Sample records for specific tissues cells

  1. Isolation of Precursor Cells from Waste Solid Fat Tissue

    NASA Technical Reports Server (NTRS)

    Byerly, Diane; Sognier, Marguerite A.

    2009-01-01

    A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.

  2. Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection

    PubMed Central

    Gordon, Claire L.; Thome, Joseph J.C.; Igarashi, Suzu

    2017-01-01

    T cell responses to viruses are initiated and maintained in tissue sites; however, knowledge of human antiviral T cells is largely derived from blood. Cytomegalovirus (CMV) persists in most humans, requires T cell immunity to control, yet tissue immune responses remain undefined. Here, we investigated human CMV-specific T cells, virus persistence and CMV-associated T cell homeostasis in blood, lymphoid, mucosal and secretory tissues of 44 CMV seropositive and 28 seronegative donors. CMV-specific T cells were maintained in distinct distribution patterns, highest in blood, bone marrow (BM), or lymph nodes (LN), with the frequency and function in blood distinct from tissues. CMV genomes were detected predominantly in lung and also in spleen, BM, blood and LN. High frequencies of activated CMV-specific T cells were found in blood and BM samples with low virus detection, whereas in lung, CMV-specific T cells were present along with detectable virus. In LNs, CMV-specific T cells exhibited quiescent phenotypes independent of virus. Overall, T cell differentiation was enhanced in sites of viral persistence with age. Together, our results suggest tissue T cell reservoirs for CMV control shaped by both viral and tissue-intrinsic factors, with global effects on homeostasis of tissue T cells over the lifespan. PMID:28130404

  3. Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection.

    PubMed

    Gordon, Claire L; Miron, Michelle; Thome, Joseph J C; Matsuoka, Nobuhide; Weiner, Joshua; Rak, Michael A; Igarashi, Suzu; Granot, Tomer; Lerner, Harvey; Goodrum, Felicia; Farber, Donna L

    2017-03-06

    T cell responses to viruses are initiated and maintained in tissue sites; however, knowledge of human antiviral T cells is largely derived from blood. Cytomegalovirus (CMV) persists in most humans, requires T cell immunity to control, yet tissue immune responses remain undefined. Here, we investigated human CMV-specific T cells, virus persistence and CMV-associated T cell homeostasis in blood, lymphoid, mucosal and secretory tissues of 44 CMV seropositive and 28 seronegative donors. CMV-specific T cells were maintained in distinct distribution patterns, highest in blood, bone marrow (BM), or lymph nodes (LN), with the frequency and function in blood distinct from tissues. CMV genomes were detected predominantly in lung and also in spleen, BM, blood and LN. High frequencies of activated CMV-specific T cells were found in blood and BM samples with low virus detection, whereas in lung, CMV-specific T cells were present along with detectable virus. In LNs, CMV-specific T cells exhibited quiescent phenotypes independent of virus. Overall, T cell differentiation was enhanced in sites of viral persistence with age. Together, our results suggest tissue T cell reservoirs for CMV control shaped by both viral and tissue-intrinsic factors, with global effects on homeostasis of tissue T cells over the lifespan. @Gordon et al.

  4. A tissue-like culture system using microstructures: influence of extracellular matrix material on cell adhesion and aggregation.

    PubMed

    Knedlitschek, G; Schneider, F; Gottwald, E; Schaller, T; Eschbach, E; Weibezahn, K F

    1999-02-01

    Special microenvironmental conditions are required to induce and/or maintain specific qualities of differentiated cells. An important parameter is the three-dimensional tissue architecture that cannot be reproduced in conventional monolayer systems. Advanced tissue culture systems will meet many of these demands, but may reach their limits, especially when gradients of specific substances over distinct tissue layers must be established for long-term culture. These limitations may be overcome by incorporating microstructures into tissue-like culture systems. The microstructured cell support presented consists of a flat array of 625 cubic microcontainers with porous bottoms, in which cells can be supplied with specific media from both sides of the tissue layer. Permanent cell lines and primary rat hepatocytes have been used to test the culture system. In order to define reproducible conditions for tissue formation and for cell adherence to the structure, several ECM (extracellular matrix) components were tested for coating of microstructured substrata. The described tissue culture system offers great flexibility in adapting the cell support to specific needs.

  5. Estrogen synthesis and signaling pathways during ageing: from periphery to brain

    PubMed Central

    Cui, Jie; Shen, Yong; Li, Rena

    2012-01-01

    Estrogens are the primary female sex hormones and play important roles in both reproductive and non-reproductive systems. Estrogens can be synthesized in non-reproductive tissue as liver, heart, muscle, bone and brain. The tissue-specific estrogen synthesis is consistent with a diversity of estrogen actions. Here, we will focus on tissue and cell-specific estrogen synthesis and estrogen receptor signaling. This review will include three parts: (I) tissue and cell-specific estrogen synthesis and metabolism, (II) tissue and cell-specific distribution of estrogen receptors and signaling and (III) tissue-specific estrogen function and related disorders, including cardiovascular diseases, osteoporosis, Alzheimer's disease and Parkinson disease. This comprehensive review provides new insights into estrogens by giving a better understanding of the tissue-specific estrogen effects and their roles in various diseases. PMID:23348042

  6. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    PubMed

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Use of fibroblast growth factor 2 for expansion of chondrocytes and tissue engineering

    NASA Technical Reports Server (NTRS)

    Vunjak-Novakovic, Gordana (Inventor); Martin, Ivan (Inventor); Freed, Lisa E. (Inventor); Langer, Robert (Inventor)

    2003-01-01

    The present invention provides an improved method for expanding cells for use in tissue engineering. In particular the method provides specific biochemical factors to supplement cell culture medium during the expansion process in order to reproduce events occurring during embryonic development with the goal of regenerating tissue equivalents that resemble natural tissues both structurally and functionally. These specific biochemical factors improve proliferation of the cells and are capable of de-differentiation mature cells isolated from tissue so that the differentiation potential of the cells is preserved. The bioactive molecules also maintain the responsiveness of the cells to other bioactive molecules. Specifically, the invention provides methods for expanding chondrocytes in the presence of fibroblast growth factor 2 for use in regeneration of cartilage tissue.

  8. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection.

    PubMed

    DiPiazza, Anthony; Laniewski, Nathan; Rattan, Ajitanuj; Topham, David J; Miller, Jim; Sant, Andrea J

    2018-07-01

    Pulmonary CD4 T cells are critical in respiratory virus control, both by delivering direct effector function and through coordinating responses of other immune cells. Recent studies have shown that following influenza virus infection, virus-specific CD4 T cells are partitioned between pulmonary vasculature and lung tissue. However, very little is known about the peptide specificity or functional differences of CD4 T cells within these two compartments. Using a mouse model of influenza virus infection in conjunction with intravascular labeling in vivo , the cell surface phenotype, epitope specificity, and functional potential of the endogenous polyclonal CD4 T cell response was examined by tracking nine independent CD4 T cell epitope specificities. These studies revealed that tissue-localized CD4 cells were globally distinct from vascular cells in expression of markers associated with transendothelial migration, residency, and micropositioning. Despite these differences, there was little evidence for remodeling of the viral epitope specificity or cytokine potential as cells transition from vasculature to the highly inflamed lung tissue. Our studies also distinguished cells in the pulmonary vasculature from peripheral circulating CD4 T cells, providing support for the concept that the pulmonary vasculature does not simply reflect circulating cells that are trapped within the narrow confines of capillary vessels but rather is enriched in transitional cells primed in the draining lymph node that have specialized potential to enter the lung tissue. IMPORTANCE CD4 T cells convey a multitude of functions in immunity to influenza, including those delivered in the lymph node and others conveyed by CD4 T cells that leave the lymph node, enter the blood, and extravasate into the lung tissue. Here, we show that the transition of recently primed CD4 cells detected in the lung vasculature undergo profound changes in expression of markers associated with tissue localization as they establish residence in the lung. However, this transition does not edit CD4 T cell epitope specificity or the cytokine potential of the CD4 T cells. Thus, CD4 T cells that enter the infected lung can convey diverse functions and have a sufficiently broad viral antigen specificity to detect the complex array of infected cells within the infected tissue, offering the potential for more effective protective function. Copyright © 2018 American Society for Microbiology.

  9. Identification of tissue-specific cell death using methylation patterns of circulating DNA

    PubMed Central

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J.; Wasserfall, Clive H.; Schatz, Desmond A.; Greenbaum, Carla J.; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K.; Golan, Talia; Ben Sasson, Shmuel A.; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A. M. James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-01-01

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics. PMID:26976580

  10. Cell-type- and tissue-specific transcriptomes of the white spruce (Picea glauca) bark unmask fine-scale spatial patterns of constitutive and induced conifer defense.

    PubMed

    Celedon, Jose M; Yuen, Macaire M S; Chiang, Angela; Henderson, Hannah; Reid, Karen E; Bohlmann, Jörg

    2017-11-01

    Plant defenses often involve specialized cells and tissues. In conifers, specialized cells of the bark are important for defense against insects and pathogens. Using laser microdissection, we characterized the transcriptomes of cortical resin duct cells, phenolic cells and phloem of white spruce (Picea glauca) bark under constitutive and methyl jasmonate (MeJa)-induced conditions, and we compared these transcriptomes with the transcriptome of the bark tissue complex. Overall, ~3700 bark transcripts were differentially expressed in response to MeJa. Approximately 25% of transcripts were expressed in only one cell type, revealing cell specialization at the transcriptome level. MeJa caused cell-type-specific transcriptome responses and changed the overall patterns of cell-type-specific transcript accumulation. Comparison of transcriptomes of the conifer bark tissue complex and specialized cells resolved a masking effect inherent to transcriptome analysis of complex tissues, and showed the actual cell-type-specific transcriptome signatures. Characterization of cell-type-specific transcriptomes is critical to reveal the dynamic patterns of spatial and temporal display of constitutive and induced defense systems in a complex plant tissue or organ. This was demonstrated with the improved resolution of spatially restricted expression of sets of genes of secondary metabolism in the specialized cell types. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  11. Digital sorting of complex tissues for cell type-specific gene expression profiles.

    PubMed

    Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong

    2013-03-07

    Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.

  12. Niches for the Long-Term Maintenance of Tissue-Resident Memory T Cells

    PubMed Central

    Takamura, Shiki

    2018-01-01

    Tissue-resident memory T cells (TRM cells) are a population of immune cells that reside in the lymphoid and non-lymphoid organs without recirculation through the blood. These important cells occupy and utilize unique anatomical and physiological niches that are distinct from those for other memory T cell populations, such as central memory T cells in the secondary lymphoid organs and effector memory T cells that circulate through the tissues. CD8+ TRM cells typically localize in the epithelial layers of barrier tissues where they are optimally positioned to act as sentinels to trigger antigen-specific protection against reinfection. CD4+ TRM cells typically localize below the epithelial layers, such as below the basement membrane, and cluster in lymphoid structures designed to optimize interactions with antigen-presenting cells upon reinfection. A key feature of TRM populations is their ability to be maintained in barrier tissues for prolonged periods of time. For example, skin CD8+ TRM cells displace epidermal niches originally occupied by γδ T cells, thereby enabling their stable persistence for years. It is also clear that the long-term maintenance of TRM cells in different microenvironments is dependent on multiple tissue-specific survival cues, although the specific details are poorly understood. However, not all TRM persist over the long term. Recently, we identified a new spatial niche for the maintenance of CD8+ TRM cells in the lung, which is created at the site of tissue regeneration after injury [termed repair-associated memory depots (RAMD)]. The short-lived nature of RAMD potentially explains the short lifespans of CD8+ TRM cells in this particular tissue. Clearly, a better understanding of the niche-dependent maintenance of TRM cells will be important for the development of vaccines designed to promote barrier immunity. In this review, we discuss recent advances in our understanding of the properties and nature of tissue-specific niches that maintain TRM cells in different tissues. PMID:29904388

  13. Products of cells from gliomas: VIII. Multiple-well immunoperoxidase assay of immunoreactivity of primary hybridoma supernatants with human glioma and brain tissue and cultured glioma cells.

    PubMed

    McKeever, P E; Wahl, R L; Shakui, P; Jackson, G A; Letica, L H; Liebert, M; Taren, J A; Beierwaltes, W H; Hoff, J T

    1990-06-01

    To test the feasibility of primary screening of hybridoma supernatants against human glioma tissue, over 5000 combinations of hybridoma supernatants with glioma tissue, cultured glioma cells, and normal central neural tissue were screened with a new multiple-well (M-well) screening system. This is an immunoperoxidase assay system with visual endpoints for screening 20-30 hybridoma supernatants per single microscope slide. There were extensive differences between specificities to tissue and to cultured glioma cells when both were screened with M-wells and when cultured cells were screened with standard semi-automated fluorescence. Primary M-well screening with glioma tissue detected seven hybridoma supernatants that specifically identified parenchymal cells of glioma tissue and that were not detected with cultured cells. Immunoreactivities of individual supernatants for vascular components (nine supernatants), necrosis (five supernatants), and nuclei (three supernatants) were detected. Other supernatants bound multiple sites on glioma tissue and/or subpopulations of neurons and glia of normal tissue. The results show that primary screening with glioma tissue detects a number of different specificities of hybridoma supernatants to gliomas not detected by conventional screening with cultured cells. These are potentially applicable to diagnosis and therapy.

  14. A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures.

    PubMed

    Wong, Michael Thomas; Ong, David Eng Hui; Lim, Frances Sheau Huei; Teng, Karen Wei Weng; McGovern, Naomi; Narayanan, Sriram; Ho, Wen Qi; Cerny, Daniela; Tan, Henry Kun Kiaang; Anicete, Rosslyn; Tan, Bien Keem; Lim, Tony Kiat Hon; Chan, Chung Yip; Cheow, Peng Chung; Lee, Ser Yee; Takano, Angela; Tan, Eng-Huat; Tam, John Kit Chung; Tan, Ern Yu; Chan, Jerry Kok Yen; Fink, Katja; Bertoletti, Antonio; Ginhoux, Florent; Curotto de Lafaille, Maria Alicia; Newell, Evan William

    2016-08-16

    Depending on the tissue microenvironment, T cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze T cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that T cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how T cell phenotypes are altered throughout the human body. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Characteristics of microRNAs enriched in specific cell types and primary tissue types in solid organs.

    PubMed

    Kriegel, Alison J; Liu, Yong; Liu, Pengyuan; Baker, Maria Angeles; Hodges, Matthew R; Hua, Xing; Liang, Mingyu

    2013-12-01

    Knowledge of miRNA expression and function in specific cell types in solid organs is limited because of difficulty in obtaining appropriate specimens. We used laser capture microdissection to obtain nine tissue regions from rats, including the nucleus of the solitary tract, hypoglossal motor nucleus, ventral respiratory column/pre-Bötzinger complex, and midline raphe nucleus from the brain stem, myocardium and coronary artery from the heart, and glomerulus, proximal convoluted tubule, and medullary thick ascending limb from the kidney. Each tissue region consists of or is enriched for a specific cell type. Differential patterns of miRNA expression obtained by deep sequencing of minute amounts of laser-captured cells were highly consistent with data obtained from real-time PCR analysis. miRNA expression patterns correctly clustered the specimens by tissue regions and then by primary tissue types (neural, muscular, or epithelial). The aggregate difference in miRNA profiles between tissue regions that contained the same primary tissue type was as large as one-half of the aggregate difference between primary tissue types. miRNAs differentially expressed between primary tissue types are more likely to be abundant miRNAs, while miRNAs differentially expressed between tissue regions containing the same primary tissue type were distributed evenly across the abundance spectrum. The tissue type-enriched miRNAs were more likely to target genes enriched for specific functional categories compared with either cell type-enriched miRNAs or randomly selected miRNAs. These data indicate that the role of miRNAs in determining characteristics of primary tissue types may be different than their role in regulating cell type-specific functions in solid organs.

  16. Surface Position, Not Signaling from Surrounding Maternal Tissues, Specifies Aleurone Epidermal Cell Fate in Maize[OA

    PubMed Central

    Gruis, Darren (Fred); Guo, Hena; Selinger, David; Tian, Qing; Olsen, Odd-Arne

    2006-01-01

    Maize (Zea mays) endosperm consists of an epidermal-like surface layer of aleurone cells, an underlying body of starchy endosperm cells, and a basal layer of transfer cells. To determine whether surrounding maternal tissues perform a role in specifying endosperm cell fates, a maize endosperm organ culture technique was established whereby the developing endosperm is completely removed from surrounding maternal tissues. Using cell type-specific fluorescence markers, we show that aleurone cell fate specification occurs exclusively in response to surface position and does not require specific, continued maternal signal input. The starchy endosperm and aleurone cell fates are freely interchangeable throughout the lifespan of the endosperm, with internalized aleurone cells converting to starchy endosperm cells and with starchy endosperm cells that become positioned at the surface converting to aleurone cells. In contrast to aleurone and starchy endosperm cells, transfer cells fail to develop in in vitro-grown endosperm, supporting earlier indications that maternal tissue interaction is required to fully differentiate this cell type. Several parameters confirm that the maize endosperm organ cultures described herein retain the main developmental features of in planta endosperm, including fidelity of aleurone mutant phenotypes, temporal and spatial control of cell type-specific fluorescent markers, specificity of cell type transcripts, and control of mitotic cell divisions. PMID:16698897

  17. Flexible Fabrication of Shape-Controlled Collagen Building Blocks for Self-Assembly of 3D Microtissues.

    PubMed

    Zhang, Xu; Meng, Zhaoxu; Ma, Jingyun; Shi, Yang; Xu, Hui; Lykkemark, Simon; Qin, Jianhua

    2015-08-12

    Creating artificial tissue-like structures that possess the functionality, specificity, and architecture of native tissues remains a big challenge. A new and straightforward strategy for generating shape-controlled collagen building blocks with a well-defined architecture is presented, which can be used for self-assembly of complex 3D microtissues. Collagen blocks with tunable geometries are controllably produced and released via a membrane-templated microdevice. The formation of functional microtissues by embedding tissue-specific cells into collagen blocks with expression of specific proteins is described. The spontaneous self-assembly of cell-laden collagen blocks into organized tissue constructs with predetermined configurations is demonstrated, which are largely driven by the synergistic effects of cell-cell and cell-matrix interactions. This new strategy would open up new avenues for the study of tissue/organ morphogenesis, and tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mycobacterium tuberculosis infection modulates adipose tissue biology

    PubMed Central

    Kühl, Anja A.; Kupz, Andreas; Vogelzang, Alexis; Mollenkopf, Hans-Joachim; Löwe, Delia; Bandermann, Silke; Dorhoi, Anca; Brinkmann, Volker

    2017-01-01

    Mycobacterium tuberculosis (Mtb) primarily resides in the lung but can also persist in extrapulmonary sites. Macrophages are considered the prime cellular habitat in all tissues. Here we demonstrate that Mtb resides inside adipocytes of fat tissue where it expresses stress-related genes. Moreover, perigonadal fat of Mtb-infected mice disseminated the infection when transferred to uninfected animals. Adipose tissue harbors leukocytes in addition to adipocytes and other cell types and we observed that Mtb infection induces changes in adipose tissue biology depending on stage of infection. Mice infected via aerosol showed infiltration of inducible nitric oxide synthase (iNOS) or arginase 1 (Arg1)-negative F4/80+ cells, despite recruitment of CD3+, CD4+ and CD8+ T cells. Gene expression analysis of adipose tissue of aerosol Mtb-infected mice provided evidence for upregulated expression of genes associated with T cells and NK cells at 28 days post-infection. Strikingly, IFN-γ-producing NK cells and Mtb-specific CD8+ T cells were identified in perigonadal fat, specifically CD8+CD44-CD69+ and CD8+CD44-CD103+ subpopulations. Gene expression analysis of these cells revealed that they expressed IFN-γ and the lectin-like receptor Klrg1 and down-regulated CD27 and CD62L, consistent with an effector phenotype of Mtb-specific CD8+ T cells. Sorted NK cells expressed higher abundance of Klrg1 upon infection, as well. Our results reveal the ability of Mtb to persist in adipose tissue in a stressed state, and that NK cells and Mtb-specific CD8+ T cells infiltrate infected adipose tissue where they produce IFN-γ and assume an effector phenotype. We conclude that adipose tissue is a potential niche for Mtb and that due to infection CD8+ T cells and NK cells are attracted to this tissue. PMID:29040326

  19. Migration and Tissue Tropism of Innate Lymphoid Cells

    PubMed Central

    Kim, Chang H.; Hashimoto-Hill, Seika; Kim, Myunghoo

    2016-01-01

    Innate lymphoid cell (ILCs) subsets differentially populate various barrier and non-barrier tissues, where they play important roles in tissue homeostasis and tissue-specific responses to pathogen attack. Recent findings have provided insight into the molecular mechanisms that guide ILC migration into peripheral tissues, revealing common features among different ILC subsets as well as important distinctions. Recent studies have also highlighted the impact of tissue-specific cues on ILC migration, and the importance of the local immunological milieu. We review these findings here and discuss how the migratory patterns and tissue tropism of different ILC subsets relate to the development and differentiation of these cells, and to ILC-mediated tissue-specific regulation of innate and adaptive immune responses. In this context we outline open questions and important areas of future research. PMID:26708278

  20. Pericyte-targeting drug delivery and tissue engineering.

    PubMed

    Kang, Eunah; Shin, Jong Wook

    2016-01-01

    Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes.

  1. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues.

    PubMed

    Tremblay, Kimberly D; Zaret, Kenneth S

    2005-04-01

    The location and movement of mammalian gut tissue progenitors, prior to the expression of tissue-specific genes, has been unknown, but this knowledge is essential to identify transitions that lead to cell type specification. To address this, we used vital dyes to label exposed anterior endoderm cells of early somite stage mouse embryos, cultured the embryos into the tissue bud phase of development, and determined the tissue fate of the dye labeled cells. This approach was performed at three embryonic stages that are prior to, or coincident with, foregut tissue patterning (1-3 somites, 4-6 somites, and 7-10 somites). Short-term labeling experiments tracked the movement of tissue progenitor cells during foregut closure. Surprisingly, we found that two distinct types of endoderm-progenitor cells, lateral and medial, arising from three spatially separated embryonic domains, converge to generate the epithelial cells of the liver bud. Whereas the lateral endoderm-progenitors give rise to descendants that are constrained in tissue fate and position along the anterior-posterior axis of the gut, the medial gut endoderm-progenitors give rise to descendants that stream along the anterior-posterior axis at the ventral midline and contribute to multiple gut tissues. The fate map reveals extensive morphogenetic movement of progenitors prior to tissue specification, it permits a detailed analysis of endoderm tissue patterning, and it illustrates that diverse progenitor domains can give rise to individual tissue cell types.

  2. In vivo tissue engineering of musculoskeletal tissues.

    PubMed

    McCullen, Seth D; Chow, Andre G Y; Stevens, Molly M

    2011-10-01

    Tissue engineering of musculoskeletal tissues often involves the in vitro manipulation and culture of progenitor cells, growth factors and biomaterial scaffolds. Though in vitro tissue engineering has greatly increased our understanding of cellular behavior and cell-material interactions, this methodology is often unable to recreate tissue with the hierarchical organization and vascularization found within native tissues. Accordingly, investigators have focused on alternative in vivo tissue engineering strategies, whereby the traditional triad (cells, growth factors, scaffolds) or a combination thereof are directly implanted at the damaged tissue site or within ectopic sites capable of supporting neo-tissue formation. In vivo tissue engineering may offer a preferential route for regeneration of musculoskeletal and other tissues with distinct advantages over in vitro methods based on the specific location of endogenous cultivation, recruitment of autologous cells, and patient-specific regenerated tissues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. GIANT 2.0: genome-scale integrated analysis of gene networks in tissues.

    PubMed

    Wong, Aaron K; Krishnan, Arjun; Troyanskaya, Olga G

    2018-05-25

    GIANT2 (Genome-wide Integrated Analysis of gene Networks in Tissues) is an interactive web server that enables biomedical researchers to analyze their proteins and pathways of interest and generate hypotheses in the context of genome-scale functional maps of human tissues. The precise actions of genes are frequently dependent on their tissue context, yet direct assay of tissue-specific protein function and interactions remains infeasible in many normal human tissues and cell-types. With GIANT2, researchers can explore predicted tissue-specific functional roles of genes and reveal changes in those roles across tissues, all through interactive multi-network visualizations and analyses. Additionally, the NetWAS approach available through the server uses tissue-specific/cell-type networks predicted by GIANT2 to re-prioritize statistical associations from GWAS studies and identify disease-associated genes. GIANT2 predicts tissue-specific interactions by integrating diverse functional genomics data from now over 61 400 experiments for 283 diverse tissues and cell-types. GIANT2 does not require any registration or installation and is freely available for use at http://giant-v2.princeton.edu.

  4. Tissue matrix arrays for high throughput screening and systems analysis of cell function

    PubMed Central

    Beachley, Vince Z.; Wolf, Matthew T.; Sadtler, Kaitlyn; Manda, Srikanth S.; Jacobs, Heather; Blatchley, Michael; Bader, Joel S.; Pandey, Akhilesh; Pardoll, Drew; Elisseeff, Jennifer H.

    2015-01-01

    Cell and protein arrays have demonstrated remarkable utility in the high-throughput evaluation of biological responses; however, they lack the complexity of native tissue and organs. Here, we describe tissue extracellular matrix (ECM) arrays for screening biological outputs and systems analysis. We spotted processed tissue ECM particles as two-dimensional arrays or incorporated them with cells to generate three-dimensional cell-matrix microtissue arrays. We then investigated the response of human stem, cancer, and immune cells to tissue ECM arrays originating from 11 different tissues, and validated the 2D and 3D arrays as representative of the in vivo microenvironment through quantitative analysis of tissue-specific cellular responses, including matrix production, adhesion and proliferation, and morphological changes following culture. The biological outputs correlated with tissue proteomics, and network analysis identified several proteins linked to cell function. Our methodology enables broad screening of ECMs to connect tissue-specific composition with biological activity, providing a new resource for biomaterials research and translation. PMID:26480475

  5. Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity?

    PubMed

    Frossi, Barbara; Mion, Francesca; Sibilano, Riccardo; Danelli, Luca; Pucillo, Carlo E M

    2018-03-01

    Mast cells (MCs) are derived from committed precursors that leave the hematopoietic tissue, migrate in the blood, and colonize peripheral tissues where they terminally differentiate under microenvironment stimuli. They are distributed in almost all vascularized tissues where they act both as immune effectors and housekeeping cells, contributing to tissue homeostasis. Historically, MCs were classified into 2 subtypes, according to tryptic enzymes expression. However, MCs display a striking heterogeneity that reflects a complex interplay between different microenvironmental signals delivered by various tissues, and a differentiation program that decides their identity. Moreover, tissue-specific MCs show a trained memory, which contributes to shape their function in a specific microenvironment. In this review, we summarize the current state of our understanding of MC heterogeneity that reflects their different tissue experiences. We describe the discovery of unique cell molecules that can be used to distinguish specific MC subsets in vivo, and discuss how the improved ability to recognize these subsets provided new insights into the biology of MCs. These recent advances will be helpful for the understanding of the specific role of individual MC subsets in the control of tissue homeostasis, and in the regulation of pathological conditions such as infection, autoimmunity, and cancer. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Cell-scaffold interactions in the bone tissue engineering triad.

    PubMed

    Murphy, Ciara M; O'Brien, Fergal J; Little, David G; Schindeler, Aaron

    2013-09-20

    Bone tissue engineering has emerged as one of the leading fields in tissue engineering and regenerative medicine. The success of bone tissue engineering relies on understanding the interplay between progenitor cells, regulatory signals, and the biomaterials/scaffolds used to deliver them--otherwise known as the tissue engineering triad. This review will discuss the roles of these fundamental components with a specific focus on the interaction between cell behaviour and scaffold structural properties. In terms of scaffold architecture, recent work has shown that pore size can affect both cell attachment and cellular invasion. Moreover, different materials can exert different biomechanical forces, which can profoundly affect cellular differentiation and migration in a cell type specific manner. Understanding these interactions will be critical for enhancing the progress of bone tissue engineering towards clinical applications.

  7. Computational deconvolution of genome wide expression data from Parkinson's and Huntington's disease brain tissues using population-specific expression analysis

    PubMed Central

    Capurro, Alberto; Bodea, Liviu-Gabriel; Schaefer, Patrick; Luthi-Carter, Ruth; Perreau, Victoria M.

    2015-01-01

    The characterization of molecular changes in diseased tissues gives insight into pathophysiological mechanisms and is important for therapeutic development. Genome-wide gene expression analysis has proven valuable for identifying biological processes in neurodegenerative diseases using post mortem human brain tissue and numerous datasets are publically available. However, many studies utilize heterogeneous tissue samples consisting of multiple cell types, all of which contribute to global gene expression values, confounding biological interpretation of the data. In particular, changes in numbers of neuronal and glial cells occurring in neurodegeneration confound transcriptomic analyses, particularly in human brain tissues where sample availability and controls are limited. To identify cell specific gene expression changes in neurodegenerative disease, we have applied our recently published computational deconvolution method, population specific expression analysis (PSEA). PSEA estimates cell-type-specific expression values using reference expression measures, which in the case of brain tissue comprises mRNAs with cell-type-specific expression in neurons, astrocytes, oligodendrocytes and microglia. As an exercise in PSEA implementation and hypothesis development regarding neurodegenerative diseases, we applied PSEA to Parkinson's and Huntington's disease (PD, HD) datasets. Genes identified as differentially expressed in substantia nigra pars compacta neurons by PSEA were validated using external laser capture microdissection data. Network analysis and Annotation Clustering (DAVID) identified molecular processes implicated by differential gene expression in specific cell types. The results of these analyses provided new insights into the implementation of PSEA in brain tissues and additional refinement of molecular signatures in human HD and PD. PMID:25620908

  8. Tissue-specific contribution of macrophages to wound healing.

    PubMed

    Minutti, Carlos M; Knipper, Johanna A; Allen, Judith E; Zaiss, Dietmar M W

    2017-01-01

    Macrophages are present in all tissues, either as resident cells or monocyte-derived cells that infiltrate into tissues. The tissue site largely determines the phenotype of tissue-resident cells, which help to maintain tissue homeostasis and act as sentinels of injury. Both tissue resident and recruited macrophages make a substantial contribution to wound healing following injury. In this review, we evaluate how macrophages in two fundamentally distinct tissues, i.e. the lung and the skin, differentially contribute to the process of wound healing. We highlight the commonalities of macrophage functions during repair and contrast them with distinct, tissue-specific functions that macrophages fulfill during the different stages of wound healing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    PubMed

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  10. Mouse Pancreas Tissue Slice Culture Facilitates Long-Term Studies of Exocrine and Endocrine Cell Physiology in situ

    PubMed Central

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ. PMID:24223842

  11. Retention of Ag-specific memory CD4+ T cells in the draining lymph node indicates lymphoid tissue resident memory populations.

    PubMed

    Marriott, Clare L; Dutton, Emma E; Tomura, Michio; Withers, David R

    2017-05-01

    Several different memory T-cell populations have now been described based upon surface receptor expression and migratory capabilities. Here we have assessed murine endogenous memory CD4 + T cells generated within a draining lymph node and their subsequent migration to other secondary lymphoid tissues. Having established a model response targeting a specific peripheral lymph node, we temporally labelled all the cells within draining lymph node using photoconversion. Tracking of photoconverted and non-photoconverted Ag-specific CD4 + T cells revealed the rapid establishment of a circulating memory population in all lymph nodes within days of immunisation. Strikingly, a resident memory CD4 + T cell population became established in the draining lymph node and persisted for several months in the absence of detectable migration to other lymphoid tissue. These cells most closely resembled effector memory T cells, usually associated with circulation through non-lymphoid tissue, but here, these cells were retained in the draining lymph node. These data indicate that lymphoid tissue resident memory CD4 + T-cell populations are generated in peripheral lymph nodes following immunisation. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    NASA Astrophysics Data System (ADS)

    Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  13. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing.

    PubMed

    Jackson, Wesley M; Nesti, Leon J; Tuan, Rocky S

    2012-05-31

    Scars are a consequence of cutaneous wound healing that can be both unsightly and detrimental to the function of the tissue. Scar tissue is generated by excessive deposition of extracellular matrix tissue by wound healing fibroblasts and myofibroblasts, and although it is inferior to the uninjured skin, it is able to restore integrity to the boundary between the body and its environment. Scarring is not a necessary process to repair the dermal tissues. Rather, scar tissue forms due to specific mechanisms that occur during the adult wound healing process and are modulated primarily by the inflammatory response at the site of injury. Adult tissue-derived mesenchymal stem cells, which participate in normal wound healing, are trophic mediators of tissue repair. These cells participate in attenuating inflammation in the wound and reprogramming the resident immune and wound healing cells to favor tissue regeneration and inhibit fibrotic tissue formation. As a result, these cells have been considered and tested as a likely candidate for a cellular therapy to promote scar-less wound healing. This review identifies specific mechanisms by which mesenchymal stem cells can limit tissue fibrosis and summarizes recent in vivo studies where these cells have been used successfully to limit scar formation.

  14. One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior.

    PubMed

    Marinkovic, Milos; Block, Travis J; Rakian, Rubie; Li, Qihong; Wang, Exing; Reilly, Matthew A; Dean, David D; Chen, Xiao-Dong

    2016-01-01

    For more than 100years, cells and tissues have been studied in vitro using glass and plastic surfaces. Over the last 10-20years, a great body of research has shown that cells are acutely sensitive to their local environment (extracellular matrix, ECM) which contains both chemical and physical cues that influence cell behavior. These observations suggest that modern cell culture systems, using tissue culture polystyrene (TCP) surfaces, may fail to reproduce authentic cell behavior in vitro, resulting in "artificial outcomes." In the current study, we use bone marrow (BM)- and adipose (AD)-derived stromal cells to prepare BM-ECM and AD-ECM, which are decellularized after synthesis by the cells, to mimic the cellular niche for each of these tissues. Each ECM was characterized for its ability to affect BM- and AD-mesenchymal stem cell (MSC) proliferation, as well as proliferation of three cancer cell lines (HeLa, MCF-7, and MDA-MB-231), modulate cell spreading, and direct differentiation relative to standard TCP surfaces. We found that both ECMs promoted the proliferation of MSCs, but that this effect was enhanced when the tissue-origin of the cells matched that of the ECM (i.e. BM-ECM promoted the proliferation of BM-MSCs over AD-MSCs, and vice versa). Moreover, BM- and AD-ECM were shown to preferentially direct MSC differentiation towards either osteogenic or adipogenic lineage, respectively, suggesting that the effects of the ECM were tissue-specific. Further, each ECM influenced cell morphology (i.e. circularity), irrespective of the origin of the MSCs, lending more support to the idea that effects were tissue specific. Interestingly, unlike MSCs, these ECMs did not promote the proliferation of the cancer cells. In an effort to further understand how these three culture substrates influence cell behavior, we evaluated the chemical (protein composition) and physical properties (architecture and mechanical) of the two ECMs. While many structural proteins (e.g. collagen and fibronectin) were found at equivalent levels in both BM- and AD-ECM, the architecture (i.e. fiber orientation; surface roughness) and physical properties (storage modulus, surface energy) of each were unique. These results, demonstrating differences in cell behavior when cultured on the three different substrates (BM- and AD-ECM and TCP) with differences in chemical and physical properties, provide evidence that the two ECMs may recapitulate specific elements of the native stem cell niche for bone marrow and adipose tissues. More broadly, it could be argued that ECMs, elaborated by cells ex vivo, serve as an ideal starting point for developing tissue-specific culture environments. In contrast to TCP, which relies on the "one size fits all" paradigm, native tissue-specific ECM may be a more rational model to approach engineering 3D tissue-specific culture systems to replicate the in vivo niche. We suggest that this approach will provide more meaningful information for basic research studies of cell behavior as well as cell-based therapeutics. Published by Elsevier B.V.

