. The development of method of Levamisole (LEV) detection from cestodal tissues by HPLC in vitro samples has been demonstrated first time in Pakistan, which can provide the solution of parasitic control and provide in sight in to the uptake of anti cestodal drugs either against human or livestock parasites.

  1. Accumulation and distribution of selenium in mussel and shrimp tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, S.W.; Benayoun, G.

    1976-09-01

    The tissue distribution of selenium in mussels and shrimp was examined and the bioaccumulation kinetics in the various tissues was elucidated with the aid of radio selenium. Mussels (Mytilus galloprovincialis) and shrimp (Lysmata seticaudata) collected near the Monaco port, were apportioned into several groups. One group of mussels and shrimp was maintained in sea water containing 0.8 ..mu..Ci/liter high specific activity Se-75. Three to four individuals were dissected and their tissues monitored for Se-75 content periodically. Another group of shrimp, maintained in flowing sea water, were fed ad libitum mussels that had previously accumulated Se-75 from sea water for severalmore » days. Shrimp were periodically dissected to follow tissue accumulation of ingested selenium. The highest concentrations of selenium were found in the exoskeleton, presumably due, in part, to the relatively large amount of isotope sorbed to its outer surface. Molts, cast by shrimp at various times throughout uptake, contained from 60 to 90% of the total Se-75 body burden. Direct uptake of water led to initially small fractions in internal tissues such as muscle and viscera compared to the relatively large fraction associated with the exoskeleton. With time percentages in internal tissues gradually increased relative to that in the exoskeleton. When Se-75 was accumulated through the food chain an opposite trend was noted with the Se-75 fraction in exoskeleton slowly increasing and that in viscera decreasing during the course of the experiment. All tissues examined readily accumulated the isotope and, in general, did not appear to have reached a steady state concentration after 63 days. The highest Se-75 concentrations were found in the visceral mass with lesser amounts in gills, muscle and mantle, in that order.« less

  2. Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages.

    PubMed

    van Pomeren, M; Brun, N R; Peijnenburg, W J G M; Vijver, M G

    2017-09-01

    In ecotoxicology, it is continuously questioned whether (nano)particle exposure results in particle uptake and subsequent biodistribution or if particles adsorb to the epithelial layer only. To contribute to answering this question, we investigated different uptake routes in zebrafish embryos and how they affect particle uptake into organs and within whole organisms. This is addressed by exposing three different life stages of the zebrafish embryo in order to cover the following exposure routes: via chorion and dermal exposure; dermal exposure; oral and dermal exposure. How different nanoparticle sizes affect uptake routes was assessed by using polystyrene particles of 25, 50, 250 and 700nm. In our experimental study, we showed that particle uptake in biota is restricted to oral exposure, whereas the dermal route resulted in adsorption to the epidermis and gills only. Ingestion followed by biodistribution was observed for the tested particles of 25 and 50nm. The particles spread through the body and eventually accumulated in specific organs and tissues such as the eyes. Particles larger than 50nm were predominantly adsorbed onto the intestinal tract and outer epidermis of zebrafish embryos. Embryos exposed to particles via both epidermis and intestine showed highest uptake and eventually accumulated particles in the eye, whereas uptake of particles via the chorion and epidermis resulted in marginal uptake. Organ uptake and internal distribution should be monitored more closely to provide more in depth information of the toxicity of particles. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Design of a New Glutamine-Fipronil Conjugate with α-Amino Acid Function and its Uptake by A. thaliana Lysine Histidine Transporter 1 ( AtLHT1).

    PubMed

    Jiang, Xunyuan; Xie, Yun; Ren, Zhanfu; Ganeteg, Ulrika; Lin, Fei; Zhao, Chen; Xu, Hanhong

    2018-06-26

    Creating novel pesticides with phloem-mobility is essential for controlling insects in vascular tissue and root, and conjugating existing pesticides with amino acid is an effective approach. In order to obtain highly phloem-mobile candidate for efficient pesticide, an electro-neutral L-glutamine-fipronil conjugate (L-GlnF) retaining α-amino acid function was designed and synthesized to fit the substrate specificity of amino acid transporter. Cotyledon uptake and phloem loading tests with Ricinus communis have verified that L-GlnF was phloem mobile, and its phloem mobility was higher than its enantiomer D-GlnF and other previously reported amino acid-fipronil conjugates. Inhibition experiments then suggested that the uptake of L-GlnF was, at least partially, mediated by active transport mechanism. This inference was further strengthened by assimilation experiments with Xenopus oocytes and genetically modified Arabidopsis thaliana, which showed direct correlation between the uptake of L-GlnF and expression of amino acid transporter AtLHT1. Thus, conjugation with L-Gln appears to be a potential strategy to ensure the uptake of pesticides via endogenous amino acid transport system.

  4. Preclinical Evaluation of 18F-JNJ64349311, a Novel PET Tracer for Tau Imaging.

    PubMed

    Declercq, Lieven; Rombouts, Frederik; Koole, Michel; Fierens, Katleen; Mariën, Jonas; Langlois, Xavier; Andrés, José Ignacio; Schmidt, Mark; Macdonald, Gregor; Moechars, Diederik; Vanduffel, Wim; Tousseyn, Thomas; Vandenberghe, Rik; Van Laere, Koen; Verbruggen, Alfons; Bormans, Guy

    2017-06-01

    In this study, we have synthesized and evaluated 18 F-JNJ64349311, a tracer with high affinity for aggregated tau (inhibition constant value, 8 nM) and high (≥500×) in vitro selectivity for tau over β-amyloid, in comparison with the benchmark compound 18 F-AV1451 ( 18 F-T807) in mice, rats, and a rhesus monkey. Methods: In vitro binding characteristics were determined for Alzheimer's disease, progressive supranuclear palsy, and corticobasal degeneration patient brain tissue slices using autoradiography studies. Ex vivo biodistribution studies were performed in mice. Radiometabolites were quantified in the brain and plasma of mice and in the plasma of a rhesus monkey using high-performance liquid chromatography. Dynamic small-animal PET studies were performed in rats and a rhesus monkey to evaluate tracer pharmacokinetics in the brain. Results: Mouse biodistribution studies showed moderate initial brain uptake and rapid brain washout. Radiometabolite analyses after injection of 18 F-JNJ64349311 in mice showed the presence of a polar radiometabolite in plasma, but not in the brain. Semiquantitative autoradiography studies on postmortem tissue sections of human Alzheimer's disease brains showed highly displaceable binding to tau-rich regions. No specific binding was, however, found on human progressive supranuclear palsy and corticobasal degeneration brain slices. Small-animal PET scans of Wistar rats revealed moderate initial brain uptake (SUV, ∼1.5 at 1 min after injection) and rapid brain washout. Gradual bone uptake was, however, also observed. Blocking and displacement did not affect brain time-activity curves, suggesting no off-target specific binding of the tracer in the healthy rat brain. A small-animal PET scan of a rhesus monkey revealed moderate initial brain uptake (SUV, 1.9 at 1 min after injection) with a rapid washout. In the monkey, no bone uptake was detected during the 120-min scan. Conclusion: This biologic evaluation suggests that 18 F-JNJ64349311 is a promising tau PET tracer candidate, with a favorable pharmacokinetic profile, as compared with 18 F-AV1451. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  5. ImmunoPET of tissue factor expression in triple-negative breast cancer with a radiolabeled antibody Fab fragment.

    PubMed

    Shi, Sixiang; Hong, Hao; Orbay, Hakan; Graves, Stephen A; Yang, Yunan; Ohman, Jakob D; Liu, Bai; Nickles, Robert J; Wong, Hing C; Cai, Weibo

    2015-07-01

    To date, there is no effective therapy for triple-negative breast cancer (TNBC), which has a dismal clinical outcome. Upregulation of tissue factor (TF) expression leads to increased patient morbidity and mortality in many solid tumor types, including TNBC. Our goal was to employ the Fab fragment of ALT-836, a chimeric anti-human TF mAb, for PET imaging of TNBC, which can be used to guide future TNBC therapy. ALT-836-Fab was generated by enzymatic papain digestion. SDS-PAGE and FACS studies were performed to evaluate the integrity and TF binding affinity of ALT-836-Fab before NOTA conjugation and (64)Cu-labeling. Serial PET imaging and biodistribution studies were carried out to evaluate the tumor targeting efficacy and pharmacokinetics in the MDA-MB-231 TNBC model, which expresses high levels of TF on the tumor cells. Blocking studies, histological assessment, as well as RT-PCR were performed to confirm TF specificity of (64)Cu-NOTA-ALT-836-Fab. ALT-836-Fab was produced with high purity, which exhibited superb TF binding affinity and specificity. Serial PET imaging revealed rapid and persistent tumor uptake of (64)Cu-NOTA-ALT-836-Fab (5.1 ± 0.5 %ID/g at 24 h post-injection; n = 4) and high tumor/muscle ratio (7.0 ± 1.2 at 24 h post-injection; n = 4), several-fold higher than that of the blocking group and tumor models that do not express significant level of TF, which was confirmed by biodistribution studies. TF specificity of the tracer was also validated by histology and RT-PCR. (64)Cu-NOTA-ALT-836-Fab exhibited prominent tissue factor targeting efficiency in MDA-MB-231 TNBC model. The use of a Fab fragment led to fast tumor uptake and good tissue/muscle ratio, which may be translated into same-day immunoPET imaging in the clinical setting to improve TNBC patient management.

  6. Nitrogen uptake by the shoots of smooth cordgrass Spartina alterniflora

    USGS Publications Warehouse

    Mozdzer, T.J.; Kirwan, M.; McGlathery, K.J.; Zieman, J.C.

    2011-01-01

    The smooth cordgrass Spartina alterniflora is the foundation species in intertidal salt marshes of the North American Atlantic coast. Depending on its elevation within the marsh, S. alterniflora may be submerged for several hours per day. Previous ecosystem-level studies have demonstrated that S. alterniflora marshes are a net sink for nitrogen (N), and that removal of N from flooding tidal water can provide enough N to support the aboveground biomass. However, studies have not specifically investigated whether S. alterniflora plants assimilate nutrients through their aboveground tissue. We determined in situ foliar and stem N uptake kinetics for 15NH4, 15NO3, and 15N-glycine by artificially flooding plants in a mid-Atlantic salt marsh. To determine the ecological importance of shoot uptake, a model was created to estimate the time of inundation of S. alterniflora in 20 cm height intervals during the growing season. Estimates of inundation time, shoot mass, N uptake rates, and N availability from long-term data sets were used to model seasonal shoot N uptake. Rates of aboveground N uptake rates (leaves + stems) were ranked as follows: NH4+ > glycine > NO3–. Our model suggests that shoot N uptake may satisfy up to 15% of the growing season N demand in mid-Atlantic salt marshes, with variation depending on plant elevation and water column N availability. However, in eutrophic estuaries, our model indicates the potential of the plant canopy as a nutrient filter, with shoot uptake contributing 66 to 100% of plant N demand.

  7. NaCl-Induced Alterations in Both Cell Structure and Tissue-Specific Plasma Membrane H+ -ATPase Gene Expression.

    PubMed Central

    Niu, X.; Damsz, B.; Kononowicz, A. K.; Bressan, R. A.; Hasegawa, P. M.

    1996-01-01

    NaCl-induced plasma membrane H+-ATPase gene expression, which occurs in roots and fully expanded leaves of the halophyte Atriplex nummularia L. (X. Niu, M.L. Narasimhan, R.A. Salzman, R.A. Bressan, P.M. Hasegawa [1993] Plant Physiol 103: 713-718), has been differentially localized to specific tissues using in situ RNA hybridization techniques. Twenty-four-hour exposure of plants to 400 mM NaCl resulted in substantial accumulation of H+ pump message in the epidermis of the root tip and the endodermis of the root elongation/differentiation zone. In expanded leaves, NaCl induction of plasma membrane H+-ATPase message accumulation was localized to bundle-sheath cells. Ultrastructural analyses indicated that significant cytological adaptations in root cells included plasmolysis that is accompanied by plasma membrane invaginations, formation of Hechtian strands and vesiculation, and vacuolation. These results identify specific tissues that are involved in the regulation of Na+ and Cl- uptake into different organs of the halophyte A. nummularia and provide evidence of the intercellular and interorgan coordination that occurs in the mediation of NaCl adaptation. PMID:12226321

  8. NaCl-Induced Alterations in Both Cell Structure and Tissue-Specific Plasma Membrane H+ -ATPase Gene Expression.

    PubMed

    Niu, X.; Damsz, B.; Kononowicz, A. K.; Bressan, R. A.; Hasegawa, P. M.

    1996-07-01

    NaCl-induced plasma membrane H+-ATPase gene expression, which occurs in roots and fully expanded leaves of the halophyte Atriplex nummularia L. (X. Niu, M.L. Narasimhan, R.A. Salzman, R.A. Bressan, P.M. Hasegawa [1993] Plant Physiol 103: 713-718), has been differentially localized to specific tissues using in situ RNA hybridization techniques. Twenty-four-hour exposure of plants to 400 mM NaCl resulted in substantial accumulation of H+ pump message in the epidermis of the root tip and the endodermis of the root elongation/differentiation zone. In expanded leaves, NaCl induction of plasma membrane H+-ATPase message accumulation was localized to bundle-sheath cells. Ultrastructural analyses indicated that significant cytological adaptations in root cells included plasmolysis that is accompanied by plasma membrane invaginations, formation of Hechtian strands and vesiculation, and vacuolation. These results identify specific tissues that are involved in the regulation of Na+ and Cl- uptake into different organs of the halophyte A. nummularia and provide evidence of the intercellular and interorgan coordination that occurs in the mediation of NaCl adaptation.

  9. Development of a (99m)Tc-labeled lactam bridge-cyclized alpha-MSH derivative peptide as a possible single photon imaging agent for melanoma tumors.

    PubMed

    Shamshirian, Danial; Erfani, Mostafa; Beiki, Davood; Fallahi, Babak; Shafiei, Mohammad

    2015-10-01

    Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target which has been used for melanoma imaging and therapy. In this work, a new lactam bridge α-MSH analog was labeled with (99m)Tc via HYNIC and EDDA/tricine as coligands including gamma aminobutyric acid (GABA) as a three carbon chain spacer between HYNIC and the N-terminus of the cyclic peptide. Also, stability in human serum, receptor bound internalization, in vivo tumor uptake, and tissue biodistribution were thoroughly investigated. HYNIC-GABA-Nle-CycMSHhept was synthesized using a standard Fmoc strategy. Labeling was performed at 95 °C and analysis involved instant thin layer chromatography and high performance liquid chromatography methods. The receptor bound internalization rate was studied in MC1 receptor expressing B16/F10 cells. Biodistribution of radiopeptide was studied in nude mice bearing B16/F10 tumor. Labeling yield of >98 % (n = 3) was obtained corresponding to a specific activity of 81 MBq/nmol. Peptide conjugate showed efficient stability in the presence of human serum. The radioligand showed specific internalization into B16/F10 cells (12.45 ± 1.1 % at 4 h). In biodistribution studies, a receptor-specific uptake was observed in MC1 receptor-positive organs so that after 2 h the uptake in mouse tumor was 5.10 ± 0.08 % ID/g, while low accumulation in the kidney uptake was observed (4.58 ± 0.68 % ID/g at 2 h after injection). The obtained results show that the presented new designed labeled peptide conjugate may be a suitable candidate for diagnosis of malignant tumors.

  10. Fluoride Alteration of [3H]Glucose Uptake in Wistar Rat Brain and Peripheral Tissues.

    PubMed

    Rogalska, Anna; Kuter, Katarzyna; Żelazko, Aleksandra; Głogowska-Gruszka, Anna; Świętochowska, Elżbieta; Nowak, Przemysław

    2017-04-01

    The present study was designed to investigate the role of postnatal fluoride intake on [3H]glucose uptake and transport in rat brain and peripheral tissues. Sodium fluoride (NaF) in a concentration of 10 or 50 ppm was added to the drinking water of adult Wistar rats. The control group received distilled water. After 4 weeks, respective plasma fluoride levels were 0.0541 ± 0.0135 μg/ml (control), 0.0596 ± 0.0202 μg/ml (10 ppm), and 0.0823 ± 0.0199 μg/ml (50 ppm). Although plasma glucose levels were not altered in any group, the plasma insulin level in the fluoride (50 ppm) group was elevated (0.72 ± 0.13 μg/ml) versus the control group (0.48 ± 0.24 μg/ml) and fluoride (10 ppm) group. In rats receiving fluoride for 4 weeks at 10 ppm in drinking water, [3H]glucose uptake was unaltered in all tested parts of the brain. However, in rats receiving fluoride at 50 ppm, [3H]glucose uptake in cerebral cortex, hippocampus, and thalamus with hypothalamus was elevated, versus the saline group. Fluoride intake had a negligible effect on [3H]glucose uptake by peripheral tissues (liver, pancreas, stomach, small intestine, atrium, aorta, kidney, visceral tissue, lung, skin, oral mucosa, tongue, salivary gland, incisor, molars, and jawbone). In neither fluoride group was glucose transporter proteins 1 (GLUT 1) or 3 (GLUT 3) altered in frontal cortex and striatum versus control. On the assumption that increased glucose uptake (by neural tissue) reasonably reflects neuronal activity, it appears that fluoride damage to the brain results in a compensatory increase in glucose uptake and utilization without changes in GLUT 1 and GLUT 3 expression.

  11. Zinc and copper tolerance of Agrostis stolonifera L. in tissue culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, L.; Antonovics, J.

    1978-03-01

    Callus tissue was induced from shoot meristematic tissue and root tips of a clone of the grass Agrostis stolonifera tolerant to both zinc and copper, and from a control clone tolerant to neither metal. Growth of the callus tissue on media containing zinc and copper showed that tolerance to both metals was maintained in tissue culture. The pattern of metal uptake in tissue culture resembled uptake by whole plants in that tolerant tissue took up more metal than nontolerant tissue. Plants regenerated from callus had the same copper and zinc tolerance as the original parental clones regardless of time ofmore » growth in tissue culture and shoot or root origin of the tissue. The results support previous evidence that metal tolerance is genetically determined and acts at the cellular level.« less

  12. 11beta-Hydroxysteroid dehydrogenase Type 1: genetic polymorphisms are associated with Type 2 diabetes in Pima Indians independently of obesity and expression in adipocyte and muscle.

    PubMed

    Nair, S; Lee, Y H; Lindsay, R S; Walker, B R; Tataranni, P A; Bogardus, C; Baier, L J; Permana, P A

    2004-06-01

    The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) modulates tissue-specific glucocorticoid concentrations by generating active cortisol. We have shown that adipose tissue 11beta-HSD1 mRNA levels were associated with adiposity and insulinaemia. Here we conducted further expression and genetic association studies in Pima Indians. The 11beta-HSD1 mRNA concentrations were measured in abdominal subcutaneous adipocytes (n=61) and skeletal muscle tissues (n=64). Single nucleotide polymorphisms in the HSD11B1 gene were genotyped in a larger group of full-blooded Pima Indians. Two representative SNPs (SNP1, n=706; SNP5, n=839) were associated with Type 2 diabetes mellitus (p=0.01), although neither SNP was associated with obesity. Among subjects with normal glucose tolerance, SNP1 (n=127) and SNP5 (n=159) were associated with insulin-mediated glucose uptake rates (p=0.03 and p=0.04), and SNP1 was further associated with fasting, 30-min, and 2-h plasma insulin concentrations (p=0.002, p=0.002 and p=0.03). Adipocyte 11beta-HSD1 mRNA concentrations were correlated positively with adiposity and insulinaemia, and were additionally negatively correlated with insulin-mediated glucose uptake rates; nevertheless, the adipocyte 11beta-HSD1 expression did not correlate with genotypes of the donors. The muscle 11beta-HSD1 mRNA concentrations did not correlate with any anthropometric or metabolic variables. We confirmed that adipocyte 11beta-HSD1 mRNA concentrations were associated with adiposity, and showed that genetic variations in the HSD11B1 gene were associated with Type 2 diabetes mellitus, plasma insulin concentrations and insulin action, independent of obesity. The variable adipose expression might not be a primary consequence of these HSD11B1 SNPs. Therefore, it is possible that the HSD11B1 gene is under tissue-specific regulation, and has tissue-specific consequences.

  13. Maximizing tumour exposure to anti-neuropilin-1 antibody requires saturation of non-tumour tissue antigenic sinks in mice.

    PubMed

    Bumbaca, Daniela; Xiang, Hong; Boswell, C Andrew; Port, Ruediger E; Stainton, Shannon L; Mundo, Eduardo E; Ulufatu, Sheila; Bagri, Anil; Theil, Frank-Peter; Fielder, Paul J; Khawli, Leslie A; Shen, Ben-Quan

    2012-05-01

    Neuropilin-1 (NRP1) is a VEGF receptor that is widely expressed in normal tissues and is involved in tumour angiogenesis. MNRP1685A is a rodent and primate cross-binding human monoclonal antibody against NRP1 that exhibits inhibition of tumour growth in NPR1-expressing preclinical models. However, widespread NRP1 expression in normal tissues may affect MNRP1685A tumour uptake. The objective of this study was to assess MNRP1685A biodistribution in tumour-bearing mice to understand the relationships between dose, non-tumour tissue uptake and tumour uptake. Non-tumour-bearing mice were given unlabelled MNRP1685A at 10 mg·kg(-1) . Tumour-bearing mice were given (111) In-labelled MNRP1685A along with increasing amounts of unlabelled antibody. Blood and tissues were collected from all animals to determine drug concentration (unlabelled) or radioactivity level (radiolabelled). Some animals were imaged using single photon emission computed tomography - X-ray computed tomography. MNRP1685A displayed faster serum clearance than pertuzumab, indicating that target binding affected MNRP1685A clearance. I.v. administration of (111) In-labelled MNRP1685A to tumour-bearing mice yielded minimal radioactivity in the plasma and tumour, but high levels in the lungs and liver. Co-administration of unlabelled MNRP1685A with the radiolabelled antibody was able to competitively block lungs and liver radioactivity uptake in a dose-dependent manner while augmenting plasma and tumour radioactivity levels. These results indicate that saturation of non-tumour tissue uptake is required in order to achieve tumour uptake and acceptable exposure to antibody. Utilization of a rodent and primate cross-binding antibody allows for translation of these results to clinical settings. © 2011 Genentech Inc. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  14. Modelling the Transport of Nanoparticles under Blood Flow using an Agent-based Approach.

    PubMed

    Fullstone, Gavin; Wood, Jonathan; Holcombe, Mike; Battaglia, Giuseppe

    2015-06-10

    Blood-mediated nanoparticle delivery is a new and growing field in the development of therapeutics and diagnostics. Nanoparticle properties such as size, shape and surface chemistry can be controlled to improve their performance in biological systems. This enables modulation of immune system interactions, blood clearance profile and interaction with target cells, thereby aiding effective delivery of cargo within cells or tissues. Their ability to target and enter tissues from the blood is highly dependent on their behaviour under blood flow. Here we have produced an agent-based model of nanoparticle behaviour under blood flow in capillaries. We demonstrate that red blood cells are highly important for effective nanoparticle distribution within capillaries. Furthermore, we use this model to demonstrate how nanoparticle size can selectively target tumour tissue over normal tissue. We demonstrate that the polydispersity of nanoparticle populations is an important consideration in achieving optimal specificity and to avoid off-target effects. In future this model could be used for informing new nanoparticle design and to predict general and specific uptake properties under blood flow.

  15. Diagnostic accuracy of [99mTc]Tc-Sestamibi in the assessment of thyroid nodules

    PubMed Central

    Yordanova, Anna; Mahjoob, Soha; Lingohr, Philipp; Kalff, Jörg; Türler, Andreas; Palmedo, Holger; Biersack, Hans-Jürgen; Kristiansen, Glen; Farahati, Jamshid; Essler, Markus; Ahmadzadehfar, Hojjat

    2017-01-01

    [99mTc]Tc-Sestamibi (MIBI) is an increasingly used tool for evaluation of thyroid nodules. However, there is a lack of evidence about the accuracy of this method in the European population. The aim of this study was to assess the utility of MIBI for the differentiation of thyroid nodules in a large cohort. 161 patients underwent MIBI, followed by a thyroidectomy. We used a dual phase MIBI protocol. Interpretation of the images included a scoring system from 0 (absent) to 3 (increased); this was to provide a scale for the uptake of the thyroid nodule in comparison to the paranodular tissue. Additionally, we evaluated the tracer uptake trend in late images compared to early images. We used the final histopathology as the reference standard. Scores 0-1 in early images, scores 0-2 in late images, and an absence of increasing uptake in the thyroid nodule in late images, showed the best predictive values to exclude malignancy, respectively (negative predictive value (NPV) 89%). Highest sensitivity (91%) for malignant nodules was evident in early images with a score 1-3. Highest specificity (91%) was obtained when the negative was defined as an absence of uptake-increase, in the late images. This study confirms that the most valuable feature of MIBI is the high NPV. Thus, with the appropriate interpretation method, high sensitivity and specificity, and moderate PPV can be obtained. PMID:29212258

  16. Diagnostic accuracy of [99mTc]Tc-Sestamibi in the assessment of thyroid nodules.

    PubMed

    Yordanova, Anna; Mahjoob, Soha; Lingohr, Philipp; Kalff, Jörg; Türler, Andreas; Palmedo, Holger; Biersack, Hans-Jürgen; Kristiansen, Glen; Farahati, Jamshid; Essler, Markus; Ahmadzadehfar, Hojjat

    2017-11-07

    [ 99m Tc]Tc-Sestamibi (MIBI) is an increasingly used tool for evaluation of thyroid nodules. However, there is a lack of evidence about the accuracy of this method in the European population. The aim of this study was to assess the utility of MIBI for the differentiation of thyroid nodules in a large cohort. 161 patients underwent MIBI, followed by a thyroidectomy. We used a dual phase MIBI protocol. Interpretation of the images included a scoring system from 0 (absent) to 3 (increased); this was to provide a scale for the uptake of the thyroid nodule in comparison to the paranodular tissue. Additionally, we evaluated the tracer uptake trend in late images compared to early images. We used the final histopathology as the reference standard. Scores 0-1 in early images, scores 0-2 in late images, and an absence of increasing uptake in the thyroid nodule in late images, showed the best predictive values to exclude malignancy, respectively (negative predictive value (NPV) 89%). Highest sensitivity (91%) for malignant nodules was evident in early images with a score 1-3. Highest specificity (91%) was obtained when the negative was defined as an absence of uptake-increase, in the late images. This study confirms that the most valuable feature of MIBI is the high NPV. Thus, with the appropriate interpretation method, high sensitivity and specificity, and moderate PPV can be obtained.

  17. Uptake in melanoma cells of N-(2-diethylaminoethyl)-2-iodobenzamide (BZA2), an imaging agent for melanoma staging: relation to pigmentation.

    PubMed

    Mansard, Sandrine; Papon, Janine; Moreau, Marie-France; Miot-Noirault, Elisabeth; Labarre, Pierre; Bayle, Martine; Veyre, Annie; Madelmont, Jean-Claude; Moins, Nicole

    2005-07-01

    N-(2-diethylaminoethyl)-2-iodobenzamide (BZA(2)) has been singled out as the most efficacious melanoma scintigraphy imaging agent. Our work was designed to assess the mechanisms of the specific affinity of the radioiodinated iodobenzamide for melanoma tissue. We studied the cellular uptake and retention of [(125)I]-BZA(2) on various cell lines. In vitro, cellular [(125)I]-BZA(2) uptake was related to the pigmentation status of the cells: higher in pigmented melanoma cell lines (M4 Beu, IPC 227, B 16) than in a nonpigmented one (M3 Dau) and nonmelanoma cell lines (MCF 7 and L 929). Two mechanisms were assessed: binding of the tracer to melanin or to sigma receptors of melanoma cells. First, the uptake of [(125)I]-BZA(2) after melanogenesis stimulation by alpha-melanocyte-stimulating hormone and l-tyrosine increased in the B 16 melanoma cell line both in vitro and in vivo according to melanin concentration. Moreover, the binding of [(125)I]-BZA(2) to synthetic melanin was dependent on melanin concentration and could be saturated. Second, no competition was evidenced on M4 Beu cells between [(125)I]-BZA(2) and haloperidol, a sigma ligand, at concentrations < or =10(-6) M. We show that the specificity and sensibility of BZA(2) as a melanoma scintigraphic imaging agent are mostly due to interactions with melanic pigments.

  18. Comparative evaluation of two glycine transporter 1 radiotracers [11C]GSK931145 and [18F]MK-6577 in baboons.

    PubMed

    Zheng, Ming-Qiang; Lin, Shu-Fei; Holden, Daniel; Naganawa, Mika; Ropchan, Jim R; Najafzaden, Soheila; Kapinos, Michael; Tabriz, Mike; Carson, Richard E; Hamill, Terence G; Huang, Yiyun

    2016-03-01

    Glycine transporter type-1 (GlyT1) has been proposed as a target for drug development for schizophrenia. PET imaging with a GlyT1 specific radiotracer will allow for the measurement of target occupancy of GlyT1 inhibitors, and for in vivo investigation of GlyT1 alterations in schizophrenia. We conducted a comparative evaluation of two GlyT1 radiotracers, [(11) C]GSK931145, and [(18) F]MK-6577, in baboons. Two baboons were imaged with [(11) C]GSK931145 and [(18) F]MK-6577. Blocking studies with GSK931145 (0.3 or 0.2 mg/kg) were conducted to determine the level of tracer specific binding. [(11) C]GSK931145 and [(18) F]MK-6577 were synthesized in good yield and high specific activity. Moderately fast metabolism was observed for both tracers, with ∼ 30% of parent at 30 min post-injection. In the brain, both radiotracers showed good uptake and distribution profiles consistent with regional GlyT1 densities. [(18) F]MK-6577 displayed higher uptake and faster kinetics than [(11) C]GSK931145. Time activity curves were well described by the two-tissue compartment model. Regional volume of distribution (VT ) values were higher for [(18) F]MK-6577 than [(11) C]GSK931145. Pretreatment with GSK931145 reduced tracer uptake to a homogeneous level throughout the brain, indicating in vivo binding specificity and lack of a reference region for both radiotracers. Linear regression analysis of VT estimates between tracers indicated higher specific binding for [(18) F]MK-6577 than [(11) C]GSK931145, consistent with higher regional binding potential (BPND ) values of [(18) F]MK-6577 calculated using VT from the baseline scans and non-displaceable distribution volume (VND ) derived from blocking studies. [(18) F]MK-6577 appears to be a superior radiotracer with higher brain uptake, faster kinetics, and higher specific binding signals than [(11) C]GSK931145. © 2016 Wiley Periodicals, Inc.

  19. Preclinical evaluation of (99m)Tc labeled chondroitin sulfate for monitoring of cartilage degeneration in osteoarthritis.

    PubMed

    Sobal, Grazyna; Velusamy, Kavitha; Kosik, Siegfried; Menzel, Johannes; Hacker, Marcus; Pagitz, Maximilian

    2016-06-01

    In previous in-vitro and ex-vivo studies we proved the specific uptake of (99m)Tc radiolabeled chondroitin sulfate (CS) in human articular cartilage. As a logical next step for the clinical use for imaging osteoarthritis we investigated in-vivo uptake of (99m)TcCS in dogs. The radiolabeling of CS Condrosulf (IBSA, Lugano, Switzerland) was performed using 25mg of CS and 20-40MBq/kg body weight of (99m)Tc by means of the tin method. In-vivo uptake of (99m)TcCS was evaluated in dogs (n=12, castrated males, 4-9years, with 15-51kg body weight). 6 healthy dogs served as controls and 6 with clinical and radiological signs of osteoarthritis in the carpal, elbow, and tarsal joint were examined. The tracer was i.v. injected into the external cephalic vein. The uptake was monitored after 2, 4, 6 and 24h in healthy and osteoarthritic dogs using a planar gamma camera by regional planar or whole body ventral and dorsal acquisition. For whole body scintigraphy animals were under general anesthesia, for planar under sedation only. In healthy control dogs we did not detect any specific uptake of (99m)TcCS in the cartilage. In contrast, in the diseased dogs suffering from osteoarthritis a significant, specific, persistent uptake between 4 and 6h in tarsal, carpal and cubital joints was documented. Median target (joint) to background (mid antebrachium) ratio (T/B) in the OA joints after 4, 6, and 24h was significantly higher than in healthy controls. Target to background ratio using soft tissue as a background (T/S) a similar significantly higher than in healthy controls. In all osteoarthritic joints we found a significant positive correlation (r=0.8, n=20) between grade of disease (I-III) and T/B. When matching radiographic (X ray) changes in osteoarthritic joints (grade II and III) we found also a maximal uptake of (99m)TcCS at the specific anatomical site of highest cartilage degeneration. None of the dogs experienced any side effects. These results suggest that (99m)TcCS might become a promising diagnostic tool for imaging osteoarthritis. More extensive and detailed examinations are required, however, before extending this methodology for application in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Sodium/iodide symporter: a key transport system in thyroid cancer cell metabolism.

    PubMed

    Filetti, S; Bidart, J M; Arturi, F; Caillou, B; Russo, D; Schlumberger, M

    1999-11-01

    The recent cloning of the gene encoding the sodium/iodide symporter (NIS) has enabled better characterization of the molecular mechanisms underlying iodide transport, thus opening the way to clarifying its role in thyroid diseases. Several studies, at both the mRNA and the protein expression levels, have demonstrated that TSH, the primary regulator of iodide uptake, upregulates NIS gene expression and NIS protein abundance, both in vitro and in vivo. However, other factors, including iodide, retinoic acid, transforming growth factor-beta, interleukin-1alpha and tumour necrosis factor alpha, may participate in the regulation of NIS expression. Investigation of NIS mRNA expression in different thyroid tissues has revealed increased levels of expression in Graves' disease and toxic adenomas, whereas a reduction or loss of NIS transcript was detected in differentiated thyroid carcinomas, despite the expression of other specific thyroid markers. NIS mRNA was also detected in non-thyroid tissues able to concentrate radioiodine, including salivary glands, stomach, thymus and breast. The production of specific antibodies against the NIS has facilitated study of the expression of the symporter protein. Despite of the presence of high levels of human (h)NIS mRNA, normal thyroid glands exhibit a heterogeneous expression of NIS protein, limited to the basolateral membrane of the thyrocytes. By immunohistochemistry, staining of hNIS protein was stronger in Graves' and toxic adenomas and reduced in thyroid carcinomas. Measurement of iodide uptake by thyroid cancer cells is the cornerstone of the follow-up and treatment of patients with thyroid cancer. However, radioiodide uptake is found only in about 67% of patients with persistent or recurrent disease. Several studies have demonstrated a decrease in or a loss of NIS expression in primary human thyroid carcinomas, and immunohistochemical studies have confirmed this considerably decreased expression of the NIS protein in thyroid cancer tissues, suggesting that the low expression of NIS may represent an early abnormality in the pathway of thyroid cell transformation, rather than being a consequence of cancer progression. The relationship between radioiodine uptake and NIS expression by thyroid cancer cells require further study. New strategies, based on manipulation of NIS expression, to obtain NIS gene reactivation or for use as NIS gene therapy in the treatment of radiosensitive cancer, are also being investigated.

  1. Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas.

    PubMed

    Fueger, Barbara J; Czernin, Johannes; Cloughesy, Timothy; Silverman, Daniel H; Geist, Cheri L; Walter, Martin A; Schiepers, Christiaan; Nghiemphu, Phioanh; Lai, Albert; Phelps, Michael E; Chen, Wei

    2010-10-01

    6-(18)F-fluoro-l-dopa ((18)F-FDOPA) measured with PET as a biomarker of amino acid uptake has been investigated in brain tumor imaging. The aims of the current study were to determine whether the degree of (18)F-FDOPA uptake in brain tumors predicted tumor grade and was associated with tumor proliferative activity in newly diagnosed and recurrent gliomas. Fifty-nine patients (40 men, 19 women; mean age ± SD, 44.4 ± 12.3 y) with newly diagnosed (n = 22) or recurrent (n = 37) gliomas underwent (18)F-FDOPA PET perioperatively. Tumor tissue was obtained by resection or biopsy in all patients. The tumor grade and Ki-67 proliferation index were obtained by standard pathology assays. Tumor (18)F-FDOPA uptake was quantified by determining various standardized uptake value (SUV) parameters (mean SUV, maximum SUV [SUVmax], mean values of voxels with top 20% SUVs, and tumor-to-normal-brain tissue ratios) that were then correlated with histopathologic grade and Ki-67 proliferation index. Fifty-nine lesions in 59 patients were analyzed. (18)F-FDOPA uptake was significantly higher in high-grade than in low-grade tumors for newly diagnosed tumors (SUVmax, 4.22 ± 1.30 vs. 2.34 ± 1.35, P = 0.005) but not for recurrent tumors that had gone through treatment previously (SUVmax, 3.36 ± 1.26 vs. 2.67 ± 1.18, P = 0.22). An SUVmax threshold of 2.72 differentiated low-grade from high-grade tumors, with a sensitivity and specificity of 85% and 89%, respectively, using receiver-operating-characteristic curve analysis (area under the curve, 0.86). (18)F-FDOPA PET uptake correlated significantly with Ki-67 tumor proliferation index in newly diagnosed tumors (r = 0.66, P = 0.001) but not in recurrent tumors (r = 0.14, P = 0.41). (18)F-FDOPA uptake is significantly higher in high-grade than in low-grade tumors in newly diagnosed but not recurrent tumors that had been treated previously. A significant correlation between (18)F-FDOPA uptake and tumor proliferation in newly diagnosed tumors was observed, whereas this correlation was not identified for recurrent tumors. Thus, (18)F-FDOPA PET might serve as a noninvasive marker of tumor grading and might provide a useful surrogate of tumor proliferative activity in newly diagnosed gliomas.

  2. Gastrointestinal uptake and distribution of copper in rainbow trout.

    PubMed

    Clearwater, S J; Baskin, S J; Wood, C M; McDonald, D G

    2000-08-01

    A single dose of radioactive copper ((64)Cu or new Cu) was infused into the stomach of rainbow trout (Oncorhynchus mykiss) to model dietary copper (Cu) uptake under conditions of a normal nutritional dose and optimum environmental temperature (16 degrees C, 0.117 microg Cu g(-)(1 )body mass). The distribution of new Cu to the gut and internal organs occurred in two phases: rapid uptake by the gut tissues (almost complete by 24 h post-infusion) followed by slower uptake by the internal organs. By 72 h, 60 % of the dose had been excreted, 19 % was still retained in the gut tissue, 10 % remained in the lumen and 12 % had been absorbed across the gut and partitioned amongst the internal organs. A reduction in water temperature of 10 degrees C (to 6 degrees C) significantly retarded components of new Cu distribution (movement of the bolus along the gut and excretion); nonetheless, by 72 h, the fraction absorbed by all the internal organs was similar to that at 16 degrees C. An increase in water temperature of 3 degrees C (to 19 degrees C) caused a pronounced increase in internal organ uptake by 24 h to approximately double the uptake occurring at 16 degrees C. The uptake of new Cu by the gut tissue had a low temperature coefficient (Q(10)<1) consistent with simple diffusion, while the temperature coefficient for transfer of new Cu from gut tissue to the internal organs was high (Q(10)>2), consistent with facilitated transport. Internally, the liver and gall bladder (including bile) were the target organs for dietary Cu partitioning since they were the only organs that concentrated new Cu from the plasma. Individual tissues differed in terms of the exchange of their background Cu pools with new Cu. The background Cu in the walls of the gastrointestinal tract (excluding stomach) exchanged 45-94 % with new Cu from the gut lumen, while tissues such as the stomach, gills, kidney, carcass and fat had 5-7 % exchangeable background Cu. The liver, heart, spleen, ovary, bile and plasma had only 0.2-0.8 % exchangeable background Cu. The gastrointestinal tissues appear to act as a homeostatic organ, regulating the absorption of nutritional (non-toxic) doses of Cu (0. 117 microg g(-)(1 )body mass day(-)(1)) by the internal organs. Within the dose range we used and at optimal temperature (16 degrees C), the new Cu content of the gut tissues fluctuated, but absorption of new Cu by the internal organs remained relatively constant. For example, predosing the fish with non-radioactive Cu caused new Cu absorption by the gut tissues to double and decreased new Cu excretion from 38 to 1.5 %, but had no effect on new Cu uptake by the internal organs. Feeding fish after application of the normal liquid dose of new Cu also had no effect on new Cu uptake by the internal organs, even though the presence of food in the digestive tract reduced the binding of new Cu to the gut tissues and assisted with the excretion of new Cu. The gut was therefore able to regulate new Cu internalization at this dosage. Higher new Cu doses (10, 100 and 1000 times the normal dose), however, evoked regurgitation and increased new Cu excretion within 4 h of application but did not elevate new Cu levels in gut tissue beyond a threshold of approximately 40 microg of new Cu. Only at the highest dose (1000 times the normal dose, 192 microg g(-)(1 )body mass), equivalent to toxic concentrations in the daily diet (7000 microg Cu g(-)(1 )dry mass food), was the buffering capacity of the gut overwhelmed, resulting in an increase in internal new Cu uptake.

  3. Amino acid and glucose uptake by rat brown adipose tissue. Effect of cold-exposure and acclimation.

    PubMed Central

    López-Soriano, F J; Fernández-López, J A; Mampel, T; Villarroya, F; Iglesias, R; Alemany, M

    1988-01-01

    The net uptake/release of glucose, lactate and amino acids from the bloodstream by the interscapular brown adipose tissue of control, cold-exposed and cold-acclimated rats was estimated by measurement of arteriovenous differences in their concentrations. In the control animals amino acids contributed little to the overall energetic needs of the tissue; glucose uptake was more than compensated by lactate efflux. Cold-exposure resulted in an enhancement of amino acid utilization and of glucose uptake, with high lactate efflux. There was a net glycine and proline efflux that partly compensated the positive nitrogen balance of the tissue; amino acids accounted for about one-third of the energy supplied by glucose to the tissue. Cold-acclimation resulted in a very high increase in glucose uptake, with a parallel decrease in lactate efflux and amino acid consumption. Branched-chain amino acids, however, were more actively utilized. This was related with a much higher alanine efflux, in addition to that of glycine and proline. It is suggested that most of the glucose used during cold-exposure is returned to the bloodstream as lactate under conditions of active lipid utilization, amino acids contributing their skeletons largely in anaplerotic pathways. On the other hand, cold-acclimation resulted in an important enhancement of glucose utilization, with lowered amino acid oxidation. Amino acids are thus used as metabolic substrates by the brown adipose tissue of rats under conditions of relatively scarce substrate availability, but mainly as anaplerotic substrates, in parallel to glucose. Cold-acclimation results in a shift of the main substrates used in thermogenesis from lipid to glucose, with a much lower need for amino acids. PMID:3421924

  4. Evaluation of uptake and distribution of gold nanoparticles in solid tumors

    NASA Astrophysics Data System (ADS)

    England, Christopheri G.; Gobin, André M.; Frieboes, Hermann B.

    2015-11-01

    Although nanotherapeutics offer a targeted and potentially less toxic alternative to systemic chemotherapy in cancer treatment, nanotherapeutic transport is typically hindered by abnormal characteristics of tumor tissue. Once nanoparticles targeted to tumor cells arrive in the circulation of tumor vasculature, they must extravasate from irregular vessels and diffuse through the tissue to ideally reach all malignant cells in cytotoxic concentrations. The enhanced permeability and retention effect can be leveraged to promote extravasation of appropriately sized particles from tumor vasculature; however, therapeutic success remains elusive partly due to inadequate intra-tumoral transport promoting heterogeneous nanoparticle uptake and distribution. Irregular tumor vasculature not only hinders particle transport but also sustains hypoxic tissue kregions with quiescent cells, which may be unaffected by cycle-dependent chemotherapeutics released from nanoparticles and thus regrow tumor tissue following nanotherapy. Furthermore, a large proportion of systemically injected nanoparticles may become sequestered by the reticulo-endothelial system, resulting in overall diminished efficacy. We review recent work evaluating the uptake and distribution of gold nanoparticles in pre-clinical tumor models, with the goal to help improve nanotherapy outcomes. We also examine the potential role of novel layered gold nanoparticles designed to address some of these critical issues, assessing their uptake and transport in cancerous tissue.

  5. [Positron emission tomography in the diagnosis of recurrent growth of brain tumors].

    PubMed

    Skvortsova, T Iu; Brodskaia, Z L; Rudas, M S; Mozhaev, S V; Gurchin, A F; Medvedev, S V

    2005-01-01

    The authors analyzed the results of 11C-methionine positron emission tomography (PET) in 101 patients with suspected recurrent brain tumor. The diagnosis was confirmed in 72 patients. The increased 11C-methionine uptake in the initial tumor area is considered to be a crucial PET evidence of a recurrent tumor. On the other hand, brain tissue histological changes associated with surgery, radiation, and chemotherapy were characterized by the low uptake of the tracer. The sensitivity and specificity of PET scanning in detecting tumor recurrence were found to be 95.8 and 96.5%, respectively. 11C-methionine PET is proposed as a reliable technique for early differentiating between a recurrent brain tumor and treatment-induced nonneoplastic changes.

  6. Influence of elevated Fe, Zn, and Cd on uptake and translocation of mineral elements in common bean

    USDA-ARS?s Scientific Manuscript database

    Common bean is an important crop plant and source of human health related macro- and micronutrients. Common bean uptake these nutrients from the soil environment and transport them to various storage tissues using proteins and genes located in different tissues (Phan-Thein et al. 2010). However, alo...

  7. Spectrally resolved visualization of fluorescent dyes permeating into skin

    NASA Astrophysics Data System (ADS)

    Maeder, Ulf; Bergmann, Thorsten; Beer, Sebastian; Burg, Jan Michael; Schmidts, Thomas; Runkel, Frank; Fiebich, Martin

    2012-03-01

    We present a spectrally resolved confocal imaging approach to qualitatively asses the overall uptake and the penetration depth of fluorescent dyes into biological tissue. We use a confocal microscope with a spectral resolution of 5 nm to measure porcine skin tissue after performing a Franz-Diffusion experiment with a submicron emulsion enriched with the fluorescent dye Nile Red. The evaluation uses linear unmixing of the dye and the tissue autofluorescence spectra. The results are combined with a manual segmentation of the skin's epidermis and dermis layers to assess the penetration behavior additionally to the overall uptake. The diffusion experiments, performed for 3h and 24h, show a 3-fold increased dye uptake in the epidermis and dermis for the 24h samples. As the method is based on spectral information it does not face the problem of superimposed dye and tissue spectra and therefore is more precise compared to intensity based evaluation methods.

  8. Molecular imaging of inflammation in the ApoE -/- mouse model of atherosclerosis with IodoDPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foss, Catherine A., E-mail: cfoss1@jhmi.edu; Bedja, Djahida; Faculty of Medicine and Health Sciences, Macquarie University, Sydney

    Background: Atherosclerosis is a common and serious vascular disease predisposing individuals to myocardial infarction and stroke. Intravascular plaques, the pathologic lesions of atherosclerosis, are largely composed of cholesterol-laden luminal macrophage-rich infiltrates within a fibrous cap. The ability to detect those macrophages non-invasively within the aorta, carotid artery and other vessels would allow physicians to determine plaque burden, aiding management of patients with atherosclerosis. Methods and results: We previously developed a low-molecular-weight imaging agent, [{sup 125}I]iodo-DPA-713 (iodoDPA), which selectively targets macrophages. Here we use it to detect both intravascular macrophages and macrophage infiltrates within the myocardium in the ApoE -/- mousemore » model of atherosclerosis using single photon emission computed tomography (SPECT). SPECT data were confirmed by echocardiography, near-infrared fluorescence imaging and histology. SPECT images showed focal uptake of radiotracer at the aortic root in all ApoE -/- mice, while the age-matched controls were nearly devoid of radiotracer uptake. Focal radiotracer uptake along the descending aorta and within the myocardium was also observed in affected animals. Conclusions: IodoDPA is a promising new imaging agent for atherosclerosis, with specificity for the macrophage component of the lesions involved. - Highlights: • [{sup 125}I]iodoDPA SPECT detects atherosclerotic plaques in ApoE -/- mice with high contrast. • Plaques are detected in ApoE -/- mice regardless of diet with iodoDPA. • iodoDPA has very low uptake in healthy tissue including healthy TSPO + tissues at 24 h.« less

  9. Visualization of self-delivering hydrophobically modified siRNA cellular internalization

    PubMed Central

    Ly, Socheata; Navaroli, Deanna M.; Didiot, Marie-Cécile; Cardia, James; Pandarinathan, Lakshmipathi; Alterman, Julia F.; Fogarty, Kevin; Standley, Clive; Lifshitz, Lawrence M.; Bellve, Karl D.; Prot, Matthieu; Echeverria, Dimas; Corvera, Silvia; Khvorova, Anastasia

    2017-01-01

    siRNAs are a new class of therapeutic modalities with promising clinical efficacy that requires modification or formulation for delivery to the tissue and cell of interest. Conjugation of siRNAs to lipophilic groups supports efficient cellular uptake by a mechanism that is not well characterized. Here we study the mechanism of internalization of asymmetric, chemically stabilized, cholesterol-modified siRNAs (sd-rxRNAs®) that efficiently enter cells and tissues without the need for formulation. We demonstrate that uptake is rapid with significant membrane association within minutes of exposure followed by the formation of vesicular structures and internalization. Furthermore, sd-rxRNAs are internalized by a specific class of early endosomes and show preferential association with epidermal growth factor (EGF) but not transferrin (Tf) trafficking pathways as shown by live cell TIRF and structured illumination microscopy (SIM). In fixed cells, we observe ∼25% of sd-rxRNA co-localizing with EGF and <5% with Tf, which is indicative of selective endosomal sorting. Likewise, preferential sd-rxRNA co-localization was demonstrated with EEA1 but not RBSN-containing endosomes, consistent with preferential EGF-like trafficking through EEA1-containing endosomes. sd-rxRNA cellular uptake is a two-step process, with rapid membrane association followed by internalization through a selective, saturable subset of the endocytic process. However, the mechanistic role of EEA1 is not yet known. This method of visualization can be used to better understand the kinetics and mechanisms of hydrophobic siRNA cellular uptake and will assist in further optimization of these types of compounds for therapeutic intervention. PMID:27899655

  10. Effect of specific activity on organ uptake of iodine-123-meta-iodobenzylguanidine in humans.

    PubMed

    Farahati, J; Lassmann, M; Scheubeck, M; Bier, D; Hanscheid, H; Schelper, L; Grelle, I; Biko, J; Werner, E; Graefe, K; Reiners, C

    1997-04-01

    Radioiodinated meta-iodobenzylguanidine (MIBG), an analogue of norepinephrine, has been used in management of neuroendocrine tumors. Recent studies reveal that distribution of radioiodinated MIBG in animals depends on the specific activity of this radiopharmaceutical. In order to clarify the effect of specific activity on organ uptake of radioiodinated MIBG. the kinetics of no-carrier-added (n.c.a.) [I-123]MIBG (greater than or equal to 7.4 TBq/mu mol) were compared with those of commercial (com.) [I-123]MIBG (similar to 74 MBq/mu mol) in 3 healthy volunteers by serial imaging and blood sampling. The organ uptake of radioiodinated MIBG did not remarkably differ between the two specific activities. Due to rapid degradation a more pronounced accumulation of radioactivity was present in plasma alter n.c.a. than after com. [I-123]MIBG resulting in a higher background and thyroid activity. In addition due to a prolonged residence time of the radioactivity, the radiation exposure to organs was in general slightly higher with n.c.a. [I-123]MIBG as compared to com. [I-123]MIBG. This finding highlights the higher in vivo deiodination of n.c.a. [I-123]MIBG than of com. [I-123]MIBG in humans. In the treatment of children suffering from neuroblastoma, therefore, degradation of n.c.a. [I-123]MIBG may decrease the concentration of radioiodinated MIBG available for binding at tumor sites and result in higher radiation exposure of non-tumor tissue.

  11. Prostate-Specific Membrane Antigen Is a Potential Antiangiogenic Target in Adrenocortical Carcinoma.

    PubMed

    Crowley, Michael J P; Scognamiglio, Theresa; Liu, Yi-Fang; Kleiman, David A; Beninato, Toni; Aronova, Anna; Liu, He; Jhanwar, Yuliya S; Molina, Ana; Tagawa, Scott T; Bander, Neil H; Zarnegar, Rasa; Elemento, Olivier; Fahey, Thomas J

    2016-03-01

    Adrenocortical carcinoma (ACC) is a rare tumor type with a poor prognosis and few therapeutic options. Assess prostate-specific membrane antigen (PSMA) expression as a potential novel therapeutic target for ACC. Expression of PSMA was evaluated in benign and malignant adrenal tumors and 1 patient with metastatic ACC. This study took place at a tertiary referral center. Fifty adrenal samples were evaluated, including 16 normal adrenal glands, 16 adrenocortical adenomas, 15 primary ACC, and 3 ACC metastases. Demographics, PSMA expression levels via real-time quantitative polymerase chain reaction and immunohistochemistry and whole-body positron emission tomography-computed tomography standardized uptake values for 1 patient. qPCR demonstrated an elevated level of PSMA in ACC relative to all benign tissues (P < .05). Immunohistochemistry localized PSMA expression to the neovasculature of ACC and confirmed overexpression of PSMA in ACC relative to benign tissues both in intensity and percentage of vessels stained (78% of ACC, 0% of normal adrenal, and 3.27% of adenoma-associated neovasculature; P < .001). Those with more than 25% PSMA-positive vessels were 33 times more likely to be malignant than benign (odds ratio, P < .001). Whole-body positron emission tomography-computed tomography imaging showed targeting of anti-PSMA Zr89-J591 to 5/5 of the patient's multiple lung masses with an average measurement of 3.49 ± 1.86 cm and a standardized uptake value of 1.4 ± 0.65 relative to blood pool at 0.8 standardized uptake value. PSMA is significantly overexpressed in ACC neovasculature when compared with normal and benign adrenal tumors. PSMA expression can be used to image ACC metastases in vivo and may be considered as a potential diagnostic and therapeutic target in ACC.

  12. The dental amalgam controversy: a review

    PubMed Central

    Feuer, George; Injeyan, H Stephen

    1996-01-01

    In spite of the long history of mercury amalgam as a dental restorative material, its use continues to be controversial. Mercury vapour is continuously released from dental amalgam and is ultimately absorbed into a variety of tissues. Experimental data have demonstrated that the uptake, tissue retention and excretion of mercury from dental amalgam is significant. Evidence has accumulated indicating a relationship between tissue mercury levels and a multitude of clinical manifestations. However, the clinical significance of mercury toxicity from dental amalgams is a matter for debate. The literature is devoid of randomized clinical trials that are rigorously designed to address this issue. Thus, although research data renders the notion of amalgam safety questionable, the dental community appears determined to continue its use as long as unequivocal evidence correlating amalgam mercury toxicity to specific clinical conditions is lacking.

  13. Tissue Permeability Effects Associated with the Use of Mucoadhesive Cationic Nanoformulations of Docetaxel in the Bladder.

    PubMed

    Pandey, Rakhi; Jackson, John K; Mugabe, Clement; Liggins, Richard; Burt, Helen M

    2016-08-01

    Recently, efficacy studies in mice have shown that amine-terminated cationic (CNP) nanoparticulate carriers of DTX offer an improved formulation of the drug for intravesical delivery. It is hypothesized that this improved efficacy may arise from a carrier mediated bladder exfoliation process that removes the urothelial barrier allowing for increased drug uptake into bladder tissue. The objective of this study was to investigate exfoliation processes in fresh pig's bladders (ex vivo) exposed to three cationic polyglycerols with increasing degrees of amination (denoted 350, 580 and 780). The study also compared the tissue depth profile of DTX uptake into these tissues using these different carriers. Aminated polyglycerols were synthesized and characterized in the laboratory with low (CNP-360), medium (CNP-580) and high (CNP-780) levels of amine content. CNP-based DTX solutions and commercial DTX solutions in polysorbate 80 (Taxotere®) were doped with (3)H-radiolabeled DTX and prepared by solvent evaporation from acetonitrile, followed by drying and reconstitution in pH 6.4 buffer. Sections of fresh pig's bladder tissue were clamped into Franz diffusion cells and the urothelial side was exposed to the DTX solutions for 2 h. Tissue sections were then frozen for sectioning by cryotome sectioning and subsequently processed for drug analysis by liquid scintillation counting. Alternatively tissue sections were fixed in 2% glutaraldehyde and 2% paraformaldehyde in 0.1 M sodium cacodylate buffer for the purposes of scanning electron microscopy (SEM). Exposure of the urothelial surface to the amine-terminated polyglycerol solutions resulted in the exfoliation of bladder tissues in a time- and concentration-dependent manner. Exfoliation was significantly more pronounced when using CNPs with a medium or high levels of amination whereas only minor levels of exfoliation were seen with low levels. Following incubation of tissues in Tween-based commercial formulations (Taxotere) of DTX (0.5 mg/mL) the drug was detectable at low levels (10-40 μg/g tissue) in all depths of tissue. Similar drug uptake was observed using the CNP-360 formulation. However drug uptake levels were increased to 60-100 μg/g tissue when samples were incubated with either the CNP-580 or CNP-780 formulations. The use of cationic polyglycerols with higher levels of amine termination allows for an enhanced uptake of DTX into bladder tissues as compared to commercial (Taxotere) formulations. These increased drug levels probably arise from exfoliation processes resulting in a temporary elimination of the urothelial permeability barrier and increased drug penetration into the tissue.

  14. Immune tolerance improves the efficacy of enzyme replacement therapy in canine mucopolysaccharidosis I

    PubMed Central

    Dickson, Patricia; Peinovich, Maryn; McEntee, Michael; Lester, Thomas; Le, Steven; Krieger, Aimee; Manuel, Hayden; Jabagat, Catherine; Passage, Merry; Kakkis, Emil D.

    2008-01-01

    Mucopolysaccharidoses (MPSs) are lysosomal storage diseases caused by a deficit in the enzymes needed for glycosaminoglycan (GAG) degradation. Enzyme replacement therapy with recombinant human α-l-iduronidase successfully reduces lysosomal storage in canines and humans with iduronidase-deficient MPS I, but therapy usually also induces antibodies specific for the recombinant enzyme that could reduce its efficacy. To understand the potential impact of α-l-iduronidase–specific antibodies, we studied whether inducing antigen-specific immune tolerance to iduronidase could improve the effectiveness of recombinant iduronidase treatment in canines. A total of 24 canines with MPS I were either tolerized to iduronidase or left nontolerant. All canines received i.v. recombinant iduronidase at the FDA-approved human dose or a higher dose for 9–44 weeks. Nontolerized canines developed iduronidase-specific antibodies that proportionally reduced in vitro iduronidase uptake. Immune-tolerized canines achieved increased tissue enzyme levels at either dose in most nonreticular tissues and a greater reduction in tissue GAG levels, lysosomal pathology, and urinary GAG excretion. Tolerized MPS I dogs treated with the higher dose received some further benefit in the reduction of GAGs in tissues, urine, and the heart valve. Therefore, immune tolerance to iduronidase improved the efficacy of enzyme replacement therapy with recombinant iduronidase in canine MPS I and could potentially improve outcomes in patients with MPS I and other lysosomal storage diseases. PMID:18654665

  15. Impact of blood glucose, diabetes, insulin, and obesity on standardized uptake values in tumors and healthy organs on 18F-FDG PET/CT.

    PubMed

    Büsing, Karen A; Schönberg, Stefan O; Brade, Joachim; Wasser, Klaus

    2013-02-01

    Chronically altered glucose metabolism interferes with (18)F-FDG uptake in malignant tissue and healthy organs and may therefore lower tumor detection in (18)F-FDG PET/CT. The present study assesses the impact of elevated blood glucose levels (BGL), diabetes, insulin treatment, and obesity on (18)F-FDG uptake in tumors and biodistribution in normal organ tissues. (18)F-FDG PET/CT was analyzed in 90 patients with BGL ranging from 50 to 372 mg/dl. Of those, 29 patients were diabetic and 21 patients had received insulin prior to PET/CT; 28 patients were obese with a body mass index >25. The maximum standardized uptake value (SUV(max)) of normal organs and the main tumor site was measured. Differences in SUV(max) in patients with and without elevated BGLs, diabetes, insulin treatment, and obesity were compared and analyzed for statistical significance. Increased BGLs were associated with decreased cerebral FDG uptake and increased uptake in skeletal muscle. Diabetes and insulin diminished this effect, whereas obesity slightly enhanced the outcome. Diabetes and insulin also increased the average SUV(max) in muscle cells and fat, whereas the mean cerebral SUV(max) was reduced. Obesity decreased tracer uptake in several healthy organs by up to 30%. Tumoral uptake was not significantly influenced by BGL, diabetes, insulin, or obesity. Changes in BGLs, diabetes, insulin, and obesity affect the FDG biodistribution in muscular tissue and the brain. Although tumoral uptake is not significantly impaired, these findings may influence the tumor detection rate and are therefore essential for diagnosis and follow-up of malignant diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Long-chain fatty acid uptake by skeletal muscle is impaired in homozygous, but not heterozygous, heart-type-FABP null mice.

    PubMed

    Luiken, J J F P; Koonen, D P Y; Coumans, W A; Pelsers, M M A L; Binas, B; Bonen, A; Glatz, J F C

    2003-04-01

    Previous studies with cardiac myocytes from homozygous heart-type fatty acid (FA)-binding protein (H-FABP) -/- mice have indicated that this intracellular receptor protein for long-chain FA is involved in the cellular uptake of these substrates. Based on the knowledge that muscle FA uptake is a process highly sensitive to regulation by hormonal and mechanical stimuli, we studied whether H-FABP would play a role in this regulation. A suitable model system to answer this question is provided by H-FABP +/- mice, because in hindlimb muscles the content of H-FABP was measured to be 34% compared to wild-type mice. In these H-FABP +/- skeletal muscles, just as in H-FABP -/- muscles, contents of FA transporters, i.e., 43-kDa FABPpm and 88-kDa FAT/CD36, were similar compared to wild-type muscles, excluding possible compensatory mechanisms at the sarcolemmal level. Palmitate uptake rates were measured in giant vesicles prepared from hindlimb muscles of H-FABP -/-, H-FABP +/-, and H-FABP +/+ mice. For comparison, giant vesicles were isolated from liver, the tissue of which expresses a distinct type of FABP (i.e., L-FABP). Whereas in H-FABP -/- skeletal muscle FA uptake was reduced by 42-45%, FA uptake by H-FABP +/- skeletal muscle was not different from that in wild-type mice. In contrast, in liver from H-FABP -/- and from H-FABP +/- mice, FA uptake was not altered compared to wild-type animals, indicating that changes in FA uptake are restricted to H-FABP expressing tissues. It is concluded that H-FABP plays an important, yet merely permissive, role in FA uptake into muscle tissues.

  17. Measuring functioning hepatocytes using Tc-99m galactosylneoglycoalbumin (Tc-NGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadalnik, R.C.; Vera, D.R.; Quadro, R.E.

    1984-01-01

    Tc-NGA is a synthetic ligand which binds only to hepatic binding protein (HBP), a receptor found only in the liver. It exhibits the properties of high tissue specificity, affinity-dependent uptake, and dose-dependent uptake. Tc-NGA provides an opportunity to study the functioning hepatocyte. The authors evaluated the usefulness of this technique in patients with hepatitis and hepatoma. After intravenous administration of 5 mCi Tc-NGA, dynamic images were acquired for 30 minutes followed by static views. Estimates of HBP concentrations were obtained by kinetic analysis of blood and liver time-activity curves. Kinetic estimates (reduced chi-squares < 3.0) of HBP correlated well withmore » the clinical course and histology. For example, a patient with hepatoma whose calculated receptor population (functioning hepatocytes) was 3.0 +- 0.9 x 10/sup -7/ mole, which is the normal range, is doing well undergoing chemotherapy. Liver biopsy demonstrated normal liver tissue except for the hepatoma. Another patient with hepatoma who had a severely depressed receptor population, 1.2 +- 0.2 x 10/sup -8/ mole, expired one week after the study. Liver biopsy demonstrated practically no normal tissue. Thus, by means of a complementary, receptor radiopharmaceutical and mathematical model, one should be able to quantitatively follow hepatocyte function and predict response to a therapeutic regimen.« less

  18. Optical imaging of gastric cancer with near-infrared heptamethine carbocyanine fluorescence dyes.

    PubMed

    Zhao, Ningning; Zhang, Caiqin; Zhao, Yong; Bai, Bing; An, Jiaze; Zhang, Hai; Wu, Jason Boyang; Shi, Changhong

    2016-08-30

    Near-infrared fluorescence (NIRF) imaging agents are promising tools for noninvasive cancer imaging. Here, we explored the tumor-specific targeting ability of NIRF heptamethine carbocyanine MHI-148 dye in cultured gastric cancer cells, gastric cancer cell-derived and patient-derived tumor xenograft (PDX) models. We show that the NIRF dye specifically accumulated in tumor regions of both xenograft models, suggesting the potential utility of the dye for tumor-specific imaging and targeting in gastric cancer. We also demonstrated significant correlations between NIRF signal intensity and tumor volume in PDX models. Mechanistically, the higher cellular uptake of MHI-148 in gastric cancer cells than in normal cells was stimulated by hypoxia and activation of a group of organic anion-transporting polypeptide (OATP) genes. Importantly, this NIRF dye was not retained in inflammatory stomach tissues induced by gastric ulcer in mice. In addition, fresh clinical gastric tumor specimens, when perfused with NIR dye, exhibited increased uptake of NIR dye in situ. Together, these results show the possibility of using NIRF dyes as novel candidate agents for clinical imaging and detection of gastric cancer.

  19. Early Dose Response to Yttrium-90 Microsphere Treatment of Metastatic Liver Cancer by a Patient-Specific Method Using Single Photon Emission Computed Tomography and Positron Emission Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Janice M.; Department of Radiation Oncology, Wayne State University, Detroit, MI; Wong, C. Oliver

    2009-05-01

    Purpose: To evaluate a patient-specific single photon emission computed tomography (SPECT)-based method of dose calculation for treatment planning of yttrium-90 ({sup 90}Y) microsphere selective internal radiotherapy (SIRT). Methods and Materials: Fourteen consecutive {sup 90}Y SIRTs for colorectal liver metastasis were retrospectively analyzed. Absorbed dose to tumor and normal liver tissue was calculated by partition methods with two different tumor/normal liver vascularity ratios: an average 3:1 and a patient-specific ratio derived from pretreatment technetium-99m macroaggregated albumin SPECT. Tumor response was quantitatively evaluated from fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography scans. Results: Positron emission tomography showed a significant decrease in total tumor standardizedmore » uptake value (average, 52%). There was a significant difference in the tumor absorbed dose between the average and specific methods (p = 0.009). Response vs. dose curves fit by linear and linear-quadratic modeling showed similar results. Linear fit r values increased for all tumor response parameters with the specific method (+0.20 for mean standardized uptake value). Conclusion: Tumor dose calculated with the patient-specific method was more predictive of response in liver-directed {sup 90}Y SIRT.« less

  20. Crassulacean acid metabolism, CO2-recycling, and tissue desiccation in the Mexican epiphyte Tillandsia schiedeana Steud (Bromeliaceae).

    PubMed

    Martin, C E; Adams, W W

    1987-01-01

    After 23 days without water in a greenhouse, rates of nocturnal CO2 uptake in Tillandsia schiedeana decreased substantially and maximum rates occurred later in the dark period eventually coinciding with the onset of illumination. Nocturnal CO2 uptake accounted for less than half the total nighttime increase in acidity measured in well-watered plants. With increased tissue desiccation, only 11-12% of measured acid accumulation was attributable to atmospheric CO2 uptake. Plants desiccated for 30 days regained initial levels of nocturnal acid accumulation and CO2 uptake after rehydration for 10h. These results stress the importance of CO2 recycling via CAM in this epiphytic bromeliad, especially during droughts.