  15. Cell density signal protein suitable for treatment of connective tissue injuries and defects

    DOEpatents

    Schwarz, Richard I.

    2002-08-13

    Identification, isolation and partial sequencing of a cell density protein produced by fibroblastic cells. The cell density signal protein comprising a 14 amino acid peptide or a fragment, variant, mutant or analog thereof, the deduced cDNA sequence from the 14 amino acid peptide, a recombinant protein, protein and peptide-specific antibodies, and the use of the peptide and peptide-specific antibodies as therapeutic agents for regulation of cell differentiation and proliferation. A method for treatment and repair of connective tissue and tendon injuries, collagen deficiency, and connective tissue defects.

  16. RBFOX2 Is an Important Regulator of Mesenchymal Tissue-Specific Splicing in both Normal and Cancer Tissues

    PubMed Central

    Venables, Julian P.; Brosseau, Jean-Philippe; Gadea, Gilles; Klinck, Roscoe; Prinos, Panagiotis; Beaulieu, Jean-François; Lapointe, Elvy; Durand, Mathieu; Thibault, Philippe; Tremblay, Karine; Rousset, François; Tazi, Jamal; Abou Elela, Sherif

    2013-01-01

    Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing. PMID:23149937

  17. CD8 down-regulation and functional impairment of SIV-specific cytotoxic T lymphocytes in lymphoid and mucosal tissues during SIV infection.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A; Veazey, Ronald S

    2013-06-01

    Functional impairment of virus-specific T cells is a hallmark of HIV/SIV infection, but the underlying mechanisms of this dysfunction are not well understood. To address this, we simultaneously analyzed the expression and intensity of CD8 and inhibitory PD-1 on CTL in blood and lymphoid tissues in SIV-infected rhesus macaques. The intensity (mean channel fluorescence) of CD8 expression was transiently down-regulated in early SIV infection (10-14 dpi), despite an increase in CD8(+) T cell proliferation. In chronic infection, CD8 expression was maintained at low levels on CD8(+) T cells in all tissues. Interestingly, Gag-specific CTLs were clearly divided into CD8high- and CD8low-expressing populations in SIV-infected macaques, and CD8low Gag-specific cells increased with disease progression, especially in lymphoid tissues when compared with peripheral blood or in Gag-vaccinated controls. Moreover, the CD8low CTL population secreted lower levels of cytokines upon SIV antigen stimulation and exhibited lower proliferative capacity during infection compared with the CD8high CTL population. Meanwhile, intensity of PD-1 expression on Gag-specific CTL in chronic infection was significantly higher than in acute SIV infection, although the frequencies of PD-1+ Gag-specific cells were similar in acute and chronic stages. In summary, down-regulation of CD8 expression and higher expression of PD-1 on SIV-specific CTLs could coordinately attenuate SIV-specific CTL responses and their ability to recognize virus-infected target cells, especially in lymphoid tissues, resulting in failure to contain viremia, and continued persistence and replication of HIV in lymphoid tissue reservoirs.

  18. Analyses of a Mutant Foxp3 Allele Reveal BATF as a Critical Transcription Factor in the Differentiation and Accumulation of Tissue Regulatory T Cells.

    PubMed

    Hayatsu, Norihito; Miyao, Takahisa; Tachibana, Masashi; Murakami, Ryuichi; Kimura, Akihiko; Kato, Takako; Kawakami, Eiryo; Endo, Takaho A; Setoguchi, Ruka; Watarai, Hiroshi; Nishikawa, Takeshi; Yasuda, Takuwa; Yoshida, Hisahiro; Hori, Shohei

    2017-08-15

    Foxp3 controls the development and function of regulatory T (Treg) cells, but it remains elusive how Foxp3 functions in vivo. Here, we established mouse models harboring three unique missense Foxp3 mutations that were identified in patients with the autoimmune disease IPEX. The I363V and R397W mutations were loss-of-function mutations, causing multi-organ inflammation by globally compromising Treg cell physiology. By contrast, the A384T mutation induced a distinctive tissue-restricted inflammation by specifically impairing the ability of Treg cells to compete with pathogenic T cells in certain non-lymphoid tissues. Mechanistically, repressed BATF expression contributed to these A384T effects. At the molecular level, the A384T mutation altered Foxp3 interactions with its specific target genes including Batf by broadening its DNA-binding specificity. Our findings identify BATF as a critical regulator of tissue Treg cells and suggest that sequence-specific perturbations of Foxp3-DNA interactions can influence specific facets of Treg cell physiology and the immunopathologies they regulate. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Virus-Specific Immune Memory at Peripheral Sites of Herpes Simplex Virus Type 2 (HSV-2) Infection in Guinea Pigs

    PubMed Central

    Xia, Jingya; Veselenak, Ronald L.; Gorder, Summer R.; Bourne, Nigel; Milligan, Gregg N.

    2014-01-01

    Despite its importance in modulating HSV-2 pathogenesis, the nature of tissue-resident immune memory to HSV-2 is not completely understood. We used genital HSV-2 infection of guinea pigs to assess the type and location of HSV-specific memory cells at peripheral sites of HSV-2 infection. HSV-specific antibody-secreting cells were readily detected in the spleen, bone marrow, vagina/cervix, lumbosacral sensory ganglia, and spinal cord of previously-infected animals. Memory B cells were detected primarily in the spleen and to a lesser extent in bone marrow but not in the genital tract or neural tissues suggesting that the HSV-specific antibody-secreting cells present at peripheral sites of HSV-2 infection represented persisting populations of plasma cells. The antibody produced by these cells isolated from neural tissues of infected animals was functionally relevant and included antibodies specific for HSV-2 glycoproteins and HSV-2 neutralizing antibodies. A vigorous IFN-γ-secreting T cell response developed in the spleen as well as the sites of HSV-2 infection in the genital tract, lumbosacral ganglia and spinal cord following acute HSV-2 infection. Additionally, populations of HSV-specific tissue-resident memory T cells were maintained at these sites and were readily detected up to 150 days post HSV-2 infection. Unlike the persisting plasma cells, HSV-specific memory T cells were also detected in uterine tissue and cervicothoracic region of the spinal cord and at low levels in the cervicothoracic ganglia. Both HSV-specific CD4+ and CD8+ resident memory cell subsets were maintained long-term in the genital tract and sensory ganglia/spinal cord following HSV-2 infection. Together these data demonstrate the long-term maintenance of both humoral and cellular arms of the adaptive immune response at the sites of HSV-2 latency and virus shedding and highlight the utility of the guinea pig infection model to investigate tissue-resident memory in the setting of HSV-2 latency and spontaneous reactivation. PMID:25485971

  20. Establishment of a tissue-specific RNAi system in C. elegans.

    PubMed

    Qadota, Hiroshi; Inoue, Makiko; Hikita, Takao; Köppen, Mathias; Hardin, Jeffrey D; Amano, Mutsuki; Moerman, Donald G; Kaibuchi, Kozo

    2007-10-01

    In C. elegans, mosaic analysis is a powerful genetic tool for determining in which tissue or specific cells a gene of interest is required. For traditional mosaic analysis, a loss-of-function mutant and a genomic fragment that can rescue the mutant phenotype are required. Here we establish an easy and rapid mosaic system using RNAi (RNA mediated interference), using a rde-1 mutant that is resistant to RNAi. Tissue-specific expression of the wild type rde-1 cDNA in rde-1 mutants limits RNAi sensitivity to a specific tissue. We established hypodermal-and muscle-specific RNAi systems by expressing rde-1 cDNA under the control of the lin-26 and hlh-1 promoters, respectively. We confirmed tissue-specific RNAi using two assays: (1) tissue-specific knockdown of GFP expression, and (2) phenocopy of mutations in essential genes that were previously known to function in a tissue-specific manner. We also applied this system to an essential gene, ajm-1, expressed in hypodermis and gut, and show that lethality in ajm-1 mutants is due to loss of expression in hypodermal cells. Although we demonstrate tissue-specific RNAi in hypodermis and muscle, this method could be easily applied to other tissues.

  1. Establishment of a tissue-specific RNAi system in C. elegans

    PubMed Central

    Qadota, Hiroshi; Inoue, Makiko; Hikita, Takao; Köppen, Mathias; Hardin, Jeffrey D.; Amano, Mutsuki; Moerman, Donald G.; Kaibuchi, Kozo

    2011-01-01

    In C. elegans, mosaic analysis is a powerful genetic tool for determining in which tissue or specific cells a gene of interest is required. For traditional mosaic analysis, a loss-of-function mutant and a genomic fragment that can rescue the mutant phenotype are required. Here we establish an easy and rapid mosaic system using RNAi (RNA mediated interference), using a rde-1 mutant that is resistant to RNAi. Tissue-specific expression of the wild type rde-1 cDNA in rde-1 mutants limits RNAi sensitivity to a specific tissue. We established hypodermal- and muscle-specific RNAi systems by expressing rde-1 cDNA under the control of the lin-26 and hlh-1 promoters, respectively. We confirmed tissue-specific RNAi using two assays: (1) tissue-specific knockdown of GFP expression, and (2) phenocopy of mutations in essential genes that were previously known to function in a tissue-specific manner. We also applied this system to an essential gene, ajm-1, expressed in hypodermis and gut, and show that lethality in ajm-1 mutants is due to loss of expression in hypodermal cells. Although we demonstrate tissue-specific RNAi in hypodermis and muscle, this method could be easily applied to other tissues. PMID:17681718

  2. Innate lymphoid cells and their stromal microenvironments.

    PubMed

    Kellermayer, Zoltán; Vojkovics, Dóra; Balogh, Péter

    2017-09-01

    In addition to the interaction between antigen presenting cells, T and B lymphocytes, recent studies have revealed important roles for a diverse set of auxiliary cells that profoundly influence the induction and regulation of immune responses against pathogens. Of these the stromal cells composed of various non-hematopoietic constituents are crucial for the creation and maintenance of specialized semi-static three-dimensional lymphoid tissue microenvironment, whereas the more recently described innate lymphoid cells are generated by the diversification of committed lymphoid precursor cells independently from clonally rearranged antigen receptor genes. Recent findings have revealed important contributions by innate lymphoid cells in inflammation and protection against pathogens in a tissue-specific manner. Importantly, lymphoid stromal cells also influence the onset of immune responses in tissue-specific fashion, raising the possibility of tissue-specific stromal - innate lymphoid cell collaboration. In this review we summarize the main features and interactions between these two cells types, with particular emphasis on ILC type 3 cells and their microenvironmental partners. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  3. Androgen receptor (AR) pathophysiological roles in androgen-related diseases in skin, bone/muscle, metabolic syndrome and neuron/immune systems: lessons learned from mice lacking AR in specific cells

    PubMed Central

    Chang, Chawnshang; Yeh, Shuyuan; Lee, Soo Ok; Chang, Ta-min

    2013-01-01

    The androgen receptor (AR) is expressed ubiquitously and plays a variety of roles in a vast number of physiological and pathophysiological processes. Recent studies of AR knockout (ARKO) mouse models, particularly the cell type- or tissue-specific ARKO models, have uncovered many AR cell type- or tissue-specific pathophysiological roles in mice, which otherwise would not be delineated from conventional castration and androgen insensitivity syndrome studies. Thus, the AR in various specific cell types plays pivotal roles in production and maturation of immune cells, bone mineralization, and muscle growth. In metabolism, the ARs in brain, particularly in the hypothalamus, and the liver appear to participate in regulation of insulin sensitivity and glucose homeostasis. The AR also plays key roles in cutaneous wound healing and cardiovascular diseases, including atherosclerosis and abdominal aortic aneurysm. This article will discuss the results obtained from the total, cell type-, or tissue-specific ARKO models. The understanding of AR cell type- or tissue-specific physiological and pathophysiological roles using these in vivo mouse models will provide useful information in uncovering AR roles in humans and eventually help us to develop better therapies via targeting the AR or its downstream signaling molecules to combat androgen/AR-related diseases. PMID:24653668

  4. Computational Modeling of Tissue Self-Assembly

    NASA Astrophysics Data System (ADS)

    Neagu, Adrian; Kosztin, Ioan; Jakab, Karoly; Barz, Bogdan; Neagu, Monica; Jamison, Richard; Forgacs, Gabor

    As a theoretical framework for understanding the self-assembly of living cells into tissues, Steinberg proposed the differential adhesion hypothesis (DAH) according to which a specific cell type possesses a specific adhesion apparatus that combined with cell motility leads to cell assemblies of various cell types in the lowest adhesive energy state. Experimental and theoretical efforts of four decades turned the DAH into a fundamental principle of developmental biology that has been validated both in vitro and in vivo. Based on computational models of cell sorting, we have developed a DAH-based lattice model for tissues in interaction with their environment and simulated biological self-assembly using the Monte Carlo method. The present brief review highlights results on specific morphogenetic processes with relevance to tissue engineering applications. Our own work is presented on the background of several decades of theoretical efforts aimed to model morphogenesis in living tissues. Simulations of systems involving about 105 cells have been performed on high-end personal computers with CPU times of the order of days. Studied processes include cell sorting, cell sheet formation, and the development of endothelialized tubes from rings made of spheroids of two randomly intermixed cell types, when the medium in the interior of the tube was different from the external one. We conclude by noting that computer simulations based on mathematical models of living tissues yield useful guidelines for laboratory work and can catalyze the emergence of innovative technologies in tissue engineering.

  5. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    PubMed

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  6. Mechanical Stretching for Tissue Engineering: Two-Dimensional and Three-Dimensional Constructs

    PubMed Central

    Riehl, Brandon D.; Park, Jae-Hong; Kwon, Il Keun

    2012-01-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols. PMID:22335794

  7. Molecular Signatures of Tissue-Specific Microvascular Endothelial Cell Heterogeneity in Organ Maintenance and Regeneration

    PubMed Central

    Nolan, Daniel J.; Ginsberg, Michael; Israely, Edo; Palikuqi, Brisa; Poulos, Michael G.; James, Daylon; Ding, Bi-Sen; Schachterle, William; Liu, Ying; Rosenwaks, Zev; Butler, Jason M.; Xiang, Jenny; Rafii, Arash; Shido, Koji; Rabbany, Sina Y.; Elemento, Olivier; Rafii, Shahin

    2013-01-01

    SUMMARY Microvascular endothelial cells (ECs) within different tissues are endowed with distinct but as yet unrecognized structural, phenotypic, and functional attributes. We devised EC purification, cultivation, profiling, and transplantation models that establish tissue-specific molecular libraries of ECs devoid of lymphatic ECs or parenchymal cells. These libraries identify attributes that confer ECs with their organotypic features. We show that clusters of transcription factors, angiocrine growth factors, adhesion molecules, and chemokines are expressed in unique combinations by ECs of each organ. Furthermore, ECs respond distinctly in tissue regeneration models, hepatectomy, and myeloablation. To test the data set, we developed a transplantation model that employs generic ECs differentiated from embryonic stem cells. Transplanted generic ECs engraft into regenerating tissues and acquire features of organotypic ECs. Collectively, we demonstrate the utility of informational databases of ECs toward uncovering the extravascular and intrinsic signals that define EC heterogeneity. These factors could be exploited therapeutically to engineer tissue-specific ECs for regeneration. PMID:23871589

  8. Raman Imaging of Plant Cell Walls in Sections of Cucumis sativus

    PubMed Central

    Zeise, Ingrid; Heiner, Zsuzsanna; Holz, Sabine; Joester, Maike; Büttner, Carmen

    2018-01-01

    Raman microspectra combine information on chemical composition of plant tissues with spatial information. The contributions from the building blocks of the cell walls in the Raman spectra of plant tissues can vary in the microscopic sub-structures of the tissue. Here, we discuss the analysis of 55 Raman maps of root, stem, and leaf tissues of Cucumis sativus, using different spectral contributions from cellulose and lignin in both univariate and multivariate imaging methods. Imaging based on hierarchical cluster analysis (HCA) and principal component analysis (PCA) indicates different substructures in the xylem cell walls of the different tissues. Using specific signals from the cell wall spectra, analysis of the whole set of different tissue sections based on the Raman images reveals differences in xylem tissue morphology. Due to the specifics of excitation of the Raman spectra in the visible wavelength range (532 nm), which is, e.g., in resonance with carotenoid species, effects of photobleaching and the possibility of exploiting depletion difference spectra for molecular characterization in Raman imaging of plants are discussed. The reported results provide both, specific information on the molecular composition of cucumber tissue Raman spectra, and general directions for future imaging studies in plant tissues. PMID:29370089

  9. Raman Imaging of Plant Cell Walls in Sections of Cucumis sativus.

    PubMed

    Zeise, Ingrid; Heiner, Zsuzsanna; Holz, Sabine; Joester, Maike; Büttner, Carmen; Kneipp, Janina

    2018-01-25

    Raman microspectra combine information on chemical composition of plant tissues with spatial information. The contributions from the building blocks of the cell walls in the Raman spectra of plant tissues can vary in the microscopic sub-structures of the tissue. Here, we discuss the analysis of 55 Raman maps of root, stem, and leaf tissues of Cucumis sativus , using different spectral contributions from cellulose and lignin in both univariate and multivariate imaging methods. Imaging based on hierarchical cluster analysis (HCA) and principal component analysis (PCA) indicates different substructures in the xylem cell walls of the different tissues. Using specific signals from the cell wall spectra, analysis of the whole set of different tissue sections based on the Raman images reveals differences in xylem tissue morphology. Due to the specifics of excitation of the Raman spectra in the visible wavelength range (532 nm), which is, e.g., in resonance with carotenoid species, effects of photobleaching and the possibility of exploiting depletion difference spectra for molecular characterization in Raman imaging of plants are discussed. The reported results provide both, specific information on the molecular composition of cucumber tissue Raman spectra, and general directions for future imaging studies in plant tissues.

  10. T-Cell Receptor- and CD28-induced Vav1 activity is required for the accumulation of primed T cells into antigenic tissue

    PubMed Central

    David, Rachel; Ma, Liang; Ivetic, Aleksandar; Takesono, Aya; Ridley, Anne J.; Chai, Jian-Guo; Tybulewicz, Victor; Marelli-Berg, Federica M.

    2016-01-01

    Localization of primed T cells to antigenic tissue is essential for the development of effective immunity. Together with tissue-selective homing molecules, T-cell receptor (TCR)- and CD28-mediated signals have been shown to promote transendothelial migration of specific T cells into non-lymphoid antigen-rich tissue tissue. However, the cellular and molecular requirements for T-cell accumulation to target tissue following their recruitment are largely undefined. The guanine nucleotide exchange factor (GEF) Vav1 has an integral role in coupling TCR and CD28 to signalling pathways that regulate T cell activation and migration. Here, we have investigated the contribution of TCR- and CD28-induced Vav1 activity to the trafficking and localization of primed HY-specific CD4+ T cells to antigenic sites. Severe migratory defects displayed by Vav1-/- T cells in vitro were fully compensated by a combination of shear flow and chemokines, leading to normal recruitment of Vav1-/- T cells in vivo. In contrast, Vav1-/- T-cell retention into antigen-rich tissue was severely impaired, reflecting their inability to engage in sustained TCR- and CD28-mediated interactions with tissue-resident antigen-presenting cells (APCs). This novel function of APC-induced, TCR- and CD28-mediated Vav1 activity in the regulation of effector T-cell immunity highlights its potential as a therapeutic target in T-cell-mediated tissue damage. PMID:19060239

  11. Antigen-Specific Th17 Cells Are Primed by Distinct and Complementary Dendritic Cell Subsets in Oropharyngeal Candidiasis

    PubMed Central

    Kirchner, Florian R.; Becattini, Simone; Rülicke, Thomas; Sallusto, Federica; LeibundGut-Landmann, Salomé

    2015-01-01

    Candida spp. can cause severe and chronic mucocutaneous and systemic infections in immunocompromised individuals. Protection from mucocutaneous candidiasis depends on T helper cells, in particular those secreting IL-17. The events regulating T cell activation and differentiation toward effector fates in response to fungal invasion in different tissues are poorly understood. Here we generated a Candida-specific TCR transgenic mouse reactive to a novel endogenous antigen that is conserved in multiple distant species of Candida, including the clinically highly relevant C. albicans and C. glabrata. Using TCR transgenic T cells in combination with an experimental model of oropharyngeal candidiasis (OPC) we investigated antigen presentation and Th17 priming by different subsets of dendritic cells (DCs) present in the infected oral mucosa. Candida-derived endogenous antigen accesses the draining lymph nodes and is directly presented by migratory DCs. Tissue-resident Flt3L-dependent DCs and CCR2-dependent monocyte-derived DCs collaborate in antigen presentation and T cell priming during OPC. In contrast, Langerhans cells, which are also present in the oral mucosa and have been shown to prime Th17 cells in the skin, are not required for induction of the Candida-specific T cell response upon oral challenge. This highlights the functional compartmentalization of specific DC subsets in different tissues. These data provide important new insights to our understanding of tissue-specific antifungal immunity. PMID:26431538

  12. Species specificity in cell-substrate interactions in medusae.

    PubMed

    Schmid, V; Bally, A

    1988-10-01

    A new system is described for the study of ECM-tissue interactions, using the ECM (called mesogloea) of various cnidarians and isolated striated muscle and endodermal tissue of jellyfish. The mesogloea consists mainly of water and collagen. It is present in all cnidarians and can be isolated without enzyme treatment. It can be used as a substrate to which cells and tissues adhere and on which they spread and migrate. Tissues of striated muscle and endoderm adhere and spread not only on mesogloea from regions they normally cover, but also from other regions of the animal. However, adhesion and spreading are highly species-specific. Species-specific adhesion is found throughout the whole mass of mesogloea even at regions where cells do not occur naturally. The cell adhesion factor can be extracted from the mesogloea so that the mesogloea no longer shows any cell adhesion properties. The extract consists mainly of a cysteine-containing collagen.

  13. The role of stromal cells in the persistence of chronic inflammation

    PubMed Central

    Naylor, A J; Filer, A; Buckley, C D

    2013-01-01

    Inflammation is an unstable state; it either resolves or persists. Inflammatory reactions often have a propensity for specific anatomical sites. Why inflammation persists with specific tissue tropism remains obscure. Increasing evidence suggests that stromal cells which define tissue architecture are the key cells involved, and therefore make attractive therapeutic targets. Research on stromal cells in general and fibroblasts in particular has so far been hampered by a lack of fibroblast-specific cell markers. This review highlights our increasing understanding of the role of fibroblasts in inflammation, and suggests that these cells provide the cellular basis for site specific chronic inflammation. PMID:23199320

  14. Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell Behavior

    PubMed Central

    Anderson, Hilary J.; Sahoo, Jugal Kishore; Ulijn, Rein V.; Dalby, Matthew J.

    2016-01-01

    The materials pipeline for biomaterials and tissue engineering applications is under continuous development. Specifically, there is great interest in the use of designed materials in the stem cell arena as materials can be used to manipulate the cells providing control of behavior. This is important as the ability to “engineer” complexity and subsequent in vitro growth of tissues and organs is a key objective for tissue engineers. This review will describe the nature of the materials strategies, both static and dynamic, and their influence specifically on mesenchymal stem cell fate. PMID:27242999

  15. Cell- and Tissue-Specific Transcriptome Analyses of Medicago truncatula Root Nodules

    PubMed Central

    Limpens, Erik; Moling, Sjef; Hooiveld, Guido; Pereira, Patrícia A.; Bisseling, Ton; Becker, Jörg D.; Küster, Helge

    2013-01-01

    Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital “in situ”. This digital “in situ” offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies. PMID:23734198

  16. Fabrication of Extracellular Matrix-derived Foams and Microcarriers as Tissue-specific Cell Culture and Delivery Platforms.

    PubMed

    Kornmuller, Anna; Brown, Cody F C; Yu, Claire; Flynn, Lauren E

    2017-04-11

    Cell function is mediated by interactions with the extracellular matrix (ECM), which has complex tissue-specific composition and architecture. The focus of this article is on the methods for fabricating ECM-derived porous foams and microcarriers for use as biologically-relevant substrates in advanced 3D in vitro cell culture models or as pro-regenerative scaffolds and cell delivery systems for tissue engineering and regenerative medicine. Using decellularized tissues or purified insoluble collagen as a starting material, the techniques can be applied to synthesize a broad array of tissue-specific bioscaffolds with customizable geometries. The approach involves mechanical processing and mild enzymatic digestion to yield an ECM suspension that is used to fabricate the three-dimensional foams or microcarriers through controlled freezing and lyophilization procedures. These pure ECM-derived scaffolds are highly porous, yet stable without the need for chemical crosslinking agents or other additives that may negatively impact cell function. The scaffold properties can be tuned to some extent by varying factors such as the ECM suspension concentration, mechanical processing methods, or synthesis conditions. In general, the scaffolds are robust and easy to handle, and can be processed as tissues for most standard biological assays, providing a versatile and user-friendly 3D cell culture platform that mimics the native ECM composition. Overall, these straightforward methods for fabricating customized ECM-derived foams and microcarriers may be of interest to both biologists and biomedical engineers as tissue-specific cell-instructive platforms for in vitro and in vivo applications.

  17. Organ-specific isogenic metastatic breast cancer cell lines exhibit distinct Raman spectral signatures and metabolomes

    PubMed Central

    Winnard, Paul T.; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu

    2017-01-01

    Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities – a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy. PMID:28145887

  18. Organ-specific isogenic metastatic breast cancer cell lines exhibit distinct Raman spectral signatures and metabolomes.

    PubMed

    Winnard, Paul T; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu

    2017-03-21

    Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities - a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy.

  19. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks.

    PubMed

    Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing

    2009-03-11

    Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene-encoded proteins are attached to the core at more peripheral positions of the networks.

  20. FUN-LDA: A Latent Dirichlet Allocation Model for Predicting Tissue-Specific Functional Effects of Noncoding Variation: Methods and Applications.

    PubMed

    Backenroth, Daniel; He, Zihuai; Kiryluk, Krzysztof; Boeva, Valentina; Pethukova, Lynn; Khurana, Ekta; Christiano, Angela; Buxbaum, Joseph D; Ionita-Laza, Iuliana

    2018-05-03

    We describe a method based on a latent Dirichlet allocation model for predicting functional effects of noncoding genetic variants in a cell-type- and/or tissue-specific way (FUN-LDA). Using this unsupervised approach, we predict tissue-specific functional effects for every position in the human genome in 127 different tissues and cell types. We demonstrate the usefulness of our predictions by using several validation experiments. Using eQTL data from several sources, including the GTEx project, Geuvadis project, and TwinsUK cohort, we show that eQTLs in specific tissues tend to be most enriched among the predicted functional variants in relevant tissues in Roadmap. We further show how these integrated functional scores can be used for (1) deriving the most likely cell or tissue type causally implicated for a complex trait by using summary statistics from genome-wide association studies and (2) estimating a tissue-based correlation matrix of various complex traits. We found large enrichment of heritability in functional components of relevant tissues for various complex traits, and FUN-LDA yielded higher enrichment estimates than existing methods. Finally, using experimentally validated functional variants from the literature and variants possibly implicated in disease by previous studies, we rigorously compare FUN-LDA with state-of-the-art functional annotation methods and show that FUN-LDA has better prediction accuracy and higher resolution than these methods. In particular, our results suggest that tissue- and cell-type-specific functional prediction methods tend to have substantially better prediction accuracy than organism-level prediction methods. Scores for each position in the human genome and for each ENCODE and Roadmap tissue are available online (see Web Resources). Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. Design of biomimetic cellular scaffolds for co-culture system and their application.

    PubMed

    Kook, Yun-Min; Jeong, Yoon; Lee, Kangwon; Koh, Won-Gun

    2017-01-01

    The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell-cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment.

  2. Physiologically relevant organs on chips

    PubMed Central

    Yum, Kyungsuk; Hong, Soon Gweon; Lee, Luke P.

    2015-01-01

    Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or organs on chips, that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue–tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. PMID:24357624

  3. Physiologically relevant organs on chips.

    PubMed

    Yum, Kyungsuk; Hong, Soon Gweon; Healy, Kevin E; Lee, Luke P

    2014-01-01

    Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or also known as "ogans-on-chips", that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue-tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Skin-Resident T Cells Drive Dermal Dendritic Cell Migration in Response to Tissue Self-Antigen.

    PubMed

    Ali, Niwa; Zirak, Bahar; Truong, Hong-An; Maurano, Megan M; Gratz, Iris K; Abbas, Abul K; Rosenblum, Michael D

    2018-05-01

    Migratory dendritic cell (DC) subsets deliver tissue Ags to draining lymph nodes (DLNs) to either initiate or inhibit T cell-mediated immune responses. The signals mediating DC migration in response to tissue self-antigen are largely unknown. Using a mouse model of inducible skin-specific self-antigen expression, we demonstrate that CD103 + dermal DCs (DDCs) rapidly migrate from skin to skin DLN (SDLNs) within the first 48 h after Ag expression. This window of time was characterized by the preferential activation of tissue-resident Ag-specific effector T cells (Teffs), with no concurrent activation of Ag-specific Teffs in SDLNs. Using genetic deletion and adoptive transfer approaches, we show that activation of skin-resident Teffs is required to drive CD103 + DDC migration in response to tissue self-antigen and this Batf3-dependent DC population is necessary to mount a fulminant autoimmune response in skin. Conversely, activation of Ag-specific Teffs in SDLNs played no role in DDC migration. Our studies reveal a crucial role for skin-resident T cell-derived signals, originating at the site of self-antigen expression, to drive DDC migration during the elicitation phase of an autoimmune response. Copyright © 2018 by The American Association of Immunologists, Inc.

  5. Scaffolds and tissue regeneration: An overview of the functional properties of selected organic tissues.

    PubMed

    Rebelo, Márcia A; Alves, Thais F R; de Lima, Renata; Oliveira, José M; Vila, Marta M D C; Balcão, Victor M; Severino, Patrícia; Chaud, Marco V

    2016-10-01

    Tissue engineering plays a significant role both in the re-establishment of functions and regeneration of organic tissues. Success in manufacturing projects for biological scaffolds, for the purpose of tissue regeneration, is conditioned by the selection of parameters such as the biomaterial, the device architecture, and the specificities of the cells making up the organic tissue to create, in vivo, a microenvironment that preserves and further enhances the proliferation of a specific cell phenotype. To support this approach, we have screened scientific publications that show biomedical applications of scaffolds, biomechanical, morphological, biochemical, and hemodynamic characteristics of the target organic tissues, and the possible interactions between different cell matrices and biological scaffolds. This review article provides an overview on the biomedical application of scaffolds and on the characteristics of the (bio)materials commonly used for manufacturing these biological devices used in tissue engineering, taking into consideration the cellular specificity of the target tissue. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1483-1494, 2016. © 2015 Wiley Periodicals, Inc.

  6. T Cell Interstitial Migration: Motility Cues from the Inflamed Tissue for Micro- and Macro-Positioning.

    PubMed

    Gaylo, Alison; Schrock, Dillon C; Fernandes, Ninoshka R J; Fowell, Deborah J

    2016-01-01

    Effector T cells exit the inflamed vasculature into an environment shaped by tissue-specific structural configurations and inflammation-imposed extrinsic modifications. Once within interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, non-directional, fashion. Efficient T cell scanning of the tissue environment is essential for successful location of infected target cells or encounter with antigen-presenting cells that activate the T cell's antimicrobial effector functions. The mechanisms of interstitial T cell motility and the environmental cues that may promote or hinder efficient tissue scanning are poorly understood. The extracellular matrix (ECM) appears to play an important scaffolding role in guidance of T cell migration and likely provides a platform for the display of chemotactic factors that may help to direct the positioning of T cells. Here, we discuss how intravital imaging has provided insight into the motility patterns and cellular machinery that facilitates T cell interstitial migration and the critical environmental factors that may optimize the efficiency of effector T cell scanning of the inflamed tissue. Specifically, we highlight the local micro-positioning cues T cells encounter as they migrate within inflamed tissues, from surrounding ECM and signaling molecules, as well as a requirement for appropriate long-range macro-positioning within distinct tissue compartments or at discrete foci of infection or tissue damage. The central nervous system (CNS) responds to injury and infection by extensively remodeling the ECM and with the de novo generation of a fibroblastic reticular network that likely influences T cell motility. We examine how inflammation-induced changes to the CNS landscape may regulate T cell tissue exploration and modulate function.

  7. A computational approach to identify cellular heterogeneity and tissue-specific gene regulatory networks.

    PubMed

    Jambusaria, Ankit; Klomp, Jeff; Hong, Zhigang; Rafii, Shahin; Dai, Yang; Malik, Asrar B; Rehman, Jalees

    2018-06-07

    The heterogeneity of cells across tissue types represents a major challenge for studying biological mechanisms as well as for therapeutic targeting of distinct tissues. Computational prediction of tissue-specific gene regulatory networks may provide important insights into the mechanisms underlying the cellular heterogeneity of cells in distinct organs and tissues. Using three pathway analysis techniques, gene set enrichment analysis (GSEA), parametric analysis of gene set enrichment (PGSEA), alongside our novel model (HeteroPath), which assesses heterogeneously upregulated and downregulated genes within the context of pathways, we generated distinct tissue-specific gene regulatory networks. We analyzed gene expression data derived from freshly isolated heart, brain, and lung endothelial cells and populations of neurons in the hippocampus, cingulate cortex, and amygdala. In both datasets, we found that HeteroPath segregated the distinct cellular populations by identifying regulatory pathways that were not identified by GSEA or PGSEA. Using simulated datasets, HeteroPath demonstrated robustness that was comparable to what was seen using existing gene set enrichment methods. Furthermore, we generated tissue-specific gene regulatory networks involved in vascular heterogeneity and neuronal heterogeneity by performing motif enrichment of the heterogeneous genes identified by HeteroPath and linking the enriched motifs to regulatory transcription factors in the ENCODE database. HeteroPath assesses contextual bidirectional gene expression within pathways and thus allows for transcriptomic assessment of cellular heterogeneity. Unraveling tissue-specific heterogeneity of gene expression can lead to a better understanding of the molecular underpinnings of tissue-specific phenotypes.

  8. What is a stem cell?

    PubMed

    Slack, Jonathan M W

    2018-05-15

    The historical roots of the stem cell concept are traced with respect to its usage in embryology and in hematology. The modern consensus definition of stem cells, comprising both pluripotent stem cells in culture and tissue-specific stem cells in vivo, is explained and explored. Methods for identifying stem cells are discussed with respect to cell surface markers, telomerase, label retention and transplantability, and properties of the stem cell niche are explored. The CreER method for identifying stem cells in vivo is explained, as is evidence in favor of a stochastic rather than an obligate asymmetric form of cell division. In conclusion, it is found that stem cells do not possess any unique and specific molecular markers; and stem cell behavior depends on the environment of the cell as well as the stem cell's intrinsic qualities. Furthermore, the stochastic mode of division implies that stem cell behavior is a property of a cell population not of an individual cell. In this sense, stem cells do not exist in isolation but only as a part of multicellular system. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells. © 2018 Wiley Periodicals, Inc.