  1. Cyclic variations in nitrogen uptake rate in soybean plants: uptake during reproductive growth

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Raper, C. D. Jr; Henry, L. T.; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic culture was measured daily during a 63 d period of reproductive development between the first florally inductive photoperiod and [unknown word] seed growth. Removal of NO3- from a replenished solution containing 1.0 mol m-3 NO3- was determined by ion chromatography. Uptake of NO3- continued throughout reproductive development. The net uptake rate of NO3- cycled between maxima and minima with a periodicity of oscillation of 3 to 7 d during the floral stage and about 6 d during the fruiting stage. Coupled with increasing concentrations of carbon and C : N ratios in tissues, the oscillations in net uptake rates of NO3- are evidence that the demand for carbohydrate by reproductive organs is contingent on the availability of nitrogen in the shoot pool rather than that the demand for nitrogen follows the flux of carbohydrate into reproductive tissues.

  2. Optimized statistical parametric mapping for partial-volume-corrected amyloid positron emission tomography in patients with Alzheimer's disease and Lewy body dementia

    NASA Astrophysics Data System (ADS)

    Oh, Jungsu S.; Kim, Jae Seung; Chae, Sun Young; Oh, Minyoung; Oh, Seung Jun; Cha, Seung Nam; Chang, Ho-Jong; Lee, Chong Sik; Lee, Jae Hong

    2017-03-01

    We present an optimized voxelwise statistical parametric mapping (SPM) of partial-volume (PV)-corrected positron emission tomography (PET) of 11C Pittsburgh Compound B (PiB), incorporating the anatomical precision of magnetic resonance image (MRI) and amyloid β (A β) burden-specificity of PiB PET. First, we applied region-based partial-volume correction (PVC), termed the geometric transfer matrix (GTM) method, to PiB PET, creating MRI-based lobar parcels filled with mean PiB uptakes. Then, we conducted a voxelwise PVC by multiplying the original PET by the ratio of a GTM-based PV-corrected PET to a 6-mm-smoothed PV-corrected PET. Finally, we conducted spatial normalizations of the PV-corrected PETs onto the study-specific template. As such, we increased the accuracy of the SPM normalization and the tissue specificity of SPM results. Moreover, lobar smoothing (instead of whole-brain smoothing) was applied to increase the signal-to-noise ratio in the image without degrading the tissue specificity. Thereby, we could optimize a voxelwise group comparison between subjects with high and normal A β burdens (from 10 patients with Alzheimer's disease, 30 patients with Lewy body dementia, and 9 normal controls). Our SPM framework outperformed than the conventional one in terms of the accuracy of the spatial normalization (85% of maximum likelihood tissue classification volume) and the tissue specificity (larger gray matter, and smaller cerebrospinal fluid volume fraction from the SPM results). Our SPM framework optimized the SPM of a PV-corrected A β PET in terms of anatomical precision, normalization accuracy, and tissue specificity, resulting in better detection and localization of A β burdens in patients with Alzheimer's disease and Lewy body dementia.

  3. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review.

    PubMed

    Madikizela, Lawrence Mzukisi; Ncube, Somandla; Chimuka, Luke

    2018-04-27

    Sizeable amount of research has been conducted on the possible uptake of pharmaceuticals by plants from contaminated soil and water used for irrigation of crops. In most cases, pharmaceuticals are taken by roots and translocated into various tissues by transpiration and diffusion. Due to the plant uptake, the occurrence of pharmaceuticals in food sources such as vegetables is a public concern. Few review papers focusing on the uptake of pharmaceuticals, in particular antibiotics, and their translocation in plant tissues have been published. In the current review paper, the work conducted on the uptake of pharmaceuticals belonging to different therapeutic groups such as antibiotics, non-steroidal anti-inflammatory drugs, β-blockers and antiepileptics is reviewed. Such work includes the occurrence of pharmaceuticals in plants, translocation once taken by plants, toxicity studies as well as implications and future studies. Furthermore, the advantages and drawbacks associated with the detection and uptake of these pharmaceuticals by plants are discussed. In addition, the physico-chemical properties that could influence the plant uptake of pharmaceuticals are deliberated. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Nitrogen uptake by the shoots of smooth cordgrass Spartina alterniflora

    USGS Publications Warehouse

    Mozdzer, T.J.; Kirwan, M.; McGlathery, K.J.; Zieman, J.C.

    2011-01-01

    The smooth cordgrass Spartina alterniflora is the foundation species in intertidal salt marshes of the North American Atlantic coast. Depending on its elevation within the marsh, S. alterniflora may be submerged for several hours per day. Previous ecosystem-level studies have demonstrated that S. alterniflora marshes are a net sink for nitrogen (N), and that removal of N from flooding tidal water can provide enough N to support the aboveground biomass. However, studies have not specifically investigated whether S. alterniflora plants assimilate nutrients through their aboveground tissue. We determined in situ foliar and stem N uptake kinetics for 15NH4, 15NO3, and 15N-glycine by artificially flooding plants in a mid-Atlantic salt marsh. To determine the ecological importance of shoot uptake, a model was created to estimate the time of inundation of S. alterniflora in 20 cm height intervals during the growing season. Estimates of inundation time, shoot mass, N uptake rates, and N availability from long-term data sets were used to model seasonal shoot N uptake. Rates of aboveground N uptake rates (leaves + stems) were ranked as follows: NH4 + > glycine > NO3 -. Our model suggests that shoot N uptake may satisfy up to 15% of the growing season N demand in mid-Atlantic salt marshes, with variation depending on plant elevation and water column N availability. However, in eutrophic estuaries, our model indicates the potential of the plant canopy as a nutrient filter, with shoot uptake contributing 66 to 100% of plant N demand. ?? 2011 Inter-Research.

  5. Targeted Therapy for Melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Thomas; Moore, Herbert

    The research project, entitled ”Targeted Therapy for Melanoma,” was focused on investigating the use of kidney protection measures to lower the non-specific kidney uptake of the radiolabeled Pb-DOTA-ReCCMSH peptide. Previous published work demonstrated that the kidney exhibited the highest non-target tissue uptake of the 212Pb/203Pb radiolabeled melanoma targeting peptide DOTA-ReCCMSH. The radiolabeled alpha-melanocyte stimulating hormone (α-MSH) peptide analog DOTA-Re(Arg 11)CCMSH, which binds the melanocortin-1 receptor over-expressed on melanoma tumor cells, has shown promise as a PRRT agent in pre-clinical studies. High tumor uptake of 212Pb labeled DOTA-Re(Arg 11)CCMSH resulted in tumor reduction or eradication in melanoma therapy studies. Of particularmore » note was the 20-50% cure rate observed when melanoma mice were treated with alpha particle emitter 212Pb. However, as with most PRRT agents, high radiation doses to the kidneys where observed. To optimize tumor treatment efficacy and reduce nephrotoxicity, the tumor to kidney uptake ratio must be improved. Strategies to reduce kidney retention of the radiolabeled peptide, while not effecting tumor uptake and retention, can be broken into several categories including modification of the targeting peptide sequence and reducing proximal tubule reabsorption.« less

  6. Target Nanoparticles for Therapy - SANS and DLS of Drug Carrier Liposomes and Polymer Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nawroth, T.; Johnson, R.; Krebs, L.; Khoshakhlagh, P.; Langguth, P.; Hellmann, N.; Goerigk, G.; Boesecke, P.; Bravin, A.; Le Duc, G.; Szekely, N.; Schweins, R.

    2016-09-01

    T arget Nano-Pharmaceutics shall improve therapy and diagnosis of severe diseases, e.g. cancer, by individual targeting of drug-loaded nano-pharmaceuticals towards cancer cells, and drug uptake receptors in other diseases. Specific ligands, proteins or cofactors, which are recognized by the diseased cells or cells of food and drug uptake, are bound to the nanoparticle surface, and thus capable of directing the drug carriers. The strategy has two branches: a) for parenteral cancer medicine a ligand set (2-5 different, surface-linked) are selected according to the biopsy analysis of the patient tissue e.g. from tumor.; b) in the oral drug delivery part the drug transport is enforced by excipients/ detergents in combination with targeting materials for cellular receptors resulting in an induced drug uptake. Both targeting nanomaterials are characterized by a combination of SANS + DLS and SAXS or ASAXS in a feedback process during development by synthesis, nanoparticle assembly and formulation.

  7. Polymethoxyflavonoids tangeretin and nobiletin increase glucose uptake in murine adipocytes.

    PubMed

    Onda, Kenji; Horike, Natsumi; Suzuki, Tai-ichi; Hirano, Toshihiko

    2013-02-01

    Tangeretin and nobiletin are polymethoxyflavonoids that are contained in citrus fruits. Polymethoxyflavonoids are reported to have several biological functions including anti-inflammatory, anti-atherogenic, or anti-diabetic effects. However, whether polymethoxyflavonoids directly affect glucose uptake in tissues is not well understood. In the current study, we investigated whether tangeretin and nobiletin affect glucose uptake in insulin target cells such as adipocytes. We observed that treatment with tangeretin or nobiletin significantly increased the uptake of [(3) H]-deoxyglucose in differentiated 3T3-F442A adipocytes in a concentration-dependent manner. Data showed that phosphatidyl inositol 3 kinase, Akt1/2, and the protein kinase A pathways were involved in the increase in glucose uptake induced by polymethoxyflavonoids. These data suggest that the anti-diabetic action of polymethoxyflavonoids is partly exerted via these signaling pathways in insulin target tissues. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Pharmacokinetics and tissue distribution of furanodiene W/O/W multiple emulsions in rats by a fast and sensitive HPLC-APCI-MS/MS method.

    PubMed

    Zhang, Li-Feng; Lu, Tao-Tao; Zhang, Shu-Qiu; Lin, Wen-Han; Li, Qing-Shan

    2013-12-01

    A sensitive and specific HPLC-APCI-MS/MS method was developed and validated for the quantification of furanodiene, a natural antitumor compound in rat plasma and tissues. W/O/W multiple emulsions of furanodiene, identified through microscope-observation and eosin staining method, were prepared with a two-step-procedure. Pharmacokinetics and tissue distribution were studied in rats after oral, intraperitoneal and intravenous injection with the dose of 5, 10 and 50 mg/kg, respectively. The assay achieved a good sensitivity and specificity for the determination of furanodiene in biological samples. The results showed that the concentration-time curves of furanodiene in rats after intravenous injection were fitted to a two-compartment model and the linear pharmacokinetic characteristic. The highest concentration in rat tissue was observed in the spleen, followed by heart, liver, lung, kidney, small intestine and brain. Comparing with the low concentration in plasma, furanodiene could be detected in various tissue samples after oral or intraperitoneal injection which indicated furanodiene had good and rapid tissue uptake. The results suggested that the wide tissue distribution of furanodiene could conduce to the therapeutic effects, but the short biological half-life limited its further application as an antitumor agent. The results are helpful for the structure modification of furanodiene as an antitumor candidate.

  9. Localization and treatment of transformed tissues using the photodynamic sensitizer 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a.

    PubMed

    Furukawa, K; Yamamoto, H; Crean, D H; Kato, H; Mang, T S

    1996-01-01

    Photofrin is the photosensitizer currently used in most clinical trials examining the efficacy of photodynamic therapy (PDT) for the treatment and/or palliation of neoplasia. Although this drug has been shown to be efficacious in many of these trials, it possesses less than ideal qualities for use in a systemically administered photosensitizer. A new photosensitizer, 2-[l-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH), was developed for PDT. HPPH possesses more rapid clearance from skin and greater cytotoxicity per drug dose than Photofrin. The aims of this study were to: (1) examine the uptake and retention of HPPH in tissues undergoing malignant transformation using laser-induced fluorescence, and (2) evaluate the efficacy of HPPH and 665 nm light in treating carcinogen-induced tumors of the hamster buccal cheek pouch. The model of tissue transformation was the carcinogen (9,10-dimethyl-1, 2-benzanthracene)-induced premalignant and malignant lesions of the hamster buccal cheek pouch. Following induction of the specific transformation stages, hamsters were injected intraperitoneally with 0.5 mg/kg HPPH. Subsequently, the buccal mucosa was examined for fluorescence at various times up to 72 hours after photosensitizer injection. Uptake studies of HPPH showed highest fluorescence levels in tissues 48 hours after HPPH injection. Fluorescence levels of tissues increased significantly as follows. Normal < dysplasia < papillomas < squamous cell carcinomas. Carcinogen-induced tumors in 14 hamsters were treated with surface illuminations of red light (665 nm) via fiber optics coupled to an argon-ion pumped dye laser 48 hours after intraperitoneal injection with either 0.5 or 1.0 mg/kg HPPH. Complete necrosis of tumor tissues 7 days following PDT was observed in 57% (4/7) with 0.5 mg/kg and 86% (6/7) with 1.0 mg/kg HPPH.

  10. Tissue-specific differences in 2-fluoro-2-deoxyglucose metabolism beyond FDG-6-P: a 19F NMR spectroscopy study in the rat.

    PubMed

    Southworth, Richard; Parry, Craig R; Parkes, Harold G; Medina, Rodolfo A; Garlick, Pamela B

    2003-12-01

    2-Fluoro-[(18)F]-2-deoxy-glucose (FDG) is a positron-emitting analogue of glucose used clinically in positron emission tomography (PET) to assess glucose utilization in diseased and healthy tissue. Originally developed to measure local cerebral glucose utilization rates, it has now found applications in tumour diagnosis and in the study of myocardial glucose uptake. Once taken up into the cell, FDG is phosphorylated to FDG-6-phosphate (FDG-6-P) by hexokinase and was originally believed to be trapped as a terminal metabolite. This 'metabolic trapping' of FDG-6-P forms the basis of the analysis of PET data. In this study, we have used (19)F NMR spectroscopy to investigate FDG metabolism following the injection of a bolus of the glucose tracer into the rat (n=6). Ninety minutes after the (19)FDG injection, the brain, heart, liver and kidneys were removed and the (19)FDG metabolites in each were extracted and quantified. We report that significant metabolism of FDG occurs beyond FDG-6-P in all organs examined and that the extent of this metabolism varies from tissue to tissue (degree of metabolism beyond FDG-6-P, expressed as percentage of total organ FDG content, was brain 45 +/- 3%; heart 29 +/- 2%; liver 22+/-3% and kidney 17 +/- 3%, mean +/- SEM n=6). Furthermore, we demonstrate that the relative accumulation of each metabolite was tissue-dependent and reflected the metabolic and regulatory characteristics of each organ. Such inter-tissue differences may have implications for the mathematical modelling of glucose uptake and phosphorylation using FDG as a glucose tracer. Copyright 2003 John Wiley & Sons, Ltd.

  11. Migration of antigen-presenting B cells from peripheral to mucosal lymphoid tissues may induce intestinal antigen-specific IgA following parenteral immunization.

    PubMed

    Coffin, S E; Clark, S L; Bos, N A; Brubaker, J O; Offit, P A

    1999-09-15

    Parenterally administered immunizations have long been used to induce protection from mucosal pathogens such as Bordetella pertussis and influenza virus. We previously found that i.m. inoculation of mice with the intestinal pathogen, rotavirus, induced virus-specific Ab production by intestinal lymphocytes. We have now used adoptive transfer studies to identify the cell types responsible for the generation of virus-specific Ab production by gut-associated lymphoid tissue (GALT) after i.m. immunization. Three days after i.m. immunization with rotavirus, cells obtained from the draining peripheral lymph nodes of donor mice were transferred into naive recipient mice. We found that intestinal lymphocytes produced rotavirus-specific Igs (IgM, IgA, and IgG) 2 wk after transfer of either unfractionated cells, or unfractionated cells rendered incapable of cellular division by mitomycin C treatment. Additional studies demonstrated that rotavirus-specific IgA, but not IgG, was produced by intestinal lymphocytes after transfer of purified B cells. Ig allotype analysis revealed that rotavirus-specific IgA was produced by intestinal B cells of recipient origin, suggesting that migration of Ag-presenting B cells from peripheral lymphoid tissues to GALT may contribute to the generation of mucosal IgA responses after parenteral immunization. Strategies that promote Ag uptake and presentation by B cells may enhance mucosal IgA production following parenteral immunization.

  12. RAPID NITRATE UPTAKE RATES AND LARGE SHORT-TERM STORAGE CAPACITIES MAY EXPLAIN WHY OPPORTUNISTIC GREEN MACROALGAE DOMINATE SHALLOW EUTROPHIC ESTUARIES1.

    PubMed

    Kennison, Rachel L; Kamer, Krista; Fong, Peggy

    2011-06-01

    We quantified the effects of initial macroalgal tissue nitrogen (N) status (depleted and enriched) and varying pulses of nitrate (NO 3 - ) concentration on uptake and storage of nitrogen in Ulva intestinalis L. and Ulva expansa (Setch.) Setch. et N. L. Gardner using mesocosms modeling shallow coastal estuaries in Mediterranean climates. Uptake of NO 3 - (μmol · g dry weight [dwt] -1  · h -1 ) was measured as loss from the water after 1, 2, 4, 8, 12, and 24 h and storage as total tissue nitrogen (% dwt) and nitrate (ppm). Both species of algae exhibited a high affinity for NO 3 - across all N pulses and initial tissue contents. There was greater NO 3 - removal from the water for depleted than enriched algae across all time intervals. In the low-N-pulse treatment, U. intestinalis and U. expansa removed all measurable NO 3 - within 8 and 12 h, respectively, and in the medium and high treatments, removal was high and then decreased over time. Maximum mean uptake rates of nitrate were greater for U. expansa (∼300 μmol · g dwt -1  · h -1 ) than U. intestinalis (∼100 μmol · g dwt -1  · h -1 ); however, uptake rates were highly variable over time. Overall, U. expansa uptake rates were double those of U. intestinalis. Maximum tissue NO 3 - for U. expansa was >1,000 ppm, five times that of U. intestinalis, suggesting that U. expansa has a greater storage capacity in this cellular pool. These results showed that opportunistic green algae with differing tissue nutrient histories were able to efficiently remove nitrate from the water across a wide range of N pulses; thus, both are highly adapted to proliferate in estuarine environments with pulsed nutrient supplies. © 2011 Phycological Society of America.

  13. Studies of copper trafficking in a mouse model of Alzheimer's disease by positron emission tomography: comparison of 64Cu acetate and 64CuGTSM.

    PubMed

    Andreozzi, Erica M; Torres, Julia Baguña; Sunassee, Kavitha; Dunn, Joel; Walker-Samuel, Simon; Szanda, Istvan; Blower, Philip J

    2017-11-15

    Alzheimer's disease can involve brain copper dyshomeostasis. We aimed to determine the effect of AD-like pathology on 64 Cu trafficking in mice, using positron emission tomography (PET imaging), during 24 hours after intravenous administration of ionic 64 Cu (Cu(ii) acetate) and 64 Cu-GTSM (GTSMH 2 = glyoxalbis(thiosemicarbazone)). Copper trafficking was evaluated in 6-8-month-old and 13-15 month-old TASTPM transgenic and wild-type mice, by imaging 0-30 min and 24-25 h after intravenous administration of 64 Cu tracer. Regional 64 Cu distribution in brains was compared by ex vivo autoradiography to that of amyloid-β plaque. 64 Cu-acetate showed uptake in, and excretion through, liver and kidneys. There was minimal uptake in other tissues by 30 minutes, and little further change after 24 h. Radioactivity within brain was focussed in and around the ventricles and was significantly greater in younger mice. 64 CuGTSM was taken up in all tissues by 30 min, remaining high in brain but clearing substantially from other tissues by 24 h. Distribution in brain was not localised to specific regions. TASTPM mice showed no major changes in global or regional 64 Cu brain uptake compared to wildtype after administration of 64 Cu acetate (unlike 64 Cu-GTSM) but efflux of 64 Cu from brain by 24 h was slightly greater in 6-8 month-old TASTPM mice than in wildtype controls. Changes in copper trafficking associated with Alzheimer's-like pathology after administration of ionic 64 Cu are minor compared to those observed after administration of 64 Cu-GTSM. PET imaging with 64 Cu could help understand changes in brain copper dynamics in AD and underpin new clinical diagnostic imaging methods.

  14. Quantitative Measurement of GLUT4 Translocation to the Plasma Membrane by Flow Cytometry

    PubMed Central

    Koshy, Shyny; Alizadeh, Parema; Timchenko, Lubov T.; Beeton, Christine

    2010-01-01

    Glucose is the main source of energy for the body, requiring constant regulation of its blood concentration. Insulin release by the pancreas induces glucose uptake by insulin-sensitive tissues, most notably the brain, skeletal muscle, and adipocytes. Patients suffering from type-2 diabetes and/or obesity often develop insulin resistance and are unable to control their glucose homeostasis. New insights into the mechanisms of insulin resistance may provide new treatment strategies for type-2 diabetes. The GLUT family of glucose transporters consists of thirteen members distributed on different tissues throughout the body1. Glucose transporter type 4 (GLUT4) is the major transporter that mediates glucose uptake by insulin sensitive tissues, such as the skeletal muscle. Upon binding of insulin to its receptor, vesicles containing GLUT4 translocate from the cytoplasm to the plasma membrane, inducing glucose uptake. Reduced GLUT4 translocation is one of the causes of insulin resistance in type-2 diabetes2,3. The translocation of GLUT4 from the cytoplasm to the plasma membrane can be visualized by immunocytochemistry, using fluorophore-conjugated GLUT4-specific antibodies. Here, we describe a technique to quantify total amounts of GLUT4 translocation to the plasma membrane of cells during a chosen duration, using flow cytometry. This protocol is rapid (less than 4 hours, including incubation with insulin) and allows the analysis of as few as 3,000 cells or as many as 1 million cells per condition in a single experiment. It relies on anti-GLUT4 antibodies directed to an external epitope of the transporter that bind to it as soon as it is exposed to the extracellular medium after translocation to the plasma membrane. PMID:21085106

  15. Hierarchical design of a polymeric nanovehicle for efficient tumor regression and imaging

    NASA Astrophysics Data System (ADS)

    An, Jinxia; Guo, Qianqian; Zhang, Peng; Sinclair, Andrew; Zhao, Yu; Zhang, Xinge; Wu, Kan; Sun, Fang; Hung, Hsiang-Chieh; Li, Chaoxing; Jiang, Shaoyi

    2016-04-01

    Effective delivery of therapeutics to disease sites significantly contributes to drug efficacy, toxicity and clearance. Here we designed a hierarchical polymeric nanoparticle structure for anti-cancer chemotherapy delivery by utilizing state-of-the-art polymer chemistry and co-assembly techniques. This novel structural design combines the most desired merits for drug delivery in a single particle, including a long in vivo circulation time, inhibited non-specific cell uptake, enhanced tumor cell internalization, pH-controlled drug release and simultaneous imaging. This co-assembled nanoparticle showed exceptional stability in complex biological media. Benefiting from the synergistic effects of zwitterionic and multivalent galactose polymers, drug-loaded nanoparticles were selectively internalized by cancer cells rather than normal tissue cells. In addition, the pH-responsive core retained their cargo within their polymeric coating through hydrophobic interaction and released it under slightly acidic conditions. In vivo pharmacokinetic studies in mice showed minimal uptake of nanoparticles by the mononuclear phagocyte system and excellent blood circulation half-lives of 14.4 h. As a result, tumor growth was completely inhibited and no damage was observed for normal organ tissues. This newly developed drug nanovehicle has great potential in cancer therapy, and the hierarchical design principle should provide valuable information for the development of the next generation of drug delivery systems.Effective delivery of therapeutics to disease sites significantly contributes to drug efficacy, toxicity and clearance. Here we designed a hierarchical polymeric nanoparticle structure for anti-cancer chemotherapy delivery by utilizing state-of-the-art polymer chemistry and co-assembly techniques. This novel structural design combines the most desired merits for drug delivery in a single particle, including a long in vivo circulation time, inhibited non-specific cell uptake, enhanced tumor cell internalization, pH-controlled drug release and simultaneous imaging. This co-assembled nanoparticle showed exceptional stability in complex biological media. Benefiting from the synergistic effects of zwitterionic and multivalent galactose polymers, drug-loaded nanoparticles were selectively internalized by cancer cells rather than normal tissue cells. In addition, the pH-responsive core retained their cargo within their polymeric coating through hydrophobic interaction and released it under slightly acidic conditions. In vivo pharmacokinetic studies in mice showed minimal uptake of nanoparticles by the mononuclear phagocyte system and excellent blood circulation half-lives of 14.4 h. As a result, tumor growth was completely inhibited and no damage was observed for normal organ tissues. This newly developed drug nanovehicle has great potential in cancer therapy, and the hierarchical design principle should provide valuable information for the development of the next generation of drug delivery systems. Electronic supplementary information (ESI) available: Experimental details, 1H NMR spectra and GPC of polymers. See DOI: 10.1039/c6nr01595f

  16. 18F-labeled norepinephrine transporter tracer [18F]NS12137: radiosynthesis and preclinical evaluation.

    PubMed

    Kirjavainen, Anna K; Forsback, Sarita; López-Picón, Francisco R; Marjamäki, Päivi; Takkinen, Jatta; Haaparanta-Solin, Merja; Peters, Dan; Solin, Olof

    2018-01-01

    Several psychiatric and neurodegenerative diseases are associated with malfunction of brain norepinephrine transporter (NET). However, current clinical evaluations of NET function are limited by the lack of sufficiently sensitive methods of detection. To this end, we have synthesized exo-3-[(6-[ 18 F]fluoro-2-pyridyl)oxy]-8-azabicyclo[3.2.1]-octane ([ 18 F]NS12137) as a radiotracer for positron emission tomography (PET) and have demonstrated that it is highly specific for in vivo detection of NET-rich regions of rat brain tissue. We applied two methods of electrophilic, aromatic radiofluorination of the precursor molecule, exo-3-[(6-trimethylstannyl-2-pyridyl)oxy]-8-azabicyclo-[3.2.1]octane-8-carboxylate: (1) direct labeling with [ 18 F]F 2 , and (2) labeling with [ 18 F]Selectfluor, a derivative of [ 18 F]F 2 , using post-target produced [ 18 F]F 2 . The time-dependent distribution of [ 18 F]NS12137 in brain tissue of healthy, adult Sprague-Dawley rats was determined by ex vivo autoradiography. The specificity of [ 18 F]NS12137 binding was demonstrated on the basis of competitive binding by nisoxetine, a known NET antagonist of high specificity. [ 18 F]NS12137 was successfully synthesized with radiochemical yields of 3.9% ± 0.3% when labeled with [ 18 F]F 2 and 10.2% ± 2.7% when labeled with [ 18 F]Selectfluor. The molar activity of radiotracer was 8.8 ± 0.7 GBq/μmol with [ 18 F]F 2 labeling and 6.9 ± 0.4 GBq/μmol with [ 18 F]Selectfluor labeling at the end of synthesis of [ 18 F]NS12137. Uptake of [ 18 F]NS12137 in NET-rich areas in rat brain was demonstrated with the locus coeruleus (LCoe) having the highest regional uptake. Prior treatment of rats with nisoxetine showed no detectable [ 18 F]NS12137 in the LCoe. Analyses of whole brain samples for radiometabolites showed only the parent compound [ 18 F]NS12137. Uptake of 18 F-radioactivity in bone increased with time. The two electrophilic 18 F-labeling methods proved to be suitable for synthesis of [ 18 F]NS12137 with the [ 18 F]Selectfluor method providing an approximate three-fold higher yield than the [ 18 F]F 2 method. As an electrostatically neutral radiotracer [ 18 F]NS12137 crosses the blood-brain barrier and enabled specific labeling of NET-rich regions of rat brain tissue with the highest concentration in the LCoe. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Minireview: SLCO and ABC Transporters: A Role for Steroid Transport in Prostate Cancer Progression

    PubMed Central

    Cho, Eunpi; Montgomery, R. Bruce

    2014-01-01

    Androgens play a critical role in the development and progression of prostate cancer (PCa), and androgen deprivation therapy via surgical or medical castration is front-line therapy for patients with advanced PCa. However, intratumoral testosterone levels are elevated in metastases from patients with castration-resistant disease, and residual intratumoral androgens have been implicated in mediating ligand-dependent mechanisms of androgen receptor activation. The source of residual tissue androgens present despite castration has not been fully elucidated, but proposed mechanisms include uptake and conversion of adrenal androgens, such as dehdroepiandrosterone to testosterone and dihydrotestosterone, or de novo androgen synthesis from cholesterol or progesterone precursors. In this minireview, we discuss the emerging evidence that suggests a role for specific transporters in mediating transport of steroids into or out of prostate cells, thereby influencing intratumoral androgen levels and PCa development and progression. We focus on the solute carrier and ATP binding cassette gene families, which have the most published data for a role in PCa-related steroid transport, and review the potential impact of genetic variation on steroid transport activity and PCa outcomes. Continued assessment of transport activity in PCa models and human tumor tissue is needed to better delineate the different roles these transporters play in physiologic and neoplastic settings, and in order to determine whether targeting the uptake of steroid substrates by specific transporters may be a clinically feasible therapeutic strategy. PMID:25147980

  18. A BAT-Centric Approach to the Treatment of Diabetes: Turn on the Brain.

    PubMed

    Hankir, Mohammed K; Cowley, Michael A; Fenske, Wiebke K

    2016-07-12

    The marked (18)F-flurodeoxyglucose uptake by brown adipose tissue (BAT) enabled its identification in human positron emission tomography imaging studies. In this Perspective, we discuss how glucose extraction by BAT and beige adipose tissue (BeAT) sufficiently impacts on glycemic control. We then present a unique overview of the central circuits modulated by gluco-regulatory hormones, temperature, and glucose itself, which converge on sympathetic preganglionic neurons and whose activation syphon circulating glucose into BAT/BeAT. Targeted stimulation of the sympathetic nervous system at specific nodes to selectively recruit BAT/BeAT may represent a safe and effective means of treating diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. 68Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour.

    PubMed

    Uprimny, Christian; Kroiss, Alexander Stephan; Decristoforo, Clemens; Fritz, Josef; von Guggenberg, Elisabeth; Kendler, Dorota; Scarpa, Lorenza; di Santo, Gianpaolo; Roig, Llanos Geraldo; Maffey-Steffan, Johanna; Horninger, Wolfgang; Virgolini, Irene Johanna

    2017-06-01

    Prostate cancer (PC) cells typically show increased expression of prostate-specific membrane antigen (PSMA), which can be visualized by 68 Ga-PSMA-11 PET/CT. The aim of this study was to assess the intensity of 68 Ga-PSMA-11 uptake in the primary tumour and metastases in patients with biopsy-proven PC prior to therapy, and to determine whether a correlation exists between the primary tumour-related 68 Ga-PSMA-11 accumulation and the Gleason score (GS) or prostate-specific antigen (PSA) level. Ninety patients with transrectal ultrasound biopsy-proven PC (GS 6-10; median PSA: 9.7 ng/ml) referred for 68 Ga-PSMA-11 PET/CT were retrospectively analysed. PET images were analysed visually and semiquantitatively by measuring the maximum standardized uptake value (SUV max ). The SUV max of the primary tumour and pathologic lesions suspicious for lymphatic or distant metastases were then compared to the physiologic background activity of normal prostate tissue and gluteal muscle. The SUV max of the primary tumour was assessed in relation to both PSA level and GS. Eighty-two patients (91.1%) demonstrated pathologic tracer accumulation in the primary tumour that exceeded physiologic tracer uptake in normal prostate tissue (median SUV max : 12.5 vs. 3.9). Tumours with GS of 6, 7a (3+4) and 7b (4+3) showed significantly lower 68 Ga-PSMA-11 uptake, with median SUV max of 5.9, 8.3 and 8.2, respectively, compared to patients with GS >7 (median SUV max : 21.2; p < 0.001). PC patients with PSA ≥10.0 ng/ml exhibited significantly higher uptake than those with PSA levels <10.0 ng/ml (median SUV max : 17.6 versus 7.7; p < 0.001). In 24 patients (26.7%), 82 lymph nodes with pathologic tracer accumulation consistent with metastases were detected (median SUV max : 10.6). Eleven patients (12.2%) revealed 55 pathologic osseous lesions suspicious for bone metastases (median SUV max : 11.6). The GS and PSA level correlated with the intensity of tracer accumulation in the primary tumours of PC patients on 68 Ga-PSMA-11 PET/CT. As PC tumours with GS 6+7 and patients with PSA values ≤10 ng/ml showed significantly lower 68 Ga-PSMA-11 uptake, 68 Ga-PSMA-11 PET/CT should be preferentially applied for primary staging of PC in patients with GS >7 or PSA levels ≥10 ng/ml.

  20. Binding of 2-[18F]fluoro-CP-118,954 to mouse acetylcholinesterase: microPET and ex vivo Cerenkov luminescence imaging studies.

    PubMed

    Kim, Dong Hyun; Choe, Yearn Seong; Choi, Joon Young; Lee, Kyung-Han; Kim, Byung-Tae

    2011-05-01

    Acetylcholinesterase (AChE) has been an important cholinergic factor for the diagnosis of Alzheimer's disease (AD), because of reduced AChE activity in the postmortem brains of AD patients. We previously developed 5,7-dihydro-3-(2-(1-(2-[(18)F]fluorobenzyl)-4-piperidinyl)ethyl)-6H-pyrrolo(3,2,f)-1,2-benzisoxazol-6-one (2-[(18)F]fluoro-CP-118,954) for in vivo studies of AChE in mice. In the present study, we automated the synthesis of 2-[(18)F]fluoro-CP-118,954 for the routine use and evaluated the radioligand by microPET and ex vivo Cerenkov luminescence imaging of mouse AChE. 4-[(18)F]Fluoro-donepezil, another AChE inhibitor, was used for comparison. Automated syntheses of 2-[(18)F]fluoro-CP-118,954 and 4-[(18)F]fluoro-donepezil resulted in high radiochemical yields (25-33% and 30-40%) and high specific activity (27.1-35.4 and 29.7-37.3 GBq/μmol). Brain microPET images of two ICR mice injected with 2-[(18)F]fluoro-CP-118,954 demonstrated high uptake in the striatum (ROI analysis: 5.1 %ID/g for the first 30 min and 4.1 %ID/g for another 30 min), and a blocking study with injection of CP-118,954 into one of the mice at 30 min after radioligand injection led to complete blocking of radioligand uptake in the striatum (ROI analysis: 1.9 %ID/g), whereas (18)F-labeled donepezil did not show specific uptake in the striatum. In another set of experiments, the brain tissues (striatum, parietal cortex, frontal cortex and cerebellum) were excised after brain microPET/CT imaging of mouse injected with 2-[(18)F]fluoro-CP-118,954, and a high striatal uptake was also detected in ex vivo optical and microPET images (ROI analysis: 1.4 %ID/g) and in γ-counting data (2.1 %ID/g at 50 min post-injection) of the brain tissues. Taken together, these results demonstrated that 2-[(18)F]fluoro-CP-118,954 specifically binds to AChE in mouse brains. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Phosphorus uptake, partitioning and redistribution during grain filling in rice

    PubMed Central

    Julia, Cécile; Wissuwa, Matthias; Kretzschmar, Tobias; Jeong, Kwanho; Rose, Terry

    2016-01-01

    Backgrounds and Aims In cultivated rice, phosphorus (P) in grains originates from two possible sources, namely exogenous (post-flowering root P uptake from soil) or endogenous (P remobilization from vegetative parts) sources. This study investigates P partitioning and remobilization in rice plants throughout grain filling to resolve contributions of P sources to grain P levels in rice. Methods Rice plants (Oryza sativa ‘IR64’) were grown under P-sufficient or P-deficient conditions in the field and in hydroponics. Post-flowering uptake, partitioning and re-partitioning of P was investigated by quantifying tissue P levels over the grain filling period in the field conditions, and by employing 33P isotope as a tracer in the hydroponic study. Key Results Post-flowering P uptake represented 40–70 % of the aerial plant P accumulation at maturity. The panicle was the main P sink in all studies, and the amount of P potentially remobilized from vegetative tissues to the panicle during grain filling was around 20 % of the total aerial P measured at flowering. In hydroponics, less than 20 % of the P tracer taken up at 9 d after flowering (DAF) was found in the above-ground tissues at 14 DAF and half of it was partitioned to the panicle in both P treatments. Conclusions The results demonstrate that P uptake from the soil during grain filling is a critical contributor to the P content in grains in irrigated rice. The P tracer study suggests that the mechanism of P loading into grains involves little direct transfer of post-flowering P uptake to the grain but rather substantial mobilization of P that was previously taken up and stored in vegetative tissues. PMID:27590335

  2. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    PubMed

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.

  3. The effect of hypodynamia on mineral and protein metabolism in calcified tissues of the maxillodental system (experimental radioisotope study)

    NASA Technical Reports Server (NTRS)

    Prokhonchukov, A. A.; Kovalenko, Y. A.; Kolesnik, A. G.; Kondratyev, Y. I.; Ilyushko, N. A.

    1980-01-01

    Mineral and protein metabolism was studied in experiments on 60 white rats, using P-32 and Ca-45 uptake in the mineral fractions, 2C-14-glycine in the protein fractions, and P-32 in both fractions of calcified tissues as indices over a 100 day period of experimental hypodynamia. Combined alterations in mineral and protein metabolism occurred in the calcified tissues of the experimental animals. The most pronounced changes were found in P-32 and 2C-14-glycine metabolism. In the incisors and femoral bones, these alterations occurred in two phases: P-32 and 2C-14-glycine uptake first increased, then decreased. Changes in Ca-45 metabolism were less pronounced, particularly in the initial period of the experiment. A marked reduction in P-32, Ca-45, and 2C-14-glycine uptake was found in various fractions of the calcified tissues on the 100th day of experimental hypodynamia.

  4. Clinical Value of FDG-PET/CT for the Evaluation of Rheumatic Diseases: Rheumatoid Arthritis, Polymyalgia Rheumatica, and Relapsing Polychondritis.

    PubMed

    Kubota, Kazuo; Yamashita, Hiroyuki; Mimori, Akio

    2017-07-01

    FDG is a tracer for visualizing glucose metabolism. PET/CT using FDG is widely used for the diagnosis of cancer, because glycolysis is elevated in cancer cells. Similarly, active inflammatory tissue also exhibits elevated glucose metabolism because of glycolysis in activated macrophages and proliferating fibroblasts. Elevated FDG uptake by active inflammatory tissues, such as those affected by arthritis, vasculitis, lymphadenitis, and chondritis, has enabled the diagnosis of inflammatory diseases using FDG-PET/CT. Rheumatoid arthritis (RA) is a systemic, chronic inflammation of the joints resulting in synovitis. Several clinical studies of RA have demonstrated that FDG uptake in affected joints reflects the disease activity of RA, with strong correlations between FDG uptake and various clinical parameters having been noted. Furthermore, the use of FDG-PET for the sensitive detection and early monitoring of the response to RA therapy has been reported. RA is sometimes associated with subclinical vasculitis, which is related to systemic inflammation. FDG-PET/CT can be used to evaluate subclinical vasculitis in the aorta or carotid artery. Polymyalgia rheumatica (PMR) is an autoimmune musculoskeletal disease of unknown etiology characterized by pain and stiffness in the shoulder, neck, and pelvic girdle, but not in the small finger joints in the hands, together with fever, fatigue, and weight loss. There is no specific test for PMR, and its diagnosis is based on clinical diagnostic criteria and the exclusion of other diseases with similar symptoms. However, FDG-PET/CT reveals a characteristic FDG uptake by the bursitis in ischial tuberosity, greater trochanter, lumbar or cervical spinous process, and scapulohumeral joint. A combination of FDG-PET/CT findings showed a high diagnostic value for PMR in a differential diagnosis from RA. FDG-PET/CT is also very useful for evaluating large vessel vasculitis, which is often associated with PMR. Relapsing polychondritis is a rare multisystem disease of unknown etiology involving cartilaginous and proteoglycan-rich structures. Its rarity and diversity of symptoms often result in a delayed diagnosis. FDG-PET/CT reveals unique FDG uptake findings for chondritis in the auricular, nasal, trachea, bronchial tree, and costal cartilage and in the cartilage of joints. Thus, the spread of knowledge regarding these very specific FDG-PET/CT findings could promote the early diagnosis and improved disease control of relapsing polychondritis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cadmium translocation by contractile roots differs from that in regular, non-contractile roots

    PubMed Central

    Lux, Alexander; Lackovič, Andrej; Van Staden, Johannes; Lišková, Desana; Kohanová, Jana; Martinka, Michal

    2015-01-01

    Background and Aims Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot. Methods Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections. Key Results The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical–subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part. Conclusions The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant nutrition, for example in the uptake of nutrients from upper soil layers, which are richer in humus in otherwise nutrient-poor soils, and also has implications for the uptake of surface-soil pollutants. PMID:25939652

  6. Hexose Transport in Growing Petunia Pollen Tubes and Characterization of a Pollen-Specific, Putative Monosaccharide Transporter1

    PubMed Central

    Ylstra, Bauke; Garrido, Dolores; Busscher, Jacqueline; van Tunen, Arjen J.

    1998-01-01

    We investigated the molecular and physiological processes of sugar uptake and metabolism during pollen tube growth and plant fertilization. In vitro germination assays showed that petunia (Petunia hybrida) pollen can germinate and grow not only in medium containing sucrose (Suc) as a carbon source, but also in medium containing the monosaccharides glucose (Glc) or fructose (Fru). Furthermore, high-performance liquid chromatography analysis demonstrated a rapid and complete conversion of Suc into equimolar amounts of Glc and Fru when pollen was cultured in a medium containing 2% Suc. This indicates the presence of wall-bound invertase activity and uptake of sugars in the form of monosaccharides by the growing pollen tube. A cDNA designated pmt1 (petunia monosaccharide transporter 1), which is highly homologous to plant monosaccharide transporters, was isolated from petunia. Pmt1 belongs to a small gene family and is expressed specifically in the male gametophyte, but not in any other vegetative or floral tissues. Pmt1 is activated after the first pollen mitosis, and high levels of mRNA accumulate in mature and germinating pollen. A model describing the transport of sugars to the style, the conversion of Suc into Glc and Fru, and the active uptake by a monosaccharide transporter into the pollen tube is presented. PMID:9733549

  7. Synthesis and evaluation of Tc-99m-labeled RRL-containing peptide as a non-invasive tumor imaging agent in a mouse fibrosarcoma model.

    PubMed

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Chang Guhn

    2015-11-01

    Arginine-arginine-leucine (RRL) is considered a tumor endothelial cell-specific binding sequence. RRL-containing peptide targeting tumor vessels is an excellent candidate for tumor imaging. In this study, we developed RRL-containing hexapeptides and evaluated their feasibility as a tumor imaging agent in a HT-1080 fibrosarcoma-bearing murine model. The hexapeptide, glutamic acid-cysteine-glycine (ECG)-RRL was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling efficiency was evaluated using instant thin-layer chromatography. Uptake of Tc-99m ECG-RRL within HT-1080 cells was evaluated in vitro by confocal microscopy and cellular binding affinity was calculated. Gamma images were acquired In HT-1080 fibrosarcoma tumor-bearing mice, and the tumor-to-muscle uptake ratio was calculated. The inflammatory-to-normal muscle uptake ratio was also calculated in an inflammation mouse model. A biodistribution study was performed to calculate %ID/g. A high yield of Tc-99m ECG-RRL complexes was prepared after Tc-99m radiolabeling. Binding of Tc-99m ECG-RRL to tumor cells had was confirmed by in vitro studies. Gamma camera imaging in the murine model showed that Tc-99m ECG-RRL accumulated substantially in the subcutaneously engrafted tumor and that tumoral uptake was blocked by co-injecting excess RRL. Moreover, Tc-99m ECG-RRL accumulated minimally in inflammatory lesions. We successfully developed Tc-99m ECG-RRL as a new tumor imaging candidate. Specific tumoral uptake of Tc-99m ECG-RRL was evaluated both in vitro and in vivo, and it was determined to be a good tumor imaging candidate. Additionally, Tc-99m ECG-RRL effectively distinguished between cancerous tissue and inflammatory lesions.

  8. Total and Bioaccessible Soil Arsenic and Lead Levels and Plant Uptake in Three Urban Community Gardens in Puerto Rico.

    PubMed

    Misenheimer, John; Nelson, Clay; Huertas, Evelyn; Medina-Vera, Myriam; Prevatte, Alex; Bradham, Karen

    2018-01-01

    Arsenic (As) and lead (Pb) are two contaminants of concern associated with urban gardening. In Puerto Rico, data currently is limited on As and Pb levels in urban garden soils, soil metal (loid) bioaccessibility, and uptake of As and Pb in soil by edible plants grown in the region. This study examined total and bioaccessible soil As and Pb concentrations and accumulation in 10 commonly grown garden plants collected from three urban community gardens in Puerto Rico. Bioavailability values were predicted using bioaccessibility data to compare site-specific bioavailability estimates to commonly used default exposure assumptions. Total and bioaccessible As levels in study soils ranged from 2 to 55 mg/kg and 1 to 18 mg/kg, respectively. Total and bioaccessible Pb levels ranged from 19 to 172 mg/kg and 17 to 97 mg/kg, respectively. Measured bioaccessibility values corresponded to 19 to 42% bioaccessible As and 61 to 100% bioaccessible Pb when expressed as a percent of total As and Pb respectively. Predicted relative percent bioavailability of soil As and Pb based on measured bioaccessibility values ranged from 18 to 36% and 51 to 85% for As and Pb respectively. Transfer factors (TFs) measuring uptake of As in plants from soil ranged from 0 to 0.073 in the edible flesh (fruit or vegetable) of plant tissues analyzed and 0.073 to 0.444 in edible leaves. Pb TFs ranged from 0.002 to 0.012 in flesh and 0.023 to 0.204 in leaves. Consistent with TF values, leaves accumulated higher concentrations of As and Pb than the flesh, with the highest tissue concentrations observed in the culantro leaf (3.2 mg/kg dw of As and 8.9 mg/kg dw of Pb). Leaves showed a general but not statistically-significant (α = 0.05) trend of increased As and Pb concentration with increased soil levels, while no trend was observed for flesh tissues. These findings provide critical data that can improve accuracy and reduce uncertainty when conducting site-specific risk determination of potential As and Pb exposure while gardening or consuming garden produce in the understudied region of Puerto Rico.

  9. Diffusion of biostimulators into plant tissues

    NASA Astrophysics Data System (ADS)

    Kolomazník, Karel; Pecha, Jiří; Friebrová, Veronika; Janáčová, Dagmar; Vašek, Vladimír

    2012-09-01

    Biostimulators are substances able to enhance the immune system of cultivated crops and support plant metabolism. Their utilization helps to reduce the amount of chemicals used in agriculture. To perform the desired effect, a biostimulator must be able to penetrate into the plant tissue. The time of penetration however, is limited, since the biostimulator must remain in a liquid state. This is of great importance—especially in field conditions, where the treated plants are exposed to different weather condition and other extrinsic factors. A mathematical model based on diffusion mechanisms has been elaborated to describe the biostimulator transport process from penetration of the leaves into the plant's inner tissues. By means of the effective diffusion coefficient of the prepared specific protein hydrolyzate, this model can be used to estimate the time necessary for the uptake of the minimal active amount of the biostimulator.

  10. 99mTc-labelled HYNIC-minigastrin with reduced kidney uptake for targeting of CCK-2 receptor-positive tumours.

    PubMed

    von Guggenberg, E; Dietrich, H; Skvortsova, I; Gabriel, M; Virgolini, I J; Decristoforo, C

    2007-08-01

    Different attempts have been made to develop a suitable radioligand for targeting CCK-2 receptors in vivo, for staging of medullary thyroid carcinoma (MTC) and other receptor-expressing tumours. After initial successful clinical studies with [DTPA(0),D: Glu(1)]minigastrin (DTPA-MG0) radiolabelled with (111)In and (90)Y, our group developed a (99m)Tc-labelled radioligand, based on HYNIC-MG0. A major drawback observed with these derivatives is their high uptake by the kidneys. In this study we describe the preclinical evaluation of the optimised shortened peptide analogue, [HYNIC(0),D: Glu(1),desGlu(2-6)]minigastrin (HYNIC-MG11). (99m)Tc labelling of HYNIC-MG11 was performed using tricine and EDDA as coligands. Stability experiments were carried out by reversed phase HPLC analysis in PBS, PBS/cysteine and plasma as well as rat liver and kidney homogenates. Receptor binding and cell uptake experiments were performed using AR4-2J rat pancreatic tumour cells. Animal biodistribution was studied in AR4-2J tumour-bearing nude mice. Radiolabelling was performed at high specific activities and radiochemical purity was >90%. (99m)Tc-EDDA-HYNIC-MG11 showed high affinity for the CCK-2 receptor and cell internalisation comparable to that of (99m)Tc-EDDA-HYNIC-MG0. Despite high stability in solution, a low metabolic stability in rat tissue homogenates was found. In a nude mouse tumour model, very low unspecific retention in most organs, rapid renal excretion with reduced renal retention and high tumour uptake were observed. (99m)Tc-EDDA-HYNIC-MG11 shows advantages over (99m)Tc-EDDA-HYNIC-MG0 in terms of lower kidney retention with unchanged uptake in tumours and CCK-2 receptor-positive tissue. However, the lower metabolic stability and impurities formed in the labelling process still leave room for further improvement.

  11. Somatostatin Analogues for Receptor Targeted Photodynamic Therapy

    PubMed Central

    Kaščáková, Slávka; Hofland, Leo J.; De Bruijn, Henriette S.; Ye, Yunpeng; Achilefu, Samuel; van der Wansem, Katy; van der Ploeg-van den Heuvel, Angelique; van Koetsveld, Peter M.; Brugts, Michael P.; van der Lelij, Aart-Jan; Sterenborg, Henricus J. C. M.; ten Hagen, Timo L. M.; Robinson, Dominic J.; van Hagen, Martin P.

    2014-01-01

    Photodynamic therapy (PDT) is an established treatment modality, used mainly for anticancer therapy that relies on the interaction of photosensitizer, light and oxygen. For the treatment of pathologies in certain anatomical sites, improved targeting of the photosensitizer is necessary to prevent damage to healthy tissue. We report on a novel dual approach of targeted PDT (vascular and cellular targeting) utilizing the expression of neuropeptide somatostatin receptor (sst2) on tumor and neovascular-endothelial cells. We synthesized two conjugates containing the somatostatin analogue [Tyr3]-octreotate and Chlorin e6 (Ce6): Ce6-K3-[Tyr3]-octreotate (1) and Ce6-[Tyr3]-octreotate-K3-[Tyr3]-octreotate (2). Investigation of the uptake and photodynamic activity of conjugates in-vitro in human erythroleukemic K562 cells showed that conjugation of [Tyr3]-octreotate with Ce6 in conjugate 1 enhances uptake (by a factor 2) in cells over-expressing sst2 compared to wild-type cells. Co-treatment with excess free Octreotide abrogated the phototoxicity of conjugate 1 indicative of a specific sst2-mediated effect. In contrast conjugate 2 showed no receptor-mediated effect due to its high hydrophobicity. When compared with un-conjugated Ce6, the PDT activity of conjugate 1 was lower. However, it showed higher photostability which may compensate for its lower phototoxicity. Intra-vital fluorescence pharmacokinetic studies of conjugate 1 in rat skin-fold observation chambers transplanted with sst2 + AR42J acinar pancreas tumors showed significantly different uptake profiles compared to free Ce6. Co-treatment with free Octreotide significantly reduced conjugate uptake in tumor tissue (by a factor 4) as well as in the chamber neo-vasculature. These results show that conjugate 1 might have potential as an in-vivo sst2 targeting photosensitizer conjugate. PMID:25111655

  12. Regulation of synaptic acetylcholine concentrations by acetylcholine transport in rat striatal cholinergic transmission.

    PubMed

    Muramatsu, Ikunobu; Uwada, Junsuke; Masuoka, Takayoshi; Yoshiki, Hatsumi; Sada, Kiyonao; Lee, Kung-Shing; Nishio, Matomo; Ishibashi, Takaharu; Taniguchi, Takanobu

    2017-10-01

    In addition to hydrolysis by acetylcholine esterase (AChE), acetylcholine (ACh) is also directly taken up into brain tissues. In this study, we examined whether the uptake of ACh is involved in the regulation of synaptic ACh concentrations. Superfusion experiments with rat striatal segments pre-incubated with [ 3 H]choline were performed using an ultra-mini superfusion vessel, which was developed to minimize superfusate retention within the vessel. Hemicholinium-3 (HC-3) at concentrations less than 1 μM, selectively inhibited the uptake of [ 3 H]choline by the high affinity-choline transporter 1 and had no effect on basal and electrically evoked [ 3 H]efflux in superfusion experiments. In contrast, HC-3 at higher concentrations, as well as tetraethylammonium (>10 μM), which inhibited the uptake of both [ 3 H]choline and [ 3 H]ACh, increased basal [ 3 H]overflow and potentiated electrically evoked [ 3 H]efflux. These effects of HC-3 and tetraethylammonium were also observed under conditions where tissue AChE was irreversibly inactivated by diisopropylfluorophosphate. Specifically, the potentiation of evoked [ 3 H]efflux was significantly higher in AChE-inactivated preparations and was attenuated by atropine. On the other hand, striatal segments pre-incubated with [ 3 H]ACh failed to increase [ 3 H]overflow in response to electrical stimulation. These results show that synaptic ACh concentrations are significantly regulated by the postsynaptic uptake of ACh, as well as by AChE hydrolysis and modulation of ACh release mediated through presynaptic muscarinic ACh receptors. In addition, these data suggest that the recycling of ACh-derived choline may be minor in cholinergic terminals. This study reveals a new mechanism of cholinergic transmission in the central nervous system. © 2017 International Society for Neurochemistry.

  13. Uptake of macro- and micro-nutrients into leaf, woody, and root tissue of Populus after irrigation with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2008-01-01

    Information about macro- and micro-nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps to maximize biomass production and understand impacts of leachate chemistry on tree health. We irrigated eight Populus clones (NC 13460, NCI4O18, NC14104, NC14106, DM115, DN5, NM2, NM6) with fertilized (N, P, K) well...

  14. PIXE analysis of tumors and localization behavior of a lanthanide in nude mice

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Jiun; Yang, Czau-Siung; Chou, Ming-Ji; Wei, Chau-Chin; Hsu, Chu-Chung; Wang, Chia-Yu

    1984-04-01

    We have used particle induced X-ray emission (PIXE) to analyze the elemental compositions and uptakes of a lanthanide, yttrium in this report, in tumors and normal tissues of nude mice. A small amount of yttrium nitrate was injected into nude mice with tumors. Samples of normal and malignant tissues taken from these mice were bombarded by the 2 MeV proton beam from a 3 MeV Van de Graaff accelerator with a Ge detector system to determine the relative elemental compositions of tissues and the relative concentrations of yttrium taken up by these tissues. We found that the uptakes of yttrium by tumors were at least five times more than those by normal tissues. Substantial differences were often observed between the trace element weight (or concentration) pattern of the cancerous and normal tissues. The present result is compared with human tissues.

  15. Effects of salinity on short-term waterborne zinc uptake, accumulation and sub-lethal toxicity in the green shore crab (Carcinus maenas).

    PubMed

    Niyogi, Som; Blewett, Tamzin A; Gallagher, Trevor; Fehsenfeld, Sandra; Wood, Chris M

    2016-09-01

    Waterborne zinc (Zn) is known to cause toxicity to freshwater animals primarily by disrupting calcium (Ca) homeostasis during acute exposure, but its effects in marine and estuarine animals are not well characterized. The present study investigated the effects of salinity on short-term Zn accumulation and sub-lethal toxicity in the euryhaline green shore crab, Carcinus maenas. The kinetic and pharmacological properties of short-term branchial Zn uptake were also examined. Green crabs (n=10) were exposed to control (no added Zn) and 50μM (3.25mgL(-1)) of waterborne Zn (∼25% of 96h LC50 in 100 seawater) for 96h at 3 different salinity regimes (100%, 60% and 20% seawater). Exposure to waterborne Zn increased tissue-specific Zn accumulation across different salinities. However, the maximum accumulation occurred in 20% seawater and no difference was recorded between 60% and 100% seawater. Gills appeared to be the primary site of Zn accumulation, since the accumulation was significantly higher in the gills relative to the hepatopancreas, haemolymph and muscle. Waterborne Zn exposure induced a slight increase in haemolymph osmolality and chloride levels irrespective of salinity. In contrast, Zn exposure elicited marked increases in both haemolymph and gill Ca levels, and these changes were more pronounced in 20% seawater relative to that in 60% or 100% seawater. An in vitro gill perfusion technique was used to examine the characteristics of short-term (1-4h) branchial Zn uptake over an exposure concentration range of 3-12μM (200-800μgL(-1)). The rate of short-term branchial Zn uptake did not change significantly after 2h, and no difference was recorded in the rate of uptake between the anterior (respiratory) and posterior (ion transporting) gills. The in vitro branchial Zn uptake occurred in a concentration-dependent manner across different salinities. However, the rate of uptake was consistently higher in 20% seawater relative to 60% or 100% seawater - similar to the trend observed with tissue Zn accumulation during in vivo exposure. The short-term branchial Zn uptake was found to be inhibited by lanthanum (a blocker of voltage-independent Ca channels), suggesting that branchial Zn uptake occurs via the Ca transporting pathways, at least in part. Overall, our findings indicate that acute exposure to waterborne Zn leads to the disruption of Zn and Ca homeostasis in green crab, and these effects are exacerbated at the lower salinity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Extraosseous Extension of Aggressive Vertebral Hemangioma as a Potential Pitfall on 68Ga-PSMA PET/CT.

    PubMed

    Probst, Stephan; Bladou, Franck; Abikhzer, Gad

    2017-08-01

    A 74-year-old man with newly diagnosed prostate cancer underwent Ga-PSMA PET/CT, which demonstrated intense uptake in and adjacent the L2 vertebral body. Subsequent MRI of the lumbar spine showed an aggressive L2 hemangioma with adjacent soft tissue extension. There was congruence of the intraosseous and extraosseous components of the hemangioma and the PSMA PET uptake. This is a rare but important potential pitfall in Ga-PSMA PET/CT-a soft tissue lesion with intense tracer uptake related not to a nodal metastasis of prostate cancer but to extraosseous extension of an aggressive vertebral body hemangioma.

  17. ¹⁸F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas.

    PubMed

    Hirata, Kenji; Terasaka, Shunsuke; Shiga, Tohru; Hattori, Naoya; Magota, Keiichi; Kobayashi, Hiroyuki; Yamaguchi, Shigeru; Houkin, Kiyohiro; Tanaka, Shinya; Kuge, Yuji; Tamaki, Nagara

    2012-05-01

    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and its prognosis is significantly poorer than those of less malignant gliomas. Pathologically, necrosis is one of the most important characteristics that differentiate GBM from lower grade gliomas; therefore, we hypothesized that (18)F fluoromisonidazole (FMISO), a radiotracer for hypoxia imaging, accumulates in GBM but not in lower grade gliomas. We aimed to evaluate the diagnostic value of FMISO positron emission tomography (PET) for the differential diagnosis of GBM from lower grade gliomas. This prospective study included 23 patients with pathologically confirmed gliomas. All of the patients underwent FMISO PET and (18)F-fluorodeoxyglucose (FDG) PET within a week. FMISO images were acquired 4 h after intravenous administration of 400 MBq of FMISO. Tracer uptake in the tumor was visually assessed. Lesion to normal tissue ratios and FMISO uptake volume were calculated. Of the 23 glioma patients, 14 were diagnosed as having GBM (grade IV glioma in the 2007 WHO classification), and the others were diagnosed as having non-GBM (5 grade III and 4 grade II). In visual assessment, all GBM patients showed FMISO uptake in the tumor greater than that in the surrounding brain tissues, whereas all the non-GBM patients showed FMISO uptake in the tumor equal to that in the surrounding brain tissues (p ≤ 0.001). One GBM patient was excluded from FDG PET study because of hyperglycemia. All GBM patients and three of the nine (33%) non-GBM patients showed FDG uptake greater than or equal to that in the gray matter. The sensitivity and specificity for diagnosing GBM were 100 and 100% for FMISO, and 100 and 66% for FDG, respectively. The lesion to cerebellum ratio of FMISO uptake was higher in GBM patients (2.74 ± 0.60, range 1.71-3.81) than in non-GBM patients (1.22 ± 0.06, range 1.09-1.29, p ≤ 0.001) with no overlap between the groups. The lesion to gray matter ratio of FDG was also higher in GBM patients (1.46 ± 0.75, range 0.91-3.79) than in non-GBM patients (1.07 ± 0.62, range 0.66-2.95, p ≤ 0.05); however, overlap of the ranges did not allow clear differentiation between GBM and non-GBM. The uptake volume of FMISO was larger in GBM (27.18 ± 10.46%, range 14.02-46.67%) than in non-GBM (6.07 ± 2.50%, range 2.12-9.22%, p ≤ 0.001). These preliminary data suggest that FMISO PET may distinguish GBM from lower grade gliomas.

  18. Targeting of VX2 Rabbit Liver Tumor by Selective Delivery of 3-Bromopyruvate: A Biodistribution and Survival Study

    PubMed Central

    Vali, Mustafa; Vossen, Josephina A.; Buijs, Manon; Engles, James M.; Liapi, Eleni; Ventura, Veronica Prieto; Khwaja, Afsheen; Acha-Ngwodo, Obele; Shanmugasundaram, Ganapathy; Syed, Labiq; Wahl, Richard L.; Geschwind, Jean-Francois H.

    2009-01-01

    The aim of this study was to determine the biodistribution and tumor targeting ability of 14C-labeled 3-bromopyruvate ([14C]3-BrPA) after i.a. and i.v. delivery in the VX2 rabbit model. In addition, we evaluated the effects of [14C]3-BrPA on tumor and healthy tissue glucose metabolism by determining 18F-deoxyglucose (FDG) uptake. Last, we determined the survival benefit of i.a. administered 3-BrPA. In total, 60 rabbits with VX2 liver tumor received either 1.75 mM [14C]3-BrPA i.a., 1.75 mM [14C]3-BrPA i.v., 20 mM [14C]3-BrPA i.v., or 25 ml of phosphate-buffered saline (PBS). All rabbits (with the exception of the 20 mM i.v. group) received FDG 1 h before sacrifice. Next, we compared survival of animals treated with i.a. administered 1.75 mM [14C]3-BrPA in 25 ml of PBS (n = 22) with controls (n = 10). After i.a. infusion, tumor uptake of [14C]3-BrPA was 1.8 ± 0.2% percentage of injected dose per gram of tissue (%ID/g), whereas other tissues showed minimal uptake. After i.v. infusion (1.75 mM), tumor uptake of [14C]3-BrPA was 0.03 ± 0.01% ID/g. After i.a. administration of [14C]3-BrPA, tumor uptake of FDG was 26 times lower than in controls. After i.v. administration of [14C]3-BrPA, there was no significant difference in tumor FDG uptake. Survival analysis showed that rabbits treated with 1.75 mM 3-BrPA survived longer (55 days) than controls (18.6 days). Intra-arterially delivered 3-BrPA has a favorable biodistribution profile, combining a high tumor uptake resulting in blockage of FDG uptake with no effects on healthy tissue. The local control of the liver tumor by 3-BrPA resulted in a significant survival benefit. PMID:18591216

  19. (18)F-FBPA as a tumor specific tracer of L-type amino acid transporter 1 (LAT1): PET evaluation in tumor and inflammation compared to (18)F-FDG and (11)C-methionine.

    PubMed

    Watabe, Tadashi; Hatazawa, Jun

    2015-01-01

    (18)F-FDG-PET is used worldwide for oncology patients. However, we sometimes encounter false positive cases of (18)F-FDG PET, such as moderate uptake in the inflammatory lesion, because (18)F-FDG accumulates not only in the cancer cells but also in the inflammatory cells (macrophage, granulation tissue, etc). To overcome this limitation of (18)F-FDG, we started to use (4-borono-2- [(18)F]fluoro-L-phenylalanine) (18)F-FBPA, an artificial amino acid tracer which is focusing attention as a tumor specific PET tracer. Physiological accumulation of (18)F-FBPA is limited in the kidney and urinary tract in humans, which enable preferable evaluation of uptake in the abdominal organs compared to (11)C-methionine ((11)C-MET). The purpose of this study was to evaluate (18)F-FBPA as a tumor specific tracer by in vitro cellular uptake analysis focusing on the selectivity of L-type amino acid transporter 1 (LAT1), which is specifically expressed in tumor cells, and in vivo PET analysis in rat xenograft and inflammation models compared to (18)F-FDG and (11)C-methionine. Uptake inhibition and efflux experiments were performed in HEK293-LAT1 and LAT2 cells using cold BPA, cold (18)F-FBPA, and hot (18)F-FBPA to evaluate LAT affinity and transport capacity. Position emission tomography studies were performed in rat xenograft model of C6 glioma 2 weeks after the implantation (n=9, body weight=197±10.5g) and subcutaneous inflammation model 4 days after the injection of turpentine oil (n=9, body weight=197±14.4g). Uptake on static PET images were compared among (18)F-FBPA at 60-70min post injection, (18)F-FDG at 60-70min, and (11)C-MET at 20-30min in the tumors and the inflammatory lesions by maximum standardized uptake value (SUVmax). Cellular uptake analysis showed no significant difference in inhibitory effect and efflux of LAT1 between cold (18)F-FBPA and cold BPA, suggesting the same affinity and transport capacity via LAT1. Uptake of (18)F-FBPA via LAT1 was superior to LAT2 by the concentration dependent uptake analysis. Position emission tomography analysis using SUVmax showed significantly higher accumulation of (18)F-FDG in the tumor and the inflammatory lesions (7.19±2.11 and 4.66±0.63, respectively) compared to (18)F-FBPA (3.23±0.40 and 1.86±0.19, respectively) and (11)C-MET (3.39±0.43 and 1.63±0.11, respectively) (P<0.01 by Tukey test). No significant difference was observed between (18)F-FBPA and (11)C-MET. (18)F-FBPA showed high selectivity of LAT1 by in vitro cellular uptake analysis, suggesting the potential as a tumor-specific substrate. In vivo PET analysis showed significantly lower uptake of (18)F-FBPA and (11)C-MET in the inflammatory lesions compared to (18)F-FDG, suggesting comparable utility of (18)F-FBPA PET to (11)C-MET PET in differentiating between the tumor and the inflammation.

  20. Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for a casein kinase 2-mediated pathway.

    PubMed

    Lakhan, Ram; Said, Hamid M

    2017-04-01

    Biotin (vitamin B7), an essential micronutrient for normal cellular functions, is obtained from both dietary sources as well as gut microbiota. Absorption of biotin in both the small and large intestine is via a carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT). Although different physiological and molecular aspects of intestinal biotin uptake have been delineated, nothing is known about the effect of LPS on the process. We addressed this issue using in vitro (human colonic epithelial NCM460 cells) and in vivo (mice) models of LPS exposure. Treating NCM460 cells with LPS was found to lead to a significant inhibition in carrier-mediated biotin uptake. Similarly, administration of LPS to mice led to a significant inhibition in biotin uptake by native colonic tissue. Although no changes in total cellular SMVT protein and mRNA levels were observed, LPS caused a decrease in the fraction of SMVT expressed at the cell surface. A role for casein kinase 2 (CK2) (whose activity was also inhibited by LPS) in mediating the endotoxin effects on biotin uptake and on membrane expression of SMVT was suggested by findings that specific inhibitors of CK2, as well as mutating the putative CK2 phosphorylation site (Thr 78 Ala) in the SMVT protein, led to inhibition in biotin uptake and membrane expression of SMVT. This study shows for the first time that LPS inhibits colonic biotin uptake via decreasing membrane expression of its transporter and that these effects likely involve a CK2-mediated pathway.