  9. T Cell Interstitial Migration: Motility Cues from the Inflamed Tissue for Micro- and Macro-Positioning

    PubMed Central

    Gaylo, Alison; Schrock, Dillon C.; Fernandes, Ninoshka R. J.; Fowell, Deborah J.

    2016-01-01

    Effector T cells exit the inflamed vasculature into an environment shaped by tissue-specific structural configurations and inflammation-imposed extrinsic modifications. Once within interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, non-directional, fashion. Efficient T cell scanning of the tissue environment is essential for successful location of infected target cells or encounter with antigen-presenting cells that activate the T cell’s antimicrobial effector functions. The mechanisms of interstitial T cell motility and the environmental cues that may promote or hinder efficient tissue scanning are poorly understood. The extracellular matrix (ECM) appears to play an important scaffolding role in guidance of T cell migration and likely provides a platform for the display of chemotactic factors that may help to direct the positioning of T cells. Here, we discuss how intravital imaging has provided insight into the motility patterns and cellular machinery that facilitates T cell interstitial migration and the critical environmental factors that may optimize the efficiency of effector T cell scanning of the inflamed tissue. Specifically, we highlight the local micro-positioning cues T cells encounter as they migrate within inflamed tissues, from surrounding ECM and signaling molecules, as well as a requirement for appropriate long-range macro-positioning within distinct tissue compartments or at discrete foci of infection or tissue damage. The central nervous system (CNS) responds to injury and infection by extensively remodeling the ECM and with the de novo generation of a fibroblastic reticular network that likely influences T cell motility. We examine how inflammation-induced changes to the CNS landscape may regulate T cell tissue exploration and modulate function. PMID:27790220

  10. Analysis of tissue specific progenitor cell differentiation using FT-IR

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kimura, Akinori; Kushibiki, Toshihiro; Awazu, Kunio

    2007-07-01

    Tissue specific progenitor cells and its differentiations have got a lot of attentions in regenerative medicine. The process of differentiations, the formation of tissues, has become better understood by the study using a lot of cell types progressively. These studies of cells and tissue dynamics at molecular levels are carried out through various approaches like histochemical methods, application of molecular biology and immunology. However, in case of using regenerative sources (cells, tissues and biomaterials etc.) clinically, they are measured and quality-controlled by non-contact and non-destructive methods from the view point of safety. Or the analysis with small quantities of materials could be possible if the quantities of materials are acceptable. A non-contact and non-destructive quality control method has been required. Recently, the use of Fourier Transform Infrared spectroscopy (FT-IR) has been used to monitor biochemical changes in cells, and has gained considerable importance. The changes in the cells and tissues, which are subtle and often not obvious in the histpathological studies, are shown to be well resolved using FT-IR. Moreover, although most techniques designed to detect one or a few changes, FT-IR is possible to identify the changes in the levels of various cellular biochemicals simultaneously under in vivo and in vitro conditions. The objective of this study is to establish the infrared spectroscopy of tissue specific progenitor cell differentiations as a quality control of cell sources for regenerative medicine. In the present study, as a basic study, we examine the adipose differentiation kinetics of preadipose cells (3T3-L1) and the osteoblast differentiation kinetics of mesenchymal stem cells (Kusa-A1) to analyze the infrared absorption spectra.

  11. Intravaginal infection with herpes simplex virus type-2 (HSV-2) generates a functional effector memory T cell population that persists in the murine genital tract.

    PubMed

    Tang, Vera A; Rosenthal, Kenneth L

    2010-12-01

    Although the female genital tract is the main portal of entry for sexually transmitted infections in women, we still have limited understanding of the generation, maintenance and characteristics of memory T cells in the local tissue. Here, we utilized a mouse model of intravaginal HSV-2 infection and tetramers against the immunodominant HSV glycoprotein B epitope recognized by CD8+ T cells to examine the generation, maintenance and characteristics of anti-HSV memory T cells in the genital tract following acute infection. Our results show that the highest percentage of HSVgB-specific CD8+ T cells was found in the genital tract compared to the spleen or iliac lymphnode. Indeed, although the actual number of CD8+ T cells contracted following viral clearance, approximately one quarter of the CD8+ population that remained in the genital tissue was HSVgB-specific. Memory gB-tetramer+CD8 T cells in the genital tract were positive for CD127 and KLRG1 and negative for CD62L and CCR7, thus confirming that HSV-specific CD8 cells were effector memory T cells that lack the capacity for homing to lymphoid tissues. Functionally, both memory CD8+ and CD4+ HSV-specific populations in the genital tract produced IFNγ when stimulated in vitro and CD4+ cells also produced TNFα. Genital HSVgB-specific memory T cells expressed tissue-homing integrins CD103 (αE integrin) and CD49a (VLA-1 or α1 integrin). Our findings suggest that HSV-specific memory T cells are retained in the genital tract, poised to act as an early line of defense against future virus encounter. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Analysis of Alternative Pre-RNA Splicing in the Mouse Retina Using a Fluorescent Reporter.

    PubMed

    Murphy, Daniel; Kolandaivelu, Saravanan; Ramamurthy, Visvanathan; Stoilov, Peter

    2016-01-01

    In vivo alternative splicing is controlled in a tissue and cell type specific manner. Often individual cellular components of complex tissues will express different splicing programs. Thus, when studying splicing in multicellular organisms it is critical to determine the exon inclusion levels in individual cells positioned in the context of their native tissue or organ. Here we describe how a fluorescent splicing reporter in combination with in vivo electroporation can be used to visualize alternative splicing in individual cells within mature tissues. In a test case we show how the splicing of a photoreceptor specific exon can be visualized within the mouse retina. The retina was chosen as an example of a complex tissue that is fragile and whose cells cannot be studied in culture. With minor modifications to the injection and electroporation procedure, the protocol we outline can be applied to other tissues and organs.

  13. Design of biomimetic cellular scaffolds for co-culture system and their application

    PubMed Central

    Kook, Yun-Min; Jeong, Yoon; Lee, Kangwon; Koh, Won-Gun

    2017-01-01

    The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell–cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment. PMID:29081966

  14. Bone regeneration and stem cells

    PubMed Central

    Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A

    2011-01-01

    Abstract This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. PMID:21129153

  15. Generation of stomach tissue from mouse embryonic stem cells.

    PubMed

    Noguchi, Taka-aki K; Ninomiya, Naoto; Sekine, Mari; Komazaki, Shinji; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2015-08-01

    Successful pluripotent stem cell differentiation methods have been developed for several endoderm-derived cells, including hepatocytes, β-cells and intestinal cells. However, stomach lineage commitment from pluripotent stem cells has remained a challenge, and only antrum specification has been demonstrated. We established a method for stomach differentiation from embryonic stem cells by inducing mesenchymal Barx1, an essential gene for in vivo stomach specification from gut endoderm. Barx1-inducing culture conditions generated stomach primordium-like spheroids, which differentiated into mature stomach tissue cells in both the corpus and antrum by three-dimensional culture. This embryonic stem cell-derived stomach tissue (e-ST) shared a similar gene expression profile with adult stomach, and secreted pepsinogen as well as gastric acid. Furthermore, TGFA overexpression in e-ST caused hypertrophic mucus and gastric anacidity, which mimicked Ménétrier disease in vitro. Thus, in vitro stomach tissue derived from pluripotent stem cells mimics in vivo development and can be used for stomach disease models.

  16. Integrin-specific mechanoresponses to compression and extension probed by cylindrical flat-ended AFM tips in lung cells.

    PubMed

    Acerbi, Irene; Luque, Tomás; Giménez, Alícia; Puig, Marta; Reguart, Noemi; Farré, Ramon; Navajas, Daniel; Alcaraz, Jordi

    2012-01-01

    Cells from lung and other tissues are subjected to forces of opposing directions that are largely transmitted through integrin-mediated adhesions. How cells respond to force bidirectionality remains ill defined. To address this question, we nanofabricated flat-ended cylindrical Atomic Force Microscopy (AFM) tips with ~1 µm(2) cross-section area. Tips were uncoated or coated with either integrin-specific (RGD) or non-specific (RGE/BSA) molecules, brought into contact with lung epithelial cells or fibroblasts for 30 s to form focal adhesion precursors, and used to probe cell resistance to deformation in compression and extension. We found that cell resistance to compression was globally higher than to extension regardless of the tip coating. In contrast, both tip-cell adhesion strength and resistance to compression and extension were the highest when probed at integrin-specific adhesions. These integrin-specific mechanoresponses required an intact actin cytoskeleton, and were dependent on tyrosine phosphatases and Ca(2+) signaling. Cell asymmetric mechanoresponse to compression and extension remained after 5 minutes of tip-cell adhesion, revealing that asymmetric resistance to force directionality is an intrinsic property of lung cells, as in most soft tissues. Our findings provide new insights on how lung cells probe the mechanochemical properties of the microenvironment, an important process for migration, repair and tissue homeostasis.

  17. Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies.

    PubMed

    Tzatzalos, Evangeline; Abilez, Oscar J; Shukla, Praveen; Wu, Joseph C

    2016-01-15

    Engineered heart tissue has emerged as a personalized platform for drug screening. With the advent of induced pluripotent stem cell (iPSC) technology, patient-specific stem cells can be developed and expanded into an indefinite source of cells. Subsequent developments in cardiovascular biology have led to efficient differentiation of cardiomyocytes, the force-producing cells of the heart. iPSC-derived cardiomyocytes (iPSC-CMs) have provided potentially limitless quantities of well-characterized, healthy, and disease-specific CMs, which in turn has enabled and driven the generation and scale-up of human physiological and disease-relevant engineered heart tissues. The combined technologies of engineered heart tissue and iPSC-CMs are being used to study diseases and to test drugs, and in the process, have advanced the field of cardiovascular tissue engineering into the field of precision medicine. In this review, we will discuss current developments in engineered heart tissue, including iPSC-CMs as a novel cell source. We examine new research directions that have improved the function of engineered heart tissue by using mechanical or electrical conditioning or the incorporation of non-cardiomyocyte stromal cells. Finally, we discuss how engineered heart tissue can evolve into a powerful tool for therapeutic drug testing. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches

    PubMed Central

    Conboy, Irina M.; Rando, Thomas A.

    2012-01-01

    Aging is unmistakable and undeniable in mammals. Interestingly, mice develop cataracts, muscle atrophy, osteoporosis, obesity, diabetes and cognitive deficits after just 2–3 postnatal years, while it takes seven or more decades for the same age-specific phenotypes to develop in humans. Thus, chronological age corresponds differently with biological age in metazoan species and although many theories exist, we do not understand what controls the rate of mammalian aging. One interesting idea is that species-specific rate of aging represents a ratio of tissue attrition to tissue regeneration. Furthermore, current findings suggest that the age-imposed biochemical changes in the niches of tissue stem cells inhibit performance of this regenerative pool, which leads to the decline of tissue maintenance and repair. If true, slowing down stem cell and niche aging, thereby promoting tissue regeneration, could slow down the process of tissue and organismal aging. In this regard, recent studies of heterochronic parabiosis provide important clues as to the mechanisms of stem cell aging and suggest novel strategies for enhancing tissue repair in the old. Here we review current literature on the relationship between the vigor of tissue stem cells and the process of aging, with an emphasis on the rejuvenation of old tissues by the extrinsic modifications of stem cell niches. PMID:22617385

  19. Identification of tissue-specific targeting peptide

    NASA Astrophysics Data System (ADS)

    Jung, Eunkyoung; Lee, Nam Kyung; Kang, Sang-Kee; Choi, Seung-Hoon; Kim, Daejin; Park, Kisoo; Choi, Kihang; Choi, Yun-Jaie; Jung, Dong Hyun

    2012-11-01

    Using phage display technique, we identified tissue-targeting peptide sets that recognize specific tissues (bone-marrow dendritic cell, kidney, liver, lung, spleen and visceral adipose tissue). In order to rapidly evaluate tissue-specific targeting peptides, we performed machine learning studies for predicting the tissue-specific targeting activity of peptides on the basis of peptide sequence information using four machine learning models and isolated the groups of peptides capable of mediating selective targeting to specific tissues. As a representative liver-specific targeting sequence, the peptide "DKNLQLH" was selected by the sequence similarity analysis. This peptide has a high degree of homology with protein ligands which can interact with corresponding membrane counterparts. We anticipate that our models will be applicable to the prediction of tissue-specific targeting peptides which can recognize the endothelial markers of target tissues.

  20. Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation.

    PubMed

    Preissl, Sebastian; Fang, Rongxin; Huang, Hui; Zhao, Yuan; Raviram, Ramya; Gorkin, David U; Zhang, Yanxiao; Sos, Brandon C; Afzal, Veena; Dickel, Diane E; Kuan, Samantha; Visel, Axel; Pennacchio, Len A; Zhang, Kun; Ren, Bing

    2018-03-01

    Analysis of chromatin accessibility can reveal transcriptional regulatory sequences, but heterogeneity of primary tissues poses a significant challenge in mapping the precise chromatin landscape in specific cell types. Here we report single-nucleus ATAC-seq, a combinatorial barcoding-assisted single-cell assay for transposase-accessible chromatin that is optimized for use on flash-frozen primary tissue samples. We apply this technique to the mouse forebrain through eight developmental stages. Through analysis of more than 15,000 nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell types. We further define cell-type-specific transcriptional regulatory sequences, infer potential master transcriptional regulators and delineate developmental changes in forebrain cellular composition. Our results provide insight into the molecular and cellular dynamics that underlie forebrain development in the mouse and establish technical and analytical frameworks that are broadly applicable to other heterogeneous tissues.

  1. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    PubMed

    Taghizadeh, Rouzbeh; Noh, Minsoo; Huh, Yang Hoon; Ciusani, Emilio; Sigalotti, Luca; Maio, Michele; Arosio, Beatrice; Nicotra, Maria R; Natali, PierGiorgio; Sherley, James L; La Porta, Caterina A M

    2010-12-22

    A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+. We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone. The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  2. How Can We Treat Cancer Disease Not Cancer Cells?

    PubMed

    Kim, Kyu-Won; Lee, Su-Jae; Kim, Woo-Young; Seo, Ji Hae; Lee, Ho-Young

    2017-01-01

    Since molecular biology studies began, researches in biological science have centered on proteins and genes at molecular level of a single cell. Cancer research has also focused on various functions of proteins and genes that distinguish cancer cells from normal cells. Accordingly, most contemporary anticancer drugs have been developed to target abnormal characteristics of cancer cells. Despite the great advances in the development of anticancer drugs, vast majority of patients with advanced cancer have shown grim prognosis and high rate of relapse. To resolve this problem, we must reevaluate our focuses in current cancer research. Cancer should be considered as a systemic disease because cancer cells undergo a complex interaction with various surrounding cells in cancer tissue and spread to whole body through metastasis under the control of the systemic modulation. Human body relies on the cooperative interaction between various tissues and organs, and each organ performs its specialized function through tissue-specific cell networks. Therefore, investigation of the tumor-specific cell networks can provide novel strategy to overcome the limitation of current cancer research. This review presents the limitations of the current cancer research, emphasizing the necessity of studying tissue-specific cell network which could be a new perspective on treating cancer disease, not cancer cells.

  3. Angiocrine functions of organ-specific endothelial cells

    PubMed Central

    Rafii, Shahin; Butler, Jason M; Ding, Bi-Sen

    2016-01-01

    Preface Endothelial cells lining blood vessel capillaries are not just passive conduits for delivering blood. Tissue-specific endothelium establish specialized vascular niches that deploy specific sets of growth factors, known as angiocrine factors, which actively participate in inducing, specifying, patterning, and guiding organ regeneration and maintaining homeostasis and metabolism. Angiocrine factors upregulated in response to injury orchestrates self-renewal and differentiation of tissue-specific repopulating resident stem and progenitor cells into functional organs. Uncovering the precise mechanisms whereby physiological-levels of angiocrine factors are spatially and temporally produced, and distributed by organotypic endothelium to repopulating cells, will lay the foundation for driving organ repair without scarring. PMID:26791722

  4. HOX and TALE signatures specify human stromal stem cell populations from different sources.

    PubMed

    Picchi, Jacopo; Trombi, Luisa; Spugnesi, Laura; Barachini, Serena; Maroni, Giorgia; Brodano, Giovanni Barbanti; Boriani, Stefano; Valtieri, Mauro; Petrini, Mario; Magli, Maria Cristina

    2013-04-01

    Human stromal stem cell populations reside in different tissues and anatomical sites, however a critical question related to their efficient use in regenerative medicine is whether they exhibit equivalent biological properties. Here, we compared cellular and molecular characteristics of stromal stem cells derived from the bone marrow, at different body sites (iliac crest, sternum, and vertebrae) and other tissues (dental pulp and colon). In particular, we investigated whether homeobox genes of the HOX and TALE subfamilies might provide suitable markers to identify distinct stromal cell populations, as HOX proteins control cell positional identity and, together with their co-factors TALE, are involved in orchestrating differentiation of adult tissues. Our results show that stromal populations from different sources, although immunophenotypically similar, display distinct HOX and TALE signatures, as well as different growth and differentiation abilities. Stromal stem cells from different tissues are characterized by specific HOX profiles, differing in the number and type of active genes, as well as in their level of expression. Conversely, bone marrow-derived cell populations can be essentially distinguished for the expression levels of specific HOX members, strongly suggesting that quantitative differences in HOX activity may be crucial. Taken together, our data indicate that the HOX and TALE profiles provide positional, embryological and hierarchical identity of human stromal stem cells. Furthermore, our data suggest that cell populations derived from different body sites may not represent equivalent cell sources for cell-based therapeutical strategies for regeneration and repair of specific tissues. Copyright © 2012 Wiley Periodicals, Inc.

  5. Stem Cells in Skeletal Tissue Engineering: Technologies and Models

    PubMed Central

    Langhans, Mark T.; Yu, Shuting; Tuan, Rocky S.

    2017-01-01

    This review surveys the use of pluripotent and multipotent stem cells in skeletal tissue engineering. Specific emphasis is focused on evaluating the function and activities of these cells in the context of development in vivo, and how technologies and methods of stem cell-based tissue engineering for stem cells must draw inspiration from developmental biology. Information on the embryonic origin and in vivo differentiation of skeletal tissues is first reviewed, to shed light on the persistence and activities of adult stem cells that remain in skeletal tissues after embryogenesis. Next, the development and differentiation of pluripotent stem cells is discussed, and some of their advantages and disadvantages in the context of tissue engineering is presented. The final section highlights current use of multipotent adult mesenchymal stem cells, reviewing their origin, differentiation capacity, and potential applications to tissue engineering. PMID:26423296

  6. Use of telomerase to create bioengineered tissues.

    PubMed

    Shay, Jerry W; Wright, Woodring E

    2005-12-01

    Telomeres are repetitive DNA (TTAGGG) elements at the ends of chromosomes. Telomerase is a ribonucleoprotein complex that catalyzes the addition of telomeric sequences to the ends of chromosomes. The catalytic protein component of telomerase (hTERT) is expressed only in specific germ line cells, proliferative stem cells of renewal tissues, and cancer cells. The expression of hTERT in normal cells reconstitutes telomerase activity and circumvents the induction of senescence. Telomeres shorten with each cell division, eventually leading to senescence (aging), due to incomplete lagging DNA strand synthesis and end-processing events, and because telomerase activity is not detected in most somatic tissues. There are specific tissues and locations in which replicative senescence likely contributes to the decline in human physiological function with increased age and with chronic illnesses. While expressing hTERT in cells results in the maintenance of telomere length and greatly extended life span, blocking replicative aging systemically would be predicted to increase the potential for tumor formation. However, there are many situations in which the transient rejuvenation of cells could be beneficial. Ectopic expression of hTERT has been shown to immortalize human skin keratinocytes, dermal fibroblasts, muscle satellite (stem), and vascular endothelial, myometrial, retinal-pigmented, and breast epithelial cells. In addition, human bronchial, corneal and skin cells expressing hTERT can be used to form organotypic (3D) cultures (bioengineered tissues) that express differentiation-specific proteins, demonstrating that hTERT by itself does not alter normal physiology. The production of hTERT-engineered tissues offers the possibility of producing tissues to treat a variety of chronic diseases and age-related medical conditions that are due to telomere-based replicative senescence.

  7. Strength of signal: a fundamental mechanism for cell fate specification.

    PubMed

    Hayes, Sandra M; Love, Paul E

    2006-02-01

    How equipotent cells develop into complex tissues containing many diverse cell types is still a mystery. However, evidence is accumulating from different tissue systems in multiple organisms that many of the specific receptor families known to regulate cell fate decisions target conserved signaling pathways. A mechanism for preserving specificity in the cellular response that has emerged from these studies is one in which quantitative differences in receptor signaling regulate the cell fate decision. A signal strength model has recently gained support as a means to explain alphabeta/gammadelta lineage commitment. In this review, we compare the alphabeta/gammadelta fate decision with other cell fate decisions that occur outside of the lymphoid system to attain a better picture of the quantitative signaling mechanism for cell fate specification.

  8. Depletion of host CCR7(+) dendritic cells prevented donor T cell tissue tropism in anti-CD3-conditioned recipients.

    PubMed

    He, Wei; Racine, Jeremy J; Johnston, Heather F; Li, Xiaofan; Li, Nainong; Cassady, Kaniel; Liu, Can; Deng, Ruishu; Martin, Paul; Forman, Stephen; Zeng, Defu

    2014-07-01

    We reported previously that anti-CD3 mAb treatment before hematopoietic cell transplantation (HCT) prevented graft-versus-host disease (GVHD) and preserved graft-versus-leukemia (GVL) effects in mice. These effects were associated with downregulated donor T cell expression of tissue-specific homing and chemokine receptors, marked reduction of donor T cell migration into GVHD target tissues, and deletion of CD103(+) dendritic cells (DCs) in mesenteric lymph nodes (MLN). MLN CD103(+) DCs and peripheral lymph node (PLN) DCs include CCR7(+) and CCR7(-) subsets, but the role of these DC subsets in regulating donor T cell expression of homing and chemokine receptors remain unclear. Here, we show that recipient CCR7(+), but not CCR7(-), DCs in MLN induced donor T cell expression of gut-specific homing and chemokine receptors in a retinoid acid-dependent manner. CCR7 regulated activated DC migration from tissue to draining lymph node, but it was not required for the ability of DCs to induce donor T cell expression of tissue-specific homing and chemokine receptors. Finally, anti-CD3 treatment depleted CCR7(+) but not CCR7(-) DCs by inducing sequential expansion and apoptosis of CCR7(+) DCs in MLN and PLN. Apoptosis of CCR7(+) DCs was associated with DC upregulation of Fas expression and natural killer cell but not T, B, or dendritic cell upregulation of FasL expression in the lymph nodes. These results suggest that depletion of CCR7(+) host-type DCs, with subsequent inhibition of donor T cell migration into GVHD target tissues, can be an effective approach in prevention of acute GVHD and preservation of GVL effects. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  9. Isolation and characterization of adult human liver progenitors from ischemic liver tissue derived from therapeutic hepatectomies.

    PubMed

    Stachelscheid, Harald; Urbaniak, Thomas; Ring, Alexander; Spengler, Berlind; Gerlach, Jörg C; Zeilinger, Katrin

    2009-07-01

    Recent evidence suggests that progenitor cells in adult tissues and embryonic stem cells share a high resistance to hypoxia and ischemic stress. To study the ischemic resistance of adult liver progenitors, we characterized remaining viable cells in human liver tissue after cold ischemic treatment for 24-168 h, applied to the tissue before cell isolation. In vitro cultures of isolated cells showed a rapid decline of the number of different cell types with increasing ischemia length. After all ischemic periods, liver progenitor-like cells could be observed. The comparably small cells exhibited a low cytoplasm-to-nucleus ratio, formed densely packed colonies, and showed a hepatobiliary marker profile. The cells expressed epithelial cell adhesion molecule, epithelial-specific (CK8/18) and biliary-specific (CK7/19) cytokeratins, albumin, alpha-1-antitrypsin, cytochrome-P450 enzymes, as well as weak levels of hepatocyte nuclear factor-4 and gamma-glutamyl transferase, but not alpha-fetoprotein or Thy-1. In vitro survival and expansion was facilitated by coculture with mouse embryonic fibroblasts. Hepatic progenitor-like cells exhibit a high resistance to ischemic stress and can be isolated from human liver tissue after up to 7 days of ischemia. Ischemic liver tissue from various sources, thought to be unsuitable for cell isolation, may be considered as a prospective source of hepatic progenitor cells.

  10. Tissue distribution of mucosal antibody-producing cells specific for respiratory syncytial virus in severe combined immune deficiency (SCID) mice engrafted with human tonsils.

    PubMed Central

    Nadal, D; Albini, B; Schläpfer, E; Chen, C; Brodsky, L; Ogra, P L

    1991-01-01

    Groups of C.B-17 SCID mice were reconstituted intraperitoneally with human tonsillar mononuclear cells (hu-TMC) from children seropositive for antibody to respiratory syncytial virus (RSV) and subsequently challenged intraperitoneally with inactivated RSV or sham-immunized. The synthesis and the distribution characteristics of human antibody to RSV in various murine tissues were studied using an enzyme-linked immunospot assay (ELISPOT). No specific antibody was observed in sham-immunized animals. In contrast, mice engrafted with hu-TMC exhibited the appearance of specific human antibody secreting cells (hu-ASC) after i.p. immunization with inactivated RSV. RSV-specific hu-ASC were detected only in animals engrafted with cells from donors seropositive for antibodies to Epstein-Barr virus. Hu-TMC engrafted mice showed RSV-specific IgM and, in lower numbers, IgG hu-ASC in several tissues including the lungs. Numbers of RSV-specific IgA hu-ASC were low, however, and detected only in the lung. No RSV-specific hu-ASC were detected in the intestine. These data demonstrate for the first time that hu-TMC-SCID chimeras respond to immunization with viral antigen. Furthermore, the results suggest that hu-TMC engraft in lungs but not in the intestinal tissue. PMID:1893614

  11. Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in Caenorhabditis elegans Somatic Tissues

    PubMed Central

    Blazie, Stephen M.; Geissel, Heather C.; Wilky, Henry; Joshi, Rajan; Newbern, Jason; Mangone, Marco

    2017-01-01

    mRNA expression dynamics promote and maintain the identity of somatic tissues in living organisms; however, their impact in post-transcriptional gene regulation in these processes is not fully understood. Here, we applied the PAT-Seq approach to systematically isolate, sequence, and map tissue-specific mRNA from five highly studied Caenorhabditis elegans somatic tissues: GABAergic and NMDA neurons, arcade and intestinal valve cells, seam cells, and hypodermal tissues, and studied their mRNA expression dynamics. The integration of these datasets with previously profiled transcriptomes of intestine, pharynx, and body muscle tissues, precisely assigns tissue-specific expression dynamics for 60% of all annotated C. elegans protein-coding genes, providing an important resource for the scientific community. The mapping of 15,956 unique high-quality tissue-specific polyA sites in all eight somatic tissues reveals extensive tissue-specific 3′untranslated region (3′UTR) isoform switching through alternative polyadenylation (APA) . Almost all ubiquitously transcribed genes use APA and harbor miRNA targets in their 3′UTRs, which are commonly lost in a tissue-specific manner, suggesting widespread usage of post-transcriptional gene regulation modulated through APA to fine tune tissue-specific protein expression. Within this pool, the human disease gene C. elegans orthologs rack-1 and tct-1 use APA to switch to shorter 3′UTR isoforms in order to evade miRNA regulation in the body muscle tissue, resulting in increased protein expression needed for proper body muscle function. Our results highlight a major positive regulatory role for APA, allowing genes to counteract miRNA regulation on a tissue-specific basis. PMID:28348061

  12. Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in Caenorhabditis elegans Somatic Tissues.

    PubMed

    Blazie, Stephen M; Geissel, Heather C; Wilky, Henry; Joshi, Rajan; Newbern, Jason; Mangone, Marco

    2017-06-01

    mRNA expression dynamics promote and maintain the identity of somatic tissues in living organisms; however, their impact in post-transcriptional gene regulation in these processes is not fully understood. Here, we applied the PAT-Seq approach to systematically isolate, sequence, and map tissue-specific mRNA from five highly studied Caenorhabditis elegans somatic tissues: GABAergic and NMDA neurons, arcade and intestinal valve cells, seam cells, and hypodermal tissues, and studied their mRNA expression dynamics. The integration of these datasets with previously profiled transcriptomes of intestine, pharynx, and body muscle tissues, precisely assigns tissue-specific expression dynamics for 60% of all annotated C. elegans protein-coding genes, providing an important resource for the scientific community. The mapping of 15,956 unique high-quality tissue-specific polyA sites in all eight somatic tissues reveals extensive tissue-specific 3'untranslated region (3'UTR) isoform switching through alternative polyadenylation (APA) . Almost all ubiquitously transcribed genes use APA and harbor miRNA targets in their 3'UTRs, which are commonly lost in a tissue-specific manner, suggesting widespread usage of post-transcriptional gene regulation modulated through APA to fine tune tissue-specific protein expression. Within this pool, the human disease gene C. elegans orthologs rack-1 and tct-1 use APA to switch to shorter 3'UTR isoforms in order to evade miRNA regulation in the body muscle tissue, resulting in increased protein expression needed for proper body muscle function. Our results highlight a major positive regulatory role for APA, allowing genes to counteract miRNA regulation on a tissue-specific basis. Copyright © 2017 Blazie et al.

  13. Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration.

    PubMed

    Bonar, Nicolle A; Petersen, Christian P

    2017-03-01

    Animals capable of adult regeneration require specific signaling to control injury-induced cell proliferation, specification and patterning, but comparatively little is known about how the regeneration blastema assembles differentiating cells into well-structured functional tissues. Using the planarian Schmidtea mediterranea as a model, we identify β1-integrin as a crucial regulator of blastema architecture. β1-integrin(RNAi) animals formed small head blastemas with severe tissue disorganization, including ectopic neural spheroids containing differentiated neurons normally found in distinct organs. By mimicking aspects of normal brain architecture but without normal cell-type regionalization, these spheroids bore a resemblance to mammalian tissue organoids synthesized in vitro We identified one of four planarian integrin-alpha subunits inhibition of which phenocopied these effects, suggesting that a specific receptor controls brain organization through regeneration. Neoblast stem cells and progenitor cells were mislocalized in β1-integrin(RNAi) animals without significantly altered body-wide patterning. Furthermore, tissue disorganization phenotypes were most pronounced in animals undergoing brain regeneration and not homeostatic maintenance or regeneration-induced remodeling of the brain. These results suggest that integrin signaling ensures proper progenitor recruitment after injury, enabling the generation of large-scale tissue organization within the regeneration blastema. © 2017. Published by The Company of Biologists Ltd.

  14. Cell Sheet-Based Tissue Engineering for Organizing Anisotropic Tissue Constructs Produced Using Microfabricated Thermoresponsive Substrates.

    PubMed

    Takahashi, Hironobu; Okano, Teruo

    2015-11-18

    In some native tissues, appropriate microstructures, including orientation of the cell/extracellular matrix, provide specific mechanical and biological functions. For example, skeletal muscle is made of oriented myofibers that is responsible for the mechanical function. Native artery and myocardial tissues are organized three-dimensionally by stacking sheet-like tissues of aligned cells. Therefore, to construct any kind of complex tissue, the microstructures of cells such as myotubes, smooth muscle cells, and cardiomyocytes also need to be organized three-dimensionally just as in the native tissues of the body. Cell sheet-based tissue engineering allows the production of scaffold-free engineered tissues through a layer-by-layer construction technique. Recently, using microfabricated thermoresponsive substrates, aligned cells are being harvested as single continuous cell sheets. The cell sheets act as anisotropic tissue units to build three-dimensional tissue constructs with the appropriate anisotropy. This cell sheet-based technology is straightforward and has the potential to engineer a wide variety of complex tissues. In addition, due to the scaffold-free cell-dense environment, the physical and biological cell-cell interactions of these cell sheet constructs exhibit unique cell behaviors. These advantages will provide important clues to enable the production of well-organized tissues that closely mimic the structure and function of native tissues, required for the future of tissue engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Laminar shear stress modulates endothelial luminal surface stiffness in a tissue-specific manner.

    PubMed

    Merna, Nick; Wong, Andrew K; Barahona, Victor; Llanos, Pierre; Kunar, Balvir; Palikuqi, Brisa; Ginsberg, Michael; Rafii, Shahin; Rabbany, Sina Y

    2018-04-17

    Endothelial cells form vascular beds in all organs and are exposed to a range of mechanical forces that regulate cellular phenotype. We sought to determine the role of endothelial luminal surface stiffness in tissue-specific mechanotransduction of laminar shear stress in microvascular mouse cells and the role of arachidonic acid in mediating this response. Microvascular mouse endothelial cells were subjected to laminar shear stress at 4 dynes/cm 2 for 12 hours in parallel plate flow chambers that enabled real-time optical microscopy and atomic force microscopy measurements of cell stiffness. Lung endothelial cells aligned parallel to flow, while cardiac endothelial cells did not. This rapid alignment was accompanied by increased cell stiffness. The addition of arachidonic acid to cardiac endothelial cells increased alignment and stiffness in response to shear stress. Inhibition of arachidonic acid in lung endothelial cells and embryonic stem cell-derived endothelial cells prevented cellular alignment and decreased cell stiffness. Our findings suggest that increased endothelial luminal surface stiffness in microvascular cells may facilitate mechanotransduction and alignment in response to laminar shear stress. Furthermore, the arachidonic acid pathway may mediate this tissue-specific process. An improved understanding of this response will aid in the treatment of organ-specific vascular disease. © 2018 John Wiley & Sons Ltd.

  16. Diverse Epitope Specificity, Immunodominance Hierarchy, and Functional Avidity of Effector CD4 T Cells Established During Priming Is Maintained in Lung After Influenza A Virus Infection.

    PubMed

    Richards, Katherine A; DiPiazza, Anthony T; Rattan, Ajitanuj; Knowlden, Zackery A G; Yang, Hongmei; Sant, Andrea J

    2018-01-01

    One of the major contributions to protective immunity to influenza viruses that is provided by virus-specific CD4 T cells is delivery of effector function to the infected lung. However, there is little known about the selection and breadth of viral epitope-specific CD4 T cells that home to the lung after their initial priming. In this study, using a mouse model of influenza A infection and an unbiased method of epitope identification, the viral epitope-specific CD4 T cells elicited after infection were identified and quantified. We found that a very diverse specificity of CD4 T cells is primed by infection, including epitopes from hemagglutinin, neuraminidase, matrix protein, nucleoprotein, and non-structural protein-1. Using peptide-specific cytokine EliSpots, the diversity and immunodominance hierarchies established in the lung-draining lymph node were compared with specificities of CD4 T cells that home to the lung. Our studies revealed that CD4 T cells of all epitope specificities identified in peripheral lymphoid tissue home back to the lung and that most of these lung-homing cells are localized within the tissue rather than the pulmonary vasculature. There is a striking shift of CD4 T cell functionality that enriches for IFN-γ production as cells are primed in the lymph node, enter the lung vasculature, and finally establish residency in the tissue, but with no apparent shifts in their functional avidity. We conclude that CD4 T cells of broad viral epitope specificity are recruited into the lung after influenza infection, where they then have the opportunity to encounter infected or antigen-bearing antigen-presenting cells.

  17. Stem cell aging: mechanisms, regulators and therapeutic opportunities

    PubMed Central

    Oh, Juhyun; Lee, Yang David; Wagers, Amy J

    2014-01-01

    Aging tissues experience a progressive decline in homeostatic and regenerative capacities, which has been attributed to degenerative changes in tissue-specific stem cells, stem cell niches and systemic cues that regulate stem cell activity. Understanding the molecular pathways involved in this age-dependent deterioration of stem cell function will be critical for developing new therapies for diseases of aging that target the specific causes of age-related functional decline. Here we explore key molecular pathways that are commonly perturbed as tissues and stem cells age and degenerate. We further consider experimental evidence both supporting and refuting the notion that modulation of these pathways per se can reverse aging phenotypes. Finally, we ask whether stem cell aging establishes an epigenetic ‘memory’ that is indelibly written or one that can be reset. PMID:25100532

  18. Combined chemical and structural signals of biomaterials synergistically activate cell-cell communications for improving tissue regeneration.

    PubMed

    Xu, Yachen; Peng, Jinliang; Dong, Xin; Xu, Yuhong; Li, Haiyan; Chang, Jiang

    2017-06-01

    Biomaterials are only used as carriers of cells in the conventional tissue engineering. Considering the multi-cell environment and active cell-biomaterial interactions in tissue regeneration process, in this study, structural signals of aligned electrospun nanofibers and chemical signals of bioglass (BG) ionic products in cell culture medium are simultaneously applied to activate fibroblast-endothelial co-cultured cells in order to obtain an improved skin tissue engineering construct. Results demonstrate that the combined biomaterial signals synergistically activate fibroblast-endothelial co-culture skin tissue engineering constructs through promotion of paracrine effects and stimulation of gap junctional communication between cells, which results in enhanced vascularization and extracellular matrix protein synthesis in the constructs. Structural signals of aligned electrospun nanofibers play an important role in stimulating both of paracrine and gap junctional communication while chemical signals of BG ionic products mainly enhance paracrine effects. In vivo experiments reveal that the activated skin tissue engineering constructs significantly enhance wound healing as compared to control. This study indicates the advantages of synergistic effects between different bioactive signals of biomaterials can be taken to activate communication between different types of cells for obtaining tissue engineering constructs with improved functions. Tissue engineering can regenerate or replace tissue or organs through combining cells, biomaterials and growth factors. Normally, for repairing a specific tissue, only one type of cells, one kind of biomaterials, and specific growth factors are used to support cell growth. In this study, we proposed a novel tissue engineering approach by simply using co-cultured cells and combined biomaterial signals. Using a skin tissue engineering model, we successfully proved that the combined biomaterial signals such as surface nanostructures and bioactive ions could synergistically stimulate the cell-cell communication in co-culture system through paracrine effects and gap junction activation, and regulated expression of growth factors and extracellular matrix proteins, resulting in an activated tissue engineering constructs that significantly enhanced skin regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Endomembrane proteomics reveals putative enzymes involved in cell wall metabolism in wheat grain outer layers

    PubMed Central

    Chateigner-Boutin, Anne-Laure; Suliman, Muhtadi; Bouchet, Brigitte; Alvarado, Camille; Lollier, Virginie; Rogniaux, Hélène; Guillon, Fabienne; Larré, Colette

    2015-01-01

    Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called ‘the bran’ is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel). PMID:25769308

  20. A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology

    PubMed Central

    2011-01-01

    Background Genome-scale metabolic reconstructions provide a biologically meaningful mechanistic basis for the genotype-phenotype relationship. The global human metabolic network, termed Recon 1, has recently been reconstructed allowing the systems analysis of human metabolic physiology and pathology. Utilizing high-throughput data, Recon 1 has recently been tailored to different cells and tissues, including the liver, kidney, brain, and alveolar macrophage. These models have shown utility in the study of systems medicine. However, no integrated analysis between human tissues has been done. Results To describe tissue-specific functions, Recon 1 was tailored to describe metabolism in three human cells: adipocytes, hepatocytes, and myocytes. These cell-specific networks were manually curated and validated based on known cellular metabolic functions. To study intercellular interactions, a novel multi-tissue type modeling approach was developed to integrate the metabolic functions for the three cell types, and subsequently used to simulate known integrated metabolic cycles. In addition, the multi-tissue model was used to study diabetes: a pathology with systemic properties. High-throughput data was integrated with the network to determine differential metabolic activity between obese and type II obese gastric bypass patients in a whole-body context. Conclusion The multi-tissue type modeling approach presented provides a platform to study integrated metabolic states. As more cell and tissue-specific models are released, it is critical to develop a framework in which to study their interdependencies. PMID:22041191

  1. Migration of antigen-presenting B cells from peripheral to mucosal lymphoid tissues may induce intestinal antigen-specific IgA following parenteral immunization.

    PubMed

    Coffin, S E; Clark, S L; Bos, N A; Brubaker, J O; Offit, P A

    1999-09-15

    Parenterally administered immunizations have long been used to induce protection from mucosal pathogens such as Bordetella pertussis and influenza virus. We previously found that i.m. inoculation of mice with the intestinal pathogen, rotavirus, induced virus-specific Ab production by intestinal lymphocytes. We have now used adoptive transfer studies to identify the cell types responsible for the generation of virus-specific Ab production by gut-associated lymphoid tissue (GALT) after i.m. immunization. Three days after i.m. immunization with rotavirus, cells obtained from the draining peripheral lymph nodes of donor mice were transferred into naive recipient mice. We found that intestinal lymphocytes produced rotavirus-specific Igs (IgM, IgA, and IgG) 2 wk after transfer of either unfractionated cells, or unfractionated cells rendered incapable of cellular division by mitomycin C treatment. Additional studies demonstrated that rotavirus-specific IgA, but not IgG, was produced by intestinal lymphocytes after transfer of purified B cells. Ig allotype analysis revealed that rotavirus-specific IgA was produced by intestinal B cells of recipient origin, suggesting that migration of Ag-presenting B cells from peripheral lymphoid tissues to GALT may contribute to the generation of mucosal IgA responses after parenteral immunization. Strategies that promote Ag uptake and presentation by B cells may enhance mucosal IgA production following parenteral immunization.

  2. Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration

    DTIC Science & Technology

    2016-12-01

    the biological functions of the 3D printed retina tissue. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...cells (hfRPC) as the cell resource for retinal tissue differentiation. We have demonstrated that these 3D - printed hydrogel materials are biocompatible...for retinal cell growth. The hfRPC can be directed toward a specific cell fate within 3D - printed hydrogel and chemically defined induction medium

  3. Signatures from Tissue-specific MPSS Libraries Identify Transcripts Preferentially Expressed in the Mouse Inner Ear

    PubMed Central

    Peters, Linda M.; Belyantseva, Inna A.; Lagziel, Ayala; Battey, James F.; Friedman, Thomas B.; Morell, Robert J.

    2007-01-01

    Specialization in cell function and morphology is influenced by the differential expression of mRNAs, many of which are expressed at low abundance and restricted to certain cell types. Detecting such transcripts in cDNA libraries may require sequencing millions of clones. Massively parallel signature sequencing (MPSS) is well-suited for identifying transcripts that are expressed in discrete cell types and in low abundance. We have made MPSS libraries from microdissections of three inner ear tissues. By comparing these MPSS libraries to those of 87 other tissues included in the Mouse Reference Transcriptome (MRT) online resource, we have identified genes that are highly enriched in, or specific to, the inner ear. We show by RT-PCR and in situ hybridization that signatures unique to the inner ear libraries identify transcripts with highly specific cell-type localizations. These transcripts serve to illustrate the utility of a resource that is available to the research community. Utilization of these resources will increase the number of known transcription units and expand our knowledge of the tissue-specific regulation of the transcriptome. PMID:17049805

  4. Biological and mechanical interplay at the Macro- and Microscales Modulates the Cell-Niche Fate.

    PubMed

    Sarig, Udi; Sarig, Hadar; Gora, Aleksander; Krishnamoorthi, Muthu Kumar; Au-Yeung, Gigi Chi Ting; de-Berardinis, Elio; Chaw, Su Yin; Mhaisalkar, Priyadarshini; Bogireddi, Hanumakumar; Ramakrishna, Seeram; Boey, Freddy Yin Chiang; Venkatraman, Subbu S; Machluf, Marcelle

    2018-03-02

    Tissue development, regeneration, or de-novo tissue engineering in-vitro, are based on reciprocal cell-niche interactions. Early tissue formation mechanisms, however, remain largely unknown given complex in-vivo multifactoriality, and limited tools to effectively characterize and correlate specific micro-scaled bio-mechanical interplay. We developed a unique model system, based on decellularized porcine cardiac extracellular matrices (pcECMs)-as representative natural soft-tissue biomaterial-to study a spectrum of common cell-niche interactions. Model monocultures and 1:1 co-cultures on the pcECM of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) were mechano-biologically characterized using macro- (Instron), and micro- (AFM) mechanical testing, histology, SEM and molecular biology aspects using RT-PCR arrays. The obtained data was analyzed using developed statistics, principal component and gene-set analyses tools. Our results indicated biomechanical cell-type dependency, bi-modal elasticity distributions at the micron cell-ECM interaction level, and corresponding differing gene expression profiles. We further show that hMSCs remodel the ECM, HUVECs enable ECM tissue-specific recognition, and their co-cultures synergistically contribute to tissue integration-mimicking conserved developmental pathways. We also suggest novel quantifiable measures as indicators of tissue assembly and integration. This work may benefit basic and translational research in materials science, developmental biology, tissue engineering, regenerative medicine and cancer biomechanics.

  5. Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvus

    PubMed Central

    Bondarenko, Semen M.; Artemov, Gleb N.; Stegniy, Vladimir N.

    2017-01-01

    Spatial organization of chromosome territories is important for maintenance of genomic stability and regulation of gene expression. Recent studies have shown tissue-specific features of chromosome attachments to the nuclear envelope in various organisms including malaria mosquitoes. However, other spatial characteristics of nucleus organization, like volume and shape of chromosome territories, have not been studied in Anopheles. We conducted a thorough analysis of tissue-specific features of the X chromosome and nucleolus volume and shape in follicular epithelium and nurse cells of the Anopheles atroparvus ovaries using a modern open-source software. DNA of the polytene X chromosome from ovarian nurse cells was obtained by microdissection and was used as a template for amplification with degenerate oligo primers. A fluorescently labeled X chromosome painting probe was hybridized with formaldehyde-fixed ovaries of mosquitoes using a 3D-FISH method. The nucleolus was stained by immunostaining with an anti-fibrillarin antibody. The analysis was conducted with TANGO—a software for a chromosome spatial organization analysis. We show that the volume and position of the X chromosome have tissue-specific characteristics. Unlike nurse cell nuclei, the growth of follicular epithelium nuclei is not accompanied with the proportional growth of the X chromosome. However, the shape of the X chromosome does not differ between the tissues. The dynamics of the X chromosome attachment regions location is tissue-specific and it is correlated with the process of nucleus growth in follicular epithelium and nurse cells. PMID:28158219

  6. Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvus.

    PubMed

    Bondarenko, Semen M; Artemov, Gleb N; Sharakhov, Igor V; Stegniy, Vladimir N

    2017-01-01

    Spatial organization of chromosome territories is important for maintenance of genomic stability and regulation of gene expression. Recent studies have shown tissue-specific features of chromosome attachments to the nuclear envelope in various organisms including malaria mosquitoes. However, other spatial characteristics of nucleus organization, like volume and shape of chromosome territories, have not been studied in Anopheles. We conducted a thorough analysis of tissue-specific features of the X chromosome and nucleolus volume and shape in follicular epithelium and nurse cells of the Anopheles atroparvus ovaries using a modern open-source software. DNA of the polytene X chromosome from ovarian nurse cells was obtained by microdissection and was used as a template for amplification with degenerate oligo primers. A fluorescently labeled X chromosome painting probe was hybridized with formaldehyde-fixed ovaries of mosquitoes using a 3D-FISH method. The nucleolus was stained by immunostaining with an anti-fibrillarin antibody. The analysis was conducted with TANGO-a software for a chromosome spatial organization analysis. We show that the volume and position of the X chromosome have tissue-specific characteristics. Unlike nurse cell nuclei, the growth of follicular epithelium nuclei is not accompanied with the proportional growth of the X chromosome. However, the shape of the X chromosome does not differ between the tissues. The dynamics of the X chromosome attachment regions location is tissue-specific and it is correlated with the process of nucleus growth in follicular epithelium and nurse cells.

  7. Toward the human cellular microRNAome.

    PubMed

    McCall, Matthew N; Kim, Min-Sik; Adil, Mohammed; Patil, Arun H; Lu, Yin; Mitchell, Christopher J; Leal-Rojas, Pamela; Xu, Jinchong; Kumar, Manoj; Dawson, Valina L; Dawson, Ted M; Baras, Alexander S; Rosenberg, Avi Z; Arking, Dan E; Burns, Kathleen H; Pandey, Akhilesh; Halushka, Marc K

    2017-10-01

    MicroRNAs are short RNAs that serve as regulators of gene expression and are essential components of normal development as well as modulators of disease. MicroRNAs generally act cell-autonomously, and thus their localization to specific cell types is needed to guide our understanding of microRNA activity. Current tissue-level data have caused considerable confusion, and comprehensive cell-level data do not yet exist. Here, we establish the landscape of human cell-specific microRNA expression. This project evaluated 8 billion small RNA-seq reads from 46 primary cell types, 42 cancer or immortalized cell lines, and 26 tissues. It identified both specific and ubiquitous patterns of expression that strongly correlate with adjacent superenhancer activity. Analysis of unaligned RNA reads uncovered 207 unknown minor strand (passenger) microRNAs of known microRNA loci and 495 novel putative microRNA loci. Although cancer cell lines generally recapitulated the expression patterns of matched primary cells, their isomiR sequence families exhibited increased disorder, suggesting DROSHA- and DICER1-dependent microRNA processing variability. Cell-specific patterns of microRNA expression were used to de-convolute variable cellular composition of colon and adipose tissue samples, highlighting one use of these cell-specific microRNA expression data. Characterization of cellular microRNA expression across a wide variety of cell types provides a new understanding of this critical regulatory RNA species. © 2017 McCall et al.; Published by Cold Spring Harbor Laboratory Press.

  8. SOX2 regulates common and specific stem cell features in the CNS and endoderm derived organs.

    PubMed

    Hagey, Daniel W; Klum, Susanne; Kurtsdotter, Idha; Zaouter, Cecile; Topcic, Danijal; Andersson, Olov; Bergsland, Maria; Muhr, Jonas

    2018-02-01

    Stem cells are defined by their capacities to self-renew and generate progeny of multiple lineages. The transcription factor SOX2 has key roles in the regulation of stem cell characteristics, but whether SOX2 achieves these functions through similar mechanisms in distinct stem cell populations is not known. To address this question, we performed RNA-seq and SOX2 ChIP-seq on embryonic mouse cortex, spinal cord, stomach and lung/esophagus. We demonstrate that, although SOX2 binds a similar motif in the different cell types, its target regions are primarily cell-type-specific and enriched for the distinct binding motifs of appropriately expressed interacting co-factors. Furthermore, cell-type-specific SOX2 binding in endodermal and neural cells is most often found around genes specifically expressed in the corresponding tissue. Consistent with this, we demonstrate that SOX2 target regions can act as cis-regulatory modules capable of directing reporter expression to appropriate tissues in a zebrafish reporter assay. In contrast, SOX2 binding sites found in both endodermal and neural tissues are associated with genes regulating general stem cell features, such as proliferation. Notably, we provide evidence that SOX2 regulates proliferation through conserved mechanisms and target genes in both germ layers examined. Together, these findings demonstrate how SOX2 simultaneously regulates cell-type-specific, as well as core transcriptional programs in neural and endodermal stem cells.

  9. Female-specific down-regulation of tissue-PMN drives impaired Treg and amplified effector T cell responses in autoimmune dry eye disease1

    PubMed Central

    Gao, Yuan; Min, Kyungji; Zhang, Yibing; Su, John; Greenwood, Matthew; Gronert, Karsten

    2015-01-01

    Immune-driven dry eye disease primarily affects women; the cause for this sex-specific prevalence is unknown. PMN have distinct phenotypes that drive inflammation but also regulate lymphocytes and are the rate-limiting cell for generating anti-inflammatory lipoxin A4 (LXA4). Estrogen regulates the LXA4 circuit to induce delayed female-specific wound healing in the cornea. However, the role of PMN in dry eye disease remains unexplored. We discovered a LXA4-producing tissue-PMN population in the corneal limbus, lacrimal glands and cervical lymph nodes of healthy male and female mice. These tissue-PMN, unlike inflammatory-PMN, expressed a highly amplified LXA4 circuit and were sex-specifically regulated during immune-driven dry eye disease. Desiccating stress in females, unlike in males, triggered a remarkable decrease in lymph node PMN and LXA4 formation that remained depressed during dry eye disease. Depressed lymph node PMN and LXA4 in females correlated with an increase in T effector cells (TH1 and TH17), a decrease in regulatory T cells (Treg) and increased dry eye pathogenesis. Antibody depletion of tissue-PMN abrogated LXA4 formation in lymph nodes, caused a marked increase in TH1 and TH17 and decrease in Treg cells. To establish an immune regulatory role for PMN-derived LXA4 in dry eye females were treated with LXA4. LXA4 treatment markedly inhibited TH1 and TH17 and amplified Treg cells in draining lymph nodes, while reducing dry eye pathogenesis. These results identify female-specific regulation of LXA4-producing tissue-PMN as a potential key factor in aberrant T effector cell activation and initiation of immune-driven dry eye disease. PMID:26324767

  10. Making microenvironments: A look into incorporating macromolecular crowding into in vitro experiments, to generate biomimetic microenvironments which are capable of directing cell function for tissue engineering applications.

    PubMed

    Benny, Paula; Raghunath, Michael

    2017-01-01

    Biomimetic microenvironments are key components to successful cell culture and tissue engineering in vitro. One of the most accurate biomimetic microenvironments is that made by the cells themselves. Cell-made microenvironments are most similar to the in vivo state as they are cell-specific and produced by the actual cells which reside in that specific microenvironment. However, cell-made microenvironments have been challenging to re-create in vitro due to the lack of extracellular matrix composition, volume and complexity which are required. By applying macromolecular crowding to current cell culture protocols, cell-made microenvironments, or cell-derived matrices, can be generated at significant rates in vitro. In this review, we will examine the causes and effects of macromolecular crowding and how it has been applied in several in vitro systems including tissue engineering.

  11. Adult human pancreas-derived cells expressing stage-specific embryonic antigen 4 differentiate into Sox9-expressing and Ngn3-expressing pancreatic ducts in vivo.

    PubMed

    Lee, Song; Lee, Chan Mi; Kim, Song Cheol

    2016-11-11

    Tissue-specific stem/progenitor cells are found in various adult tissues and may have the capacity for lineage-specific differentiation, facilitating applications in autologous transplantation. Stage-specific embryonic antigen 4 (SSEA-4), an early embryonic glycolipid antigen, is expressed in cells derived from adult human pancreas exocrine tissue. Here, we examined the characteristics and lineage-specific differentiation capacity of SSEA-4 + cells. Human adult partial pancreas tissues were obtained from different donors and cultured in vitro. SSEA-4 + and CA19-9 + cells were isolated from adult human pancreas exocrine cells using magnetic-activated cell sorting, and gene expression was validated by quantitative polymerase chain reaction. To confirm in-vivo differentiation, SSEA-4 + and CA19-9 + cells were transplanted into the dorsal subcutaneous region of mice. Finally, morphological features of differentiated areas were confirmed by immunostaining and morphometric analysis. SSEA-4-expressing cells were detected in isolated pancreas exocrine cells from adult humans. These SSEA-4 + cells exhibited coexpression of CA19-9, a marker of pancreatic duct cells, but not amylase expression, as shown by immunostaining and flow cytometry. SSEA-4 + cells exhibited higher relative expression of Oct4, Nanog, Klf4, Sox2, and c-Myc mRNAs than CA19-9 + cells. Pancreatic intralobular ducts (PIDs) were generated from SSEA-4 + or CA19-9 + cells in vivo at 5 weeks after transplantation. However, newly formed PIDs from CA19-9 + cells were less abundant and showed an incomplete PID morphology. In contrast, newly formed PIDs from SSEA-4 + cells were abundant in the transplanted area and showed a crowded morphology, typical of PIDs. Sox9 and Ngn3, key transcription factors associated with pancreatic development and regeneration, were expressed in PIDs from SSEA-4 + cells. SSEA-4-expressing cells in the adult human pancreas may have the potential for regeneration of the pancreas and may be used as a source of stem/progenitor cells for pancreatic cell lineage-specific differentiation.

  12. On the Relative Relevance of Subject-Specific Geometries and Degeneration-Specific Mechanical Properties for the Study of Cell Death in Human Intervertebral Disk Models

    PubMed Central

    Malandrino, Andrea; Pozo, José M.; Castro-Mateos, Isaac; Frangi, Alejandro F.; van Rijsbergen, Marc M.; Ito, Keita; Wilke, Hans-Joachim; Dao, Tien Tuan; Ho Ba Tho, Marie-Christine; Noailly, Jérôme

    2015-01-01

    Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration. PMID:25717471

  13. Hematopoietic-to-mesenchymal transition of adipose tissue macrophages is regulated by integrin β1 and fabricated fibrin matrices

    PubMed Central

    Majka, Susan M.; Kohrt, Wendy M.; Miller, Heidi L.; Sullivan, Timothy M.; Klemm, Dwight J.

    2017-01-01

    ABSTRACT Some bona fide adult adipocytes arise de novo from a bone marrow-derived myeloid lineage. These studies further demonstrate that adipose tissue stroma contains a resident population of myeloid cells capable of adipocyte and multilineage mesenchymal differentiation. These resident myeloid cells lack hematopoietic markers and express mesenchymal and progenitor cell markers. Because bone marrow mesenchymal progenitor cells have not been shown to enter the circulation, we hypothesized that myeloid cells acquire mesenchymal differentiation capacity in adipose tissue. We fabricated a 3-dimensional fibrin matrix culture system to define the adipose differentiation potential of adipose tissue-resident myeloid subpopulations, including macrophages, granulocytes and dendritic cells. Our data show that multilineage mesenchymal potential was limited to adipose tissue macrophages, characterized by the acquisition of adipocyte, osteoblast, chondrocyte and skeletal muscle myocyte phenotypes. Fibrin hydrogel matrices stimulated macrophage loss of hematopoietic cell lineage determinants and the expression of mesenchymal and progenitor cell markers, including integrin β1. Ablation of integrin β1 in macrophages inhibited adipocyte specification. Therefore, some bona fide adipocytes are specifically derived from adipose tissue-resident macrophages via an integrin β1-dependent hematopoietic-to-mesenchymal transition, whereby they become capable of multipotent mesenchymal differentiation. The requirement for integrin β1 highlights this molecule as a potential target for controlling the production of marrow-derived adipocytes and their contribution to adipose tissue development and function. PMID:28441086

  14. Reconstruction of genome-scale human metabolic models using omics data.

    PubMed

    Ryu, Jae Yong; Kim, Hyun Uk; Lee, Sang Yup

    2015-08-01

    The impact of genome-scale human metabolic models on human systems biology and medical sciences is becoming greater, thanks to increasing volumes of model building platforms and publicly available omics data. The genome-scale human metabolic models started with Recon 1 in 2007, and have since been used to describe metabolic phenotypes of healthy and diseased human tissues and cells, and to predict therapeutic targets. Here we review recent trends in genome-scale human metabolic modeling, including various generic and tissue/cell type-specific human metabolic models developed to date, and methods, databases and platforms used to construct them. For generic human metabolic models, we pay attention to Recon 2 and HMR 2.0 with emphasis on data sources used to construct them. Draft and high-quality tissue/cell type-specific human metabolic models have been generated using these generic human metabolic models. Integration of tissue/cell type-specific omics data with the generic human metabolic models is the key step, and we discuss omics data and their integration methods to achieve this task. The initial version of the tissue/cell type-specific human metabolic models can further be computationally refined through gap filling, reaction directionality assignment and the subcellular localization of metabolic reactions. We review relevant tools for this model refinement procedure as well. Finally, we suggest the direction of further studies on reconstructing an improved human metabolic model.

  15. Cryopreservation and in vitro culture of primary cell types from lung tissue of a stranded pygmy sperm whale (Kogia breviceps).

    PubMed

    Annalaura Mancia; Spyropoulos, Demetri D; McFee, Wayne E; Newton, Danforth A; Baatz, John E

    2012-01-01

    Current models for in vitro studies of tissue function and physiology, including responses to hypoxia or environmental toxins, are limited and rely heavily on standard 2-dimensional (2-D) cultures with immortalized murine or human cell lines. To develop a new more powerful model system, we have pursued methods to establish and expand cultures of primary lung cell types and reconstituted tissues from marine mammals. What little is known about the physiology of the deep-sea diving pygmy sperm whale (PSW), Kogia breviceps, comes primarily from stranding events that occur along the coast of the southeastern United States. Thus, development of a method for preserving live tissues and retrieving live cells from deceased stranded individuals was initiated. This report documents successful cryopreservation of PSW lung tissue. We established in vitro cultures of primary lung cell types from tissue fragments that had been cryopreserved several months earlier at the stranding event. Dissociation of cryopreserved lung tissues readily provides a variety of primary cell types that, to varying degrees, can be expanded and further studied/manipulated in cell culture. In addition, PSW-specific molecular markers have been developed that permitted the monitoring of fibroblast, alveolar type II, and vascular endothelial cell types. Reconstitution of 3-D cultures of lung tissues with these cell types is now underway. This novel system may facilitate the development of rare or disease-specific lung tissue models (e.g., to test causes of PSW stranding events and lead to improved treatments for pulmonary hypertension or reperfusion injury in humans). Also, the establishment of a "living" tissue bank biorepository for rare/endangered species could serve multiple purposes as surrogates for freshly isolated samples. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. A high-resolution method for the localization of proanthocyanidins in plant tissues

    PubMed Central

    2011-01-01

    Background Histochemical staining of plant tissues with 4-dimethylaminocinnamaldehyde (DMACA) or vanillin-HCl is widely used to characterize spatial patterns of proanthocyanidin accumulation in plant tissues. These methods are limited in their ability to allow high-resolution imaging of proanthocyanidin deposits. Results Tissue embedding techniques were used in combination with DMACA staining to analyze the accumulation of proanthocyanidins in Lotus corniculatus (L.) and Trifolium repens (L.) tissues. Embedding of plant tissues in LR White or paraffin matrices, with or without DMACA staining, preserved the physical integrity of the plant tissues, allowing high-resolution imaging that facilitated cell-specific localization of proanthocyanidins. A brown coloration was seen in proanthocyanidin-producing cells when plant tissues were embedded without DMACA staining and this was likely to have been due to non-enzymatic oxidation of proanthocyanidins and the formation of colored semiquinones and quinones. Conclusions This paper presents a simple, high-resolution method for analysis of proanthocyanidin accumulation in organs, tissues and cells of two plant species with different patterns of proanthocyanidin accumulation, namely Lotus corniculatus (birdsfoot trefoil) and Trifolium repens (white clover). This technique was used to characterize cell type-specific patterns of proanthocyanidin accumulation in white clover flowers at different stages of development. PMID:21595992

  17. Establishment and function of tissue-resident innate lymphoid cells in the skin.

    PubMed

    Yang, Jie; Zhao, Luming; Xu, Ming; Xiong, Na

    2017-07-01

    Innate lymphoid cells (ILCs) are a newly classified family of immune cells of the lymphoid lineage. While they could be found in both lymphoid organs and non-lymphoid tissues, ILCs are preferentially enriched in barrier tissues such as the skin, intestine, and lung where they could play important roles in maintenance of tissue integrity and function and protection against assaults of foreign agents. On the other hand, dysregulated activation of ILCs could contribute to tissue inflammatory diseases. In spite of recent progress towards understanding roles of ILCs in the health and disease, mechanisms regulating specific establishment, activation, and function of ILCs in barrier tissues are still poorly understood. We herein review the up-to-date understanding of tissue-specific relevance of ILCs. Particularly we will focus on resident ILCs of the skin, the outmost barrier tissue critical in protection against various foreign hazardous agents and maintenance of thermal and water balance. In addition, we will discuss remaining outstanding questions yet to be addressed.

  18. Experimental Proof for the Role of Nonlinear Photoionization in Plasmonic Phototherapy.

    PubMed

    Minai, Limor; Zeidan, Adel; Yeheskely-Hayon, Daniella; Yudovich, Shimon; Kviatkovsky, Inna; Yelin, Dvir

    2016-07-13

    Targeting individual cells within a heterogeneous tissue is a key challenge in cancer therapy, encouraging new approaches for cancer treatment that complement the shortcomings of conventional therapies. The highly localized interactions triggered by focused laser beams promise great potential for targeting single cells or small cell clusters; however, most laser-tissue interactions often involve macroscopic processes that may harm healthy nearby tissue and reduce specificity. Specific targeting of living cells using femtosecond pulses and nanoparticles has been demonstrated promising for various potential therapeutic applications including drug delivery via optoporation, drug release, and selective cell death. Here, using an intense resonant femtosecond pulse and cell-specific gold nanorods, we show that at certain irradiation parameters cell death is triggered by nonlinear plasmonic photoionization and not by thermally driven processes. The experimental results are supported by a physical model for the pulse-particle-medium interactions. A good correlation is found between the calculated total number and energy of the generated free electrons and the observed cell death, suggesting that femtosecond photoionization plays the dominant role in cell death.

  19. Functional integrative levels in the human interactome recapitulate organ organization.

    PubMed

    Souiai, Ouissem; Becker, Emmanuelle; Prieto, Carlos; Benkahla, Alia; De las Rivas, Javier; Brun, Christine

    2011-01-01

    Interactome networks represent sets of possible physical interactions between proteins. They lack spatio-temporal information by construction. However, the specialized functions of the differentiated cell types which are assembled into tissues or organs depend on the combinatorial arrangements of proteins and their physical interactions. Is tissue-specificity, therefore, encoded within the interactome? In order to address this question, we combined protein-protein interactions, expression data, functional annotations and interactome topology. We first identified a subnetwork formed exclusively of proteins whose interactions were observed in all tested tissues. These are mainly involved in housekeeping functions and are located at the topological center of the interactome. This 'Largest Common Interactome Network' represents a 'functional interactome core'. Interestingly, two types of tissue-specific interactions are distinguished when considering function and network topology: tissue-specific interactions involved in regulatory and developmental functions are central whereas tissue-specific interactions involved in organ physiological functions are peripheral. Overall, the functional organization of the human interactome reflects several integrative levels of functions with housekeeping and regulatory tissue-specific functions at the center and physiological tissue-specific functions at the periphery. This gradient of functions recapitulates the organization of organs, from cells to organs. Given that several gradients have already been identified across interactomes, we propose that gradients may represent a general principle of protein-protein interaction network organization.

  20. Expression of an insulin-regulatable glucose carrier in muscle and fat endothelial cells

    NASA Astrophysics Data System (ADS)

    Vilaró, Senen; Palacín, Manuel; Pilch, Paul F.; Testar, Xavier; Zorzano, Antonio

    1989-12-01

    INSULIN rapidly stimulates glucose use in the major target tissues, muscle and fat, by modulating a tissue-specific glucose transporter isoform1-6. Access of glucose to the target tissue is restricted by endothelial cells which line the walls of nonfenestrated capillaries of fat and muscle7. Thus, we examined whether the capillary endothelial cells are actively involved in the modulation of glucose availability by these tissues. We report here the abundant expression of the muscle/fat glucose transporter isoform in endothelial cells, using an immunocytochemical analysis with a monoclonal antibody specific for this isoform1. This expression is restricted to endothelial cells from the major insulin target tissues, and it is not detected in brain and liver where insulin does not activate glucose transport. The expression of the muscle/fat transporter isoform in endothelial cells is significantly greater than in the neighbouring muscle and fat cells. Following administration of insulin to animals in vivo, there occurs a rapid increase in the number of muscle/fat transporters present in the lumenal plasma membrane of the capillary endothelial cells. These results document that insulin promotes the translocation of the muscle/fat glucose transporter in endothelial cells. It is therefore likely that endothelial cells play an important role in the regulation of glucose use by the major insulin target tissues in normal and diseased states.

  1. Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis

    PubMed Central

    Lindström, Nils O.; Neves, Carlos; McIntosh, Rebecca; Miedzybrodzka, Zosia; Vargesson, Neil; Collinson, J. Martin

    2012-01-01

    The Lim-kinase (LIMK) proteins are important for the regulation of the actin cytoskeleton, in particular the control of actin nucleation and depolymerisation via regulation of cofilin, and hence may control a large number of processes during development, including cell tensegrity, migration, cell cycling, and axon guidance. LIMK1/LIMK2 knockouts disrupt spinal cord morphogenesis and synapse formation but other tissues and developmental processes that require LIMK are yet to be fully determined. To identify tissues and cell-types that may require LIMK, we characterised the pattern of LIMK1 protein during mouse embryogenesis. We showed that LIMK1 displays an expression pattern that is temporally dynamic and tissue-specific. In several tissues LIMK1 is detected in cell-types that also express Wilms’ tumour protein 1 and that undergo transitions between epithelial and mesenchymal states, including the pleura, epicardium, kidney nephrons, and gonads. LIMK1 was also found in a subset of cells in the dorsal retina, and in mesenchymal cells surrounding the peripheral nerves. This detailed study of the spatial and temporal expression of LIMK1 shows that LIMK1 expression is more dynamic than previously reported, in particular at sites of tissue–tissue interactions guiding multiple developmental processes. PMID:21167960

  2. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration

    PubMed Central

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues. PMID:25954205

  3. A General Map of Iron Metabolism and Tissue-specific Subnetworks

    PubMed Central

    Hower, Valerie; Mendes, Pedro; Torti, Frank M.; Laubenbacher, Reinhard; Akman, Steven; Shulaev, Vladmir; Torti, Suzy V.

    2009-01-01

    Iron is required for survival of mammalian cells. Recently, understanding of iron metabolism and trafficking has increased dramatically, revealing a complex, interacting network largely unknown just a few years ago. This provides an excellent model for systems biology development and analysis. The first step in such an analysis is the construction of a structural network of iron metabolism, which we present here. This network was created using CellDesigner version 3.5.2 and includes reactions occurring in mammalian cells of numerous tissue types. The iron metabolic network contains 151 chemical species and 107 reactions and transport steps. Starting from this general model, we construct iron networks for specific tissues and cells that are fundamental to maintaining body iron homeostasis. We include subnetworks for cells of the intestine and liver, tissues important in iron uptake and storage, respectively; as well as the reticulocyte and macrophage, key cells in iron utilization and recycling. The addition of kinetic information to our structural network will permit the simulation of iron metabolism in different tissues as well as in health and disease. PMID:19381358

  4. Human induced pluripotent stem cells and their use in drug discovery for toxicity testing.

    PubMed

    Scott, Clay W; Peters, Matthew F; Dragan, Yvonne P

    2013-05-10

    Predicting human safety risks of novel xenobiotics remains a major challenge, partly due to the limited availability of human cells to evaluate tissue-specific toxicity. Recent progress in the production of human induced pluripotent stem cells (hiPSCs) may fill this gap. hiPSCs can be continuously expanded in culture in an undifferentiated state and then differentiated to form most cell types. Thus, it is becoming technically feasible to generate large quantities of human cell types and, in combination with relatively new detection methods, to develop higher-throughput in vitro assays that quantify tissue-specific biological properties. Indeed, the first wave of large scale hiSC-differentiated cell types including patient-derived hiPSCS are now commercially available. However, significant improvements in hiPSC production and differentiation processes are required before cell-based toxicity assays that accurately reflect mature tissue phenotypes can be delivered and implemented in a cost-effective manner. In this review, we discuss the promising alignment of hiPSCs and recently emerging technologies to quantify tissue-specific functions. We emphasize liver, cardiovascular, and CNS safety risks and highlight limitations that must be overcome before routine screening for toxicity pathways in hiSC-derived cells can be established. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Persistence, immune specificity, and functional ability of murine mutant ras epitope-specific CD4(+) and CD8(+) T lymphocytes following in vivo adoptive transfer.