  1. Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for a casein kinase 2-mediated pathway

    PubMed Central

    Lakhan, Ram

    2017-01-01

    Biotin (vitamin B7), an essential micronutrient for normal cellular functions, is obtained from both dietary sources as well as gut microbiota. Absorption of biotin in both the small and large intestine is via a carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT). Although different physiological and molecular aspects of intestinal biotin uptake have been delineated, nothing is known about the effect of LPS on the process. We addressed this issue using in vitro (human colonic epithelial NCM460 cells) and in vivo (mice) models of LPS exposure. Treating NCM460 cells with LPS was found to lead to a significant inhibition in carrier-mediated biotin uptake. Similarly, administration of LPS to mice led to a significant inhibition in biotin uptake by native colonic tissue. Although no changes in total cellular SMVT protein and mRNA levels were observed, LPS caused a decrease in the fraction of SMVT expressed at the cell surface. A role for casein kinase 2 (CK2) (whose activity was also inhibited by LPS) in mediating the endotoxin effects on biotin uptake and on membrane expression of SMVT was suggested by findings that specific inhibitors of CK2, as well as mutating the putative CK2 phosphorylation site (Thr78Ala) in the SMVT protein, led to inhibition in biotin uptake and membrane expression of SMVT. This study shows for the first time that LPS inhibits colonic biotin uptake via decreasing membrane expression of its transporter and that these effects likely involve a CK2-mediated pathway. PMID:28052864

  2. The effect of renal failure on 18F-FDG uptake: a theoretic assessment.

    PubMed

    Laffon, Eric; Cazeau, Anne-Laure; Monet, Antoine; de Clermont, Henri; Fernandez, Philippe; Marthan, Roger; Ducassou, Dominique

    2008-12-01

    This work addresses the issue of using (18)F-FDG PET in patients with renal failure. A model analysis has been developed to compare tissue (18)F-FDG uptake in a patient who has normal renal function with uptake in a theoretic limiting case that assumes tracer plasma decay is tracer physical decay and is trapped irreversibly. This comparison has allowed us to propose, in the limiting case, that the usually injected activity be lowered by a factor of 3. We also proposed that the PET static acquisition be obtained at about 160 min after tracer injection. These 2 proposals were aimed at obtaining a similar patient radiation dose and similar tissue (18)F-FDG uptake. In patients with arbitrary renal failure (i.e., between the 2 extremes of normal function and the theoretic limiting case), we propose that the injected activity be lowered (without exceeding a factor of 3) and that the acquisition be started between 45 and 160 min after tracer injection, depending on the severity of renal failure. Furthermore, the model also shows that the more severe the renal failure is, the more overestimated is the standardized uptake value, unless the renal failure indirectly impairs tissue sensitivity to insulin and hence glucose metabolism.

  3. Hormonal and gravitropic specificity in the regulation of growth and cell wall synthesis in pulvini and internodes from shoots of Avena sativa L. (oat).

    PubMed Central

    Montague, M J

    1995-01-01

    Segments can be cut from the peduncular-1 internode of oat (Avena sativa L.) shoots so as to contain the graviresponsive leaf-sheath pulvinus and gibberellin-sensitive internodal tissue. Incorporation of [14C]glucose was used to monitor cell wall synthesis in these two tissues as affected by gravistimulus, indoleacetic acid (IAA), gibberellic acid (GA3), and fusicoccin (FC). Pulvinar cell wall synthesis was promoted by IAA and FC (both within about 1 h), as well as by gravistimulus (starting between 3 and 6 h), whereas GA3 had no effect on nongravistimulated pulvini. In contrast, GA3 and FC promoted internodal cell wall synthesis (initiated between 1 and 2 h), whereas IAA and gravistimulus caused a decrease in internodal uptake. FC preferentially promoted incorporation into the matrix component of the wall in both tissues. Gravistimulus failed to increase responsiveness of pulvinar tissue to IAA, whereas GA3 partially overcame gravistimulus-promoted incorporation into pulvinar cell wall, probably because of preferential movement of label into the rapidly elongating internode. The results demonstrate that these eight stimulus/tissue combinations can be examined easily in an isolated 10-mm stem segment, providing new opportunities for the comparative study of tissue- and stimulus-specific events in gene regulation and signal transduction in agronomically important cereals. PMID:11536686

  4. Iron Is a Sensitive Biomarker for Inflammation in Multiple Sclerosis Lesions

    PubMed Central

    Mehta, Veela; Pei, Wei; Yang, Grant; Li, Suyang; Swamy, Eashwar; Boster, Aaron; Schmalbrock, Petra; Pitt, David

    2013-01-01

    MRI phase imaging in multiple sclerosis (MS) patients and in autopsy tissue have demonstrated the presence of iron depositions in white matter lesions. The accumulation of iron in some but not all lesions suggests a specific, potentially disease-relevant process, however; its pathophysiological significance remains unknown. Here, we explore the role of lesional iron in multiple sclerosis using multiple approaches: immunohistochemical examination of autoptic MS tissue, an in vitro model of iron-uptake in human cultured macrophages and ultra-highfield phase imaging of highly active and of secondary progressive MS patients. Using Perls' stain and immunohistochemistry, iron was detected in MS tissue sections predominantly in non-phagocytosing macrophages/microglia at the edge of established, demyelinated lesions. Moreover, iron-containing macrophages but not myelin-laden macrophages expressed markers of proinflammatory (M1) polarization. Similarly, in human macrophage cultures, iron was preferentially taken up by non-phagocytosing, M1-polarized macrophages and induced M1 (super) polarization. Iron uptake was minimal in myelin-laden macrophages and active myelin phagocytosis led to depletion of intracellular iron. Finally, we demonstrated in MS patients using GRE phase imaging with ultra-highfield MRI that phase hypointense lesions were significantly more prevalent in patients with active relapsing than with secondary progressive MS. Taken together, our data provide a basis to interpret iron-sensitive GRE phase imaging in MS patients: iron is present in non-phagocytosing, M1-polarized microglia/macrophages at the rim of chronic active white matter demyelinating lesions. Phase imaging may therefore visualize specific, chronic proinflammatory activity in established MS lesions and thus provide important clinical information on disease status and treatment efficacy in MS patients. PMID:23516409

  5. Effectiveness of using thyrocalcitonin for the prevention of a calcium metabolic disorder in the mineralized tissues of rabbits with 30 days hypokinesia

    NASA Technical Reports Server (NTRS)

    Volozhin, A. I.; Shashkov, V. S.; Dmitriyev, B. S.; Yegorov, B. B.; Lobachik, V. I.; Brishin, A. I.

    1980-01-01

    A 30 day hypokinesia in rabbits led to a considerable lag in weight gain for the skeletal bones, reduction in Ca45 uptake, and an increase in isotope resorption rate in the rapidly metabolized fraction of extremity bones. On the other hand, Ca45 content in the teeth and maxillae increased, which may be explained by redistribution of isotope among the various mineralized tissues. Injection of thyrocalcitonin (50 IU/day) produced a distinct normalizing effect on Ca45 uptake and resorption in the mineralized tissues of rabbits kept hypokinetic.

  6. Differential expression of glucose transporters in normal and pathologic thyroid tissue.

    PubMed

    Matsuzu, Kenichi; Segade, Fernando; Matsuzu, Utako; Carter, Aaron; Bowden, Donald W; Perrier, Nancy D

    2004-10-01

    Malignant cells demonstrate increased glucose uptake and utilization. Immunohistochemical studies have suggested that enhanced glucose uptake in cancer cells may be caused by the overexpression of glucose transporters (GLUTs), in most cases GLUT1 and/or GLUT3. The aim of this study was to examine in detail the expression pattern and levels of GLUT genes in normal and pathologic thyroid tissues and to evaluate the clinical significance of GLUT mRNA levels. One hundred fifty-two surgically resected thyroid tissue samples from 103 patients were evaluated. Samples included: normal thyroid tissue (n = 58), benign thyroid disease (n = 61), and thyroid carcinoma (n = 33). Expression of the GLUT1, GLUT2, GLUT3, GLUT4, and GLUT10 genes were examined by reverse transcription-polymerase chain reaction (RT-PCR) and mRNA levels were quantitated by real-time RT-PCR. All thyroid parenchymal cells expressed GLUT1, GLUT3, GLUT4, and GLUT10. GLUT1 showed increased expression in carcinoma cases (p < 0.0001) and also in comparison with paired normal tissue samples from the same patient (p < 0.0001). Other GLUTs were statistically unchanged in pathologic tissues. These results are consistent with the theory that GLUT1 is upregulated during carcinogenesis and may play a major role in enhanced glucose uptake in thyroid cancer cells.

  7. Enhanced insulin signaling in density-enhanced phosphatase-1 (DEP-1) knockout mice.

    PubMed

    Krüger, Janine; Brachs, Sebastian; Trappiel, Manuela; Kintscher, Ulrich; Meyborg, Heike; Wellnhofer, Ernst; Thöne-Reineke, Christa; Stawowy, Philipp; Östman, Arne; Birkenfeld, Andreas L; Böhmer, Frank D; Kappert, Kai

    2015-04-01

    Insulin resistance can be triggered by enhanced dephosphorylation of the insulin receptor or downstream components in the insulin signaling cascade through protein tyrosine phosphatases (PTPs). Downregulating density-enhanced phosphatase-1 (DEP-1) resulted in an improved metabolic status in previous analyses. This phenotype was primarily caused by hepatic DEP-1 reduction. Here we further elucidated the role of DEP-1 in glucose homeostasis by employing a conventional knockout model to explore the specific contribution of DEP-1 in metabolic tissues. Ptprj (-/-) (DEP-1 deficient) and wild-type C57BL/6 mice were fed a low-fat or high-fat diet. Metabolic phenotyping was combined with analyses of phosphorylation patterns of insulin signaling components. Additionally, experiments with skeletal muscle cells and muscle tissue were performed to assess the role of DEP-1 for glucose uptake. High-fat diet fed-Ptprj (-/-) mice displayed enhanced insulin sensitivity and improved glucose tolerance. Furthermore, leptin levels and blood pressure were reduced in Ptprj (-/-) mice. DEP-1 deficiency resulted in increased phosphorylation of components of the insulin signaling cascade in liver, skeletal muscle and adipose tissue after insulin challenge. The beneficial effect on glucose homeostasis in vivo was corroborated by increased glucose uptake in skeletal muscle cells in which DEP-1 was downregulated, and in skeletal muscle of Ptprj (-/-) mice. Together, these data establish DEP-1 as novel negative regulator of insulin signaling.

  8. Toward Serotonin Fluorescent False Neurotransmitters: Development of Fluorescent Dual Serotonin and Vesicular Monoamine Transporter Substrates for Visualizing Serotonin Neurons.

    PubMed

    Henke, Adam; Kovalyova, Yekaterina; Dunn, Matthew; Dreier, Dominik; Gubernator, Niko G; Dincheva, Iva; Hwu, Christopher; Šebej, Peter; Ansorge, Mark S; Sulzer, David; Sames, Dalibor

    2018-05-16

    Ongoing efforts in our laboratories focus on design of optical reporters known as fluorescent false neurotransmitters (FFNs) that enable the visualization of uptake into, packaging within, and release from individual monoaminergic neurons and presynaptic sites in the brain. Here, we introduce the molecular probe FFN246 as an expansion of the FFN platform to the serotonergic system. Combining the acridone fluorophore with the ethylamine recognition element of serotonin, we identified FFN54 and FFN246 as substrates for both the serotonin transporter and the vesicular monoamine transporter 2 (VMAT2). A systematic structure-activity study revealed the basic structural chemotype of aminoalkyl acridones required for serotonin transporter (SERT) activity and enabled lowering the background labeling of these probes while maintaining SERT activity, which proved essential for obtaining sufficient signal in the brain tissue (FFN246). We demonstrate the utility of FFN246 for direct examination of SERT activity and SERT inhibitors in 96-well cell culture assays, as well as specific labeling of serotonergic neurons of the dorsal raphe nucleus in the living tissue of acute mouse brain slices. While we found only minor FFN246 accumulation in serotonergic axons in murine brain tissue, FFN246 effectively traces serotonin uptake and packaging in the soma of serotonergic neurons with improved photophysical properties and loading parameters compared to known serotonin-based fluorescent tracers.

  9. Radiotherapy volume delineation using dynamic [18F]-FDG PET/CT imaging in patients with oropharyngeal cancer: a pilot study.

    PubMed

    Silvoniemi, Antti; Din, Mueez U; Suilamo, Sami; Shepherd, Tony; Minn, Heikki

    2016-11-01

    Delineation of gross tumour volume in 3D is a critical step in the radiotherapy (RT) treatment planning for oropharyngeal cancer (OPC). Static [ 18 F]-FDG PET/CT imaging has been suggested as a method to improve the reproducibility of tumour delineation, but it suffers from low specificity. We undertook this pilot study in which dynamic features in time-activity curves (TACs) of [ 18 F]-FDG PET/CT images were applied to help the discrimination of tumour from inflammation and adjacent normal tissue. Five patients with OPC underwent dynamic [ 18 F]-FDG PET/CT imaging in treatment position. Voxel-by-voxel analysis was performed to evaluate seven dynamic features developed with the knowledge of differences in glucose metabolism in different tissue types and visual inspection of TACs. The Gaussian mixture model and K-means algorithms were used to evaluate the performance of the dynamic features in discriminating tumour voxels compared to the performance of standardized uptake values obtained from static imaging. Some dynamic features showed a trend towards discrimination of different metabolic areas but lack of consistency means that clinical application is not recommended based on these results alone. Impact of inflammatory tissue remains a problem for volume delineation in RT of OPC, but a simple dynamic imaging protocol proved practicable and enabled simple data analysis techniques that show promise for complementing the information in static uptake values.

  10. Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange.

    PubMed

    Dow, Graham J; Berry, Joseph A; Bergmann, Dominique C

    2017-10-01

    Stomata are simultaneously tasked with permitting the uptake of carbon dioxide for photosynthesis while limiting water loss from the plant. This process is mainly regulated by guard cell control of the stomatal aperture, but recent advancements have highlighted the importance of several genes that control stomatal development. Using targeted genetic manipulations of the stomatal lineage and a combination of gas exchange and microscopy techniques, we show that changes in stomatal development of the epidermal layer lead to coupled changes in the underlying mesophyll tissues. This coordinated response tends to match leaf photosynthetic potential (V cmax ) with gas-exchange capacity (g smax ), and hence the uptake of carbon dioxide for water lost. We found that different genetic regulators systematically altered tissue coordination in separate ways: the transcription factor SPEECHLESS (SPCH) primarily affected leaf size and thickness, whereas peptides in the EPIDERMAL PATTERNING FACTOR (EPF) family altered cell density in the mesophyll. It was also determined that interlayer coordination required the cell-surface receptor TOO MANY MOUTHS (TMM). These results demonstrate that stomata-specific regulators can alter mesophyll properties, which provides insight into how molecular pathways can organize leaf tissues to coordinate gas exchange and suggests new strategies for improving plant water-use efficiency. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. An aqueous extract of Curcuma longa (turmeric) rhizomes stimulates insulin release and mimics insulin action on tissues involved in glucose homeostasis in vitro.

    PubMed

    Mohankumar, Sureshkumar; McFarlane, James R

    2011-03-01

    Curcuma longa (turmeric) has been used widely as a spice, particularly in Asian countries. It is also used in the Ayurvedic system of medicine as an antiinflammatory and antimicrobial agent and for numerous other curative properties. The aim of this study was to investigate the effects of an aqueous extract of Curcuma longa (AEC) on tissues involved in glucose homeostasis. The extract was prepared by soaking 100 g of ground turmeric in 1 L of water, which was filtered and stored at -20°C prior to use. Pancreas and muscle tissues of adult mice were cultured in DMEM with 5 or 12 mmol/L glucose and varying doses of extract. The AEC stimulated insulin secretion from mouse pancreatic tissues under both basal and hyperglycaemic conditions, although the maximum effect was only 68% of that of tolbutamide. The AEC induced stepwise stimulation of glucose uptake from abdominal muscle tissues in the presence and absence of insulin, and the combination of AEC and insulin significantly potentiated the glucose uptake into abdominal muscle tissue. However, this effect was attenuated by wortmannin, suggesting that AEC possibly acts via the insulin-mediated glucose uptake pathway. In summary, water soluble compounds of turmeric exhibit insulin releasing and mimicking actions within in vitro tissue culture conditions. Copyright © 2010 John Wiley & Sons, Ltd.

  12. Improved tumor identification using dual tracer molecular imaging in fluorescence guided brain surgery

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochun; Torres, Veronica; Straus, David; Brey, Eric M.; Byrne, Richard W.; Tichauer, Kenneth M.

    2015-03-01

    Brain tumors represent a leading cause of cancer death for people under the age of 40 and the probability complete surgical resection of brain tumors remains low owing to the invasive nature of these tumors and the consequences of damaging healthy brain tissue. Molecular imaging is an emerging approach that has the potential to improve the ability for surgeons to correctly discriminate between healthy and cancerous tissue; however, conventional molecular imaging approaches in brain suffer from significant background signal in healthy tissue or an inability target more invasive sections of the tumor. This work presents initial studies investigating the ability of novel dual-tracer molecular imaging strategies to be used to overcome the major limitations of conventional "single-tracer" molecular imaging. The approach is evaluated in simulations and in an in vivo mice study with animals inoculated orthotopically using fluorescent human glioma cells. An epidermal growth factor receptor (EGFR) targeted Affibody-fluorescent marker was employed as a targeted imaging agent, and the suitability of various FDA approved untargeted fluorescent tracers (e.g. fluorescein & indocyanine green) were evaluated in terms of their ability to account for nonspecific uptake and retention of the targeted imaging agent. Signal-to-background ratio was used to measure and compare the amount of reporter in the tissue between targeted and untargeted tracer. The initial findings suggest that FDA-approved fluorescent imaging agents are ill-suited to act as untargeted imaging agents for dual-tracer fluorescent guided brain surgery as they suffer from poor delivery to the healthy brain tissue and therefore cannot be used to identify nonspecific vs. specific uptake of the targeted imaging agent where current surgery is most limited.

  13. Preclinical Comparative Study of (68)Ga-Labeled DOTA, NOTA, and HBED-CC Chelated Radiotracers for Targeting PSMA.

    PubMed

    Ray Banerjee, Sangeeta; Chen, Zhengping; Pullambhatla, Mrudula; Lisok, Ala; Chen, Jian; Mease, Ronnie C; Pomper, Martin G

    2016-06-15

    (68)Ga-labeled, low-molecular-weight imaging agents that target the prostate-specific membrane antigen (PSMA) are increasingly used clinically to detect prostate and other cancers with positron emission tomography (PET). The goal of this study was to compare the pharmacokinetics of three PSMA-targeted radiotracers: (68)Ga-1, using DOTA-monoamide as the chelating agent; (68)Ga-2, containing the macrocyclic chelating agent p-SCN-Bn-NOTA; and (68)Ga-DKFZ-PSMA-11, currently in clinical trials, which uses the acyclic chelating agent, HBED-CC. The PSMA-targeting scaffold for all three agents utilized a similar Glu-urea-Lys-linker construct. Each radiotracer enabled visualization of PSMA+ PC3 PIP tumor, kidney, and urinary bladder as early as 15 min post-injection using small animal PET/computed tomography (PET/CT). (68)Ga-2 demonstrated the fastest rate of clearance from all tissues in this series and displayed higher uptake in PSMA+ PC3 PIP tumor compared to (68)Ga-1 at 1 h post-injection. There was no significant difference in PSMA+ PC3 PIP tumor uptake for the three agents at 2 and 3 h post-injection. (68)Ga-DKFZ-PSMA-11 demonstrated the highest uptake and retention in normal tissues, including kidney, blood, spleen, and salivary glands and PSMA-negative PC3 flu tumors up to 3 h post-injection. In this preclinical evaluation (68)Ga-2 had the most advantageous characteristics for PSMA-targeted PET imaging.

  14. Dynamic Loading of Immature Epiphyseal Cartilage Pumps Nutrients out of Vascular Canals

    PubMed Central

    Albro, Michael B.; Banerjee, Rajan E.; Li, Roland; Oungoulian, Sevan R.; Chen, Bo; del Palomar, Amaya P.; Hung, Clark T.; Ateshian, Gerard A.

    2011-01-01

    The potential influence of mechanical loading on transvascular transport in vascularized soft tissues has not been explored extensively. This experimental investigation introduced and explored the hypothesis that dynamic mechanical loading can pump solutes out of blood vessels and into the surrounding tissue, leading to faster uptake and higher solute concentrations than could otherwise be achieved under unloaded conditions. Immature epiphyseal cartilage was used as a model tissue system, with fluorescein (332 Da), dextran (3, 10 and 70 kDa) and transferrin (80 kDa) as model solutes. Cartilage disks were either dynamically loaded (±10% compression over a 10% static offset strain, at 0.2 Hz) or maintained unloaded in solution for up to 20 hours. Results demonstrated statistically significant solute uptake in dynamically loaded (DL) explants relative to passive diffusion (PD) controls for all solutes except unbound fluorescein, as evidenced by the DL:PD concentration ratios after 20 hours (1.0 ± 0.2, 2.4 ± 1.1, 6.1 ± 3.3, 9.0 ± 4.0, and 5.5±1.6 for fluorescein, 3, 10, and 70 kDa dextran, and transferrin). Significant uptake enhancements were also observed within the first 30 seconds of loading. Termination of dynamic loading produced dissipation of enhanced solute uptake back to PD control values. Confocal images confirmed that solute uptake occurred from cartilage canals into their surrounding extracellular matrix. The incidence of this loading-induced transvascular solute pumping mechanism may significantly alter our understanding of the interaction of mechanical loading and tissue metabolism. PMID:21481875

  15. Photoacoustic imaging of hepatocellular carcinoma targeting gold nanoshells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Chen, Yan; Li, Zhao; Zhou, Juan; Duan, Xiyu; Wang, Thomas D.

    2017-02-01

    Plasmonic gold nanoshell (GNS) probe penetrates into tumors for deep imaging, enables superior photoacoustic contrast. Glypican-3 (GPC3) specific peptide (Kd = 71 nM) conjugated gold nanoshell (λabs=770nm) was used to detect HCC xenograft tumors in mice with photoacoustic imaging. This targeting probe demonstrated tumor uptake after 1 hr and cleared in 12 hrs. Images at a mean (±SD) depth of 9.7±1.4 mm from 0 to 2.1 cm beneath the skin revealed increased PA signal from tumors. Highest tumor uptake and tumor to normal tissue ratio occurred at 2 hrs post injection (T/B = 4.45±0.22, n = 8). Molecular targeting GNS showed potential as a simple, effective and rapid technique for noninvasive in vivo monitoring HCC tumor growth and GPC3 expression.

  16. The suprachiasmatic nucleus drives day-night variations in postprandial triglyceride uptake into skeletal muscle and brown adipose tissue.

    PubMed

    Moran-Ramos, Sofía; Guerrero-Vargas, Natali N; Mendez-Hernandez, Rebeca; Basualdo, Maria Del Carmen; Escobar, Carolina; Buijs, Ruud M

    2017-12-01

    What is the central question of this study? What are the factors influencing day-night variations in postprandial triglycerides? What is the main finding and its importance? Rats show low postprandial plasma triglyceride concentrations early in the active period that are attributable to a higher uptake by skeletal muscle and brown adipose tissue. We show that these day-night variations in uptake are driven by the suprachiasmatic nucleus, probably via a Rev-erbα-mediated mechanism and independent of locomotor activity. These findings highlight that the suprachiasmatic nucleus has a major role in day-night variations in plasma triglycerides and that disturbances in our biological clock might be an important risk factor contributing to development of postprandial hyperlipidaemia. Energy metabolism follows a diurnal pattern, mainly driven by the suprachiasmatic nucleus (SCN), and disruption of circadian regulation has been linked to metabolic abnormalities. Indeed, epidemiological evidence shows that night work is a risk factor for cardiovascular disease, and postprandial hyperlipidaemia is an important contributor. Therefore, the aim of this work was to investigate the factors that drive day-night variations in postprandial triglycerides (TGs). Intact and SCN-lesioned male Wistar rats were subjected to an oral fat challenge during the beginning of the rest phase (day) or the beginning of the active phase (night). The plasma TG profile was evaluated and tissue TG uptake assayed. After the fat challenge, intact rats showed lower postprandial plasma TG concentrations early in the night when compared with the day. However, no differences were observed in the rate of intestinal TG secretion between day and night. Instead, there was a higher uptake of TG by skeletal muscle and brown adipose tissue early in the active phase (night) when compared with the rest phase (day), and these variations were abolished in rats bearing bilateral SCN lesions. Rev-erbα gene expression suggests this as a possible mediator of the mechanism linking the SCN and day-night variations in TG uptake. These findings show that the SCN has a major role in day-night variations in plasma TGs by promoting TG uptake into skeletal muscle and brown adipose tissue. Consequently, disturbance of the biological clock might be an important risk factor contributing to the development of hyperlipidaemia. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  17. Testosterone differentially regulates targets of lipid and glucose metabolism in liver, muscle and adipose tissues of the testicular feminised mouse.

    PubMed

    Kelly, Daniel M; Akhtar, Samia; Sellers, Donna J; Muraleedharan, Vakkat; Channer, Kevin S; Jones, T Hugh

    2016-11-01

    Testosterone deficiency is commonly associated with obesity, metabolic syndrome, type 2 diabetes and their clinical consequences-hepatic steatosis and atherosclerosis. The testicular feminised mouse (non-functional androgen receptor and low testosterone) develops fatty liver and aortic lipid streaks on a high-fat diet, whereas androgen-replete XY littermate controls do not. Testosterone treatment ameliorates these effects, although the underlying mechanisms remain unknown. We compared the influence of testosterone on the expression of regulatory targets of glucose, cholesterol and lipid metabolism in muscle, liver, abdominal subcutaneous and visceral adipose tissue. Testicular feminised mice displayed significantly reduced GLUT4 in muscle and glycolytic enzymes in muscle, liver and abdominal subcutaneous but not visceral adipose tissue. Lipoprotein lipase required for fatty acid uptake was only reduced in subcutaneous adipose tissue; enzymes of fatty acid synthesis were increased in liver and subcutaneous tissue. Stearoyl-CoA desaturase-1 that catalyses oleic acid synthesis and is associated with insulin resistance was increased in visceral adipose tissue and cholesterol efflux components (ABCA1, apoE) were decreased in subcutaneous and liver tissue. Master regulator nuclear receptors involved in metabolism-Liver X receptor expression was suppressed in all tissues except visceral adipose tissue, whereas PPARγ was lower in abdominal subcutaneous and visceral adipose tissue and PPARα only in abdominal subcutaneous. Testosterone treatment improved the expression (androgen receptor independent) of some targets but not all. These exploratory data suggest that androgen deficiency may reduce the buffering capability for glucose uptake and utilisation in abdominal subcutaneous and muscle and fatty acids in abdominal subcutaneous. This would lead to an overspill and uptake of excess glucose and triglycerides into visceral adipose tissue, liver and arterial walls.

  18. Quantifying cancer cell receptors with paired-agent fluorescent imaging: a novel method to account for tissue optical property effects

    NASA Astrophysics Data System (ADS)

    Sadeghipour, Negar; Davis, Scott C.; Tichauer, Kenneth M.

    2018-02-01

    Dynamic fluorescence imaging approaches can be used to estimate the concentration of cell surface receptors in vivo. Kinetic models are used to generate the final estimation by taking the targeted imaging agent concentration as a function of time. However, tissue absorption and scattering properties cause the final readout signal to be on a different scale than the real fluorescent agent concentration. In paired-agent imaging approaches, simultaneous injection of a suitable control imaging agent with a targeted one can account for non-specific uptake and retention of the targeted agent. Additionally, the signal from the control agent can be a normalizing factor to correct for tissue optical property differences. In this study, the kinetic model used for paired-agent imaging analysis (i.e., simplified reference tissue model) is modified and tested in simulation and experimental data in a way that accounts for the scaling correction within the kinetic model fit to the data to ultimately extract an estimate of the targeted biomarker concentration.

  19. Accumulation patterns of lipophilic organic contaminants in surface sediments and in economic important mussel and fish species from Jakarta Bay, Indonesia.

    PubMed

    Dwiyitno; Dsikowitzky, Larissa; Nordhaus, Inga; Andarwulan, Nuri; Irianto, Hari Eko; Lioe, Hanifah Nuryani; Ariyani, Farida; Kleinertz, Sonja; Schwarzbauer, Jan

    2016-09-30

    Non-target screening analyses were conducted in order to identify a wide range of organic contaminants in sediment and animal tissue samples from Jakarta Bay. High concentrations of di-iso-propylnaphthalenes (DIPNs), linear alkylbenzenes (LABs) and polycyclic aromatic hydrocarbons (PAHs) were detected in all samples, whereas phenylmethoxynaphthalene (PMN), DDT and DDT metabolites (DDX) were detected at lower concentrations. In order to evaluate the uptake and accumulation by economic important mussel (Perna viridis) and fish species, contaminant patterns of DIPNs, LABs and PAHs in different compartments were compared. Different patterns of these contaminant groups were found in sediment and animal tissue samples, suggesting compound-specific accumulation and metabolism processes. Significantly higher concentrations of these three contaminant groups in mussel tissue as compared to fish tissue from Jakarta Bay were found. Because P. viridis is an important aquaculture species in Asia, this result is relevant for food safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of dietary chromium exposure to rockfish, Sebastes schlegelii are ameliorated by ascorbic acid.

    PubMed

    Kim, Jun-Hwan; Kang, Ju-Chan

    2017-05-01

    Juvenile rockfish Sebastes schlegelii (mean length 10.8±1.4cm, and mean weight 31.7±3.6g) were exposed for 4 weeks with the different levels of dietary chromium (Cr 6+ ) at 0, 120 and 240mg/L and ascorbic acids (AsA) at 100, 200 and 400mg/L. Significant accumulation occurred in specific tissues and hematological parameters were altered: red blood cell count, hematocrit, and hemoglobin increased; plasma components were altered including calcium, glucose, cholesterol, total protein, glutamic oxalate transaminase, and glutamic pyruvate transaminase. However, magnesium and alkaline phosphatase concentrations were unchanged. Ascorbic acids reduced both chromium uptake into tissues and altered hematological parameters. Copyright © 2017. Published by Elsevier Inc.

  1. Uptake and biodegradation of the antimicrobial sulfadimidine by the species Tripolium pannonicum acting as biofilter and its further biodegradation by anaerobic digestion and concomitant biogas production.

    PubMed

    Turcios, Ariel E; Weichgrebe, Dirk; Papenbrock, Jutta

    2016-11-01

    This project analyses the uptake and biodegradation of the antimicrobial sulfadimidine (SDI) from the culture medium and up to the anaerobic digestion. Tripolium pannonicum was grown under hydroponic conditions with different concentrations of SDI (0, 5 and 10mg·L(-1)) and the fresh biomass, containing different amounts of SDI taken up, was used as substrate for biogas production. SDI was analyzed by liquid chromatography coupled to positive ion electrospray mass spectrometry (ESI LC-MS). Based on the findings, T. pannonicum is able to uptake SDI. The more SDI is in the culture medium, the higher the SDI content in the plant tissue. According to this study, it is possible to produce high yields of biogas using biomass of T. pannonicum containing SDI and at the same time biodegradation of SDI is carried out. The highest specific biogas yield is obtained using shoots as substrate of the plants cultivated at 5mg·L(-1) SDI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Rapid transporter regulation prevents substrate flow traffic jams in boron transport

    PubMed Central

    Sotta, Naoyuki; Duncan, Susan; Tanaka, Mayuki; Sato, Takafumi

    2017-01-01

    Nutrient uptake by roots often involves substrate-dependent regulated nutrient transporters. For robust uptake, the system requires a regulatory circuit within cells and a collective, coordinated behaviour across the tissue. A paradigm for such systems is boron uptake, known for its directional transport and homeostasis, as boron is essential for plant growth but toxic at high concentrations. In Arabidopsis thaliana, boron uptake occurs via diffusion facilitators (NIPs) and exporters (BORs), each presenting distinct polarity. Intriguingly, although boron soil concentrations are homogenous and stable, both transporters manifest strikingly swift boron-dependent regulation. Through mathematical modelling, we demonstrate that slower regulation of these transporters leads to physiologically detrimental oscillatory behaviour. Cells become periodically exposed to potentially cytotoxic boron levels, and nutrient throughput to the xylem becomes hampered. We conclude that, while maintaining homeostasis, swift transporter regulation within a polarised tissue context is critical to prevent intrinsic traffic-jam like behaviour of nutrient flow. PMID:28870285

  3. Rapid transporter regulation prevents substrate flow traffic jams in boron transport.

    PubMed

    Sotta, Naoyuki; Duncan, Susan; Tanaka, Mayuki; Sato, Takafumi; Marée, Athanasius Fm; Fujiwara, Toru; Grieneisen, Verônica A

    2017-09-05

    Nutrient uptake by roots often involves substrate-dependent regulated nutrient transporters. For robust uptake, the system requires a regulatory circuit within cells and a collective, coordinated behaviour across the tissue. A paradigm for such systems is boron uptake, known for its directional transport and homeostasis, as boron is essential for plant growth but toxic at high concentrations. In Arabidopsis thaliana , boron uptake occurs via diffusion facilitators (NIPs) and exporters (BORs), each presenting distinct polarity. Intriguingly, although boron soil concentrations are homogenous and stable, both transporters manifest strikingly swift boron-dependent regulation. Through mathematical modelling, we demonstrate that slower regulation of these transporters leads to physiologically detrimental oscillatory behaviour. Cells become periodically exposed to potentially cytotoxic boron levels, and nutrient throughput to the xylem becomes hampered. We conclude that, while maintaining homeostasis, swift transporter regulation within a polarised tissue context is critical to prevent intrinsic traffic-jam like behaviour of nutrient flow.

  4. Synthesis, radiosynthesis and in vitro evaluation of 18F-Bodipy-C16/triglyceride as a dual modal imaging agent for brown adipose tissue

    PubMed Central

    Maenen, Marco; Drude, Natascha; Nascimento, Emmani B. M.; van Marken Lichtenbelt, Wouter D.; Mottaghy, Felix M.; Bauwens, Matthias

    2017-01-01

    Background Brown adipose tissue research is in the focus in the field of endocrinology. We designed a dual-modal fluorescent/PET fatty acid based tracer on commercially available Bodipy-C16, which can be synthesized to its corresponding triglyceride and which combines the benefits of fluorescent and PET imaging. Methods Bodipy-C16 was coupled to 1,3-diolein resulting in Bodipy-triglyceride. Bodipy-C16 and Bodipy-triglyceride compounds were radiolabeled with 18F using an 18F/19F exchange reaction to yield a dual-modal imaging molecule. Uptake of radiolabeled and non-labeled Bodipy-C16 and Bodipy-triglyceride was analyzed by fluorescence imaging and radioactive uptake in cultured adipocytes derived from human brown adipose tissue and white adipose tissue. Results Bodipy-C16 and Bodipy-triglyceride were successfully radiolabeled and Bodipy-C16 showed high shelf life and blood plasma stability (99% from 0–4 h). The uptake of Bodipy-C16 increased over time in cultured adipocytes, which was further enhanced after beta-adrenergic stimulation with norepinephrine. The uptake of Bodipy-C16 was inhibited by oleic acid and CD36 inhibitor sulfosuccinimidyl-oleate. The poor solubility of Bodipy-triglyceride did not allow stability or in vitro experiments. Conclusion The new developed dual modal fatty acid based tracers Bodipy-C16 and Bodipy-triglyceride showed promising results to stimulate further in vivo evaluation and will help to understand brown adipose tissues role in whole body energy expenditure. PMID:28817670

  5. Dissociation Between Brown Adipose Tissue 18F-FDG Uptake and Thermogenesis in Uncoupling Protein 1-Deficient Mice.

    PubMed

    Hankir, Mohammed K; Kranz, Mathias; Keipert, Susanne; Weiner, Juliane; Andreasen, Sille G; Kern, Matthias; Patt, Marianne; Klöting, Nora; Heiker, John T; Brust, Peter; Hesse, Swen; Jastroch, Martin; Fenske, Wiebke K

    2017-07-01

    18 F-FDG PET imaging is routinely used to investigate brown adipose tissue (BAT) thermogenesis, which requires mitochondrial uncoupling protein 1 (UCP1). It remains uncertain, however, whether BAT 18 F-FDG uptake is a reliable surrogate measure of UCP1-mediated heat production. Methods: UCP1 knockout (KO) and wild-type (WT) mice housed at thermoneutrality were treated with the selective β3 adrenergic receptor agonist CL 316, 243 and underwent metabolic cage, infrared thermal imaging and 18 F-FDG PET/MRI experiments. Primary brown adipocytes were additionally examined for their bioenergetics by extracellular flux analysis as well as their uptake of 2-deoxy- 3 H-glucose. Results: In response to CL 316, 243 treatments, oxygen consumption, and BAT thermogenesis were diminished in UCP1 KO mice, but BAT 18 F-FDG uptake was fully retained. Isolated UCP1 KO brown adipocytes exhibited defective induction of uncoupled respiration whereas their glycolytic flux and 2-deoxy- 3 H-glucose uptake rates were largely unaffected. Conclusion: Adrenergic stimulation can increase BAT 18 F-FDG uptake independently of UCP1 thermogenic function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  6. Intestinal uptake of betaine in vitro and the distribution of methyl groups from betaine, choline, and methionine in the body of broiler chicks.

    PubMed

    Kettunen, H; Peuranen, S; Tiihonen, K; Saarinen, M

    2001-02-01

    The efficiency of betaine absorption into small intestinal slices of broiler chicks was studied in vitro with 14C-labeled betaine. The relative proportion of Na+-coupled betaine uptake, as well as the total uptake capacity was larger in the duodenum than in the jejunum. Dietary betaine increased the Na+-coupled uptake in the duodenum. In in vivo-experiments, methyl-14C-labeled betaine, methionine, or choline was fed to broiler chicks. Betaine appeared in the blood more rapidly, and reached a higher total concentration than choline or methionine. The data suggest that choline and methionine were associated with plasma lipoproteins whereas betaine remained free in the plasma. The label distribution in liver, kidney, and intestinal tissues was studied 24 h after label ingestion. Most of the label from betaine was found in the aquaeous phase in the muscle, while in the liver and jejunum the label from betaine was distributed more evenly between the aquaeous, lipid, and protein phases. Label from choline accumulated in the lipid fraction, particularly so in the liver, whereas label from methionine showed a more variable distribution pattern. The distribution results are interpreted in terms of specific roles of betaine, choline, and methionine in methyl group metabolism.

  7. Phosphorus uptake, partitioning and redistribution during grain filling in rice.

    PubMed

    Julia, Cécile; Wissuwa, Matthias; Kretzschmar, Tobias; Jeong, Kwanho; Rose, Terry

    2016-11-01

    In cultivated rice, phosphorus (P) in grains originates from two possible sources, namely exogenous (post-flowering root P uptake from soil) or endogenous (P remobilization from vegetative parts) sources. This study investigates P partitioning and remobilization in rice plants throughout grain filling to resolve contributions of P sources to grain P levels in rice. Rice plants (Oryza sativa 'IR64') were grown under P-sufficient or P-deficient conditions in the field and in hydroponics. Post-flowering uptake, partitioning and re-partitioning of P was investigated by quantifying tissue P levels over the grain filling period in the field conditions, and by employing 33 P isotope as a tracer in the hydroponic study. Post-flowering P uptake represented 40-70 % of the aerial plant P accumulation at maturity. The panicle was the main P sink in all studies, and the amount of P potentially remobilized from vegetative tissues to the panicle during grain filling was around 20 % of the total aerial P measured at flowering. In hydroponics, less than 20 % of the P tracer taken up at 9 d after flowering (DAF) was found in the above-ground tissues at 14 DAF and half of it was partitioned to the panicle in both P treatments. The results demonstrate that P uptake from the soil during grain filling is a critical contributor to the P content in grains in irrigated rice. The P tracer study suggests that the mechanism of P loading into grains involves little direct transfer of post-flowering P uptake to the grain but rather substantial mobilization of P that was previously taken up and stored in vegetative tissues. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Peptide Transporter 1 is Responsible for Intestinal Uptake of the Dipeptide Glycylsarcosine: Studies in Everted Jejunal Rings from Wild-type and Pept1 Null Mice

    PubMed Central

    Ma, Katherine; Hu, Yongjun; Smith, David E.

    2010-01-01

    The purpose of this study was to determine the relative importance of PEPT1 in the uptake of peptides/mimetics from mouse small intestine using glycylsarcosine (GlySar). After isolating jejunal tissue from wild-type and Pept1 null mice, 2-cm intestinal segments were everted and mounted on glass rods for tissue uptake studies. [14C]GlySar (4 μM) was studied as a function of time, temperature, sodium and pH, concentration, and potential inhibitors. Compared to wild-type animals, Pept1 null mice exhibited a 78% reduction of GlySar uptake at pH 6.0, 37°C. GlySar uptake showed pH dependence with peak values between pH 6.0-6.5 in wild-type animals, while no such tendency was observed in Pept1 null mice. GlySar exhibited Michaelis-Menten uptake kinetics and a minor nonsaturable component in wild-type animals. In contrast, GlySar uptake occurred by only a nonsaturable process in Pept1 null mice. GlySar uptake was significantly inhibited by dipeptides, aminocephalosporins, angiotensin-converting enzyme inhibitors, and the antiviral prodrug valacyclovir; these inhibitors had little, if any, effect on the uptake of GlySar in Pept1 null mice. The findings demonstrate that PEPT1 plays a critical role in the uptake of GlySar in jejunum, and suggest that PEPT1 is the major transporter responsible for the intestinal absorption of small peptides. PMID:20862774

  9. Endocytotic uptake of HPMA-based polymers by different cancer cells: impact of extracellular acidosis and hypoxia

    PubMed Central

    Gündel, Daniel; Allmeroth, Mareli; Reime, Sarah; Zentel, Rudolf; Thews, Oliver

    2017-01-01

    Background Polymeric nanoparticles allow to selectively transport chemotherapeutic drugs to the tumor tissue. These nanocarriers have to be taken up into the cells to release the drug. In addition, tumors often show pathological metabolic characteristics (hypoxia and acidosis) which might affect the polymer endocytosis. Materials and methods Six different N-(2-hydroxypropyl)methacrylamide (HPMA)-based polymer structures (homopolymer as well as random and block copolymers with lauryl methacrylate containing hydrophobic side chains) varying in molecular weight and size were analyzed in two different tumor models. The cellular uptake of fluorescence-labeled polymers was measured under hypoxic (pO2 ≈1.5 mmHg) and acidic (pH 6.6) conditions. By using specific inhibitors, different endocytotic routes (macropinocytosis and clathrin-mediated, dynamin-dependent, cholesterol-dependent endocytosis) were analyzed separately. Results The current results revealed that the polymer uptake depends on the molecular structure, molecular weight and tumor line used. In AT1 cells, the uptake of random copolymer was five times stronger than the homopolymer, whereas in Walker-256 cells, the uptake of all polymers was much stronger, but this was independent of the molecular structure and size. Acidosis increased the uptake of random copolymer in AT1 cells but reduced the intracellular accumulation of homopolymer and block copolymer. Hypoxia reduced the uptake of all polymers in Walker-256 cells. Hydrophilic polymers (homopolymer and block copolymer) were taken up by all endocytotic routes studied, whereas the more lipophilic random copolymer seemed to be taken up preferentially by cholesterol- and dynamin-dependent endocytosis. Conclusion The study indicates that numerous parameters of the polymer (structure, size) and of the tumor (perfusion, vascular permeability, pH, pO2) modulate drug delivery, which makes it difficult to select the appropriate polymer for the individual patient. PMID:28831253

  10. Endocytotic uptake of HPMA-based polymers by different cancer cells: impact of extracellular acidosis and hypoxia.

    PubMed

    Gündel, Daniel; Allmeroth, Mareli; Reime, Sarah; Zentel, Rudolf; Thews, Oliver

    2017-01-01

    Polymeric nanoparticles allow to selectively transport chemotherapeutic drugs to the tumor tissue. These nanocarriers have to be taken up into the cells to release the drug. In addition, tumors often show pathological metabolic characteristics (hypoxia and acidosis) which might affect the polymer endocytosis. Six different N -(2-hydroxypropyl)methacrylamide (HPMA)-based polymer structures (homopolymer as well as random and block copolymers with lauryl methacrylate containing hydrophobic side chains) varying in molecular weight and size were analyzed in two different tumor models. The cellular uptake of fluorescence-labeled polymers was measured under hypoxic (pO 2 ≈1.5 mmHg) and acidic (pH 6.6) conditions. By using specific inhibitors, different endocytotic routes (macropinocytosis and clathrin-mediated, dynamin-dependent, cholesterol-dependent endocytosis) were analyzed separately. The current results revealed that the polymer uptake depends on the molecular structure, molecular weight and tumor line used. In AT1 cells, the uptake of random copolymer was five times stronger than the homopolymer, whereas in Walker-256 cells, the uptake of all polymers was much stronger, but this was independent of the molecular structure and size. Acidosis increased the uptake of random copolymer in AT1 cells but reduced the intracellular accumulation of homopolymer and block copolymer. Hypoxia reduced the uptake of all polymers in Walker-256 cells. Hydrophilic polymers (homopolymer and block copolymer) were taken up by all endocytotic routes studied, whereas the more lipophilic random copolymer seemed to be taken up preferentially by cholesterol- and dynamin-dependent endocytosis. The study indicates that numerous parameters of the polymer (structure, size) and of the tumor (perfusion, vascular permeability, pH, pO 2 ) modulate drug delivery, which makes it difficult to select the appropriate polymer for the individual patient.

  11. Copper Bioaccumulation and Depuration in Common Carp (Cyprinus carpio) Following Co-exposure to TiO2 and CuO Nanoparticles.

    PubMed

    Mansouri, Borhan; Maleki, Afshin; Johari, Seyed Ali; Shahmoradi, Behzad; Mohammadi, Ebrahim; Shahsavari, Siros; Davari, Behroz

    2016-11-01

    Metal oxide nanoparticles (NPs), such as TiO 2 and CuO, are widely applied in an increasing number of products and applications, and therefore their release to the aquatic ecosystems is unavoidable. However, little is known about joint toxicity of different NPs on tissues of aquatic organisms, such as fish. This study was conducted to assess the uptake and depuration of Cu following exposure to CuO NPs in the presence of TiO 2 NPs in the liver, intestine, muscle, and gill of common carp, Cyprinus carpio. Carps with a mean total length of 23 ± 1.5 cm and mean weight of 13 ± 1.3 g were divided into 6 groups of 15 each (1 control group) and exposed to TiO 2 NPs, CuO NPs, and a mixture of TiO 2 and CuO NPs for periods of 20 days for uptake and 10 days for depuration. The determination of total Cu concentration was carried out by an ICP-OES. The order of Cu uptake in different tissues of the carps was liver > gill > muscle > intestine in both levels of CuO NPs alone; results showed that the total Cu concentrations in the presence of TiO 2 nanoparticles were increased and were in the sequence of liver > gill > intestine > muscle. In depuration period, Cu concentrations were decreased in all treatments in the sequence of gill > intestine > muscle > liver. Uptake of Cu in different tissues of common carp increased with increasing concentration and time and was tissues- and time-dependent. In conclusion, this study suggested that the uptake of Cu in the tissues of common carp increased in the joint presence of TiO 2 NPs.

  12. Extracellular Citrate Affects Critical Elements of Cancer Cell Metabolism and Supports Cancer Development In Vivo.

    PubMed

    Mycielska, Maria E; Dettmer, Katja; Rümmele, Petra; Schmidt, Katharina; Prehn, Cornelia; Milenkovic, Vladimir M; Jagla, Wolfgang; Madej, Gregor M; Lantow, Margareta; Schladt, Moritz; Cecil, Alexander; Koehl, Gudrun E; Eggenhofer, Elke; Wachsmuth, Christian J; Ganapathy, Vadivel; Schlitt, Hans J; Kunzelmann, Karl; Ziegler, Christine; Wetzel, Christian H; Gaumann, Andreas; Lang, Sven A; Adamski, Jerzy; Oefner, Peter J; Geissler, Edward K

    2018-05-15

    Glycolysis and fatty acid synthesis are highly active in cancer cells through cytosolic citrate metabolism, with intracellular citrate primarily derived from either glucose or glutamine via the tricarboxylic acid cycle. We show here that extracellular citrate is supplied to cancer cells through a plasma membrane-specific variant of the mitochondrial citrate transporter (pmCiC). Metabolomic analysis revealed that citrate uptake broadly affected cancer cell metabolism through citrate-dependent metabolic pathways. Treatment with gluconate specifically blocked pmCiC and decreased tumor growth in murine xenografts of human pancreatic cancer. This treatment altered metabolism within tumors, including fatty acid metabolism. High expression of pmCiC was associated with invasion and advanced tumor stage across many human cancers. These findings support the exploration of extracellular citrate transport as a novel potential target for cancer therapy. Significance: Uptake of extracellular citrate through pmCiC can be blocked with gluconate to reduce tumor growth and to alter metabolic characteristics of tumor tissue. Cancer Res; 78(10); 2513-23. ©2018 AACR . ©2018 American Association for Cancer Research.

  13. Differential effects of predosing on tumor and tissue uptake of an 111In-labeled anti-TENB2 antibody-drug conjugate.

    PubMed

    Boswell, C Andrew; Mundo, Eduardo E; Zhang, Crystal; Stainton, Shannon L; Yu, Shang-Fan; Lacap, Jennifer A; Mao, Weiguang; Kozak, Katherine R; Fourie, Aimee; Polakis, Paul; Khawli, Leslie A; Lin, Kedan

    2012-09-01

    TENB2, also known as tomoregulin or transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains, is a transmembrane proteoglycan overexpressed in human prostate tumors. This protein is a promising target for antimitotic monomethyl auristatin E (MMAE)-based antibody-drug conjugate (ADC) therapy. Nonlinear pharmacokinetics in normal mice suggested that antigen expression in normal tissues may contribute to targeted mediated disposition. We evaluated a predosing strategy with unconjugated antibody to block ADC uptake in target-expressing tissues in a mouse model while striving to preserve tumor uptake and efficacy. Unconjugated, unlabeled antibody was preadministered to mice bearing the TENB2-expressing human prostate explant model, LuCaP 77, followed by a single administration of (111)In-labeled anti-TENB2-MMAE for biodistribution and SPECT/CT studies. A tumor-growth-inhibition study was conducted to determine the pharmacodynamic consequences of predosing. Preadministration of anti-TENB2 at 1 mg/kg significantly increased blood exposure of the radiolabeled ADC and reduced intestinal, hepatic, and splenic uptake while not affecting tumor accretion. Similar tumor-to-heart ratios were measured by SPECT/CT at 24 h with and without the predose. Consistent with this, the preadministration of 0.75 mg/kg did not interfere with efficacy in a tumor-growth study dosed at 0.75 mg or 2.5 mg of ADC per kilogram. Overall, the potential to mask peripheral, nontumor antigen uptake while preserving tumor uptake and efficacy could ameliorate toxicity and may significantly affect future dosing strategies for ADCs.

  14. Influence of protein ingestion on human splanchnic and whole-body oxygen consumption, blood flow, and blood temperature.

    PubMed

    Brundin, T; Wahren, J

    1994-05-01

    Splanchnic and whole-body oxygen uptake, blood flow, and blood temperature were studied in 10 healthy subjects before and during 2 hours after oral ingestion of 900 kJ of fish protein. Indirect calorimetry and catheter techniques were used, including blood thermometry in arterial, pulmonary arterial, and hepatic venous blood. After the meal, pulmonary oxygen uptake increased from a basal value of 272 +/- 11 to 332 +/- 23 mL/min. During the first postprandial hour, splanchnic oxygen uptake increased from 62 +/- 5 to 93 +/- 9 mL/min (+50%, P < .05), thereby accounting for 62% +/- 17% of the simultaneous increase in whole-body oxygen consumption. During the second postprandial hour, splanchnic oxygen uptake increased no further, whereas in the extrasplanchnic tissues the oxygen consumption increased, now accounting for the entire simultaneous increase in pulmonary oxygen uptake. Cardiac output increased from basal 6.4 +/- 0.4 to 7.5 +/- 0.5 L/min. Splanchnic blood flow changed little while the arteriohepatic venous oxygen difference increased from 46 +/- 3 to 54 +/- 4 mL/L. Arterial and hepatic venous blood temperatures increased by almost 0.3 degrees C, reflecting a considerable accumulation of heat, indicating a conversion into a positive thermal balance. It is concluded that after protein ingestion, (1) oxygen uptake increases mainly in the splanchnic organs during the first hour, and thereafter exclusively in the extrasplanchnic tissues; (2) the blood flow increases mainly in extrasplanchnic tissues; and (3) the blood temperature increases almost linearly, indicating an upward adjustment of the temperature setpoint in the central thermosensors.

  15. Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Johnston, Helinor J.; Mouras, Rabah; Brown, David M.; Elfick, Alistair; Stone, Vicki

    2015-12-01

    The uptake of nanomaterials (NMs) by cells is critical in determining their potential biological impact, whether beneficial or detrimental. Thus, investigation of NM internalization by cells is a common consideration in hazard and efficacy studies. There are currently a number of approaches that are routinely used to investigate NM-cell interactions, each of which have their own advantages and limitations. Ideally, imaging modalities used to investigate NM uptake by cells should not require the NM to be labelled (e.g. with fluorophores) to facilitate its detection. We present a multimodal imaging approach employing a combination of label-free microscopies that can be used to investigate NM-cell interactions. Coherent anti-Stokes Raman scattering microscopy was used in combination with either two-photon photoluminescence or four-wave mixing (FWM) to visualize the uptake of gold or titanium dioxide NMs respectively. Live and fixed cell imaging revealed that NMs were internalized by J774 macrophage and C3A hepatocyte cell lines (15-31 μg ml-1). Sprague Dawley rats were exposed to NMs (intratracheal instillation, 62 μg) and NMs were detected in blood and lung leucocytes, lung and liver tissue, demonstrating that NMs could translocate from the exposure site. Obtained data illustrate that multimodal nonlinear optical microscopy may help overcome current challenges in the assessment of NM cellular uptake and biodistribution. It is therefore a powerful tool that can be used to investigate unlabelled NM cellular and tissue uptake in three dimensions, requires minimal sample preparation, and is applicable to live and fixed cells.

  16. Expression of a functional asialoglycoprotein receptor in human renal proximal tubular epithelial cells.

    PubMed

    Seow, Ying-ying T; Tan, Michelle G K; Woo, Keng Thye

    2002-07-01

    The asialoglycoprotein receptor (ASGPR) is a C lectin which binds and endocytoses serum glycoproteins. In humans, the ASGPR is shown mainly to occur in hepatocytes, but does occur extrahepatically in thyroid, in small and large intestines, and in the testis. In the kidney, there has been evidence both for and against its existence in mesangial cells. Standard light microscopy examination of renal tissue stained with an antibody against the ASGPR was performed. The mRNA expression for the ASGPR H1 and H2 subunits in primary human renal proximal tubular epithelial cells (RPTEC), in the human proximal tubular epithelial cell line HK2, and in human renal cortex was investigated using reverse-transcribed nested polymerase chain reaction. ASGPR protein expression as well as ligand binding and uptake were also examined using confocal microscopy and flow cytometry (fluorescence-activated cell sorting). Light microscopy of paraffin renal biopsy sections stained with a polyclonal antibody against the ASGPR showed proximal tubular epithelial cell staining of the cytoplasm and particularly in the basolateral region. Renal cortex and RPTEC specifically have mRNA for both H1 and H2 subunits of the ASGPR, but HK2 only expresses mRNA for H1. Using a monoclonal antibody, the presence of the ASGPR in RPTEC was shown by fluorescence-activated cell sorting and immunofluorescent staining. Specific binding and uptake of fluorescein isothiocyanate labelled asialofetuin which is a specific ASGPR ligand was also demonstrated in RPTEC. Primary renal proximal tubular epithelial cells have a functional ASGPR, consisting of the H1 and H2 subunits, that is capable of specific ligand binding and uptake. Copyright 2002 S. Karger AG, Basel

  17. Sex-specific effects of dehydroepiandrosterone (DHEA) on glucose metabolism in the CNS.

    PubMed

    Vieira-Marques, Claudia; Arbo, Bruno Dutra; Cozer, Aline Gonçalves; Hoefel, Ana Lúcia; Cecconello, Ana Lúcia; Zanini, Priscila; Niches, Gabriela; Kucharski, Luiz Carlos; Ribeiro, Maria Flávia M

    2017-07-01

    DHEA is a neuroactive steroid, due to its modulatory actions on the central nervous system (CNS). DHEA is able to regulate neurogenesis, neurotransmitter receptors and neuronal excitability, function, survival and metabolism. The levels of DHEA decrease gradually with advancing age, and this decline has been associated with age related neuronal dysfunction and degeneration, suggesting a neuroprotective effect of endogenous DHEA. There are significant sex differences in the pathophysiology, epidemiology and clinical manifestations of many neurological diseases. The aim of this study was to determine whether DHEA can alter glucose metabolism in different structures of the CNS from male and female rats, and if this effect is sex-specific. The results showed that DHEA decreased glucose uptake in some structures (cerebral cortex and olfactory bulb) in males, but did not affect glucose uptake in females. When compared, glucose uptake in males was higher than females. DHEA enhanced the glucose oxidation in both males (cerebral cortex, olfactory bulb, hippocampus and hypothalamus) and females (cerebral cortex and olfactory bulb), in a sex-dependent manner. In males, DHEA did not affect synthesis of glycogen, however, glycogen content was increased in the cerebral cortex and olfactory bulb. DHEA modulates glucose metabolism in a tissue-, dose- and sex-dependent manner to increase glucose oxidation, which could explain the previously described neuroprotective role of this hormone in some neurodegenerative diseases. Copyright © 2016. Published by Elsevier Ltd.

  18. Molecular Imaging and Quantitation of EphA2 Expression in Xenograft Models with 89Zr-DS-8895a.

    PubMed

    Burvenich, Ingrid J G; Parakh, Sagun; Gan, Hui K; Lee, Fook-Thean; Guo, Nancy; Rigopoulos, Angela; Lee, Sze-Ting; Gong, Sylvia; O'Keefe, Graeme J; Tochon-Danguy, Henri; Kotsuma, Masakatsu; Hasegawa, Jun; Senaldi, Giorgio; Scott, Andrew M

    2016-06-01

    Subtype A2 of the erythropoietin-producing hepatocellular tyrosine kinase (EphA2) cell surface receptor is expressed in a range of epithelial cancers. This study evaluated the molecular imaging of EphA2 expression in vivo in mouse tumor models using SPECT/MR and PET/MR and a humanized anti-EphA2 antibody, DS-8895a. DS-8895a was labeled with (111)In, (125)I, and (89)Zr and assessed for radiochemical purity, immunoreactivity (Lindmo analysis), antigen-binding affinity (Scatchard analysis), and serum stability in vitro. In vivo biodistribution, imaging, and pharmacokinetic studies were performed with SPECT/MR and PET/MR. A dose-escalation study was also performed to determine EphA2 receptor saturability through tissue and imaging quantitative analysis. All conjugates demonstrated good serum stability and specific binding to EphA2-expressing cells in vitro. In vivo biodistribution studies showed high uptake of (111)In-CHX-A″-DTPA-DS-8895a and (89)Zr-Df-Bz-NCS-DS-8895a in EphA2-expressing xenograft models, with no specific uptake in normal tissues. In comparison, retention of (125)I-DS-8895a in tumors was lower because of internalization of the radioconjugate and dehalogenation. These results were confirmed by SPECT/MR and PET/MR. EphA2 receptor saturation was observed at the 30 mg/kg dose. Molecular imaging of tumor uptake of DS-8895a allows noninvasive measurement of EphA2 expression in tumors in vivo and determination of receptor saturation. (89)Zr-Df-Bz-NCS-DS-8895a is suited for human bioimaging trials on the basis of superior imaging characteristics and will inform DS-8895a dose assessment and patient response evaluation in clinical trials. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. Comparison of Kinetic Models for Dual-Tracer Receptor Concentration Imaging in Tumors

    PubMed Central

    Hamzei, Nazanin; Samkoe, Kimberley S; Elliott, Jonathan T; Holt, Robert W; Gunn, Jason R; Hasan, Tayyaba; Pogue, Brian W; Tichauer, Kenneth M

    2014-01-01

    Molecular differences between cancerous and healthy tissue have become key targets for novel therapeutics specific to tumor receptors. However, cancer cell receptor expression can vary within and amongst different tumors, making strategies that can quantify receptor concentration in vivo critical for the progression of targeted therapies. Recently a dual-tracer imaging approach capable of providing quantitative measures of receptor concentration in vivo was developed. It relies on the simultaneous injection and imaging of receptor-targeted tracer and an untargeted tracer (to account for non-specific uptake of the targeted tracer). Early implementations of this approach have been structured on existing “reference tissue” imaging methods that have not been optimized for or validated in dual-tracer imaging. Using simulations and mouse tumor model experimental data, the salient findings in this study were that all widely used reference tissue kinetic models can be used for dual-tracer imaging, with the linearized simplified reference tissue model offering a good balance of accuracy and computational efficiency. Moreover, an alternate version of the full two-compartment reference tissue model can be employed accurately by assuming that the K1s of the targeted and untargeted tracers are similar to avoid assuming an instantaneous equilibrium between bound and free states (made by all other models). PMID:25414912

  20. Effect of ascorbate and dehydroascorbate on tissue uptake of glucose.

    PubMed

    Mooradian, A D

    1987-09-01

    In vitro studies have suggested that ascorbate or dehydroascorbate share with glucose the same tissue-transport carrier. To determine if ascorbic acid or its oxidized form can inhibit tissue uptake of glucose, the brain uptake index (BUI) and muscle uptake index of glucose were determined by single arterial injection tissue-sampling technique. The injectate was either buffered Ringer's solution with varying concentrations of ascorbate, dehydroascorbate (pH 7.4), or 70% serum from individuals on vitamin C supplements. Ascorbic acid over a wide range of concentrations (0-10,000 mg/L) did not reduce the BUI. Ascorbic acid reduced BUI from the control value of 33 +/- 3.2 to 20.1 +/- 2.2% (P less than .01) only at 100,000 mg/L; this effect was probably secondary to osmotic disruption of blood-brain barrier. In contrast, dehydroascorbate inhibited the BUI of glucose from baseline value of 32.8 +/- 1.1 to 10.7 +/- 0.67%, with an estimated Ki of 13.0 mM. Masseter muscle glucose uptake was not significantly altered over a wide range of ascorbate or dehydroascorbate concentrations in the injectate. Dehydroascorbate (7500 mg/L) did not significantly reduce the BUI of [14C]phenylalanine (55.2 +/- 4.4 vs. 62.1 +/- 4.2% in controls). When serum from six individuals on calcium ascorbate (3-5 g/day) was compared with that of nine controls, the BUI was not different (19.3 +/- 1.7 vs. 19.3 +/- 1.1%). Similarly, supplementing the diet of eight healthy volunteers with 1 g calcium ascorbate for 8 days did not alter the BUI of glucose.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows

    USGS Publications Warehouse

    Schultz, Melissa M.; Painter, Meghan M.; Bartell, Stephen E.; Logue, Amanda; Furlong, Edward T.; Werner, Stephen L.; Schoenfuss, Heiko L.

    2011-01-01

    Antidepressant pharmaceuticals have been reported in wastewater effluent at the nanogram to low microgram-per-liter range, and include bupropion (BUP), fluoxetine (FLX), sertraline (SER), and venlafaxine (VEN). To assess the effects of antidepressants on reproductive anatomy, physiology, and behavior, adult male fathead minnows (Pimeplwles promelas) were exposed for 21 days either to a single concentration of the antidepressants FLX, SER, VEN, or BUP, or to an antidepressant mixture. The data demonstrated that exposure to VEN (305 ng/L and 1104 ng/L) and SER (5.2 ng/L) resulted in mortality. Anatomical alterations were noted within the testes of fish exposed to SER and FLX, both modulators of the neurotransmitter serotonin. Additionally, FLX at 28 ng/L induced vitellogenin in male fish—a common endpoint for estrogenic endocrine disruption. Significant alterations in male secondary sex characteristics were noted with single exposures. Effects of single compound exposures neither carried over, nor became additive in the antidepressant mixtures, and reproductive behavior was not affected. Analysis of brain tissues from the exposed fish suggested increased uptake of FLX, SER and BUP and minimal uptake of VEN when compared to exposure water concentrations. Furthermore, the only metabolite detected consistently in the brain tissues was norfluoxetine. Similar trends of uptake by brain tissue were observed when fish were exposed to antidepressant mixtures. The present study demonstrates that anatomy and physiology, but not reproductive behavior, can be disrupted by exposure to environmental concentrations of some antidepressants. The observation that antidepressant uptake into fish tissues is selective may have consequences on assessing the mode-of-action and effects of these compounds in future studies.

  2. Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows

    USGS Publications Warehouse

    Schultz, M.M.; Painter, M.M.; Bartell, S.E.; Logue, A.; Furlong, E.T.; Werner, S.L.; Schoenfuss, H.L.

    2011-01-01

    Antidepressant pharmaceuticals have been reported in wastewater effluent at the nanogram to low microgram-per-liter range, and include bupropion (BUP), fluoxetine (FLX), sertraline (SER), and venlafaxine (VEN). To assess the effects of antidepressants on reproductive anatomy, physiology, and behavior, adult male fathead minnows (Pimephales promelas) were exposed for 21 days either to a single concentration of the antidepressants FLX, SER, VEN, or BUP, or to an antidepressant mixture. The data demonstrated that exposure to VEN (305. ng/L and 1104. ng/L) and SER (5.2. ng/L) resulted in mortality. Anatomical alterations were noted within the testes of fish exposed to SER and FLX, both modulators of the neurotransmitter serotonin. Additionally, FLX at 28. ng/L induced vitellogenin in male fish-a common endpoint for estrogenic endocrine disruption. Significant alterations in male secondary sex characteristics were noted with single exposures. Effects of single compound exposures neither carried over, nor became additive in the antidepressant mixtures, and reproductive behavior was not affected. Analysis of brain tissues from the exposed fish suggested increased uptake of FLX, SER and BUP and minimal uptake of VEN when compared to exposure water concentrations. Furthermore, the only metabolite detected consistently in the brain tissues was norfluoxetine. Similar trends of uptake by brain tissue were observed when fish were exposed to antidepressant mixtures. The present study demonstrates that anatomy and physiology, but not reproductive behavior, can be disrupted by exposure to environmental concentrations of some antidepressants. The observation that antidepressant uptake into fish tissues is selective may have consequences on assessing the mode-of-action and effects of these compounds in future studies. ?? 2011 Elsevier B.V.

  3. Adherence of microplastics to soft tissue of mussels: A novel way to uptake microplastics beyond ingestion.

    PubMed

    Kolandhasamy, Prabhu; Su, Lei; Li, Jiana; Qu, Xiaoyun; Jabeen, Khalida; Shi, Huahong

    2018-01-01

    Microplastic pollution is recognized as an emerging threat to aquatic ecosystems. One of the main environmental risks associated with microplastics is their bioavailability to marine organisms. Up to date, ingestion has been widely accepted as the sole way for the animals to uptake microplastics. Nevertheless, microplastics have also been found in some organs which are not involved in the process of ingestion. We hypothesize that the animal might uptake microplastics through adherence in addition to ingestion. To test this hypothesis, we collected mussels from the fishery farms, conducted exposure/clearance experiments and analyzed the accumulation of microplastics in specific organ of mussels. Our studies clearly showed the uptake of microplastic in multiple organs of mussels. In the field investigations, we found that the abundance of microplastic by weight but not by individual showed significant difference among organs, and the intestine contained the highest level of microplastics (9.2items/g). In the uptake and clearance experiment, the accumulation and retention of microfibers could also be observed in all tested organs of mussels including foot and mantle. Our results strongly suggest that adherence rather than ingestion led to the accumulation of microplastics in those organs which are not involved in ingestion process. To our best knowledge, it is the first time to propose that adherence is a novel way for animals to uptake microplastics beyond ingestion. This new finding makes us rethink about the bioavailability, accumulation and toxicity of microplastics to aquatic animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. An integrated approach to identify normal tissue expression of targets for antibody-drug conjugates: case study of TENB2

    PubMed Central

    Boswell, C Andrew; Mundo, Eduardo E; Firestein, Ron; Zhang, Crystal; Mao, Weiguang; Gill, Herman; Young, Cynthia; Ljumanovic, Nina; Stainton, Shannon; Ulufatu, Sheila; Fourie, Aimee; Kozak, Katherine R; Fuji, Reina; Polakis, Paul; Khawli, Leslie A; Lin, Kedan

    2013-01-01

    Background and Purpose The success of antibody-drug conjugates (ADCs) depends on the therapeutic window rendered by the differential expression between normal and pathological tissues. The ability to identify and visualize target expression in normal tissues could reveal causes for target-mediated clearance observed in pharmacokinetic characterization. TENB2 is a prostate cancer target associated with the progression of poorly differentiated and androgen-independent tumour types, and ADCs specific for TENB2 are candidate therapeutics. The objective of this study was to locate antigen expression of TENB2 in normal tissues, thereby elucidating the underlying causes of target-mediated clearance. Experimental Approach A series of pharmacokinetics, tissue distribution and mass balance studies were conducted in mice using a radiolabelled anti-TENB2 ADC. These data were complemented by non-invasive single photon emission computed tomography – X-ray computed tomography imaging and immunohistochemistry. Key Results The intestines were identified as a saturable and specific antigen sink that contributes, at least in part, to the rapid target-mediated clearance of the anti-TENB2 antibody and its drug conjugate in rodents. As a proof of concept, we also demonstrated the selective disposition of the ADC in a tumoural environment in vivo using the LuCaP 77 transplant mouse model. High tumour uptake was observed despite the presence of the antigen sink, and antigen specificity was confirmed by antigen blockade. Conclusions and Implications Our findings provide the anatomical location and biological interpretation of target-mediated clearance of anti-TENB2 antibodies and corresponding drug conjugates. Further investigations may be beneficial in addressing the relative contributions to ADC disposition from antigen expression in both normal and pathological tissues. PMID:22889168

  5. An integrated approach to identify normal tissue expression of targets for antibody-drug conjugates: case study of TENB2.