    PubMed

    Bristol, J A; Schlom, J; Abrams, S I

    1999-05-25

    Adoptive T-cell transfer has been shown to be a potentially effective strategy for cellular immunotherapy in some murine models of disease. However, several issues remain unresolved regarding some of the basic features involved in effective adoptive transfer, such as the influence of specific peptide antigen (Ag) boost after T-cell transfer, the addition of IL-2 post-T-cell transfer, the trafficking of transferred T cells to lymphoid and nonlymphoid tissues, and the functional stability of recoverable CD4(+) and CD8(+) T cells. We investigated several of these parameters, particularly as they relate to the persistence and maintenance of effector functions of murine CD4(+) and/or CD8(+) T lymphocytes after adoptive cellular transfer into partially gamma-irradiated syngeneic hosts. Our laboratory previously identified murine (H-2(d)) immunogenic CD4(+) and CD8(+) T-cell peptide epitopes reflecting codon 12 ras mutations as tumor-specific Ag. Therefore, the model system chosen here employed epitope-specific MHC class II-restricted CD4(+) T cells and MHC class I-restricted CD8(+) T cells produced from previously immunized BALB/c mice. Between 2 and 7 days after T-cell transfer, recipient mice received various combinations of peptide boosts and/or IL-2 treatments. At different times after the T-cell transfer, spleen and lung tissues were analyzed phenotypically to monitor the persistence of the immune T cells and functionally (via proliferation or cytotoxicity assays) to assess the maintenance of peptide specificity. The results showed that immune donor T lymphocytes (uncultured immune T cells or cloned T cells) were recoverable from the spleens and lungs of recipient mice after transfer. The recovery of Ag-specific T-cell responses was greatest from recipient mice that received peptide boosts and IL-2 treatment. However, mice that received a peptide boost without IL-2 treatment responded nearly as well, which suggested that including a peptide boost after T-cell transfer was more obligatory than exogenous IL-2 treatment to sustain adoptively transferred T cells in vivo. Ag-specific T-cell responses were weak in mice that either received IL-2 alone or did not receive the cognate peptide boost after T-cell transfer. The T-cell clones were also monitored by flow cytometry or RT-PCR based on expression of the T-cell receptor Vbeta-chain, which was previously characterized. Ag-specific T cells were recovered from both spleens and lungs of recipient mice, demonstrating that the T-cell clones could localize to both lymphoid and nonlymphoid tissues. This study demonstrates that both uncultured and in vitro-cloned T lymphocytes can migrate to lymphoid tissues and nonlymphoid (e.g., lung) tissues in recipient hosts and that their functional activities can be maintained at these sites after transfer, if they are exposed to peptide Ag in vivo. Copyright 1999 Academic Press.

  6. In Vitro Engineering of Vascularized Tissue Surrogates

    PubMed Central

    Sakaguchi, Katsuhisa; Shimizu, Tatsuya; Horaguchi, Shigeto; Sekine, Hidekazu; Yamato, Masayuki; Umezu, Mitsuo; Okano, Teruo

    2013-01-01

    In vitro scaling up of bioengineered tissues is known to be limited by diffusion issues, specifically a lack of vasculature. Here, we report a new strategy for preserving cell viability in three-dimensional tissues using cell sheet technology and a perfusion bioreactor having collagen-based microchannels. When triple-layer cardiac cell sheets are incubated within this bioreactor, endothelial cells in the cell sheets migrate to vascularize in the collagen gel, and finally connect with the microchannels. Medium readily flows into the cell sheets through the microchannels and the newly developed capillaries, while the cardiac construct shows simultaneous beating. When additional triple-layer cell sheets are repeatedly layered, new multi-layer construct spontaneously integrates and the resulting construct becomes a vascularized thick tissue. These results confirmed our method to fabricate in vitro vascularized tissue surrogates that overcomes engineered-tissue thickness limitations. The surrogates promise new therapies for damaged organs as well as new in vitro tissue models. PMID:23419835

  7. Electrophoretic separation and analysis of living cells from solid tissues by several methods - Human embryonic kidney cell cultures as a model

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Plank, Lindsay D.; Kunze, M. Elaine; Lewis, Marian L.; Morrison, Dennis R.

    1986-01-01

    The use of free-fluid electrophoresis methods to separate tissue cells having a specific function is discussed. It is shown that cells suspended by trypsinization from cultures of human embryonic kidney are electrophoretically heterogeneous and tolerate a wide range of electrophoresis buffers and conditions without significant attenuation of function. Moreover, these cells do not separate electrophoretically on the basis of size or cell position alone and can be separated according to their ability to give rise to progeny that produce specific plasminogen activators.

  8. Genome-Wide Cell Type-Specific Mapping of In Vivo Chromatin Protein Binding Using an FLP-Inducible DamID System in Drosophila.

    PubMed

    Pindyurin, Alexey V

    2017-01-01

    A thorough study of the genome-wide binding patterns of chromatin proteins is essential for understanding the regulatory mechanisms of genomic processes in eukaryotic nuclei, including DNA replication, transcription, and repair. The DNA adenine methyltransferase identification (DamID) method is a powerful tool to identify genomic binding sites of chromatin proteins. This method does not require fixation of cells and the use of specific antibodies, and has been used to generate genome-wide binding maps of more than a hundred different proteins in Drosophila tissue culture cells. Recent versions of inducible DamID allow performing cell type-specific profiling of chromatin proteins even in small samples of Drosophila tissues that contain heterogeneous cell types. Importantly, with these methods sorting of cells of interest or their nuclei is not necessary as genomic DNA isolated from the whole tissue can be used as an input. Here, I describe in detail an FLP-inducible DamID method, namely generation of suitable transgenic flies, activation of the Dam transgenes by the FLP recombinase, isolation of DNA from small amounts of dissected tissues, and subsequent identification of the DNA binding sites of the chromatin proteins.

  9. The airway antigen sampling system: respiratory M cells as an alternative gateway for inhaled antigens.

    PubMed

    Kim, Dong-Young; Sato, Ayuko; Fukuyama, Satoshi; Sagara, Hiroshi; Nagatake, Takahiro; Kong, Il Gyu; Goda, Kaoru; Nochi, Tomonori; Kunisawa, Jun; Sato, Shintaro; Yokota, Yoshifumi; Lee, Chul Hee; Kiyono, Hiroshi

    2011-04-01

    In this study, we demonstrated a new airway Ag sampling site by analyzing tissue sections of the murine nasal passages. We revealed the presence of respiratory M cells, which had the ability to take up OVA and recombinant Salmonella typhimurium expressing GFP, in the turbinates covered with single-layer epithelium. These M cells were also capable of taking up respiratory pathogen group A Streptococcus after nasal challenge. Inhibitor of DNA binding/differentiation 2 (Id2)-deficient mice, which are deficient in lymphoid tissues, including nasopharynx-associated lymphoid tissue, had a similar frequency of M cell clusters in their nasal epithelia to that of their littermates, Id2(+/-) mice. The titers of Ag-specific Abs were as high in Id2(-/-) mice as in Id2(+/-) mice after nasal immunization with recombinant Salmonella-ToxC or group A Streptococcus, indicating that respiratory M cells were capable of sampling inhaled bacterial Ag to initiate an Ag-specific immune response. Taken together, these findings suggest that respiratory M cells act as a nasopharynx-associated lymphoid tissue-independent alternative gateway for Ag sampling and subsequent induction of Ag-specific immune responses in the upper respiratory tract.

  10. Contribution of endothelial cells to organogenesis: a modern reappraisal of an old Aristotelian concept

    PubMed Central

    Crivellato, E; Nico, B; Ribatti, D

    2007-01-01

    It is well established that many tissue-derived factors are involved in blood vessel formation, but evidence is now emerging that endothelial cells themselves represent a crucial source of instructive signals to non-vascular tissue cells during organ development. Thus, endothelial cell signalling is currently believed to promote fundamental cues for cell fate specification, embryo patterning, organ differentiation and postnatal tissue remodelling. This review article summarizes some of the recent advances in our understanding of the role of endothelial cells as effector cells in organ formation. PMID:17683480

  11. Evaluation of telomere length in human cardiac tissues using cardiac quantitative FISH.

    PubMed

    Sharifi-Sanjani, Maryam; Meeker, Alan K; Mourkioti, Foteini

    2017-09-01

    Telomere length has been correlated with various diseases, including cardiovascular disease and cancer. The use of currently available telomere-length measurement techniques is often restricted by the requirement of a large amount of cells (Southern-based techniques) or the lack of information on individual cells or telomeres (PCR-based methods). Although several methods have been used to measure telomere length in tissues as a whole, the assessment of cell-type-specific telomere length provides valuable information on individual cell types. The development of fluorescence in situ hybridization (FISH) technologies enables the quantification of telomeres in individual chromosomes, but the use of these methods is dependent on the availability of isolated cells, which prevents their use with fixed archival samples. Here we describe an optimized quantitative FISH (Q-FISH) protocol for measuring telomere length that bypasses the previous limitations by avoiding contributions from undesired cell types. We have used this protocol on small paraffin-embedded cardiac-tissue samples. This protocol describes step-by-step procedures for tissue preparation, permeabilization, cardiac-tissue pretreatment and hybridization with a Cy3-labeled telomeric repeat complementing (CCCTAA) 3 peptide nucleic acid (PNA) probe coupled with cardiac-specific antibody staining. We also describe how to quantify telomere length by means of the fluorescence intensity and area of each telomere within individual nuclei. This protocol provides comparative cell-type-specific telomere-length measurements in relatively small human cardiac samples and offers an attractive technique to test hypotheses implicating telomere length in various cardiac pathologies. The current protocol (from tissue collection to image procurement) takes ∼28 h along with three overnight incubations. We anticipate that the protocol could be easily adapted for use on different tissue types.

  12. Real-time PCR to determine transgene copy number and to quantitate the biolocalization of adoptively transferred cells from EGFP-transgenic mice.

    PubMed

    Joshi, Molishree; Keith Pittman, H; Haisch, Carl; Verbanac, Kathryn

    2008-09-01

    Quantitative real-time PCR (qPCR) is a sensitive technique for the detection and quantitation of specific DNA sequences. Here we describe a Taqman qPCR assay for quantification of tissue-localized, adoptively transferred enhanced green fluorescent protein (EGFP)-transgenic cells. A standard curve constructed from serial dilutions of a plasmid containing the EGFP transgene was (i) highly reproducible, (ii) detected as few as two copies, and (iii) was included in each qPCR assay. qPCR analysis of genomic DNA was used to determine transgene copy number in several mouse strains. Fluorescent microscopy of tissue sections showed that adoptively transferred vascular endothelial cells (VEC) from EGFP-transgenic mice specifically localized to tissue with metastatic tumors in syngeneic recipients. VEC microscopic enumeration of liver metastases strongly correlated with qPCR analysis of identical sections (Pearson correlation 0.81). EGFP was undetectable in tissue from control mice by qPCR. In another study using intra-tumor EGFP-VEC delivery to subcutaneous tumors, manual cell count and qPCR analysis of alternating sections also strongly correlated (Pearson correlation 0.82). Confocal microscopy of the subcutaneous tumor sections determined that visual fluorescent signals were frequently tissue artifacts. This qPCR methodology offers specific, objective, and rapid quantitation, uncomplicated by tissue autofluorescence, and should be readily transferable to other in vivo models to quantitate the biolocalization of transplanted cells.

  13. Force transmission in epithelial tissues.

    PubMed

    Vasquez, Claudia G; Martin, Adam C

    2016-03-01

    In epithelial tissues, cells constantly generate and transmit forces between each other. Forces generated by the actomyosin cytoskeleton regulate tissue shape and structure and also provide signals that influence cells' decisions to divide, die, or differentiate. Forces are transmitted across epithelia because cells are mechanically linked through junctional complexes, and forces can propagate through the cell cytoplasm. Here, we review some of the molecular mechanisms responsible for force generation, with a specific focus on the actomyosin cortex and adherens junctions. We then discuss evidence for how these mechanisms promote cell shape changes and force transmission in tissues. © 2016 Wiley Periodicals, Inc.

  14. Biomaterials for the programming of cell growth in oral tissues: The possible role of APA.

    PubMed

    Salerno, Marco; Giacomelli, Luca; Larosa, Claudio

    2011-01-06

    Examples of programmed tissue response after the interaction of cells with biomaterials are a hot topic in current dental research. We propose here the use of anodic porous alumina (APA) for the programming of cell growth in oral tissues. In particular, APA may trigger cell growth by the controlled release of specific growth factors and/or ions. Moreover, APA may be used as a scaffold to promote generation of new tissue, due to the high interconnectivity of pores and the high surface roughness displayed by this material.

  15. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression

    PubMed Central

    Ruijtenberg, Suzan; van den Heuvel, Sander

    2016-01-01

    ABSTRACT Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control. PMID:26825227

  16. Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action

    PubMed Central

    Welch, David; Hassan, Hala; Blilou, Ikram; Immink, Richard; Heidstra, Renze; Scheres, Ben

    2007-01-01

    In the Arabidopsis root, the SHORT-ROOT transcription factor moves outward to the ground tissue from its site of transcription in the stele and is required for the specification of the endodermis and the stem cell organizing quiescent center cells. In addition, SHORT-ROOT and the downstream transcription factor SCARECROW control an oriented cell division in ground tissue stem cell daughters. Here, we show that the JACKDAW and MAGPIE genes, which encode members of a plant-specific family of zinc finger proteins, act in a SHR-dependent feed-forward loop to regulate the range of action of SHORT-ROOT and SCARECROW. JACKDAW expression is initiated independent of SHORT-ROOT and regulates the SCARECROW expression domain outside the stele, while MAGPIE expression depends on SHORT-ROOT and SCARECROW. We provide evidence that JACKDAW and MAGPIE regulate tissue boundaries and asymmetric cell division and can control SHORT-ROOT and SCARECROW activity in a transcriptional and protein interaction network. PMID:17785527

  17. Tissue-Specific Regulation of Chromatin Insulator Function

    PubMed Central

    Matzat, Leah H.; Dale, Ryan K.; Moshkovich, Nellie; Lei, Elissa P.

    2012-01-01

    Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. PMID:23209434

  18. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yanfu; Chai, Jiake, E-mail: cjk304@126.com; Sun, Tianjun

    2011-10-07

    Highlights: {yields} Mesenchymal stem cells (MSCs) are potential seed cells for tissue-engineered skin. {yields} Tissue-derived umbilical cord MSCs (UCMSCs) can readily be isolated in vitro. {yields} We induce UCMSCs to differentiate into dermal fibroblasts via conditioned medium. {yields} Collagen type I and collagen type III mRNA level was higher in differentiated cells. {yields} UCMSCs-derived fibroblast-like cells strongly express fibroblast-specific protein. -- Abstract: Tissue-derived umbilical cord mesenchymal stem cells (UCMSCs) can be readily obtained, avoid ethical or moral constraints, and show excellent pluripotency and proliferation potential. UCMSCs are considered to be a promising source of stem cells in regenerative medicine. Inmore » this study, we collected newborn umbilical cord tissue under sterile conditions and isolated UCMSCs through a tissue attachment method. UCMSC cell surface markers were examined using flow cytometry. On the third passage, UCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. The induction results were detected using immunofluorescence with a fibroblast-specific monoclonal antibody and real time PCR for type I and type III collagen. UCMSCs exhibited a fibroblast-like morphology and reached 90% confluency 14 to 18 days after primary culture. Cultured UCMSCs showed strong positive staining for CD73, CD29, CD44, CD105, and HLA-I, but not CD34, CD45, CD31, or HLA-DR. After differentiation, immunostaining for collagen type I, type III, fibroblast-specific protein, vimentin, and desmin were all strongly positive in induced cells, and staining was weak or negative in non-induced cells; total transcript production of collagen type I and collagen type III mRNA was higher in induced cells than in non-induced cells. These results demonstrate that UCMSCs can be induced to differentiate into fibroblasts with conditioned induction media and, in turn, could be used as seed cells for tissue-engineered dermis.« less

  19. Colonization and effector functions of innate lymphoid cells in mucosal tissues

    PubMed Central

    Kim, Myunghoo; Kim, Chang H.

    2016-01-01

    Innate lymphoid cells (ILCs) protect mucosal barrier tissues to fight infection and maintain tissue integrity. ILCs and their progenitors are developmentally programmed to migrate, differentiate and populate various mucosal tissues and associated lymphoid tissues. Functionally mature ILC subsets respond to diverse pathogens such as bacteria, viruses, fungi and parasites in subset-specific manners. In this review, we will discuss how ILCs populate mucosal tissues and regulate immune responses to distinct pathogens to protect the host and maintain tissue integrity. PMID:27365193

  20. [Research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration].

    PubMed

    Liang, Hang; Deng, Xiangyu; Shao, Zengwu

    2017-10-01

    To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.

  1. Characterization of human breast cancer tissues by infrared imaging.

    PubMed

    Verdonck, M; Denayer, A; Delvaux, B; Garaud, S; De Wind, R; Desmedt, C; Sotiriou, C; Willard-Gallo, K; Goormaghtigh, E

    2016-01-21

    Fourier Transform InfraRed (FTIR) spectroscopy coupled to microscopy (IR imaging) has shown unique advantages in detecting morphological and molecular pathologic alterations in biological tissues. The aim of this study was to evaluate the potential of IR imaging as a diagnostic tool to identify characteristics of breast epithelial cells and the stroma. In this study a total of 19 breast tissue samples were obtained from 13 patients. For 6 of the patients, we also obtained Non-Adjacent Non-Tumor tissue samples. Infrared images were recorded on the main cell/tissue types identified in all breast tissue samples. Unsupervised Principal Component Analyses and supervised Partial Least Square Discriminant Analyses (PLS-DA) were used to discriminate spectra. Leave-one-out cross-validation was used to evaluate the performance of PLS-DA models. Our results show that IR imaging coupled with PLS-DA can efficiently identify the main cell types present in FFPE breast tissue sections, i.e. epithelial cells, lymphocytes, connective tissue, vascular tissue and erythrocytes. A second PLS-DA model could distinguish normal and tumor breast epithelial cells in the breast tissue sections. A patient-specific model reached particularly high sensitivity, specificity and MCC rates. Finally, we showed that the stroma located close or at distance from the tumor exhibits distinct spectral characteristics. In conclusion FTIR imaging combined with computational algorithms could be an accurate, rapid and objective tool to identify/quantify breast epithelial cells and differentiate tumor from normal breast tissue as well as normal from tumor-associated stroma, paving the way to the establishment of a potential complementary tool to ensure safe tumor margins.

  2. Clustering Single-Cell Expression Data Using Random Forest Graphs.

    PubMed

    Pouyan, Maziyar Baran; Nourani, Mehrdad

    2017-07-01

    Complex tissues such as brain and bone marrow are made up of multiple cell types. As the study of biological tissue structure progresses, the role of cell-type-specific research becomes increasingly important. Novel sequencing technology such as single-cell cytometry provides researchers access to valuable biological data. Applying machine-learning techniques to these high-throughput datasets provides deep insights into the cellular landscape of the tissue where those cells are a part of. In this paper, we propose the use of random-forest-based single-cell profiling, a new machine-learning-based technique, to profile different cell types of intricate tissues using single-cell cytometry data. Our technique utilizes random forests to capture cell marker dependences and model the cellular populations using the cell network concept. This cellular network helps us discover what cell types are in the tissue. Our experimental results on public-domain datasets indicate promising performance and accuracy of our technique in extracting cell populations of complex tissues.

  3. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications

    PubMed Central

    Rajangam, Thanavel; An, Seong Soo A

    2013-01-01

    Over the past two decades, many types of natural and synthetic polymer-based micro- and nanocarriers, with exciting properties and applications, have been developed for application in various types of tissue regeneration, including bone, cartilage, nerve, blood vessels, and skin. The development of suitable polymers scaffold designs to aid the repair of specific cell types have created diverse and important potentials in tissue restoration. Fibrinogen (Fbg)- and fibrin (Fbn)-based micro- and nanostructures can provide suitable natural matrix environments. Since these primary materials are abundantly available in blood as the main coagulation proteins, they can easily interact with damaged tissues and cells through native biochemical interactions. Fbg- and Fbn-based micro and nanostructures can also be consecutively furnished/or encapsulated and specifically delivered, with multiple growth factors, proteins, and stem cells, in structures designed to aid in specific phases of the tissue regeneration process. The present review has been carried out to demonstrate the progress made with micro and nanoscaffold applications and features a number of applications of Fbg- and Fbn-based carriers in the field of biomaterials, including the delivery of drugs, active biomolecules, cells, and genes, that have been effectively used in tissue engineering and regenerative medicine. PMID:24106425

  4. Tissue-Resident Lymphocytes in Solid Organ Transplantation: Innocent Passengers or the Key to Organ Transplant Survival?

    PubMed

    Prosser, Amy C; Kallies, Axel; Lucas, Michaela

    2018-03-01

    Short-term outcomes of solid organ transplantation have improved dramatically over the past several decades; however, long-term survival has remained static over the same period, and chronic rejection remains a major cause of graft failure. The importance of donor, or "passenger," lymphocytes to the induction of tolerance to allografts was recognized in the 1990s, but their precise contribution to graft acceptance or rejection has not been elucidated. Recently, specialized populations of tissue-resident lymphocytes in nonlymphoid organs have been described. These lymphocytes include tissue-resident memory T cells, regulatory T cells, γδ T cells, invariant natural killer T cells, and innate lymphoid cells. These cells reside in commonly transplanted solid organs, including the liver, kidneys, heart, and lung; however, their contribution to graft acceptance or rejection has not been examined in detail. Similarly, it is unclear whether tissue-resident cells derived from the pool of recipient-derived lymphocytes play a specific role in transplantation biology. This review summarizes the evidence for the roles of tissue-resident lymphocytes in transplant immunology, focussing on their features, functions, and relevance for solid organ transplantation, with specific reference to liver, kidney, heart, and lung transplantation.

  5. Isolating specific cell and tissue compartments from 3D images for quantitative regional distribution analysis using novel computer algorithms.

    PubMed

    Fenrich, Keith K; Zhao, Ethan Y; Wei, Yuan; Garg, Anirudh; Rose, P Ken

    2014-04-15

    Isolating specific cellular and tissue compartments from 3D image stacks for quantitative distribution analysis is crucial for understanding cellular and tissue physiology under normal and pathological conditions. Current approaches are limited because they are designed to map the distributions of synapses onto the dendrites of stained neurons and/or require specific proprietary software packages for their implementation. To overcome these obstacles, we developed algorithms to Grow and Shrink Volumes of Interest (GSVI) to isolate specific cellular and tissue compartments from 3D image stacks for quantitative analysis and incorporated these algorithms into a user-friendly computer program that is open source and downloadable at no cost. The GSVI algorithm was used to isolate perivascular regions in the cortex of live animals and cell membrane regions of stained spinal motoneurons in histological sections. We tracked the real-time, intravital biodistribution of injected fluorophores with sub-cellular resolution from the vascular lumen to the perivascular and parenchymal space following a vascular microlesion, and mapped the precise distributions of membrane-associated KCC2 and gephyrin immunolabeling in dendritic and somatic regions of spinal motoneurons. Compared to existing approaches, the GSVI approach is specifically designed for isolating perivascular regions and membrane-associated regions for quantitative analysis, is user-friendly, and free. The GSVI algorithm is useful to quantify regional differences of stained biomarkers (e.g., cell membrane-associated channels) in relation to cell functions, and the effects of therapeutic strategies on the redistributions of biomolecules, drugs, and cells in diseased or injured tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Advances in tissue engineering through stem cell-based co-culture.

    PubMed

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Stem/Progenitor Cell Proteoglycans Decorated with 7-D-4, 4-C-3 and 3-B-3(-) Chondroitin Sulphate Motifs Are Morphogenetic Markers Of Tissue Development.

    PubMed

    Hayes, Anthony J; Smith, Susan M; Caterson, Bruce; Melrose, James

    2018-06-11

    This study reviewed the occurrence of chondroitin sulphate (CS) motifs 4-C-3, 7-D-4 and 3-B-3(-) which are expressed by progenitor cells in tissues undergoing morphogenesis. These motifs have a transient early expression pattern during tissue development and also appear in mature tissues during pathological remodeling and attempted repair processes by activated adult stem cells. The CS motifs are information and recognition modules, which may regulate cellular behavior and delineate stem cell niches in developmental tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulphation motifs 7-D-4, 4-C-3 and 3-B-3 (-) decorate cell surface proteoglycans on activated stem/progenitor cells and appear to identify these cells in transitional areas of tissue development and in tissue repair and may be applicable to determining a more precise role for stem cells in tissue morphogenesis. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  8. The double-stranded RNA binding protein RDE-4 can act cell autonomously during feeding RNAi in C. elegans

    PubMed Central

    Raman, Pravrutha; Zaghab, Soriayah M.; Traver, Edward C.

    2017-01-01

    Abstract Long double-stranded RNA (dsRNA) can silence genes of matching sequence upon ingestion in many invertebrates and is therefore being developed as a pesticide. Such feeding RNA interference (RNAi) is best understood in the worm Caenorhabditis elegans, where the dsRNA-binding protein RDE-4 initiates silencing by recruiting an endonuclease to process long dsRNA into short dsRNA. These short dsRNAs are thought to move between cells because muscle-specific rescue of rde-4 using repetitive transgenes enables silencing in other tissues. Here, we extend this observation using additional promoters, report an inhibitory effect of repetitive transgenes, and discover conditions for cell-autonomous silencing in animals with tissue-specific rescue of rde-4. While expression of rde-4(+) in intestine, hypodermis, or neurons using a repetitive transgene can enable silencing also in unrescued tissues, silencing can be inhibited wihin tissues that express a repetitive transgene. Single-copy transgenes that express rde-4(+) in body-wall muscles or hypodermis, however, enable silencing selectively in the rescued tissue but not in other tissues. These results suggest that silencing by the movement of short dsRNA between cells is not an obligatory feature of feeding RNAi in C. elegans. We speculate that similar control of dsRNA movement could modulate tissue-specific silencing by feeding RNAi in other invertebrates. PMID:28541563

  9. Protein analysis through Western blot of cells excised individually from human brain and muscle tissue

    PubMed Central

    Koob, A.O.; Bruns, L.; Prassler, C.; Masliah, E.; Klopstock, T.; Bender, A.

    2016-01-01

    Comparing protein levels from single cells in tissue has not been achieved through Western blot. Laser capture microdissection allows for the ability to excise single cells from sectioned tissue and compile an aggregate of cells in lysis buffer. In this study we analyzed proteins from cells excised individually from brain and muscle tissue through Western blot. After we excised individual neurons from the substantia nigra of the brain, the accumulated surface area of the individual cells was 120,000, 24,000, 360,000, 480,000, 600,000 μm2. We used an optimized Western blot protocol to probe for tyrosine hydroxylase in this cell pool. We also took 360,000 μm2 of astrocytes (1700 cells) and analyzed the specificity of the method. In muscle we were able to analyze the proteins of the five complexes of the electron transport chain through Western blot from 200 human cells. With this method, we demonstrate the ability to compare cell-specific protein levels in the brain and muscle and describe for the first time how to visualize proteins through Western blot from cells captured individually. PMID:22402104

  10. Protein analysis through Western blot of cells excised individually from human brain and muscle tissue.

    PubMed

    Koob, A O; Bruns, L; Prassler, C; Masliah, E; Klopstock, T; Bender, A

    2012-06-15

    Comparing protein levels from single cells in tissue has not been achieved through Western blot. Laser capture microdissection allows for the ability to excise single cells from sectioned tissue and compile an aggregate of cells in lysis buffer. In this study we analyzed proteins from cells excised individually from brain and muscle tissue through Western blot. After we excised individual neurons from the substantia nigra of the brain, the accumulated surface area of the individual cells was 120,000, 24,000, 360,000, 480,000, 600,000 μm2. We used an optimized Western blot protocol to probe for tyrosine hydroxylase in this cell pool. We also took 360,000 μm2 of astrocytes (1700 cells) and analyzed the specificity of the method. In muscle we were able to analyze the proteins of the five complexes of the electron transport chain through Western blot from 200 human cells. With this method, we demonstrate the ability to compare cell-specific protein levels in the brain and muscle and describe for the first time how to visualize proteins through Western blot from cells captured individually. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Circulating TFH cells, serological memory, and tissue compartmentalization shape human influenza-specific B cell immunity.

    PubMed

    Koutsakos, Marios; Wheatley, Adam K; Loh, Liyen; Clemens, E Bridie; Sant, Sneha; Nüssing, Simone; Fox, Annette; Chung, Amy W; Laurie, Karen L; Hurt, Aeron C; Rockman, Steve; Lappas, Martha; Loudovaris, Thomas; Mannering, Stuart I; Westall, Glen P; Elliot, Michael; Tangye, Stuart G; Wakim, Linda M; Kent, Stephen J; Nguyen, Thi H O; Kedzierska, Katherine

    2018-02-14

    Immunization with the inactivated influenza vaccine (IIV) remains the most effective strategy to combat seasonal influenza infections. IIV activates B cells and T follicular helper (T FH ) cells and thus engenders antibody-secreting cells and serum antibody titers. However, the cellular events preceding generation of protective immunity in humans are inadequately understood. We undertook an in-depth analysis of B cell and T cell immune responses to IIV in 35 healthy adults. Using recombinant hemagglutinin (rHA) probes to dissect the quantity, phenotype, and isotype of influenza-specific B cells against A/California09-H1N1, A/Switzerland-H3N2, and B/Phuket, we showed that vaccination induced a three-pronged B cell response comprising a transient CXCR5 - CXCR3 + antibody-secreting B cell population, CD21 hi CD27 + memory B cells, and CD21 lo CD27 + B cells. Activation of circulating T FH cells correlated with the development of both CD21 lo and CD21 hi memory B cells. However, preexisting antibodies could limit increases in serum antibody titers. IIV had no marked effect on CD8 + , mucosal-associated invariant T, γδ T, and natural killer cell activation. In addition, vaccine-induced B cells were not maintained in peripheral blood at 1 year after vaccination. We provide a dissection of rHA-specific B cells across seven human tissue compartments, showing that influenza-specific memory (CD21 hi CD27 + ) B cells primarily reside within secondary lymphoid tissues and the lungs. Our study suggests that a rational design of universal vaccines needs to consider circulating T FH cells, preexisting serological memory, and tissue compartmentalization for effective B cell immunity, as well as to improve targeting cellular T cell immunity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Thermogelling 3D Systems towards Stem Cell-Based Tissue Regeneration Therapies.

    PubMed

    Wang, Xiaoyuan; Young, David James; Wu, Yun-Long; Loh, Xian Jun

    2018-03-02

    Stem cell culturing and differentiation is a very important research direction for tissue engineering. Thermogels are well suited for encapsulating cells because of their non-biotoxic nature and mild sol-gel transition as temperature increases. In particular, thermogels provide a 3D growth environment for stem cell growth, which is more similar to the extracellular matrix than flat substrates, so thermogels as a medium can overcome many of the cell abnormalities caused by 2D cell growth. In this review, we summarize the applications of thermogels in cell and stem cell culture in recent years. We also elaborate on the methods to induce stem cell differentiation by using thermogel-based 3D scaffolds. In particular, thermogels, encapsulating specific differentiation-inducing factor and having specific structures and moduli, can induce the differentiation into the desired tissue cells. Three dimensional thermogel scaffolds that control the growth and differentiation of cells will undoubtedly have a bright future in regenerative medicine.

  13. Differential marker expression by cultures rich in mesenchymal stem cells

    PubMed Central

    2013-01-01

    Background Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. Results Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers – CD24, CD108 and CD40. Conclusion We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers. PMID:24304471

  14. Decellularized Tissue and Cell-Derived Extracellular Matrices as Scaffolds for Orthopaedic Tissue Engineering

    PubMed Central

    Cheng, Christina W.; Solorio, Loran D.; Alsberg, Eben

    2014-01-01

    The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic. PMID:24417915

  15. Highly Decorated Lignins in Leaf Tissues of the Canary Island Date Palm Phoenix canariensis1[OPEN

    PubMed Central

    Bartuce, Allison; Free, Heather C.A.; Smith, Bronwen G.

    2017-01-01

    The cell walls of leaf base tissues of the Canary Island date palm (Phoenix canariensis) contain lignins with the most complex compositions described to date. The lignin composition varies by tissue region and is derived from traditional monolignols (ML) along with an unprecedented range of ML conjugates: ML-acetate, ML-benzoate, ML-p-hydroxybenzoate, ML-vanillate, ML-p-coumarate, and ML-ferulate. The specific functions of such complex lignin compositions are unknown. However, the distribution of the ML conjugates varies depending on the tissue region, indicating that they may play specific roles in the cell walls of these tissues and/or in the plant’s defense system. PMID:28894022

  16. Tissue engineering for clinical applications.

    PubMed

    Bhatia, Sujata K

    2010-12-01

    Tissue engineering is increasingly being recognized as a beneficial means for lessening the global disease burden. One strategy of tissue engineering is to replace lost tissues or organs with polymeric scaffolds that contain specialized populations of living cells, with the goal of regenerating tissues to restore normal function. Typical constructs for tissue engineering employ biocompatible and degradable polymers, along with organ-specific and tissue-specific cells. Once implanted, the construct guides the growth and development of new tissues; the polymer scaffold degrades away to be replaced by healthy functioning tissue. The ideal biomaterial for tissue engineering not only defends against disease and supports weakened tissues or organs, it also provides the elements required for healing and repair, stimulates the body's intrinsic immunological and regenerative capacities, and seamlessly interacts with the living body. Tissue engineering has been investigated for virtually every organ system in the human body. This review describes the potential of tissue engineering to alleviate disease, as well as the latest advances in tissue regeneration. The discussion focuses on three specific clinical applications of tissue engineering: cardiac tissue regeneration for treatment of heart failure; nerve regeneration for treatment of stroke; and lung regeneration for treatment of chronic obstructive pulmonary disease. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tissue morphodynamics shaping the early mouse embryo.

    PubMed

    Sutherland, Ann E

    2016-07-01

    Generation of the elongated vertebrate body plan from the initially radially symmetrical embryo requires comprehensive changes to tissue form. These shape changes are generated by specific underlying cell behaviors, coordinated in time and space. Major principles and also specifics are emerging, from studies in many model systems, of the cell and physical biology of how region-specific cell behaviors produce regional tissue morphogenesis, and how these, in turn, are integrated at the level of the embryo. New technical approaches have made it possible more recently, to examine the morphogenesis of the mouse embryo in depth, and to elucidate the underlying cellular mechanisms. This review focuses on recent advances in understanding the cellular basis for the early fundamental events that establish the basic form of the embryo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9.

    PubMed

    Bai, Meizhu; Liang, Dan; Wang, Yinghua; Li, Qing; Wu, Yuxuan; Li, Jinsong

    2016-05-20

    Tissue-specific knockout technology enables the analysis of the gene function in specific tissues in adult mammals. However, conventional strategy for producing tissue-specific knockout mice is a time- and labor-consuming process, restricting rapid study of the gene function in vivo. CRISPR-Cas9 system from bacteria is a simple and efficient gene-editing technique, which has enabled rapid generation of gene knockout lines in mouse by direct injection of CRISPR-Cas9 into zygotes. Here, we demonstrate CRISPR-Cas9-mediated spermatogenic cell-specific disruption of Scp3 gene in testes in one step. We first generated transgenic mice by pronuclear injection of a plasmid containing Hspa2 promoter driving Cas9 expression and showed Cas9 specific expression in spermatogenic cells. We then produced transgenic mice carrying Hspa2 promoter driven Cas9 and constitutive expressed sgRNA targeting Scp3 gene. Male founders were infertile due to developmental arrest of spermatogenic cells while female founders could produce progeny normally. Consistently, male progeny from female founders were infertile and females could transmit the transgenes to the next generation. Our study establishes a CRISPR-Cas9-based one-step strategy to analyze the gene function in adult tissues by a temporal-spatial pattern. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  19. Functional Integrative Levels in the Human Interactome Recapitulate Organ Organization

    PubMed Central

    Prieto, Carlos; Benkahla, Alia; De Las Rivas, Javier; Brun, Christine

    2011-01-01

    Interactome networks represent sets of possible physical interactions between proteins. They lack spatio-temporal information by construction. However, the specialized functions of the differentiated cell types which are assembled into tissues or organs depend on the combinatorial arrangements of proteins and their physical interactions. Is tissue-specificity, therefore, encoded within the interactome? In order to address this question, we combined protein-protein interactions, expression data, functional annotations and interactome topology. We first identified a subnetwork formed exclusively of proteins whose interactions were observed in all tested tissues. These are mainly involved in housekeeping functions and are located at the topological center of the interactome. This ‘Largest Common Interactome Network’ represents a ‘functional interactome core’. Interestingly, two types of tissue-specific interactions are distinguished when considering function and network topology: tissue-specific interactions involved in regulatory and developmental functions are central whereas tissue-specific interactions involved in organ physiological functions are peripheral. Overall, the functional organization of the human interactome reflects several integrative levels of functions with housekeeping and regulatory tissue-specific functions at the center and physiological tissue-specific functions at the periphery. This gradient of functions recapitulates the organization of organs, from cells to organs. Given that several gradients have already been identified across interactomes, we propose that gradients may represent a general principle of protein-protein interaction network organization. PMID:21799769

  20. The clinical use of regenerative therapy in COPD

    PubMed Central

    Lipsi, Roberto; Rogliani, Paola; Calzetta, Luigino; Segreti, Andrea; Cazzola, Mario

    2014-01-01

    Regenerative or stem cell therapy is an emerging field of treatment based on stimulation of endogenous resident stem cells or administration of exogenous stem cells to treat diseases or injury and to replace malfunctioning or damaged tissues. Current evidence suggests that in the lung, these cells may participate in tissue homeostasis and regeneration after injury. Animal and human studies have demonstrated that tissue-specific stem cells and bone marrow-derived cells contribute to lung tissue regeneration and protection, and thus administration of exogenous stem/progenitor cells or humoral factors responsible for the activation of endogenous stem/progenitor cells may be a potent next-generation therapy for chronic obstructive pulmonary disease. The use of bone marrow-derived stem cells could allow repairing and regenerate the damaged tissue present in chronic obstructive pulmonary disease by means of their engraftment into the lung. Another approach could be the stimulation of resident stem cells by means of humoral factors or photobiostimulation. PMID:25548520

  1. Redirecting T-Cell Specificity to EGFR Using mRNA to Self-limit Expression of Chimeric Antigen Receptor.

    PubMed

    Caruso, Hillary G; Torikai, Hiroki; Zhang, Ling; Maiti, Sourindra; Dai, Jianliang; Do, Kim-Anh; Singh, Harjeet; Huls, Helen; Lee, Dean A; Champlin, Richard E; Heimberger, Amy B; Cooper, Laurence J N

    2016-06-01

    Potential for on-target, but off-tissue toxicity limits therapeutic application of genetically modified T cells constitutively expressing chimeric antigen receptors (CARs) from tumor-associated antigens expressed in normal tissue, such as epidermal growth factor receptor (EGFR). Curtailing expression of CAR through modification of T cells by in vitro-transcribed mRNA species is one strategy to mitigate such toxicity. We evaluated expression of an EGFR-specific CAR coded from introduced mRNA in human T cells numerically expanded ex vivo to clinically significant numbers through coculture with activating and propagating cells (AaPC) derived from K562 preloaded with anti-CD3 antibody. The density of AaPC could be adjusted to affect phenotype of T cells such that reduced ratio of AaPC resulted in higher proportion of CD8 and central memory T cells that were more conducive to electrotransfer of mRNA than T cells expanded with high ratios of AaPC. RNA-modified CAR T cells produced less cytokine, but demonstrated similar cytolytic capacity as DNA-modified CAR T cells in response to EGFR-expressing glioblastoma cells. Expression of CAR by mRNA transfer was transient and accelerated by stimulation with cytokine and antigen. Loss of CAR abrogated T-cell function in response to tumor and normal cells expressing EGFR. We describe a clinically applicable method to propagate and modify T cells to transiently express EGFR-specific CAR to target EGFR-expressing tumor cells that may be used to limit on-target, off-tissue toxicity to normal tissue.

  2. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds.

    PubMed

    Lee, Wonjae; Park, Jon

    2016-07-06

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  3. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    NASA Astrophysics Data System (ADS)

    Lee, Wonjae; Park, Jon

    2016-07-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  4. Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering

    PubMed Central

    Wang, Weiguang; Caetano, Guilherme; Ambler, William Stephen; Blaker, Jonny James; Frade, Marco Andrey; Mandal, Parthasarathi; Diver, Carl; Bártolo, Paulo

    2016-01-01

    Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements, i.e., certain standards in terms of mechanical properties, surface characteristics, porosity, degradability, and biocompatibility. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes, as well as surface treatment. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue engineering by modulating cell proliferation and differentiation. This paper investigates the use of an extrusion-based additive manufacturing system to produce poly(ε-caprolactone) (PCL)/pristine graphene scaffolds for bone tissue applications and the influence of chemical surface modification on their biological behaviour. Scaffolds with the same architecture but different concentrations of pristine graphene were evaluated from surface property and biological points of view. Results show that the addition of pristine graphene had a positive impact on cell viability and proliferation, and that surface modification leads to improved cell response. PMID:28774112

  5. Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering.

    PubMed

    Wang, Weiguang; Caetano, Guilherme; Ambler, William Stephen; Blaker, Jonny James; Frade, Marco Andrey; Mandal, Parthasarathi; Diver, Carl; Bártolo, Paulo

    2016-12-07

    Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements, i.e., certain standards in terms of mechanical properties, surface characteristics, porosity, degradability, and biocompatibility. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes, as well as surface treatment. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue engineering by modulating cell proliferation and differentiation. This paper investigates the use of an extrusion-based additive manufacturing system to produce poly( ε -caprolactone) (PCL)/pristine graphene scaffolds for bone tissue applications and the influence of chemical surface modification on their biological behaviour. Scaffolds with the same architecture but different concentrations of pristine graphene were evaluated from surface property and biological points of view. Results show that the addition of pristine graphene had a positive impact on cell viability and proliferation, and that surface modification leads to improved cell response.

  6. Fork head controls the timing and tissue selectivity of steroid-induced developmental cell death

    PubMed Central

    Cao, Chike; Liu, Yanling; Lehmann, Michael

    2007-01-01

    Cell death during Drosophila melanogaster metamorphosis is controlled by the steroid hormone 20-hydroxyecdysone (20E). Elements of the signaling pathway that triggers death are known, but it is not known why some tissues, and not others, die in response to a particular hormone pulse. We found that loss of the tissue-specific transcription factor Fork head (Fkh) is both required and sufficient to specify a death response to 20E in the larval salivary glands. Loss of fkh itself is a steroid-controlled event that is mediated by the 20E-induced BR-C gene, and that renders the key death regulators hid and reaper hormone responsive. These results implicate the D. melanogaster FOXA orthologue Fkh with a novel function as a competence factor for steroid-controlled cell death. They explain how a specific tissue is singled out for death, and why this tissue survives earlier hormone pulses. More generally, they suggest that cell identity factors like Fkh play a pivotal role in the normal control of developmental cell death. PMID:17339378

  7. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    PubMed Central

    Lee, Wonjae; Park, Jon

    2016-01-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues. PMID:27381562

  8. Circulating Organ-Specific MicroRNAs Serve as Biomarkers in Organ-Specific Diseases: Implications for Organ Allo- and Xeno-Transplantation

    PubMed Central

    Zhou, Ming; Hara, Hidetaka; Dai, Yifan; Mou, Lisha; Cooper, David K. C.; Wu, Changyou; Cai, Zhiming

    2016-01-01

    Different cell types possess different miRNA expression profiles, and cell/tissue/organ-specific miRNAs (or profiles) indicate different diseases. Circulating miRNA is either actively secreted by living cells or passively released during cell death. Circulating cell/tissue/organ-specific miRNA may serve as a non-invasive biomarker for allo- or xeno-transplantation to monitor organ survival and immune rejection. In this review, we summarize the proof of concept that circulating organ-specific miRNAs serve as non-invasive biomarkers for a wide spectrum of clinical organ-specific manifestations such as liver-related disease, heart-related disease, kidney-related disease, and lung-related disease. Furthermore, we summarize how circulating organ-specific miRNAs may have advantages over conventional methods for monitoring immune rejection in organ transplantation. Finally, we discuss the implications and challenges of applying miRNA to monitor organ survival and immune rejection in allo- or xeno-transplantation. PMID:27490531

  9. Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order.

    PubMed

    Divina, Petr; Vlcek, Cestmír; Strnad, Petr; Paces, Václav; Forejt, Jirí

    2005-03-05

    We generated the gene expression profile of the total testis from the adult C57BL/6J male mice using serial analysis of gene expression (SAGE). Two high-quality SAGE libraries containing a total of 76 854 tags were constructed. An extensive bioinformatic analysis and comparison of SAGE transcriptomes of the total testis, testicular somatic cells and other mouse tissues was performed and the theory of male-biased gene accumulation on the X chromosome was tested. We sorted out 829 genes predominantly expressed from the germinal part and 944 genes from the somatic part of the testis. The genes preferentially and specifically expressed in total testis and testicular somatic cells were identified by comparing the testis SAGE transcriptomes to the available transcriptomes of seven non-testis tissues. We uncovered chromosomal clusters of adjacent genes with preferential expression in total testis and testicular somatic cells by a genome-wide search and found that the clusters encompassed a significantly higher number of genes than expected by chance. We observed a significant 3.2-fold enrichment of the proportion of X-linked genes specific for testicular somatic cells, while the proportions of X-linked genes specific for total testis and for other tissues were comparable. In contrast to the tissue-specific genes, an under-representation of X-linked genes in the total testis transcriptome but not in the transcriptomes of testicular somatic cells and other tissues was detected. Our results provide new evidence in favor of the theory of male-biased genes accumulation on the X chromosome in testicular somatic cells and indicate the opposite action of the meiotic X-inactivation in testicular germ cells.

  10. Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order

    PubMed Central

    Divina, Petr; Vlček, Čestmír; Strnad, Petr; Pačes, Václav; Forejt, Jiří

    2005-01-01

    Background We generated the gene expression profile of the total testis from the adult C57BL/6J male mice using serial analysis of gene expression (SAGE). Two high-quality SAGE libraries containing a total of 76 854 tags were constructed. An extensive bioinformatic analysis and comparison of SAGE transcriptomes of the total testis, testicular somatic cells and other mouse tissues was performed and the theory of male-biased gene accumulation on the X chromosome was tested. Results We sorted out 829 genes predominantly expressed from the germinal part and 944 genes from the somatic part of the testis. The genes preferentially and specifically expressed in total testis and testicular somatic cells were identified by comparing the testis SAGE transcriptomes to the available transcriptomes of seven non-testis tissues. We uncovered chromosomal clusters of adjacent genes with preferential expression in total testis and testicular somatic cells by a genome-wide search and found that the clusters encompassed a significantly higher number of genes than expected by chance. We observed a significant 3.2-fold enrichment of the proportion of X-linked genes specific for testicular somatic cells, while the proportions of X-linked genes specific for total testis and for other tissues were comparable. In contrast to the tissue-specific genes, an under-representation of X-linked genes in the total testis transcriptome but not in the transcriptomes of testicular somatic cells and other tissues was detected. Conclusion Our results provide new evidence in favor of the theory of male-biased genes accumulation on the X chromosome in testicular somatic cells and indicate the opposite action of the meiotic X-inactivation in testicular germ cells. PMID:15748293

  11. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways.

    PubMed

    Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter

    2016-08-01

    The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell interactions in the airways. The method also holds the potential to be used during diagnostic procedures in humans if integrated into a bronchoscope.

  12. Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression

    PubMed Central

    Ferrarese, Roberto; Harsh, Griffith R.; Yadav, Ajay K.; Bug, Eva; Maticzka, Daniel; Reichardt, Wilfried; Dombrowski, Stephen M.; Miller, Tyler E.; Masilamani, Anie P.; Dai, Fangping; Kim, Hyunsoo; Hadler, Michael; Scholtens, Denise M.; Yu, Irene L.Y.; Beck, Jürgen; Srinivasasainagendra, Vinodh; Costa, Fabrizio; Baxan, Nicoleta; Pfeifer, Dietmar; von Elverfeldt, Dominik; Backofen, Rolf; Weyerbrock, Astrid; Duarte, Christine W.; He, Xiaolin; Prinz, Marco; Chandler, James P.; Vogel, Hannes; Chakravarti, Arnab; Rich, Jeremy N.; Carro, Maria S.; Bredel, Markus

    2014-01-01

    Tissue-specific alternative splicing is critical for the emergence of tissue identity during development, yet the role of this process in malignant transformation is undefined. Tissue-specific splicing involves evolutionarily conserved, alternative exons that represent only a minority of the total alternative exons identified. Many of these conserved exons have functional features that influence signaling pathways to profound biological effect. Here, we determined that lineage-specific splicing of a brain-enriched cassette exon in the membrane-binding tumor suppressor annexin A7 (ANXA7) diminishes endosomal targeting of the EGFR oncoprotein, consequently enhancing EGFR signaling during brain tumor progression. ANXA7 exon splicing was mediated by the ribonucleoprotein PTBP1, which is normally repressed during neuronal development. PTBP1 was highly expressed in glioblastomas due to loss of a brain-enriched microRNA (miR-124) and to PTBP1 amplification. The alternative ANXA7 splicing trait was present in precursor cells, suggesting that glioblastoma cells inherit the trait from a potential tumor-initiating ancestor and that these cells exploit this trait through accumulation of mutations that enhance EGFR signaling. Our data illustrate that lineage-specific splicing of a tissue-regulated alternative exon in a constituent of an oncogenic pathway eliminates tumor suppressor functions and promotes glioblastoma progression. This paradigm may offer a general model as to how tissue-specific regulatory mechanisms can reprogram normal developmental processes into oncogenic ones. PMID:24865424

  13. T cell receptor cross-reactivity between similar foreign and self peptides influences naïve cell population size and autoimmunity

    PubMed Central

    Nelson, Ryan W.; Beisang, Daniel; Tubo, Noah J.; Dileepan, Thamotharampillai; Wiesner, Darin L.; Nielsen, Kirsten; Wüthrich, Marcel; Klein, Bruce S.; Kotov, Dmitri I.; Spanier, Justin A.; Fife, Brian T.; Moon, James J.; Jenkins, Marc K.

    2014-01-01

    SUMMARY T cell receptor (TCR) cross-reactivity between major histocompatibility complex II (MHCII)-binding self and foreign peptides could influence the naïve CD4+ T cell repertoire and autoimmunity. We found that nonamer peptides that bind to the same MHCII molecule only need to share five amino acids to cross-react on the same TCR. This property was biologically relevant since systemic expression of a self peptide reduced the size of a naïve cell population specific for a related foreign peptide by deletion of cells with cross-reactive TCRs. Reciprocally, an incompletely deleted naïve T cell population specific for a tissue-restricted self peptide could be triggered by related microbial peptides to cause autoimmunity. Thus, TCR cross-reactivity between similar self and foreign peptides can reduce the size of certain foreign peptide-specific T cell populations, and may allow T cell populations specific for tissue-restricted self peptides to cause autoimmunity after infection. PMID:25601203

  14. Patterning vascular networks in vivo for tissue engineering applications.

    PubMed

    Chaturvedi, Ritika R; Stevens, Kelly R; Solorzano, Ricardo D; Schwartz, Robert E; Eyckmans, Jeroen; Baranski, Jan D; Stapleton, Sarah Chase; Bhatia, Sangeeta N; Chen, Christopher S

    2015-05-01

    The ultimate design of functionally therapeutic engineered tissues and organs will rely on our ability to engineer vasculature that can meet tissue-specific metabolic needs. We recently introduced an approach for patterning the formation of functional spatially organized vascular architectures within engineered tissues in vivo. Here, we now explore the design parameters of this approach and how they impact the vascularization of an engineered tissue construct after implantation. We used micropatterning techniques to organize endothelial cells (ECs) into geometrically defined "cords," which in turn acted as a template after implantation for the guided formation of patterned capillaries integrated with the host tissue. We demonstrated that the diameter of the cords before implantation impacts the location and density of the resultant capillary network. Inclusion of mural cells to the vascularization response appears primarily to impact the dynamics of vascularization. We established that clinically relevant endothelial sources such as induced pluripotent stem cell-derived ECs and human microvascular endothelial cells can drive vascularization within this system. Finally, we demonstrated the ability to control the juxtaposition of parenchyma with perfused vasculature by implanting cords containing a mixture of both a parenchymal cell type (hepatocytes) and ECs. These findings define important characteristics that will ultimately impact the design of vasculature structures that meet tissue-specific needs.

  15. Generating mouse models of degenerative diseases using Cre/lox-mediated in vivo mosaic cell ablation

    PubMed Central

    Fujioka, Masato; Tokano, Hisashi; Fujioka, Keiko Shiina; Okano, Hideyuki; Edge, Albert S.B.

    2011-01-01

    Most degenerative diseases begin with a gradual loss of specific cell types before reaching a threshold for symptomatic onset. However, the endogenous regenerative capacities of different tissues are difficult to study, because of the limitations of models for early stages of cell loss. Therefore, we generated a transgenic mouse line (Mos-iCsp3) in which a lox-mismatched Cre/lox cassette can be activated to produce a drug-regulated dimerizable caspase-3. Tissue-restricted Cre expression yielded stochastic Casp3 expression, randomly ablating a subset of specific cell types in a defined domain. The limited and mosaic cell loss led to distinct responses in 3 different tissues targeted using respective Cre mice: reversible, impaired glucose tolerance with normoglycemia in pancreatic β cells; wound healing and irreversible hair loss in the skin; and permanent moderate deafness due to the loss of auditory hair cells in the inner ear. These mice will be important for assessing the repair capacities of tissues and the potential effectiveness of new regenerative therapies. PMID:21576819

  16. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts

    PubMed Central

    Doi, Akiko; Park, In-Hyun; Wen, Bo; Murakami, Peter; Aryee, Martin J; Irizarry, Rafael; Herb, Brian; Ladd-Acosta, Christine; Rho, Junsung; Loewer, Sabine; Miller, Justine; Schlaeger, Thorsten; Daley, George Q; Feinberg, Andrew P

    2010-01-01

    Induced pluripotent stem (iPS) cells are derived by epigenetic reprogramming, but their DNA methylation patterns have not yet been analyzed on a genome-wide scale. Here, we find substantial hypermethylation and hypomethylation of cytosine-phosphate-guanine (CpG) island shores in nine human iPS cell lines as compared to their parental fibroblasts. The differentially methylated regions (DMRs) in the reprogrammed cells (denoted R-DMRs) were significantly enriched in tissue-specific (T-DMRs; 2.6-fold, P < 10−4) and cancer-specific DMRs (C-DMRs; 3.6-fold, P < 10−4). Notably, even though the iPS cells are derived from fibroblasts, their R-DMRs can distinguish between normal brain, liver and spleen cells and between colon cancer and normal colon cells. Thus, many DMRs are broadly involved in tissue differentiation, epigenetic reprogramming and cancer. We observed colocalization of hypomethylated R-DMRs with hypermethylated C-DMRs and bivalent chromatin marks, and colocalization of hypermethylated R-DMRs with hypomethylated C-DMRs and the absence of bivalent marks, suggesting two mechanisms for epigenetic reprogramming in iPS cells and cancer. PMID:19881528

  17. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    PubMed

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  18. Extracellular matrix-derived hydrogels for dental stem cell delivery.

    PubMed

    Viswanath, Aiswarya; Vanacker, Julie; Germain, Loïc; Leprince, Julian G; Diogenes, Anibal; Shakesheff, Kevin M; White, Lisa J; des Rieux, Anne

    2017-01-01

    Decellularized mammalian extracellular matrices (ECM) have been widely accepted as an ideal substrate for repair and remodelling of numerous tissues in clinical and pre-clinical studies. Recent studies have demonstrated the ability of ECM scaffolds derived from site-specific homologous tissues to direct cell differentiation. The present study investigated the suitability of hydrogels derived from different source tissues: bone, spinal cord and dentine, as suitable carriers to deliver human apical papilla derived mesenchymal stem cells (SCAP) for spinal cord regeneration. Bone, spinal cord, and dentine ECM hydrogels exhibited distinct structural, mechanical, and biological characteristics. All three hydrogels supported SCAP viability and proliferation. However, only spinal cord and bone derived hydrogels promoted the expression of neural lineage markers. The specific environment of ECM scaffolds significantly affected the differentiation of SCAP to a neural lineage, with stronger responses observed with spinal cord ECM hydrogels, suggesting that site-specific tissues are more likely to facilitate optimal stem cell behavior for constructive spinal cord regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 319-328, 2017. © 2016 Wiley Periodicals, Inc.

  19. Specific cellular accumulation of photofrin-II in EC cells promotes photodynamic treatment efficacy in esophageal cancer.

    PubMed

    Gao, Shegan; Liang, Shuo; Ding, Kaili; Qu, Zhifeng; Wang, Ying; Feng, Xiaoshan

    2016-06-01

    Photodynamic therapy (PDT), which uses a light-sensitive compound and laser irradiation, is a light-based oncological treatment modality. PDT offers an alternative, less invasive treatment for various malignant tumors, such as esophageal cancer (EC), through a photochemical reaction induced by photofrin-II or other oncotropic photosensitizers without severe complications. Previous studies has shown that cancerous tissues accumulated more photosensitizers than paired normal tissues, however, whether it is cellular or vascular mechanisms remains unknown. Herein, in vivo and in vitro examinations were performed to study the mechanisms by which photofrin-II effectively and specifically killed EC cells. In this study, EC tissue of patients treated with photofrin-II, human ESCC cellline SHEEC and parental normal cellline SHEE, primary culture cells of EC tissue were used. The concentration of photofrin-II in cells were evaluated by high-performance liquid chromatography (HPLC). The results exhibited that accumulation of photofrin-II in cancerous cells were significantly higher than that in non-cancerous cells (p<0.05) under certain dose and time period of incubation of photofrin-II. In summary, our study showed that, photofrin-II specifically accumulated in EC cells in vivo and in vitro after controlling for vascular factors, which provided strong evidence that maybe the cellular factor is the main mechanism by which photofrin-II-mediated PDT selectively caused EC cells death. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Body builder: from synthetic cells to engineered tissues.

    PubMed

    Hu, Shiqi; Ogle, Brenda M; Cheng, Ke

    2018-04-25

    It is estimated that 18 Americans die every day waiting for an organ donation. And even if a patient receives the organ that s/he needs, there is still >10% chance that the new organ will not work. The field of tissue engineering and regenerative medicine aims to actively use a patient's own cells, plus biomaterials and factors, to grow specific tissues for replacement or to restore normal functions of that organ, which would eliminate the need for donors and the risk of alloimmune rejection. In this review, we summarized recent advances in fabricating synthetic cells, with a specific focus on their application to cardiac regenerative medicine and tissue engineering. At the end, we pointed to challenges and future directions for the field. Copyright © 2018. Published by Elsevier Ltd.

  1. White Adipose Tissue Is a Reservoir for Memory T Cells and Promotes Protective Memory Responses to Infection.

    PubMed

    Han, Seong-Ji; Glatman Zaretsky, Arielle; Andrade-Oliveira, Vinicius; Collins, Nicholas; Dzutsev, Amiran; Shaik, Jahangheer; Morais da Fonseca, Denise; Harrison, Oliver J; Tamoutounour, Samira; Byrd, Allyson L; Smelkinson, Margery; Bouladoux, Nicolas; Bliska, James B; Brenchley, Jason M; Brodsky, Igor E; Belkaid, Yasmine

    2017-12-19

    White adipose tissue bridges body organs and plays a fundamental role in host metabolism. To what extent adipose tissue also contributes to immune surveillance and long-term protective defense remains largely unknown. Here, we have shown that at steady state, white adipose tissue contained abundant memory lymphocyte populations. After infection, white adipose tissue accumulated large numbers of pathogen-specific memory T cells, including tissue-resident cells. Memory T cells in white adipose tissue expressed a distinct metabolic profile, and white adipose tissue from previously infected mice was sufficient to protect uninfected mice from lethal pathogen challenge. Induction of recall responses within white adipose tissue was associated with the collapse of lipid metabolism in favor of antimicrobial responses. Our results suggest that white adipose tissue represents a memory T cell reservoir that provides potent and rapid effector memory responses, positioning this compartment as a potential major contributor to immunological memory. Published by Elsevier Inc.

  2. LFA-1 Mediates Cytotoxicity and Tissue Migration of Specific CD8+ T Cells after Heterologous Prime-Boost Vaccination against Trypanosoma cruzi Infection

    PubMed Central

    Ferreira, Camila Pontes; Cariste, Leonardo Moro; Santos Virgílio, Fernando Dos; Moraschi, Barbara Ferri; Monteiro, Caroline Brandão; Vieira Machado, Alexandre M.; Gazzinelli, Ricardo Tostes; Bruna-Romero, Oscar; Menin Ruiz, Pedro Luiz; Ribeiro, Daniel Araki; Lannes-Vieira, Joseli; Lopes, Marcela de Freitas; Rodrigues, Mauricio Martins; de Vasconcelos, José Ronnie Carvalho

    2017-01-01

    Integrins mediate the lymphocyte migration into an infected tissue, and these cells are essential for controlling the multiplication of many intracellular parasites such as Trypanosoma cruzi, the causative agent of Chagas disease. Here, we explore LFA-1 and VLA-4 roles in the migration of specific CD8+ T cells generated by heterologous prime-boost immunization during experimental infection with T. cruzi. To this end, vaccinated mice were treated with monoclonal anti-LFA-1 and/or anti-VLA-4 to block these molecules. After anti-LFA-1, but not anti-VLA-4 treatment, all vaccinated mice displayed increased blood and tissue parasitemia, and quickly succumbed to infection. In addition, there was an accumulation of specific CD8+ T cells in the spleen and lymph nodes and a decrease in the number of those cells, especially in the heart, suggesting that LFA-1 is important for the output of specific CD8+ T cells from secondary lymphoid organs into infected organs such as the heart. The treatment did not alter CD8+ T cell effector functions such as the production of pro-inflammatory cytokines and granzyme B, and maintained the proliferative capacity after treatment. However, the specific CD8+ T cell direct cytotoxicity was impaired after LFA-1 blockade. Also, these cells expressed higher levels of Fas/CD95 on the surface, suggesting that they are susceptible to programmed cell death by the extrinsic pathway. We conclude that LFA-1 plays an important role in the migration of specific CD8+ T cells and in the direct cytotoxicity of these cells. PMID:29081775

  3. Tissue constructs: platforms for basic research and drug discovery.

    PubMed

    Elson, Elliot L; Genin, Guy M

    2016-02-06

    The functions, form and mechanical properties of cells are inextricably linked to their extracellular environment. Cells from solid tissues change fundamentally when, isolated from this environment, they are cultured on rigid two-dimensional substrata. These changes limit the significance of mechanical measurements on cells in two-dimensional culture and motivate the development of constructs with cells embedded in three-dimensional matrices that mimic the natural tissue. While measurements of cell mechanics are difficult in natural tissues, they have proven effective in engineered tissue constructs, especially constructs that emphasize specific cell types and their functions, e.g. engineered heart tissues. Tissue constructs developed as models of disease also have been useful as platforms for drug discovery. Underlying the use of tissue constructs as platforms for basic research and drug discovery is integration of multiscale biomaterials measurement and computational modelling to dissect the distinguishable mechanical responses separately of cells and extracellular matrix from measurements on tissue constructs and to quantify the effects of drug treatment on these responses. These methods and their application are the main subjects of this review.

  4. Tissue constructs: platforms for basic research and drug discovery

    PubMed Central

    Elson, Elliot L.; Genin, Guy M.

    2016-01-01

    The functions, form and mechanical properties of cells are inextricably linked to their extracellular environment. Cells from solid tissues change fundamentally when, isolated from this environment, they are cultured on rigid two-dimensional substrata. These changes limit the significance of mechanical measurements on cells in two-dimensional culture and motivate the development of constructs with cells embedded in three-dimensional matrices that mimic the natural tissue. While measurements of cell mechanics are difficult in natural tissues, they have proven effective in engineered tissue constructs, especially constructs that emphasize specific cell types and their functions, e.g. engineered heart tissues. Tissue constructs developed as models of disease also have been useful as platforms for drug discovery. Underlying the use of tissue constructs as platforms for basic research and drug discovery is integration of multiscale biomaterials measurement and computational modelling to dissect the distinguishable mechanical responses separately of cells and extracellular matrix from measurements on tissue constructs and to quantify the effects of drug treatment on these responses. These methods and their application are the main subjects of this review. PMID:26855763

  5. Direct comparison of progenitor cells derived from adipose, muscle, and bone marrow from wild-type or craniosynostotic rabbits

    PubMed Central

    GM, Cooper; EL, Lensie; JJ, Cray; MR, Bykowski; GE, DeCesare; MA, Smalley; MP, Mooney; PG, Campbell; JE, Losee

    2010-01-01

    Background Reports have identified cells capable of osteogenic differentiation in bone marrow, muscle, and adipose tissues, but there are few direct comparisons of these different cell-types. Also, few have investigated the potential connection between a tissue-specific pathology and cells derived from seemingly unrelated tissues. Here, we compare cells isolated from wild-type rabbits or rabbits with nonsyndromic craniosynostosis, defined as the premature fusion of one or more of the cranial sutures. Methods Cells were derived from bone marrow, adipose, and muscle of 10 day-old wild-type rabbits (WT; n=17) or from age-matched rabbits with familial nonsyndromic craniosynostosis (CS; n=18). Cells were stimulated with bone morphogenetic protein 4 (BMP4) and alkaline phosphatase expression and cell proliferation were assessed. Results In WT rabbits, cells derived from muscle had more alkaline phosphatase activity than cells derived from either adipose or bone marrow. The cells derived from CS rabbit bone marrow and muscle were significantly more osteogenic than WT. Adipose-derived cells demonstrated no significant differences. While muscle-derived cells were most osteogenic in WT rabbits, bone marrow-derived cells were most osteogenic in CS rabbits. Conclusions Results suggest that cells from different tissues have different potentials for differentiation. Furthermore, cells derived from rabbits with craniosynostosis were different from wild-type derived cells. Interestingly, cells derived from the craniosynostotic rabbits were not uniformly more responsive compared with wild-type cells, suggesting that specific tissue-derived cells may react differently in individuals with craniosynostosis. PMID:20871482

  6. HPASubC: A suite of tools for user subclassification of human protein atlas tissue images.

    PubMed

    Cornish, Toby C; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K

    2015-01-01

    The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology.

  7. HPASubC: A suite of tools for user subclassification of human protein atlas tissue images

    PubMed Central

    Cornish, Toby C.; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K.

    2015-01-01

    Background: The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. Materials and Methods: To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. Results: We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. Conclusions: The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology. PMID:26167380

  8. Integrating physiological regulation with stem cell and tissue homeostasis

    PubMed Central

    Nakada, Daisuke; Levi, Boaz P.; Morrison, Sean J.

    2015-01-01

    Summary Stem cells are uniquely able to self-renew, to undergo multilineage differentiation, and to persist throughout life in a number of tissues. Stem cells are regulated by a combination of shared and tissue-specific mechanisms and are distinguished from restricted progenitors by differences in transcriptional and epigenetic regulation. Emerging evidence suggests that other aspects of cellular physiology, including mitosis, signal transduction, and metabolic regulation also differ between stem cells and their progeny. These differences may allow stem cells to be regulated independently of differentiated cells in response to circadian rhythms, changes in metabolism, diet, exercise, mating, aging, infection, and disease. This allows stem cells to sustain homeostasis or to remodel relevant tissues in response to physiological change. Stem cells are therefore not only regulated by short-range signals that maintain homeostasis within their tissue of origin, but also by long-range signals that integrate stem cell function with systemic physiology. PMID:21609826

  9. Engineering biosynthetic excitable tissues from unexcitable cells for electrophysiological and cell therapy studies.

    PubMed

    Kirkton, Robert D; Bursac, Nenad

    2011-01-01

    Patch-clamp recordings in single-cell expression systems have been traditionally used to study the function of ion channels. However, this experimental setting does not enable assessment of tissue-level function such as action potential (AP) conduction. Here we introduce a biosynthetic system that permits studies of both channel activity in single cells and electrical conduction in multicellular networks. We convert unexcitable somatic cells into an autonomous source of electrically excitable and conducting cells by stably expressing only three membrane channels. The specific roles that these expressed channels have on AP shape and conduction are revealed by different pharmacological and pacing protocols. Furthermore, we demonstrate that biosynthetic excitable cells and tissues can repair large conduction defects within primary 2- and 3-dimensional cardiac cell cultures. This approach enables novel studies of ion channel function in a reproducible tissue-level setting and may stimulate the development of new cell-based therapies for excitable tissue repair.