    PubMed

    Boswell, C Andrew; Mundo, Eduardo E; Firestein, Ron; Zhang, Crystal; Mao, Weiguang; Gill, Herman; Young, Cynthia; Ljumanovic, Nina; Stainton, Shannon; Ulufatu, Sheila; Fourie, Aimee; Kozak, Katherine R; Fuji, Reina; Polakis, Paul; Khawli, Leslie A; Lin, Kedan

    2013-01-01

    The success of antibody-drug conjugates (ADCs) depends on the therapeutic window rendered by the differential expression between normal and pathological tissues. The ability to identify and visualize target expression in normal tissues could reveal causes for target-mediated clearance observed in pharmacokinetic characterization. TENB2 is a prostate cancer target associated with the progression of poorly differentiated and androgen-independent tumour types, and ADCs specific for TENB2 are candidate therapeutics. The objective of this study was to locate antigen expression of TENB2 in normal tissues, thereby elucidating the underlying causes of target-mediated clearance. A series of pharmacokinetics, tissue distribution and mass balance studies were conducted in mice using a radiolabelled anti-TENB2 ADC. These data were complemented by non-invasive single photon emission computed tomography - X-ray computed tomography imaging and immunohistochemistry. The intestines were identified as a saturable and specific antigen sink that contributes, at least in part, to the rapid target-mediated clearance of the anti-TENB2 antibody and its drug conjugate in rodents. As a proof of concept, we also demonstrated the selective disposition of the ADC in a tumoural environment in vivo using the LuCaP 77 transplant mouse model. High tumour uptake was observed despite the presence of the antigen sink, and antigen specificity was confirmed by antigen blockade. Our findings provide the anatomical location and biological interpretation of target-mediated clearance of anti-TENB2 antibodies and corresponding drug conjugates. Further investigations may be beneficial in addressing the relative contributions to ADC disposition from antigen expression in both normal and pathological tissues. © 2012 Genentech, Inc.. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  6. 18F-DCFBC Prostate-Specific Membrane Antigen-Targeted PET/CT Imaging in Localized Prostate Cancer: Correlation With Multiparametric MRI and Histopathology.

    PubMed

    Turkbey, Baris; Mena, Esther; Lindenberg, Liza; Adler, Stephen; Bednarova, Sandra; Berman, Rose; Ton, Anita T; McKinney, Yolanda; Eclarinal, Philip; Hill, Craig; Afari, George; Bhattacharyya, Sibaprasad; Mease, Ronnie C; Merino, Maria J; Jacobs, Paula M; Wood, Bradford J; Pinto, Peter A; Pomper, Martin G; Choyke, Peter L

    2017-10-01

    To assess the ability of (N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-F-fluorobenzyl-L-cysteine) (F-DCFBC), a prostate-specific membrane antigen-targeted PET agent, to detect localized prostate cancer lesions in correlation with multiparametric MRI (mpMRI) and histopathology. This Health Insurance Portability and Accountability Act of 1996-compliant, prospective, institutional review board-approved study included 13 evaluable patients with localized prostate cancer (median age, 62.8 years [range, 51-74 years]; median prostate-specific antigen, 37.5 ng/dL [range, 3.26-216 ng/dL]). Patients underwent mpMRI and F-DCFBC PET/CT within a 3 months' window. Lesions seen on mpMRI were biopsied under transrectal ultrasound/MRI fusion-guided biopsy, or a radical prostatectomy was performed. F-DCFBC PET/CT and mpMRI were evaluated blinded and separately for tumor detection on a lesion basis. For PET image analysis, MRI and F-DCFBC PET images were fused by using software registration; imaging findings were correlated with histology, and uptake of F-DCFBC in tumors was compared with uptake in benign prostatic hyperplasia nodules and normal peripheral zone tissue using the 80% threshold SUVmax. A total of 25 tumor foci (mean size, 1.8 cm; median size, 1.5 cm; range, 0.6-4.7 cm) were histopathologically identified in 13 patients. Sensitivity rates of F-DCFBC PET/CT and mpMRI were 36% and 96%, respectively, for all tumors. For index lesions, the largest tumor with highest Gleason score, sensitivity rates of F-DCFBC PET/CT and mpMRI were 61.5% and 92%, respectively. The average SUVmax for primary prostate cancer was higher (5.8 ± 4.4) than that of benign prostatic hyperplasia nodules (2.1 ± 0.3) or that of normal prostate tissue (2.1 ± 0.4) at 1 hour postinjection (P = 0.0033). The majority of index prostate cancers are detected with F-DCFBC PET/CT, and this may be a prognostic indicator based on uptake and staging. However, for detecting prostate cancer with high sensitivity, it is important to combine prostate-specific membrane antigen PET/CT with mpMRI.

  7. Evaluation of hypoxic tissue dynamics with 18F-FMISO PET in a rat model of permanent cerebral ischemia.

    PubMed

    Rojas, Santiago; Herance, José Raul; Abad, Sergio; Jiménez, Xavier; Pareto, Deborah; Ruiz, Alba; Torrent, Èlia; Figueiras, Francisca P; Popota, Foteini; Fernández-Soriano, Francisco J; Planas, Anna M; Gispert, Juan D

    2011-06-01

    [¹⁸F]Fluoromisonidazole (¹⁸F-FMISO) is a nitroimidazole derivative that has been proposed as a positron emission tomography (PET) radiotracer to detect hypoxic tissue in vivo. This compound accumulates in hypoxic but viable tissue and may be a good candidate for evaluating the ischemic penumbra. We evaluated the time course of ¹⁸F-FMISO uptake using PET in a rat model of permanent cerebral ischemia and the correlation with histological changes. Rats (n = 14) were subjected to permanent ischemia by intraluminal occlusion of the middle cerebral artery in order to assess by PET the uptake of ¹⁸F-FMISO at various times over 24 h following ischemia. The PET results were compared to histological changes with Nissl and 2,3,5 triphenyltetrazolium chloride staining. Elevated uptake of ¹⁸F-FMISO was detected in the infarcted area up to 8 h after occlusion but was no longer detected at 24 h, a time point coincident with pan necrosis of the tissue. Our findings suggest that salvageable tissue persists for up to 8 h in this rat model of brain ischemia. We propose ¹⁸F-FMISO PET as a tool for evaluating the ischemic penumbra after cerebral ischemia.

  8. An oil-based model of inhalation anesthetic uptake and elimination.

    PubMed

    Loughlin, P J; Bowes, W A; Westenskow, D R

    1989-08-01

    An oil-based model was developed as a physical simulation of inhalation anesthetic uptake and elimination. It provides an alternative to animal models in testing the performance of anesthesia equipment. A 7.5-1 water-filled manometer simulates pulmonary mechanics. Nitrogen and carbon dioxide flowing into the manometer simulate oxygen consumption and carbon dioxide production. Oil-filled chambers (180 ml and 900 ml) simulate the uptake and washout of halothane by the vessel-rich and muscle tissue groups. A 17.2-1 air-filled chamber simulates uptake by the lung group. Gas circulates through the chambers (3.7, 13.8, and 25 l/min) to simulate the transport of anesthetic to the tissues by the circulatory system. Results show that during induction and washout, the rate of rise in endtidal halothane fraction simulated by the model parallels that measured in patients. The model's end-tidal fraction changes correctly with changes in cardiac output and alveolar ventilation. The model has been used to test anesthetic controllers and to evaluate gas sensors, and should be useful in teaching principles underlying volatile anesthetic uptake.

  9. Enhancement of glucose uptake in skeletal muscle L6 cells and insulin secretion in pancreatic hamster-insulinoma-transfected cells by application of non-thermal plasma jet

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Kaushik, Nagendra K.; Park, Gyungsoon; Choi, Eun H.; Uhm, Han S.

    2013-11-01

    Type-II diabetes Mellitus is characterized by defects in insulin action on peripheral tissues, such as skeletal muscle, adipose tissue, and liver and pancreatic beta cells. Since the skeletal muscle accounts for approximately 75% of insulin-stimulated glucose-uptake in our body, impaired insulin secretion from defected beta cell plays a major role in the afflicted glucose homoeostasis. It was shown that the intracellular reactive oxygen species and nitric oxide level was increased by non-thermal-plasma treatment in ambient air. These increased intracellular reactive species may enhance glucose uptake and insulin secretion through the activation of intracellular calcium (Ca+) and cAMP production.

  10. Validation and quantification of [18F]altanserin binding in the rat brain using blood input and reference tissue modeling

    PubMed Central

    Riss, Patrick J; Hong, Young T; Williamson, David; Caprioli, Daniele; Sitnikov, Sergey; Ferrari, Valentina; Sawiak, Steve J; Baron, Jean-Claude; Dalley, Jeffrey W; Fryer, Tim D; Aigbirhio, Franklin I

    2011-01-01

    The 5-hydroxytryptamine type 2a (5-HT2A) selective radiotracer [18F]altanserin has been subjected to a quantitative micro-positron emission tomography study in Lister Hooded rats. Metabolite-corrected plasma input modeling was compared with reference tissue modeling using the cerebellum as reference tissue. [18F]altanserin showed sufficient brain uptake in a distribution pattern consistent with the known distribution of 5-HT2A receptors. Full binding saturation and displacement was documented, and no significant uptake of radioactive metabolites was detected in the brain. Blood input as well as reference tissue models were equally appropriate to describe the radiotracer kinetics. [18F]altanserin is suitable for quantification of 5-HT2A receptor availability in rats. PMID:21750562

  11. A Review of Nanoparticle Photosensitizer Drug Delivery Uptake Systems for Photodynamic Treatment of Lung Cancer.

    PubMed

    Gift, Mokwena Mpho; Ann, Kruger Cherie; Ivan, Mfouo-Tynga; Heidi, Abrahamse

    2018-03-24

    Lung cancer is a leading cause of cancer related deaths worldwide and so current research is focused on trying to improve treatment modalities, such as photodynamic therapy (PDT). PDT has 3 fundamental factors, namely a photosensitizer (PS) drug, light and oxygen. When a PS drug is administered to a patient, it can either passively or actively accumulate within a tumour site and once exposed to a specific wavelength of light, it is stimulated to produce reactive oxygen species (ROS), resulting in tumour destruction. However, the efficacy of ROS generation for tumour destruction is highly dependent on the accumulation of the PS in tumour cells. Thus PS selective / targeted uptake and delivery in tumour cells is a crucial factor in PDT cancer drug absorption studies. Generally, within non-targeted drug delivery mechanisms, only small amounts of PS is able to passively accumulates in tumour sites due to the enhanced permeability and retention (EPR) effect and the remainder distributes into healthy tissues, causing side effects. Thus to improve the efficacy of PDT, research is currently focused on the development of specific receptor based photosynthetic nanocarrier drugs, which promotes the active uptake and absorption of PS drugs in tumour sites only, avoiding unwanted side effects. The aim of this review is to focus on current non-targeted passive versus specifically active targeted PS nanoparticle drug delivery systems, that have been investigated for the PDT treatment of lung cancer and so to deduce its efficacy and recent advancements. Copyright © 2018. Published by Elsevier B.V.

  12. Celllular Uptake and Clearance of TIO2 Nanoparticles

    EPA Science Inventory

    Differential rates of cellular uptake and clearance of engineered nanomaterials may influence the propensity for tissue accumulation under chronic exposure conditions. A retinal pigment epithelial cell line (ARPE-19) was used to investigate 1) if Ti02 (Degussa, P25) nanoparticles...

  13. Recurrent Medullary Thyroid Carcinoma on 68Ga-Prostate-Specific Membrane Antigen PET/CT: Exploring New Theranostic Avenues.

    PubMed

    Arora, Saurabh; Damle, Nishikant Avinash; Parida, Girish Kumar; Singhal, Abhinav; Nalli, Harish; Dattagupta, Shreya; Bal, Chandrasekar

    2018-05-01

    The prostate-specific membrane antigen (PSMA) is highly expressed in prostate cancer cells. Few other malignancies have shown expression of PSMA. We present a case of 35-year-old man with medullary thyroid carcinoma, post total thyroidectomy and bilateral neck dissection, now presenting with rising calcitonin levels (doubling time 9 months) and local neck recurrence with negative I-MIBG scan. We decided to perform Ga-PSMA-HBED-CC PET/CT scan to assess PSMA expression and explore the therapeutic option in view of rising serum calcitonin. It revealed intense PSMA uptake in the soft tissue mass in left thyroid bed and cervical lymph nodes.

  14. Localization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography.

    PubMed

    Brentner, Laura B; Mukherji, Sachiyo T; Walsh, Susan A; Schnoor, Jerald L

    2010-02-01

    Phosphor imager autoradiography is a technique for rapid, sensitive analysis of the localization of xenobiotics in plant tissues. Use of this technique is relatively new to research in the field of plant science, and the potential for enhancing visualization and understanding of plant uptake and transport of xenobiotics remains largely untapped. Phosphor imager autoradiography is used to investigate the uptake and translocation of the explosives 1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene within Populus deltoides x nigra DN34 (poplar) and Panicum vigratum Alamo (switchgrass). In both plant types, TNT and/or TNT-metabolites remain predominantly in root tissues while RDX and/or RDX-metabolites are readily translocated to leaf tissues. Phosphor imager autoradiography is further investigated for use in semi-quantitative analysis of uptake of TNT by switchgrass. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  15. A mathematical model of transport and regional uptake of radioactive gases in the human respiratory system

    NASA Astrophysics Data System (ADS)

    Baek, Inseok

    The purpose of this research is to describe the development of a mathematical model of diffusion, convection, and lateral transport into the airway wall and alveolar absorption for inhaled radioactive gases in the human conductive and respiratory airways based on a Single Path Trumpet-bell model (SPM). Mathematical simulation models have been used successfully to study transport, absorption into the blood through alveoli, and lung tissue uptake of soluble and nonreactive radioactive gases. Results from such simulations also show clearly that inhaled radioactive gases are absorbed into the lung tissues as well as into the blood through the alveoli. In contrast to previous reports in the literature, the present study found that blood uptake through alveoli is much greater than that calculated previously. Regional depositions in the lung from inhaled radioactive gases are presented as the result of this simulation. The committed effective dose to lung tissue due to submersion in radioactive clouds has been newly defined using the results of this simulation.

  16. Phospholipid Synthesis in Aging Potato Tuber Tissue 1

    PubMed Central

    Tang, Wen-Jing; Castelfranco, Paul A.

    1968-01-01

    The effect of activation (“aging”) of potato tuber slices on their phospholipid metabolism was investigated. Aged slices were incubated with 14C labeled choline, ethanolamine, methionine, serine, and acetate. In all cases, the incorporation of radioactivity into the lipid fraction increased with the length of time the slices were aged. This incorporation was shown to be true synthesis and not exchange between precursors and existing phospholipids. The increased incorporation of labeled choline into lipids was mainly due to an increase in its uptake by the tissue, the presence of actidione during aging prevented this increased uptake. The increase in the incorporation of labeled acetate into lipids resulted from the development of a fatty acid synthetase during aging. In the case of ethanolamine, both its uptake into the tissue and its incorporation into the lipid fraction increased. The phospholipids formed from these precursors were identified by paper and thin-layer chromatography. The major compound formed from choline was lecithin, while phosphatidylethanolamine and a small amount of lecithin were formed from ethanolamine. Images PMID:16656906

  17. Predictive Value of 99mTc-MAA SPECT for 90Y-Labeled Resin Microsphere Distribution in Radioembolization of Primary and Secondary Hepatic Tumors.

    PubMed

    Ilhan, Harun; Goritschan, Anna; Paprottka, Philipp; Jakobs, Tobias F; Fendler, Wolfgang P; Todica, Andrei; Bartenstein, Peter; Hacker, Marcus; Haug, Alexander R

    2015-11-01

    This study analyzed the predictive value of (99m)Tc-labeled macroaggregated albumin ((99m)Tc-MAA) SPECT for (90)Y-labeled resin microsphere therapy (radioembolization) by comparing uptake on pretherapeutic (99m)Tc-MAA SPECT with uptake on posttherapeutic (90)Y-bremsstrahlung SPECT. We included 502 patients (55% male; mean age ± SD, 62 ± 11 y) who underwent radioembolization between 2005 and 2013 because of primary or secondary liver malignancies (colorectal cancer [n = 195, 38.8%], neuroendocrine tumors [n = 77, 15.3%], breast cancer [n = 68, 13.5%], hepatocellular carcinoma [n = 59, 11.8%], cholangiocellular carcinoma [n = 40, 8.0%], or urologic tumors [n = 14, 2.8%]). Manually drawn regions of interest around tumors and adjacent healthy liver tissue for up to 3 lesions per patient on (99m)Tc-MAA and (90)Y-bremsstrahlung scans were used to quantify mean counts per pixel and evaluate the mean tumor-to-background ratio (TBR). Data were given as mean ± SD. Additionally, uptake in lesions on (99m)Tc-MAA and (90)Y-bremsstrahlung scans was graded visually as homogeneously higher than (grade 1), heterogeneously higher than (grade 2), equal to (grade 3), or lower than (grade 4) uptake in normal liver tissue. The Mann-Whitney U test and Spearman correlation were used to evaluate statistically significant differences between (99m)Tc-MAA and (90)Y-bremsstrahlung SPECT. In total, 1,008 lesions were analyzed. Of the 23% (230/1,008) of lesions that had grade 1 uptake on (99m)Tc-MAA SPECT, 81% (186/230) remained grade 1 after radioembolization whereas 16% (37/230) were grade 2. Of the lesions with grade 2 uptake on (99m)Tc-MAA SPECT, 16% had grade 1 uptake and 82% grade 2 uptake after radioembolization. Of the lesions with grade 3 uptake, however, 27% had grade 1 uptake and 47% grade 2 uptake after radioembolization. Even among the lesions with grade 4 uptake on (99m)Tc-MAA SPECT, 21% had grade 1 uptake and 46% grade 2 uptake after radioembolization. The mean TBR on (99m)Tc-MAA and (90)Y-bremsstrahlung SPECT showed a significant, though low, correlation in the total population (r = 0.26; P < 0.001) and in hepatocellular carcinoma (r = 0.4; P < 0.001), cholangiocellular carcinoma (r = 0.3; P < 0.05), breast cancer (r = 0.3; P < 0.001), colorectal cancer (r = 0.2; P < 0.001), and neuroendocrine tumors (r = 0.2; P < 0.01). Although significant for most lesions, the correlation between (99m)Tc-MAA and (90)Y-microsphere mean TBR was low. Classifying uptake into 4 grades revealed that lesions with high uptake on (99m)Tc-MAA SPECT maintain high uptake within radioembolization. More than 60% of lesions with a pretherapeutically lower uptake than in healthy liver tissue, however, showed high uptake within radioembolization. Patients with low tumor uptake on pretherapeutic (99m)Tc-MAA imaging should not be excluded from radioembolization. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. A first-in-man PET study of [18F]PSS232, a fluorinated ABP688 derivative for imaging metabotropic glutamate receptor subtype 5.

    PubMed

    Warnock, Geoffrey; Sommerauer, Michael; Mu, Linjing; Pla Gonzalez, Gloria; Geistlich, Susanne; Treyer, Valerie; Schibli, Roger; Buck, Alfred; Krämer, Stefanie D; Ametamey, Simon M

    2018-06-01

    Non-invasive imaging of metabotropic glutamate receptor 5 (mGlu 5 ) in the brain using PET is of interest in e.g., anxiety, depression, and Parkinson's disease. Widespread application of the most widely used mGlu 5 tracer, [ 11 C]ABP688, is limited by the short physical half-life of carbon-11. [ 18 F]PSS232 is a fluorinated analog with promising preclinical properties and high selectivity and specificity for mGlu 5 . In this first-in-man study, we evaluated the brain uptake pattern and kinetics of [ 18 F]PSS232 in healthy volunteers. [ 18 F]PSS232 PET was performed with ten healthy male volunteers aged 20-40 years. Seven of the subjects received a bolus injection and the remainder a bolus/infusion protocol. Cerebral blood flow was determined in seven subjects using [ 15 O]water PET. Arterial blood activity was measured using an online blood counter. Tracer kinetics were evaluated by compartment modeling and parametric maps were generated for both tracers. At 90 min post-injection, 59.2 ± 11.1% of total radioactivity in plasma corresponded to intact tracer. The regional first pass extraction fraction of [ 18 F]PSS232 ranged from 0.41 ± 0.06 to 0.55 ± 0.03 and brain distribution pattern matched that of [ 11 C]ABP688. Uptake kinetics followed a simple two-tissue compartment model. The volume of distribution of total tracer (V T , ml/cm 3 ) ranged from 1.18 ± 0.20 for white matter to 2.91 ± 0.51 for putamen. The respective mean distribution volume ratios (DVR) with cerebellum as the reference tissue were 0.88 ± 0.06 and 2.12 ± 0.10, respectively. The tissue/cerebellum ratios of a bolus/infusion protocol (30/70 dose ratio) were close to the DVR values. Brain uptake of [ 18 F]PSS232 matched the distribution of mGlu 5 and followed a two-tissue compartment model. The well-defined kinetics and the possibility to use reference tissue models, obviating the need for arterial blood sampling, make [ 18 F]PSS232 a promising fluorine-18 labeled radioligand for measuring mGlu 5 density in humans.

  19. Crassulacean Acid Metabolism in the Epiphyte Tillandsia usneoides L. (Spanish Moss) 1

    PubMed Central

    Martin, Craig E.; Siedow, James N.

    1981-01-01

    Patterns of CO2 exchange in Spanish moss under various experimental conditions were measured using an infrared gas analysis system. Plants were collected from a study site in North Carolina and placed in a gas exchange chamber for several days of continuous measurements. No substantial seasonal effects on CO2 exchange were observed. High rates of nocturnal CO2 uptake were observed under day/night temperature regimes of 25/10, 25/15, 25/20, 30/20, and 35/20 C; however, daytime temperatures of 40 C eliminated nighttime CO2 uptake and a nighttime temperature of 5 C eliminated nocturnal CO2 uptake, regardless of day temperature. Constant chamber conditions also inhibited nocturnal CO2 uptake. Constant high relative humidity (RH) slightly stimulated CO2 uptake while low nighttime RH reduced nocturnal CO2 uptake. Reductions in daytime irradiance to approximately 25% full sunlight had no effect on CO2 exchange. Continuous darkness resulted in continuous CO2 loss by the plants, but a CO2 exchange pattern similar to normal day/night conditions was observed under constant illumination. High tissue water content inhibited CO2 uptake. Wetting of the tissue at any time of day or night resulted in net CO2 loss. Abrupt increases in temperature or decreases in RH resulted in sharp decreases in net CO2 uptake. The results indicate that Spanish moss is tolerant of a wide range of temperatures, irradiances, and water contents. They also indicate that high nighttime RH is a prerequisite for high rates of CO2 uptake. PMID:16661912

  20. Crassulacean Acid Metabolism in the Epiphyte Tillandsia usneoides L. (Spanish Moss) : RESPONSES OF CO(2) EXCHANGE TO CONTROLLED ENVIRONMENTAL CONDITIONS.

    PubMed

    Martin, C E; Siedow, J N

    1981-08-01

    Patterns of CO(2) exchange in Spanish moss under various experimental conditions were measured using an infrared gas analysis system. Plants were collected from a study site in North Carolina and placed in a gas exchange chamber for several days of continuous measurements. No substantial seasonal effects on CO(2) exchange were observed. High rates of nocturnal CO(2) uptake were observed under day/night temperature regimes of 25/10, 25/15, 25/20, 30/20, and 35/20 C; however, daytime temperatures of 40 C eliminated nighttime CO(2) uptake and a nighttime temperature of 5 C eliminated nocturnal CO(2) uptake, regardless of day temperature. Constant chamber conditions also inhibited nocturnal CO(2) uptake. Constant high relative humidity (RH) slightly stimulated CO(2) uptake while low nighttime RH reduced nocturnal CO(2) uptake.Reductions in daytime irradiance to approximately 25% full sunlight had no effect on CO(2) exchange. Continuous darkness resulted in continuous CO(2) loss by the plants, but a CO(2) exchange pattern similar to normal day/night conditions was observed under constant illumination. High tissue water content inhibited CO(2) uptake. Wetting of the tissue at any time of day or night resulted in net CO(2) loss. Abrupt increases in temperature or decreases in RH resulted in sharp decreases in net CO(2) uptake.The results indicate that Spanish moss is tolerant of a wide range of temperatures, irradiances, and water contents. They also indicate that high nighttime RH is a prerequisite for high rates of CO(2) uptake.

  1. Chronically increased glucose uptake by adipose tissue leads to lactate production and improved insulin sensitivity rather than obesity in the mouse.

    PubMed

    Muñoz, S; Franckhauser, S; Elias, I; Ferré, T; Hidalgo, A; Monteys, A M; Molas, M; Cerdán, S; Pujol, A; Ruberte, J; Bosch, F

    2010-11-01

    In adipocytes, triacylglycerol synthesis depends on the formation of glycerol 3-phosphate, which originates either from glucose, through glycolysis, or from lactate, through glyceroneogenesis. However, glucose is traditionally viewed as the main precursor of the glycerol backbone and thus, enhanced glucose uptake would be expected to result in increased triacylglycerol synthesis and contribute to obesity. To further explore this issue, we generated a mouse model with chronically increased glucose uptake in adipose tissue by expressing Gck, which encodes the glucokinase enzyme. Here we show that the production of high levels of glucokinase led to increased adipose tissue glucose uptake and lactate production, improved glucose tolerance and higher whole-body and skeletal muscle insulin sensitivity. There was no parallel increase in glycerol 3-phosphate synthesis in vivo, fat accumulation or obesity. Moreover, at high glucose concentrations, in cultured fat cells overproducing glucokinase, glycerol 3-phosphate synthesis from pyruvate decreased, while glyceroneogenesis increased in fat cells overproducing hexokinase II. These findings indicate that the absence of glucokinase inhibition by glucose 6-phosphate probably led to increased glycolysis and blocked glyceroneogenesis in the mouse model. Furthermore, this study suggests that under physiological conditions, when blood glucose increases, glyceroneogenesis may prevail over glycolysis for triacylglycerol formation because of the inhibition of hexokinase II by glucose 6-phosphate. Together these results point to the indirect pathway (glucose to lactate to glycerol 3-phosphate) being key for fat deposition in adipose tissue.

  2. Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages.

    PubMed

    Zhou, Hang; Zhu, Wei; Yang, Wen-Tao; Gu, Jiao-Feng; Gao, Zi-Xiang; Chen, Li-Wei; Du, Wen-Qi; Zhang, Ping; Peng, Pei-Qin; Liao, Bo-Han

    2018-05-15

    Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. 'Xiangwanxian 12') tissues at different growth stages. A pot experiment was performed in two Cd-contaminated paddy soils. Cd concentrations in iron plaque and rice tissues at five different growth stages (tillering, booting, milky, dough, and maturing) were measured. Cd concentrations in iron plaque and rice tissues (roots, stems, leaves, spikelet, husks, and brown rice) varied with growth stage. Cd accumulation in rice plants increased with extending growth in both soils, reaching 15.3 and 35.4μg/pot, respectively, at the maturing stage. The amounts of Cd in brown rice increased from the milky to maturing stages, with the greatest percentage uptake during the maturing stage. Cd amount in iron plaque significantly affected the uptake and accumulation of Cd in roots and aerial parts of rice plants. Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages, and the contributions of Cd transportation from leaves to brown rice were 30.0% and 22.5% in the two soils, respectively. A large amount of Cd accumulated in brown rice during the maturing stage. The transportation of remobilized Cd from leaves was also important for the accumulation of Cd in brown rice. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Organic Anion Transporting Polypeptide (OATP)2B1 Contributes to Gastrointestinal Toxicity of Anticancer Drug SN-38, Active Metabolite of Irinotecan Hydrochloride.

    PubMed

    Fujita, Daichi; Saito, Yoshimasa; Nakanishi, Takeo; Tamai, Ikumi

    2016-01-01

    Gastrointestinal toxicity, such as late-onset diarrhea, is a significant concern in irinotecan hydrochloride (CPT-11)-containing regimens. Prophylaxis of late-onset diarrhea has been reported with use of Japanese traditional (Kampo) medicine containing baicalin and with the antibiotic cefixime, and this has been explained in terms of inhibition of bacterial deconjugation of SN-38-glucuronide since unconjugated SN-38 (active metabolite of CPT-11) is responsible for the gastrointestinal toxicity. It is also prerequisite for SN-38 to be accumulated in intestinal tissues to exert toxicity. Based on the fact that liver-specific organic anion transporting polypeptide (OATP)1B1, a member of the same family as OATP2B1, is known to be involved in hepatic transport of SN-38, we hypothesized that intestinal transporter OATP2B1 contributes to the accumulation of SN-38 in gastrointestinal tissues, and its inhibition would help prevent associated toxicity. We found that uptake of SN-38 by OATP2B1-expressing Xenopus oocytes was significantly higher than that by control oocytes. OATP2B1-mediated uptake of SN-38 was saturable, pH dependent, and decreased in the presence of baicalin, cefixime, or fruit juices such as apple juice. In vivo gastrointestinal toxicity of SN-38 in mice caused by oral administration for consecutive 5 days was prevented by coingestion of apple juice. Thus, OATP2B1 contributes to the uptake of SN-38 by intestinal tissues, triggering gastrointestinal toxicity. So, in addition to the reported inhibition of bacterial β-glucuronidase by cefixime or baicalin, inhibition of OATP2B1 may also contribute to prevention of gastrointestinal toxicity. Apple juice may be helpful for prophylaxis of late-onset diarrhea observed in CPT-11 therapy without disturbance of the intestinal microflora. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Bioaccumulation and elimination kinetics of hydroxylated polybrominated diphenyl ethers (2'-OH-BDE68 and 4-OH-BDE90) and their distribution pattern in common carp (Cyprinus carpio).

    PubMed

    Zhao, Hongxia; Zhang, Guolong; Liu, Sisi; Qu, Baocheng; Wang, Yanli; Hu, Dingfei; Jiang, Jingqiu; Quan, Xie; Chen, Jingwen

    2014-06-15

    Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have attracted wide concerns due to their toxicities and universal presence in wildlife and humans. The relatively high Kow values of OH-PBDEs imply these compounds may have a significant bioaccumulation potential, but so far, the existing data provide little information regarding the kinetics of uptake and depuration in any organisms. Here we exposed common carps separately to two OH-PBDEs, 2'-OH-BDE68 and 4-OH-BDE90, for 30 days (d) in a flow-through system, followed by a 60-d depuration period in clean water to investigate compound-specific bioaccumulation and tissue distribution. Two OH-PBDEs could accumulate in common carp, and the high concentration was observed in liver or kidney. The uptake rates (k1) of two OH-PBDEs ranged from 0.15 to 21.3 d(-1) in fish, and the elimination rates (k2) ranged from 0.027 to 0.075 d(-1), which leaded to their BCF values in 4.8-299.2 ranges. Half-lives ranged from 9.2 d to 25.6 d. The exposure concentration significantly affected BCF values but didn't change their relative compositions in liver, kidney and muscle after a long exposure time. To our knowledge, this is the first study to systematically assess uptake, depuration kinetics and tissue distribution for OH-PBDEs via a controlled experimental animal model. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model.

    PubMed

    Sharma, Anjali; Porterfield, Joshua E; Smith, Elizabeth; Sharma, Rishi; Kannan, Sujatha; Kannan, Rangaramanujam M

    2018-06-05

    Neurotherapeutics for the treatment of central nervous system (CNS) disorders must overcome challenges relating to the blood-brain barrier (BBB), brain tissue penetration, and the targeting of specific cells. Neuroinflammation mediated by activated microglia is a major hallmark of several neurological disorders, making these cells a desirable therapeutic target. Building on the promise of hydroxyl-terminated generation four polyamidoamine (PAMAM) dendrimers (D4-OH) for penetrating the injured BBB and targeting activated glia, we explored if conjugation of targeting ligands would enhance and modify brain and organ uptake. Since mannose receptors [cluster of differentiation (CD) 206] are typically over-expressed on injured microglia, we conjugated mannose to the surface of multifunctional D4-OH using highly efficient, atom-economical, and orthogonal Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click chemistry and evaluated the effect of mannose conjugation on the specific cell uptake of targeted and non-targeted dendrimers both in vitro and in vivo. In vitro results indicate that the conjugation of mannose as a targeting ligand significantly changes the mechanism of dendrimer internalization, giving mannosylated dendrimer a preference for mannose receptor-mediated endocytosis as opposed to non-specific fluid phase endocytosis. We further investigated the brain uptake and biodistribution of targeted and non-targeted fluorescently labeled dendrimers in a maternal intrauterine inflammation-induced cerebral palsy (CP) rabbit model using quantification methods based on fluorescence spectroscopy and confocal microscopy. We found that the conjugation of mannose modified the distribution of D4-OH throughout the body in this neonatal rabbit CP model without lowering the amount of dendrimer delivered to injured glia in the brain, even though significantly higher glial uptake was not observed in this model. Mannose conjugation to the dendrimer modifies the dendrimer's interaction with cells, but does not minimize its inherent inflammation-targeting abilities. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Sinonasal oncocytic Schneiderian papilloma accompanied by intravascular lymphoma

    PubMed Central

    Koyama, Masamichi; Terauchi, Takashi; Koizumi, Mitsuru; Tanaka, Hiroko; Takeuchi, Kengo

    2016-01-01

    Abstract Introduction: F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) is useful for the staging and assessment of treatment response in patients with lymphoma. Occasionally, benign lesions demonstrate avid FDG uptake and result in false positive findings. Case: We report the case of an 82-year-old man presenting with cutaneous lesions, which were histopathologically diagnosed as intravascular lymphoma. FDG-PET/CT for staging demonstrated an FDG-avid mass extending from the right maxillary sinus to the nasal cavity, moderate uptake in the adrenal glands, mild uptake in the knee and the foot, and faint uptake in the skin and subcutaneous tissue of the legs. He subsequently underwent biopsy of the paranasal mass, which was diagnosed as oncocytic Schneiderian papilloma without lymphoma invasion. Glucose transporter (GLUT) 1 staining was highly positive in the papilloma cells, resulting in high FDG avidity. After completion of chemotherapy, the abnormal FDG uptakes in the skin, soft tissue, and adrenal glands disappeared on PET/CT. However, avid FDG uptake persisted in the sinonasal Schneiderian papilloma for 15 months before regression. Conclusion: Benign tumors with oncocytic components may show avid FDG uptake. Therefore, correct diagnosis of oncocytic Schneiderian papilloma on FDG images is difficult when other accompanying malignant tumors, especially lymphoma, are present. If post-therapeutic PET/CT images show a discordant lesion, oncocytic tumors, albeit uncommon, should be considered in the differential diagnoses. PMID:27559965

  7. Sinonasal oncocytic Schneiderian papilloma accompanied by intravascular lymphoma: A case report on FDG-PET/CT imaging.

    PubMed

    Koyama, Masamichi; Terauchi, Takashi; Koizumi, Mitsuru; Tanaka, Hiroko; Takeuchi, Kengo

    2016-08-01

    F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) is useful for the staging and assessment of treatment response in patients with lymphoma. Occasionally, benign lesions demonstrate avid FDG uptake and result in false positive findings. We report the case of an 82-year-old man presenting with cutaneous lesions, which were histopathologically diagnosed as intravascular lymphoma. FDG-PET/CT for staging demonstrated an FDG-avid mass extending from the right maxillary sinus to the nasal cavity, moderate uptake in the adrenal glands, mild uptake in the knee and the foot, and faint uptake in the skin and subcutaneous tissue of the legs. He subsequently underwent biopsy of the paranasal mass, which was diagnosed as oncocytic Schneiderian papilloma without lymphoma invasion. Glucose transporter (GLUT) 1 staining was highly positive in the papilloma cells, resulting in high FDG avidity. After completion of chemotherapy, the abnormal FDG uptakes in the skin, soft tissue, and adrenal glands disappeared on PET/CT. However, avid FDG uptake persisted in the sinonasal Schneiderian papilloma for 15 months before regression. Benign tumors with oncocytic components may show avid FDG uptake. Therefore, correct diagnosis of oncocytic Schneiderian papilloma on FDG images is difficult when other accompanying malignant tumors, especially lymphoma, are present. If post-therapeutic PET/CT images show a discordant lesion, oncocytic tumors, albeit uncommon, should be considered in the differential diagnoses.

  8. PET Imaging of Tissue Factor in Pancreatic Cancer Using 64Cu-Labeled Active Site-Inhibited Factor VII.

    PubMed

    Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Lotte K; Jensen, Mette M; El Ali, Henrik H; Madsen, Jacob; Wiinberg, Bo; Petersen, Lars C; Kjaer, Andreas

    2016-07-01

    Tissue factor (TF) is the main initiator of the extrinsic coagulation cascade. However, TF also plays an important role in cancer. TF expression has been reported in 53%-89% of all pancreatic adenocarcinomas, and the expression level of TF has in clinical studies correlated with advanced stage, increased microvessel density, metastasis, and poor overall survival. Imaging of TF expression is of clinical relevance as a prognostic biomarker and as a companion diagnostic for TF-directed therapies currently under clinical development. Factor VII (FVII) is the natural ligand to TF. The purpose of this study was to investigate the possibility of using active site-inhibited FVII (FVIIai) labeled with (64)Cu for PET imaging of TF expression. FVIIai was conjugated to 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and labeled with (64)Cu ((64)Cu-NOTA-FVIIai). Longitudinal in vivo PET imaging was performed at 1, 4, 15, and 36 h after injection of (64)Cu-NOTA-FVIIai in mice with pancreatic adenocarcinomas (BxPC-3). The specificity of TF imaging with (64)Cu-NOTA-FVIIai was investigated in subcutaneous pancreatic tumor models with different levels of TF expression and in a competition experiment. In addition, imaging of orthotopic pancreatic tumors was performed using (64)Cu-NOTA-FVIIai and PET/MRI. In vivo imaging data were supported by ex vivo biodistribution, flow cytometry, and immunohistochemistry. Longitudinal PET imaging with (64)Cu-NOTA-FVIIai showed a tumor uptake of 2.3 ± 0.2, 3.7 ± 0.3, 3.4 ± 0.3, and 2.4 ± 0.3 percentage injected dose per gram at 1, 4, 15, and 36 h after injection, respectively. An increase in tumor-to-normal-tissue contrast was observed over the imaging time course. Competition with unlabeled FVIIai significantly (P < 0.001) reduced the tumor uptake. The tumor uptake observed in models with different TF expression levels was significantly different from each other (P < 0.001) and was in agreement with the TF level evaluated by TF immunohistochemistry staining. Orthotopic tumors were clearly visible on the PET/MR images, and the uptake of (64)Cu-NOTA-FVIIai was colocalized with viable tumor tissue. (64)Cu-NOTA-FVIIai is well suited for PET imaging of tumor TF expression, and imaging is capable of distinguishing the TF expression level of various pancreatic tumor models. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  9. Molecular basis of the dopaminergic system in the cricket Gryllus bimaculatus.

    PubMed

    Watanabe, Takayuki; Sadamoto, Hisayo; Aonuma, Hitoshi

    2013-12-01

    In insects, dopamine modulates various aspects of behavior such as learning and memory, arousal and locomotion, and is also a precursor of melanin. To elucidate the molecular basis of the dopaminergic system in the field cricket Gryllus bimaculatus DeGeer, we identified genes involved in dopamine biosynthesis, signal transduction, and dopamine re-uptake in the cricket. Complementary DNA of two isoforms of tyrosine hydroxylase (TH), which convert tyrosine into L-3,4-dihydroxyphenylalanine, was isolated from the cricket brain cDNA library. In addition, four dopamine receptor genes (Dop1, Dop2, Dop3, and DopEcR) and a high-affinity dopamine transporter gene were identified. The two TH isoforms contained isoform-specific regions in the regulatory ACT domain and showed differential expression patterns in different tissues. In addition, the dopamine receptor genes had a receptor subtype-specific distribution: the Dop1, Dop2, and DopEcR genes were broadly expressed in various tissues at differential expression levels, and the Dop3 gene was restrictedly expressed in neuronal tissues and the testicles. Our findings provide a fundamental basis for understanding the dopaminergic regulation of diverse physiological processes in the cricket.

  10. Pharmacological evaluation of [123I]-CLINDE: a radioiodinated imidazopyridine-3-acetamide for the study of peripheral benzodiazepine binding sites (PBBS).

    PubMed

    Mattner, Filomena; Mardon, Karine; Katsifis, Andrew

    2008-04-01

    The study aims to evaluate the iodinated imidazopyridine, N',N'-diethyl-6-Chloro-(4'-[(123)I]iodophenyl)imidazo[1,2-a]pyridine-3-acetamide ([(123)I]-CLINDE) as a tracer for the study of peripheral benzodiazepine binding sites (PBBS). In vitro studies were performed using membrane homogenates and sections from kidney, adrenals, and brain cortex of Sprague-Dawley (SD) rats and incubated with [(123)I]-CLINDE. For in vivo studies, the rats were injected with [(123)I]-CLINDE. In competition studies, PBBS-specific drugs PK11195 and Ro 5-4864 and the CBR specific drug Flumazenil were injected before the radiotracer. In vitro binding studies in adrenal, kidney, and cortex mitochondrial membranes indicated that [(123)I]-CLINDE binds with high affinity to PBBS, K(d) = 12.6, 0.20, and 3.84 nM, respectively. The density of binding sites was 163, 5.3, and 0.34 pmol/mg protein, respectively. In vivo biodistribution indicated high uptake in adrenals (5.4), heart (1.5), lungs (1.5), kidney (1.5) %ID/g at 6 h p.i. In the central nervous system (CNS), the olfactory bulbs displayed the highest uptake; up to six times the activity in blood. Pre-administration of unlabeled CLINDE, PK11195 and Ro 5-4864 (1 mg/kg) reduced the uptake of [(123)I]-CLINDE by 70-55% in olfactory bulbs. In the kidney and heart, a reduction of 60-80% ID/g was observed, while an increase was observed in the adrenals requiring 10 mg/kg for significant displacement. Flumazenil had no effect on uptake in peripheral organs and brain. Metabolite analysis indicated >90% of the radioactivity in the above tissues was intact [(123)I]-CLINDE. [(123)I]-CLINDE displays high and selective uptake for the PBBS and warrants further development as a probe for imaging PBBS using single photon emission computed tomography (SPECT).

  11. Iron Overload and Apoptosis of HL-1 Cardiomyocytes: Effects of Calcium Channel Blockade

    PubMed Central

    Chen, Mei-pian; Cabantchik, Z. Ioav; Chan, Shing; Chan, Godfrey Chi-fung; Cheung, Yiu-fai

    2014-01-01

    Background Iron overload cardiomyopathy that prevails in some forms of hemosiderosis is caused by excessive deposition of iron into the heart tissue and ensuing damage caused by a raise in labile cell iron. The underlying mechanisms of iron uptake into cardiomyocytes in iron overload condition are still under investigation. Both L-type calcium channels (LTCC) and T-type calcium channels (TTCC) have been proposed to be the main portals of non-transferrinic iron into heart cells, but controversies remain. Here, we investigated the roles of LTCC and TTCC as mediators of cardiac iron overload and cellular damage by using specific Calcium channel blockers as potential suppressors of labile Fe(II) and Fe(III) ingress in cultured cardiomyocytes and ensuing apoptosis. Methods Fe(II) and Fe(III) uptake was assessed by exposing HL-1 cardiomyocytes to iron sources and quantitative real-time fluorescence imaging of cytosolic labile iron with the fluorescent iron sensor calcein while iron-induced apoptosis was quantitatively measured by flow cytometry analysis with Annexin V. The role of calcium channels as routes of iron uptake was assessed by cell pretreatment with specific blockers of LTCC and TTCC. Results Iron entered HL-1 cardiomyocytes in a time- and dose-dependent manner and induced cardiac apoptosis via mitochondria-mediated caspase-3 dependent pathways. Blockade of LTCC but not of TTCC demonstrably inhibited the uptake of ferric but not of ferrous iron. However, neither channel blocker conferred cardiomyocytes with protection from iron-induced apoptosis. Conclusion Our study implicates LTCC as major mediators of Fe(III) uptake into cardiomyocytes exposed to ferric salts but not necessarily as contributors to ensuing apoptosis. Thus, to the extent that apoptosis can be considered a biological indicator of damage, the etiopathology of cardiosiderotic damage that accompanies some forms of hemosiderosis would seem to be unrelated to LTCC or TTCC, but rather to other routes of iron ingress present in heart cells. PMID:25390893

  12. What is the underestimation of radiation dose to the pediatric thyroid gland from contrast enhanced CT, if contrast medium uptake is not taken into account?

    PubMed

    Perisinakis, Kostas; Pouli, Styliani; Tzedakis, Antonis; Spanakis, Kostas; Hatzidakis, Adam; Raissaki, Maria; Damilakis, John

    2018-05-01

    To assess the underestimation of radiation dose to the thyroid of children undergoing contrast enhanced CT if contrast medium uptake is not taken into account. 161 pediatric head, head & neck and chest CT examinations were retrospectively studied to identify those involving pre- and post-contrast imaging and thyroid inclusion in imaged volume. CT density of thyroid tissue in HU was measured in non-enhanced (NECT) and corresponding contrast-enhanced CT (CECT) images. Resulting CT number increase (ΔHU) was recorded for each patient and corresponded to a % w/w iodine concentration. The relation of %w/w iodine concentration to %dose increase induced by iodinated contrast uptake was derived by Monte Carlo simulation experiments. The thyroid gland was visible in 11 chest and 3 neck CT examinations involving both pre- and post-contrast imaging. The %w/w concentration of iodine in the thyroid tissue at the time of CECT acquisition was found to be 0.13%-0.58% w/w (mean = 0.26%). The %increase of dose to thyroid tissue was found to be linearly correlated to%w/w iodine uptake. The increase in radiation dose to thyroid due to contrast uptake ranged from 12% to 44%, with a mean value of 23%. The radiation dose to the pediatric thyroid from CECT exposure may be underestimated by up to 44% if contrast medium uptake is not taken into account. Meticulous demarcation of imaged volume in pediatric chest CT examinations is imperative to avoid unnecessary direct exposure of thyroid, especially in CT examinations following intravenous administration of contrast medium. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Original mechanisms of antipsychotic action by the indole alkaloid alstonine (Picralima nitida).

    PubMed

    Linck, Viviane M; Ganzella, Marcelo; Herrmann, Ana P; Okunji, Christopher O; Souza, Diogo O; Antonelli, Marta C; Elisabetsky, Elaine

    2015-01-15

    Alstonine is the major component of plant based remedies that traditional psychiatrists use in Nigeria. Alstonine is an indole alkaloid that has an antipsychotic experimental profile comparable with that of clozapine and is compatible with the alleged effects in mental patients. Representing a desirable innovation in the pharmacodynamics of antipsychotic medications, the evidence indicates that alstonine does not bind to D2 dopamine receptors (D2R) and differentially regulates dopamine in the cortical and limbic areas. The purpose of this study was to further investigate the effects of alstonine on D2R binding in specific brain regions using quantitative autoradiography (QAR) and its effects on dopamine (DA) uptake in mouse striatal synaptosomes. The effects of alstonine on D2R binding were determined in the nucleus accumbens and caudate-putamen using QAR in mice treated with alstonine doses that have antipsychotic effects. The effects of alstonine [3H]DA uptake were assessed in synaptosomes prepared from striatal tissue obtained from mice treated acutely or for 7 days with alstonine. Alstonine did not change the D2R binding densities in the studied regions. DA uptake was increased after acute (but not after 7 days) treatment with alstonine. Consistent with the alstonine behavioral profile, these results indicate that alstonine indirectly modulates DA receptors, specifically by modulating DA uptake. This unique mechanism for DA transmission modulation contributes to the antipsychotic-like effects of alstonine and is compatible with its behavioral profile in mice and alleged effects in patients. These results may represent an innovation in the antipsychotic development field. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Assessment of Traumatic Brain Injury by Increased 64Cu Uptake on 64CuCl2 PET/CT

    PubMed Central

    Peng, Fangyu; Muzik, Otto; Gatson, Joshua; Kernie, Steven G.; Diaz-Arrastia, Ramon

    2015-01-01

    Copper is a nutritional trace element required for cell proliferation and wound repair. Methods To explore increased copper uptake as a biomarker for noninvasive assessment of traumatic brain injury (TBI), experimental TBI in C57BL/6 mice was induced by controlled cortical impact, and 64Cu uptake in the injured cortex was assessed with 64CuCl2 PET/CT. Results At 24 h after intravenous injection of the tracer, uptake was significantly higher in the injured cortex of TBI mice (1.15 ± 0.53 percentage injected dose per gram of tissue [%ID/g]) than in the uninjured cortex of mice without TBI (0.53 ± 0.07 %ID/g, P = 0.027) or the cortex of mice that received an intracortical injection of zymosan A (0.62 ± 0.22 %ID/g, P = 0.025). Furthermore, uptake in the traumatized cortex of untreated TBI mice (1.15 ± 0.53 %ID/g) did not significantly differ from that in minocycline-treated TBI mice (0.93 ± 0.30 %ID/g, P = 0.33). Conclusion Overall, the data suggest that increased 64Cu uptake in traumatized brain tissues holds potential as a new biomarker for noninvasive assessment of TBI with 64CuCl2 PET/CT. PMID:26112025

  15. Total iodine quantification in fluids and tissues from iodine- or iodide-supplemented rats by ion chromatography following microwave-assisted digestion.

    PubMed

    Delgado, Guadalupe; Muñoz-Torres, Carolina; Orozco-Esquivel, Teresa; Anguiano, Brenda; Aceves, Carmen

    2015-03-01

    Iodine is a crucial component of thyroid hormones, and several reports have shown that iodine per se is implicated in the physiopathology of other organs. Innovative ion chromatography detection following a four-step temperature ramp microwave digestion in 25-50 mM nitric acid was developed to measure total iodine in biological fluids and tissue samples from female Sprague-Dawley rats supplemented with 0.05% molecular iodine (I2) or 0.05% potassium iodide (I(-)) in drinking water. The reported method allows the measurement of total iodine with a limit of quantification of 13.7 μg L(-1), recoveries of 96.3-100.3%, and intra- and inter-assay variations, of 3.5% and 7.4% respectively. Analysis of biological fluids showed that after 48 hours, iodine-supplemented animals exhibited significantly higher levels of total iodine in both serum and urine compared with those supplemented with iodide. The half-life of iodine in serum and urine measured over the first 48 h showed similar patterns for both the I2 (7.89 and 7.76 hours) and I(-) (8.27 and 8.90 hours) supplements. Differential uptake patterns were observed in tissues after 6 days of supplements, with I(-) preferentially retained by thyroid, lactating mammary gland, and milk, and a slightly but significantly higher capture of I2 in pituitary, ovary, and virgin mammary gland. We developed a rapid, selective, and accurate digestion method to process fluid and tissue samples that permits reproducible measurements of total iodine by ion chromatography; iodine or iodide supplement show a similar serum and urine half-life, but organ-specific uptake depends on the chemical form of the iodine supplement.

  16. Estimated dose rates to members of the public from external exposure to patients with 131I thyroid treatment

    DOE PAGES

    Dewji, S.; Bellamy, M.; Hertel, N.; ...

    2015-03-25

    The purpose of this study is to estimate dose rates that may result from exposure to patients who had been administered iodine-131 ( 131I) as part of medical therapy were calculated. These effective dose rate estimates were compared with simplified assumptions under United States Nuclear Regulatory Commission Regulatory Guide 8.39, which does not consider body tissue attenuation nor time-dependent redistribution and excretion of the administered 131I. Methods: Dose rates were estimated for members of the public potentially exposed to external irradiation from patients recently treated with 131I. Tissue attenuation and iodine biokinetics were considered in the patient in a largermore » comprehensive effort to improve external dose rate estimates. The external dose rate estimates are based on Monte Carlo simulations using the Phantom with Movable Arms and Legs (PIMAL), previously developed by Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission. PIMAL was employed to model the relative positions of the 131I patient and members of the public in three exposure scenarios: (1) traveling on a bus in a total of six seated or standing permutations, (2) two nursing home cases where a caregiver is seated at 30 cm from the patient’s bedside and a nursing home resident seated 250 cm away from the patient in an adjacent bed, and (3) two hotel cases where the patient and a guest are in adjacent rooms with beds on opposite sides of the common wall, with the patient and guest both in bed and either seated back-to-back or lying head to head. The biokinetic model predictions of the retention and distribution of 131I in the patient assumed a single voiding of urinary bladder contents that occurred during the trip at 2, 4, or 8 h after 131I administration for the public transportation cases, continuous first-order voiding for the nursing home cases, and regular periodic voiding at 4, 8, or 12 h after administration for the hotel room cases. Organ specific activities of 131I in the thyroid, bladder, and combined remaining tissues were calculated as a function of time after administration. Exposures to members of the public were considered for 131I patients with normal thyroid uptake (peak thyroid uptake of ~27% of administered 131I), differentiated thyroid cancer (DTC, 5% uptake), and hyperthyroidism (80% uptake). Results: The scenario with the patient seated behind the member of the public yielded the highest dose rate estimate of seated public transportation exposure cases. The dose rate to the adjacent room guest was highest for the exposure scenario in which the hotel guest and patient are seated by a factor of ~4 for the normal and differentiated thyroid cancer uptake cases and by a factor of ~3 for the hyperthyroid case. Conclusions: It was determined that for all modeled cases, the DTC case yielded the lowest external dose rates, whereas the hyperthyroid case yielded the highest dose rates. In estimating external dose to members of the public from patients with 131I therapy, consideration must be given to (patient- and case-specific) administered 131I activities and duration of exposure for a more complete estimate. The method implemented here included a detailed calculation model, which provides a means to determine dose rate estimates for a range of scenarios. Finally, the method was demonstrated for variations of three scenarios, showing how dose rates are expected to vary with uptake, voiding pattern, and patient location.« less

  17. Estimated dose rates to members of the public from external exposure to patients with 131I thyroid treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewji, S.; Bellamy, M.; Hertel, N.

    The purpose of this study is to estimate dose rates that may result from exposure to patients who had been administered iodine-131 ( 131I) as part of medical therapy were calculated. These effective dose rate estimates were compared with simplified assumptions under United States Nuclear Regulatory Commission Regulatory Guide 8.39, which does not consider body tissue attenuation nor time-dependent redistribution and excretion of the administered 131I. Methods: Dose rates were estimated for members of the public potentially exposed to external irradiation from patients recently treated with 131I. Tissue attenuation and iodine biokinetics were considered in the patient in a largermore » comprehensive effort to improve external dose rate estimates. The external dose rate estimates are based on Monte Carlo simulations using the Phantom with Movable Arms and Legs (PIMAL), previously developed by Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission. PIMAL was employed to model the relative positions of the 131I patient and members of the public in three exposure scenarios: (1) traveling on a bus in a total of six seated or standing permutations, (2) two nursing home cases where a caregiver is seated at 30 cm from the patient’s bedside and a nursing home resident seated 250 cm away from the patient in an adjacent bed, and (3) two hotel cases where the patient and a guest are in adjacent rooms with beds on opposite sides of the common wall, with the patient and guest both in bed and either seated back-to-back or lying head to head. The biokinetic model predictions of the retention and distribution of 131I in the patient assumed a single voiding of urinary bladder contents that occurred during the trip at 2, 4, or 8 h after 131I administration for the public transportation cases, continuous first-order voiding for the nursing home cases, and regular periodic voiding at 4, 8, or 12 h after administration for the hotel room cases. Organ specific activities of 131I in the thyroid, bladder, and combined remaining tissues were calculated as a function of time after administration. Exposures to members of the public were considered for 131I patients with normal thyroid uptake (peak thyroid uptake of ~27% of administered 131I), differentiated thyroid cancer (DTC, 5% uptake), and hyperthyroidism (80% uptake). Results: The scenario with the patient seated behind the member of the public yielded the highest dose rate estimate of seated public transportation exposure cases. The dose rate to the adjacent room guest was highest for the exposure scenario in which the hotel guest and patient are seated by a factor of ~4 for the normal and differentiated thyroid cancer uptake cases and by a factor of ~3 for the hyperthyroid case. Conclusions: It was determined that for all modeled cases, the DTC case yielded the lowest external dose rates, whereas the hyperthyroid case yielded the highest dose rates. In estimating external dose to members of the public from patients with 131I therapy, consideration must be given to (patient- and case-specific) administered 131I activities and duration of exposure for a more complete estimate. The method implemented here included a detailed calculation model, which provides a means to determine dose rate estimates for a range of scenarios. Finally, the method was demonstrated for variations of three scenarios, showing how dose rates are expected to vary with uptake, voiding pattern, and patient location.« less

  18. Photosensitizer quantitation in vivo by flourescence microsampling

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Burke, Gregory C.; Lee, Claudia C.; Hoopes, P. Jack

    2000-06-01

    Photodynamic therapy can provide a reliable method of tumor destruction when the appropriate dosimetry is applied. Current dosimetry practice involves quantification of the drug and light doses applied to the tumor, but it would be desirable to monitor in vivo light and drug levels to provide the most accurate determination of dosimetry. In vivo measurements can be used to minimize variations in treatment response due to inter-animal variability, by providing animal-specific or patient-specific treatment planning. This study reports on the development of a micro-sampling method to measure fluorescence from tissue, which is not significantly affected by the tissue optical properties. The system measures fluorescence from the surface of a tissue, using a fiber bundle composed of individual 100 micron fibers which ar all spaced apart by 700 microns from one another at the tissue contact end. This design provides sampling of the fluorescence at multiple sites to increase the signal intensity, while maintaining a micro- sampling of the tissue volume just below the surface. The calibration studies here indicate that the 1/e sampling depth is near 60 microns when measured in optical phantoms, which are similar to typical tissue properties. The probe fluorescence signal is independent of blood concentration up to a maximum of 10% blood by volume, which is similar to most tumor tissue. Animal tests indicate that the sensitivity to drug concentration is essentially the same in when measured in murine liver and muscle tissues, both in vivo and ex vivo. These preliminary calibration results suggest that the probe can be used to measure photosensitizer uptake in vivo non- invasively and rapidly via conversion of fluorescence intensity to photosensitizer concentration.

  19. Aquatic Plant Control Research Program: Chemical Control of Hydrilla in Flowing Water: Herbicide Uptake Characteristics and Concentrations versus Exposure.

    DTIC Science & Technology

    1988-03-01

    and di ecious hydrilla with diquat, endothall, and fluridone , and (c) to examine time-course uptak characteristics of these herbicides by hydrilla...diquat is effective in hydrilla control at a lower rate than is endothall. Uptake of fluridone by excised hydrilla tissue was linear with time when...ambient fluridone levels were 0.1 to 0.5 mg/i. However, a biphasic uptake curve was obtained at the high treatment rate of 1.0 mg/i fluridone . At this

  20. Receptor-Mediated Delivery of CRISPR-Cas9 Endonuclease for Cell-Type-Specific Gene Editing.

    PubMed

    Rouet, Romain; Thuma, Benjamin A; Roy, Marc D; Lintner, Nathanael G; Rubitski, David M; Finley, James E; Wisniewska, Hanna M; Mendonsa, Rima; Hirsh, Ariana; de Oñate, Lorena; Compte Barrón, Joan; McLellan, Thomas J; Bellenger, Justin; Feng, Xidong; Varghese, Alison; Chrunyk, Boris A; Borzilleri, Kris; Hesp, Kevin D; Zhou, Kaihong; Ma, Nannan; Tu, Meihua; Dullea, Robert; McClure, Kim F; Wilson, Ross C; Liras, Spiros; Mascitti, Vincent; Doudna, Jennifer A

    2018-05-30

    CRISPR-Cas RNA-guided endonucleases hold great promise for disrupting or correcting genomic sequences through site-specific DNA cleavage and repair. However, the lack of methods for cell- and tissue-selective delivery currently limits both research and clinical uses of these enzymes. We report the design and in vitro evaluation of S. pyogenes Cas9 proteins harboring asialoglycoprotein receptor ligands (ASGPrL). In particular, we demonstrate that the resulting ribonucleoproteins (Cas9-ASGPrL RNP) can be engineered to be preferentially internalized into cells expressing the corresponding receptor on their surface. Uptake of such fluorescently labeled proteins in liver-derived cell lines HEPG2 (ASGPr+) and SKHEP (control; diminished ASGPr) was studied by live cell imaging and demonstrates increased accumulation of Cas9-ASGPrL RNP in HEPG2 cells as a result of effective ASGPr-mediated endocytosis. When uptake occurred in the presence of a peptide with endosomolytic properties, we observed receptor-facilitated and cell-type specific gene editing that did not rely on electroporation or the use of transfection reagents. Overall, these in vitro results validate the receptor-mediated delivery of genome-editing enzymes as an approach for cell-selective gene editing and provide a framework for future potential applications to hepatoselective gene editing in vivo.

  1. Synthesis of three novel fluorine-18 labeled analogues of L-deprenyl for positron emission tomography (PET) studies of monoamine oxidase B (MAO-B).

    PubMed

    Nag, Sangram; Lehmann, Lutz; Heinrich, Tobias; Thiele, Andrea; Kettschau, Georg; Nakao, Ryuji; Gulyás, Balázs; Halldin, Christer

    2011-10-27

    The aim in this project was to synthesize and to study fluorine-18 labeled analogues of l-deprenyl which bind selectively to the enzyme monoamine oxidase B (MAO-B). Three fluorinated l-deprenyl analogues have been generated in multistep organic syntheses. The most promising fluorine-18 compound N-[(2S)-1-[(18)F]fluoro-3-phenylpropan-2-yl]-N-methylprop-2-yn-1-amine (4c) was synthesized by a one-step fluorine-18 nucleophilic substitution reaction. Autoradiography on human brain tissue sections demonstrated specific binding for compound 4c to brain regions known to have a high content of MAO-B. In addition, the corresponding nonradioactive fluorine-19 compound (13) inhibited recombinant human MAO-B with an IC(50) of 170.5 ± 29 nM but did not inhibit recombinant human MAO-A (IC(50) > 2000 nM), demonstrating its specificity. Biodistribution of 4c in mice showed high initial brain uptake leveling at 5.2 ± 0.04%ID/g after 2 min post injection. In conclusion, compound 4c is a specific inhibitor of MAO-B with high initial brain uptake in mice and is, therefore, a candidate for further investigation in PET.

  2. Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants.

    PubMed

    Rojano-Delgado, Antonia María; Cruz-Hipolito, Hugo; De Prado, Rafael; Luque de Castro, María Dolores; Franco, Antonio Rodríguez

    2012-01-01

    Velvet bean (Mucuna pruriens, Fabaceae) plants exhibits an innate, very high resistance (i.e., tolerance) to glyphosate similar to that of plants which have acquired resistance to this herbicide as a trait. We analyzed the uptake of [(14)C]-glyphosate by leaves and its translocation to meristematic tissues, and used scanning electron micrographs to further analyze the cuticle and 3D capillary electrophoresis to investigate a putative metabolism capable of degrading the herbicide. Velvet bean exhibited limited uptake of glyphosate and impaired translocation of the compound to meristematic tissues. Also, for the first time in a higher plant, two concurrent pathways capable of degrading glyphosate to AMPA, Pi, glyoxylate, sarcosine and formaldehyde as end products were identified. Based on the results, the innate tolerance of velvet bean to glyphosate is possibly a result of the combined action of the previous three traits, namely: limited uptake, impaired translocation and enhanced degradation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Relation between the location of elements in the periodic table and various organ-uptake rates.

    PubMed

    Ando, A; Ando, I; Hiraki, T; Hisada, K

    1989-01-01

    Fifty four elements and 65 radioactive compounds were examined to determine the organ uptake rates for rats 3, 24 and 48 h after i.v. injection of these compounds. They were prepared as carrier free nuclides, or containing a small amount of stable nuclide. Generally speaking, behaviors of K, Rb, Cs and Tl in all the organs were very similar to one another, but they differed from that of Na. Bivalent hard acids were avidly taken up into bone; therefore, uptake rates in soft tissues were very small. Hard acids of tri-, quadri- and pentavalence which were taken up into the soft tissue organs decreased more slowly from these organs than other ions. Soft acids such as Hg2+ were bound very firmly to the component in the kidney. Anions (with few exceptions), GeCl4 and SbCl3 were rapidly excreted in urine, so that the uptake rates in organs were low.

  4. Effect of Phenolic Compounds from Elderflowers on Glucose- and Fatty Acid Uptake in Human Myotubes and HepG2-Cells.

    PubMed

    Ho, Giang Thanh Thi; Kase, Eili Tranheim; Wangensteen, Helle; Barsett, Hilde

    2017-01-06

    Type 2 diabetes (T2D) is manifested by progressive metabolic impairments in tissues such as skeletal muscle and liver, and these tissues become less responsive to insulin, leading to hyperglycemia. In the present study, stimulation of glucose and oleic acid uptake by elderflower extracts, constituents and metabolites were tested in vitro using the HepG2 hepatocellular liver carcinoma cell line and human skeletal muscle cells. Among the crude extracts, the 96% EtOH extract showed the highest increase in glucose and oleic acid uptake in human skeletal muscle cells and HepG2-cells. The flavonoids and phenolic acids contained therein were potent stimulators of glucose and fatty acid uptake in a dose-dependent manner. Most of the phenolic constituents and several of the metabolites showed high antioxidant activity and showed considerably higher α-amylase and α-glucosidase inhibition than acarbose. Elderflower might therefore be valuable as a functional food against diabetes.

  5. Increased biomass and quality and reduced heavy metal accumulation of edible tissues of vegetables in the presence of Cd-tolerant and immobilizing Bacillus megaterium H3.

    PubMed

    Wang, Qi; Zhang, Wen-Ji; He, Lin-Yan; Sheng, Xia-Fang

    2018-02-01

    A Cd-resistant and immobilizing Bacillus megaterium H3 was characterized for its impact on the biomass and quality and heavy metal uptake of edible tissues of two vegetables (Brassica campestris L. var. Aijiaohuang and Brassica rapa L. var. Shanghaiqing) grown in heavy metal-polluted soil. The impact of strain H3 on the soil quality was also evaluated. The increase in the edible tissue biomass and the contents of soluble proteins and vitamin C of the vegetables inoculated with strain H3 ranged from 18% to 33%, 17% to 31%, and 15% to 19%, respectively, compared with the controls. Strain H3 significantly decreased the edible tissue Cd and Pb contents of the two greens (41-80%), DTPA-extractable Cd content (35-47%) of the rhizosphere soils, and Cd and Pb translocation factors (25-56%) of the greens compared with the controls. Moreover, strain H3 significantly increased the organic matter content (17-21%) and invertase activity (13-14%) of the rhizosphere soils compared with the controls. Our results demonstrated the increased edible tissue biomass and quality, decreased Cd and Pb uptake of the edible tissues, and improved soil quality in the presence of strain H3. The results also suggested an effective bacterial-enhanced technique for decreased metal uptake of greens and improved vegetable and soil qualities in the metal-contaminated soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Comparison of three dimeric 18F-AlF-NOTA-RGD tracers.