  10. Fabrication of 3D Reconstituted Organoid Arrays by DNA-programmed Assembly of Cells (DPAC)

    PubMed Central

    Todhunter, Michael E; Weber, Robert J; Farlow, Justin; Jee, Noel Y; Cerchiari, Alec E; Gartner, Zev J

    2016-01-01

    Tissues are the organizational units of function in metazoan organisms. Tissues comprise an assortment of cellular building blocks, soluble factors, and extracellular matrix (ECM) that are composed into specific three dimensional (3D) structures. The capacity to reconstitute tissues in vitro with the structural complexity observed in vivo is key to understanding processes such as morphogenesis, homeostasis, and disease. In this unit, we describe DNA-programmed Assembly of Cells (DPAC), a method to fabricate viable, functional arrays of organoid-like tissues within 3D ECM gels. In DPAC, dissociated cells are chemically functionalized with degradable oligonucleotide “velcro,” allowing rapid, specific, and reversible cell adhesion to a two-dimensional (2D) template patterned with complementary DNA. An iterative assembly process builds up organoids, layer-by-layer, from this initial 2D template and into the third dimension. Cleavage of the DNA releases the completed array of tissues that are captured and fully embedded in ECM gels for culture and observation. DPAC controls the size, shape, composition, and spatial heterogeneity of organoids, and permits positioning constituent cells with single-cell resolution even within cultures several centimeters long. PMID:27622567

  11. JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism.

    PubMed

    Hassan, Hala; Scheres, Ben; Blilou, Ikram

    2010-05-01

    In Arabidopsis, specification of the hair and non-hair epidermal cell types is position dependent, in that hair cells arise over clefts in the underlying cortical cell layer. Epidermal patterning is determined by a network of transcriptional regulators that respond to an as yet unknown cue from underlying tissues. Previously, we showed that JACKDAW (JKD), a zinc finger protein, localizes in the quiescent centre and the ground tissue, and regulates tissue boundaries and asymmetric cell division by delimiting SHORT-ROOT movement. Here, we provide evidence that JKD controls position-dependent signals that regulate epidermal-cell-type patterning. JKD is required for appropriately patterned expression of the epidermal cell fate regulators GLABRA2, CAPRICE and WEREWOLF. Genetic interaction studies indicate that JKD operates upstream of the epidermal patterning network in a SCRAMBLED (SCM)-dependent fashion after embryogenesis, but acts independent of SCM in embryogenesis. Tissue-specific induction experiments indicate non-cell-autonomous action of JKD from the underlying cortex cell layer to specify epidermal cell fate. Our findings are consistent with a model where JKD induces a signal in every cortex cell that is more abundant in the hair cell position owing to the larger surface contact of cells located over a cleft.

  12. AMPK modulates tissue and organismal aging in a cell-non-autonomous manner

    PubMed Central

    Ulgherait, Matthew; Rana, Anil; Rera, Michael; Graniel, Jacqueline; Walker, David W.

    2014-01-01

    AMPK exerts pro-longevity effects in diverse species; however, the tissue-specific mechanisms involved are poorly understood. Here, we show that up-regulation of AMPK in the adult Drosophila nervous system induces autophagy both in the brain and also in the intestinal epithelium. Induction of autophagy is linked to improved intestinal homeostasis during aging and extended lifespan. Neuronal up-regulation of the autophagy-specific protein kinase Atg1 is both necessary and sufficient to induce these inter-tissue effects during aging and to prolong lifespan. Furthermore, up-regulation of AMPK in the adult intestine induces autophagy both cell autonomously and non-autonomously in the brain, slows systemic aging and prolongs lifespan. We show that the organism-wide response to tissue-specific AMPK/Atg1 activation is linked to reduced insulin-like peptide levels in the brain and a systemic increase in 4E-BP expression. Together, these results reveal that localized activation of AMPK and/or Atg1 in key tissues can slow aging in a cell-non-autonomous manner. PMID:25199830

  13. A family of tissue-specific resistin-like molecules

    PubMed Central

    Steppan, Claire M.; Brown, Elizabeth J.; Wright, Christopher M.; Bhat, Savitha; Banerjee, Ronadip R.; Dai, Charlotte Y.; Enders, Gregory H.; Silberg, Debra G.; Wen, Xiaoming; Wu, Gary D.; Lazar, Mitchell A.

    2001-01-01

    We have identified a family of resistin-like molecules (RELMs) in rodents and humans. Resistin is a hormone produced by fat cells. RELMα is a secreted protein that has a restricted tissue distribution with highest levels in adipose tissue. Another family member, RELMβ, is a secreted protein expressed only in the gastrointestinal tract, particularly the colon, in both mouse and human. RELMβ gene expression is highest in proliferative epithelial cells and is markedly increased in tumors, suggesting a role in intestinal proliferation. Resistin and the RELMs share a cysteine composition and other signature features. Thus, the RELMs together with resistin comprise a class of tissue-specific signaling molecules. PMID:11209052

  14. A family of tissue-specific resistin-like molecules.

    PubMed

    Steppan, C M; Brown, E J; Wright, C M; Bhat, S; Banerjee, R R; Dai, C Y; Enders, G H; Silberg, D G; Wen, X; Wu, G D; Lazar, M A

    2001-01-16

    We have identified a family of resistin-like molecules (RELMs) in rodents and humans. Resistin is a hormone produced by fat cells. RELMalpha is a secreted protein that has a restricted tissue distribution with highest levels in adipose tissue. Another family member, RELMbeta, is a secreted protein expressed only in the gastrointestinal tract, particularly the colon, in both mouse and human. RELMbeta gene expression is highest in proliferative epithelial cells and is markedly increased in tumors, suggesting a role in intestinal proliferation. Resistin and the RELMs share a cysteine composition and other signature features. Thus, the RELMs together with resistin comprise a class of tissue-specific signaling molecules.

  15. Immunopathology of experimental Chagas' disease: binding of T cells to Trypanosoma cruzi-infected heart tissue.

    PubMed Central

    Mortatti, R C; Maia, L C; de Oliveira, A V; Munk, M E

    1990-01-01

    The immunopathology of Chagas' disease was studied in the experimental model of chronic infection in C57BL/10JT or mice. Sublethal infection with Trypanosoma cruzi, Y strain, induced specific antibodies and a delayed hypersensitivity response to parasite antigens. Mice developed chronic chagasic myocarditis but not skeletal muscle myositis. Binding of T cells to infected heart tissue was investigated during short-term cocultivation of lymphocytes with heart cryostat sections. T cells from infected mice and from normal controls bound equally to myocardium and liver sections from both infected and normal mice. A search in depth was attempted with cells heavily tagged with 99mTc. Labeled T cells from chagasic mice bound to both normal and infected myocardium slices. 99mTc-labeled T cells from controls gave the same binding values. Glass-adherent spleen cells behaved identically to T cells. Prior treatment of the tissue with serum from chronically infected mice did not increase the number of binding cells. Peritoneal macrophages tagged with 99mTc-sulfur colloid also bound to infected myocardium slices. The binding of macrophages was not changed by pretreatment of infected tissue with anti-T, cruzi antibodies. In short, this work did not detect any population of T cells or macrophages which could bind specifically to infected heart tissue to initiate an autoreactive process. Images PMID:2228230

  16. Local Inflammatory Cues Regulate Differentiation and Persistence of CD8+ Tissue-Resident Memory T Cells.

    PubMed

    Bergsbaken, Tessa; Bevan, Michael J; Fink, Pamela J

    2017-04-04

    Many pathogens initiate infection at mucosal surfaces, and tissue-resident memory T (Trm) cells play an important role in protective immunity, yet the tissue-specific signals that regulate Trm differentiation are poorly defined. During Yersinia infection, CD8 + T cell recruitment to areas of inflammation within the intestine is required for differentiation of the CD103 - CD69 + Trm subset. Intestinal proinflammatory microenvironments have elevated interferon (IFN)-β and interleukin-12 (IL-12), which regulated Trm markers, including CD103. Type I interferon-receptor- or IL-12-receptor-deficient T cells functioned similarly to wild-type (WT) cells during infection; however, the inability of T cells to respond to inflammation resulted in defective differentiation of CD103 - CD69 + Trm cells and reduced Trm persistence. Intestinal macrophages were the main producers of IFN-β and IL-12 during infection, and deletion of CCR2 + IL-12-producing cells reduced the size of the CD103 - Trm population. These data indicate that intestinal inflammation drives phenotypic diversity and abundance of Trm cells for optimal tissue-specific immunity. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Osteopontin is a Novel Marker of Pancreatic Ductal Tissues and of Undifferentiated Pancreatic Precursors in Mice

    PubMed Central

    Kilic, Gamze; Wang, Junfeng; Sosa-Pineda, Beatriz

    2008-01-01

    Matricellular proteins mediate both tissue morphogenesis and tissue homeostasis in important ways because they modulate cell-matrix and cell-cell interactions. In this study, we found that the matricellular protein osteopontin (Opn) is a novel marker of undifferentiated pancreatic precursors and pancreatic ductal tissues in mice. Our analysis also underscored a specific, dynamic profile of Opn expression in embryonic pancreatic tissues that suggests the participation of this protein’s function in processes involving cell migration, cell-cell interactions, or both. Surprisingly, our analysis of Opn-deficient pancreata did not reveal obvious alterations in the morphology or differentiation of these tissues. Therefore, in embryonic pancreatic tissues, it is possible that other proteins act redundantly to Opn or that this protein’s function is dispensable for pancreas development. Finally, the maintenance of Opn expression in pancreatic tissues of adults argues for a possible function of this protein in injury and pathologic responses. PMID:16518820

  18. Procedure for the Isolation of Endothelial Cells from Human Cerebral Arteriovenous Malformation (cAVM) Tissues.

    PubMed

    Hao, Qiang; Chen, Xiao-Lin; Ma, Li; Wang, Tong-Tong; Hu, Yue; Zhao, Yuan-Li

    2018-01-01

    In this study, we successfully established a stable method for the isolation of endothelial cells (ECs) from human cerebral arteriovenous malformation (cAVM) tissues. Despite human cAVM tissues having a minor population of ECs, they play an important role in the manifestation and development of cAVM as well as in hemorrhagic stroke and thrombogenesis. To characterize and understand the biology of ECs in human cAVM (cAVM-ECs), methods for the isolation and purification of these cells are necessary. We have developed this method to reliably obtain pure populations of ECs from cAVMs. To obtain pure cell populations, cAVM tissues were mechanically and enzymatically digested and the resulting single cAVM-ECs suspensions were then labeled with antibodies of specific cell antigens and selected by flow cytometry. Purified ECs were detected using specific makers of ECs by immunostaining and used to study different cellular mechanisms. Compared to the different methods of isolating ECs from tissues, we could isolate ECs from cAVMs confidently, and the numbers of cAVM-ECs harvested were almost similar to the amounts present in vessel components. In addition to optimizing the protocol for isolation of ECs from human cAVM tissues, the protocol could also be applied to isolate ECs from other human neurovascular-diseased tissues. Depending on the tissues, the whole procedure could be completed in about 20 days.

  19. AUTOSENSITIZATION REACTION IN VITRO

    PubMed Central

    Koprowski, Hilary; Fernandes, Mario V.

    1962-01-01

    Lymph node cells were obtained from an inbred strain of Lewis rats injected with guinea pig cord tissue in Freund's adjuvant. These cells, when added to tissue culture monolayers of puppy brain, aggregated on or around the glial elements. This reaction, called contactual agglutination, was followed by the specific destruction of glial cells, leaving cultures consisting only of fibroblasts. No such reaction was noted when lymph node cells obtained either from normal rats or those injected with adjuvant alone were used. Absorption of serum obtained from rats injected with guinea pig cord tissue by non-sensitized lymph node cells made them reactive in brain tissue culture. The contactual agglutination test seems to provide an opportunity for investigation of sensitization reaction in tissue culture systems. PMID:14034719

  20. Murine cytomegalovirus: detection of latent infection by nucleic acid hybridization technique.

    PubMed Central

    Cheung, K S; Huang, E S; Lang, D J

    1980-01-01

    The technique of nucleic acid hybridization was used to detect the presence of murine cytomegalovirus (MCMV)-specific deoxyribonucleic acid (DNA) in cell cultures and salivary gland tissues. The presence of approximately 4.5 and 0.2 genome equivalents per cell of MCMV-specific DNA was identified in cultures of salivary (ISG2) and prostate gland (IP) cells, respectively. These cells, derived from animals with experimentally induced latent infections, were negative for virus-specific antigens by immunofluorescence and on electron microscopy revealed no visible evidence of the presence of herpesviruses. A cell line derived from the salivary gland of an uninoculated animal (NSG2) was also found to possess MCMV-specific DNA (0.2 genome equivalents per cell). For this reason, salivary gland tissues from uninoculated animals supplied as "specific pathogen-free" mice by three commercial sources were tested upon arrival for the presence of MCMC-specific DNA. MCMV-specific DNA was detectable in pooled salivary gland extracts from uninoculated animals derived from two commercial sources. All of these animals were seronegative and virus negative by conventional infectivity assays. PMID:6247281

  1. Colonization and effector functions of innate lymphoid cells in mucosal tissues.

    PubMed

    Kim, Myunghoo; Kim, Chang H

    2016-10-01

    Innate lymphoid cells (ILCs) protect mucosal barrier tissues to fight infection and maintain tissue integrity. ILCs and their progenitors are developmentally programmed to migrate, differentiate and populate various mucosal tissues and associated lymphoid tissues. Functionally mature ILC subsets respond to diverse pathogens such as bacteria, viruses, fungi and parasites in subset-specific manners. In this review, we will discuss how ILCs populate mucosal tissues and regulate immune responses to distinct pathogens to protect the host and maintain tissue integrity. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration.

    PubMed

    Jones, Brendan A; Pei, Ming

    2012-08-01

    Articular cartilage is difficult to heal once injury or disease occurs. Autologous chondrocyte transplantation is a biological treatment with good prognosis, but donor site morbidity and limited cell source are disadvantages. Currently, mesenchymal stem cells (MSCs) are a promising approach for cartilage regeneration. Despite there being various sources, the best candidate for cartilage regeneration is the one with the greatest chondrogenic potential and the least hypertrophic differentiation. These properties are able to insure that the regenerated tissue is hyaline cartilage of high quality. This review article will summarize relevant literature to justify synovium-derived stem cells (SDSCs) as a tissue-specific stem cell for chondrogenesis by comparing synovium and cartilage with respect to anatomical location and functional structure, comparing the growth characterization and chondrogenic capacity of SDSCs and MSCs, evaluating the application of SDSCs in regenerative medicine and diseases, and discussing potential future directions.

  3. Regulatory mechanisms for specification and patterning of plant vascular tissues.

    PubMed

    Caño-Delgado, Ana; Lee, Ji-Young; Demura, Taku

    2010-01-01

    Plant vascular tissues, the conduits of water, nutrients, and small molecules, play important roles in plant growth and development. Vascular tissues have allowed plants to successfully adapt to various environmental conditions since they evolved 450 Mya. The majority of plant biomass, an important source of renewable energy, comes from the xylem of the vascular tissues. Efforts have been made to identify the underlying mechanisms of cell specification and patterning of plant vascular tissues and their proliferation. The formation of the plant vascular system is a complex process that integrates signaling and gene regulation at transcriptional and posttranscriptional levels. Recently, a wealth of molecular genetic studies and the advent of cell biology and genomic tools have enabled important progress toward understanding its underlying mechanisms. Here, we provide a comprehensive review of the cell and developmental processes of plant vascular tissue and resources recently available for studying them that will enable the discovery of new ways to develop sustainable energy using plant biomass.

  4. Quantitative assessment of protein activity in orphan tissues and single cells using the metaVIPER algorithm. | Office of Cancer Genomics

    Cancer.gov

    We and others have shown that transition and maintenance of biological states is controlled by master regulator proteins, which can be inferred by interrogating tissue-specific regulatory models (interactomes) with transcriptional signatures, using the VIPER algorithm. Yet, some tissues may lack molecular profiles necessary for interactome inference (orphan tissues), or, as for single cells isolated from heterogeneous samples, their tissue context may be undetermined.

  5. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy

    PubMed Central

    Zhou, Jiehua; Rossi, John J.

    2014-01-01

    One hundred years ago, Dr. Paul Ehrlich popularized the “magic bullet” concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, “targeted therapy” that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges. PMID:24936916

  6. In Vitro Generation of Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature from Murine Induced Pluripotent Stem Cells.

    PubMed

    Steens, Jennifer; Zuk, Melanie; Benchellal, Mohamed; Bornemann, Lea; Teichweyde, Nadine; Hess, Julia; Unger, Kristian; Görgens, André; Klump, Hannes; Klein, Diana

    2017-04-11

    The vascular wall (VW) serves as a niche for mesenchymal stem cells (MSCs). In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs), based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka factors, we reprogrammed tail dermal fibroblasts from transgenic mice containing the GFP gene integrated into the Nestin-locus (NEST-iPSCs) to facilitate lineage tracing after subsequent MSC differentiation. A lentiviral vector expressing a small set of recently identified human VW-MSC-specific HOX genes then induced MSC differentiation. This direct programming approach successfully mediated the generation of VW-typical MSCs with classical MSC characteristics, both in vitro and in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research

    PubMed Central

    Kockel, Lutz; Huq, Lutfi M.; Ayyar, Anika; Herold, Emma; MacAlpine, Elle; Logan, Madeline; Savvides, Christina; Kim, Grace E. S.; Chen, Jiapei; Clark, Theresa; Duong, Trang; Fazel-Rezai, Vahid; Havey, Deanna; Han, Samuel; Jagadeesan, Ravi; Kim, Eun Soo Jackie; Lee, Diane; Lombardo, Kaelina; Piyale, Ida; Shi, Hansen; Stahr, Lydia; Tung, Dana; Tayvah, Uriel; Wang, Flora; Wang, Ja-Hon; Xiao, Sarah; Topper, Sydni M.; Park, Sangbin; Rotondo, Cheryl; Rankin, Anne E.; Chisholm, Townley W.; Kim, Seung K.

    2016-01-01

    Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila. However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals. PMID:27527793

  8. A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research.

    PubMed

    Kockel, Lutz; Huq, Lutfi M; Ayyar, Anika; Herold, Emma; MacAlpine, Elle; Logan, Madeline; Savvides, Christina; Kim, Grace E S; Chen, Jiapei; Clark, Theresa; Duong, Trang; Fazel-Rezai, Vahid; Havey, Deanna; Han, Samuel; Jagadeesan, Ravi; Kim, Eun Soo Jackie; Lee, Diane; Lombardo, Kaelina; Piyale, Ida; Shi, Hansen; Stahr, Lydia; Tung, Dana; Tayvah, Uriel; Wang, Flora; Wang, Ja-Hon; Xiao, Sarah; Topper, Sydni M; Park, Sangbin; Rotondo, Cheryl; Rankin, Anne E; Chisholm, Townley W; Kim, Seung K

    2016-10-13

    Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals. Copyright © 2016 Kockel et al.

  9. Matrix-directed differentiation of human adipose-derived mesenchymal stem cells to dermal-like fibroblasts that produce extracellular matrix.

    PubMed

    Sivan, Unnikrishnan; Jayakumar, K; Krishnan, Lissy K

    2016-10-01

    Commercially available skin substitutes lack essential non-immune cells for adequate tissue regeneration of non-healing wounds. A tissue-engineered, patient-specific, dermal substitute could be an attractive option for regenerating chronic wounds, for which adipose-derived mesenchymal stem cells (ADMSCs) could become an autologous source. However, ADMSCs are multipotent in nature and may differentiate into adipocytes, osteocytes and chondrocytes in vitro, and may develop into undesirable tissues upon transplantation. Therefore, ADMSCs committed to the fibroblast lineage could be a better option for in vitro or in vivo skin tissue engineering. The objective of this study was to standardize in vitro culture conditions for ADMSCs differentiation into dermal-like fibroblasts which can synthesize extracellular matrix (ECM) proteins. Biomimetic matrix composite, deposited on tissue culture polystyrene (TCPS), and differentiation medium (DM), supplemented with fibroblast-conditioned medium and growth factors, were used as a fibroblast-specific niche (FSN) for cell culture. For controls, ADMSCs were cultured on bare TCPS with either DM or basal medium (BM). Culture of ADMSCs on FSN upregulated the expression of differentiation markers such as fibroblast-specific protein-1 (FSP-1) and a panel of ECM molecules specific to the dermis, such as fibrillin-1, collagen I, collagen IV and elastin. Immunostaining showed the deposition of dermal-specific ECM, which was significantly higher in FSN compared to control. Fibroblasts derived from ADMSCs can synthesize elastin, which is an added advantage for successful skin tissue engineering as compared to fibroblasts from skin biopsy. To obtain rapid differentiation of ADMSCs to dermal-like fibroblasts for regenerative medicine, a matrix-directed differentiation strategy may be employed. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Unique glycosignature for intervertebral disc and articular cartilage cells and tissues in immaturity and maturity.

    PubMed

    Collin, E C; Kilcoyne, M; White, S J; Grad, S; Alini, M; Joshi, L; Pandit, A S

    2016-03-11

    In this study, on/off markers for intervertebral disc (IVD) and articular cartilage (AC) cells (chondrocytes) and distinct glycoprofiles of cell and tissue-types were identified from immaturity to maturity. Three and eleven month-old ovine IVD and AC tissues were histochemically profiled with a panel of lectins and antibodies. Relationships between tissue and cell types were analysed by hierarchical clustering. Chondroitin sulfate (CS) composition of annulus fibrosus (AF), nucleus pulposus (NP) and AC tissues was determined by HPLC analysis. Clear on/off cell type markers were identified, which enabled the discrimination of chondrocytes, AF and NP cells. AF and NP cells were distinguishable using MAA, SNA-I, SBA and WFA lectins, which bound to both NP cells and chondrocytes but not AF cells. Chondrocytes were distinguished from NP and AF cells with a specific binding of LTA and PNA lectins to chondrocytes. Each tissue showed a unique CS composition with a distinct switch in sulfation pattern in AF and NP tissues upon disc maturity while cartilage maintained the same sulfation pattern over time. In conclusion, distinct glycoprofiles for cell and tissue-types across age groups were identified in addition to altered CS composition and sulfation patterns for tissue types upon maturity.

  11. Marking cell lineages in living tissues.

    PubMed

    Kurup, Smita; Runions, John; Köhler, Uwe; Laplaze, Laurent; Hodge, Sarah; Haseloff, Jim

    2005-05-01

    We have generated a novel genetic system to visualize cell lineages in living tissues at high resolution. Heat shock was used to trigger the excision of a specific transposon and activation of a fluorescent marker gene. A histone-YFP marker was used to allow identification of cell lineages and easy counting of cells. Constitutive expression of a green fluorescent membrane protein was used to provide a precise outline of all surrounding cells. Marked lineages can be induced from specific cells within the organism by targeted laser irradiation, and the fate of the marked cells can be followed non-invasively. We have used the system to map cell lineages originating from the initials of primary and lateral roots in Arabidopsis. The lineage marking technique enabled us to measure the differential contribution of primary root pericycle cell files to developing lateral root primordia. The majority of cells in an emerging lateral root primordium derive from the central file of pericycle founder cells while off-centre founder cells contribute only a minor proliferation of tissue near the base of the root. The system shows great promise for the detailed study of cell division during morphogenesis.

  12. Tissue-specific NETs alter genome organization and regulation even in a heterologous system.

    PubMed

    de Las Heras, Jose I; Zuleger, Nikolaj; Batrakou, Dzmitry G; Czapiewski, Rafal; Kerr, Alastair R W; Schirmer, Eric C

    2017-01-02

    Different cell types exhibit distinct patterns of 3D genome organization that correlate with changes in gene expression in tissue and differentiation systems. Several tissue-specific nuclear envelope transmembrane proteins (NETs) have been found to influence the spatial positioning of genes and chromosomes that normally occurs during tissue differentiation. Here we study 3 such NETs: NET29, NET39, and NET47, which are expressed preferentially in fat, muscle and liver, respectively. We found that even when exogenously expressed in a heterologous system they can specify particular genome organization patterns and alter gene expression. Each NET affected largely different subsets of genes. Notably, the liver-specific NET47 upregulated many genes in HT1080 fibroblast cells that are normally upregulated in hepatogenesis, showing that tissue-specific NETs can favor expression patterns associated with the tissue where the NET is normally expressed. Similarly, global profiling of peripheral chromatin after exogenous expression of these NETs using lamin B1 DamID revealed that each NET affected the nuclear positioning of distinct sets of genomic regions with a significant tissue-specific component. Thus NET influences on genome organization can contribute to gene expression changes associated with differentiation even in the absence of other factors and overt cellular differentiation changes.

  13. Epigenome overlap measure (EPOM) for comparing tissue/cell types based on chromatin states.

    PubMed

    Li, Wei Vivian; Razaee, Zahra S; Li, Jingyi Jessica

    2016-01-11

    The dynamics of epigenomic marks in their relevant chromatin states regulate distinct gene expression patterns, biological functions and phenotypic variations in biological processes. The availability of high-throughput epigenomic data generated by next-generation sequencing technologies allows a data-driven approach to evaluate the similarities and differences of diverse tissue and cell types in terms of epigenomic features. While ChromImpute has allowed for the imputation of large-scale epigenomic information to yield more robust data to capture meaningful relationships between biological samples, widely used methods such as hierarchical clustering and correlation analysis cannot adequately utilize epigenomic data to accurately reveal the distinction and grouping of different tissue and cell types. We utilize a three-step testing procedure-ANOVA, t test and overlap test to identify tissue/cell-type- associated enhancers and promoters and to calculate a newly defined Epigenomic Overlap Measure (EPOM). EPOM results in a clear correspondence map of biological samples from different tissue and cell types through comparison of epigenomic marks evaluated in their relevant chromatin states. Correspondence maps by EPOM show strong capability in distinguishing and grouping different tissue and cell types and reveal biologically meaningful similarities between Heart and Muscle, Blood & T-cell and HSC & B-cell, Brain and Neurosphere, etc. The gene ontology enrichment analysis both supports and explains the discoveries made by EPOM and suggests that the associated enhancers and promoters demonstrate distinguishable functions across tissue and cell types. Moreover, the tissue/cell-type-associated enhancers and promoters show enrichment in the disease-related SNPs that are also associated with the corresponding tissue or cell types. This agreement suggests the potential of identifying causal genetic variants relevant to cell-type-specific diseases from our identified associated enhancers and promoters. The proposed EPOM measure demonstrates superior capability in grouping and finding a clear correspondence map of biological samples from different tissue and cell types. The identified associated enhancers and promoters provide a comprehensive catalog to study distinct biological processes and disease variants in different tissue and cell types. Our results also find that the associated promoters exhibit more cell-type-specific functions than the associated enhancers do, suggesting that the non-associated promoters have more housekeeping functions than the non-associated enhancers.

  14. Highly Tissue Substructure-Specific Effects of Human Papilloma Virus in Mucosa of HIV-Infected Patients Revealed by Laser-Dissection Microscopy-Assisted Gene Expression Profiling

    PubMed Central

    Baumgarth, Nicole; Szubin, Richard; Dolganov, Greg M.; Watnik, Mitchell R.; Greenspan, Deborah; Da Costa, Maria; Palefsky, Joel M.; Jordan, Richard; Roederer, Mario; Greenspan, John S.

    2004-01-01

    Human papilloma virus (HPV) causes focal infections of epithelial layers in skin and mucosa. HIV-infected patients on highly active antiretroviral therapy (HAART) appear to be at increased risk of developing HPV-induced oral warts. To identify the mechanisms that allow long-term infection of oral epithelial cells in these patients, we used a combination of laser-dissection microscopy (LDM) and highly sensitive and quantitative, non-biased, two-step multiplex real-time RT-PCR to study pathogen-induced alterations of specific tissue subcompartments. Expression of 166 genes was compared in three distinct epithelial and subepithelial compartments isolated from biopsies of normal mucosa from HIV-infected and non-infected patients and of HPV32-induced oral warts from HIV-infected patients. In contrast to the underlying HIV infection and/or HAART, which did not significantly elaborate tissue substructure-specific effects, changes in oral warts were strongly tissue substructure-specific. HPV 32 seems to establish infection by selectively enhancing epithelial cell growth and differentiation in the stratum spinosum and to evade the immune system by actively suppressing inflammatory responses in adjacent underlying tissues. With this highly sensitive and quantitative method tissue-specific expression of hundreds of genes can be studied simultaneously in a few cells. Because of its large dynamic measurement range it could also become a method of choice to confirm and better quantify results obtained by microarray analysis. PMID:15331396

  15. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    PubMed

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  16. Definition of Drosophila hemocyte subsets by cell-type specific antigens.

    PubMed

    Kurucz, Eva; Váczi, B; Márkus, R; Laurinyecz, Barbara; Vilmos, P; Zsámboki, J; Csorba, Kinga; Gateff, Elisabeth; Hultmark, D; Andó, I

    2007-01-01

    We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes.

  17. From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues

    PubMed Central

    Borovjagin, Anton V.; Ogle, Brenda; Berry, Joel; Zhang, Jianyi

    2016-01-01

    Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional two-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and pre-clinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents. PMID:28057791

  18. The double-stranded RNA binding protein RDE-4 can act cell autonomously during feeding RNAi in C. elegans.

    PubMed

    Raman, Pravrutha; Zaghab, Soriayah M; Traver, Edward C; Jose, Antony M

    2017-08-21

    Long double-stranded RNA (dsRNA) can silence genes of matching sequence upon ingestion in many invertebrates and is therefore being developed as a pesticide. Such feeding RNA interference (RNAi) is best understood in the worm Caenorhabditis elegans, where the dsRNA-binding protein RDE-4 initiates silencing by recruiting an endonuclease to process long dsRNA into short dsRNA. These short dsRNAs are thought to move between cells because muscle-specific rescue of rde-4 using repetitive transgenes enables silencing in other tissues. Here, we extend this observation using additional promoters, report an inhibitory effect of repetitive transgenes, and discover conditions for cell-autonomous silencing in animals with tissue-specific rescue of rde-4. While expression of rde-4(+) in intestine, hypodermis, or neurons using a repetitive transgene can enable silencing also in unrescued tissues, silencing can be inhibited wihin tissues that express a repetitive transgene. Single-copy transgenes that express rde-4(+) in body-wall muscles or hypodermis, however, enable silencing selectively in the rescued tissue but not in other tissues. These results suggest that silencing by the movement of short dsRNA between cells is not an obligatory feature of feeding RNAi in C. elegans. We speculate that similar control of dsRNA movement could modulate tissue-specific silencing by feeding RNAi in other invertebrates. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Enrichment of herpes simplex virus type 2 (HSV-2) reactive mucosal T cells in the human female genital tract.

    PubMed

    Posavad, C M; Zhao, L; Dong, L; Jin, L; Stevens, C E; Magaret, A S; Johnston, C; Wald, A; Zhu, J; Corey, L; Koelle, D M

    2017-09-01

    Local mucosal cellular immunity is critical in providing protection from HSV-2. To characterize and quantify HSV-2-reactive mucosal T cells, lymphocytes were isolated from endocervical cytobrush and biopsy specimens from 17 HSV-2-infected women and examined ex vivo for the expression of markers associated with maturation and tissue residency and for functional T-cell responses to HSV-2. Compared with their circulating counterparts, cervix-derived CD4+ and CD8+ T cells were predominantly effector memory T cells (CCR7-/CD45RA-) and the majority expressed CD69, a marker of tissue residency. Co-expression of CD103, another marker of tissue residency, was highest on cervix-derived CD8+ T cells. Functional HSV-2 reactive CD4+ and CD8+ T-cell responses were detected in cervical samples and a median of 17% co-expressed CD103. HSV-2-reactive CD4+ T cells co-expressed IL-2 and were significantly enriched in the cervix compared with blood. This first direct ex vivo documentation of local enrichment of HSV-2-reactive T cells in the human female genital mucosa is consistent with the presence of antigen-specific tissue-resident memory T cells. Ex vivo analysis of these T cells may uncover tissue-specific mechanisms of local control of HSV-2 to assist the development of vaccine strategies that target protective T cells to sites of HSV-2 infection.

  20. Inducible knock-down of GNOM during root formation reveals tissue-specific response to auxin transport and its modulation of local auxin biosynthesis

    PubMed Central

    Sun, Meng-Xiang

    2014-01-01

    In plants, active transport of auxin plays an essential role in root development. Localization of the PIN1 auxin transporters to the basal membrane of cells directs auxin flow and depends on the trafficking mediator GNOM. GNOM-dependent auxin transport is vital for root development and thus offers a useful tool for the investigation of a possible tissue-specific response to dynamic auxin transport. To avoid pleiotropic effects, DEX-inducible expression of GNOM antisense RNA was used to disrupt GNOM expression transiently or persistently during embryonic root development. It was found that the elongation zone and the pericycle layer are the most sensitive to GNOM-dependent auxin transport variations, which is shown by the phenotypes in cell elongation and the initiation of lateral root primordia, respectively. This suggests that auxin dynamics is critical to cell differentiation and cell fate transition, but not to cell division. The results also reveal that GNOM-dependent auxin transport could affect local auxin biosynthesis. This suggests that local auxin biosynthesis may also contribute to the establishment of GNOM-dependent auxin gradients in specific tissues, and that auxin transport and local auxin biosynthesis may function together in the regulatory network for initiation and development of lateral root primordia. Thus, the data reveal a tissue-specific response to auxin transport and modulation of local auxin biosynthesis by auxin transport. PMID:24453227

  1. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature

    PubMed Central

    Naik, Shruti; Bouladoux, Nicolas; Linehan, Jonathan L.; Han, Seong-Ji; Harrison, Oliver J.; Wilhelm, Christoph; Conlan, Sean; Himmelfarb, Sarah; Byrd, Allyson L.; Deming, Clayton; Quinones, Mariam; Brenchley, Jason M.; Kong, Heidi H.; Tussiwand, Roxanne; Murphy, Kenneth M.; Merad, Miriam; Segre, Julia A; Belkaid, Yasmine

    2015-01-01

    The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity1–4. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges5–7. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A+ CD8+ T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies. PMID:25539086

  2. Determining the origin of cells in tissue engineered skin substitutes: a pilot study employing in situ hybridization.

    PubMed

    Weber, Andreas Daniel; Pontiggia, Luca; Biedermann, Thomas; Schiestl, Clemens; Meuli, Martin; Reichmann, Ernst

    2011-03-01

    Definitive and high-quality coverage of large and, in particular, massive skin defects remains a significant challenge in burn as well as plastic and reconstructive surgery because of donor site shortage. A novel and promising approach to overcome these problems is tissue engineering of skin. Clearly, before eventual clinical application, engineered skin substitutes of human origin must be grafted and then evaluated in animal models. For the various tests to be conducted it is indispensable to be able to identify human cells as such in culture and also to distinguish between graft and recipient tissue after transplantation. Here we describe a tool to identify human cells in vitro and in vivo. In situ hybridization allows for the detection and localization of specific DNA or RNA sequences in morphologically preserved cells in culture or tissue sections, respectively. We used digoxigenin-labeled DNA probes corresponding to human-specific Alu repeats in order to identify human keratinocytes grown in culture together with rat cells, and also to label split and full thickness skin grafts of human origin after transplantation on immuno-incompetent rats. Digoxigenin-labeled DNA probing resulted in an intensive nuclear staining of human cells, both in culture and after transplantation onto recipient animals, while recipient animal cells (rat cells) did not stain. In situ hybridization using primate-specific Alu probes reliably allows distinguishing between cells of human and non-human origin both in culture as well as in histological sections. This method is an essential tool for those preclinical experiments (performed on non-primate animals) that must be conducted before novel tissue engineered skin substitutes might be introduced into clinical practice.