    PubMed

    Guo, Jinxia; Lang, Lixin; Hu, Shuo; Guo, Ning; Zhu, Lei; Sun, Zhongchan; Ma, Ying; Kiesewetter, Dale O; Niu, Gang; Xie, Qingguo; Chen, Xiaoyuan

    2014-04-01

    RGD peptide-based radiotracers are well established as integrin αvβ3 imaging probes to evaluate tumor angiogenesis or tissue remodeling after ischemia or infarction. In order to optimize the labeling process and pharmacokinetics of the imaging probes, we synthesized three dimeric RGD peptides with or without PEGylation and performed in vivo screening. Radiolabeling was achieved through the reaction of F-18 aluminum-fluoride complex with the cyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). Three imaging probes were synthesized as (18)F-AlF-NOTA-E[c(RGDfK)]2, (18)F-AlF-NOTA-PEG4-E[c(RGDfK)]2, and (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2. The receptor binding affinity was determined by competitive cell binding assay, and the stability was evaluated by mouse serum incubation. Tumor uptake and whole body distribution of the three tracers were compared through direct tissue sampling and PET quantification of U87MG tumor-bearing mice. All three compounds remained intact after 120 min incubation with mouse serum. They all had a rapid and relatively high tracer uptake in U87MG tumors with good target-to-background ratios. Compared with the other two tracers, (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2 had the highest tumor uptake and the lowest accumulation in the liver. The integrin receptor specificity was confirmed by co-injection of unlabeled dimeric RGD peptide. The rapid one-step radiolabeling strategy by the complexation of (18)F-aluminum fluoride with NOTA-peptide conjugates was successfully applied to synthesize three dimeric RGD peptides. Among the three probes developed, (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2 with relatively low liver uptake and high tumor accumulation appears to be a promising candidate for further translational research.

  7. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L

    PubMed Central

    2012-01-01

    Background Zinc (Zn) deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) gene family have been characterized in plants, and have shown to be involved in metal uptake and transport. This study describes the first putative Zn transporter in grapevine. Unravelling its function may explain an important symptom of Zn deficiency in grapevines, which is the production of clusters with fewer and usually smaller berries than normal. Results We identified and characterized a putative Zn transporter from berries of Vitis vinifera L., named VvZIP3. Compared to other members of the ZIP family identified in the Vitis vinifera L. genome, VvZIP3 is mainly expressed in reproductive tissue - specifically in developing flowers - which correlates with the high Zn accumulation in these organs. Contrary to this, the low expression of VvZIP3 in parthenocarpic berries shows a relationship with the lower Zn accumulation in this tissue than in normal seeded berries where its expression is induced by Zn. The predicted protein sequence indicates strong similarity with several members of the ZIP family from Arabidopsis thaliana and other species. Moreover, VvZIP3 complemented the growth defect of a yeast Zn-uptake mutant, ZHY3, and is localized in the plasma membrane of plant cells, suggesting that VvZIP3 has the function of a Zn uptake transporter. Conclusions Our results suggest that VvZIP3 encodes a putative plasma membrane Zn transporter protein member of the ZIP gene family that might play a role in Zn uptake and distribution during the early reproductive development in Vitis vinifera L., indicating that the availability of this micronutrient may be relevant for reproductive development. PMID:22824090

  8. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L.

    PubMed

    Gainza-Cortés, Felipe; Pérez-Dïaz, Ricardo; Pérez-Castro, Ramón; Tapia, Jaime; Casaretto, José A; González, Sebastián; Peña-Cortés, Hugo; Ruiz-Lara, Simón; González, Enrique

    2012-07-23

    Zinc (Zn) deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) gene family have been characterized in plants, and have shown to be involved in metal uptake and transport. This study describes the first putative Zn transporter in grapevine. Unravelling its function may explain an important symptom of Zn deficiency in grapevines, which is the production of clusters with fewer and usually smaller berries than normal. We identified and characterized a putative Zn transporter from berries of Vitis vinifera L., named VvZIP3. Compared to other members of the ZIP family identified in the Vitis vinifera L. genome, VvZIP3 is mainly expressed in reproductive tissue - specifically in developing flowers - which correlates with the high Zn accumulation in these organs. Contrary to this, the low expression of VvZIP3 in parthenocarpic berries shows a relationship with the lower Zn accumulation in this tissue than in normal seeded berries where its expression is induced by Zn. The predicted protein sequence indicates strong similarity with several members of the ZIP family from Arabidopsis thaliana and other species. Moreover, VvZIP3 complemented the growth defect of a yeast Zn-uptake mutant, ZHY3, and is localized in the plasma membrane of plant cells, suggesting that VvZIP3 has the function of a Zn uptake transporter. Our results suggest that VvZIP3 encodes a putative plasma membrane Zn transporter protein member of the ZIP gene family that might play a role in Zn uptake and distribution during the early reproductive development in Vitis vinifera L., indicating that the availability of this micronutrient may be relevant for reproductive development.

  9. Uptake and effects of 2, 4, 6 - trinitrotoluene (TNT) in juvenile Atlantic salmon (Salmo salar).

    PubMed

    Mariussen, Espen; Stornes, Siv Marie; Bøifot, Kari Oline; Rosseland, Bjørn Olav; Salbu, Brit; Heier, Lene Sørlie

    2018-01-01

    Organ specific uptake and depuration, and biological effects in Atlantic salmon (Salmo salar) exposed to 2, 4, 6-trinitrotoluene (TNT) were studied. Two experiments were conducted, the first using radiolabeled TNT ( 14 C-TNT, 0.16mg/L) to study uptake (48h) and depuration (48h), while the second experiment focused on physiological effects in fish exposed to increasing concentrations of unlabeled TNT (1μg-1mg/L) for 48h. The uptake of 14 C-TNT in the gills and most of the organs increased rapidly during the first 6h of exposure (12h in the brain) followed by a rapid decrease even though the fish were still exposed to TNT in the water. The radioactivity in the gall bladder reached a maximum after 55h, 7h after the transfer to the clean water. A high concentration of 14 C-TNT in the gall bladder indicates that TNT is excreted through the gall bladder. Mortality (2 out of 14) was observed at a concentration of 1mg/L, and the surviving fish had hemorrhages in the dorsal muscle tissue near the spine. Analysis of the physiological parameters in blood from the high exposure group revealed severe effects, with an increase in the levels of glucose, urea and HCO 3 , and a decrease in hematocrit and the levels of Cl and hemoglobin. No effects on blood physiology were observed in fish exposed to the lower concentrations of TNT (1-100μg/L). TNT and the metabolites 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT) were found in the muscle tissue, whereas only 2-ADNT and 4-ADNT were found in the bile. The rapid excretion and estimated bioconcentration factors (range of 2-18 after 48h in gills, blood, liver, kidney, muscle and brain) indicated a low potential for bioaccumulation of TNT. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sternal uptake of 99mTc-MAA in thoracic outlet syndrome.

    PubMed

    Matsusaka, Yohji; Nakahara, Tadaki; Iwabuchi, Yu; Kameyama, Masashi; Murakami, Koji

    2015-12-01

    Tc-macroaggregated albumin (MAA) uptake in the vertebrae has been reported in central vein occlusion, although its sternal uptake is rarely seen. We present a case in which Tc-MAA SPECT/CT showed spotty uptake in the sternum. Contrast-enhanced CT revealed marked narrowing of the left subclavian vein at the thoracic outlet with a developed collateral vein running, in the left anterior chest subcutaneous tissue, between the sternum and left axilla. In this case, IV injection of Tc-MAA from the left forearm probably led to bone marrow uptake in the sternum due to retrograde venous flow through the collateral vein.

  11. Separation of solute and particulate vectors of heavy metal uptake in controlled suspension-feeding experiments with Macoma balthica

    USGS Publications Warehouse

    Harvey, R.W.; Luoma, S.N.

    1985-01-01

    Radioisotope labelling experiments with the estuarine clam, Macoma balthica, are described, in which a filter chamber device was used to separate solute metal uptake from uptake, of metals associated with suspended bacteria. Solute uptake contributed a majority of the 14-day total body burdens of 65Zn and 109Cd, whereas 57Co uptake largely resulted from ingestion of isotope-laden bacteria. In contrast to those for 109Cd and 65Zn, 57Co tissue distributions at 3 weeks differed significantly (p < 0.05) between feeding and non-feeding clams (housed within filter chambers). ?? 1985 Dr W. Junk Publishers.

  12. Adipogenesis of human adipose-derived stem cells within three-dimensional hollow fiber-based bioreactors.

    PubMed

    Gerlach, Jörg C; Lin, Yen-Chih; Brayfield, Candace A; Minteer, Danielle M; Li, Han; Rubin, J Peter; Marra, Kacey G

    2012-01-01

    To further differentiate adipose-derived stem cells (ASCs) into mature adipocytes and create three-dimensional (3D) adipose tissue in vitro, we applied multicompartment hollow fiber-based bioreactor technology with decentral mass exchange for more physiological substrate gradients and integral oxygenation. We hypothesize that a dynamic 3D perfusion in such a bioreactor will result in longer-term culture of human adipocytes in vitro, thus providing metabolically active tissue serving as a diagnostic model for screening drugs to treat diabetes. ASCs were isolated from discarded human abdominal subcutaneous adipose tissue and then inoculated into dynamic 3D culture bioreactors to undergo adipogenic differentiation. Insulin-stimulated glucose uptake from the medium was assessed with and without TNF-alpha. 3D adipose tissue was generated in the 3D-bioreactors. Immunohistochemical staining indicated that 3D-bioreactor culture displayed multiple mature adipocyte markers with more unilocular morphologies as compared with two-dimensional (2D) cultures. Results of real-time polymerase chain reaction showed 3D-bioreactor treatment had more efficient differentiation in fatty acid-binding protein 4 expression. Repeated insulin stimulation resulted in increased glucose uptake, with a return to baseline between testing. Importantly, TNF-alpha inhibited glucose uptake, an indication of the metabolic activity of the tissue. 3D bioreactors allow more mature adipocyte differentiation of ASCs compared with traditional 2D culture and generate adipose tissue in vitro for up to 2 months. Reproducible metabolic activity of the adipose tissue in the bioreactor was demonstrated, which is potentially useful for drug discovery. We present here, to the best of our knowledge for the first time, the development of a coherent 3D high density fat-like tissue consisting of unilocular structure from primary adipose stem cells in vitro.

  13. Adipogenesis of Human Adipose-Derived Stem Cells Within Three-Dimensional Hollow Fiber-Based Bioreactors

    PubMed Central

    Gerlach, Jörg C.; Lin, Yen-Chih; Brayfield, Candace A.; Minteer, Danielle M.; Li, Han; Rubin, J. Peter

    2012-01-01

    To further differentiate adipose-derived stem cells (ASCs) into mature adipocytes and create three-dimensional (3D) adipose tissue in vitro, we applied multicompartment hollow fiber-based bioreactor technology with decentral mass exchange for more physiological substrate gradients and integral oxygenation. We hypothesize that a dynamic 3D perfusion in such a bioreactor will result in longer-term culture of human adipocytes in vitro, thus providing metabolically active tissue serving as a diagnostic model for screening drugs to treat diabetes. ASCs were isolated from discarded human abdominal subcutaneous adipose tissue and then inoculated into dynamic 3D culture bioreactors to undergo adipogenic differentiation. Insulin-stimulated glucose uptake from the medium was assessed with and without TNF-alpha. 3D adipose tissue was generated in the 3D-bioreactors. Immunohistochemical staining indicated that 3D-bioreactor culture displayed multiple mature adipocyte markers with more unilocular morphologies as compared with two-dimensional (2D) cultures. Results of real-time polymerase chain reaction showed 3D-bioreactor treatment had more efficient differentiation in fatty acid-binding protein 4 expression. Repeated insulin stimulation resulted in increased glucose uptake, with a return to baseline between testing. Importantly, TNF-alpha inhibited glucose uptake, an indication of the metabolic activity of the tissue. 3D bioreactors allow more mature adipocyte differentiation of ASCs compared with traditional 2D culture and generate adipose tissue in vitro for up to 2 months. Reproducible metabolic activity of the adipose tissue in the bioreactor was demonstrated, which is potentially useful for drug discovery. We present here, to the best of our knowledge for the first time, the development of a coherent 3D high density fat-like tissue consisting of unilocular structure from primary adipose stem cells in vitro. PMID:21902468

  14. Novel and non-traditional use of stable isotope tracers to study metal bioavailability from natural particles

    USGS Publications Warehouse

    Croteau, Marie-Noële; Cain, Daniel J.; Fuller, Christopher C.

    2013-01-01

    We devised a novel tracing approach that involves enriching test organisms with a stable metal isotope of low natural abundance prior to characterizing metal bioavailability from natural inorganic particles. In addition to circumventing uncertainties associated with labeling natural particles and distinguishing background metals, the proposed "reverse labeling" technique overcomes many drawbacks inherent to using radioisotope tracers. Specifically, we chronically exposed freshwater snails (Lymnaea stagnalis) to synthetic water spiked with Cu that was 99.4% 65Cu to increase the relative abundance of 65Cu in the snail’s tissues from 32% to >80%. The isotopically enriched snails were then exposed to benthic algae mixed with Cu-bearing Fe–Al particles collected from the Animas River (Colorado), an acid mine drainage impacted river. We used 63Cu to trace Cu uptake from the natural particles and inferred their bioavailability from calculation of Cu assimilation into tissues. Cu assimilation from these particles was 44%, indicating that 44% of the particulate Cu was absorbed by the invertebrate. This demonstrates that inorganic particulate Cu can be bioavailable. The reverse labeling approach shows great potential in various scientific areas such as environmental contamination and nutrition for addressing questions involving uptake of an element that naturally has multiple isotopes.

  15. Strategies for transgenic nematode control in developed and developing world crops.

    PubMed

    Atkinson, Howard J; Lilley, Catherine J; Urwin, Peter E

    2012-04-01

    Nematodes cause an estimated $118b annual losses to world crops and they are not readily controlled by pesticides or other control options. For many crops natural resistance genes are unavailable to plant breeders or progress by this approach is slow. Transgenic plants can provide nematode resistance for such crops. Two approaches have been field trialled that control a wide range of nematodes by either limiting use of their dietary protein uptake from the crop or by preventing root invasion without a direct lethality. In addition, RNA interference increasingly in tandem with genomic studies is providing a range of potential resistance traits that involve no novel protein production. Transgenic resistance can be delivered by tissue specific promoters to just root tissues where most economic nematodes invade and feed rather than the harvested yield. High efficacy and durability can be provided by stacking nematode resistance traits including any that natural resistance provides. The constraints to uptake centre on market acceptance and not the availability of appropriate biotechnology. The need to deploy nematode resistance is intensifying with loss of pesticides, an increased need to protect crop profit margins and in many developing world countries where nematodes severely damage both commodity and staple crops. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Diagnostic Ability of FDG-PET/CT in the Detection of Malignant Pleural Effusion.

    PubMed

    Nakajima, Reiko; Abe, Koichiro; Sakai, Shuji

    2015-07-01

    We investigated the role of F-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) for the differential diagnosis of malignant and benign pleural effusion. We studied 36 consecutive patients with histologically proven cancer (excluding malignant mesothelioma) who underwent FDG-PET/CT for suspected malignant pleural effusion. Fourteen patients had cytologically proven malignant pleural effusion and the other 22 patients had either negative cytology or clinical follow-up, which confirmed the benign etiology. We examined the maximum standardized uptake values (SUV max) of pleural effusion and the target-to-normal tissue ratio (TNR), calculated as the ratio of the pleural effusion SUV max to the SUV mean of the normal tissues (liver, spleen, 12th thoracic vertebrae [Th12], thoracic aorta, and spinalis muscle). We also examined the size and density (in Hounsfield units) of the pleural effusion and pleural abnormalities on CT images. TNR (Th12) and increased pleural FDG uptake compared to background blood pool were significantly more frequent in cases with malignant pleural effusion (P < 0.05 for both). The cutoff TNR (Th12) value of >0.95 was the most accurate; the sensitivity, specificity, and accuracy for this value were 93%, 68%, and 75%, respectively. FDG-PET/CT can be a useful method for the differential diagnosis of malignant and benign pleural effusion.

  17. Implications of mercury speciation in thiosulfate treated plants.

    PubMed

    Wang, Jianxu; Feng, Xinbin; Anderson, Christopher W N; Wang, Heng; Zheng, Lirong; Hu, Tiandou

    2012-05-15

    Mercury uptake was induced in two cultivars of Brassica juncea under field conditions using thiosulfate. Analysis was conducted to better understand the mechanism of uptake, speciation of mercury in plants, and redistribution of mercury in the soil. Plant mercury and sulfur concentrations were increased after thiosulfate treatment, and a linear correlation between mercury and sulfur was observed. Mercury may be absorbed and transported in plants as the Hg-thiosulfate complex. The majority of mercury in treated plant tissues (two cultivars) was bound to sulfur in a form similar to β-HgS (66-94%). Remaining mercury was present in forms similar to Hg-cysteine (1-10%) and Hg-dicysteine (8-28%). The formation of β-HgS may relate to the transport and assimilation of sulfate in plant tissues. Mercury-thiosulfate complex could decompose to mercuric and sulfate ions in the presence of free protons inside the plasma membrane, while sulfide ions would be produced by the assimilation of sulfate. The concomitant presence of mercuric ions and S(2-) would precipitate β-HgS. The mercury concentration in the rhizosphere decreased in the treated relative to the nontreated soil. The iron/manganese oxide and organic-bound fractions of soil mercury were transformed to more bioavailable forms (soluble and exchangeable and specifically sorbed) and taken up by plants.

  18. Reduction of renal uptake of 111In-DOTA-labeled and A700-labeled RAFT-RGD during integrin αvβ3 targeting using single photon emission computed tomography and optical imaging.

    PubMed

    Briat, Arnaud; Wenk, Christiane H F; Ahmadi, Mitra; Claron, Michael; Boturyn, Didier; Josserand, Véronique; Dumy, Pascal; Fagret, Daniel; Coll, Jean-Luc; Ghezzi, Catherine; Sancey, Lucie; Vuillez, Jean-Philippe

    2012-06-01

    Integrin α(v)β(3) expression is upregulated during tumor growth and invasion in newly formed endothelial cells in tumor neovasculature and in some tumor cells. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin α(v)β(3) in vitro and in vivo. When labeled with indium-111, the RAFT-RGD is partially reabsorbed and trapped in the kidneys, limiting its use for further internal targeted radiotherapy and imaging investigations. We studied the effect of Gelofusine on RAFT-RGD renal retention in tumor-bearing mice. Mice were imaged using single photon emission computed tomography and optical imaging 1 and 24 h following tracer injection. Distribution of RAFT-RGD was further investigated by tissue removal and direct counting of the tracer. Kidney sections were analyzed by confocal microscopy. Gelofusine significantly induced a >50% reduction of the renal reabsorption of (111)In-DOTA-RAFT-RGD and A700-RAFT-RGD, without affecting tumor uptake. Injection of Gelofusine significantly reduced the renal retention of labeled RAFT-RGD, while increasing the tumor over healthy tissue ratio. These results will lead to the development of future therapeutic approaches. © 2012 Japanese Cancer Association.

  19. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues.

    PubMed

    Kim, Munju; Gillies, Robert J; Rejniak, Katarzyna A

    2013-11-18

    Delivery of anti-cancer drugs to tumor tissues, including their interstitial transport and cellular uptake, is a complex process involving various biochemical, mechanical, and biophysical factors. Mathematical modeling provides a means through which to understand this complexity better, as well as to examine interactions between contributing components in a systematic way via computational simulations and quantitative analyses. In this review, we present the current state of mathematical modeling approaches that address phenomena related to drug delivery. We describe how various types of models were used to predict spatio-temporal distributions of drugs within the tumor tissue, to simulate different ways to overcome barriers to drug transport, or to optimize treatment schedules. Finally, we discuss how integration of mathematical modeling with experimental or clinical data can provide better tools to understand the drug delivery process, in particular to examine the specific tissue- or compound-related factors that limit drug penetration through tumors. Such tools will be important in designing new chemotherapy targets and optimal treatment strategies, as well as in developing non-invasive diagnosis to monitor treatment response and detect tumor recurrence.

  20. MEDIA SERUM LEVELS AND IN VITRO HEPATIC ABSORPTION OF LINDANE

    EPA Science Inventory

    High plasma protein binding is known to reduce the tissue uptake of chemicals in vivo, but the extent of its importance in vitro is less clear. Experiments were conducted to determine the cellular uptake of lindane in vitro under different conditions. Lindane was selected because...

  1. Effects of chronic waterborne nickel exposure on growth, ion homeostasis, acid-base balance, and nickel uptake in the freshwater pulmonate snail, Lymnaea stagnalis.

    PubMed

    Niyogi, Som; Brix, Kevin V; Grosell, Martin

    2014-05-01

    The freshwater pulmonate snail, Lymnaea stagnalis, is the most sensitive aquatic organism tested to date for Ni. We undertook a series of experiments to investigate the underlying mechanism(s) for this observed hypersensitivity. Consistent with previous experiments, juvenile snail growth in a 21-day exposure was reduced by 48% relative to the control when exposed to 1.3 μg l(-1) Ni (EC20 less than the lowest concentration tested). Ca(2+) homeostasis was significantly disrupted by Ni exposure as demonstrated by reductions in net Ca(2+) uptake, and reductions in Ca(2+) concentrations in the hemolymph and soft tissues. We also observed reduced soft tissue [Mg(2+)]. Snails underwent a significant alkalosis with hemolymph pH increasing from 8.1 to 8.3 and hemolymph TCO2 increasing from 19 to 22 mM in control versus Ni-exposed snails, respectively. Unlike in previous studies with Co and Pb, snail feeding rates were found to be unaffected by Ni at the end of the exposure. Snails accumulated Ni in the soft tissue in a concentration-dependent manner, and Ni uptake experiments with (63)Ni revealed a biphasic uptake profile - a saturable high affinity component at low exposure concentrations (36-189 nM) and a linear component at the high exposure concentrations (189-1,897 nM). The high affinity transport system had an apparent Km of 89 nM Ni(2+) and Vmax of 2.4 nmol g(-1)h(-1). This equates to a logK of 7.1, significantly higher than logK's (2.6-5.2) for any other aquatic organisms evaluated to date, which will have implications for Biotic Ligand Model development. Finally, pharmacological inhibitors that block Ca(2+) uptake pathways in snails did not inhibit Ni uptake, suggesting that the uptake of Ni does not occur via Ca(2+) uptake pathways. As with Cu and Pb, the exact mechanism for the significant disruption in Ca(2+) homeostasis and reduction in juvenile snail growth remains unknown. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung.

    PubMed

    Groneberg, D A; Eynott, P R; Döring, F; Dinh, Q Thai; Oates, T; Barnes, P J; Chung, K F; Daniel, H; Fischer, A

    2002-01-01

    Aerosol administration of peptide based drugs has an important role in the treatment of various pulmonary and systemic diseases. The characterisation of pulmonary peptide transport pathways can lead to new strategies in aerosol drug treatment. Immunohistochemistry and ex vivo uptake studies were established to assess the distribution and activity of the beta-lactam transporting high affinity proton coupled peptide transporter PEPT2 in normal and cystic fibrosis human airway tissue. PEPT2 immunoreactivity in normal human airways was localised to cells of the tracheal and bronchial epithelium and the endothelium of small vessels. In peripheral lung immunoreactivity was restricted to type II pneumocytes. In sections of cystic fibrosis lung a similar pattern of distribution was obtained with signals localised to endothelial cells, airway epithelium, and type II pneumocytes. Functional ex vivo uptake studies with fresh lung specimens led to an uptake of the fluorophore conjugated dipeptide derivative D-Ala-L-Lys-AMCA into bronchial epithelial cells and type II pneumocytes. This uptake was competitively inhibited by dipeptides and cephalosporins but not ACE inhibitors, indicating a substrate specificity as described for PEPT2. These findings provide evidence for the expression and function of the peptide transporter PEPT2 in the normal and cystic fibrosis human respiratory tract and suggest that PEPT2 is likely to play a role in the transport of pulmonary peptides and peptidomimetics.

  3. Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung

    PubMed Central

    Groneberg, D; Eynott, P; Doring, F; Thai, D; Oates, T; Barnes, P; Chung, K; Daniel, H; Fischer, A

    2002-01-01

    Background: Aerosol administration of peptide based drugs has an important role in the treatment of various pulmonary and systemic diseases. The characterisation of pulmonary peptide transport pathways can lead to new strategies in aerosol drug treatment. Methods: Immunohistochemistry and ex vivo uptake studies were established to assess the distribution and activity of the ß-lactam transporting high affinity proton coupled peptide transporter PEPT2 in normal and cystic fibrosis human airway tissue. Results: PEPT2 immunoreactivity in normal human airways was localised to cells of the tracheal and bronchial epithelium and the endothelium of small vessels. In peripheral lung immunoreactivity was restricted to type II pneumocytes. In sections of cystic fibrosis lung a similar pattern of distribution was obtained with signals localised to endothelial cells, airway epithelium, and type II pneumocytes. Functional ex vivo uptake studies with fresh lung specimens led to an uptake of the fluorophore conjugated dipeptide derivative D-Ala-L-Lys-AMCA into bronchial epithelial cells and type II pneumocytes. This uptake was competitively inhibited by dipeptides and cephalosporins but not ACE inhibitors, indicating a substrate specificity as described for PEPT2. Conclusions: These findings provide evidence for the expression and function of the peptide transporter PEPT2 in the normal and cystic fibrosis human respiratory tract and suggest that PEPT2 is likely to play a role in the transport of pulmonary peptides and peptidomimetics. PMID:11809991

  4. Relation between the location of elements in the periodic table and tumor-uptake rate.

    PubMed

    Ando, A; Ando, I; Hiraki, T; Hisada, K

    1985-01-01

    The bipositive ions and anions, with few exceptions, indicated a low tumor uptake rate. On the other hand, compounds of Hg, Au and Bi, which have a strong binding power to protein, showed a high tumor uptake rate. As Hg2+, Au+ and Bi3+ are soft acids according to the classification of Lewis acids, it was thought that these ions would bind strongly to soft bases (R-SH, R-S-) present in tumor tissue. For many hard acids such as 85Sr2+, 67Ga3+, 181Hf4+, and 95Nb5+, tumor uptake rates are shown as a function of ionic potentials (valency/ionic radii) of the metal ions. Considering the present data and previously reported results, it was presumed that hard acids of trivalence, quadrivalence and pentavalence would replace calcium in the calcium salts of hard bases (calcium salts of acid mucopolysaccharides, etc.). Ionic potentials of alkaline metals and Tl were small, but the tumor-uptake rate of these elements indicated various values. As Ge and Sb are bound by covalent bonds to chloride, GeCl4 and SbCl3 behaved differently from many metallic compounds in tumor tissue.

  5. Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams

    NASA Astrophysics Data System (ADS)

    Hall, R. O., Jr.; Baker, M. A.; Rosi-Marshall, E. J.; Tank, J. L.; Newbold, J. D.

    2013-11-01

    Stream ecosystem processes such as nutrient cycling may vary with stream position in the network. Using a scaling approach, we examined the relationship between stream size and nutrient uptake length, which represents the mean distance that a dissolved solute travels prior to removal from the water column. Ammonium (NH4+) uptake length increased proportionally with stream size measured as specific discharge (discharge/stream width) with a scaling exponent = 1.01. In contrast, uptake lengths for nitrate (NO3-) and soluble reactive phosphorus (SRP) increased more rapidly than increases in specific discharge (scaling exponents = 1.19 for NO3- and 1.35 for SRP). Additionally, the ratio of inorganic nitrogen (N) uptake length to SRP uptake length declined with stream size; there was relatively lower demand for SRP compared to N as stream size increased. Finally, we related the scaling of uptake length with specific discharge to that of stream length using Hack's law and downstream hydraulic geometry. Ammonium uptake length increased less than proportionally with distance from the headwaters, suggesting a strong role for larger streams and rivers in regulating nutrient transport.

  6. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis

    PubMed Central

    Hsieh, En-Jung; Waters, Brian M.

    2016-01-01

    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. PMID:27605716

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putri, Mirasari; Department of Public Health, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511; Syamsunarno, Mas Rizky A.A.

    Hypothermia can occur during fasting when thermoregulatory mechanisms, involving fatty acid (FA) utilization, are disturbed. CD36/FA translocase is a membrane protein which facilitates membrane transport of long-chain FA in the FA consuming heart, skeletal muscle (SkM) and adipose tissues. It also accelerates uptake of triglyceride-rich lipoprotein by brown adipose tissue (BAT) in a cold environment. In mice deficient for CD36 (CD36{sup −/−} mice), FA uptake is markedly reduced with a compensatory increase in glucose uptake in the heart and SkM, resulting in lower levels of blood glucose especially during fasting. However, the role of CD36 in thermogenic activity during fastingmore » remains to be determined. In fasted CD36{sup −/−} mice, body temperature drastically decreased shortly after cold exposure. The hypothermia was accompanied by a marked reduction in blood glucose and in stores of triacylglycerols in BAT and of glycogen in glycolytic SkM. Biodistribution analysis using the FA analogue {sup 125}I-BMIPP and the glucose analogue {sup 18}F-FDG revealed that uptake of FA and glucose was severely impaired in BAT and glycolytic SkM in cold-exposed CD36{sup −/−} mice. Further, induction of the genes of thermogenesis in BAT was blunted in fasted CD36{sup −/−} mice after cold exposure. These findings strongly suggest that CD36{sup −/−} mice exhibit pronounced hypothermia after fasting due to depletion of energy storage in BAT and glycolytic SkM and to reduced supply of energy substrates to these tissues. Our study underscores the importance of CD36 for nutrient homeostasis to survive potentially life-threatening challenges, such as cold and starvation. - Highlights: • We examined the role of CD36 in thermogenesis during cold exposure. • CD36{sup −/−} mice exhibit rapid hypothermia after cold exposure during fasting. • Uptake of fatty acid and glucose is impaired in thermogenic tissues during fasting. • Storage of energy substrates is reduced in thermogenic tissues during fasting. • CD36 is important for nutrient homeostasis to survive life-threatening challenges.« less

  8. Therapeutic Ultrasound Enhancement of Drug Delivery to Soft Tissues

    NASA Astrophysics Data System (ADS)

    Lewis, George; Wang, Peng; Lewis, George; Olbricht, William

    2009-04-01

    Effects of exposure to 1.58 MHz focused ultrasound on transport of Evans Blue Dye (EBD) in soft tissues are investigated when an external pressure gradient is applied to induce convective flow through the tissue. The magnitude of the external pressure gradient is chosen to simulate conditions in brain parenchyma during convection-enhanced drug delivery (CED) to the brain. EBD uptake and transport are measured in equine brain, avian muscle and agarose brain-mimicking phantoms. Results show that ultrasound enhances EBD uptake and transport, and the greatest enhancement occurs when the external pressure gradient is applied. The results suggest that exposure of the brain parenchyma to ultrasound could enhance penetration of material infused into the brain during CED therapy.

  9. A photo-responsive peptide- and asparagine-glycine-arginine (NGR) peptide-mediated liposomal delivery system.

    PubMed

    Xie, Xiangyang; Yang, Yanfang; Yang, Yang; Zhang, Hui; Li, Ying; Mei, Xingguo

    2016-09-01

    The conjugation of tunable peptides or materials with nanocarriers represents a promising approach for drug delivery to tumor cells. In this study, we report the development of a novel liposomal carrier system that exploits the cell surface binding synergism between photo-sensitive peptides (PSPs) and targeting ligands. The positive charges of the lysine residues on the cell-penetrating peptides (CPPs) were temporarily caged by the photolabile-protective groups (PG), thereby forming a PSP. Furthermore, this PSP enhances specific uptake into cancer cells after rapidly uncaging the PG via near-infrared (NIR) light illumination. In the circulatory system, the cell penetrability of PSP was hindered. In contrast, the asparagine-glycine-arginine (NGR) peptide moieties, selectively bind to CD13-positive tumors, were attached to the nanocarrier to facilitate the active accumulation of this liposomal carrier in tumor tissue. The dual-modified liposomes (PSP/NGR-L) were prepared by emulsification method, and the concentrations of DSPE-PEG 2000 -psCPP and DSPE-PEG 5000 -NGR in the liposomes were chosen to be 4% and 1% (molar ratio), respectively. The mean particle size of the PSP/NGR-L was about 95 nm, and the drug entrapment efficiency was more than 90%. Cellular uptake results demonstrated that the proposed PSP/NGR-L had an enhancement of cancer cell recognition and specific uptake. Furthermore, the PSP/NGR-L demonstrated a stronger antitumor efficacy in the HT-1080 tumor model in nude mice with the aid of NIR illumination.

  10. Nonparametric Residue Analysis of Dynamic PET Data With Application to Cerebral FDG Studies in Normals.

    PubMed

    O'Sullivan, Finbarr; Muzi, Mark; Spence, Alexander M; Mankoff, David M; O'Sullivan, Janet N; Fitzgerald, Niall; Newman, George C; Krohn, Kenneth A

    2009-06-01

    Kinetic analysis is used to extract metabolic information from dynamic positron emission tomography (PET) uptake data. The theory of indicator dilutions, developed in the seminal work of Meier and Zierler (1954), provides a probabilistic framework for representation of PET tracer uptake data in terms of a convolution between an arterial input function and a tissue residue. The residue is a scaled survival function associated with tracer residence in the tissue. Nonparametric inference for the residue, a deconvolution problem, provides a novel approach to kinetic analysis-critically one that is not reliant on specific compartmental modeling assumptions. A practical computational technique based on regularized cubic B-spline approximation of the residence time distribution is proposed. Nonparametric residue analysis allows formal statistical evaluation of specific parametric models to be considered. This analysis needs to properly account for the increased flexibility of the nonparametric estimator. The methodology is illustrated using data from a series of cerebral studies with PET and fluorodeoxyglucose (FDG) in normal subjects. Comparisons are made between key functionals of the residue, tracer flux, flow, etc., resulting from a parametric (the standard two-compartment of Phelps et al. 1979) and a nonparametric analysis. Strong statistical evidence against the compartment model is found. Primarily these differences relate to the representation of the early temporal structure of the tracer residence-largely a function of the vascular supply network. There are convincing physiological arguments against the representations implied by the compartmental approach but this is the first time that a rigorous statistical confirmation using PET data has been reported. The compartmental analysis produces suspect values for flow but, notably, the impact on the metabolic flux, though statistically significant, is limited to deviations on the order of 3%-4%. The general advantage of the nonparametric residue analysis is the ability to provide a valid kinetic quantitation in the context of studies where there may be heterogeneity or other uncertainty about the accuracy of a compartmental model approximation of the tissue residue.

  11. Development of carbon-11 labeled acryl amides for selective PET imaging of active tissue transglutaminase.

    PubMed

    van der Wildt, Berend; Wilhelmus, Micha M M; Bijkerk, Jonne; Haveman, Lizeth Y F; Kooijman, Esther J M; Schuit, Robert C; Bol, John G J M; Jongenelen, Cornelis A M; Lammertsma, Adriaan A; Drukarch, Benjamin; Windhorst, Albert D

    2016-04-01

    Tissue transglutaminase (TG2) is a ubiquitously expressed enzyme capable of forming metabolically and mechanically stable crosslinks between the γ-carboxamide of a glutamine acyl-acceptor substrate and the ε-amino functionality of a lysine acyl-donor substrate resulting in protein oligomers. High TG2 crosslinking activity has been implicated in the pathogenesis of various diseases including celiac disease, cancer and fibrotic and neurodegenerative diseases. Development of a PET tracer specific for active TG2 provides a novel tool to further investigate TG2 biology in vivo in disease states. Recently, potent irreversible active site TG2 inhibitors carrying an acrylamide warhead were synthesized and pharmacologically characterized. Three of these inhibitors, compound 1, 2 and 3, were successfully radiolabeled with carbon-11 on the acrylamide carbonyl position using a palladium mediated [(11)C]CO aminocarbonylation reaction. Ex vivo biodistribution and plasma stability were evaluated in healthy Wistar rats. Autoradiography was performed on MDA-MB-231 tumor sections. [(11)C]1, -2 and -3 were obtained in decay corrected radiochemical yields of 38-55%. Biodistribution showed low uptake in peripheral tissues, with the exception of liver and kidney. Low brain uptake of <0.05% ID/g was observed. Blood plasma analysis demonstrated that [(11)C]1 and [(11)C]2 were rapidly metabolized, whereas [(11)C]3 was metabolized at a more moderate rate (63.2 ± 6.8 and 28.7 ± 10.8% intact tracer after 15 and 45 min, respectively). Autoradiography with [(11)C]3 on MDA-MB-231 tumor sections showed selective and specific binding of the radiotracer to the active state of TG2. Taken together, these results identify [(11)C]3 as the most promising of the three compounds tested for development as PET radiotracer for the in vivo investigation of TG2 activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. High fat diet rescues disturbances to metabolic homeostasis and survival in the Id2 null mouse in a sex-specific manner

    PubMed Central

    Zhou, Peng; Hummel, Alyssa D.; Pywell, Cameron M.; Dong, X. Charlie; Duffield, Giles E.

    2014-01-01

    Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated that Id2 null mice have altered expression of circadian genes involved in lipid metabolism, altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue. Here we further characterized the Id2−/− mouse metabolic phenotype in a sex-specific context and under low and high fat diets, and examined metabolic and endocrine parameters associated with lipid and glucose metabolism. Under the low-fat diet Id2−/− mice showed decreased weight gain, reduced gonadal fat mass, and a lower survival rate. Under the high-fat diet, body weight and gonadal fat gain of Id2−/− male mice was comparable to control mice and survival rate improved markedly. Furthermore, the high-fat diet treated Id2−/− male mice lost the enhanced glucose tolerance feature observed in the other Id2−/− groups, and there was a sex-specific difference in white adipose tissue storage of Id2−/− mice. Additionally, a distinct pattern of hepatic lipid accumulation was observed in Id2−/− males: low lipids on the low-fat diet and steatosis on the high-fat diet. In summary, these data provides valuable insights into the impact of Id2 deficiency on metabolic homeostasis of mice in a sex-specific manner. PMID:25108156

  13. Expanding the menu for carnivorous plants: uptake of potassium, iron and manganese by carnivorous pitcher plants.

    PubMed

    Adlassnig, Wolfram; Steinhauser, Georg; Peroutka, Marianne; Musilek, Andreas; Sterba, Johannes H; Lichtscheidl, Irene K; Bichler, Max

    2009-12-01

    Carnivorous plants use animals as fertiliser substitutes which allow them to survive on nutrient deficient soils. Most research concentrated on the uptake of the prey's nitrogen and phosphorus; only little is known on the utilisation of other elements. We studied the uptake of three essential nutrients, potassium, iron and manganese, in three species of carnivorous pitcher plants (Cephalotus follicularis LaBilladiere, Sarracenia purpureaL., Heliamphora nutans Bentham). Using relatively short-lived and gamma-emitting radiotracers, we significantly improved the sensitivity compared to conventional protocols and gained the following results. We demonstrated the uptake of trace elements like iron and manganese. In addition, we found direct evidence for the uptake of potassium into the pitcher tissue. Potassium and manganese were absorbed to virtually 100% if offered in physiological concentrations or below in Cephalotus. Analysis of pitcher fluid collected in the natural habitat showed that uptake was performed here as efficiently as in the laboratory. The absorption of nutrients is an active process depending on living glandular cells in the pitcher epidermis and can be inhibited by azide. Unphysiologically high amounts of nutrients were taken up for a short time, but after a few hours the absorbing cells were damaged, and uptake stopped. Absorption rates of pitcher leaves from plants under controlled conditions varied highly, indicating that each trap is functionally independent. The comparison of minerals in typical prey with the plants' tissues showed that a complete coverage of the plants' needs by prey capture is improbable.

  14. Prediction of specific damage or infarction from the measurement of tissue impedance following repetitive brain ischaemia in the rat.

    PubMed

    Klein, H C; Krop-Van Gastel, W; Go, K G; Korf, J

    1993-02-01

    The development of irreversible brain damage during repetitive periods of hypoxia and normoxia was studied in anaesthetized rats with unilateral occlusion of the carotid artery (modified Levine model). Rats were exposed to 10 min hypoxia and normoxia until severe damage developed. As indices of damage, whole striatal tissue impedance (reflecting cellular water uptake), sodium/potassium contents (due to exchange with blood). Evans Blue staining (blood-brain barrier [BBB] integrity) and silver staining (increased in irreversibly damaged neurons) were used. A substantial decrease in blood pressure was observed during the hypoxic periods possibly producing severe ischaemia. Irreversibly increased impedance, massive changes in silver staining, accumulation of whole tissue Na and loss of K occurred only after a minimum of two periods of hypoxia, but there was no disruption of the BBB. Microscopic examination of tissue sections revealed that cell death was selective with reversible impedance changes, but became massive and non-specific after irreversible increase of the impedance. The development of brain infarcts could, however, not be predicted from measurements of physiological parameters in the blood. We suggest that the development of cerebral infarction during repetitive periods of hypoxia may serve as a model for the development of brain damage in a variety of clinical conditions. Furthermore, the present model allows the screening of potential therapeutic measuring of the prevention and treatment of both infarction and selective cell death.

  15. Physical and Chemical Strategies for Therapeutic Delivery by Using Polymeric Nanoparticles

    PubMed Central

    Morachis, José M.; Mahmoud, Enas A.

    2012-01-01

    A significant challenge that most therapeutic agents face is their inability to be delivered effectively. Nanotechnology offers a solution to allow for safe, high-dose, specific delivery of pharmaceuticals to the target tissue. Nanoparticles composed of biodegradable polymers can be designed and engineered with various layers of complexity to achieve drug targeting that was unimaginable years ago by offering multiple mechanisms to encapsulate and strategically deliver drugs, proteins, nucleic acids, or vaccines while improving their therapeutic index. Targeting of nanoparticles to diseased tissue and cells assumes two strategies: physical and chemical targeting. Physical targeting is a strategy enabled by nanoparticle fabrication techniques. It includes using size, shape, charge, and stiffness among other parameters to influence tissue accumulation, adhesion, and cell uptake. New methods to measure size, shape, and polydispersity will enable this field to grow and more thorough comparisons to be made. Physical targeting can be more economically viable when certain fabrication techniques are used. Chemical targeting can employ molecular recognition units to decorate the surface of particles or molecular units responsive to diseased environments or remote stimuli. In this review, we describe sophisticated nanoparticles designed for tissue-specific chemical targeting that use conjugation chemistry to attach targeting moieties. Furthermore, we describe chemical targeting using stimuli responsive nanoparticles that can respond to changes in pH, heat, and light. PMID:22544864

  16. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    PubMed Central

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  17. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities

    PubMed Central

    Vaculík, Marek; Konlechner, Cornelia; Langer, Ingrid; Adlassnig, Wolfram; Puschenreiter, Markus; Lux, Alexander; Hauser, Marie-Theres

    2012-01-01

    The understanding of the influence of toxic elements on root anatomy and element distribution is still limited. This study describes anatomical responses, metal accumulation and element distribution of rooted cuttings of Salix caprea after exposure to Cd and/or Zn. Differences in the development of apoplastic barriers and tissue organization in roots between two distinct S. caprea isolates with divergent Cd uptake and accumulation capacities in leaves might reflect an adaptive predisposition based on different natural origins. Energy-dispersive X-ray spectroscopy (EDX) revealed that Cd and Zn interfered with the distribution of elements in a tissue- and isolate-specific manner. Zinc, Ca, Mg, Na and Si were enriched in the peripheral bark, K and S in the phloem and Cd in both vascular tissues. Si levels were lower in the superior Cd translocator. Since the cuttings originated from stocks isolated from polluted and unpolluted sites we probably uncovered different strategies against toxic elements. PMID:22325439

  18. Functional imaging of estrogen receptors with radiolabeled-GAP-EDL in rabbit endometriosis model.

    PubMed

    Takahashi, Nobukazu; Yang, David J; Kurihara, Hiroaki; Borne, Agatha; Kohanim, Saady; Oh, Chang-Sok; Mawlawi, Osama; Kim, E Edmund

    2007-09-01

    Endometriosis is a common women's health problem. Animal models provide an invaluable tool to study the natural history of endometriosis. We previously have reported that (99m)Tc-labeled glutamate peptide-estradiol ((99m)Tc-GAP-EDL) is a useful agent for imaging functional estrogen receptor (ER) via an ER-mediated process. This study was to evaluate the feasibility of using radiolabeled GAP-EDL to image ER-positive (ER +) endometriosis in nonprimate animal models. 3-Aminoethyl estradiol (EDL) was conjugated to glutamate peptide (GAP) to yield GAP-EDL. In vitro cellular uptake studies of (99m)Tc and (68)Ga-GAP-EDL inhibition with cold estrone were conducted in 13,762 rat mammary tumor cells. To create a rabbit model with endometriosis, part of uterine tissue was dissected and grafted in the peritoneal wall. Eight weeks after surgery, scintigraphic images were obtained after intravenous injection of (99m)Tc-GAP-EDL (1 mCi/rabbit, intravenous) at 0.5-2.0 hours, and (68)Ga-GAP-EDL at 45 minutes. We also performed (68)Ga-GAP-EDL blocking study in rabbit model by using tamoxifen. The rabbits were sacrificed and the grafts were excised for histologic examination. In vitro uptake study of (99m)Tc- and (68)Ga-GAP-EDL in 13,762 rat breast cancer cells showed gradually increasing uptake of both tracers. Accumulation of (68)Ga-GAP-EDL in 13,762 cells was inhibited with cold estrone in a dose-dependent manner. In the endometriosis model, the grafted uterine tissue could be visualized by (99m)Tc-GAP-EDL. Necropsy was performed at 2.5 hours after injection time. Four follicular endometrial lesions in eight implanted endometrial tissues were detected, and all lesions could be detected by (99m)Tc-GAP-EDL. Planar scintigraphy of uterus, ovary and implants of necropsy specimen revealed an increased uptake of (99m)Tc-GAP-EDL in comparison with surrounding abdominal wall tissue. Microscopic examinations support that (99m)Tc-GAP-EDL was accumulated in the microinvasive endometrial tissue. After blocking with tamoxifen, (68)Ga-GAP-EDL accumulation in the endometrial grafts could not be visualized, and endometrial tissue-to-normal tissue count ratios were statistically higher in a nonblocked image than that in the blocked image. Endometriosis uptake of radiolabeled GAP-EDL was via an estrogen receptor-mediated process. Radiolabeled-GAP-EDLs are useful agents for imaging endometriosis.

  19. Adenosine uptake by the isolated epithelium of guine pig jejunum.

    PubMed

    Kolassa, N; Stengg, R; Turnheim, K

    1977-10-01

    The uptake of [8-14C]adenosine by the isolated epithelium of guinea pig jejunum was faster than that of inosine, hypoxanthine, or adenine. The initial velocity of adenosine uptake from both the luminal and the antiluminal side of the epithelium exhibited saturation kinetics. The apparent Km, V, and passive permeability of luminal adenosine uptake were all lower than the corresponding values of antiluminal uptake. p-Nitrobenzyl-thioguanosine inhibited adenosine uptake from both the luminal and the antiluminal side, whilst hexobendine decreased the uptake only from the antiluminal side of the epithelium. The results suggest that adenosine enters the intestinal epithelium by a carrier-mediated process in addition to passive diffusion. The antiluminal transport system for adenosine seems similar to that of other tissues with respect to hexobendine inhibition; the luminal transport mechanism, however, exhibits different properties, being insensitive to hexobendine.

  20. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review.

    PubMed

    Shahid, Muhammad; Shamshad, Saliha; Rafiq, Marina; Khalid, Sana; Bibi, Irshad; Niazi, Nabeel Khan; Dumat, Camille; Rashid, Muhammad Imtiaz

    2017-07-01

    Chromium (Cr) is a potentially toxic heavy metal which does not have any essential metabolic function in plants. Various past and recent studies highlight the biogeochemistry of Cr in the soil-plant system. This review traces a plausible link among Cr speciation, bioavailability, phytouptake, phytotoxicity and detoxification based on available data, especially published from 2010 to 2016. Chromium occurs in different chemical forms (primarily as chromite (Cr(III)) and chromate (Cr(VI)) in soil which vary markedly in term of their biogeochemical behavior. Chromium behavior in soil, its soil-plant transfer and accumulation in different plant parts vary with its chemical form, plant type and soil physico-chemical properties. Soil microbial community plays a key role in governing Cr speciation and behavior in soil. Chromium does not have any specific transporter for its uptake by plants and it primarily enters the plants through specific and non-specific channels of essential ions. Chromium accumulates predominantly in plant root tissues with very limited translocation to shoots. Inside plants, Cr provokes numerous deleterious effects to several physiological, morphological, and biochemical processes. Chromium induces phytotoxicity by interfering plant growth, nutrient uptake and photosynthesis, inducing enhanced generation of reactive oxygen species, causing lipid peroxidation and altering the antioxidant activities. Plants tolerate Cr toxicity via various defense mechanisms such as complexation by organic ligands, compartmentation into the vacuole, and scavenging ROS via antioxidative enzymes. Consumption of Cr-contaminated-food can cause human health risks by inducing severe clinical conditions. Therefore, there is a dire need to monitor biogeochemical behavior of Cr in soil-plant system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Binding, uptake, and release of nicotine by human gingival fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanes, P.J.; Schuster, G.S.; Lubas, S.

    1991-02-01

    Previous studies of the effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This altered functional and attachment response may be associated with changes in the cell membrane resulting from binding of the nicotine, or to disturbances in cell metabolism as a result of high intracellular levels of nicotine. The purpose of the present study, therefore, was to (1) determine whether gingival fibroblasts bound nicotine and if any binding observed was specific or non-specific in nature; (2) determine whether gingival fibroblasts internalized nicotine, and if so,more » at what rate; (3) determine whether gingival fibroblasts also released nicotine back into the extracellular environment; and (4) if gingival fibroblasts release nicotine intact or as a metabolite. Cultures of gingival fibroblasts were prepared from gingival connective tissue biopsies. Binding was evaluated at 4{degree}C using a mixture of {sup 3}H-nicotine and unlabeled nicotine. Specific binding was calculated as the difference between {sup 3}H-nicotine bound in the presence and absence of unlabeled nicotine. The cells bound 1.44 (+/- 0.42) pmols/10(6) cells in the presence of unlabeled nicotine and 1.66 (+/- 0.55) pmols/10(6) cells in the absence of unlabeled nicotine. The difference was not significant. Uptake of nicotine was measured at 37{degree}C after treating cells with {sup 3}H-nicotine for time periods up to 4 hours. Uptake in pmols/10(6) cells was 4.90 (+/- 0.34) at 15 minutes, 8.30 (+/- 0.75) at 30 minutes, 12.28 (+/- 2.62) at 1 hour and 26.31 (+/- 1.15) at 4 hours.« less

  2. (124)I-iodopyridopyrimidinone for PET of Abl kinase-expressing tumors in vivo.

    PubMed

    Doubrovin, Mikhail; Kochetkova, Tatiana; Santos, Elmer; Veach, Darren R; Smith-Jones, Peter; Pillarsetty, Nagavarakishore; Balatoni, Julius; Bornmann, William; Gelovani, Juri; Larson, Steven M

    2010-01-01

    Because of the recent development of an iodopyridopyrimidinone Abl protein kinase inhibitor (PKI), (124)I-SKI-212230 ((124)I-SKI230), we investigated the feasibility of a PET-based molecular imaging method for the direct visualization of Abl kinase expression and PKI treatment. In vitro pharmacokinetic properties, including specific and nonspecific binding of (124)I-SKI230 to its Abl kinase target and interaction with other PKIs, were assessed in cell-free medium and chronic myelogenous leukemia (CML) cells overexpressing BCR-Abl (K562), in comparison with BT-474 cells that are low in Abl expression. In a xenograft tumor model, we assessed the in vivo pharmacokinetics of (124)I-SKI230 using PET and postmortem tissue sampling. We also tested a paradigm of (124)I-SKI230 PET after treatment of the animal with a dose of Abl-specific PKI for the monitoring of the tumor response. In vitro studies confirmed that SKI230 binds to Abl kinase with nanomolar affinity, that selective uptake occurs in cell lines known to express Abl kinase, that RNAi knock-down supports specificity of cellular uptake due to Abl kinase, and that imatinib, an archetype Abl PKI, completely displaces SKI230. With SKI230, we obtained successful in vivo PET of Abl-expressing human tumors in a nude rat. We were also able to demonstrate evidence of substrate inhibition of in vivo radiotracer uptake in the xenograft tumor after treatment of the animal as a model of PKI treatment monitoring. These results support the hypothesis that molecular imaging using PET will be useful for the study of in vivo pharmacodynamics of Abl PKI molecular therapy in humans.

  3. Metal-immobilizing Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 increase biomass and reduce heavy metal accumulation of radish under field conditions.

    PubMed

    Han, Hui; Sheng, Xiafang; Hu, Jingwen; He, Linyan; Wang, Qi

    2018-06-18

    In this study, metal-tolerant bacteria Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 were compared for their Cd and Pb immobilization in solution and impacts on biomass and Cd and Pb uptake in a radish in metal-contaminated soils under field conditions. Strains CL-1 and X30 significantly reduced water-soluble Cd and Pb concentrations (45-67%) and increased the pH in solution compared to the controls. These strains significantly increased the biomass (25-99%) and decreased edible tissue Cd and Pb uptake in the radish (37-81%) and DTPA-extractable Cd and Pb contents (18-44%) of the rhizosphere soil compared to the un-inoculated controls. Strain CL-1 had higher potential to reduce edible tissue Cd and Pb uptake in the radish and DTPA-extractable Cd content than strain X30. Also, these strains significantly increased Cd translocation factor and strain CL-1 also significantly increased Pb translocation factor of the radish. Furthermore, strain CL-1 significantly increased the ratio of small soil aggregates (< 0.25 mm and 0.25-0.50 mm) of the rhizosphere soil. The results showed that these strains reduced the edible tissue Cd and Pb uptake through decreasing Cd and Pb availability in the soil and increasing Cd or Pb translocation from the roots to the leaves of the radish. The results also suggested the bacteria-related differences in reduced heavy metal uptake in the radish and the mechanisms involved under field conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Initial In Vivo Quantification of Tc-99m Sestamibi Uptake as a Function of Tissue Type in Healthy Breasts Using Dedicated Breast SPECT-CT

    PubMed Central

    Mann, Steve D.; Perez, Kristy L.; McCracken, Emily K. E.; Shah, Jainil P.; Wong, Terence Z.; Tornai, Martin P.

    2012-01-01

    A pilot study is underway to quantify in vivo the uptake and distribution of Tc-99m Sestamibi in subjects without previous history of breast cancer using a dedicated SPECT-CT breast imaging system. Subjects undergoing diagnostic parathyroid imaging studies were consented and imaged as part of this IRB-approved breast imaging study. For each of the seven subjects, one randomly selected breast was imaged prone-pendant using the dedicated, compact breast SPECT-CT system underneath the shielded patient support. Iteratively reconstructed and attenuation and/or scatter corrected images were coregistered; CT images were segmented into glandular and fatty tissue by three different methods; the average concentration of Sestamibi was determined from the SPECT data using the CT-based segmentation and previously established quantification techniques. Very minor differences between the segmentation methods were observed, and the results indicate an average image-based in vivo Sestamibi concentration of 0.10 ± 0.16 μCi/mL with no preferential uptake by glandular or fatty tissues. PMID:22956950

  5. Potential use of carbon-11 labeled alpha-aminoisobutyric acid (AIB) as an in vivo tracer of amino acid uptake in differing metabolic states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conti, P.S.; Starnes, H.F.; Brennan, M.F.

    1986-05-01

    AIB has been used as a model amino acid for the evaluation of alanine-preferring amino acid transport. Hormonal factors and starvation alter the tissue distribution of amino acids, particularly in liver and muscle. With positron emission tomography and labeling of biochemical tracers with C-11, (t1/2=20.4 min), it is now possible to study amino acid kinetics in vivo using external imaging. In order to investigate the utility of C-11 AIB as an in vivo tracer of altered tissue metabolism, C-14 AIB was studied in groups of rats with either streptozotocin-induced diabetes, insulin-induced hypoglycemia or starvation. The data suggest an increased aminomore » acid uptake in liver in starvation, an increased uptake in muscle in response to insulin and associated hypoglycemia and decreased transport in muscle in starvation, as seen by other investigators. These results suggest that C-11 AIB may be useful as an in vivo monitor of metabolic changes in body tissues.« less

  6. Effective visualization of suppressed thyroid tissue by means of baseline 99mTc-methoxy isobutyl isonitrile in comparison with 99mTc-pertechnetate scintigraphy after TSH stimulation.

    PubMed

    Vattimo, A; Bertelli, P; Burroni, L

    1992-01-01

    Baseline 99mTc-MIBI thyroid scintigraphy was compared with 99mTc-pertechnetate scintigraphy after TSH stimulation in seven patients with suppressed thyroid tissue due to an autonomously functioning thyroid nodule (AFTN). In all patients the suppressed thyroid tissue was visualized by means of both baseline 99mTc-MIBI and post-TSH 99mTc-pertechnetate scintigraphy, and in some cases the former technique provided better visualization. In one patient presenting a "warm" nodule T3-suppression did not affect the nodular/extranodular uptake ratio of 99mTc-MIBI, whereas the 99mTc-pertechnetate uptake ratio increased significantly. This leads us to hypothesize that the thyroid uptake of 99mTc-MIBI is not related to TSH control, but rather to other mechanisms such as the blood flow. Since exogenous TSH is no longer available, 99mTc-MIBI scintigraphy can be successfully used in the place of repeated 99mTc-pertechnetate scintigraphy after TSH stimulation in the assessment of AFTN.

  7. 12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake.

    PubMed

    Stanford, Kristin I; Lynes, Matthew D; Takahashi, Hirokazu; Baer, Lisa A; Arts, Peter J; May, Francis J; Lehnig, Adam C; Middelbeek, Roeland J W; Richard, Jeffrey J; So, Kawai; Chen, Emily Y; Gao, Fei; Narain, Niven R; Distefano, Giovanna; Shettigar, Vikram K; Hirshman, Michael F; Ziolo, Mark T; Kiebish, Michael A; Tseng, Yu-Hua; Coen, Paul M; Goodyear, Laurie J

    2018-05-01

    Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate-intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Predictable "individual differences" in uptake and excretion of gases and lipid soluble vapours simulation study.

    PubMed Central

    Fiserova-Bergerova, V; Vlach, J; Cassady, J C

    1980-01-01

    A five-compartment pharmacokinetic model with two excretory pathways, exhalation and metabolism, based on first order kinetics is used to outline the effect of body build, pulmonary ventilation, and lipid content in blood on uptake, distribution, and clearance of low solubility gases and lipid soluble vapours during and after exposure. The model shows the extent that individual differences have on altering uptake and distribution, with consequent changes in blood concentration, rate of excretion, and toxicity, even when variations in these parameters are within physiological ranges. The model is also used to describe the concentration variation of inhaled substances in tissues of subjects exposed to concentrations with permitted excursions. During the same course of exposure, the tissue concentrations of low solubility gases fluctuate much more than tissue concentrations of lipid soluble vapours. The fluctuation is reduced by metabolism of inhaled substance. These conclusions are recommended for consideration whenever evaluating the effect of excursions above the threshold limit values used in the control of industrial exposures (by excursion factors). PMID:7370192

  9. Technetium-99m(Sn2+)pyrophosphate in ischemic and infarcted dog myocardium in early stages of acute coronary occlusion: histochemical and tissue-counting comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianco, J.A.; Kemper, A.J.; Taylor, A.

    1983-06-01

    We have investigated the pattern of accumulation of Tc-99m(Sn2+)pyrophosphate (Tc-99m PPi) in myocardial tissue of dogs during the early stages of acute occlusion of the left anterior descending coronary artery. Three groups were studied after: (a) 40 min occlusion followed by 6 hr reperfusion (n . 6); (b) 6 hr occlusion followed by one hour reperfusion (n . 5); and (c) 7 hr occlusion with no reperfusion (n . 4). Areas of myocardial infarction were defined with triphenyl-tetrazolium chloride (TTC) staining, and blood flow was determined with 9-mu radioactive microspheres. In Group C uptake in infarcted and peri-infarct areas wasmore » not enhanced, most likely owing to low flow. In Group B, with late reperfusion, Tc-99m PPi sequestration was increased in both infarcted and peri-infarcted tissues. In Group A, areas ischemic during occlusion but with normal flow and viability by TTC after 6 hr of reperfusion showed significant uptake of Tc-99m PPi (twice the uptake of nonischemic regions).« less

  10. Bioconcentration of endosulfan in different body tissues of estuarine organisms under sublethal exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajendran, N.; Venugopalan, V.K.

    1991-01-01

    The organochlorine pesticide endosulfan is applied in the agricultural fields as liquid in India. Investigations have revealed the occurrence and distribution of endosulfan in both biotic and abiotic components of Vellar estuary. The results from static bioassay studies revealed that fishes were more susceptible to the organochlorine pesticides than mollusks. Though the available information on the uptake of endosulfan by the estuarine organisms are limited to whole body tissues, no attempt has been made to find out the extent of uptake of pesticides by the different body tissues of the estuarine organisms. Hence the present study was planned to determinemore » the bioconcentration of endosulfan in different tissues of fishes Mugil cephalus, Mystus gulio, oyster Crassostrea madrasensis and clam Katelysia opima based on the measured concentration of endosulfan in the experimental medium of the continuous flow through system for a period of 10 d.« less

  11. The role of glucose, insulin and NEFA in regulating tissue triglyceride accumulation: Substrate cooperation in adipose tissue versus substrate competition in skeletal muscle.

    PubMed

    Guzzardi, M A; Hodson, L; Guiducci, L; La Rosa, F; Salvadori, P A; Burchielli, S; Iozzo, P

    2017-11-01

    Metabolic factors initiating adipose tissue expansion and ectopic triglyceride accumulation are not completely understood. We aimed to investigate the independent role of circulating glucose, NEFA and insulin on glucose and NEFA uptake, and lipogenesis in skeletal muscle and subcutaneous adipose tissue (SCAT). Twenty-two pigs were stratified according to four protocols: 1) and 2) low NEFA + high insulin ± high glucose (hyperinsulinaemia-hyperglycaemia or hyperinsulinaemia-euglycaemia), 3) high NEFA + low insulin (fasting), 4) low NEFA + low insulin (nicotinic acid). Positron emission tomography with [ 18 F]fluoro-2-deoxyglucose and [ 11 C]acetate, was combined with [ 14 C]acetate and [U- 13 C]palmitate enrichment techniques to assess glucose and lipid metabolism. Hyperinsulinaemia increased glucose extraction, whilst hyperglycaemia enhanced glucose uptake in skeletal muscle and SCAT. In SCAT, during hyperglycaemia, elevated glucose uptake was accompanied by greater [U- 13 C]palmitate-TG enrichment compared to the other groups, and by a 39% increase in de novo lipogenesis (DNL) compared to baseline, consistent with a 70% increment in plasma lipogenic index. Conversely, in skeletal muscle, [U- 13 C]palmitate-TG enrichment was higher after prolonged fasting. Our data show the necessary role of hyperglycaemia-hyperinsulinaemia vs euglycaemia-hyperinsulinaemia in promoting expansion of TG stores in SCAT, by the consensual elevation in plasma NEFA and glucose uptake and DNL. In contrast, skeletal muscle NEFA uptake for TG synthesis is primarily driven by circulating NEFA levels. These results suggest that a) prolonged fasting or dietary regimens enhancing lipolysis might promote muscle steatosis, and b) the control of glucose levels, in association with adequate energy balance, might contribute to weight loss. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  12. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.

    PubMed

    Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois

    2013-01-01

    The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic.

  13. Unexpected visitor on FDG PET/CT--brown adipose tissue (BAT) in mesentery in a case of retroperitoneal extra-adrenal pheochromocytoma: is the BAT activation secondary to catecholamine-secreting pheochromocytoma?

    PubMed

    Joshi, Prathamesh Vijay; Lele, Vikram Ramchandra

    2012-05-01

    Fused positron emission tomography-computed tomography (PET/CT) technology has enabled the determination that nonmalignant fluorodeoxyglucose (FDG) uptake is observed in brown adipose tissue (BAT). FDG uptake in BAT is a known potential source of false-positive interpretations for PET. The typical locations of BAT include neck, supraclavicular area, mediastinum, and paravertebral intercostal spaces. Examples of atypical locations for BAT include posterior neck, left paratracheal area, axillae, perirenal area, and retrocrural area. We report PET/CT findings in a young male patient with malignant retroperitoneal extra-adrenal pheochromocytoma, who demonstrated FDG uptake in BAT at multiple locations including mesenteric BAT. We also propose catecholamine-secreting pheochromocytoma as a possible cause of BAT activation in our case.

  14. A novel approach for targeted delivery to motoneurons using cholera toxin-B modified protocells

    PubMed Central

    Gonzalez Porras, Maria A.; Durfee, Paul N.; Gregory, Ashley M.; Sieck, Gary C.; Brinker, C. Jeffrey; Mantilla, Carlos B.

    2017-01-01

    Background Trophic interactions between muscle fibers and motoneurons at the neuromuscular junction (NMJ) play a critical role in determining motor function throughout development, ageing, injury, or disease. Treatment of neuromuscular disorders is hindered by the inability to selectively target motoneurons with pharmacological and genetic interventions. New method We describe a novel delivery system to motoneurons using mesoporous silica nanoparticles encapsulated within a lipid bilayer (protocells) and modified with the atoxic subunit B of the cholera toxin (CTB) that binds to gangliosides present on neuronal membranes. Results CTB modified protocells showed significantly greater motoneuron uptake compared to unmodified protocells after 24 h of treatment (60% vs. 15%, respectively). CTB-protocells showed specific uptake by motoneurons compared to muscle cells and demonstrated cargo release of a surrogate drug. Protocells showed a lack of cytotoxicity and unimpaired cellular proliferation. In isolated diaphragm muscle-phrenic nerve preparations, preferential axon terminal uptake of CTB-modified protocells was observed compared to uptake in surrounding muscle tissue. A larger proportion of axon terminals displayed uptake following treatment with CTB-protocells compared to unmodified protocells (40% vs. 6%, respectively). Comparison with existing method(s) Current motoneuron targeting strategies lack the functionality to load and deliver multiple cargos. CTB-protocells capitalizes on the advantages of liposomes and mesoporous silica nanoparticles allowing a large loading capacity and cargo release. The ability of CTB-protocells to target motoneurons at the NMJ confers a great advantage over existing methods. Conclusions CTB-protocells constitute a viable targeted motoneuron delivery system for drugs and genes facilitating various therapies for neuromuscular diseases. PMID:27641118

  15. A novel approach for targeted delivery to motoneurons using cholera toxin-B modified protocells.

    PubMed

    Gonzalez Porras, Maria A; Durfee, Paul N; Gregory, Ashley M; Sieck, Gary C; Brinker, C Jeffrey; Mantilla, Carlos B

    2016-11-01

    Trophic interactions between muscle fibers and motoneurons at the neuromuscular junction (NMJ) play a critical role in determining motor function throughout development, ageing, injury, or disease. Treatment of neuromuscular disorders is hindered by the inability to selectively target motoneurons with pharmacological and genetic interventions. We describe a novel delivery system to motoneurons using mesoporous silica nanoparticles encapsulated within a lipid bilayer (protocells) and modified with the atoxic subunit B of the cholera toxin (CTB) that binds to gangliosides present on neuronal membranes. CTB modified protocells showed significantly greater motoneuron uptake compared to unmodified protocells after 24h of treatment (60% vs. 15%, respectively). CTB-protocells showed specific uptake by motoneurons compared to muscle cells and demonstrated cargo release of a surrogate drug. Protocells showed a lack of cytotoxicity and unimpaired cellular proliferation. In isolated diaphragm muscle-phrenic nerve preparations, preferential axon terminal uptake of CTB-modified protocells was observed compared to uptake in surrounding muscle tissue. A larger proportion of axon terminals displayed uptake following treatment with CTB-protocells compared to unmodified protocells (40% vs. 6%, respectively). Current motoneuron targeting strategies lack the functionality to load and deliver multiple cargos. CTB-protocells capitalizes on the advantages of liposomes and mesoporous silica nanoparticles allowing a large loading capacity and cargo release. The ability of CTB-protocells to target motoneurons at the NMJ confers a great advantage over existing methods. CTB-protocells constitute a viable targeted motoneuron delivery system for drugs and genes facilitating various therapies for neuromuscular diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Combined Effect of Cameo2 and CBP on the Cellular Uptake of Lutein in the Silkworm, Bombyx mori

    PubMed Central

    Dong, Xiao-Long; Chai, Chun-Li; Pan, Cai-Xia; Tang, Hui; Chen, Yan-Hong; Dai, Fang-Yin; Pan, Min-Hui; Lu, Cheng

    2014-01-01

    Formation of yellow-red color cocoons in the silkworm, Bombyx mori, occurs as the result of the selective delivery of carotenoids from the midgut to the silk gland via the hemolymph. This process of pigment transport is thought to be mediated by specific cellular carotenoids carrier proteins. Previous studies indicated that two proteins, Cameo2 and CBP, are associated with the selective transport of lutein from the midgut into the silk gland in Bombyx mori. However, the exact roles of Cameo2 and CBP during the uptake and transport of carotenoids are still unknown. In this study, we investigated the respective contributions of these two proteins to lutein and β-carotene transport in Bombyx mori as well as commercial cell-line. We found that tissues, expressed both Cameo2 and CBP, accumulate lutein. Cells, co-expressed Cameo2 and CBP, absorb 2 fold more lutein (P<0.01) than any other transfected cells, and the rate of cellular uptake of lutein was concentration-dependent and reached saturation. From immunofluorescence staining, confocal microscopy observation and western blot analysis, Cameo2 was localized at the membrane and CBP was expressed in the cytosol. What’s more, bimolecular fluorescence complementation analysis showed that these two proteins directly interacted at cellular level. Therefore, Cameo2 and CBP are necessarily expressed in midguts and silk glands for lutein uptake in Bombyx mori. Cameo2 and CBP, as the membrane protein and the cytosol protein, respectively, have the combined effect to facilitate the cellular uptake of lutein. PMID:24475153

  17. PSMA-11-Derived Dual-Labeled PSMA Inhibitors for Preoperative PET Imaging and Precise Fluorescence-Guided Surgery of Prostate Cancer.

    PubMed

    Baranski, Ann-Christin; Schäfer, Martin; Bauder-Wüst, Ulrike; Roscher, Mareike; Schmidt, Jana; Stenau, Esther; Simpfendörfer, Tobias; Teber, Dogu; Maier-Hein, Lena; Hadaschik, Boris; Haberkorn, Uwe; Eder, Matthias; Kopka, Klaus

    2018-04-01

    Resection of tumors using targeted dual-modality probes combining preoperative imaging with intraoperative guidance is of high clinical relevance and might considerably affect the outcome of prostate cancer therapy. This work aimed at the development of dual-labeled prostate-specific membrane antigen (PSMA) inhibitors derived from the established N,N' -bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine- N,N' -diacetic acid (HBED-CC)-based PET tracer 68 Ga-Glu-urea-Lys(Ahx)-HBED-CC ( 68 Ga-PSMA-11) to allow accurate intraoperative detection of PSMA-positive tumors. Methods: A series of novel PSMA-targeting fluorescent dye conjugates of Glu-urea-Lys-HBED-CC was synthesized, and their biologic properties were determined in cell-based assays and confocal microscopy. As a preclinical proof of concept, specific tumor uptake, pharmacokinetics, and feasibility for intraoperative fluorescence guidance were investigated in tumor-bearing mice and healthy pigs. Results: The designed dual-labeled PSMA inhibitors exhibited high binding affinity and PSMA-specific effective internalization. Conjugation of fluorescein isothiocyanate (10.86 ± 0.94 percentage injected dose [%ID]/g), IRDye800CW (13.66 ± 3.73 %ID/g), and DyLight800 (15.62 ± 5.52 %ID/g) resulted in a significantly increased specific tumor uptake, whereas 68 Ga-Glu-urea-Lys-HBED-CC-AlexaFluor488 (9.12 ± 5.47 %ID/g) revealed a tumor uptake similar to that of 68 Ga-PSMA-11 (4.89 ± 1.34 %ID/g). The first proof-of-concept studies with the clinically relevant candidate 68 Ga-Glu-urea-Lys-HBED-CC-IRDye800CW reinforced a fast, specific enrichment in PSMA-positive tumors, with rapid background clearance. With regard to intraoperative navigation, a specific fluorescence signal was detected in PSMA-expressing tissue. Conclusion: This study demonstrated that PSMA-11-derived dual-labeled dye conjugates are feasible for providing PSMA-specific pre-, intra-, and postoperative detection of prostate cancer lesions and have high potential for future clinical translation. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  18. Comparison between Arabidopsis and Rice for Main Pathways of K(+) and Na(+) Uptake by Roots.

    PubMed

    Nieves-Cordones, Manuel; Martínez, Vicente; Benito, Begoña; Rubio, Francisco

    2016-01-01

    K(+) is an essential macronutrient for plants. It is acquired by specific uptake systems located in roots. Although the concentrations of K(+) in the soil solution are widely variable, K(+) nutrition is secured by uptake systems that exhibit different affinities for K(+). Two main systems have been described for root K(+) uptake in several species: the high-affinity HAK5-like transporter and the inward-rectifier AKT1-like channel. Other unidentified systems may be also involved in root K(+) uptake, although they only seem to operate when K(+) is not limiting. The use of knock-out lines has allowed demonstrating their role in root K(+) uptake in Arabidopsis and rice. Plant adaptation to the different K(+) supplies relies on the finely tuned regulation of these systems. Low K(+)-induced transcriptional up-regulation of the genes encoding HAK5-like transporters occurs through a signal cascade that includes changes in the membrane potential of root cells and increases in ethylene and reactive oxygen species concentrations. Activation of AKT1 channels occurs through phosphorylation by the CIPK23/CBL1 complex. Recently, activation of the Arabidopsis HAK5 by the same complex has been reported, pointing to CIPK23/CBL as a central regulator of the plant's adaptation to low K(+). Na(+) is not an essential plant nutrient but it may be beneficial for some plants. At low concentrations, Na(+) improves growth, especially under K(+) deficiency. Thus, high-affinity Na(+) uptake systems have been described that belong to the HKT and HAK families of transporters. At high concentrations, typical of saline environments, Na(+) accumulates in plant tissues at high concentrations, producing alterations that include toxicity, water deficit and K(+) deficiency. Data concerning pathways for Na(+) uptake into roots under saline conditions are still scarce, although several possibilities have been proposed. The apoplast is a significant pathway for Na(+) uptake in rice grown under salinity conditions, but in other plant species different mechanisms involving non-selective cation channels or transporters are under discussion.

  19. Comparison between Arabidopsis and Rice for Main Pathways of K+ and Na+ Uptake by Roots

    PubMed Central

    Nieves-Cordones, Manuel; Martínez, Vicente; Benito, Begoña; Rubio, Francisco

    2016-01-01

    K+ is an essential macronutrient for plants. It is acquired by specific uptake systems located in roots. Although the concentrations of K+ in the soil solution are widely variable, K+ nutrition is secured by uptake systems that exhibit different affinities for K+. Two main systems have been described for root K+ uptake in several species: the high-affinity HAK5-like transporter and the inward-rectifier AKT1-like channel. Other unidentified systems may be also involved in root K+ uptake, although they only seem to operate when K+ is not limiting. The use of knock-out lines has allowed demonstrating their role in root K+ uptake in Arabidopsis and rice. Plant adaptation to the different K+ supplies relies on the finely tuned regulation of these systems. Low K+-induced transcriptional up-regulation of the genes encoding HAK5-like transporters occurs through a signal cascade that includes changes in the membrane potential of root cells and increases in ethylene and reactive oxygen species concentrations. Activation of AKT1 channels occurs through phosphorylation by the CIPK23/CBL1 complex. Recently, activation of the Arabidopsis HAK5 by the same complex has been reported, pointing to CIPK23/CBL as a central regulator of the plant’s adaptation to low K+. Na+ is not an essential plant nutrient but it may be beneficial for some plants. At low concentrations, Na+ improves growth, especially under K+ deficiency. Thus, high-affinity Na+ uptake systems have been described that belong to the HKT and HAK families of transporters. At high concentrations, typical of saline environments, Na+ accumulates in plant tissues at high concentrations, producing alterations that include toxicity, water deficit and K+ deficiency. Data concerning pathways for Na+ uptake into roots under saline conditions are still scarce, although several possibilities have been proposed. The apoplast is a significant pathway for Na+ uptake in rice grown under salinity conditions, but in other plant species different mechanisms involving non-selective cation channels or transporters are under discussion. PMID:27458473

  20. Assessment of Traumatic Brain Injury by Increased 64Cu Uptake on 64CuCl2 PET/CT.

    PubMed

    Peng, Fangyu; Muzik, Otto; Gatson, Joshua; Kernie, Steven G; Diaz-Arrastia, Ramon

    2015-08-01

    Copper is a nutritional trace element required for cell proliferation and wound repair. To explore increased copper uptake as a biomarker for noninvasive assessment of traumatic brain injury (TBI), experimental TBI in C57BL/6 mice was induced by controlled cortical impact, and (64)Cu uptake in the injured cortex was assessed with (64)CuCl2 PET/CT. At 24 h after intravenous injection of the tracer, uptake was significantly higher in the injured cortex of TBI mice (1.15 ± 0.53 percentage injected dose per gram of tissue [%ID/g]) than in the uninjured cortex of mice without TBI (0.53 ± 0.07 %ID/g, P = 0.027) or the cortex of mice that received an intracortical injection of zymosan A (0.62 ± 0.22 %ID/g, P = 0.025). Furthermore, uptake in the traumatized cortex of untreated TBI mice (1.15 ± 0.53 %ID/g) did not significantly differ from that in minocycline-treated TBI mice (0.93 ± 0.30 %ID/g, P = 0.33). Overall, the data suggest that increased (64)Cu uptake in traumatized brain tissues holds potential as a new biomarker for noninvasive assessment of TBI with (64)CuCl2 PET/CT. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  1. Liver and Muscle Contribute Differently to the Plasma Acylcarnitine Pool During Fasting and Exercise in Humans.

    PubMed

    Xu, G; Hansen, J S; Zhao, X J; Chen, S; Hoene, M; Wang, X L; Clemmesen, J O; Secher, N H; Häring, H U; Pedersen, B K; Lehmann, R; Weigert, Cora; Plomgaard, Peter

    2016-12-01

    Plasma acylcarnitine levels are elevated by physiological conditions such as fasting and exercise but also in states of insulin resistance and obesity. To elucidate the contribution of liver and skeletal muscle to plasma acylcarnitines in the fasting state and during exercise in humans. In 2 independent studies, young healthy males were fasted overnight and performed an acute bout of exercise to investigate either acylcarnitines in skeletal muscle biopsies and arterial-to-venous plasma differences over the exercising and resting leg (n = 9) or the flux over the hepato-splanchnic bed (n = 10). In the fasting state, a pronounced release of C2- and C3-carnitines from the hepato-splanchnic bed and an uptake of free carnitine by the legs were detected. Exercise further increased the release of C3-carnitine from the hepato-splanchnic bed and the uptake of free carnitine in the exercising leg. In plasma and in the exercising muscle, exercise induced an increase of most acylcarnitines followed by a rapid decline to preexercise values during recovery. In contrast, free carnitine was decreased in the exercising muscle and quickly restored thereafter. C8-, C10-, C10:1-, C12-, and C12:1-carnitines were released from the exercising leg and simultaneously; C6, C8, C10, C10:1, C14, and C16:1 were taken up by the hepato-splanchnic. These data provide novel insight to the organo-specific release/uptake of acylcarnitines. The liver is a major contributor to systemic short chain acylcarnitines, whereas the muscle tissue releases mostly medium chain acylcarnitines during exercise, indicating that other tissues are contributing to the systemic increase in long chain acylcarnitines.

  2. The feasibility of imaging myocardial ischemic/reperfusion injury using (99m)Tc-labeled duramycin in a porcine model.

    PubMed

    Wang, Lei; Wang, Feng; Fang, Wei; Johnson, Steven E; Audi, Said; Zimmer, Michael; Holly, Thomas A; Lee, Daniel C; Zhu, Bao; Zhu, Haibo; Zhao, Ming

    2015-02-01

    When pathologically externalized, phosphatidylethanolamine (PE) is a potential surrogate marker for detecting tissue injuries. (99m)Tc-labeled duramycin is a peptide-based imaging agent that binds PE with high affinity and specificity. The goal of the current study was to investigate the clearance kinetics of (99m)Tc-labeled duramycin in a large animal model (normal pigs) and to assess its uptake in the heart using a pig model of myocardial ischemia-reperfusion injury. The clearance and distribution of intravenously injected (99m)Tc-duramycin were characterized in sham-operated animals (n=5). In a closed chest model of myocardial ischemia, coronary occlusion was induced by balloon angioplasty (n=9). (99m)Tc-duramycin (10-15mCi) was injected intravenously at 1hour after reperfusion. SPECT/CT was acquired at 1 and 3hours after injection. Cardiac tissues were analyzed for changes associated with acute cellular injuries. Autoradiography and gamma counting were used to determine radioactivity uptake. For the remaining animals, (99m)Tc-tetrafosamin scan was performed on the second day to identify the infarct site. Intravenously injected (99m)Tc-duramycin cleared from circulation predominantly via the renal/urinary tract with an α-phase half-life of 3.6±0.3minutes and β-phase half-life of 179.9±64.7minutes. In control animals, the ratios between normal heart and lung were 1.76±0.21, 1.66±0.22, 1.50±0.20 and 1.75±0.31 at 0.5, 1, 2 and 3hours post-injection, respectively. The ratios between normal heart and liver were 0.88±0.13, 0.80±0.13, 0.82±0.19 and 0.88±0.14. In vivo visualization of focal radioactivity uptake in the ischemic heart was attainable as early as 30min post-injection. The in vivo ischemic-to-normal uptake ratios were 3.57±0.74 and 3.69±0.91 at 1 and 3hours post-injection, respectively. Ischemic-to-lung ratios were 4.89±0.85 and 4.93±0.57; and ischemic-to-liver ratios were 2.05±0.30 to 3.23±0.78. The size of (99m)Tc-duramycin positive myocardium was qualitatively larger than the infarct size delineated by the perfusion defect in (99m)Tc-tetrafosmin uptake. This was consistent with findings from tissue analysis and autoradiography. (99m)Tc-duramycin was demonstrated, in a large animal model, to have suitable clearance and biodistribution profiles for imaging. The agent has an avid target uptake and a fast background clearance. It is appropriate for imaging myocardial injury induced by ischemia/reperfusion. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The feasibility of imaging myocardial ischemic/reperfusion injury using 99mTc-labeled duramycin in a porcine model

    PubMed Central

    Wang, Lei; Wang, Feng; Fang, Wei; Johnson, Steven E.; Audi, Said; Zimmer, Michael; Holly, Thomas A; Lee, Daniel; Zhu, Bao; Zhu, Haibo; Zhao, Ming

    2015-01-01

    When pathologically externalized, phosphatidylethanolamine (PE) is a potential surrogate marker for detecting tissue injuries. 99mTc-labeled duramycin is a peptide-based imaging agent that binds PE with high affinity and specificity. The goal of the current study was to investigate the clearance kinetics of 99mTc-labeled duramycin in a large animal model (normal pigs) and to assess its uptake in the heart using a pig model of myocardial ischemia-reperfusion injury. Methods The clearance and distribution of intravenously injected 99mTc-duramycin were characterized in sham-operated animals (n = 5). In a closed chest model of myocardial ischemia, coronary occlusion was induced by balloon angioplasty (n = 9). 99mTc-duramycin (10-15 mCi) was injected intravenously at 1 hour after reperfusion. SPECT/CT was acquired at 1 and 3 hours after injection. Cardiac tissues were analyzed for changes associated with acute cellular injuries. Autoradiography and gamma counting was used to determine radioactivity uptake. For the remaining animals, 99mTc-tetrafosamin scan was performed on the second day to identify the infarct site. Results Intravenously injected 99mTc-duramycin cleared from circulation predominantly via the renal/urinary tract with an α-phase half-life of 3.6 ± 0.3 minutes and β-phase half-life of 179.9 ± 64.7 minutes. In control animals, the ratios between normal heart and lung were 1.76 ± 0.21, 1.66 ± 0.22, 1.50 ± 0.20 and 1.75 ± 0.31 at 0.5, 1, 2 and 3 hours post injection, respectively. The ratios between normal heart and liver were 0.88 ± 0.13, 0.80 ± 0.13, 0.82 ± 0.19 and 0.88 ± 0.14. In vivo visualization of focal radioactivity uptake in the ischemic heart was attainable as early as 30 min post injection. The in vivo ischemic-to-normal uptake ratios were 3.57 ± 0.74 and 3.69 ± 0.91 at 1 and 3 hours post injection, respectively. Ischemic-to-lung ratios were 4.89 ± 0.85 and 4.93 ± 0.57; and ischemic-to-liver ratios were 2.05 ± 0.30 to 3.23 ± 0.78. The size of 99mTc-duramycin positive myocardium was qualitatively larger than the infarct size delineated by the perfusion defect in 99mTc-tetrafosmin uptake. This was consistent with findings from tissue analysis and autoradiography. Conclusion 99mTc-duramycin was demonstrated, in a large animal model, to have suitable clearance and biodistribution profiles for imaging. The agent has an avid target uptake and a fast background clearance. It is appropriate for imaging myocardial injury induced by ischemia/reperfusion. PMID:25451214

  4. Fluorescein-methotrexate transport in dogfish shark (Squalus acanthias) choroid plexus.

    PubMed

    Baehr, Carsten H; Fricker, Gert; Miller, David S

    2006-08-01

    The vertebrate choroid plexus removes potentially toxic metabolites and xenobiotics from cerebrospinal fluid (CSF) to blood for subsequent excretion in urine and bile. We used confocal microscopy and quantitative image analysis to characterize the mechanisms driving transport of the large organic anion, fluorescein-methotrexate (FL-MTX), from bath (CSF-side) to blood vessels in intact lateral choroid plexus from dogfish shark, Squalus acanthias, an evolutionarily ancient vertebrate. With 2 microM FL-MTX in the bath, steady-state fluorescence in the subepithelium/vascular space exceeded bath levels by 5- to 10-fold, and fluorescence in the epithelial cells was slightly below bath levels. FL-MTX accumulation in both tissue compartments was reduced by NaCN, Na removal, and ouabain, but not by a 10-fold increase in medium K. Certain organic anions, e.g., probenecid, MTX, and taurocholate, reduced FL-MTX accumulation in both tissue compartments; p-aminohippurate and estrone sulfate reduced subepithelial/vascular accumulation, but not cellular accumulation. At low concentrations, digoxin, leukotriene C4, and MK-571 reduced fluorescence in the subepithelium/vascular space while increasing cellular fluorescence, indicating preferential inhibition of efflux over uptake. In the presence of 10 microM digoxin (reduced efflux, enhanced cellular accumulation), cellular FL-MTX accumulation was specific, concentrative, and Na dependent. Thus transepithelial FL-MTX transport involved the following two carrier-mediated steps: electroneutral, Na-dependent uptake at the apical membrane and electroneutral efflux at the basolateral membrane. Finally, FL-MTX accumulation in both tissue compartments was reduced by phorbol ester and increased by forskolin, indicating antagonistic modulation by protein kinase C and protein kinase A.

  5. Selective Imaging of Vascular Endothelial Growth Factor Receptor-1 and Receptor-2 in Atherosclerotic Lesions in Diabetic and Non-diabetic ApoE-/- Mice.

    PubMed

    Tekabe, Yared; Johnson, Lynne L; Rodriquez, Krissy; Li, Qing; Backer, Marina; Backer, Joseph M

    2018-02-01

    Plaque vulnerability is associated with inflammation and angiogenesis, processes that rely on vascular endothelial growth factor (VEGF) signaling via two receptors, VEGFR-1 and VEGFR-2. We have recently reported that enhanced uptake of scVEGF-PEG-DOTA/Tc-99m (scV/Tc) single photon emission computed tomography (SPECT) tracer that targets both VEGFR-1 and VEGFR-2, identifies accelerated atherosclerosis in diabetic relative to non-diabetic ApoE -/- mice. Since VEGFR-1 and VEGFR-2 may play different roles in atherosclerotic plaques, we reasoned that selective imaging of each receptor can provide more detailed information on plaque biology. Recently described VEGFR-1 and VEGFR-2 selective mutants of scVEGF, named scVR1 and scVR2, were site-specifically derivatized with Tc-99m chelator DOTA via 3.4 kDa PEG linker, and their selectivity to the cognate receptors was confirmed in vitro. scVR1 and scVR2 conjugates were radiolabeled with Tc-99m to specific activity of 110 ± 11 MBq/nmol, yielding tracers named scVR1/Tc and scVR2/Tc. 34-40 week old diabetic and age-matched non-diabetic ApoE -/- mice were injected with tracers, 2-3 h later injected with x-ray computed tomography (CT) contrast agent and underwent hybrid SPECT/CT imaging. Tracer uptake, localized to proximal aorta and brachiocephalic vessels, was quantified as %ID from. Tracer uptake was also quantified as %ID/g from gamma counting of harvested plaques. Harvested atherosclerotic arterial tissue was used for immunofluorescent analyses of VEGFR-1 and VEGFR-2 and various lineage-specific markers. Focal, receptor-mediated uptake in proximal aorta and brachiocephalic vessels was detected for both scVR1/Tc and scVR2/Tc tracers. Uptake of scVR1/Tc and scVR2/Tc was efficiently inhibited only by "cold" proteins of the same receptor selectivity. Tracer uptake in this area, expressed as %ID, was higher in diabetic vs. non- diabetic mice for scVR1/Tc (p = 0.01) but not for scVR2/Tc. Immunofluorescent analysis revealed enhanced VEGFR-1 prevalence in and around plaque area in diabetic mice. Selective VEGFR-1 and VEGFR-2 imaging of atherosclerotic lesions may be useful to explore plaque biology and identify vulnerability.

  6. Evaluation of a PSMA-targeted BNF nanoparticle construct

    NASA Astrophysics Data System (ADS)

    Behnam Azad, Babak; Banerjee, Sangeeta R.; Pullambhatla, Mrudula; Lacerda, Silvia; Foss, Catherine A.; Wang, Yuchuan; Ivkov, Robert; Pomper, Martin G.

    2015-02-01

    Early detection enables improved prognosis for prostate cancer (PCa). A promising target for imaging and therapy of PCa is the prostate-specific membrane antigen (PSMA), which exhibits both expression within the epithelium of PCa cells, and becomes internalized upon ligand binding. Here we report the synthesis of a PSMA-targeted bionized nanoferrite (BNF) nanoparticle and its biological evaluation in an experimental model of PCa. The BNF nanoparticle formulation exhibits properties conducive to targeted imaging such as stealth, prolonged circulation time and enhanced clearance from non-target sites. Optical imaging of the targeted BNF in vivo indicates preferential accumulation in PSMA+ tumors 4 h post-injection, suggesting target specificity. On the other hand, non-targeted nanoparticles exhibit lower uptake with similar accumulation in both PSMA+ and PSMA- tumors indicating tumor access without preferential accumulation. Imaging with single photon emission computed tomography (SPECT) and biodistribution studies of a modified construct indicate highest tumor accumulation at 48 h post-injection [4.3 +/- 0.4 percentage injected dose per gram of tissue (%ID g-1)], with tumor/blood and tumor/muscle ratios of 7.5 +/- 2.4 and 11.6 +/- 1.2 %ID g-1, respectively. Ex vivo fluorescence microscopy, Prussian blue staining, immunohistochemistry and biodistribution studies confirm enhanced nanoparticle uptake in PSMA+ tumors compared to those not expressing PSMA. The BNF nano-formulation described is promising for PSMA-targeted imaging applications in vivo.Early detection enables improved prognosis for prostate cancer (PCa). A promising target for imaging and therapy of PCa is the prostate-specific membrane antigen (PSMA), which exhibits both expression within the epithelium of PCa cells, and becomes internalized upon ligand binding. Here we report the synthesis of a PSMA-targeted bionized nanoferrite (BNF) nanoparticle and its biological evaluation in an experimental model of PCa. The BNF nanoparticle formulation exhibits properties conducive to targeted imaging such as stealth, prolonged circulation time and enhanced clearance from non-target sites. Optical imaging of the targeted BNF in vivo indicates preferential accumulation in PSMA+ tumors 4 h post-injection, suggesting target specificity. On the other hand, non-targeted nanoparticles exhibit lower uptake with similar accumulation in both PSMA+ and PSMA- tumors indicating tumor access without preferential accumulation. Imaging with single photon emission computed tomography (SPECT) and biodistribution studies of a modified construct indicate highest tumor accumulation at 48 h post-injection [4.3 +/- 0.4 percentage injected dose per gram of tissue (%ID g-1)], with tumor/blood and tumor/muscle ratios of 7.5 +/- 2.4 and 11.6 +/- 1.2 %ID g-1, respectively. Ex vivo fluorescence microscopy, Prussian blue staining, immunohistochemistry and biodistribution studies confirm enhanced nanoparticle uptake in PSMA+ tumors compared to those not expressing PSMA. The BNF nano-formulation described is promising for PSMA-targeted imaging applications in vivo. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06069e

  7. The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake

    PubMed Central

    Angleys, Hugo; Jespersen, Sune N.; Østergaard, Leif

    2016-01-01

    Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and in some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor non-oxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%. PMID:27790110

  8. Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome.

    PubMed

    Cressoni, Massimo; Chiumello, Davide; Chiurazzi, Chiara; Brioni, Matteo; Algieri, Ilaria; Gotti, Miriam; Nikolla, Klodiana; Massari, Dario; Cammaroto, Antonio; Colombo, Andrea; Cadringher, Paolo; Carlesso, Eleonora; Benti, Riccardo; Casati, Rosangela; Zito, Felicia; Gattinoni, Luciano

    2016-01-01

    The aim of the study was to determine the size and location of homogeneous inflamed/noninflamed and inhomogeneous inflamed/noninflamed lung compartments and their association with acute respiratory distress syndrome (ARDS) severity.In total, 20 ARDS patients underwent 5 and 45 cmH2O computed tomography (CT) scans to measure lung recruitability. [(18)F]2-fluoro-2-deoxy-d-glucose ([(18)F]FDG) uptake and lung inhomogeneities were quantified with a positron emission tomography-CT scan at 10 cmH2O. We defined four compartments with normal/abnormal [(18)F]FDG uptake and lung homogeneity.The homogeneous compartment with normal [(18)F]FDG uptake was primarily composed of well-inflated tissue (80±16%), double-sized in nondependent lung (32±27% versus 16±17%, p<0.0001) and decreased in size from mild, moderate to severe ARDS (33±14%, 26±20% and 5±9% of the total lung volume, respectively, p=0.05). The homogeneous compartment with high [(18)F]FDG uptake was similarly distributed between the dependent and nondependent lung. The inhomogeneous compartment with normal [(18)F]FDG uptake represented 4% of the lung volume. The inhomogeneous compartment with high [(18)F]FDG uptake was preferentially located in the dependent lung (21±10% versus 12±10%, p<0.0001), mostly at the open/closed interfaces and related to recruitability (r(2)=0.53, p<0.001).The homogeneous lung compartment with normal inflation and [(18)F]FDG uptake decreases with ARDS severity, while the inhomogeneous poorly/not inflated compartment increases. Most of the lung inhomogeneities are inflamed. A minor fraction of healthy tissue remains in severe ARDS. Copyright ©ERS 2016.

  9. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis.

    PubMed

    Hsieh, En-Jung; Waters, Brian M

    2016-10-01

    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Seasonal trends in growth and biomass accumulation of selected nutrients and metals in six species of emergent aquatic macrophytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrends, L.L.; Bailey, E.; Bulls, M.J.

    1996-05-01

    Growth and biomass accumulation of selected nutrients and trace metals were monitored for six species of aquatic macrophytes during June, August and November, 1993. Plant species were cultivated in two polyculture treatments, each replicated three times. Polyculture I consisted of Scirpus acutus (hardstem bullrush), Phragmites communes (common reed), and Phalaris arundinacea (canary grass). Polyculture H consisted of Typha spp. (cattail), Scirpus atrovirens (green bullrush), and Scirpus cyperinus (wool grass). Each of the six cells (6 x 9 x 0.6 m), was operated as a gravel-substrate, subsurface-flow wetlands in a continuous recirculating mode. At six week intervals, macro, micro and tracemore » elements were dissolved and added to the sump of the recirculating system. On each of three sampling dates, replicate shoot and root samples were collected, segregated by species and tissue type (roots, rhizomes, stems and leaves), and prepared for gravimetric biomass estimates and chemical analysis. Tissue specific concentrations of N, P, K, Ca, Mg, Fe, Mn, Zn and Cu, were determined on each date for each species and tissue type. Results will be discussed with respect to species specific growth rates, biomass accumulation, and seasonal uptake and translocation of plant nutrients.« less

  11. Nerves and Tissue Repair.

    DTIC Science & Technology

    1994-07-01

    axolotl limbs are transected the concentration of transferrin in the distal limb tissue declines rapidly and limb regeneration stops. These results...transferrin binding and expression of the transferrin gene in cells of axolotl peripheral nerve indicate that both uptake and synthesis of this factor occur

  12. Uptake of lactosylated low-density lipoprotein by galactose-specific receptors in rat liver.

    PubMed

    Bijsterbosch, M K; Van Berkel, T J

    1990-08-15

    The liver contains two types of galactose receptors, specific for Kupffer and parenchymal cells respectively. These receptors are only expressed in the liver, and therefore are attractive targets for the specific delivery of drugs. We provided low-density lipoprotein (LDL), a particle with a diameter of 23 nm in which a variety of drugs can be incorporated, with terminal galactose residues by lactosylation. Radioiodinated LDL, lactosylated to various extents (60-400 mol of lactose/ mol of LDL), was injected into rats. The plasma clearance and hepatic uptake of radioactivity were correlated with the extent of lactosylation. Highly lactosylated LDL (greater than 300 lactose/LDL) is completely cleared from the blood by liver within 10 min. Pre-injection with N-acetylgalactosamine blocks liver uptake, which indicates that the hepatic recognition sites are galactose-specific. The hepatic uptake occurs mainly by parenchymal and Kupffer cells. At a low degree of lactosylation, approx. 60 lactose/LDL, the specific uptake (ng/mg of cell protein) is 28 times higher in Kupffer cells than in parenchymal cells. However, because of their much larger mass, parenchymal cells are the main site of uptake. At high degrees of lactosylation (greater than 300 lactose/LDL), the specific uptake in Kupffer cells is 70-95 times that in parenchymal cells. Under these conditions, Kupffer cells are, despite their much smaller mass, the main site of uptake. Thus not only the size but also the surface density of galactose on lactosylated LDL is important for the balance of uptake between Kupffer and parenchymal cells. This knowledge should allow us to design particulate galactose-bearing carriers for the rapid transport of various drugs to either parenchymal cells or Kupffer cells.

  13. Americium-241 uptake by Bahiagrass as influenced by soil type, lime, and organic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, G.D.; Adriano, D.C.

    1979-07-01

    Availability of /sup 241/Am to bahiagrass (Paspalum notatum), a major forage crop in the southeastern US, was studied under greenhouse conditions using two soil types, two rates of lime, and four rates of organic matter. The plants were grown in pots until three clippings were obtained. Americium-241 concentrations in plant tissues from the unlimed Dothan (24% clay) soil were, on the average, approximately twice as high as those from unlimed Troup (10% clay) soil. Lime significantly reduced /sup 241/Am uptake from both soils. The americium concentration ratios (americium concentration in dry plant tissue/average americium concentration in dry soil) for limedmore » treatments were, in general, one order of magnitude lower than those for unlimed treatments. Organic matter, added to the soils as bermuda grass hay, somewhat reduced /sup 241/Am uptake, especially when added at high rates in unlimed soils. The effect of lime on uptake could be attributed to immobilization of americium ions external to the roots as a result of decreased solubility of this radionuclide and/or antagonistic effect of increased calcium ion concentration in the soil solution on americium ions. The effect of organic matter on uptake could be attributed to its fixing capacity for metals.« less

  14. The limit of detection in scintigraphic imaging with I-131 in patients with differentiated thyroid carcinoma

    NASA Astrophysics Data System (ADS)

    Hänscheid, H.; Lassmann, M.; Buck, A. K.; Reiners, C.; Verburg, F. A.

    2014-05-01

    Radioiodine scintigraphy influences staging and treatment in patients with differentiated thyroid carcinoma. The limit of detection for fractional uptake in an iodine avid focus in a scintigraphic image was determined from the number of lesion net counts and the count density of the tissue background. The count statistics were used to calculate the diagnostic activity required to elevate the signal from a lesion with a given uptake significantly above a homogeneous background with randomly distributed counts per area. The dependences of the minimal uptake and the minimal size of lesions visible in a scan on several parameters of influence were determined by linking the typical biokinetics observed in iodine avid tissue to the lesion mass and to the absorbed dose received in a radioiodine therapy. The detection limits for fractional uptake in a neck lesion of a typical patient are about 0.001% after therapy with 7000 MBq, 0.01% for activities typically administered in diagnostic assessments (74-185 MBq), and 0.1% after the administration of 10 MBq I-131. Lesions at the limit of detection in a diagnostic scan with biokinetics eligible for radioiodine therapy are small with diameters of a few millimeters. Increasing the diagnostic activity by a factor of 4 reduces the diameter of visible lesions by 25% or about 1 mm. Several other determinants have a comparable or higher influence on the limit of detection than the administered activity; most important are the biokinetics in both blood pool and target tissue and the time of measurement. A generally valid recommendation for the timing of the scan is impossible as the time of the highest probability to detect iodine avid tissue depends on the administered activity as well as on the biokinetics in the lesion and background in the individual patient.

  15. Postprandial fatty acid uptake and adipocyte remodeling in angiotensin type 2 receptor-deficient mice fed a high-fat/high-fructose diet

    PubMed Central

    Noll, Christophe; Labbé, Sébastien M.; Pinard, Sandra; Shum, Michael; Bilodeau, Lyne; Chouinard, Lucie; Phoenix, Serge; Lecomte, Roger; Carpentier, André C.; Gallo-Payet, Nicole

    2016-01-01

    ABSTRACT The role of the angiotensin type-2 receptor in adipose physiology remains controversial. The aim of the present study was to demonstrate whether genetic angiotensin type-2 receptor-deficiency prevents or worsens metabolic and adipose tissue morphometric changes observed following a 6-week high-fat/high-fructose diet with injection of a small dose of streptozotocin. We compared tissue uptake of nonesterified fatty acid and dietary fatty acid in wild-type and angiotensin type-2 receptor-deficient mice by using the radiotracer 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid in mice fed a standard or high-fat diet. Postprandial fatty acid uptake in the heart, liver, skeletal muscle, kidney and adipose tissue was increased in wild-type mice after a high-fat diet and in angiotensin type-2 receptor-deficient mice on both standard and high-fat diets. Compared to the wild-type mice, angiotensin type-2 receptor-deficient mice had a lower body weight, an increase in fasting blood glucose and a decrease in plasma insulin and leptin levels. Mice fed a high-fat diet exhibited increased adipocyte size that was prevented by angiotensin type-2 receptor-deficiency. Angiotensin type-2 receptor-deficiency abolished the early hypertrophic adipocyte remodeling induced by a high-fat diet. The small size of adipocytes in the angiotensin type-2 receptor-deficient mice reflects their inability to store lipids and explains the increase in fatty acid uptake in non-adipose tissues. In conclusion, a genetic deletion of the angiotensin type-2 receptor is associated with metabolic dysfunction of white adipose depots, and indicates that adipocyte remodeling occurs before the onset of insulin resistance in the high-fat fed mouse model. PMID:27144096

  16. The role of vascular endothelial growth factor-B in metabolic homoeostasis: current evidence.

    PubMed

    Zafar, Mohammad Ishraq; Zheng, Juan; Kong, Wen; Ye, Xiaofeng; Gou, Luoning; Regmi, Anita; Chen, Lu-Lu

    2017-08-31

    It has been shown that adipose tissue and skeletal muscles in lean individuals respond to meal-induced hyperinsulinemia by increase in perfusion, the effect not observed in patients with metabolic syndrome. In conditions of hyperglycaemia and hypertriglyceridemia, this insufficient vascularization leads to the liberation of reactive oxygen species (ROS), and disruption of nitric oxide (NO) synthesis and endothelial signalling responsible for the uptake of circulating fatty acids (FAs), whose accumulation in skeletal muscles and adipose tissue is widely associated with the impairment of insulin signalling. While the angiogenic role of VEGF-A and its increased circulating concentrations in obesity have been widely confirmed, the data related to the metabolic role of VEGF-B are diverse. However, recent discoveries indicate that this growth factor may be a promising therapeutic agent in patients with metabolic syndrome. Preclinical studies agree over two crucial metabolic effects of VEGF-B: (i) regulation of FAs uptake and (ii) regulation of tissue perfusion via activation of VEGF-A/vascular endothelial growth factor receptor (VEGFR) 2 (VEGFR2) pathway. While in some preclinical high-fat diet studies, VEGF-B overexpression reverted glucose intolerance and stimulated fat burning, in others it further promoted accumulation of lipids and lipotoxicity. Data from clinical studies point out the changes in circulating or tissue expression levels of VEGF-B in obese compared with lean patients. Potentially beneficial effects of VEGF-B, achieved through enhanced blood flow (increased availability of insulin and glucose uptake in target organs) and decreased FAs uptake (prevention of lipotoxicity and improved insulin signalling), and its safety for clinical use, remain to be clarified through future translational research. © 2017 The Author(s).

  17. Nitrate uptake and utilization is modulated by exogenous gamma-aminobutyric acid in Arabidopsis thaliana seedlings.

    PubMed

    Barbosa, Jose M; Singh, Narendra K; Cherry, Joe H; Locy, Robert D

    2010-06-01

    Exogenously applied GABA modulates root growth by inhibition of root elongation when seedlings were grown in vitro on full-strength Murashige and Skoog (MS) salts, but root elongation was stimulated when seedlings were grown on 1/8 strength MS salts. When the concentration of single ions in MS salts was individually varied, the control of growth between inhibition and stimulation was found to be related to the level of nitrate (NO(3)(-)) in the growth medium. At NO(3)(-) concentrations below 40 mM (full-strength MS salts level), root growth was stimulated by the addition of GABA to the growth medium; whereas at concentrations above 40 mM NO(3)(-), the addition of GABA to the growth medium inhibited root elongation. GABA promoted NO(3)(-) uptake at low NO(3)(-), while GABA inhibited NO(3)(-) uptake at high NO(3)(-). Activities of several enzymes involved in nitrogen and carbon metabolism including nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (NADH-GOGAT), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and phosphoenol pyruvate carboxylase (PEPCase) were regulated by GABA in the growth medium. Supplementing 1/8 strength MS medium with 50 mM GABA enhanced the activities of all of the above enzymes except ICDH activities in root tissues. However, at full-strength MS, GABA showed no inhibitory effect on the activities of these enzymes, except on GS in both root and shoot tissues, and PEPCase activity in shoot tissues. Exogenous GABA increased the amount of NR protein rather than its activation status in the tissues. This study shows that GABA affects the growth of Arabidopsis, possibly by acting as a signaling molecule, modulating the activity of enzymes involved in primary nitrogen metabolism and nitrate uptake.

  18. Hürthle cell tumor dwelling in hot thyroid nodules: preoperative detection with technetium-99m-MIBI dual-phase scintigraphy.

    PubMed

    Vattimo, A; Bertelli, P; Cintorino, M; Burroni, L; Volterrani, D; Vella, A; Lazzi, S

    1998-05-01

    Single injection dual-phase scintigraphy (early and late acquisitions) with 99mTc-MIBI was used to differentiate benign and malignant hot thyroid nodules. Thirteen euthyroid and two hyperthyroid patients displaying a hot thyroid nodule on the 99mTc scan due to an autonomously functioning thyroid nodule (AFTN) underwent early (15-30 min) and late (3-4 hr) thyroid scintigraphy after the administration of 740-1000 MBq 99mTc-MIBI. Visual scoring was done to assess nodular tracer uptake and retention. In addition, the nodular-to-thyroid (N/T) uptake ratio in the early and late image and the washout rates (WO) from the nodule and thyroidal tissue were measured. All patients underwent thyroid surgery. Histopathology revealed a Hürthle cell tumor in three nodules, a benign adenoma with oxyphilic metaplasia in two nodules and a benign adenoma without oxyphilic cells in the remaining 10 nodules. The Hürthle cell tumor nodules displayed intense and persistent uptake of 99mTc-MIBI (N/T was 2.81 +/- 0.52 and 5.53 +/- 1.06 in early and late images, respectively; WO from the nodule was 12.33 +/- 0.47, WO from the thyroidal tissue was 22.00 +/- 3.56). The benign nodules showed intense uptake in the early image and intense uptake to absent retention in the late image (N/T was 2.94 +/- 1.31 and 1.62 +/- 0.50 in the early and late images, respectively; WO from the nodule was 20.25 +/- 2.92, WO from the thyroidal tissue was 20.33 +/- 2.92). Single injection dual-phase 99mTc-MIBI scintigraphy of the thyroid with AFTN can identify nodules as a result of the activity of a Hürthle cell tumor, since these tumors cause intense and persistent tracer uptake in contrast with a benign AFTN.

  19. Capsinoids activate brown adipose tissue (BAT) with increased energy expenditure associated with subthreshold 18-fluorine fluorodeoxyglucose uptake in BAT-positive humans confirmed by positron emission tomography scan.

    PubMed

    Sun, Lijuan; Camps, Stefan G; Goh, Hui Jen; Govindharajulu, Priya; Schaefferkoetter, Joshua D; Townsend, David W; Verma, Sanjay K; Velan, S Sendhil; Sun, Lei; Sze, Siu Kwan; Lim, Su Chi; Boehm, Bernhard Otto; Henry, Christiani Jeyakumar; Leow, Melvin Khee-Shing

    2018-01-01

    Capsinoids are reported to increase energy expenditure (EE) via brown adipose tissue (BAT) stimulation. However, imaging of BAT activation by capsinoids remains limited. Because BAT activation is a potential therapeutic strategy for obesity and related metabolic disorders, we sought to prove that capsinoid-induced BAT activation can be visualized by 18-fluorine fluorodeoxyglucose (18F-FDG) positron emission tomography (PET). We compared capsinoids and cold exposure on BAT activation and whole-body EE. Twenty healthy participants (8 men, 12 women) with a mean age of 26 y (range: 21-35 y) and a body mass index (kg/m2) of 21.7 (range: 18.5-26.0) underwent 18F-FDG PET and whole-body calorimetry after ingestion of 12 mg capsinoids or ≤2 h of cold exposure (∼14.5°C) in a crossover design. Mean standardized uptake values (SUVs) of the region of interest and BAT volumes were calculated. Blood metabolites were measured before and 2 h after each treatment. All of the participants showed negligible 18F-FDG uptake post-capsinoid ingestion. Upon cold exposure, 12 participants showed avid 18F-FDG uptake into supraclavicular and lateral neck adipose tissues (BAT-positive group), whereas the remaining 8 participants (BAT-negative group) showed undetectable uptake. Capsinoids and cold exposure increased EE, although cold induced a 2-fold increase in whole-body EE and higher fat oxidation, insulin sensitivity, and HDL cholesterol compared with capsinoids. Capsinoids only increased EE in BAT-positive participants, which suggests that BAT mediates EE evoked by capsinoids. This implies that capsinoids stimulate BAT to a lesser degree than cold exposure as evidenced by 18F-FDG uptake below the presently accepted SUV thresholds defining BAT activation. This trial was registered at www.clinicaltrials.gov as NCT02964442. © 2018 American Society for Nutrition. All rights reserved.

  20. Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer.

    PubMed

    Sörensen, Jens; Owenius, Rikard; Lax, Michelle; Johansson, Silvia

    2013-02-01

    [(18)F]Fluciclovine (anti-[(18)F]FACBC) is a synthetic amino acid developed for PET assessment of the anabolic component of tumour metabolism in clinical routine. This phase 1 trial evaluated the safety, tracer stability and uptake kinetics of [(18)F]fluciclovine in patients. Six patients with biopsy-proven prostate cancer were investigated with 3-T MRI and PET/CT. All underwent dynamic [(18)F]fluciclovine PET/CT of the pelvic area for up to 120 min after injection of 418 ± 10 MBq of tracer with simultaneous blood sampling of radioactivity. The kinetics of uptake in tumours and normal tissues were evaluated using standardized uptake values (SUVs) and compartmental modelling. Tumour deposits as defined by MRI were clearly visualized by PET. Urine excretion was minimal and normal tissue background was low. Uptake of [(18)F]fluciclovine in tumour from the blood was rapid and the tumour-to-normal tissue contrast was highest between 1 and 15 min after injection with a 65 % reduction in mean tumour uptake at 90 min after injection. A one-compartment model fitted the tracer kinetics well. Early SUVs correlated well with both the influx rate constant (K (1)) and the volume of distribution of the tracer (V (T)). There were no signs of tracer metabolite formation. The product was well tolerated in all patients without significant adverse events. [(18)F]Fluciclovine shows high uptake in prostate cancer deposits and appears safe for use in humans. The production is robust and the formulation stable in vivo. An early imaging window seems to provide the best visual results. SUV measurements capture most of the kinetic information that can be obtained from more advanced models, potentially simplifying quantification in future studies.

  1. Uptake and metabolic effects of salicylic acid on the pulvinar motor cells of Mimosa pudica L.

    PubMed

    Dédaldéchamp, Fabienne; Saeedi, Saed; Fleurat-Lessard, Pierrette; Roblin, Gabriel

    2014-01-01

    In this paper, the salicylic acid (o-hydroxy benzoic acid) (SA) uptake by the pulvinar tissues of Mimosa pudica L. pulvini was shown to be strongly pH-dependent, increasing with acidity of the assay medium. This uptake was performed according to a unique affinity system (K(m) = 5.9 mM, V(m) = 526 pmol mgDW(-1)) in the concentration range of 0.1-5 mM. The uptake rate increased with increasing temperature (5-35 °C) and was inhibited following treatment with sodium azide (NaN3) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), suggesting the involvement of an active component. Treatment with p-chloromercuribenzenesulfonic acid (PCMBS) did not modify the uptake, indicating that external thiol groups were not necessary. KCl, which induced membrane depolarization had no significant effect, and fusicoccin (FC), which hyperpolarized cell membrane, stimulated the uptake, suggesting that the pH component of the proton motive force was likely a driving force. These data suggest that the SA uptake by the pulvinar tissues may be driven by two components: an ion-trap mechanism playing a pivotal role and a putative carrier-mediated mechanism. Unlike other benzoic acid derivatives acting as classical respiration inhibitors (NaN3 and KCN), SA modified the pulvinar cell metabolism by increasing the respiration rate similar to CCCP and 2,4-dinitrophenol (DNP). Furthermore, SA inhibited the osmoregulated seismonastic reaction in a pH dependent manner and induced characteristic damage to the ultrastructural features of the pulvinar motor cells, particularly at the mitochondrial level. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Respiratory factors in the uptake and excretion of anesthetics. 1965.

    PubMed

    Epstein, R M; Papper, E M

    1998-01-01

    We have considered some of the ways in which respiration can affect the gas exchange process. The simplest relationships are purely physical and relate to the speed with which the lung and tissues can be filled or emptied. More complex relationships involve a consideration of the interplay between blood and gas in the lung and the effects of gas exchange on respiratory volumes themselves. Finally, some examples of the importance of physiologic alteration produced by, and producing respiratory shifts during, gas uptake processes were presented briefly. The detailed interpretation of gas exchange phenomena demands more quantitative information of this sort, concerning not only the respiratory but the circulatory and tissue level variations affecting uptake during anesthesia. Nevertheless, understanding of the principles and application of such data as are available can go far toward removing the handicaps of empirical practice from the day-to-day administration of anesthetic agents to human beings.

  3. Fine-scale detection of pollutants by a benthic marine jellyfish.

    PubMed

    Epstein, Hannah E; Templeman, Michelle A; Kingsford, Michael J

    2016-06-15

    Local sources of pollution can vary immensely on small geographic scales and short time frames due to differences in runoff and adjacent land use. This study examined the rate of uptake and retention of trace metals in Cassiopea maremetens, a benthic marine jellyfish, over a short time frame and in the presence of multiple pollutants. This study also validated the ability of C. maremetens to uptake metals in the field. Experimental manipulation demonstrated that metal accumulation in jellyfish tissue began within 24h of exposure to treated water and trended for higher accumulation in the presence of multiple pollutants. C. maremetens was found to uptake trace metals in the field and provide unique signatures among locations. This fine-scale detection and rapid accumulation of metals in jellyfish tissue can have major implications for both biomonitoring and the trophic transfer of pollutants through local ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Diagnostic nanoparticle targeting of the EGF-receptor in complex biological conditions using single-domain antibodies.

    PubMed

    Zarschler, K; Prapainop, K; Mahon, E; Rocks, L; Bramini, M; Kelly, P M; Stephan, H; Dawson, K A

    2014-06-07

    For effective localization of functionalized nanoparticles at diseased tissues such as solid tumours or metastases through biorecognition, appropriate targeting vectors directed against selected tumour biomarkers are a key prerequisite. The diversity of such vector molecules ranges from proteins, including antibodies and fragments thereof, through aptamers and glycans to short peptides and small molecules. Here, we analyse the specific nanoparticle targeting capabilities of two previously suggested peptides (D4 and GE11) and a small camelid single-domain antibody (sdAb), representing potential recognition agents for the epidermal growth factor receptor (EGFR). We investigate specificity by way of receptor RNA silencing techniques and look at increasing complexity in vitro by introducing increasing concentrations of human or bovine serum. Peptides D4 and GE11 proved problematic to employ and conjugation resulted in non-receptor specific uptake into cells. Our results show that sdAb-functionalized particles can effectively target the EGFR, even in more complex bovine and human serum conditions where targeting specificity is largely conserved for increasing serum concentration. In human serum however, an inhibition of overall nanoparticle uptake is observed with increasing protein concentration. For highly affine targeting ligands such as sdAbs, targeting a receptor such as EGFR with low serum competitor abundance, receptor recognition function can still be partially realised in complex conditions. Here, we stress the value of evaluating the targeting efficiency of nanoparticle constructs in realistic biological milieu, prior to more extensive in vivo studies.

  5. The in vivo disposition and in vitro transmembrane transport of two model radiometabolites of DOTA-conjugated receptor-specific peptides labelled with (177) Lu.

    PubMed

    Volková, Marie; Mandíková, Jana; Bárta, Pavel; Navrátilová, Lucie; Lázníčková, Alice; Trejtnar, František

    2015-01-01

    In vivo metabolism of the radiolabelled receptor-specific peptides has been described; however, information regarding the pharmacokinetic behaviour of the degradation products within the body is very scarce. The present study was designed to obtain new knowledge on the disposition and elimination of low-molecular radiometabolites of receptor-specific peptides in the organism and to reveal the potential involvement of selected membrane transport mechanisms in the cellular uptake of radiometabolites, especially in the kidney. The study compared pharmacokinetics of two radiometabolites: a final metabolite of somatostatin analogues, (177)Lu-DOTA-DPhe, and a tripeptide metabolite of (177)Lu-DOTA-minigastrin 11, (177)Lu-DOTA-DGlu-Ala-Tyr. Their pharmacokinetics was compared with that of respective parent (177)Lu-radiopeptide. Both radiometabolites exhibited relative rapid clearing from most body tissues in rats in vivo along with predominant renal excretion. The long-term renal retention of the smaller radiometabolite (177)Lu-DOTA-DPhe was lower than that of (177)Lu-DOTA-DGlu-Ala-Tyr. An uptake of (177)Lu-DOTA-DPhe by human renal influx transporter organic cation transporter 2 was found in vitro in a cellular model. The study brings the first experimental data on the in vivo pharmacokinetics of radiometabolites of receptor-specific somatostatin and gastrin analogues. The found results may indicate a negative correlation between the degree of decomposition of the parent peptide chain and the renal retention of the metabolite. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Fabrication of chemically cross-linked porous gelatin matrices.

    PubMed

    Bozzini, Sabrina; Petrini, Paola; Altomare, Lina; Tanzi, Maria Cristina

    2009-01-01

    The aim of this study was to chemically cross-link gelatin, by reacting its free amino groups with an aliphatic diisocyanate. To produce hydrogels with controllable properties, the number of reacting amino groups was carefully determined. Porosity was introduced into the gelatin-based hydrogels through the lyophilization process. Porous and non-porous matrices were characterized with respect to their chemical structure, morphology, water uptake and mechanical properties. The physical, chemical and mechanical properties of the porous matrices are related to the extent of their cross-linking, showing that they can be controlled by varying the reaction parameters. Water uptake values (24 hours) vary between 160% and 200% as the degree of cross-linking increases. The flexibility of the samples also decreases by changing the extent of cross-linking. Young's modulus shows values between 0.188 KPa, for the highest degree, and 0.142 KPa for the lowest degree. The matrices are potential candidates for use as tissue-engineering scaffolds by modulating their physical chemical properties according to the specific application.

  7. Dual-Modality Optical/PET Imaging of PARP1 in Glioblastoma.

    PubMed

    Carlucci, Giuseppe; Carney, Brandon; Brand, Christian; Kossatz, Susanne; Irwin, Christopher P; Carlin, Sean D; Keliher, Edmund J; Weber, Wolfgang; Reiner, Thomas

    2015-12-01

    The current study presents [(18)F]PARPi-FL as a bimodal fluorescent/positron emission tomography (PET) agent for PARP1 imaging. [(18)F]PARPi-FL was obtained by (19)F/(18)F isotopic exchange and PET experiments, biodistribution studies, surface fluorescence imaging, and autoradiography carried out in a U87 MG glioblastoma mouse model. [(18)F]PARPi-FL showed high tumor uptake in vivo and ex vivo in small xenografts (< 2 mm) with both PET and optical imaging technologies. Uptake of [(18)F]PARPi-FL in blocked U87 MG tumors was reduced by 84 % (0.12 ± 0.02 %injected dose/gram (%ID/g)), showing high specificity of the binding. PET imaging showed accumulation in the tumor (1 h p.i.), which was confirmed by ex vivo phosphor autoradiography. The fluorescent component of [(18)F]PARPi-FL enables cellular resolution optical imaging, while the radiolabeled component of [(18)F]PARPi-FL allows whole-body deep-tissue imaging of malignant growth.

  8. Negligible uptake and transfer of diet-derived pollen microRNAs in adult honey bees

    PubMed Central

    Masood, Maryam; Everett, Claire P.; Chan, Stephen Y.; Snow, Jonathan W.

    2016-01-01

    ABSTRACT The putative transfer and gene regulatory activities of diet-derived miRNAs in ingesting animals are still debated. Importantly, no study to date has fully examined the role of dietary uptake of miRNA in the honey bee, a critical pollinator in both agricultural and natural ecosystems. After controlled pollen feeding experiments in adult honey bees, we observed that midguts demonstrated robust increases in plant miRNAs after pollen ingestion. However, we found no evidence of biologically relevant delivery of these molecules to proximal or distal tissues of recipient honey bees. Our results, therefore, support the premise that pollen miRNAs ingested as part of a typical diet are not robustly transferred across barrier epithelia of adult honey bees under normal conditions. Key future questions include whether other small RNA species in honey bee diets behave similarly and whether more specialized and specific delivery mechanisms exist for more efficient transport, particularly in the context of stressed barrier epithelia. PMID:26680555

  9. Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle-aged men.

    PubMed

    Motiani, Piryanka; Virtanen, Kirsi A; Motiani, Kumail K; Eskelinen, Joonas J; Middelbeek, Roeland J; Goodyear, Laurie J; Savolainen, Anna M; Kemppainen, Jukka; Jensen, Jørgen; Din, Mueez U; Saunavaara, Virva; Parkkola, Riitta; Löyttyniemi, Eliisa; Knuuti, Juhani; Nuutila, Pirjo; Kalliokoski, Kari K; Hannukainen, Jarna C

    2017-10-01

    To test the hypothesis that high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) improve brown adipose tissue (BAT) insulin sensitivity. Healthy middle-aged men (n = 18, age 47 years [95% confidence interval {CI} 49, 43], body mass index 25.3 kg/m 2 [95% CI 24.1-26.3], peak oxygen uptake (VO 2peak ) 34.8 mL/kg/min [95% CI 32.1, 37.4] ) were recruited and randomized into six HIIT or MICT sessions within 2 weeks. Insulin-stimulated glucose uptake was measured using 2-[ 18 F]flouro-2-deoxy-D-glucose positron-emission tomography in BAT, skeletal muscle, and abdominal and femoral subcutaneous and visceral white adipose tissue (WAT) depots before and after the training interventions. Training improved VO 2peak (P = .0005), insulin-stimulated glucose uptake into the quadriceps femoris muscle (P = .0009) and femoral subcutaneous WAT (P = .02) but not into BAT, with no difference between the training modes. Using pre-intervention BAT glucose uptake, we next stratified subjects into high BAT (>2.9 µmol/100 g/min; n = 6) or low BAT (<2.9 µmol/100 g/min; n = 12) groups. Interestingly, training decreased insulin-stimulated BAT glucose uptake in the high BAT group (4.0 [2.8, 5.5] vs 2.5 [1.7, 3.6]; training*BAT, P = .02), whereas there was no effect of training in the low BAT group (1.5 [1.2, 1.9] vs 1.6 [1.2, 2.0] µmol/100 g/min). Participants in the high BAT group had lower levels of inflammatory markers compared with those in the low BAT group. Participants with functionally active BAT have an improved metabolic profile compared with those with low BAT activity. Short-term exercise training decreased insulin-stimulated BAT glucose uptake in participants with active BAT, suggesting that training does not work as a potent stimulus for BAT activation. © 2017 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  10. PPARγ activation attenuates glucose intolerance induced by mTOR inhibition with rapamycin in rats.

    PubMed

    Festuccia, William T; Blanchard, Pierre-Gilles; Belchior, Thiago; Chimin, Patricia; Paschoal, Vivian A; Magdalon, Juliana; Hirabara, Sandro M; Simões, Daniel; St-Pierre, Philippe; Carpinelli, Angelo; Marette, André; Deshaies, Yves

    2014-05-01

    mTOR inhibition with rapamycin induces a diabetes-like syndrome characterized by severe glucose intolerance, hyperinsulinemia, and hypertriglyceridemia, which is due to increased hepatic glucose production as well as reduced skeletal muscle glucose uptake and adipose tissue PPARγ activity. Herein, we tested the hypothesis that pharmacological PPARγ activation attenuates the diabetes-like syndrome associated with chronic mTOR inhibition. Rats treated with the mTOR inhibitor rapamycin (2 mg·kg(-1)·day(-1)) in combination or not with the PPARγ ligand rosiglitazone (15 mg·kg(-1)·day(-1)) for 15 days were evaluated for insulin secretion, glucose, insulin, and pyruvate tolerance, skeletal muscle and adipose tissue glucose uptake, and insulin signaling. Rosiglitazone corrected fasting hyperglycemia, attenuated the glucose and insulin intolerances, and abolished the increase in fasting plasma insulin and C-peptide levels induced by rapamycin. Surprisingly, rosiglitazone markedly increased the plasma insulin and C-peptide responses to refeeding in rapamycin-treated rats. Furthermore, rosiglitazone partially attenuated rapamycin-induced gluconeogenesis, as evidenced by the improved pyruvate tolerance and reduced mRNA levels of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Rosiglitazone also restored insulin's ability to stimulate glucose uptake and its incorporation into glycogen in skeletal muscle of rapamycin-treated rats, which was associated with normalization of Akt Ser(473) phosphorylation. However, the rapamycin-mediated impairments of adipose tissue glucose uptake and incorporation into triacylglycerol were unaffected by rosiglitazone. Our findings indicate that PPARγ activation ameliorates some of the disturbances in glucose homeostasis and insulin action associated with chronic rapamycin treatment by reducing gluconeogenesis and insulin secretion and restoring muscle insulin signaling and glucose uptake.

  11. Folate Receptor-Mediated Enhanced and Specific Delivery of Far-Red Light-Activatable Prodrugs of Combretastatin A-4 to FR-Positive Tumor

    PubMed Central

    2015-01-01

    We examined the concept of a novel prodrug strategy in which anticancer drug can be locally released by visible/near IR light, taking advantage of the photodynamic process and photo-unclick chemistry. Our most recently formulated prodrug of combretastatin A-4, Pc-(L-CA4)2, showed multifunctionality for fluorescence imaging, light-activated drug release, and the combined effects of PDT and local chemotherapy. In this formulation, L is a singlet oxygen cleavable linker. Here, we advanced this multifunctional prodrug by adding a tumor-targeting group, folic acid (FA). We designed and prepared four FA-conjugated prodrugs 1–4 (CA4-L-Pc-PEGn-FA: n = 0, 2, 18, ∼45) and one non-FA-conjugated prodrug 5 (CA4-L-Pc-PEG18-boc). Prodrugs 3 and 4 had a longer PEG spacer and showed higher hydrophilicity, enhanced uptake to colon 26 cells via FR-mediated mechanisms, and more specific localization to SC colon 26 tumors in Balb/c mice than prodrugs 1 and 2. Prodrug 4 also showed higher and more specific uptake to tumors, resulting in selective tumor damage and more effective antitumor efficacy than non-FA-conjugated prodrug 5. FR-mediated targeting seemed to be an effective strategy to spare normal tissues surrounding tumors in the illuminated area during treatment with this prodrug. PMID:25351441

  12. 64Cu-PSMA-617: A novel PSMA-targeted radio-tracer for PET imaging in gastric adenocarcinoma xenografted mice model.

    PubMed

    Han, Xue-Di; Liu, Chen; Liu, Fei; Xie, Qing-Hua; Liu, Te-Li; Guo, Xiao-Yi; Xu, Xiao-Xia; Yang, Xing; Zhu, Hua; Yang, Zhi

    2017-09-26

    Here, we report that it's feasible for imaging gastric adenocarcinoma mice model with prostate-specific membrane antigen (PSMA) targeting imaging agents, which could potentially provide an alternate and readily translational tool for managing gastric adenocarcinoma. DKFZ-PSMA-617, a PSMA targeting ligand reported recently, was chosen to be radio-labeled with nuclide 64 Cu. 64 Cu-PSMA-617 was radio-synthesized in high radio-chemical yield and specific activity up to 19.3 GBq/µmol. It showed good stability in vitro . The specificity of 64 Cu-PSMA-617 was confirmed by cell uptake experiments in PSMA (+) LNCaP cell and PSMA (-) PC-3 and gastric adenocarcinoma BGC-823 cells. Micro-PET imaging in BGC-823 and PC-3 xenografts nude mice was evaluated ( n = 4). And the tumors were visualized and better tumor-to-background achieved till 24 h. Co-administration of N- [[[(1S)-1-Carboxy-3-methylbutyl]amino]-carbonyl]-L-glutamic acid (ZJ-43) can substantially block the uptake in those tumors. Dissected tumor tissues were analyzed by auto-radiography and immunohistochemistry, and these results confirmed the PSMA expression in neo-vasculature which explained the target molecular imaging of 64 Cu-PSMA-617. All those results suggested 64 Cu-PSMA-617 may serve as a novel radio-tracer for tumor imaging more than prostate cancer.

  13. 64Cu-PSMA-617: A novel PSMA-targeted radio-tracer for PET imaging in gastric adenocarcinoma xenografted mice model

    PubMed Central

    Han, Xue-Di; Liu, Chen; Liu, Fei; Xie, Qing-Hua; Liu, Te-Li; Guo, Xiao-Yi; Xu, Xiao-Xia; Yang, Xing; Zhu, Hua; Yang, Zhi

    2017-01-01

    Here, we report that it’s feasible for imaging gastric adenocarcinoma mice model with prostate-specific membrane antigen (PSMA) targeting imaging agents, which could potentially provide an alternate and readily translational tool for managing gastric adenocarcinoma. DKFZ-PSMA-617, a PSMA targeting ligand reported recently, was chosen to be radio-labeled with nuclide 64Cu. 64Cu-PSMA-617 was radio-synthesized in high radio-chemical yield and specific activity up to 19.3 GBq/µmol. It showed good stability in vitro. The specificity of 64Cu-PSMA-617 was confirmed by cell uptake experiments in PSMA (+) LNCaP cell and PSMA (-) PC-3 and gastric adenocarcinoma BGC-823 cells. Micro-PET imaging in BGC-823 and PC-3 xenografts nude mice was evaluated (n = 4). And the tumors were visualized and better tumor-to-background achieved till 24 h. Co-administration of N- [[[(1S)-1-Carboxy-3-methylbutyl]amino]-carbonyl]-L-glutamic acid (ZJ-43) can substantially block the uptake in those tumors. Dissected tumor tissues were analyzed by auto-radiography and immunohistochemistry, and these results confirmed the PSMA expression in neo-vasculature which explained the target molecular imaging of 64Cu-PSMA-617. All those results suggested 64Cu-PSMA-617 may serve as a novel radio-tracer for tumor imaging more than prostate cancer. PMID:29088775

  14. Evaluation of [99mTc/EDDA/HYNIC0]octreotide derivatives compared with [111In-DOTA0,Tyr3, Thr8]octreotide and [111In-DTPA0]octreotide: does tumor or pancreas uptake correlate with the rate of internalization?

    PubMed

    Storch, Daniel; Béhé, Martin; Walter, Martin A; Chen, Jianhua; Powell, Pia; Mikolajczak, Renata; Mäcke, Helmut R

    2005-09-01

    Radiolabeled somatostatin analogs are important tools for the in vivo localization and targeted radionuclide therapy of somatostatin receptor-positive tumors. The aim of this study was to compare 3 somatostatin analogs designed for the labeling with (99m)Tc (where HYNIC is 6-hydrazinopyridine-3-carboxylic acid): 6-hydrazinopyridine-3-carboxylic acid(0)-octreotide (HYNIC-OC/(99m)Tc-(1)), [HYNIC(0),Tyr(3)]octreotide (HYNIC-TOC/(99m)Tc-(2)), and [HYNIC(0),Tyr(3),Thr(8)]octreotide (HYNIC-TATE/(99m)Tc-(3)), using ethylenediamine-N,N'-diacetic acid (EDDA) as a coligand. In addition, we compared the (99m)Tc-labeled peptides [(111)In-diethylenetriaminepentaacetic acid(0)]octreotide ([(111)In-DTPA]-OC) and [(111)In-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid(0),Tyr(3),Thr(8)]octreotide ([(111)In-DOTA]-TATE) with regard to the rate of internalization and the biodistribution in AR4-2J (expressing the somatostatin receptor subtype 2) tumor-bearing rats. The main attention was directed toward a potential correlation between the rate of internalization and the tumor or pancreas uptake. Synthesis was performed on solid phase using a standard Fmoc strategy. Internalization was studied in cell culture (AR4-2J) and biodistribution was studied using a Lewis rat tumor model (AR4-2J). The 5 radiopeptides showed a specific internalization into AR4-2J cells in culture (as shown by blocking experiments). The rate of internalization of the 5 radiopeptides differed significantly according to the following order: (99m)Tc-(1) approximately = [(111)In-DTPA]-OC < (99m)Tc-(2) < (99m)Tc-(3) approximately = [(111)In-DOTA]-TATE. All radiopeptides displayed a rapid blood clearance and a fast clearance from all somatostatin receptor-negative tissues predominantly via the kidneys. A receptor-specific uptake of radioactivity was observed for all compounds in somatostatin receptor-positive organs such as the pancreas, the adrenals, and the stomach. After 4 h, the uptake in the AR4-2J tumor was comparable for (99m)Tc-(2) (3.85 +/- 1.0 injected dose per gram tissue (%ID/g)), (99m)Tc-(3) (3.99 +/- 0.58%ID/g), and [(111)In-DOTA]-TATE (4.12 +/- 0.74%ID/g) but much lower for [(111)In-DTPA]-OC (0.99 +/- 0.08%ID/g) and (99m)Tc-(1) (0.70 +/- 0.13%ID/g). The specificity was determined by blocking experiments using a large excess of [Tyr(3)]octreotide. (99m)Tc-(3) displayed the highest tumor-to-kidney ratio (2.5:1), followed by (99m)Tc(2) (1.9:1) and [(111)In-DOTA]-TATE (1.7:1). These data show that the 5 radiopeptides are specific radioligands for the somatostatin receptor subtype 2. The rate of internalization correlates with the uptake in the tumor (R(2) = 0.75; P = 0.026) and pancreas (R(2) = 0.98; P = 7.4.10(-5)). [Tyr(3),Thr(8)]octreotide derivatives show superiority over the corresponding octreotide and [Tyr(3)]octreotide derivatives, indicating that [(111)In-DOTA]-TATE and [(99m)Tc/EDDA/HYNIC]-TATE are suitable candidates for clinical studies.

  15. Development of endosperm transfer cells in barley.

    PubMed

    Thiel, Johannes

    2014-01-01

    Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell (TC) morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection (LM)-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS) pathways in ETC development of barley emerged from this analysis. Correlative data provide evidence for abscisic acid and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for ETC specification.

  16. Development of endosperm transfer cells in barley

    PubMed Central

    Thiel, Johannes

    2014-01-01

    Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell (TC) morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection (LM)-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS) pathways in ETC development of barley emerged from this analysis. Correlative data provide evidence for abscisic acid and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for ETC specification. PMID:24723929

  17. Preparation and characterization of a novel Al(18)F-NOTA-BZA conjugate for melanin-targeted imaging of malignant melanoma.

    PubMed

    Chang, Chih-Chao; Chang, Chih-Hsien; Lo, Yi-Hsuan; Lin, Ming-Hsien; Shen, Chih-Chieh; Liu, Ren-Shyan; Wang, Hsin-Ell; Chen, Chuan-Lin

    2016-08-15

    Melanin is an attractive target for the diagnosis and treatment of malignant melanoma. Previous studies have demonstrated the specific binding ability of benzamide moiety to melanin. In this study, we developed a novel (18)F-labeled NOTA-benzamide conjugate, Al(18)F-NOTA-BZA, which can be synthesized in 30min with a radiochemical yield of 20-35% and a radiochemical purity of >95%. Al(18)F-NOTA-BZA is highly hydrophilic (logP=-1.96) and shows good in vitro stability. Intravenous administration of Al(18)F-NOTA-BZA in two melanoma-bearing mouse models revealed highly specific uptake in B16F0 melanotic melanoma (6.67±0.91 and 1.50±0.26%ID/g at 15 and 120min p.i., respectively), but not in A375 amelanotic melanoma (0.87±0.21 and 0.24±0.09%ID/g at 15 and 120min p.i., respectively). The clearance from most normal tissues was fast. A microPET scan of Al(18)F-NOTA-BZA-injected mice also displayed high-contrast tumor images as compared with normal organs. Owing to the favorable in vivo distribution of Al(18)F-NOTA-BZA after intravenous administration, the estimated absorption dose was low in all normal organs and tissues. The melanin-specific binding ability, sustained tumor retention, fast normal tissues clearance and thelow projected human dosimetry supported that Al(18)F-NOTA-BZA is a very promising melanin-specific PET probe for melanin-positive melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Calcium Uptake by Excised Maize Roots and Interactions With Alkali Cations 1

    PubMed Central

    Maas, E. V.

    1969-01-01

    Ca2+ uptake was studied in short-term experiments using 5-day-old excised maize roots. This tissue readily absorbs Ca2+, and inhibition by dinitrophenol and low temperature shows that the process is metabolically mediated. The uptake of Ca2+, like that of other cations, is influenced by the counter ion, the pH and concentration of the ambient solution, and the presence of other cations. The rate of uptake from various salts decreases in the following order: NO3− > Cl− = Br− > SO42−. K+ and H+ greatly interfere with Ca2+ absorption, while Li+ and Na+ have only slight effects. PMID:16657169

  19. Tissue-specific bioaccumulation, depuration and metabolism of 4,4'-dichlorodiphenyl sulfide in the freshwater mussel Anodonta woodiana.

    PubMed

    Zhang, Xuesheng; Fang, Bingxin; Wang, Tantan; Liu, Hui; Feng, Mingbao; Qin, Li; Zhang, Rui

    2018-06-17

    Polychlorinated diphenyl sulfides (PCDPSs) are considered as a class of sulfur-containing dioxin-like pollutants with ubiquitous occurrence in natural waters and potential ecotoxicity to aquatic organisms. However, to date, no information is available regarding the bioaccumulation and biotransformation of PCDPSs in aquatic species. In this study, the uptake and depuration kinetics of 4,4'-dichlorodiphenyl sulfide (4,4'-di-CDPS) in the freshwater mussel Anodonta woodiana were investigated through semi-static exposure. The uptake rates (k 1 ), depuration rates (k 2 ), biological half-lives (t 1/2 ) and tissue-specific bioconcentration factors (BCFs) of 4,4'-di-CDPS in the gill, liver and muscle were measured in the range of 0.509-21.734 L d -1  g -1 d.w., 0.083-0.221 d -1 , 3.14-8.35 d and 3.662 × 10 3 -124.979 × 10 3  L kg -1 l.w., respectively. With the increase in exposure dose, the values of k 1 and BCFs were significantly reduced, indicating that low-dose exposure to 4,4'-di-CDPS could lead to more severe bioaccumulation. Based on the analysis of mass spectra of the extracted liver samples, the structures of four metabolites of 4,4'-di-CDPS were identified. Moreover, the levels of these metabolites were also quantitatively measured. The proposed metabolic pathways of 4,4'-di-CDPS in mussel liver included sulfur-oxidation, dechlorination and methoxylation. Comparatively, sulfur-oxidation was the predominant metabolic pathway of 4,4'-di-CDPS in the liver of A. woodiana. These results provide valuable data and fill the information gap on the bioaccumulation and metabolism of PCDPSs in freshwater species. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Investigations of (99m)Tc-labeled glucarate as a SPECT radiotracer for non-small cell lung cancer (NSCLC) and potential tumor uptake mechanism.

    PubMed

    Meng, Lanfang; Xiu, Yan; Li, Yanli; Xu, Xiaobo; Li, Shanqun; Li, Xiao; Pak, Koon Y; Shi, Hongcheng; Cheng, Dengfeng

    2015-07-01

    This study attempted to evaluate the feasibility of (99m)Tc-labeled glucarate ((99m)Tc-GLA) imaging in non-small cell lung cancer (NSCLC) and the potential tumor uptake mechanism. Cell lysates from two NSCLC cell lines, H292 and H1975, were immunoblotted with anti-glucose transporter 5 (GLUT5) antibody for Western blotting. Thereafter, the two cell lines were used to examine cellular uptake of (99m)Tc-GLA with or without fructose. SPECT/CT imaging studies were performed on small animals bearing H292 and H1975 tumors. Biodistribution studies were also conducted to achieve accurate tissue uptake of this tracer in two tumor models. Hematoxylin & eosin (H&E) staining and GLUT5, Ki67 and cytokeratin-7 (CK-7) immunohistochemistry (IHC) analysis were further investigated on tumor tissues. In Western blotting, H292 cells showed higher levels of GLUT5 compared to the H1975 cells. Meanwhile, the in vitro cell assays indicated GLUT5-dependent uptake of (99m)Tc-GLA in H292 and H1975 cells. The fructose competition assays showed a significant decrease in (99m)Tc-GLA uptake by H292 and H1975 cells when fructose was added. The (99m)Tc-GLA accumulation was as much as two-fold higher in H292 implanted tumors than in H1975 implanted tumors. (99m)Tc-GLA exhibited rapid clearance pharmacokinetics and reasonable uptake in human NSCLC H292 (1.69±0.37 ID%/g) and H1975 (0.89±0.06 ID%/g) implanted tumors at 30min post injection. Finally, the expression of GLUT5, Ki67 and CK-7 on tumor tissues also exhibited positive correlation with the in vitro cell test results and in vivo SPECT/CT imaging results in xenograft tumors. Both in vitro and ex vivo studies demonstrated that the uptake of (99m)Tc-GLA in NSCLC is highly related to GLUT5 expression. Imaging and further IHC results support that (99m)Tc-GLA could be a promising SPECT imaging agent for NSCLC diagnosis and prognosis evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Desensitization by noradrenaline of responses to stimulation of pre- and postsynaptic adrenoceptors

    PubMed Central

    Ball, N.; Danks, J.L.; Dorudi, S.; Nasmyth, P.A.

    1982-01-01

    1 The effect of exposing isolated preparations of rat aortic strip, rat atria and mouse vas deferens to perfusions of Krebs solution containing various concentrations of noradrenaline on their sensitivity to the drug has been determined. 2 The responses evoked by stimulation of postsynaptic adrenoceptors in all the tissues and presynaptic α-adrenoceptors in the mouse vas deferens were diminished by the perfusion of noradrenaline through the organ bath for 30 min. 3 The concentration of noradrenaline required to produce desensitization was higher in the mouse vas deferens than in the other tissues and more was required to desensitize the chronotropic responses than the inotropic responses in rat isolated atria. 4 The inclusion of cocaine (10-5 M) in the bathing solution to block uptake1 increased the sensitivity of most tissues to noradrenaline. With the possible exception of the response to stimulation of presynaptic receptors in the mouse vas deferens, desensitization was somewhat increased in its presence. 5 When uptake2 was blocked by oestradiol (10-5 M), it was not possible to desensitize the contractor responses of the aortic strip and vas deferens to exogenous noradrenaline, nor the inotropic response of the atria to the drug. However, oestradiol failed to block the desensitization of chronotropic responses and responses to stimulation of presynaptic receptors in the vas deferens. 6 Blockade of monoamine oxidase (MAO) with iproniazid (7.2 × 10-4 M) or with pargyline (5 × 10-4 M) did not affect the desensitization process in the aortic strip. 7 Blockade of catechol-O-methyltransferase (COMT) with U-0521 (5.3 × 10-5 M) greatly increased desensitization in the aortic strip and desensitization of inotropic responses in the atria. It had no effect on desensitization of chronotropic responses. Its effect on responses in the mouse vas deferens was not determined. 8 The perfusion of methoxamine at concentrations about 1000 times higher than those of noradrenaline also produced desensitization in the aortic strip. 9 The desensitization of presynaptic receptors in the mouse vas deferens was shown to be specific and that of the responses to postsynaptic receptor stimulation to be non-specific. 10 It is concluded that responses to adrenoceptor stimulation may be desensitized by accumulation of noradrenaline inside the cells bearing the receptors and that the desensitization is caused by noradrenaline itself not by a metabolite. Desensitization may also be caused without accumulation of noradrenaline in uptake2 and for some receptors these may not be alternative mechanisms. PMID:7082904

  2. Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold

    PubMed Central

    Taylor, Andrew F.; Rylott, Elizabeth L.; Anderson, Christopher W. N.; Bruce, Neil C.

    2014-01-01

    We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake. PMID:24736522

  3. Metformin Is a Substrate and Inhibitor of the Human Thiamine Transporter, THTR-2 (SLC19A3).

    PubMed

    Liang, Xiaomin; Chien, Huan-Chieh; Yee, Sook Wah; Giacomini, Marilyn M; Chen, Eugene C; Piao, Meiling; Hao, Jia; Twelves, Jolyn; Lepist, Eve-Irene; Ray, Adrian S; Giacomini, Kathleen M

    2015-12-07

    The biguanide metformin is widely used as first-line therapy for the treatment of type 2 diabetes. Predominately a cation at physiological pH's, metformin is transported by membrane transporters, which play major roles in its absorption and disposition. Recently, our laboratory demonstrated that organic cation transporter 1, OCT1, the major hepatic uptake transporter for metformin, was also the primary hepatic uptake transporter for thiamine, vitamin B1. In this study, we tested the reverse, i.e., that metformin is a substrate of thiamine transporters (THTR-1, SLC19A2, and THTR-2, SLC19A3). Our study demonstrated that human THTR-2 (hTHTR-2), SLC19A3, which is highly expressed in the small intestine, but not hTHTR-1, transports metformin (Km = 1.15 ± 0.2 mM) and other cationic compounds (MPP(+) and famotidine). The uptake mechanism for hTHTR-2 was pH and electrochemical gradient sensitive. Furthermore, metformin as well as other drugs including phenformin, chloroquine, verapamil, famotidine, and amprolium inhibited hTHTR-2 mediated uptake of both thiamine and metformin. Species differences in the substrate specificity of THTR-2 between human and mouse orthologues were observed. Taken together, our data suggest that hTHTR-2 may play a role in the intestinal absorption and tissue distribution of metformin and other organic cations and that the transporter may be a target for drug-drug and drug-nutrient interactions.

  4. Cinnamon extract enhances glucose uptake in 3T3-L1 adipocytes and C2C12 myocytes by inducing LKB1-AMP-activated protein kinase signaling.

    PubMed

    Shen, Yan; Honma, Natsumi; Kobayashi, Katsuya; Jia, Liu Nan; Hosono, Takashi; Shindo, Kazutoshi; Ariga, Toyohiko; Seki, Taiichiro

    2014-01-01

    We previously demonstrated that cinnamon extract (CE) ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4) translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s) with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK) signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK.

  5. Tc-99m Radiolabeled Peptide p5 + 14 is an Effective Probe for SPECT Imaging of Systemic Amyloidosis.

    PubMed

    Kennel, Stephen J; Stuckey, Alan; McWilliams-Koeppen, Helen P; Richey, Tina; Wall, Jonathan S

    2016-08-01

    Systemic peripheral amyloidosis is a rare disease in which misfolded proteins deposit in various organs. We have previously developed I-124 labeled peptide p5 + 14 as a tracer for positron emission tomography imaging of amyloid in patients. In this report, we now document the labeling efficiency, bioactivity, and stability of Tc-99m labeled p5 + 14 for single-photon emission computed tomography (SPECT) imaging of amyloidosis, validated in a mouse model of systemic amyloidosis. Radiochemical yield, purity, and biological activity of [(99m)Tc]p5 + 14 were documented by instant thin-layer chromatography (ITLC), SDS-PAGE and a quantitative amyloid fibril pulldown assay. The efficacy and stability were documented in serum amyloid protein A (AA) amyloid-bearing or wild-type (WT) control mice imaged with SPECT/X-ray computed tomography (CT) at two time points. The uptake and retention of [(99m)Tc]p5 + 14 in hepatosplenic amyloid was evaluated using region of interest (ROI) and tissue counting measurements. Tc-99m p5 + 14 was produced with a radiochemical yield of 75 % with greater than 90 % purity and biological activity comparable to that of radioiodinated peptide. AA amyloid was visualized by SPECT/CT imaging with specific uptake seen in amyloid-laden organs at levels ∼5 folds higher than in healthy mice. ROI analyses of decay-corrected SPECT/CT images showed <20 % loss of radiolabel from the 1 to 4 h imaging time points. Biodistribution data confirmed the specificity of the probe accumulation by amyloid-laden organs as compared to non-diseased tissues. [(99m)Tc]p5 + 14 is a specific and stable radiotracer for systemic amyloid in mice and may provide a convenient and inexpensive alternative to imaging of peripheral amyloidosis in patients.

  6. pH-sensitive interaction of HMG-CoA reductase inhibitors (statins) with organic anion transporting polypeptide 2B1.

    PubMed

    Varma, Manthena V; Rotter, Charles J; Chupka, Jonathan; Whalen, Kevin M; Duignan, David B; Feng, Bo; Litchfield, John; Goosen, Theunis C; El-Kattan, Ayman F

    2011-08-01

    The human organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) is ubiquitously expressed and may play an important role in the disposition of xenobiotics. The present study aimed to examine the role of OATP2B1 in the intestinal absorption and tissue uptake of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase inhibitors (statins). We first investigated the functional affinity of statins to the transporter as a function of extracellular pH, using OATP2B1-transfeced HEK293 cells. The results indicate that OATP2B1-mediated transport is significant for rosuvastatin, fluvastatin and atorvastatin, at neutral pH. However, OATP2B1 showed broader substrate specificity as well as enhanced transporter activity at acidic pH. Furthermore, uptake at acidic pH was diminished in the presence of proton ionophore, suggesting proton gradient as the driving force for OATP2B1 activity. Notably, passive transport rates are predominant or comparable to active transport rates for statins, except for rosuvastatin and fluvastatin. Second, we studied the effect of OATP modulators on statin uptake. At pH 6.0, OATP2B1-mediated transport of atorvastatin and cerivastatin was not inhibitable, while rosuvastatin transport was inhibited by E-3-S, rifamycin SV and cyclosporine with IC(50) values of 19.7 ± 3.3 μM, 0.53 ± 0.2 μM and 2.2 ± 0.4 μM, respectively. Rifamycin SV inhibited OATP2B1-mediated transport of E-3-S and rosuvastatin with similar IC(50) values at pH 6.0 and 7.4, suggesting that the inhibitor affinity is not pH-dependent. Finally, we noted that OATP2B1-mediated transport of E-3-S, but not rosuvastatin, is pH sensitive in intestinal epithelial (Caco-2) cells. However, uptake of E-3-S and rosuvastatin by Caco-2 cells was diminished in the presence of proton ionophore. The present results indicate that OATP2B1 may be involved in the tissue uptake of rosuvastatin and fluvastatin, while OATP2B1 may play a significant role in the intestinal absorption of several statins due to their transporter affinity at acidic pH.

  7. 68Ga-DOTA-TOC uptake in neuroendocrine tumour and healthy tissue: differentiation of physiological uptake and pathological processes in PET/CT.

    PubMed

    Kroiss, A; Putzer, D; Decristoforo, C; Uprimny, C; Warwitz, B; Nilica, B; Gabriel, M; Kendler, D; Waitz, D; Widmann, G; Virgolini, I J

    2013-04-01

    We wanted to establish the range of (68)Ga-DOTA-TOC uptake in liver and bone metastases of patients with neuroendocrine tumours (NET) and to establish the range of its uptake in pancreatic NET. This would allow differentiation between physiological uptake and tumour-related somatostatin receptor expression in the pancreas (including the uncinate process), liver and bone. Finally, we wanted to test for differences in patients with NET, either treated or not treated with peptide receptor radionuclide therapy (PRRT). In 249 patients, 390 (68)Ga-DOTA-TOC PET/CT studies were performed. The clinical indications for PET/CT were gastroenteropancreatic NET (194 studies), nongastroenteropancreatic NET (origin in the lung and rectum; 46 studies), NET of unknown primary (111 studies), phaeochromocytoma/glomus tumours (18 studies), and radioiodine-negative metastatic thyroid carcinoma (21 studies). SUVmax (mean ± standard deviation) values of (68)Ga-DOTA-TOC were 29.8 ± 16.5 in 162 liver metastases, 19.8 ± 18.8 in 89 bone metastases and 34.6 ± 17.1 in 43 pancreatic NET (33.6 ± 14.3 in 30 tumours of the uncinate process and 36.3 ± 21.5 in 13 tumours of the pancreatic tail). A significant difference in SUVmax (p < 0.02) was found in liver metastases of NET patients treated with PRRT. There were significant differences in SUVmax between nonmalignant and malignant tissue for both bone and liver metastases and for pancreatic NET including the uncinate process (p < 0.0001). At a cut-off value of 17.1 the specificity and sensitivity of SUVmax for differentiating tumours in the uncinate process were 93.6 % and 90.0 %, respectively (p < 0.0001). (68)Ga-DOTA-TOC is an excellent tracer for the imaging of tumours expressing somatostatin receptors on the tumour cell surface, facilitating the detection of even small tumour lesions. The noninvasive PET/CT approach by measurement of regional SUVmax can offer important clinical information to distinguish between physiological and pathological somatostatin receptor expression, especially in the uncinate process. PRRT does not significantly influence SUVmax, except in liver metastases of patients with NET.

  8. Diagnostic Ability of FDG-PET/CT in the Detection of Malignant Pleural Effusion

    PubMed Central

    Nakajima, Reiko; Abe, Koichiro; Sakai, Shuji

    2015-01-01

    Abstract We investigated the role of F-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) for the differential diagnosis of malignant and benign pleural effusion. We studied 36 consecutive patients with histologically proven cancer (excluding malignant mesothelioma) who underwent FDG-PET/CT for suspected malignant pleural effusion. Fourteen patients had cytologically proven malignant pleural effusion and the other 22 patients had either negative cytology or clinical follow-up, which confirmed the benign etiology. We examined the maximum standardized uptake values (SUVmax) of pleural effusion and the target-to-normal tissue ratio (TNR), calculated as the ratio of the pleural effusion SUVmax to the SUVmean of the normal tissues (liver, spleen, 12th thoracic vertebrae [Th12], thoracic aorta, and spinalis muscle). We also examined the size and density (in Hounsfield units) of the pleural effusion and pleural abnormalities on CT images. TNR (Th12) and increased pleural FDG uptake compared to background blood pool were significantly more frequent in cases with malignant pleural effusion (P < 0.05 for both). The cutoff TNR (Th12) value of >0.95 was the most accurate; the sensitivity, specificity, and accuracy for this value were 93%, 68%, and 75%, respectively. FDG-PET/CT can be a useful method for the differential diagnosis of malignant and benign pleural effusion. PMID:26200610

  9. Method for assessing the need for case-specific hemodynamics: application to the distribution of vascular permeability.

    PubMed

    Hazel, A L; Friedman, M H

    2000-01-01

    A common approach to understanding the role of hemodynamics in atherogenesis is to seek relationships between parameters of the hemodynamic environment, and the distribution of tissue variables thought to be indicative of early disease. An important question arising in such investigations is whether the distributions of tissue variables are sufficiently similar among cases to permit them to be described by an ensemble average distribution. If they are, the hemodynamic environment needs be determined only once, for a nominal representative geometry; if not, the hemodynamic environment must be obtained for each case. A method for classifying distributions from multiple cases to answer this question is proposed and applied to the distributions of the uptake of Evans blue dye labeled albumin by the external iliac arteries of swine in response to a step increase in flow. It is found that the uptake patterns in the proximal segment of the arteries, between the aortic trifurcation and the ostium of the circumflex iliac artery, show considerable case-to-case variability. In the distal segment, extending to the deep femoral ostium, many cases show very little spatial variation, and the patterns in those that do are similar among the cases. Thus the response of the distal segment may be understood with fewer simulations, but the proximal segment has more information to offer.

  10. Salinity’s influence on boron toxicity in broccoli: II. Impacts on boron uptake, uptake mechanisms and tissue ion relations.

    USDA-ARS?s Scientific Manuscript database

    Limited research has been conducted on the interactive effects of salinity and boron stresses on plants despite their common occurrence in natural systems. The purpose of this research was to determine and quantify the interactive effects of salinity, salt composition and boron on broccoli (Brassica...

  11. Contribution of Intrinsic Lactate to Maintenance of Seizure Activity in Neocortical Slices from Patients with Temporal Lobe Epilepsy and in Rat Entorhinal Cortex.

    PubMed

    Angamo, Eskedar Ayele; ul Haq, Rizwan; Rösner, Jörg; Gabriel, Siegrun; Gerevich, Zoltán; Heinemann, Uwe; Kovács, Richard

    2017-08-23

    Neuronal lactate uptake supports energy metabolism associated with synaptic signaling and recovery of extracellular ion gradients following neuronal activation. Altered expression of the monocarboxylate transporters (MCT) in temporal lobe epilepsy (TLE) hampers lactate removal into the bloodstream. The resulting increase in parenchymal lactate levels might exert both, anti- and pro-ictogen effects, by causing acidosis and by supplementing energy metabolism, respectively. Hence, we assessed the contribution of lactate to the maintenance of transmembrane potassium gradients, synaptic signaling and pathological network activity in chronic epileptic human tissue. Stimulus induced and spontaneous field potentials and extracellular potassium concentration changes (∆[K⁺] O ) were recorded in parallel with tissue pO₂ and pH in slices from TLE patients while blocking MCTs by α-cyano-4-hydroxycinnamic acid (4-CIN) or d-lactate. Intrinsic lactate contributed to the oxidative energy metabolism in chronic epileptic tissue as revealed by the changes in pO₂ following blockade of lactate uptake. However, unlike the results in rat hippocampus, ∆[K⁺] O recovery kinetics and field potential amplitude did not depend on the presence of lactate. Remarkably, inhibition of lactate uptake exerted pH-independent anti-seizure effects both in healthy rat and chronic epileptic tissue and this effect was partly mediated via adenosine 1 receptor activation following decreased oxidative metabolism.

  12. Contribution of Intrinsic Lactate to Maintenance of Seizure Activity in Neocortical Slices from Patients with Temporal Lobe Epilepsy and in Rat Entorhinal Cortex

    PubMed Central

    Angamo, Eskedar Ayele; Haq, Rizwan ul; Rösner, Jörg; Gabriel, Siegrun; Gerevich, Zoltán; Heinemann, Uwe

    2017-01-01

    Neuronal lactate uptake supports energy metabolism associated with synaptic signaling and recovery of extracellular ion gradients following neuronal activation. Altered expression of the monocarboxylate transporters (MCT) in temporal lobe epilepsy (TLE) hampers lactate removal into the bloodstream. The resulting increase in parenchymal lactate levels might exert both, anti- and pro-ictogen effects, by causing acidosis and by supplementing energy metabolism, respectively. Hence, we assessed the contribution of lactate to the maintenance of transmembrane potassium gradients, synaptic signaling and pathological network activity in chronic epileptic human tissue. Stimulus induced and spontaneous field potentials and extracellular potassium concentration changes (∆[K+]O) were recorded in parallel with tissue pO2 and pH in slices from TLE patients while blocking MCTs by α-cyano-4-hydroxycinnamic acid (4-CIN) or d-lactate. Intrinsic lactate contributed to the oxidative energy metabolism in chronic epileptic tissue as revealed by the changes in pO2 following blockade of lactate uptake. However, unlike the results in rat hippocampus, ∆[K+]O recovery kinetics and field potential amplitude did not depend on the presence of lactate. Remarkably, inhibition of lactate uptake exerted pH-independent anti-seizure effects both in healthy rat and chronic epileptic tissue and this effect was partly mediated via adenosine 1 receptor activation following decreased oxidative metabolism. PMID:28832554

  13. Protoplast-Esculin Assay as a New Method to Assay Plant Sucrose Transporters: Characterization of AtSUC6 and AtSUC7 Sucrose Uptake Activity in Arabidopsis Col-0 Ecotype.

    PubMed

    Rottmann, Theresa M; Fritz, Carolin; Lauter, Anja; Schneider, Sabine; Fischer, Cornelia; Danzberger, Nina; Dietrich, Petra; Sauer, Norbert; Stadler, Ruth

    2018-01-01

    The best characterized function of sucrose transporters of the SUC family in plants is the uptake of sucrose into the phloem for long-distance transport of photoassimilates. This important step is usually performed by one specific SUC in every species. However, plants possess small families of several different SUCs which are less well understood. Here, we report on the characterization of AtSUC6 and AtSUC7, two members of the SUC family in Arabidopsis thaliana . Heterologous expression in yeast ( Saccharomyces cerevisiae ) revealed that AtSUC6 Col-0 is a high-affinity H + -symporter that mediates the uptake of sucrose and maltose across the plasma membrane at exceptionally low pH values. Reporter gene analyses revealed a strong expression of AtSUC6 Col-0 in reproductive tissues, where the protein product might contribute to sugar uptake into pollen tubes and synergid cells. A knockout of AtSUC6 did not interfere with vegetative development or reproduction, which points toward physiological redundancy of AtSUC6 Col-0 with other sugar transporters. Reporter gene analyses showed that AtSUC7 Col-0 is expressed in roots and pollen tubes and that this sink specific expression of AtSUC7 Col-0 is regulated by intragenic regions. Transport activity of AtSUC7 Col-0 could not be analyzed in baker's yeast or Xenopus oocytes because the protein was not correctly targeted to the plasma membrane in both heterologous expression systems. Therefore, a novel approach to analyze sucrose transporters in planta was developed. Plasma membrane localized SUCs including AtSUC6 Col-0 and also sucrose specific SWEETs were able to mediate transport of the fluorescent sucrose analog esculin in transformed mesophyll protoplasts. In contrast, AtSUC7 Col-0 is not able to mediate esculin transport across the plasma membrane which implicates that AtSUC7 Col-0 might be a non-functional pseudogene. The novel protoplast assay provides a useful tool for the quick and quantitative analysis of sucrose transporters in an in planta expression system.

  14. Protoplast-Esculin Assay as a New Method to Assay Plant Sucrose Transporters: Characterization of AtSUC6 and AtSUC7 Sucrose Uptake Activity in Arabidopsis Col-0 Ecotype

    PubMed Central

    Rottmann, Theresa M.; Fritz, Carolin; Lauter, Anja; Schneider, Sabine; Fischer, Cornelia; Danzberger, Nina; Dietrich, Petra; Sauer, Norbert; Stadler, Ruth

    2018-01-01

    The best characterized function of sucrose transporters of the SUC family in plants is the uptake of sucrose into the phloem for long-distance transport of photoassimilates. This important step is usually performed by one specific SUC in every species. However, plants possess small families of several different SUCs which are less well understood. Here, we report on the characterization of AtSUC6 and AtSUC7, two members of the SUC family in Arabidopsis thaliana. Heterologous expression in yeast (Saccharomyces cerevisiae) revealed that AtSUC6Col-0 is a high-affinity H+-symporter that mediates the uptake of sucrose and maltose across the plasma membrane at exceptionally low pH values. Reporter gene analyses revealed a strong expression of AtSUC6Col-0 in reproductive tissues, where the protein product might contribute to sugar uptake into pollen tubes and synergid cells. A knockout of AtSUC6 did not interfere with vegetative development or reproduction, which points toward physiological redundancy of AtSUC6Col-0 with other sugar transporters. Reporter gene analyses showed that AtSUC7Col-0 is expressed in roots and pollen tubes and that this sink specific expression of AtSUC7Col-0 is regulated by intragenic regions. Transport activity of AtSUC7Col-0 could not be analyzed in baker’s yeast or Xenopus oocytes because the protein was not correctly targeted to the plasma membrane in both heterologous expression systems. Therefore, a novel approach to analyze sucrose transporters in planta was developed. Plasma membrane localized SUCs including AtSUC6Col-0 and also sucrose specific SWEETs were able to mediate transport of the fluorescent sucrose analog esculin in transformed mesophyll protoplasts. In contrast, AtSUC7Col-0 is not able to mediate esculin transport across the plasma membrane which implicates that AtSUC7Col-0 might be a non-functional pseudogene. The novel protoplast assay provides a useful tool for the quick and quantitative analysis of sucrose transporters in an in planta expression system. PMID:29740457

  15. Improved delivery of magnetic nanoparticles with chemotherapy cancer treatment

    NASA Astrophysics Data System (ADS)

    Petryk, Alicia A.; Giustini, Andrew J.; Gottesman, Rachel E.; Hoopes, P. Jack

    2013-02-01

    Most nanoparticle-based cancer therapeutic strategies seek to develop an effective individual cancer cell or metastatic tumor treatment. Critical to the success of these therapies is to direct as much of the agent as possible to the targeted tissue while avoiding unacceptable normal tissue complications. In this light, three different cisplatinum/magnetic nanoparticle (mNP) administration regimens were investigated. The most important finding suggests that clinically relevant doses of cisplatinum result in a significant increase in the tumor uptake of systemically delivered mNP. This enhancement of mNP tumor uptake creates the potential for an even greater therapeutic ratio through the addition of mNP based, intracellular hyperthermia.

  16. Diffuse FDG uptake due to fat necrosis following transverse rectus abdominus myocutaneous (TRAM) flap reconstruction.

    PubMed

    Dobbs, Nathan B; Latifi, Hamid R

    2013-08-01

    We report a case of a 57-year-old female patient with right breast invasive ductal carcinoma. Bilateral mastectomy and TRAM flap reconstructions were performed. Postoperatively, a palpable focus was identified within the left breast. PET/CT showed hypermetabolism throughout the reconstructed left breast, correlating with mixed fat attenuation and inflammatory soft tissue. MRI showed extensive fat necrosis/oil cyst formation in the left breast. As a TRAM flap reconstruction with fat-rich tissue can be damaged intraoperatively due to surgical manipulation, abnormal FDG uptake in this setting is more likely related to fat necrosis than recurrent tumor.

  17. Substantial Metabolic Activity of Human Brown Adipose Tissue during Warm Conditions and Cold-Induced Lipolysis of Local Triglycerides.

    PubMed

    Weir, Graeme; Ramage, Lynne E; Akyol, Murat; Rhodes, Jonathan K; Kyle, Catriona J; Fletcher, Alison M; Craven, Thomas H; Wakelin, Sonia J; Drake, Amanda J; Gregoriades, Maria-Lena; Ashton, Ceri; Weir, Nick; van Beek, Edwin J R; Karpe, Fredrik; Walker, Brian R; Stimson, Roland H

    2018-06-05

    Current understanding of in vivo human brown adipose tissue (BAT) physiology is limited by a reliance on positron emission tomography (PET)/computed tomography (CT) scanning, which has measured exogenous glucose and fatty acid uptake but not quantified endogenous substrate utilization by BAT. Six lean, healthy men underwent 18 fluorodeoxyglucose-PET/CT scanning to localize BAT so microdialysis catheters could be inserted in supraclavicular BAT under CT guidance and in abdominal subcutaneous white adipose tissue (WAT). Arterial and dialysate samples were collected during warm (∼25°C) and cold exposure (∼17°C), and blood flow was measured by 133 xenon washout. During warm conditions, there was increased glucose uptake and lactate release and decreased glycerol release by BAT compared with WAT. Cold exposure increased blood flow, glycerol release, and glucose and glutamate uptake only by BAT. This novel use of microdialysis reveals that human BAT is metabolically active during warm conditions. BAT activation substantially increases local lipolysis but also utilization of other substrates such as glutamate. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. [Relation between location of elements in periodic table and affinity for the malignant tumor (author's transl)].

    PubMed

    Ando, A; Hisada, K; Ando, I

    1977-10-01

    Affinity of many inorganic compounds for the malignant tumor was examined, using the rats which were subcutaneously transplanted with Yoshida sarcoma. And the relations between the uptake rate into the malignant tumor and in vitro binding power to the protein were investigated in these compounds. In these experiments, the bipositive ions and anions had not affinity for the tumor tissue with a few exceptions. On the other hand, Hg, Au and Bi, which have strong binding power to the protein, showed high uptake rate into the malignant tumor. As Hg++, Au+ and Bi+++ are soft acids according to classification of Lewis acids, it was thought that these elements would bind strongly to soft base (R-SH, R-S-) present in the tumor tissue. In many hard acids (according to classification of Lewis acids), the uptake rate into the tumor was shown as a function of ionic potentials (valency/ionic radii) of the metal ions. It is presumed that the chemical bond of these hard acids in the tumor tissue is ionic bond to hard base (R-COO-, R-PO3(2-), R-SO3-, R-NH2).

  19. The role of necrosis, acute hypoxia and chronic hypoxia in 18F-FMISO PET image contrast: a computational modelling study

    NASA Astrophysics Data System (ADS)

    Warren, Daniel R.; Partridge, Mike

    2016-12-01

    Positron emission tomography (PET) using 18F-fluoromisonidazole (FMISO) is a promising technique for imaging tumour hypoxia, and a potential target for radiotherapy dose-painting. However, the relationship between FMISO uptake and oxygen partial pressure ({{P}{{\\text{O}2}}} ) is yet to be quantified fully. Tissue oxygenation varies over distances much smaller than clinical PET resolution (<100 μm versus  ˜4 mm), and cyclic variations in tumour perfusion have been observed on timescales shorter than typical FMISO PET studies (˜20 min versus a few hours). Furthermore, tracer uptake may be decreased in voxels containing some degree of necrosis. This work develops a computational model of FMISO uptake in millimetre-scale tumour regions. Coupled partial differential equations govern the evolution of oxygen and FMISO distributions, and a dynamic vascular source map represents temporal variations in perfusion. Local FMISO binding capacity is modulated by the necrotic fraction. Outputs include spatiotemporal maps of {{P}{{\\text{O}2}}} and tracer accumulation, enabling calculation of tissue-to-blood ratios (TBRs) and time-activity curves (TACs) as a function of mean tissue oxygenation. The model is characterised using experimental data, finding half-maximal FMISO binding at local {{P}{{\\text{O}2}}} of 1.4 mmHg (95% CI: 0.3-2.6 mmHg) and half-maximal necrosis at 1.2 mmHg (0.1-4.9 mmHg). Simulations predict a non-linear non-monotonic relationship between FMISO activity (4 hr post-injection) and mean tissue {{P}{{\\text{O}2}}} : tracer uptake rises sharply from negligible levels in avascular tissue, peaking at  ˜5 mmHg and declining towards blood activity in well-oxygenated conditions. Greater temporal variation in perfusion increases peak TBRs (range 2.20-5.27) as a result of smaller predicted necrotic fraction, rather than fundamental differences in FMISO accumulation under acute hypoxia. Identical late FMISO uptake can occur in regions with differing {{P}{{\\text{O}2}}} and necrotic fraction, but simulated TACs indicate that additional early-phase information may allow discrimination of hypoxic and necrotic signals. We conclude that a robust approach to FMISO interpretation (and dose-painting prescription) is likely to be based on dynamic PET analysis.

  20. The role of necrosis, acute hypoxia and chronic hypoxia in 18F-FMISO PET image contrast: a computational modelling study.

    PubMed

    Warren, Daniel R; Partridge, Mike

    2016-12-21

    Positron emission tomography (PET) using 18 F-fluoromisonidazole (FMISO) is a promising technique for imaging tumour hypoxia, and a potential target for radiotherapy dose-painting. However, the relationship between FMISO uptake and oxygen partial pressure ([Formula: see text]) is yet to be quantified fully. Tissue oxygenation varies over distances much smaller than clinical PET resolution (<100 μm versus  ∼4 mm), and cyclic variations in tumour perfusion have been observed on timescales shorter than typical FMISO PET studies (∼20 min versus a few hours). Furthermore, tracer uptake may be decreased in voxels containing some degree of necrosis. This work develops a computational model of FMISO uptake in millimetre-scale tumour regions. Coupled partial differential equations govern the evolution of oxygen and FMISO distributions, and a dynamic vascular source map represents temporal variations in perfusion. Local FMISO binding capacity is modulated by the necrotic fraction. Outputs include spatiotemporal maps of [Formula: see text] and tracer accumulation, enabling calculation of tissue-to-blood ratios (TBRs) and time-activity curves (TACs) as a function of mean tissue oxygenation. The model is characterised using experimental data, finding half-maximal FMISO binding at local [Formula: see text] of 1.4 mmHg (95% CI: 0.3-2.6 mmHg) and half-maximal necrosis at 1.2 mmHg (0.1-4.9 mmHg). Simulations predict a non-linear non-monotonic relationship between FMISO activity (4 hr post-injection) and mean tissue [Formula: see text] : tracer uptake rises sharply from negligible levels in avascular tissue, peaking at  ∼5 mmHg and declining towards blood activity in well-oxygenated conditions. Greater temporal variation in perfusion increases peak TBRs (range 2.20-5.27) as a result of smaller predicted necrotic fraction, rather than fundamental differences in FMISO accumulation under acute hypoxia. Identical late FMISO uptake can occur in regions with differing [Formula: see text] and necrotic fraction, but simulated TACs indicate that additional early-phase information may allow discrimination of hypoxic and necrotic signals. We conclude that a robust approach to FMISO interpretation (and dose-painting prescription) is likely to be based on dynamic PET analysis.

  1. Metabolic Catastrophe in Mice Lacking Transferrin Receptor in Muscle.

    PubMed

    Barrientos, Tomasa; Laothamatas, Indira; Koves, Timothy R; Soderblom, Erik J; Bryan, Miles; Moseley, M Arthur; Muoio, Deborah M; Andrews, Nancy C

    2015-11-01

    Transferrin receptor (Tfr1) is ubiquitously expressed, but its roles in non-hematopoietic cells are incompletely understood. We used a tissue-specific conditional knockout strategy to ask whether skeletal muscle required Tfr1 for iron uptake. We found that iron assimilation via Tfr1 was critical for skeletal muscle metabolism, and that iron deficiency in muscle led to dramatic changes, not only in muscle, but also in adipose tissue and liver. Inactivation of Tfr1 incapacitated normal energy production in muscle, leading to growth arrest and a muted attempt to switch to fatty acid β oxidation, using up fat stores. Starvation signals stimulated gluconeogenesis in the liver, but amino acid substrates became limiting and hypoglycemia ensued. Surprisingly, the liver was also iron deficient, and production of the iron regulatory hormone hepcidin was depressed. Our observations reveal a complex interaction between iron homeostasis and metabolism that has implications for metabolic and iron disorders.

  2. Metabolic Catastrophe in Mice Lacking Transferrin Receptor in Muscle

    PubMed Central

    Barrientos, Tomasa; Laothamatas, Indira; Koves, Timothy R.; Soderblom, Erik J.; Bryan, Miles; Moseley, M. Arthur; Muoio, Deborah M.; Andrews, Nancy C.

    2015-01-01

    Transferrin receptor (Tfr1) is ubiquitously expressed, but its roles in non-hematopoietic cells are incompletely understood. We used a tissue-specific conditional knockout strategy to ask whether skeletal muscle required Tfr1 for iron uptake. We found that iron assimilation via Tfr1 was critical for skeletal muscle metabolism, and that iron deficiency in muscle led to dramatic changes, not only in muscle, but also in adipose tissue and liver. Inactivation of Tfr1 incapacitated normal energy production in muscle, leading to growth arrest and a muted attempt to switch to fatty acid β oxidation, using up fat stores. Starvation signals stimulated gluconeogenesis in the liver, but amino acid substrates became limiting and hypoglycemia ensued. Surprisingly, the liver was also iron deficient, and production of the iron regulatory hormone hepcidin was depressed. Our observations reveal a complex interaction between iron homeostasis and metabolism that has implications for metabolic and iron disorders. PMID:26870796

  3. A novel Tc-99 m and fluorescence labeled peptide as a multimodal imaging agent for targeting angiogenesis in a murine tumor model.

    PubMed

    Kim, Myoung Hyoun; Kim, Chang Guhn; Kim, Seul-Gi; Kim, Dae-Weung

    2016-11-01

    The serine-aspartic acid-valine (SDV) peptide binds specifically to integrin α V β 3 . In the present study, we successfully developed a TAMRA-GHEG-ECG-SDV peptide labeled with both Tc-99 m and TAMRA to target the integrin α V β 3 of tumor cells; furthermore, we evaluated the diagnostic performance of Tc-99 m TAMRA-GHEG-ECG-SDV as a dual-modality imaging agent for tumor of the murine model. TAMRA-GHEG-ECG-SDV was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling of TAMRA-GHEG-ECG-SDV with Tc-99 m was done using ligand exchange methods. Labeling stability and cytotoxicity studies were performed. Gamma camera imaging, biodistribution and ex vivo imaging studies were performed in murine models with HT-1080 and HT-29 tumors. A tumor tissue slide was prepared and analyzed using confocal microscopy. After radiolabeling procedures with Tc-99 m, the Tc-99 m TAMRA-GHEG-ECG-SDV complexes were prepared in high yield (>99%). In the gamma camera imaging study, a substantial uptake of Tc-99 m TAMRA-GHEG-ECG-SDV into HT-1080 tumor (integrin α V β 3 positive) and low uptake of Tc-99 m TAMRA-GHEG-ECG-SDV into HT-29 tumor (integrin α V β 3 negative) were demonstrated. A competition study revealed that HT-1080 tumor uptake was effectively blocked by the co-injection of an excess concentration of SDV. Specific uptake of Tc-99 m TAMRA-GHEG-ECG-SDV was confirmed by biodistribution, ex vivo imaging and confocal microscopy studies. Our in vivo and in vitro studies revealed substantial uptake of Tc-99 m TAMRA-GHEG-ECG-SDV in the integrin α V β 3 -positive tumor. Tc-99 m TAMRA-GHEG-ECG-SDV could be a good candidate for a dual-modality imaging agent targeting tumor angiogenesis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varma, S.D.; Mooney, J.M.

    Studies have been conducted to examine the implications of photochemical generation of O2- and its derivatization to H/sub 2/O/sub 2/ and OH in the physiology of the lens in vitro. Physiological status was determined by measuring the uptake of rubidium by the intact tissue when cultured in riboflavin-containing medium, in dark and light, and in the presence and absence of various scavengers. In the presence of light, the uptake of rubidium in the lens was greatly diminished; this suggests photodamage to the tissue. MnSOD and ferricyanide protected against this photochemical damage. The damaging process was thus initiated by the generationmore » of O2-. The tissue damage was also attenuated by catalase, ferrocyanide, and mannitol. These results, therefore, suggest the participation of hydrogen peroxide and the subsequent Haber-Weiss reaction in the photodamaging process.« less

  5. Mahanine enhances the glucose-lowering mechanisms in skeletal muscle and adipocyte cells.

    PubMed

    Nooron, Nattakarn; Athipornchai, Anan; Suksamrarn, Apichart; Chiabchalard, Anchalee

    2017-12-09

    Insulin resistance is a major defect underlying type 2 diabetes development. Skeletal muscle tissue and adipocyte tissue are the major sites of postprandial glucose disposal, and enhancing glucose uptake into this tissue may decrease insulin resistance in type 2 diabetes patients. Mahanine (3,11-dihydro-3,5-dimethyl-3-(4-methyl-3-pentenyl)pyrano[3,2-a]carbazol-9-ol) has been reported to be a major bioactive carbazole alkaloid that has many biological activities including antitumor, anti-inflammatory, antioxidant and anti-diabetic activities. However, the molecular mechanism and signaling pathways mediating the anti-diabetic effects of mahanine require further investigation. Therefore, the aim of this study was to investigate the effects of mahanine, a carbazole alkaloid from Murraya koenigii, on glucose uptake and glucose transporter 4 (GLUT4) translocation in skeletal muscle and adipocyte cells. Mahanine treatment promoted a dose dependent increased in glucose uptake in L6 myotubes and adipocyte cells via activation of the Akt signaling pathway. Mahanine induced Akt-activation was reversed by co-treatment with wortmannin, an Akt inhibitor. Moreover, it was found that mahanine significantly enhanced GLUT4 translocation to the plasma membrane in L6 myotubes. These results suggest that increased activation of the Akt signaling pathway lead to increased plasma membrane GLUT4 content and increased glucose uptake. These data strongly suggest that mahanine has anti-diabetic potential for treating diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Specific stimulated uptake of acetylcholine by Torpedo electric organ synaptic vesicles.

    PubMed Central

    Parsons, S M; Koenigsberger, R

    1980-01-01

    The specificity of acetylcholine uptake by synaptic vesicles isolated from the electric organ of Torpedo californica was studied. In the absence of cofactors, [3H]acetylcholine was taken up identically to[14C]choline in the same solution (passive uptake), and the equilibrium concentration achieved inside the vesicles was equal to the concentration outside. In the presence of MgATP, [3H]acetylcholine and [14C]choline in the same solution were taken up identically, except only about half as much of each was taken up (suppressed uptake). [3H]Acetylcholine uptake was stimulated by MgATP and HCO3- about 4-fold relative to suppressed uptake, for a net concentrative uptake of about 2:1 (stimulated uptake). Uptake of [14C]choline in the same solution remained at the suppressed level. [3H]Acetylcholine taken up under stimulated conditions migrated with vesicles containing [14C]mannitol on analytical glycerol density gradients during centrifugation. Vesicle were treated with nine protein modification reagents under mild conditions. Two reagents had no effect on, dithiothreitol potentiated, and six reagents strongly inhibited subsequent stimulated uptake of [3H]acetylcholine. The results indicate that uptake of acetylcholine is conditionally specific for the transported substrate, is carried out by the synaptic vesicles rather than a contaminant of the preparation, and requires a functional protein system containing a critical sulfhydryl group. PMID:6934549

  7. A comparison of chelator-facilitated metal uptake by a halophyte and a glycophyte.

    PubMed

    Jordan, Fiona L; Robin-Abbott, Molly; Maier, Raina M; Glenn, Edward P

    2002-12-01

    Phytoextraction is the use of plants to remove contaminants, in particular metals, from soil via root uptake and translocation to the shoots. Efficient phytoextraction requires high-biomass plants with efficient translocating properties. Halophytes characteristically accumulate large quantities of salts in above ground tissue material and can have high biomass production. It has been speculated that salt-tolerant plants may also be heavy metal tolerant and, further, may be able to accumulate metals. This study compared growth and metal uptake by a halophyte, Atriplex nummularia, and a common glycophyte, Zea mays, in a mine-tailing contaminated soil:mulch mixture. Two chelators, ethylenediaminetetraacetic acid (EDTA) and rhamnolipid, were used to facilitate plant metal uptake. Despite a lower growth rate (2% growth/d) in the contaminated soil, the halophyte accumulated roughly the same amount of metals as the glycophyte on a mass basis (30-40 mg/kg dry wt). Neither plant, however, hyperaccumulated any of the metals tested. When treated with EDTA, specific differences in patterns of metal uptake between the two plants emerged. The halophyte accumulated significantly more Cu (2x) and Pb (1x) in the shoots than the glycophyte, but root metal concentrations were generally higher for the glycophyte, indicating that the halophyte translocated more metal from the root to the shoot than the glycophyte. For example, Zn shoot-to-root ratios ranged from 1.4 to 2.1 for Atriplex and from 0.5 to 0.6 for Z. mays. The biodegradable chelator rhamnolipid was not effective at enhancing shoot metal concentrations, even though radiolabeled chelator was found in the shoot material of both plants. Our results suggest that halophytes, despite their slower growth rates, may have greater potential to selectively phytoextract metals from contaminated soils than glycophytes.

  8. Environmental RNAi in herbivorous insects.

    PubMed

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C; Johnson, Steven; Meyer, Steve E; Kerstetter, Randy A; McNulty, Brian C; Bolognesi, Renata; Heck, Gregory R

    2015-05-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. © 2015 Ivashuta et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwieterman, W.; Sorrentino, D.; Potter, B.J.

    1988-01-01

    A portion of the hepatocellular uptake of nonesterified long-chain fatty acids is mediated by a specific 40-kDa plasma membrane fatty acid binding protein, which has also been isolated from the gut. To investigate whether a similar transport process exists in other tissues with high transmembrane fatty acid fluxes, initial rates (V/sub O/) of (/sup 3/H)-oleate uptake into isolated rat adipocytes were studied as a function of the concentration of unbound (/sup 3/H)oleate in the medium. V/sub O/ reached a maximum as the concentration of unbound oleate was increased and was significantly inhibited both by phloretin and by prior incubation ofmore » the cells with Pronase. A rabbit antibody to the rat liver plasma membrane fatty acid binding protein inhibited adipocyte fatty acid uptake by up to 63% in dose-dependent fashion. Inhibition was noncompetitive; at an immunoglobulin concentration of 250 ..mu..g/ml V/sub max/ was reduced from 2480 /plus minus/ 160 to 1870 /plus minus/ 80 pmol/min per 5 /times/ 10/sup 4/ adipocytes, with no change in K/sub m/. A basic kDa adipocyte plasma membrane fatty acid binding protein, isolated from crude adipocyte plasma membrane fractions, reacted strongly in both agar gel diffusion and electrophoretic blots with the antibody raised against the corresponding hepatic plasma membrane protein. These data indicate that the uptake of oleate by rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut.« less

  10. A novel Tc-99m and fluorescence-labeled arginine-arginine-leucine-containing peptide as a multimodal tumor imaging agent in a murine tumor model.

    PubMed

    Kim, Myoung Hyoun; Kim, Seul-Gi; Kim, Dae-Weung

    2018-06-15

    We developed a Tc-99m and TAMRA-labeled peptide, Tc-99m arginine-arginine-leucine (RRL) peptide (TAMRA-GHEG-ECG-RRL), to target tumor cells and evaluated the diagnostic performance of Tc-99m TAMRA-GHEG-ECG-RRL as a dual-modality imaging agent for tumor in a murine model. TAMRA-GHEG-ECG-RRL was synthesized using Fmoc solid-phase peptide synthesis. Binding affinity and in vitro cellular uptake studies were performed. Gamma camera imaging, biodistribution, and ex vivo imaging studies were performed in murine models with PC-3 tumors. Tumor tissue slides were prepared and analyzed with immunohistochemistry using confocal microscopy. After radiolabeling procedures with Tc-99m, Tc-99m TAMRA-GHEG-ECG-RRL complexes were prepared in high yield (>96%). The K d of Tc-99m TAMRA-GHEG-ECG-RRL determined by saturation binding was 41.7 ± 7.8 nM. Confocal microscopy images of PC-3 cells incubated with TAMRA-GHEG-ECG-RRL showed strong fluorescence in the cytoplasm. Gamma camera imaging revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-RRL in tumors. Tumor uptake was effectively blocked by the coinjection of an excess concentration of RRL. Specific uptake of Tc-99m TAMRA-GHEG-ECG-RRL was confirmed by biodistribution, ex vivo imaging, and immunohistochemistry stain studies. In conclusion, in vivo and in vitro studies revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-RRL in tumors. Tc-99m TAMRA-GHEG-ECG-RRL has potential as a dual-modality tumor imaging agent. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Synthesis and evaluation of Tc-99m and fluorescence-labeled elastin-derived peptide, VAPG for multimodal tumor imaging in murine tumor model.

    PubMed

    Kim, Myoung Hyoun; Kim, Chang Guhn; Kim, Seul-Gi; Kim, Dae-Weung

    2017-12-01

    We developed a Tc-99m and fluorescence-labeled peptide, Tc-99m TAMRA-GHEG-ECG-VAPG to target tumor cells and evaluated the diagnostic performance as a dual-modality imaging agent for tumor in a murine model. TAMRA-GHEG-ECG-VAPG was synthesized by using Fmoc solid-phase peptide synthesis. Radiolabeling of TAMRA-GHEG-ECG-VAPG with Tc-99m was done by using ligand exchange via tartrate. Binding affinity and in vitro cellular uptake studies were performed. Gamma camera imaging, biodistribution, and ex vivo imaging studies were performed in murine models with SW620 tumors. Tumor tissue slides were prepared and analyzed with immunohistochemistry by using confocal microscopy. After radiolabeling procedures with Tc-99m, Tc-99m TAMRA-GHEG-ECG-VAPG complexes were prepared in high yield (>96%). The K d of Tc-99m TAMRA-GHEG-ECG-VAPG determined by saturation binding was 16.8 ± 3.6 nM. Confocal microscopy images of SW620 cells incubated with TAMRA-GHEG-ECG-VAPG showed strong fluorescence in the cytoplasm. Gamma camera imaging revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-VAPG in tumors. Tumor uptake was effectively blocked by the coinjection of an excess concentration of VAPG. Specific uptake of Tc-99m TAMRA-GHEG-ECG-VAPG was confirmed by biodistribution, ex vivo imaging, and immunohistochemistry stain studies. In vivo and in vitro studies revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-VAPG in tumor cells. Tc-99m TAMRA-GHEG-ECG-VAPG has potential as a dual-modality tumor imaging agent. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Physiologic distribution of PSMA-ligand in salivary glands and seromucous glands of the head and neck on PET/CT.

    PubMed

    Klein Nulent, Thomas J W; Valstar, Matthijs H; de Keizer, Bart; Willems, Stefan M; Smit, Laura A; Al-Mamgani, Abrahim; Smeele, Ludwig E; van Es, Robert J J; de Bree, Remco; Vogel, Wouter V

    2018-05-01

    Prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) is used for detection and (re)staging of prostate cancer. However, healthy salivary, seromucous, and lacrimal glands also have high PSMA-ligand uptake. This study aimed to describe physiologic PSMA-ligand uptake distribution characteristics in the head and neck to aid in PSMA PET/CT interpretation and to identify possible new clinical applications for PSMA-ligand imaging. Thirty consecutive patients who underwent PSMA PET/CT for prostate cancer were evaluated. Tracer maximum standardized uptake values (SUV max ) in the salivary, seromucous, and lacrimal glands were determined visually and quantitatively. Overall and intraindividual variations were reported. All gland locations had increased tracer uptake. The mean SUV max  ± standard deviation varied: parotid 12.3 ± 3.9; submandibular 11.7 ± 3.5; sublingual 4.5 ± 1.9; soft palate 2.4 ± 0.5; pharyngeal wall 4.3 ± 1.3; nasal mucosa 3.4 ± 0.9; supraglottic larynx 2.7 ± 0.7; and lacrimal 6.2 ± 2.2. The parotid had the largest overall variation in SUV max (5.2-22.9), and the sublingual glands had the largest mean intraindividual difference (18.1%). Major and minor salivary and seromucous glands consistently have high PSMA-ligand uptake. Minor gland locations can be selectively visualized by this technique for the first time. This provides potential new applications such as quantification of present salivary gland tissues and individualization of radiotherapy for head and neck cancer or lutetium-177-PSMA radionuclide treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Prospective flutemetamol positron emission tomography and histopathology in normal pressure hydrocephalus.

    PubMed

    Rinne, Juha O; Frantzen, Janek; Leinonen, Ville; Lonnrot, Kimmo; Laakso, Aki; Virtanen, Kirsi A; Solin, Olof; Kotkansalo, Anna; Koivisto, Anne; Sajanti, Juha; Karppinen, Atte; Lehto, Hanna; Rummukainen, Jaana; Buckley, Chris; Smith, Adrian; Jones, Paul A; Sherwin, Paul; Farrar, Gill; McLain, Richard; Kailajarvi, Marita; Grachev, Igor D

    2014-01-01

    BACKGOUND/OBJECTIVE: To determine the level of association between uptake of the amyloid positron emission tomography (PET) imaging agent [(18)F]flutemetamol and the level of amyloid-β measured by immunohistochemical and histochemical staining in a frontal cortical region biopsy site. Seventeen patients with probable normal pressure hydrocephalus (NPH) underwent prospective [(18)F]flutemetamol PET and subsequent frontal cortical brain biopsy during ventriculoperitoneal shunting. Tissue amyloid-β was evaluated using the monoclonal antibody 4G8, thioflavin S and Bielschowsky silver stain. Four of the 17 patients (23.5%) had amyloid-β pathology based on the overall pathology read and also showed increased [(18)F]flutemetamol uptake. [(18)F]Flutemetamol standardized uptake values from the biopsy site were significantly associated with biopsy specimen amyloid-β levels (Pearson's r = 0.67; p = 0.006). There was also good correlation between the biopsy specimen amyloid-β level and uptake of [(18)F]flutemetamol in the region contralateral to the biopsy site (r = 0.67; p = 0.006), as well as with composite cortical [(18)F]flutemetamol uptake (r = 0.65; p = 0.008). The blinded visual read showed a high level of agreement between all readers (κ = 0.88). Two of 3 readers were in full agreement on all images; 1 reader disagreed on 1 of the 17 NPH cases. Blinded visual assessments of PET images by 1 reader were associated with 100% sensitivity to the overall pathology read, and assessments by the 2 others were associated with 75% sensitivity (overall sensitivity by majority read was 75%); specificity of all readers was 100%. [(18)F]Flutemetamol detects brain amyloid-β in vivo and shows promise as a valuable tool to study and possibly facilitate diagnosis of Alzheimer's disease both in patients with suspected NPH and among the wider population.

  14. Uptake and selective partitioning of dietary lipids to ovarian and muscle tissue of maturing female coho salmon, Oncorhynchus kisutch, during secondary oocyte growth.

    PubMed

    Johnson, Ronald B; Kroeger, Eric L; Reichert, William L; Carter, Cameron S; Rust, Michael B

    2017-06-01

    Female coho salmon, Oncorhynchus kisutch, were fed one of two experimental feeds containing lipids with markedly different stable 13 C isotope signatures during the late cortical alveolus, lipid droplet, and vitellogenesis stages of secondary oocyte growth. Ovarian and muscle lipids fatty acid concentrations were significantly affected by treatment during all three stages of development. Stable 13 C isotope analyses confirmed that dietary lipids were incorporated into both ovarian and muscle lipids during all three stages and revealed that ovarian lipids were more affected than muscle lipids during vitellogenesis. Arachidonic acid (ARA) was incorporated into ovarian lipids at the highest rate of all fatty acids examined with the greatest uptake observed during the cortical alveolus and lipid droplet stages of development. Docosahexaenoic acid (DHA) was incorporated into ovarian lipids at the next highest rate with the greatest uptake observed during the lipid droplet stage of development. The presence of an ovary specific, fatty acid transfer mechanism is proposed. Results from this study demonstrate the ability to greatly alter the fatty acid composition of ovarian lipids through a dietary change during secondary oocyte growth and may be of great interest to producers of farmed salmon and salmon broodstock programs. Published by Elsevier Inc.

  15. Revisiting the metabolic syndrome: the emerging role of aquaglyceroporins.

    PubMed

    da Silva, Inês Vieira; Rodrigues, Joana S; Rebelo, Irene; Miranda, Joana P G; Soveral, Graça

    2018-06-01

    The metabolic syndrome (MetS) includes a group of medical conditions such as insulin resistance (IR), dyslipidemia and hypertension, all associated with an increased risk for cardiovascular disease. Increased visceral and ectopic fat deposition are also key features in the development of IR and MetS, with pathophysiological sequels on adipose tissue, liver and muscle. The recent recognition of aquaporins (AQPs) involvement in adipose tissue homeostasis has opened new perspectives for research in this field. The members of the aquaglyceroporin subfamily are specific glycerol channels implicated in energy metabolism by facilitating glycerol outflow from adipose tissue and its systemic distribution and uptake by liver and muscle, unveiling these membrane channels as key players in lipid balance and energy homeostasis. Being involved in a variety of pathophysiological mechanisms including IR and obesity, AQPs are considered promising drug targets that may prompt novel therapeutic approaches for metabolic disorders such as MetS. This review addresses the interplay between adipose tissue, liver and muscle, which is the basis of the metabolic syndrome, and highlights the involvement of aquaglyceroporins in obesity and related pathologies and how their regulation in different organs contributes to the features of the metabolic syndrome.

  16. The acellular matrix (ACM) for bladder tissue engineering: A quantitative magnetic resonance imaging study.

    PubMed

    Cheng, Hai-Ling Margaret; Loai, Yasir; Beaumont, Marine; Farhat, Walid A

    2010-08-01

    Bladder acellular matrices (ACMs) derived from natural tissue are gaining increasing attention for their role in tissue engineering and regeneration. Unlike conventional scaffolds based on biodegradable polymers or gels, ACMs possess native biomechanical and many acquired biologic properties. Efforts to optimize ACM-based scaffolds are ongoing and would be greatly assisted by a noninvasive means to characterize scaffold properties and monitor interaction with cells. MRI is well suited to this role, but research with MRI for scaffold characterization has been limited. This study presents initial results from quantitative MRI measurements for bladder ACM characterization and investigates the effects of incorporating hyaluronic acid, a natural biomaterial useful in tissue-engineering and regeneration. Measured MR relaxation times (T(1), T(2)) and diffusion coefficient were consistent with increased water uptake and glycosaminoglycan content observed on biochemistry in hyaluronic acid ACMs. Multicomponent MRI provided greater specificity, with diffusion data showing an acellular environment and T(2) components distinguishing the separate effects of increased glycosaminoglycans and hydration. These results suggest that quantitative MRI may provide useful information on matrix composition and structure, which is valuable in guiding further development using bladder ACMs for organ regeneration and in strategies involving the use of hyaluronic acid.

  17. Probing the Differential Tissue Distribution and Bioaccumulation Behavior of Per- and Polyfluoroalkyl Substances of Varying Chain-Lengths, Isomeric Structures and Functional Groups in Crucian Carp.

    PubMed

    Shi, Yali; Vestergren, Robin; Nost, Therese Haugdahl; Zhou, Zhen; Cai, Yaqi

    2018-04-17

    Understanding the bioaccumulation mechanisms of per- and polyfluoroalkyl substances (PFASs) across different chain-lengths, isomers and functional groups represents a monumental scientific challenge with implications for chemical regulation. Here, we investigate how the differential tissue distribution and bioaccumulation behavior of 25 PFASs in crucian carp from two field sites impacted by point sources can provide information about the processes governing uptake, distribution and elimination of PFASs. Median tissue/blood ratios (TBRs) were consistently <1 for all PFASs and tissues except bile which displayed a distinct distribution pattern and enrichment of several perfluoroalkyl sulfonic acids. Transformation of concentration data into relative body burdens (RBBs) demonstrated that blood, gonads, and muscle together accounted for >90% of the amount of PFASs in the organism. Principal component analyses of TBRs and RBBs showed that the functional group was a relatively more important predictor of internal distribution than chain-length for PFASs. Whole body bioaccumulation factors (BAFs) for short-chain PFASs deviated from the positive relationship with hydrophobicity observed for longer-chain homologues. Overall, our results suggest that TBR, RBB, and BAF patterns were most consistent with protein binding mechanisms although partitioning to phospholipids may contribute to the accumulation of long-chain PFASs in specific tissues.

  18. Molecular adaptations of adipose tissue to 6 weeks of morning fasting vs. daily breakfast consumption in lean and obese adults

    PubMed Central

    Gonzalez, Javier T.; Richardson, Judith D.; Chowdhury, Enhad A.; Koumanov, Francoise; Holman, Geoffrey D.; Cooper, Scott; Thompson, Dylan

    2017-01-01

    Key points In lean individuals, 6 weeks of extended morning fasting increases the expression of genes involved in lipid turnover (ACADM) and insulin signalling (IRS2) in subcutaneous abdominal adipose tissue.In obese individuals, 6 weeks of extended morning fasting increases IRS2 expression in subcutaneous abdominal adipose tissue.The content and activation status of key proteins involved in insulin signalling and glucose transport (GLUT4, Akt1 and Akt2) were unaffected by extended morning fasting. Therefore, any observations of altered adipose tissue insulin sensitivity with extended morning fasting do not necessarily require changes in insulin signalling proximal to Akt.Insulin‐stimulated adipose tissue glucose uptake rates are lower in obese versus lean individuals, but this difference is abolished when values are normalised to whole‐body fat mass. This suggests a novel hypothesis which proposes that the reduced adipose glucose uptake in obesity is a physiological down‐regulation to prevent excessive de novo lipogenesis. Abstract This study assessed molecular responses of human subcutaneous abdominal adipose tissue (SCAT) to 6 weeks of morning fasting. Forty‐nine healthy lean (n = 29) and obese (n = 20) adults provided SCAT biopsies before and after 6 weeks of morning fasting (FAST; 0 kcal until 12.00 h) or daily breakfast consumption (BFAST; ≥700 kcal before 11.00 h). Biopsies were analysed for mRNA levels of selected genes, and GLUT4 and Akt protein content. Basal and insulin‐stimulated Akt activation and tissue glucose uptake rates were also determined. In lean individuals, lipid turnover and insulin signalling genes (ACADM and IRS2) were up‐regulated with FAST versus BFAST (ACADM: 1.14 (95% CI: 0.97–1.30) versus 0.80 (95% CI: 0.64–0.96), P = 0.007; IRS2: 1.75 (95% CI: 1.33–2.16) versus 1.09 (95% CI: 0.67–1.51), P = 0.03, respectively). In obese individuals, no differential (FAST versus BFAST) expression was observed in genes involved in lipid turnover (all P > 0.1). GLUT4, Akt protein content and insulin‐stimulated Akt phosphorylation were unaffected by FAST versus BFAST in both lean and obese cohorts (all P > 0.1). Lower insulin‐stimulated glucose uptake rates in obese versus lean individuals were eradicated when normalised to whole‐body fat mass (P = 0.416). We conclude that morning fasting up‐regulates lipid turnover genes in SCAT of lean individuals. Secondly, altered SCAT insulin sensitivity with morning fasting is unlikely to be explained by signalling proximal to Akt. Finally, lower insulin‐stimulated SCAT glucose uptake rates in obese individuals are proportional to whole‐body fat mass, suggesting a compensatory down‐regulation, presumably to prevent excessive de novo lipogenesis in adipose tissue. This trial was registered as ISRCTN31521726. PMID:29193093

  19. Time-Resolved Spectroscopy and Near Infrared Imaging for Prostate Cancer Detection: Receptor-targeted and Native Biomarker

    NASA Astrophysics Data System (ADS)

    Pu, Yang

    Optical spectroscopy and imaging using near-infrared (NIR) light provides powerful tools for non-invasive detection of cancer in tissue. Optical techniques are capable of quantitative reconstructions maps of tissue absorption and scattering properties, thus can map in vivo the differences in the content of certain marker chromophores and/or fluorophores in normal and cancerous tissues (for example: water, tryptophan, collagen and NADH contents). Potential clinical applications of optical spectroscopy and imaging include functional tumor detection and photothermal therapeutics. Optical spectroscopy and imaging apply contrasts from intrinsic tissue chromophores such as water, collagen and NADH, and extrinsic optical contrast agents such as Indocyanine Green (ICG) to distinguish disease tissue from the normal one. Fluorescence spectroscopy and imaging also gives high sensitivity and specificity for biomedical diagnosis. Recent developments on specific-targeting fluorophores such as small receptor-targeted dye-peptide conjugate contrast agent offer high contrast between normal and cancerous tissues hence provide promising future for early tumour detection. This thesis focus on a study to distinguish the cancerous prostate tissue from the normal prostate tissues with enhancement of specific receptor-targeted prostate cancer contrast agents using optical spectroscopy and imaging techniques. The scattering and absorption coefficients, and anisotropy factor of cancerous and normal prostate tissues were investigated first as the basis for the biomedical diagnostic and optical imaging. Understanding the receptors over-expressed prostate cancer cells and molecular target mechanism of ligand, two small ICG-derivative dye-peptides, namely Cypate-Bombesin Peptide Analogue Conjugate (Cybesin) and Cypate-Octreotate Peptide Conjugate (Cytate), were applied to study their clinical potential for human prostate cancer detection. In this work, the steady-state and time-resolved fluorescence spectroscopy of Cybesin (Cytate) in solution, and in cancerous and normal prostate tissues were studied. It was found that more Cybesin (Cytate) was uptaken in the cancerous prostate tissue than those in the normal tissue. The preferential uptake of Cybesin (Cytate) in cancerous tissue was used to image and distinguish cancerous areas from the normal tissue. To investigate rotational dynamics and fluorescence polarization anisotropy of the contrast agents in prostate tissues, an analytical model was used to extract the rotational times and polarization anisotropies, which were observed for higher values of Cybesin (Cytate)-stained cancerous prostate tissue in comparison with the normal tissue. These reflect changes of microstructures of cancerous and normal tissues and their different binding affinity with contrast agents. The results indicate that the use of optical spectroscopy and imaging combined with receptor-targeted contrast agents is a valuable tool to study microenvironmental changes of tissue, and detect prostate cancer in early stage.

  20. Cholesterol accumulation in tissues of the Niemann-pick type C mouse is determined by the rate of lipoprotein-cholesterol uptake through the coated-pit pathway in each organ.

    PubMed

    Xie, C; Turley, S D; Dietschy, J M

    1999-10-12

    Niemann-Pick type C (NPC) disease is associated with the accumulation of unesterified cholesterol in nearly all tissues and with progressive neurodegeneration. A murine model of this disease, the NPC mouse, was used to determine whether this sequestered cholesterol represented sterol carried in low density lipoprotein (LDL) and chylomicrons (CMs) taken up into the tissues through the coated-pit pathway. By 7 weeks of age, the sterol pool in the NPC mice had increased from 2,165 to 5,669 mg/kg body weight because of the daily sequestration of 67 mg of cholesterol per kg in the various organs. This was 7-fold greater than the rate of accumulation in control mice. The rate of LDL clearance in the NPC mouse was normal (523 ml/day per kg) and accounted for the uptake of 78 mg/day per kg of cholesterol in LDL whereas 8 mg/day per kg was taken up from CMs. Deletion of the LDL receptor in NPC mice altered the concentration of unesterified cholesterol in every organ in a manner consistent with the changes also observed in the rate of LDL cholesterol uptake in those tissues. Similarly, altering the flow of cholesterol to the liver through the CM pathway changed the concentration of unesterified cholesterol in that organ. Together, these observations strongly support the conclusion that, in NPC disease, it is cholesterol carried in LDL and CMs that is sequestered in the tissues and not sterol that is newly synthesized and carried in high density lipoprotein.

  1. Assessment of thyroid function in dogs with low plasma thyroxine concentration.

    PubMed

    Diaz Espineira, M M; Mol, J A; Peeters, M E; Pollak, Y W E A; Iversen, L; van Dijk, J E; Rijnberk, A; Kooistra, H S

    2007-01-01

    Differentiation between hypothyroidism and nonthyroidal illness in dogs poses specific problems, because plasma total thyroxine (TT4) concentrations are often low in nonthyroidal illness, and plasma thyroid stimulating hormone (TSH) concentrations are frequently not high in primary hypothyroidism. The serum concentrations of the common basal biochemical variables (TT4, freeT4 [fT4], and TSH) overlap between dogs with hypothyroidism and dogs with nonthyroidal illness, but, with stimulation tests and quantitative measurement of thyroidal 99mTcO4(-) uptake, differentiation will be possible. In 30 dogs with low plasma TT4 concentration, the final diagnosis was based upon histopathologic examination of thyroid tissue obtained by biopsy. Fourteen dogs had primary hypothyroidism, and 13 dogs had nonthyroidal illness. Two dogs had secondary hypothyroidism, and 1 dog had metastatic thyroid cancer. The diagnostic value was assessed for (1) plasma concentrations of TT4, fT4, and TSH; (2) TSH-stimulation test; (3) plasma TSH concentration after stimulation with TSH-releasing hormone (TRH); (4) occurrence of thyroglobulin antibodies (TgAbs); and (5) thyroidal 99mTcO4(-) uptake. Plasma concentrations of TT4, fT4, TSH, and the hormone pairs TT4/TSH and fT4/TSH overlapped in the 2 groups, whereas, with TgAbs, there was 1 false-negative result. Results of the TSH- and TRH-stimulation tests did not meet earlier established diagnostic criteria, overlapped, or both. With a quantitative measurement of thyroidal 99mTcO4(-) uptake, there was no overlap between dogs with primary hypothyroidism and dogs with nonthyroidal illness. The results of this study confirm earlier observations that, in dogs, accurate biochemical diagnosis of primary hypothyroidism poses specific problems. Previous studies, in which the TSH-stimulation test was used as the "gold standard" for the diagnosis of hypothyroidism may have suffered from misclassification. Quantitative measurement of thyroidal 99mTcO- uptake has the highest discriminatory power with regard to the differentiation between primary hypothyroidism and nonthyroidal illness.

  2. Epithelial organic cation transporters ensure pH-dependent drug absorption in the airway.

    PubMed

    Horvath, Gabor; Schmid, Nathalie; Fragoso, Miryam A; Schmid, Andreas; Conner, Gregory E; Salathe, Matthias; Wanner, Adam

    2007-01-01

    Most inhaled beta(2)-adrenergic agonist and anticholinergic bronchodilators have low lipid solubility because of their transient or permanent positive net charge at physiologic pH. Airway absorption of these cationic drugs is incompletely understood. We examined carrier-mediated mechanisms of cationic drug uptake by human airway epithelia. Airway tissues and epithelial cells, obtained from lung donors without preexisting lung disease, were evaluated for organic cation transporter expression by quantitative RT-PCR and immunofluorescence. For in vitro functional studies on primary airway epithelial cells, uptake of the cationic fluorophore 4-[4-(dimethylamino)-styryl]-N-methylpyridinium (ASP+) was characterized. Quantitative RT-PCR analysis demonstrated high mRNA levels for two polyspecific organic cation/carnitine transporters, OCTN1 and OCTN2, in human airway epithelia. Immunofluorescence of human airway sections confirmed OCTN1/2 protein expression, with a predominant localization to the apical portion of epithelial cells. Primary airway epithelial cells showed a carrier-mediated, temperature-sensitive and saturable uptake of ASP(+). Seventy-five to eighty percent of ASP(+) uptake was inhibited by L-carnitine, an OCTN2-carried zwitterion. The uptake was pH dependent, with approximately 3-fold lower rates at acidic (pH 5.7) than at alkaline (pH 8.2) extracellular pH. Albuterol and formoterol inhibited ASP(+) uptake, suggesting that all these molecules are carried by the same transport mechanism. These findings demonstrate the existence and functional role of a pH-dependent organic cation uptake machinery, namely OCTN1 and OCTN2, in human airway epithelia. We suggest that epithelial OCTN1/2 are involved in the delivery of inhaled cationic bronchodilators to the airway tissue.

  3. Evaluating acetate metabolism for imaging and targeting in multiple myeloma

    PubMed Central

    Fontana, Francesca; Ge, Xia; Su, Xinming; Hathi, Deep; Xiang, Jingyu; Cenci, Simone; Civitelli, Roberto; Shoghi, Kooresh I.; Akers, Walter J.; D’avignon, Andre

    2016-01-01

    Purpose We hypothesized that in multiple myeloma cells (MMC), high membrane biosynthesis will induce acetate uptake in vitro and in vivo. Here, we studied acetate metabolism and targeting in MMC in vitro and tested the efficacy of 11C-acetate-PET (positron emission tomography) to detect and quantitatively image myeloma treatment response in vivo. Experimental design Acetate fate tracking using 13C-edited-1H NMR (nuclear magnetic resonance) was performed to study in vitro acetate uptake and metabolism in MMC. Effects of pharmacological modulation of acetate transport or acetate incorporation into lipids on MMC cell survival and viability were assessed. Preclinical mouse MM models of subcutaneous and bone tumors were evaluated using 11C-acetate-PET/CT imaging and tissue biodistribution. Results In vitro, NMR showed significant uptake of acetate by MMC, and acetate incorporation into intracellular metabolites and membrane lipids. Inhibition of lipid synthesis and acetate transport was toxic to MMC, while sparing resident bone cells or normal B cells. In vivo, 11C-acetate uptake by PET imaging was significantly enhanced in subcutaneous and bone MMC tumors compared to unaffected bone or muscle tissue. Likewise, 11C-acetate uptake was significantly reduced in MM tumors after treatment. Conclusions Uptake of acetate from the extracellular environment was enhanced in MMC and was critical to cellular viability. 11C-acetate-PET detected the presence of myeloma cells in vivo, including uptake in intramedullary bone disease. 11C-acetate-PET also detected response to therapy in vivo. Our data suggested that acetate metabolism and incorporation into lipids was crucial to MM cell biology and that 11C-acetate-PET is a promising imaging modality for MM. PMID:27486177

  4. Comparison between endoscopic macroscopic classification and F-18 FDG PET findings in gastric mucosa-associated lymphoid tissue lymphoma patients.

    PubMed

    Hirose, Yasumitsu; Kaida, Hayato; Ishibashi, Masatoshi; Uozumi, Jun; Arikawa, Shunji; Kurata, Seiji; Hayabuchi, Naofumi; Nakahara, Keita; Ohshima, Koichi

    2012-02-01

    The aim of this study was to compare endoscopic macroscopic classification with fluorine-18 fluorodeoxyglucose (F-18 FDG) uptake in gastric mucosa-associated lymphoid tissue (MALT) lymphoma and to investigate the usefulness of F-18 FDG positron emission tomography (PET) for diagnosing gastric MALT lymphoma. Sixteen patients with gastric MALT lymphoma who underwent F-18 FDG PET and gastrointestinal imaging modalities were included in this study. Sixteen healthy asymptomatic participants undergoing both F-18 FDG PET and endoscopy for cancer screening were in the control group. We investigated the difference of F-18 FDG uptake between the gastric MALT lymphoma and the control group and compared the uptake pattern in gastric MALT lymphoma with our macroscopic classification. The endoscopic findings of 16 gastric MALT lymphoma patients were classified macroscopically as chronic gastritis-like tumors (n = 6), depressed tumors (n = 5), and protruding tumors (n = 5). Abnormal gastric F-18 FDG uptake was observed in 63% of tumors in the gastric MALT lymphoma group and 50% of cases in the control group. The median maximum standardized uptake values for gastric MALT lymphoma patients and control group were 4.0 and 2.6, respectively, the difference of which was statistically significant (P = 0.003). F-18 FDG uptake results were positive for all protruding tumors but only 50% for chronic gastritis-like tumors and 40% for depressed-type tumors. F-18 FDG PET may be a useful method for evaluating protrusion-type gastric MALT lymphoma. When strong focal or diffuse F-18 FDG uptake is detected in the stomach, endoscopic biopsy should be performed, even if the endoscopic finding is chronic gastritis.

  5. Reversal of the multidrug resistance by drug combination using multifunctional liposomes

    NASA Astrophysics Data System (ADS)

    Patel, Niravkumar R.

    One of the major obstacles to the success of cancer chemotherapy is the multi-drug resistance (MDR) that results due mainly to the over-expression of drug efflux transporter pumps such as P-glycoprotein (P-gp). Highly efficacious third generation P-gp inhibitors, like tariquidar, have shown promising results against MDR. However, P-gp is also expressed in normal tissues like the blood-brain barrier, gastrointestinal tract, liver and kidney. It is therefore important to limit the exposure of P-gp inhibitors to normal tissues and increase their co-localization with anticancer agents in tumor tissues to maximize the efficacy of a P-gp inhibitor. To minimize non-specific binding and increase its delivery to tumor tissues, liposomes, self-assembling phospholipid vesicles, were chosen as a drug delivery vehicle. The liposome has been identified as a system capable of carrying molecules with diverse physicochemical properties. It can also alter the pharmacokinetic profile of loaded molecules which is a concern with both tariquidar and paclitaxel. Liposomes can easily be surface-modified rendering them cell-specific as well as organelle-specific. The main objective of present study was to develop an efficient liposomal delivery system which would deliver therapeutic molecules of interest to tumor tissues and avoid interaction with normal tissues. In this study, the co-delivery of tariquidar and paclitaxel into tumor cells to reverse the MDR using long-circulating cationic liposomes was investigated. SKOV-3TR, the resistant variant of SKOV-3 and MCF-7/ADR, the resistant variant of MCF-7 were used as model cell lines. Uniform liposomal formulations were generated with high incorporation efficiency and no apparent decrease in tariquidar potency towards P-gp. Tariquidar- and paclitaxel- co-loaded long-circulating liposomes showed significant re-sensitization of SKOV-3TR and MCF-7/ADR for paclitaxel in vitro. Further modification of these liposomes with antitumor 2C5 resulted in increased cell association with these cancer cells. The 2C5-modified immunoliposomes, along with unmodified liposomes co-loaded with tariquidar and paclitaxel were tested for their antitumor effects in vivo. Significant tumor growth inhibition occurred with combination therapy in resistant as well as sensitive cell lines. However, immunoliposomes failed to increase antitumor effect in vivo as spontaneous accumulation of liposomes at added dose may have saturated tumor accumulation. We were also interested in evaluating physiological factors responsible for the MDR. Spheroids grown in vitro provided platform to demonstrate many characteristics of tumor tissues such as cell-cell interaction, a hypoxic core, low pH environment at core and a relevant genetic profile. In this study, spheroids were utilized to evaluate paclitaxel cytotoxity and to evaluate effects of 2C5 modification on cellular uptake. Lack of cytotoxicity was observed in spheroids treated with paclitaxel alone as well as in combination with tariquidar. Likely explanations could be the presence of cells in diverse cell cycle stages and limited penetration. Also, increased uptake was observed in spheroids when treated with 2C5-modified Rh-labeled liposomes compared to UPC10-modified Rh-labeled liposomes. Such results have clearly demonstrated the importance of using this novel research model in cancer research.

  6. Uptake, tissue distribution and depuration of triclosan in the guppy Poecilia vivipara acclimated to freshwater.

    PubMed

    Escarrone, Ana Laura Venquiaruti; Caldas, Sergiane Souza; Primel, Ednei Gilberto; Martins, Samantha Eslava; Nery, Luiz Eduardo Maia

    2016-08-01

    The agent triclosan has been extensively used in different personal care products as a broad-spectrum antimicrobial and preservative agent. Due to its continuous release into the environment, including discharge via wastewater treatment plants, triclosan has been widely detected in aquatic environments. There is growing interest in improving the knowledge about the environmental fate of triclosan due to its possible bioaccumulation and the toxicity it may pose to organisms, such as fish and other non-target species. To investigate the distribution and bioconcentration of triclosan in fish, Poecilia vivipara was exposed to 0.2mgL(-1). Contents of triclosan in whole fish, brain, gonads, liver, muscle and gills were quantified by LC-MS/MS. When lipid normalised concentration was used, the liver exhibited the highest concentration followed by the gills, gonads, brain and muscle tissues. Bioconcentration was increased with time reaching a steady-state around 7-14days for most all tissues. After 24h depuration, triclosan concentrations declined >80% in all tissues except liver, in which triclosan takes longer to be depurated. These results not only clearly indicate that triclosan accumulated in P. vivipara, with tissue-specific bioconcentration factors (BCF) that ranged from 40.2 to 1025.4, but also show that the elimination of triclosan after transferring the fish to triclosan-free freshwater is rapid in all tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The metabolism of structured triacylglycerols.

    PubMed

    Mu, Huiling; Porsgaard, Trine

    2005-11-01

    The triacylglycerol (TAG) structure in addition to the overall fatty acid profile is of importance when considering the nutritional effect of a dietary fat. This review aims at summarizing our current knowledge of the digestion, absorption, uptake, and transport of structured TAGs, with particular emphasis on the following aspects: gastric emptying, specificity of pancreatic lipase, lymphatic transport and clearance of chylomicrons, effects of lipid structure on tissue lipid compositions and the fecal loss of fats. So an overview will be provided for how the structure and fatty acid composition of TAGs affect their absorption and the distribution of the fatty acids in the body following digestion and absorption.

  8. Csf1r-mApple Transgene Expression and Ligand Binding In Vivo Reveal Dynamics of CSF1R Expression within the Mononuclear Phagocyte System.

    PubMed

    Hawley, Catherine A; Rojo, Rocio; Raper, Anna; Sauter, Kristin A; Lisowski, Zofia M; Grabert, Kathleen; Bain, Calum C; Davis, Gemma M; Louwe, Pieter A; Ostrowski, Michael C; Hume, David A; Pridans, Clare; Jenkins, Stephen J

    2018-03-15

    CSF1 is the primary growth factor controlling macrophage numbers, but whether expression of the CSF1 receptor differs between discrete populations of mononuclear phagocytes remains unclear. We have generated a Csf1r -mApple transgenic fluorescent reporter mouse that, in combination with lineage tracing, Alexa Fluor 647-labeled CSF1-Fc and CSF1, and a modified Δ Csf1- enhanced cyan fluorescent protein (ECFP) transgene that lacks a 150 bp segment of the distal promoter, we have used to dissect the differentiation and CSF1 responsiveness of mononuclear phagocyte populations in situ. Consistent with previous Csf1r- driven reporter lines, Csf1r -mApple was expressed in blood monocytes and at higher levels in tissue macrophages, and was readily detectable in whole mounts or with multiphoton microscopy. In the liver and peritoneal cavity, uptake of labeled CSF1 largely reflected transgene expression, with greater receptor activity in mature macrophages than monocytes and tissue-specific expression in conventional dendritic cells. However, CSF1 uptake also differed between subsets of monocytes and discrete populations of tissue macrophages, which in macrophages correlated with their level of dependence on CSF1 receptor signaling for survival rather than degree of transgene expression. A double Δ Csf1r -ECFP- Csf1r -mApple transgenic mouse distinguished subpopulations of microglia in the brain, and permitted imaging of interstitial macrophages distinct from alveolar macrophages, and pulmonary monocytes and conventional dendritic cells. The Csf1r- mApple mice and fluorescently labeled CSF1 will be valuable resources for the study of macrophage and CSF1 biology, which are compatible with existing EGFP-based reporter lines. Copyright © 2018 The Authors.

  9. The biomechanics of seed germination.

    PubMed

    Steinbrecher, Tina; Leubner-Metzger, Gerhard

    2017-02-01

    From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Nitrate is an important nitrogen source for Arctic tundra plants.

    PubMed

    Liu, Xue-Yan; Koba, Keisuke; Koyama, Lina A; Hobbie, Sarah E; Weiss, Marissa S; Inagaki, Yoshiyuki; Shaver, Gaius R; Giblin, Anne E; Hobara, Satoru; Nadelhoffer, Knute J; Sommerkorn, Martin; Rastetter, Edward B; Kling, George W; Laundre, James A; Yano, Yuriko; Makabe, Akiko; Yano, Midori; Liu, Cong-Qiang

    2018-03-27

    Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO 3 - ) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO 3 - concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO 3 - that is typically below detection limits. Here we reexamine NO 3 - use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO 3 - Soil-derived NO 3 - was detected in tundra plant tissues, and tundra plants took up soil NO 3 - at comparable rates to plants from relatively NO 3 - -rich ecosystems in other biomes. Nitrate assimilation determined by 15 N enrichments of leaf NO 3 - relative to soil NO 3 - accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO 3 - availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO 3 - availability in tundra soils is crucial for predicting C storage in tundra. Copyright © 2018 the Author(s). Published by PNAS.

  11. Oral Delivery of Nanoparticles Loaded With Ginger Active Compound, 6-Shogaol, Attenuates Ulcerative Colitis and Promotes Wound Healing in a Murine Model of Ulcerative Colitis.

    PubMed

    Zhang, Mingzhen; Xu, Changlong; Liu, Dandan; Han, Moon Kwon; Wang, Lixin; Merlin, Didier

    2018-01-24

    Oral drug delivery is the most attractive pathway for ulcerative colitis [UC] therapy, since it has many advantages. However, this strategy has encountered many challenges, including the instability of drugs in the gastrointestinal tract [GT], low targeting of disease tissues, and severe adverse effects. Nanoparticles capable of colitis tissue-targeted delivery and site-specific drug release may offer a unique and therapeutically effective system that addresses these formidable challenges. We used a versatile single-step surface-functionalising technique to prepare PLGA/PLA-PEG-FA nanoparticles loaded with the ginger active compound, 6-shogaol [NPs-PEG-FA/6-shogaol]. The therapeutic efficacy of NPs-PEG-FA/6-shogaol was evaluated in the well-established mouse model of dextran sulphate sodium [DSS]-induced colitis. NPs-PEG-FA exhibited very good biocompatibility both in vitro and in vivo. Subsequent cellular uptake experiments demonstrated that NPs-PEG-FA could undergo efficient receptor-mediated uptake by colon-26 cells and activated Raw 264.7 macrophage cells. In vivo, oral administration of NPs-PEG-FA/6-shogaol encapsulated in a hydrogel system [chitosan/alginate] significantly alleviated colitis symptoms and accelerated colitis wound repair in DSS-treated mice by regulating the expression levels of pro-inflammatory [TNF-α, IL-6, IL-1β, and iNOS] and anti-inflammatory [Nrf-2 and HO-1] factors. Our study demonstrates a convenient, orally administered 6-shogaol drug delivery system that effectively targets colitis tissue, alleviates colitis symptoms, and accelerates colitis wound repair. This system may represent a promising therapeutic approach for treating inflammatory bowel disease [IBD]. Copyright © 2017 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  12. Nitrate is an important nitrogen source for Arctic tundra plants

    PubMed Central

    Liu, Xue-Yan; Koyama, Lina A.; Weiss, Marissa S.; Inagaki, Yoshiyuki; Shaver, Gaius R.; Giblin, Anne E.; Hobara, Satoru; Nadelhoffer, Knute J.; Sommerkorn, Martin; Rastetter, Edward B.; Kling, George W.; Laundre, James A.; Yano, Yuriko; Makabe, Akiko; Yano, Midori; Liu, Cong-Qiang

    2018-01-01

    Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO3−) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO3− concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO3− that is typically below detection limits. Here we reexamine NO3− use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO3−. Soil-derived NO3− was detected in tundra plant tissues, and tundra plants took up soil NO3− at comparable rates to plants from relatively NO3−-rich ecosystems in other biomes. Nitrate assimilation determined by 15N enrichments of leaf NO3− relative to soil NO3− accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO3− availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO3− availability in tundra soils is crucial for predicting C storage in tundra. PMID:29540568

  13. Multiparametric voxel-based analyses of standardized uptake values and apparent diffusion coefficients of soft-tissue tumours with a positron emission tomography/magnetic resonance system: Preliminary results.

    PubMed

    Sagiyama, Koji; Watanabe, Yuji; Kamei, Ryotaro; Hong, Sungtak; Kawanami, Satoshi; Matsumoto, Yoshihiro; Honda, Hiroshi

    2017-12-01

    To investigate the usefulness of voxel-based analysis of standardized uptake values (SUVs) and apparent diffusion coefficients (ADCs) for evaluating soft-tissue tumour malignancy with a PET/MR system. Thirty-five subjects with either ten low/intermediate-grade tumours or 25 high-grade tumours were prospectively enrolled. Zoomed diffusion-weighted and fluorodeoxyglucose ( 18 FDG)-PET images were acquired along with fat-suppressed T2-weighted images (FST2WIs). Regions of interest (ROIs) were drawn on FST2WIs including the tumour in all slices. ROIs were pasted onto PET and ADC-maps to measure SUVs and ADCs within tumour ROIs. Tumour volume, SUVmax, ADCminimum, the heterogeneity and the correlation coefficients of SUV and ADC were recorded. The parameters of high- and low/intermediate-grade groups were compared, and receiver operating characteristic (ROC) analysis was also performed. The mean correlation coefficient for SUV and ADC in high-grade sarcomas was lower than that of low/intermediate-grade tumours (-0.41 ± 0.25 vs. -0.08 ± 0.34, P < 0.01). Other parameters did not differ significantly. ROC analysis demonstrated that correlation coefficient showed the best diagnostic performance for differentiating the two groups (AUC 0.79, sensitivity 96.0%, specificity 60%, accuracy 85.7%). SUV and ADC determined via PET/MR may be useful for differentiating between high-grade and low/intermediate-grade soft tissue tumours. • PET/MR allows voxel-based comparison of SUVs and ADCs in soft-tissue tumours. • A comprehensive assessment of internal heterogeneity was performed with scatter plots. • SUVmax or ADCminimum could not differentiate high-grade sarcoma from low/intermediate-grade tumours. • Only the correlation coefficient between SUV and ADC differentiated the two groups. • The correlation coefficient showed the best diagnostic performance by ROC analysis.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppard, S.C.; Evenden, W.G.; Cornwell, T.C.

    The relative depuration and uptake kinetics of contaminants should be known to interpret appropriately the use of organisms such as earthworms in environmental bioassays and monitoring. For example, 14-d earthworm bioassays should be interpreted with the knowledge that some contaminants will continue to accumulate in tissues for months. The radiotracers {sup 125}I, {sup 134}Cs, {sup 54}Mn, {sup 65}Zn, and {sup 109}Cd were applied to deciduous litter and specimens of Lumbricus terrestris were exposed, either to litter alone or to litter on the top of soil columns. Depuration was monitored for 120 d and uptake, in a separate experiment, for 20more » d. Both depuration and uptake were described using two-phase, first-order statistical models. Cut clearance had a mean half-time of 1.4 d. The mean half-time for physiological depuration decreased from I (210 d) > Cd (150 d) > Zn (69 d) > Mn (40 d) > Cs (24 d). Both the depuration and the uptake experiments were necessary to resolve even partially the multiphase processes. Earthworm/soil dry weight concentration ratios decreased from Cd > Zn > I {ge} Cs {ge} Mn. The very slow kinetics indicate that tissue concentrations will increase continuously for a long time, with important implications for subsequent food-chain transfers.« less

  15. ImmunoPET imaging of tissue factor expression in pancreatic cancer with 89Zr-Df-ALT-836.

    PubMed

    Hernandez, Reinier; England, Christopher G; Yang, Yunan; Valdovinos, Hector F; Liu, Bai; Wong, Hing C; Barnhart, Todd E; Cai, Weibo

    2017-10-28

    Overexpression of tissue factor (TF) has been associated with increased tumor growth, tumor angiogenesis, and metastatic potential in many malignancies, including pancreatic cancer. Additionally, high TF expression was shown to strongly correlate with poor prognoses and decreased survival in pancreatic cancer patients. Herein, we exploited the potential targeting of TF for positron emission tomography (PET) imaging of pancreatic cancer. The TF-targeted tracer was developed through radiolabeling of the anti-human TF monoclonal antibody (ALT-836) with 89 Zr. The tracer was characterized by fluorescence microscopy and flow cytometry assays in BXPC-3 and PANC-1 cells, two pancreatic cancer cell lines with high and low TF expression levels, respectively. Non-invasive PET scans were acquired in tumor-bearing mice injected with 89 Zr-Df-ALT-836. Additionally, ex vivo biodistribution, blocking, and histological studies were performed to establish the affinity and specificity of 89 Zr-Df-ALT-836 for TF in vivo. 89 Zr-labeling of Df-ALT-836 was achieved in high yield and good specific activity. Flow cytometry and microscopy studies revealed no detectable difference in TF-binding affinity between ALT-836 and Df-ALT-836 in vitro. Longitudinal PET scans unveiled a lasting and prominent 89 Zr-Df-ALT-836 uptake in BXPC-3 tumors (peak at 31.5±6.0%ID/g at 48h post-injection; n=3), which was significantly abrogated (2.3±0.5%ID/g at 48h post-injection; n=3) when mice were pre-injected with a blocking dose (50mg/kg) of unlabeled ALT-836. Ex vivo biodistribution data confirmed the accuracy of the PET results, and histological analysis correlated high tumor uptake with in situ TF expression. Taken together, these results attest to the excellent affinity and TF-specificity of 89 Zr-Df-ALT-836. With elevated, persistent, and specific accumulation in TF-positive BXPC-3 tumors, PET imaging using 89 Zr-Df-ALT-836 promises to open new avenues for improving future diagnosis, stratification, and treatment response assessment in pancreatic cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Iron Biofortification and Homeostasis in Transgenic Cassava Roots Expressing the Algal Iron Assimilatory Gene, FEA1

    PubMed Central

    Ihemere, Uzoma E.; Narayanan, Narayanan N.; Sayre, Richard T.

    2012-01-01

    We have engineered the tropical root crop cassava (Manihot esculenta) to express the Chlamydomonas reinhardtii iron assimilatory gene, FEA1, in its storage roots with the objective of enhancing the root nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500 g meal. Significantly, the expression of the FEA1 gene in storage roots did not alter iron levels in leaves. Transgenic plants also had normal levels of zinc in leaves and roots consistent with the specific uptake of ferrous iron mediated by the FEA1 protein. Relative to wild-type plants, fibrous roots of FEA1 expressing plants had reduced Fe (III) chelate reductase activity consistent with the more efficient uptake of iron in the transgenic plants. We also show that multiple cassava genes involved in iron homeostasis have altered tissue-specific patterns of expression in leaves, stems, and roots of transgenic plants consistent with increased iron sink strength in transgenic roots. These results are discussed in terms of strategies for the iron biofortification of plants. PMID:22993514

  17. Design strategy of pH-sensitive triblock copolymer micelles for efficient cellular uptake by computer simulations

    NASA Astrophysics Data System (ADS)

    Xia, Qiang-sheng; Ding, Hong-ming; Ma, Yu-qiang

    2018-03-01

    Efficient delivery of nanoparticles into specific cell interiors is of great importance in biomedicine. Recently, the pH-responsive micelle has emerged as one potential nanocarrier to realize such purpose since there exist obvious pH differences between normal tissues and tumors. Herein, by using dissipative particle dynamics simulation, we investigate the interaction of the pH-sensitive triblock copolymer micelles composed of ligand (L), hydrophobic block (C) and polyelectrolyte block (P) with cell membrane. It is found that the structure rearrangement of the micelle can facilitate its penetration into the lower leaflet of the bilayer. However, when the ligand-receptor specific interaction is weak, the micelles may just fuse with the upper leaflet of the bilayer. Moreover, the ionization degree of polyelectrolyte block and the length of hydrophobic block also play a vital role in the penetration efficiency. Further, when the sequence of the L, P, C beads in the copolymers is changed, the translocation pathways of the micelles may change from direct penetration to Janus engulfment. The present study reveals the relationship between the molecular structure of the copolymer and the uptake of the pH-sensitive micelles, which may give some significant insights into the experimental design of responsive micellar nanocarriers for highly efficient cellular delivery.

  18. Growth Hormone Control of Hepatic Lipid Metabolism

    PubMed Central

    Liu, Zhongbo; Cordoba-Chacon, Jose; Kineman, Rhonda D.; Cronstein, Bruce N.; Muzumdar, Radhika; Gong, Zhenwei; Werner, Haim

    2016-01-01

    In humans, low levels of growth hormone (GH) and its mediator, IGF-1, associate with hepatic lipid accumulation. In mice, congenital liver-specific ablation of the GH receptor (GHR) results in reductions in circulating IGF-1 and hepatic steatosis, associated with systemic insulin resistance. Due to the intricate relationship between GH and IGF-1, the relative contribution of each hormone to the development of hepatic steatosis is unclear. Our goal was to dissect the mechanisms by which hepatic GH resistance leads to steatosis and overall insulin resistance, independent of IGF-1. We have generated a combined mouse model with liver-specific ablation of GHR in which we restored liver IGF-1 expression via the hepatic IGF-1 transgene. We found that liver GHR ablation leads to increases in lipid uptake, de novo lipogenesis, hyperinsulinemia, and hyperglycemia accompanied with severe insulin resistance and increased body adiposity and serum lipids. Restoration of IGF-1 improved overall insulin sensitivity and lipid profile in serum and reduced body adiposity, but was insufficient to protect against steatosis-induced hepatic inflammation or oxidative stress. We conclude that the impaired metabolism in states of GH resistance results from direct actions of GH on lipid uptake and de novo lipogenesis, whereas its actions on extrahepatic tissues are mediated by IGF-1. PMID:27679560

  19. Preparation and preclinical evaluation of 68Ga-DOTA-amlodipine for L-type calcium channel imaging.

    PubMed

    Firuzyar, Tahereh; Jalilian, Amir Reza; Aboudzadeh, Mohammad Reza; Sadeghpour, Hossein; Shafiee-Ardestani, Mahdi; Khalaj, Ali

    2016-01-01

    In order to develop a possible tracer for L-type calcium channel imaging, we here report the development of a Ga-68 amlodipine derivative for possible PET imaging. Amlodipine DOTA conjugate was synthesized, characterized and went through calcium channel blockade, toxicity, apoptosis/necrosis tests. [ 68 Ga] DOTA AMLO was prepared at optimized conditions followed by stability tests, partition coefficient determination and biodistribution studies using tissue counting and co incidence imaging up to 2 h. [ 68 Ga] DOTA AMLO was prepared at pH 4-5 in 7-10 min at 95°C in high radiochemical purity (>99%, radio thin layer chromatography; specific activity: 1.9-2.1 GBq/mmol) and was stable up to 4 h with a log P of -0.94. Calcium channel rich tissues including myocardium, and tissues with smooth muscle cells such as colon, intestine, and lungs demonstrated significant uptake. Co incidence images supported the biodistribution data up to 2 h. The complex can be a candidate for further positron emission tomography imaging for L type calcium channels.

  20. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors.

    PubMed

    Deshmukh, Atul S; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T; Cox, Jürgen; Mann, Matthias

    2015-04-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Shortened acquisition protocols for the quantitative assessment of the 2-tissue-compartment model using dynamic PET/CT 18F-FDG studies.

    PubMed

    Strauss, Ludwig G; Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2011-03-01

    (18)F-FDG kinetics are quantified by a 2-tissue-compartment model. The routine use of dynamic PET is limited because of this modality's 1-h acquisition time. We evaluated shortened acquisition protocols up to 0-30 min regarding the accuracy for data analysis with the 2-tissue-compartment model. Full dynamic series for 0-60 min were analyzed using a 2-tissue-compartment model. The time-activity curves and the resulting parameters for the model were stored in a database. Shortened acquisition data were generated from the database using the following time intervals: 0-10, 0-16, 0-20, 0-25, and 0-30 min. Furthermore, the impact of adding a 60-min uptake value to the dynamic series was evaluated. The datasets were analyzed using dedicated software to predict the results of the full dynamic series. The software is based on a modified support vector machines (SVM) algorithm and predicts the compartment parameters of the full dynamic series. The SVM-based software provides user-independent results and was accurate at predicting the compartment parameters of the full dynamic series. If a squared correlation coefficient of 0.8 (corresponding to 80% explained variance of the data) was used as a limit, a shortened acquisition of 0-16 min was accurate at predicting the 60-min 2-tissue-compartment parameters. If a limit of 0.9 (90% explained variance) was used, a dynamic series of at least 0-20 min together with the 60-min uptake values is required. Shortened acquisition protocols can be used to predict the parameters of the 2-tissue-compartment model. Either a dynamic PET series of 0-16 min or a combination of a dynamic PET/CT series of 0-20 min and a 60-min uptake value is accurate for analysis with a 2-tissue-compartment model.

  2. Changes of gas metabolism, gas homeostasis and tissue respiration in rats during prolonged hypokinesia

    NASA Technical Reports Server (NTRS)

    Popkov, V. L.; Mailyan, E. S.; Galushko, Y. S.; Kovalenko, Y. A.; Zaytseva, Y. I.; Nitochkina, I. A.; Stulova, L. V.; Ryazhskiy, A. F.

    1979-01-01

    The oxygen uptake and tissue gas homeostasis of restrained albinic rats remained relatively constant during a 60 day experiment. The gas metabolism in some tissues changed, and O2 consumption increased in the liver and decreased in the myocardium. Capacity for physical work was reduced by five times. Hypokinesia for 60 days resulted in a delay in the animals growth.

  3. Distinct Akt phosphorylation states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake.

    PubMed

    Beg, Muheeb; Abdullah, Nazish; Thowfeik, Fathima Shazna; Altorki, Nasser K; McGraw, Timothy E

    2017-06-07

    Insulin, downstream of Akt activation, promotes glucose uptake into fat and muscle cells to lower postprandial blood glucose, an enforced change in cellular metabolism to maintain glucose homeostasis. This effect is mediated by the Glut4 glucose transporter. Growth factors also enhance glucose uptake to fuel an anabolic metabolism required for tissue growth and repair. This activity is predominantly mediated by the Glut1. Akt is activated by phosphorylation of its kinase and hydrophobic motif (HM) domains. We show that insulin-stimulated Glut4-mediated glucose uptake requires PDPK1 phosphorylation of the kinase domain but not mTORC2 phosphorylation of the HM domain. Nonetheless, an intact HM domain is required for Glut4-mediated glucose uptake. Whereas, Glut1-mediated glucose uptake also requires mTORC2 phosphorylation of the HM domain, demonstrating both phosphorylation-dependent and independent roles of the HM domain in regulating glucose uptake. Thus, mTORC2 links Akt to the distinct physiologic programs related to Glut4 and Glut1-mediated glucose uptake.

  4. Uptake, Metabolism, and Tissue Distribution of Chemicals in Organisms

    EPA Science Inventory

    This talk will explain how chemicals get into aquatic species, what tissues and organs the chemicals move into, and what can happen to the chemicals once they get there. This will be presented using examples from recent studies conducted using state-of-the-art microscopy with em...

  5. Relationship between concentrations of lutein and StARD3 among pediatric and geriatric human brain tissue

    USDA-ARS?s Scientific Manuscript database

    Lutein, a dietary carotenoid, selectively accumulates in human retina and brain. While many epidemiological studies show evidence of a relationship between lutein status and cognitive health, lutein's selective uptake in human brain tissue and its potential function in early neural development and c...

  6. A novel method to detect unlabeled inorganic nanoparticles and submicron particles in tissue by sedimentation field-flow fractionation

    PubMed Central

    Deering, Cassandra E; Tadjiki, Soheyl; Assemi, Shoeleh; Miller, Jan D; Yost, Garold S; Veranth, John M

    2008-01-01

    A novel methodology to detect unlabeled inorganic nanoparticles was experimentally demonstrated using a mixture of nano-sized (70 nm) and submicron (250 nm) silicon dioxide particles added to mammalian tissue. The size and concentration of environmentally relevant inorganic particles in a tissue sample can be determined by a procedure consisting of matrix digestion, particle recovery by centrifugation, size separation by sedimentation field-flow fractionation (SdFFF), and detection by light scattering. Background Laboratory nanoparticles that have been labeled by fluorescence, radioactivity, or rare elements have provided important information regarding nanoparticle uptake and translocation, but most nanomaterials that are commercially produced for industrial and consumer applications do not contain a specific label. Methods Both nitric acid digestion and enzyme digestion were tested with liver and lung tissue as well as with cultured cells. Tissue processing with a mixture of protease enzymes is preferred because it is applicable to a wide range of particle compositions. Samples were visualized via fluorescence microscopy and transmission electron microscopy to validate the SdFFF results. We describe in detail the tissue preparation procedures and discuss method sensitivity compared to reported levels of nanoparticles in vivo. Conclusion Tissue digestion and SdFFF complement existing techniques by precisely identifying unlabeled metal oxide nanoparticles and unambiguously distinguishing nanoparticles (diameter<100 nm) from both soluble compounds and from larger particles of the same nominal elemental composition. This is an exciting capability that can facilitate epidemiological and toxicological research on natural and manufactured nanomaterials. PMID:19055780

  7. Estimated dose rates to members of the public from external exposure to patients with {sup 131}I thyroid treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewji, S., E-mail: dewjisa@ornl.gov; Bellamy, M.; Leggett, R.

    Purpose: Estimated dose rates that may result from exposure to patients who had been administered iodine-131 ({sup 131}I) as part of medical therapy were calculated. These effective dose rate estimates were compared with simplified assumptions under United States Nuclear Regulatory Commission Regulatory Guide 8.39, which does not consider body tissue attenuation nor time-dependent redistribution and excretion of the administered {sup 131}I. Methods: Dose rates were estimated for members of the public potentially exposed to external irradiation from patients recently treated with {sup 131}I. Tissue attenuation and iodine biokinetics were considered in the patient in a larger comprehensive effort to improvemore » external dose rate estimates. The external dose rate estimates are based on Monte Carlo simulations using the Phantom with Movable Arms and Legs (PIMAL), previously developed by Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission. PIMAL was employed to model the relative positions of the {sup 131}I patient and members of the public in three exposure scenarios: (1) traveling on a bus in a total of six seated or standing permutations, (2) two nursing home cases where a caregiver is seated at 30 cm from the patient’s bedside and a nursing home resident seated 250 cm away from the patient in an adjacent bed, and (3) two hotel cases where the patient and a guest are in adjacent rooms with beds on opposite sides of the common wall, with the patient and guest both in bed and either seated back-to-back or lying head to head. The biokinetic model predictions of the retention and distribution of {sup 131}I in the patient assumed a single voiding of urinary bladder contents that occurred during the trip at 2, 4, or 8 h after {sup 131}I administration for the public transportation cases, continuous first-order voiding for the nursing home cases, and regular periodic voiding at 4, 8, or 12 h after administration for the hotel room cases. Organ specific activities of {sup 131}I in the thyroid, bladder, and combined remaining tissues were calculated as a function of time after administration. Exposures to members of the public were considered for {sup 131}I patients with normal thyroid uptake (peak thyroid uptake of ∼27% of administered {sup 131}I), differentiated thyroid cancer (DTC, 5% uptake), and hyperthyroidism (80% uptake). Results: The scenario with the patient seated behind the member of the public yielded the highest dose rate estimate of seated public transportation exposure cases. The dose rate to the adjacent room guest was highest for the exposure scenario in which the hotel guest and patient are seated by a factor of ∼4 for the normal and differentiated thyroid cancer uptake cases and by a factor of ∼3 for the hyperthyroid case. Conclusions: It was determined that for all modeled cases, the DTC case yielded the lowest external dose rates, whereas the hyperthyroid case yielded the highest dose rates. In estimating external dose to members of the public from patients with {sup 131}I therapy, consideration must be given to (patient- and case-specific) administered {sup 131}I activities and duration of exposure for a more complete estimate. The method implemented here included a detailed calculation model, which provides a means to determine dose rate estimates for a range of scenarios. The method was demonstrated for variations of three scenarios, showing how dose rates are expected to vary with uptake, voiding pattern, and patient location.« less

  8. Transformation, Conjugation, and Sequestration Following the Uptake of Triclocarban by Jalapeno Pepper Plants.

    PubMed

    Huynh, Khang; Banach, Emily; Reinhold, Dawn

    2018-04-25

    Plant uptake and metabolism of emerging organic contaminants, such as personal-care products, pose potential risks to human health. In this study, jalapeno pepper ( Capsicum annuum) plants cultured in hydroponic media were exposed to both 14 C-labeled and unlabeled triclocarban (TCC) to investigate the accumulation, distribution, and metabolism of TCC following plant uptake. The results revealed that TCC was detected in all plant tissues; after 12 weeks, the TCC concentrations in root, stem, leaf, and fruit tissues were 19.74 ± 2.26, 0.26 ± 0.04, 0.11 ± 0.01, and 0.03 ± 0.01 mg/kg dry weight, respectively. More importantly, a substantial portion of the TCC taken up by plants was metabolized, especially in the stems, leaves, and fruits. Hydroxylated TCC (e.g., 2'-OH TCC and 6-OH TCC) and glycosylated OH-TCC were the main phase I and phase II metabolites in plant tissues, respectively. Bound (or nonextractable) residues of TCC accounted for approximately 44.6, 85.6, 69.0, and 47.5% of all TCC species that accumulated in roots, stems, leaves, and fruits, respectively. The concentrations of TCC metabolites were more than 20 times greater than the concentrations of TCC in the above-ground tissues of the jalapeno pepper plants after 12 weeks; crucially, approximately 95.6% of the TCC was present as metabolites in the fruits. Consequently, human exposure to TCC through the consumption of pepper fruits is expected to be substantially higher when phytometabolism is considered.

  9. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria.

    PubMed

    Li, Ya; Pang, Hai-Dong; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang

    2017-04-01

    Two metal-resistant Bacillus megaterium H3 and Neorhizobium huautlense T1-17 were investigated for their immobilization of Cd in solution and tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the Cd-contaminated soil. Strains H3 and T1-17 decreased 79-96% of water-soluble Cd in solution and increased grain biomass in the high Cd-contaminated soil. Inoculation with H3 and T1-17 significantly decreased the root (ranging from 25% to 58%), above-ground tissue (ranging from 13% to 34%), and polished rice (ranging from 45% to 72%) Cd contents as well as Cd bioconcentration factor of the rice compared to the controls. Furthermore, H3 and T1-17 significantly reduced the exchangeable Cd content of the rhizosphere soils compared with the controls. Notably, strain T1-17 had significantly higher ability to reduce Cd bioconcentration factor and polished rice Cd uptake than strain H3. The results demonstrated that H3 and T1-17 decreased the tissue (especially polished rice) Cd uptake by decreasing Cd availability in soil and Cd bioconcentration factor and the effect on the reduced polished rice Cd uptake was dependent on the strains. The results may provide an effective synergistic bioremediation of Cd-contaminated soils in the bacteria and rice plants and bacterial-assisted safe production of rice in Cd-contaminated soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Monitoring of the biological response to murine hindlimb ischemia with 64Cu-labeled vascular endothelial growth factor-121 positron emission tomography.

    PubMed

    Willmann, Jürgen K; Chen, Kai; Wang, Hui; Paulmurugan, Ramasamy; Rollins, Mark; Cai, Weibo; Wang, David S; Chen, Ian Y; Gheysens, Olivier; Rodriguez-Porcel, Martin; Chen, Xiaoyuan; Gambhir, Sanjiv S

    2008-02-19

    Vascular endothelial growth factor-121 (VEGF121), an angiogenic protein secreted in response to hypoxic stress, binds to VEGF receptors (VEGFRs) overexpressed on vessels of ischemic tissue. The purpose of this study was to evaluate 64Cu-VEGF121 positron emission tomography for noninvasive spatial, temporal, and quantitative monitoring of VEGFR2 expression in a murine model of hindlimb ischemia with and without treadmill exercise training. 64Cu-labeled VEGF121 and a VEGF mutant were tested for VEGFR2 binding specificity in cell culture. Mice (n=58) underwent unilateral ligation of the femoral artery, and postoperative tissue ischemia was assessed with laser Doppler imaging. Longitudinal VEGFR2 expression in exercised and nonexercised mice was quantified with 64Cu-VEGF121 positron emission tomography at postoperative day 8, 15, 22, and 29 and correlated with postmortem gamma-counting. Hindlimbs were excised for immunohistochemistry, Western blotting, and microvessel density measurements. Compared with the VEGF mutant, VEGF121 showed specific binding to VEGFR2. Perfusion in ischemic hindlimbs fell to 9% of contralateral hindlimb on postoperative day 1 and recovered to 82% on day 29. 64Cu-VEGF121 uptake in ischemic hindlimbs increased significantly (P < 0.001) from a control level of 0.61+/-0.17% ID/g (percentage of injected dose per gram) to 1.62+/-0.35% ID/g at postoperative day 8, gradually decreased over the following 3 weeks (0.59+/-0.14% ID/g at day 29), and correlated with gamma-counting (R2 = 0.99). Compared with nonexercised mice, 64Cu-VEGF121 uptake was increased significantly (P < or = 0.0001) in exercised mice (at day 15, 22, and 29) and correlated with VEGFR2 levels as obtained by Western blotting (R2 = 0.76). Ischemic hindlimb tissue stained positively for VEGFR2. In exercised mice, microvessel density was increased significantly (P<0.001) compared with nonexercised mice. 64Cu-VEGF121 positron emission tomography allows longitudinal spatial and quantitative monitoring of VEGFR2 expression in murine hindlimb ischemia and indirectly visualizes enhanced angiogenesis stimulated by treadmill exercise training.

  11. Analysis of exhaled breath by laser detection

    NASA Astrophysics Data System (ADS)

    Thrall, Karla D.; Toth, James J.; Sharpe, Steven W.

    1996-04-01

    The goal of our work is two fold: (1) to develop a portable rapid laser based breath analyzer for monitoring metabolic processes, and (2) predict these metabolic processes through physiologically based pharmacokinetic (PBPK) modeling. Small infrared active molecules such as ammonia, carbon monoxide, carbon dioxide, methane and ethane are present in exhaled breath and can be readily detected by laser absorption spectroscopy. In addition, many of the stable isotopomers of these molecules can be accurately detected, making it possible to follow specific metabolic processes. Potential areas of applications for this technology include the diagnosis of certain pathologies (e.g. Helicobacter Pylori infection), detection of trauma due to either physical or chemical causes and monitoring nutrient uptake (i.e., malnutrition). In order to understand the origin and elucidate the metabolic processes associated with these small molecules, we are employing physiologically based pharmacokinetic (PBPK) models. A PBPK model is founded on known physiological processes (i.e., blood flow rates, tissue volumes, breathing rate, etc.), chemical-specific processes (i.e., tissue solubility coefficients, molecular weight, chemical density, etc.), and on metabolic processes (tissue site and rate of metabolic biotransformation). Since many of these processes are well understood, a PBPK model can be developed and validated against the more readily available experimental animal data, and then by extrapolating the parameters to apply to man, the model can predict chemical behavior in humans.

  12. Preparation and biological evaluation of [(99m)Tc/EDDA/Tricine/HYNIC(0), BzThi(3)]-octreotide for somatostatin receptor-positive tumor imaging.

    PubMed

    Erfani, Mostafa; Shafiei, Mohammad; Mazidi, Mohammad; Goudarzi, Mostafa

    2013-04-01

    Somatostatin-derived analogues play an important role in the diagnosis and treatment of neuroendocrine tumors. The aim of this study was to evaluate a new somatostatin analogue designed for labeling with (99m)Tc: [6-hydrazinopyridine-3-carboxylic acid (HYNIC(0)), β-(3-benzothienyl)-Ala (BzThi(3))]-octreotide ([HYNIC]-BOC), using ethylenediamine-N,N'-diacetic acid (EDDA) and tricine as coligands. Synthesis was performed on a solid phase using a standard Fmoc strategy. The HYNIC-peptide conjugate was radiolabeled with (99m)Tc and characterized by ITLC and high-performance liquid chromatography (HPLC). In vitro studies were carried out in sstr2 expressing AR4-2J cell lines. In vivo distribution studies were performed in rats bearing the AR4-2J tumor. The radiolabeled complex could be prepared at high-specific activities and >95% radiochemical yield as determined by HPLC. The peptide conjugate showed high-affinity binding for sstr2. The radioligand showed high and specific internalization into AR4-2J cells (18.19%±0.21% at 4 hours). In vivo distribution studies in rats bearing tumor have shown a receptor-specific uptake of radioactivity in somatostatin receptor-positive organs. After 4 hours, uptake in the AR4-2J tumor was 1.71%±0.36% injected dose per gram tissue (%ID/g). These data show that [(99m)Tc/EDDA/Tricine/HYNIC(0), BzThi(3)]-octreotide is a specific radioligand for the somatostatin receptor-positive tumors and is a suitable candidate for clinical studies.

  13. Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways.

    PubMed

    Imbernon, Monica; Beiroa, Daniel; Vázquez, María J; Morgan, Donald A; Veyrat-Durebex, Christelle; Porteiro, Begoña; Díaz-Arteaga, Adenis; Senra, Ana; Busquets, Silvia; Velásquez, Douglas A; Al-Massadi, Omar; Varela, Luis; Gándara, Marina; López-Soriano, Francisco-Javier; Gallego, Rosalía; Seoane, Luisa M; Argiles, Josep M; López, Miguel; Davis, Roger J; Sabio, Guadalupe; Rohner-Jeanrenaud, Françoise; Rahmouni, Kamal; Dieguez, Carlos; Nogueiras, Ruben

    2013-03-01

    Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin-concentrating hormone (MCH)-deficient mice are hypophagic, lean, and do not develop hepatosteatosis when fed a high-fat diet. Herein, we sought to investigate the role of MCH, an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area, on hepatic and adipocyte metabolism. Chronic central administration of MCH and adenoviral vectors increasing MCH signaling were performed in rats and mice. Vagal denervation was performed to assess its effect on liver metabolism. The peripheral effects on lipid metabolism were assessed by real-time polymerase chain reaction and Western blot. We showed that the activation of MCH receptors promotes nonalcoholic fatty liver disease through the parasympathetic nervous system, whereas it increases fat deposition in white adipose tissue via the suppression of sympathetic traffic. These metabolic actions are independent of parallel changes in food intake and energy expenditure. In the liver, MCH triggers lipid accumulation and lipid uptake, with c-Jun N-terminal kinase being an essential player, whereas in adipocytes MCH induces metabolic pathways that promote lipid storage and decreases lipid mobilization. Genetic activation of MCH receptors or infusion of MCH specifically in the lateral hypothalamic area modulated hepatic lipid metabolism, whereas the specific activation of this receptor in the arcuate nucleus affected adipocyte metabolism. Our findings show that central MCH directly controls hepatic and adipocyte metabolism through different pathways. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Quantitative Assessment of Heterogeneity in Tumor Metabolism Using FDG-PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vriens, Dennis, E-mail: d.vriens@nucmed.umcn.nl; Disselhorst, Jonathan A.; Oyen, Wim J.G.

    2012-04-01

    Purpose: [{sup 18}F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) images are usually quantitatively analyzed in 'whole-tumor' volumes of interest. Also parameters determined with dynamic PET acquisitions, such as the Patlak glucose metabolic rate (MR{sub glc}) and pharmacokinetic rate constants of two-tissue compartment modeling, are most often derived per lesion. We propose segmentation of tumors to determine tumor heterogeneity, potentially useful for dose-painting in radiotherapy and elucidating mechanisms of FDG uptake. Methods and Materials: In 41 patients with 104 lesions, dynamic FDG-PET was performed. On MR{sub glc} images, tumors were segmented in quartiles of background subtracted maximum MR{sub glc} (0%-25%, 25%-50%, 50%-75%, and 75%-100%).more » Pharmacokinetic analysis was performed using an irreversible two-tissue compartment model in the three segments with highest MR{sub glc} to determine the rate constants of FDG metabolism. Results: From the highest to the lowest quartile, significant decreases of uptake (K{sub 1}), washout (k{sub 2}), and phosphorylation (k{sub 3}) rate constants were seen with significant increases in tissue blood volume fraction (V{sub b}). Conclusions: Tumor regions with highest MR{sub glc} are characterized by high cellular uptake and phosphorylation rate constants with relatively low blood volume fractions. In regions with less metabolic activity, the blood volume fraction increases and cellular uptake, washout, and phosphorylation rate constants decrease. These results support the hypothesis that regional tumor glucose phosphorylation rate is not dependent on the transport of nutrients (i.e., FDG) to the tumor.« less

  15. Quantitative assessment of cerebral glucose metabolic rates after blood-brain barrier disruption induced by focused ultrasound using FDG-MicroPET.

    PubMed

    Yang, Feng-Yi; Chang, Wen-Yuan; Chen, Jyh-Cheng; Lee, Lin-Chien; Hung, Yi-Shun

    2014-04-15

    The goal of this study was to evaluate the pharmacokinetics of (18)F-2-fluoro-2-deoxy-d-glucose ((18)F-FDG) and the expression of glucose transporter 1 (GLUT1) protein after blood-brain barrier (BBB) disruption of normal rat brains by focused ultrasound (FUS). After delivery of an intravenous bolus of ~37 MBq (1 mCi) (18)F-FDG, dynamic positron emission tomography scans were performed on rats with normal brains and those whose BBBs had been disrupted by FUS. Arterial blood sampling was collected throughout the scanning procedure. A 2-tissue compartmental model was used to estimate (18)F-FDG kinetic parameters in brain tissues. The rate constants Ki, K1, and k3 were assumed to characterize the uptake, transport, and hexokinase activity, respectively, of (18)F-FDG. The uptake of (18)F-FDG in brains significantly decreased immediately after the blood-brain barrier was disrupted. At the same time, the derived values of Ki, K1, and k3 for the sonicated brains were significantly lower than those for the control brains. In agreement with the reduction in glucose, Western blot analyses confirmed that focused ultrasound exposure significantly reduced the expression of GLUT1 protein in the brains. Furthermore, the effect of focused ultrasound on glucose uptake was transient and reversible 24h after sonication. Our results indicate that focused ultrasound may inhibit GLUT1 expression to decrease the glucose uptake in brain tissue during the period of BBB disruption. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Estimation of paclitaxel biodistribution and uptake in human-derived xenografts in vivo with (18)F-fluoropaclitaxel.

    PubMed

    Gangloff, Anne; Hsueh, Wei-Ann; Kesner, Amanda L; Kiesewetter, Dale O; Pio, Betty S; Pegram, Mark D; Beryt, Malgorzata; Townsend, Allison; Czernin, Johannes; Phelps, Michael E; Silverman, Daniel H S

    2005-11-01

    Paclitaxel (PAC) is widely used as a chemotherapy drug in the treatment of various malignancies, including breast, ovarian, and lung cancers. We examined the biodistribution of (18)F-fluoropaclitaxel ((18)F-FPAC) in mice with and without human breast cancer tumor xenografts by use of small-animal-dedicated PET (microPET) and clinically practical semiquantitative methods. We compared the PET data to data derived from direct harvesting and analysis of blood, organs, and breast carcinoma xenografts. PET data were acquired after tail vein injection of (18)F-FPAC in nude mice. Tracer biodistribution in reconstructed images was quantified by region-of-interest analysis. Biodistribution also was assessed by harvesting and analysis of dissected organs, tumors, and blood after coadministration of (18)F-FPAC and (3)H-PAC. (18)F content in each tissue was assessed with a gamma-well counter, and (3)H content was quantified by scintillation counting of solubilized tissue after (18)F radioactive decay. The distributions of (18)F-FPAC and (3)H-PAC were very similar, with the highest concentrations in the small intestine, the lowest concentrations in the brain, and intermediate concentrations in tumor. Uptake in these and other tissues was not inhibited by the presence of more pharmacologic doses of unlabeled PAC. Administration of the P-glycoprotein modulator cyclosporine doubled the uptake of both (18)F-FPAC and (3)H-PAC into tumor. PET studies with (18)F-FPAC can be used in conjunction with clinically practical quantification methods to yield estimates of PAC uptake in breast cancer tumors and normal organs noninvasively.

  17. Mitochondrial Metabolism as a Treatment Target in Anaplastic Thyroid Cancer

    PubMed Central

    Johnson, Jennifer M; Lai, Stephen Y.; Cotzia, Paolo; Cognetti, David; Luginbuhl, Adam; Pribitkin, Edmund A.; Zhan, Tingting; Mollaee, Mehri; Domingo-Vidal, Marina; Chen, Yunyun; Campling, Barbara; Bar-Ad, Voichita; Birbe, Ruth; Tuluc, Madalina; Outschoorn, Ubaldo Martinez; Curry, Joseph

    2015-01-01

    Aims Anaplastic thyroid cancer (ATC) is one of the most aggressive human cancers. Key signal transduction pathways that regulate mitochondrial metabolism are frequently altered in ATC. Our goal was to determine the mitochondrial metabolic phenotype of ATC by studying markers of mitochondrial metabolism, specifically Monocarboxylate Transporter 1 (MCT1) and Translocase of the Outer Mitochondrial Membrane Member 20 (TOMM20). Methods Staining patterns of MCT1 and TOMM20 in 35 human thyroid samples (15 ATC, 12 papillary thyroid cancer (PTC), and 8 non-cancerous thyroid) and 9 ATC mouse orthotopic xenografts were assessed by visual and Aperio digital scoring. Staining patterns of areas involved with cancer versus areas with no evidence of cancer were evaluated independently where available. Results MCT1 is highly expressed in human anaplastic thyroid cancer when compared to both non-cancerous thyroid tissues and papillary thyroid cancers (p<0.001 for both). TOMM20 is also highly expressed in both ATC and PTC compared to non-cancerous thyroid tissue (p<0.01 for both). High MCT1 and TOMM20 expression is also found in ATC mouse xenograft tumors compared to non-cancerous thyroid tissue (p<0.001). These xenograft tumors have high 13C- pyruvate uptake. Conclusions Anaplastic thyroid cancer has metabolic features that distinguish it from PTC and non-cancerous thyroid tissue, including high expression of MCT1 and TOMM20. PTC has low expression of MCT1 and non-cancerous thyroid tissue has low expression of both MCT1 and TOMM20. This work suggests that MCT1 blockade may specifically target ATC cells presenting an opportunity for a new drug target. PMID:26615136

  18. Mitochondrial Metabolism as a Treatment Target in Anaplastic Thyroid Cancer.

    PubMed

    Johnson, Jennifer M; Lai, Stephen Y; Cotzia, Paolo; Cognetti, David; Luginbuhl, Adam; Pribitkin, Edmund A; Zhan, Tingting; Mollaee, Mehri; Domingo-Vidal, Marina; Chen, Yunyun; Campling, Barbara; Bar-Ad, Voichita; Birbe, Ruth; Tuluc, Madalina; Martinez Outschoorn, Ubaldo; Curry, Joseph

    2015-12-01

    Anaplastic thyroid cancer (ATC) is one of the most aggressive human cancers. Key signal transduction pathways that regulate mitochondrial metabolism are frequently altered in ATC. Our goal was to determine the mitochondrial metabolic phenotype of ATC by studying markers of mitochondrial metabolism, specifically monocarboxylate transporter 1 (MCT1) and translocase of the outer mitochondrial membrane member 20 (TOMM20). Staining patterns of MCT1 and TOMM20 in 35 human thyroid samples (15 ATC, 12 papillary thyroid cancer [PTC], and eight non-cancerous thyroid) and nine ATC mouse orthotopic xenografts were assessed by visual and Aperio digital scoring. Staining patterns of areas involved with cancer versus areas with no evidence of cancer were evaluated independently where available. MCT1 is highly expressed in human anaplastic thyroid cancer when compared to both non-cancerous thyroid tissues and papillary thyroid cancers (P<.001 for both). TOMM20 is also highly expressed in both ATC and PTC compared to non-cancerous thyroid tissue (P<.01 for both). High MCT1 and TOMM20 expression is also found in ATC mouse xenograft tumors compared to non-cancerous thyroid tissue (P<.001). These xenograft tumors have high (13)C- pyruvate uptake. ATC has metabolic features that distinguish it from PTC and non-cancerous thyroid tissue, including high expression of MCT1 and TOMM20. PTC has low expression of MCT1 and non-cancerous thyroid tissue has low expression of both MCT1 and TOMM20. This work suggests that MCT1 blockade may specifically target ATC cells presenting an opportunity for a new drug target. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India).

    PubMed

    Rana, Vivek; Maiti, Subodh Kumar

    2018-04-01

    Opencast bituminous coal mining invariably generates huge amount of metal-polluted waste rocks (stored as overburden (OB) dumps) and reclaimed by planting fast growing hardy tree species which accumulate metals in their tissues. In the present study, reclaimed OB dumps located in Jharia coal field (Jharkhand, India) were selected to assess the accumulation of selected metals (Pb, Zn, Mn, Cu and Co) in tissues (leaf, stem bark, stem wood, root bark and root wood) of two commonly planted tree species (Acacia auriculiformis A.Cunn. ex Benth. and Melia azedarach L.). In reclaimed mine soil (RMS), the concentrations of pseudo-total and available metals (DTPA-extractable) were found 182-498 and 196-1877% higher, respectively, than control soil (CS). The positive Spearman's correlation coefficients between pseudo-total concentration of Pb and Cu (r = 0.717; p < 0.05), Pb and Co (r = 0.650; p < 0.05), Zn and Mn (0.359), Cu and Co (r = 0.896; p < 0.01) suggested similar sources for Pb-Cu-Co and Mn-Zn. Among the five tree tissues considered, Pb selectively accumulated in root bark, stem bark and leaves; Zn and Mn in leaves; and Cu in root wood and stem wood. These results suggested metal accumulation to be "tissue-specific". The biological indices (BCF, TF leaf , TF stem bark and TF stem wood ) indicated variation in metal uptake potential of different tree tissues. The study indicated that A. auriculiformis could be employed for Mn phytoextraction (BCF, TF leaf , TF stem bark and TF stem wood  > 1). The applicability of both the trees in Cu phytostabilization (BCF > 1; TF leaf , TF stem bark and TF stem wood  < 1) was suggested. The study enhanced knowledge about the selection of tree species for the phytoremediation of coal mine OB dumps and specific tree tissues for monitoring metal pollution.

  20. Single hind limb burn injury to mice alters nuclear factor-κB expression and [¹⁸F] 2-fluoro-2-deoxy-D-glucose uptake.

    PubMed

    Carter, Edward A; Hamrahi, Victoria; Paul, Kasie; Bonab, Ali A; Jung, Walter; Tompkins, Ronald G; Fischman, Alan J

    2014-01-01

    Burn trauma to the extremities can produce marked systemic effects in mice. Burn injury to the dorsal surface of mice is also associated with changes in glucose metabolism ([18F] 2-fluoro-2-deoxy-D-glucose [18FDG] uptake) by brown adipose tissue (BAT) and nuclear factor (NF)-κB activity in several tissues including skeletal muscle. This study examined the effect of a single hind limb burn in mice on 18FDG uptake by NF-κB activity in vivo, and blood flow was determined by laser Doppler techniques. Male NF-κB luciferase reporter mice (28-30 g) were anesthetized, both legs were shaven, and the right leg was subjected to scald injury by immersion in 90°C water for 5 seconds. Sham-treated animals were used as controls. Each burned and sham mouse was resuscitated with saline (2 mL, i.p.). The individual animals were placed in wire bottom cages with no food and free access to water. After 24 hours, the animals were imaged with laser Doppler for measuring blood flow in the hind limb. The animals were then unanesthetized with 50 μCi of FDG or luciferin (1.0 mg, i.v.) via tail vein. Five minutes after luciferin injection, NF-κB mice were studied by bioluminescence imaging with a charge-coupled device camera. One hour after 18FDG injection, the animals were killed with carbon dioxide overdose, and 18FDG biodistribution was measured. Tissues were also analyzed for NF-κB luciferase activity. The scalding procedure used here produced a full-thickness burn injury to the leg with sharp margins. 18FDG uptake by the burned leg was lower than that in the contralateral limb. Similarly, luciferase activity and blood flow in the burned leg were lower than those in the contralateral leg. 18FDG uptake by BAT and heart increased, whereas that by brain decreased. In conclusion, the present study suggests that burn injury to a single leg decreased FDG uptake by skeletal muscle but increased 18FDG uptake by BAT. The injury to the leg reduced NF-κB expression compared with the contralateral leg and the uninjured skeletal muscle of the sham but activated NF-κB expression in a number of other organs. These findings are consistent with the hypothesis that burn trauma to the extremities can produce marked systemic effects, including activation of NF-κB expression and activation of 18FDG uptake by BAT.

Top