  3. Stem cells for regenerative medicine: advances in the engineering of tissues and organs

    NASA Astrophysics Data System (ADS)

    Ringe, Jochen; Kaps, Christian; Burmester, Gerd-Rüdiger; Sittinger, Michael

    2002-07-01

    The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as mesenchymal stem or mesenchymal progenitor cells (MSC). These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, MSC have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma, which suggest these cells as an attractive cell source for tissue engineering approaches. The interest in modern biological technologies such as tissue engineering has dramatically increased since it is feasible to isolate living, healthy cells from the body, expand them under cell culture conditions, combine them with biocompatible carrier materials and retransplant them into patients. Therefore, tissue engineering gives the opportunity to generate living substitutes for tissues and organs, which may overcome the drawbacks of classical tissue reconstruction: lacking quality and quantity of autologous grafts, immunogenicity of allogenic grafts and loosening of alloplastic implants. Due to the prerequisite for tissue engineering to ensure a sufficient number of tissue specific cells without donor site morbidity, much attention has been drawn to multipotential progenitor cells such as embryonic stem cells, periosteal cells and mesenchymal stem cells. In this report we review the state of the art in tissue engineering with mesenchymal stem and mesenchymal progenitor cells with emphasis on bone and cartilage reconstruction. Furthermore, several issues of importance, especially with regard to the clinical application of mesenchymal stem cells, are discussed.

  4. Ahr function in lymphocytes: emerging concepts

    PubMed Central

    Zhou, Liang

    2015-01-01

    The aryl hydrocarbon receptor (Ahr) is an important regulator of the development and function of both innate and adaptive immune cells through roles associated with Ahr's ability to respond to cellular and dietary ligands. Recent findings have revealed tissue and context-specific functions for Ahr in both homeostasis and in during an immune response. I review these findings here, and integrate them into the current understanding of the mechanisms that regulate Ahr transcription and function. I propose a conceptual framework in which Ahr function is determined by three factors: the amount of Ahr in any given cell, the abundance and potency of Ahr ligands within certain tissues, and the tissue microenvironment wherein Ahr+ cells reside. This complexity emphasizes the necessity cell-type specific genetic approaches towards the study of Ahr function. PMID:26700314

  5. Developmental biology of the pancreas: a comprehensive review.

    PubMed

    Gittes, George K

    2009-02-01

    Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.

  6. Human body epigenome maps reveal noncanonical DNA methylation variation.

    PubMed

    Schultz, Matthew D; He, Yupeng; Whitaker, John W; Hariharan, Manoj; Mukamel, Eran A; Leung, Danny; Rajagopal, Nisha; Nery, Joseph R; Urich, Mark A; Chen, Huaming; Lin, Shin; Lin, Yiing; Jung, Inkyung; Schmitt, Anthony D; Selvaraj, Siddarth; Ren, Bing; Sejnowski, Terrence J; Wang, Wei; Ecker, Joseph R

    2015-07-09

    Understanding the diversity of human tissues is fundamental to disease and requires linking genetic information, which is identical in most of an individual's cells, with epigenetic mechanisms that could have tissue-specific roles. Surveys of DNA methylation in human tissues have established a complex landscape including both tissue-specific and invariant methylation patterns. Here we report high coverage methylomes that catalogue cytosine methylation in all contexts for the major human organ systems, integrated with matched transcriptomes and genomic sequence. By combining these diverse data types with each individuals' phased genome, we identified widespread tissue-specific differential CG methylation (mCG), partially methylated domains, allele-specific methylation and transcription, and the unexpected presence of non-CG methylation (mCH) in almost all human tissues. mCH correlated with tissue-specific functions, and using this mark, we made novel predictions of genes that escape X-chromosome inactivation in specific tissues. Overall, DNA methylation in several genomic contexts varies substantially among human tissues.

  7. Tissues from equine cadaver ligaments up to 72 hours of post-mortem: a promising reservoir of stem cells.

    PubMed

    Shikh Alsook, Mohamad Khir; Gabriel, Annick; Piret, Joëlle; Waroux, Olivier; Tonus, Céline; Connan, Delphine; Baise, Etienne; Antoine, Nadine

    2015-12-18

    Mesenchymal stem cells (MSCs) harvested from cadaveric tissues represent a promising approach for regenerative medicine. To date, no study has investigated whether viable MSCs could survive in cadaveric tissues from tendon or ligament up to 72 hours of post-mortem. The purpose of the present work was to find out if viable MSCs could survive in cadaveric tissues from adult equine ligaments up to 72 hours of post-mortem, and to assess their ability (i) to remain in an undifferentiated state and (ii) to divide and proliferate in the absence of any specific stimulus. MSCs were isolated from equine cadaver (EC) suspensory ligaments within 48-72 hours of post-mortem. They were evaluated for viability, proliferation, capacity for tri-lineage differentiation, expression of cell surface markers (CD90, CD105, CD73, CD45), pluripotent transcription factor (OCT-4), stage-specific embryonic antigen-1 (SSEA-1), neuron-specific class III beta-tubulin (TUJ-1), and glial fibrillary acidic protein (GFAP). As well, they were characterized by transmission electron microscope (TEM). EC-MSCs were successfully isolated and maintained for 20 passages with high cell viability and proliferation. Phase contrast microscopy revealed that cells with fibroblast-like appearance were predominant in the culture. Differentiation assays proved that EC-MSCs are able to differentiate towards mesodermal lineages (osteogenic, adipogenic, chondrogenic). Flow cytometry analysis demonstrated that EC-MSCs expressed CD90, CD105, and CD73, while being negative for the leukocyte common antigen CD45. Immunofluorescence analysis showed a high percentage of positive cells for OCT-4 and SSEA-1. Surprisingly, in absence of any stimuli, some adherent cells closely resembling neuronal and glial morphology were also observed. Interestingly, our results revealed that approximately 15 % of the cell populations were TUJ-1 positive, whereas GFAP expression was detected in only a few cells. Furthermore, TEM analysis confirmed the stemness of EC-MSCs and identified some cells with a typical neuronal morphology. Our findings raise the prospect that the tissues harvested from equine ligaments up to 72 hours of post-mortem represent an available reservoir of specific stem cells. EC-MSCs could be a promising alternative source for tissue engineering and stem cell therapy in equine medicine.

  8. Expression profile of undifferentiated cell transcription factor 1 in normal and cancerous human epithelia.

    PubMed

    Mouallif, Mustapha; Albert, Adelin; Zeddou, Mustapha; Ennaji, My Mustapha; Delvenne, Philippe; Guenin, Samuel

    2014-08-01

    Undifferentiated cell Transcription Factor 1 (UTF1) is a chromatin-bound protein involved in stem cell differentiation. It was initially reported to be restricted to stem cells or germinal tissues. However, recent work suggests that UTF1 is also expressed in somatic cells and that its expression may increase during carcinogenesis. To further clarify the expression profile of UTF1, we evaluated UTF1 expression levels immunohistochemically in eight normal human epithelia (from breast, prostate, endometrium, bladder, colon, oesophagus, lung and kidney) and their corresponding tumours as well as in several epithelial cell lines. We showed UTF1 staining in normal and tumour epithelial tissues, but with varying intensities according to the tissue location. In vitro analyses also revealed that UTF1 is expressed in somatic epithelial cell lines even in the absence of Oct4A and Sox2, its two main known regulators. The comparison of UTF1 levels in normal and tumoral tissues revealed significant overexpression in endometrial and prostatic adenocarcinomas, whereas lower intensity of the staining was observed in renal and colic tumours, suggesting a potential tissue-specific function of UTF1. Altogether, these results highlight a potential dual role for UTF1, acting either as an oncogene or as a tumour suppressor depending on the tissue. These findings also question its role as a specific marker for stem cells. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.

  9. Competitive homing assays to study gut-tropic t cell migration.

    PubMed

    Villablanca, Eduardo J; Mora, J Rodrigo

    2011-03-01

    In order to exert their function lymphocytes need to leave the blood and migrate into different tissues in the body. Lymphocyte adhesion to endothelial cells and tissue extravasation is a multistep process controlled by different adhesion molecules (homing receptors) expressed on lymphocytes and their respective ligands (addressions) displayed on endothelial cells (1 2). Even though the function of these adhesion receptors can be partially studied ex vivo, the ultimate test for their physiological relevance is to assess their role during in vivo lymphocyte adhesion and migration. Two complementary strategies have been used for this purpose: intravital microscopy (IVM) and homing experiments. Although IVM has been essential to define the precise contribution of specific adhesion receptors during the adhesion cascade in real time and in different tissues, IVM is time consuming and labor intensive, it often requires the development of sophisticated surgical techniques, it needs prior isolation of homogeneous cell populations and it permits the analysis of only one tissue/organ at any given time. By contrast, competitive homing experiments allow the direct and simultaneous comparison in the migration of two (or even more) cell subsets in the same mouse and they also permit the analysis of many tissues and of a high number of cells in the same experiment. Here we describe the classical competitive homing protocol used to determine the advantage/disadvantage of a given cell type to home to specific tissues as compared to a control cell population. We chose to illustrate the migratory properties of gut-tropic versus non gut-tropic T cells, because the intestinal mucosa is the largest body surface in contact with the external environment and it is also the extra-lymphoid tissue with the best-defined migratory requirements. Moreover, recent work has determined that the vitamin A metabolite all-trans retinoic acid (RA) is the main molecular mechanism responsible for inducing gut-specific adhesion receptors (integrin a4b7and chemokine receptor CCR9) on lymphocytes. Thus, we can readily generate large numbers of gut-tropic and non gut-tropic lymphocytes ex vivoby activating T cells in the presence or absence of RA, respectively, which can be finally used in the competitive homing experiments described here.

  10. Analysis of orbital T cells in thyroid-associated ophthalmopathy

    PubMed Central

    Förster, G; Otto, E; Hansen, C; Ochs, K; Kahaly, G

    1998-01-01

    Thyroid-associated ophthalmopathy (TAO) has a major effect on the two compartments of the retro-orbital (RO) space, leading to enlargement of the extraocular muscles and other RO tissues. T lymphocyte infiltration of RO tissue is a characteristic feature of TAO and there is current interest in whether these T cells are specifically and selectively reactive to RO tissue itself. We recently established 18 T cell lines (TCL) from RO adipose/connective tissue of six patients with severe TAO by using IL-2, anti-CD3 antibodies and irradiated autologous peripheral blood mononuclear cells (PBMC) to maintain the growth of T cells reactive to autologous RO tissue protein fractions. Here we report on the phenotype characteristics and cytokine gene expression profiles of these orbital TCL and on their immunoreactivity to the organ-specific thyroid antigens thyrotropin receptor (TSH-R), thyroidal peroxidase (TPO) and thyroglobulin (TG). Flow cytometry revealed that 10 TCL were predominantly of CD4+ phenotype, three being mostly CD8+ and five neither CD4+ nor CD8+. Analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) of cytokine gene expression revealed both Th1- and Th2-like products in all TCL: IL-2 product (in 17 TCL), interferon-gamma (IFN-γ) (n = 10), tumour necrosis factor-beta (TNF-β) (n = 15), IL-4 (n = 12), IL-5 (n = 17), IL-6 (n = 13), TNF-α (n = 12) and IL-10 (n = 4). Reactivity to thyroid antigens was observed only in two TCL, the other 16 being uniformly unreactive. Although 10 out of 18 RO tissue-reactive TCL were predominantly CD4+ there were no significant relationships between TCL phenotype, cytokine gene profile, magnitude of reactivity to RO tissue protein or the (rare) occurrence of thyroid reactivity. The findings of both Th1- and Th2-like cytokine gene expression in all RO tissue-reactive TCL support the concept that TAO is a tissue-specific autoimmune disease, distinct immunologically from the thyroid, and involving both T cell and B cell autoimmune mechanisms in disease pathogenesis. PMID:9649211

  11. Spatial Pattern of Cell Damage in Tissue from Heavy Ions

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A new Monte Carlo algorithm was developed that can model passage of heavy ions in a tissue, and their action on the cellular matrix for 2- or 3-dimensional cases. The build-up of secondaries such as projectile fragments, target fragments, other light fragments, and delta-rays was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix). A simple model of tissue was given as abstract spheres with close approximation to real cell geometries (3-d cell matrix), as well as a realistic model of tissue was proposed based on microscopy images. Image segmentation was used to identify cells in an irradiated cell culture monolayer, or slices of tissue. The cells were then inserted into the model box pixel by pixel. In the case of cell monolayers (2-d), the image size may exceed the modeled box size. Such image was is moved with respect to the box in order to sample as many cells as possible. In the case of the simple tissue (3-d), the tissue box is modeled with periodic boundary conditions, which extrapolate the technique to macroscopic volumes of tissue. For real tissue, specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated based on BNL data, and other experimental data.

  12. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa.

    PubMed

    Shi, Rui; Wang, Jack P; Lin, Ying-Chung; Li, Quanzi; Sun, Ying-Hsuan; Chen, Hao; Sederoff, Ronald R; Chiang, Vincent L

    2017-05-01

    Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.

  13. Mouse Regenerating Myofibers Detected as False-Positive Donor Myofibers with Anti-Human Spectrin

    PubMed Central

    Rozkalne, Anete; Adkin, Carl; Meng, Jinhong; Lapan, Ariya; Morgan, Jennifer E.

    2014-01-01

    Abstract Stem cell transplantation is being tested as a potential therapy for a number of diseases. Stem cells isolated directly from tissue specimens or generated via reprogramming of differentiated cells require rigorous testing for both safety and efficacy in preclinical models. The availability of mice with immune-deficient background that carry additional mutations in specific genes facilitates testing the efficacy of cell transplantation in disease models. The muscular dystrophies are a heterogeneous group of disorders, of which Duchenne muscular dystrophy is the most severe and common type. Cell-based therapy for muscular dystrophy has been under investigation for several decades, with a wide selection of cell types being studied, including tissue-specific stem cells and reprogrammed stem cells. Several immune-deficient mouse models of muscular dystrophy have been generated, in which human cells obtained from various sources are injected to assess their preclinical potential. After transplantation, the presence of engrafted human cells is detected via immunofluorescence staining, using antibodies that recognize human, but not mouse, proteins. Here we show that one antibody specific to human spectrin, which is commonly used to evaluate the efficacy of transplanted human cells in mouse muscle, detects myofibers in muscles of NOD/Rag1nullmdx5cv, NOD/LtSz-scid IL2Rγnull mice, or mdx nude mice, irrespective of whether they were injected with human cells. These “reactive” clusters are regenerating myofibers, which are normally present in dystrophic tissue and the spectrin antibody is likely recognizing utrophin, which contains spectrin-like repeats. Therefore, caution should be used in interpreting data based on detection of single human-specific proteins, and evaluation of human stem cell engraftment should be performed using multiple human-specific labeling strategies. PMID:24152287

  14. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis*

    PubMed Central

    Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang

    2016-01-01

    Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development. PMID:27056332

  15. Distinct tissue-specific transcriptional regulation revealed by gene regulatory networks in maize.

    PubMed

    Huang, Ji; Zheng, Juefei; Yuan, Hui; McGinnis, Karen

    2018-06-07

    Transcription factors (TFs) are proteins that can bind to DNA sequences and regulate gene expression. Many TFs are master regulators in cells that contribute to tissue-specific and cell-type-specific gene expression patterns in eukaryotes. Maize has been a model organism for over one hundred years, but little is known about its tissue-specific gene regulation through TFs. In this study, we used a network approach to elucidate gene regulatory networks (GRNs) in four tissues (leaf, root, SAM and seed) in maize. We utilized GENIE3, a machine-learning algorithm combined with large quantity of RNA-Seq expression data to construct four tissue-specific GRNs. Unlike some other techniques, this approach is not limited by high-quality Position Weighed Matrix (PWM), and can therefore predict GRNs for over 2000 TFs in maize. Although many TFs were expressed across multiple tissues, a multi-tiered analysis predicted tissue-specific regulatory functions for many transcription factors. Some well-studied TFs emerged within the four tissue-specific GRNs, and the GRN predictions matched expectations based upon published results for many of these examples. Our GRNs were also validated by ChIP-Seq datasets (KN1, FEA4 and O2). Key TFs were identified for each tissue and matched expectations for key regulators in each tissue, including GO enrichment and identity with known regulatory factors for that tissue. We also found functional modules in each network by clustering analysis with the MCL algorithm. By combining publicly available genome-wide expression data and network analysis, we can uncover GRNs at tissue-level resolution in maize. Since ChIP-Seq and PWMs are still limited in several model organisms, our study provides a uniform platform that can be adapted to any species with genome-wide expression data to construct GRNs. We also present a publicly available database, maize tissue-specific GRN (mGRN, https://www.bio.fsu.edu/mcginnislab/mgrn/ ), for easy querying. All source code and data are available at Github ( https://github.com/timedreamer/maize_tissue-specific_GRN ).

  16. Tissue- and cell-type–specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model

    PubMed Central

    Hämäläinen, Riikka H.; Manninen, Tuula; Koivumäki, Hanna; Kislin, Mikhail; Otonkoski, Timo; Suomalainen, Anu

    2013-01-01

    Mitochondrial DNA (mtDNA) mutations manifest with vast clinical heterogeneity. The molecular basis of this variability is mostly unknown because the lack of model systems has hampered mechanistic studies. We generated induced pluripotent stem cells from patients carrying the most common human disease mutation in mtDNA, m.3243A>G, underlying mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. During reprogramming, heteroplasmic mtDNA showed bimodal segregation toward homoplasmy, with concomitant changes in mtDNA organization, mimicking mtDNA bottleneck during epiblast specification. Induced pluripotent stem cell–derived neurons and various tissues derived from teratomas manifested cell-type specific respiratory chain (RC) deficiency patterns. Similar to MELAS patient tissues, complex I defect predominated. Upon neuronal differentiation, complex I specifically was sequestered in perinuclear PTEN-induced putative kinase 1 (PINK1) and Parkin-positive autophagosomes, suggesting active degradation through mitophagy. Other RC enzymes showed normal mitochondrial network distribution. Our data show that cellular context actively modifies RC deficiency manifestation in MELAS and that autophagy is a significant component of neuronal MELAS pathogenesis. PMID:24003133

  17. A novel method for isolation of epithelial cells from ovine esophagus for tissue engineering.

    PubMed

    Macheiner, Tanja; Kuess, Anna; Dye, Julian; Saxena, Amulya K

    2014-01-01

    The yield of a critical number of basal epithelial cells with high mitotic rates from native tissue is a challenge in the field of tissue engineering. There are many protocols that use enzymatic methods for isolation of epithelial cells with unsatisfactory results for tissue engineering. This study aimed to develop a protocol for isolating a sufficient number of epithelial cells with a high Proliferating Index from ovine esophagus for tissue engineering applications. Esophageal mucosa was pretreated with dispase-collagenase solution and plated on collagen-coated culture dishes. Distinction of the various types of epithelial cells and developmental stages was done with specific primary antibodies to Cytokeratins and to Proliferating Cell Nuclear Antigen (PCNA). Up to approximately 8100 epithelial cells/mm2 of mucosa tissue were found after one week of migration. Cytokeratin 14 (CK 14) was positive identified in cells even after 83 days. At the same time the Proliferating Index was 71%. Our protocol for isolation of basal epithelial cells was successful to yield sufficient numbers of cells predominantly with proliferative character and without noteworthy negative enzymatic affection. The results at this study offer the possibility of generation critical cell numbers for tissue engineering applications.

  18. Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration

    PubMed Central

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Sonoda, Emiko; Yamasaki, Fumio; Piao, Meihua; Ootani, Akifumi; Yonemitsu, Nobuhisa; Sugihara, Hajime

    2009-01-01

    Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate actively at the peripheral zone of the fragments. Our method will open up a new way for studying both multiple cell types within adipose tissue and the cell-based mechanisms of obesity and metabolic syndrome. Thus, it seems to be a promising model for investigating adipose tissue biology and regeneration. In this article, we introduce adipose tissue-organotypic culture, and propose two theories regarding the mechanism of tissue regeneration that occurs specifically at peripheral zone of tissue fragments in vitro. PMID:19794899

  19. The epithelial-mesenchymal interactions: insights into physiological and pathological aspects of oral tissues.

    PubMed

    Santosh, Arvind Babu Rajendra; Jones, Thaon Jon

    2014-03-17

    In the human biological system, the individual cells divide and form tissues and organs. These tissues are hetero-cellular. Basically any tissue consists of an epithelium and the connective tissue. The latter contains mainly mesenchymally-derived tissues with a diversified cell population. The cell continues to grow and differentiate in a pre-programmed manner using a messenger system. The epithelium and the mesenchymal portion of each tissue have two different origins and perform specific functions, but there is a well-defined interaction mechanism, which mediates between them. Epithelial mesenchymal interactions (EMIs) are part of this mechanism, which can be regarded as a biological conversation between epithelial and mesenchymal cell populations involved in the cellular differentiation of one or both cell populations. EMIs represent a process that is essential for cell growth, cell differentiation and cell multiplication. EMIs are associated with normal physiological processes in the oral cavity, such as odontogenesis, dentino-enamel junction formation, salivary gland development, palatogenesis, and also pathological processes, such as oral cancer. This paper focuses the role EMIs in odontogenesis, salivary gland development, palatogenesis and oral cancer.

  20. Two-Stage, In Silico Deconvolution of the Lymphocyte Compartment of the Peripheral Whole Blood Transcriptome in the Context of Acute Kidney Allograft Rejection

    PubMed Central

    Shannon, Casey P.; Balshaw, Robert; Ng, Raymond T.; Wilson-McManus, Janet E.; Keown, Paul; McMaster, Robert; McManus, Bruce M.; Landsberg, David; Isbel, Nicole M.; Knoll, Greg; Tebbutt, Scott J.

    2014-01-01

    Acute rejection is a major complication of solid organ transplantation that prevents the long-term assimilation of the allograft. Various populations of lymphocytes are principal mediators of this process, infiltrating graft tissues and driving cell-mediated cytotoxicity. Understanding the lymphocyte-specific biology associated with rejection is therefore critical. Measuring genome-wide changes in transcript abundance in peripheral whole blood cells can deliver a comprehensive view of the status of the immune system. The heterogeneous nature of the tissue significantly affects the sensitivity and interpretability of traditional analyses, however. Experimental separation of cell types is an obvious solution, but is often impractical and, more worrying, may affect expression, leading to spurious results. Statistical deconvolution of the cell type-specific signal is an attractive alternative, but existing approaches still present some challenges, particularly in a clinical research setting. Obtaining time-matched sample composition to biologically interesting, phenotypically homogeneous cell sub-populations is costly and adds significant complexity to study design. We used a two-stage, in silico deconvolution approach that first predicts sample composition to biologically meaningful and homogeneous leukocyte sub-populations, and then performs cell type-specific differential expression analysis in these same sub-populations, from peripheral whole blood expression data. We applied this approach to a peripheral whole blood expression study of kidney allograft rejection. The patterns of differential composition uncovered are consistent with previous studies carried out using flow cytometry and provide a relevant biological context when interpreting cell type-specific differential expression results. We identified cell type-specific differential expression in a variety of leukocyte sub-populations at the time of rejection. The tissue-specificity of these differentially expressed probe-set lists is consistent with the originating tissue and their functional enrichment consistent with allograft rejection. Finally, we demonstrate that the strategy described here can be used to derive useful hypotheses by validating a cell type-specific ratio in an independent cohort using the nanoString nCounter assay. PMID:24733377

  1. Chemical Fluxes in Cellular Steady States Measured by Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Elson, Elliot L.

    Genetically, identical cells adopt phenotypes that have different structures, functions, and metabolic properties. In multi-cellular organisms, for example, tissue-specific phenotypes distinguish muscle cells, liver cells, fibroblasts, and blood cells that differ in biochemical functions, geometric forms, and interactions with extracellular environments. Tissue-specific cells usually have different metabolic functions such as synthesis of distinct spectra of secreted proteins, e.g., by liver or pancreatic cells, or of structural proteins, e.g., muscle vs. epithelial cells. But more importantly, a phenotype should include a dynamic aspect: different phenotypes can have distinctly different dynamic functions such as contraction of muscle cells and locomotion of leukocytes. The phenotypes of differentiated tissue cells are typically stable, but they can respond to changes in external conditions, e.g., as in the hypertrophy of muscle cells in response to extra load [1] or the phenotypic shift of fibroblasts to myofibroblasts as part of the wound healing response [2]. Cells pass through sequences of phenotypes during development and also undergo malignant phenotypic transformations as occur in cancer and heart disease.

  2. Tissue-specific activities of the Fat1 cadherin cooperate to control neuromuscular morphogenesis

    PubMed Central

    2018-01-01

    Muscle morphogenesis is tightly coupled with that of motor neurons (MNs). Both MNs and muscle progenitors simultaneously explore the surrounding tissues while exchanging reciprocal signals to tune their behaviors. We previously identified the Fat1 cadherin as a regulator of muscle morphogenesis and showed that it is required in the myogenic lineage to control the polarity of progenitor migration. To expand our knowledge on how Fat1 exerts its tissue-morphogenesis regulator activity, we dissected its functions by tissue-specific genetic ablation. An emblematic example of muscle under such morphogenetic control is the cutaneous maximus (CM) muscle, a flat subcutaneous muscle in which progenitor migration is physically separated from the process of myogenic differentiation but tightly associated with elongating axons of its partner MNs. Here, we show that constitutive Fat1 disruption interferes with expansion and differentiation of the CM muscle, with its motor innervation and with specification of its associated MN pool. Fat1 is expressed in muscle progenitors, in associated mesenchymal cells, and in MN subsets, including the CM-innervating pool. We identify mesenchyme-derived connective tissue (CT) as a cell type in which Fat1 activity is required for the non–cell-autonomous control of CM muscle progenitor spreading, myogenic differentiation, motor innervation, and for motor pool specification. In parallel, Fat1 is required in MNs to promote their axonal growth and specification, indirectly influencing muscle progenitor progression. These results illustrate how Fat1 coordinates the coupling of muscular and neuronal morphogenesis by playing distinct but complementary actions in several cell types. PMID:29768404

  3. Long-term culture of human liver tissue with advanced hepatic functions.

    PubMed

    Ng, Soon Seng; Xiong, Anming; Nguyen, Khanh; Masek, Marilyn; No, Da Yoon; Elazar, Menashe; Shteyer, Eyal; Winters, Mark A; Voedisch, Amy; Shaw, Kate; Rashid, Sheikh Tamir; Frank, Curtis W; Cho, Nam Joon; Glenn, Jeffrey S

    2017-06-02

    A major challenge for studying authentic liver cell function and cell replacement therapies is that primary human hepatocytes rapidly lose their advanced function in conventional, 2-dimensional culture platforms. Here, we describe the fabrication of 3-dimensional hexagonally arrayed lobular human liver tissues inspired by the liver's natural architecture. The engineered liver tissues exhibit key features of advanced differentiation, such as human-specific cytochrome P450-mediated drug metabolism and the ability to support efficient infection with patient-derived inoculums of hepatitis C virus. The tissues permit the assessment of antiviral agents and maintain their advanced functions for over 5 months in culture. This extended functionality enabled the prediction of a fatal human-specific hepatotoxicity caused by fialuridine (FIAU), which had escaped detection by preclinical models and short-term clinical studies. The results obtained with the engineered human liver tissue in this study provide proof-of-concept determination of human-specific drug metabolism, demonstrate the ability to support infection with human hepatitis virus derived from an infected patient and subsequent antiviral drug testing against said infection, and facilitate detection of human-specific drug hepatotoxicity associated with late-onset liver failure. Looking forward, the scalability and biocompatibility of the scaffold are also ideal for future cell replacement therapeutic strategies.

  4. Liver-resident NK cells and their potential functions.

    PubMed

    Peng, Hui; Sun, Rui

    2017-09-18

    Natural killer (NK) cells represent a heterogeneous population of innate lymphocytes with phenotypically and functionally distinct subsets. In particular, recent studies have identified a unique subset of NK cells residing within the liver that are maintained as tissue-resident cells, confer antigen-specific memory responses and exhibit different phenotypical and developmental characteristics compared with conventional NK (cNK) cells. These findings have encouraged researchers to uncover tissue-resident NK cells at other sites, and detailed analyses have revealed that these tissue-resident NK cells share many similarities with liver-resident NK cells and tissue-resident memory T cells. Here, we present a brief historical perspective on the discovery of liver-resident NK cells and discuss their relationship to cNK cells and other emerging NK cell subsets and their potential functions.Cellular &Molecular Immunology advance online publication, 18 September 2017; doi:10.1038/cmi.2017.72.

  5. Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs

    PubMed Central

    Jiménez-Rojo, Lucía; Granchi, Zoraide; Graf, Daniel; Mitsiadis, Thimios A.

    2012-01-01

    The development of ectoderm-derived appendages results in a large variety of highly specialized organs such as hair follicles, mammary glands, salivary glands, and teeth. Despite varying in number, shape, and function, all these ectodermal organs develop through continuous and reciprocal epithelial–mesenchymal interactions, sharing common morphological and molecular features especially during their embryonic development. Diseases such as ectodermal dysplasias can affect simultaneously these organs, suggesting that they may arise from common multipotent precursors residing in the embryonic ectoderm. During embryogenesis, these putative ectodermal stem cells may adopt different fates and consequently be able to generate a variety of tissue-specific stem cells, which are the sources for the various cell lineages that form the diverse organs. The specification of those common epithelial precursors, as well as their further lineage commitment to tissue-specific stem cells, might be controlled by specific signals. It has been well documented that Notch, Wnt, bone morphogenetic protein, and fibroblast growth factor signaling pathways regulate cell fate decisions during the various stages of ectodermal organ development. However, the in vivo spatial and temporal dynamics of these signaling pathways are not yet well understood. Improving the current knowledge on the mechanisms involved in stem cell fate determination during organogenesis and homeostasis of ectodermal organs is crucial to develop effective stem cell-based therapies in order to regenerate or replace pathological and damaged tissues. PMID:22539926

  6. Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs.

    PubMed

    Jiménez-Rojo, Lucía; Granchi, Zoraide; Graf, Daniel; Mitsiadis, Thimios A

    2012-01-01

    The development of ectoderm-derived appendages results in a large variety of highly specialized organs such as hair follicles, mammary glands, salivary glands, and teeth. Despite varying in number, shape, and function, all these ectodermal organs develop through continuous and reciprocal epithelial-mesenchymal interactions, sharing common morphological and molecular features especially during their embryonic development. Diseases such as ectodermal dysplasias can affect simultaneously these organs, suggesting that they may arise from common multipotent precursors residing in the embryonic ectoderm. During embryogenesis, these putative ectodermal stem cells may adopt different fates and consequently be able to generate a variety of tissue-specific stem cells, which are the sources for the various cell lineages that form the diverse organs. The specification of those common epithelial precursors, as well as their further lineage commitment to tissue-specific stem cells, might be controlled by specific signals. It has been well documented that Notch, Wnt, bone morphogenetic protein, and fibroblast growth factor signaling pathways regulate cell fate decisions during the various stages of ectodermal organ development. However, the in vivo spatial and temporal dynamics of these signaling pathways are not yet well understood. Improving the current knowledge on the mechanisms involved in stem cell fate determination during organogenesis and homeostasis of ectodermal organs is crucial to develop effective stem cell-based therapies in order to regenerate or replace pathological and damaged tissues.

  7. On-the-spot lung cancer differential diagnosis by label-free, molecular vibrational imaging and knowledge-based classification

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Li, Fuhai; Thrall, Michael J.; Yang, Yaliang; Xing, Jiong; Hammoudi, Ahmad A.; Zhao, Hong; Massoud, Yehia; Cagle, Philip T.; Fan, Yubo; Wong, Kelvin K.; Wang, Zhiyong; Wong, Stephen T. C.

    2011-09-01

    We report the development and application of a knowledge-based coherent anti-Stokes Raman scattering (CARS) microscopy system for label-free imaging, pattern recognition, and classification of cells and tissue structures for differentiating lung cancer from non-neoplastic lung tissues and identifying lung cancer subtypes. A total of 1014 CARS images were acquired from 92 fresh frozen lung tissue samples. The established pathological workup and diagnostic cellular were used as prior knowledge for establishment of a knowledge-based CARS system using a machine learning approach. This system functions to separate normal, non-neoplastic, and subtypes of lung cancer tissues based on extracted quantitative features describing fibrils and cell morphology. The knowledge-based CARS system showed the ability to distinguish lung cancer from normal and non-neoplastic lung tissue with 91% sensitivity and 92% specificity. Small cell carcinomas were distinguished from nonsmall cell carcinomas with 100% sensitivity and specificity. As an adjunct to submitting tissue samples to routine pathology, our novel system recognizes the patterns of fibril and cell morphology, enabling medical practitioners to perform differential diagnosis of lung lesions in mere minutes. The demonstration of the strategy is also a necessary step toward in vivo point-of-care diagnosis of precancerous and cancerous lung lesions with a fiber-based CARS microendoscope.

  8. F4/80 as a Major Macrophage Marker: The Case of the Peritoneum and Spleen.

    PubMed

    Dos Anjos Cassado, Alexandra

    2017-01-01

    Tissue macrophages are a heterogeneous cell population residing in all body tissues that contribute to the maintenance of homeostasis and trigger immune activation in response to injurious stimuli. This heterogeneity may be associated with tissue-specific functions; however, the presence of distinct macrophage populations within the same microenvironment indicates that macrophage heterogeneity may also be influenced outside of tissue specialization. The F4/80 molecule was established as a unique marker of murine macrophages when a monoclonal antibody was found to recognize an antigen exclusively expressed by these cells. However, recent research has shown that F4/80 is expressed by other immune cells and is not equivalently expressed across tissue-specific macrophage lineages, including those residing in the same microenvironment, such as the peritoneum and spleen. In this context, two murine macrophage subtypes with distinct F4/80 expression patterns were recently found to coexist in the peritoneum, termed large peritoneal macrophages (LPMs) and small peritoneal macrophages (SPMs). However, the presence of phenotypic and functional heterogeneous macrophage subpopulations in the spleen was already known. Thus, although F4/80 surface expression continues to be the best method to identify tissue macrophages, additional molecules must also be examined to distinguish these cells from other immune cells.

  9. Ulex europaeus I lectin as a marker for vascular endothelium in human tissues.

    PubMed

    Holthöfer, H; Virtanen, I; Kariniemi, A L; Hormia, M; Linder, E; Miettinen, A

    1982-07-01

    Ulex europaeus I agglutinin, a lectin specific for some alpha-L-fucose-containing glycocompounds, was used in fluorescence microscopy to stain cryostat sections of human tissues. The endothelium of vessels of all sizes was stained ubiquitously in all tissues studied as judged by double staining with a known endothelial marker, antibodies against human clotting factor VIII. Cultured human umbilical vein endothelial cells, but not fibroblasts, also bound Ulex lectin. The staining was not affected by the blood group type of the tissue donor. In some tissues Ulex lectin presented additional binding to epithelial structures. Also, this was independent on the blood group or the ability of the tissue donor to secrete soluble blood group substances. Lotus tetragonolobus agglutinin, another lectin specific for some alpha-L-fucose-containing moieties failed to react with endothelial cells. Our results suggest that Ulex europaeus I agglutinin is a good histologic marker for endothelium in human tissues.

  10. Age-specific functional epigenetic changes in p21 and p16 in injury-activated satellite cells

    PubMed Central

    Li, Ju; Han, Suhyoun; Cousin, Wendy; Conboy, Irina M.

    2014-01-01

    The regenerative capacity of muscle dramatically decreases with age because old muscle stem cells fail to proliferate in response to tissue damage. Here we uncover key age-specific differences underlying this proliferative decline: namely, the genetic loci of CDK inhibitors (CDKI) p21 and p16 are more epigenetically silenced in young muscle stem cells, as compared to old, both in quiescent cells and those responding to tissue injury. Interestingly, phosphorylated ERK (pERK) induced in these cells by ectopic FGF-2 is found in association with p21 and p16 promoters, and moreover, only in the old cells. Importantly, in the old satellite cells FGF-2/pERK silences p21 epigenetically and transcriptionally, which leads to reduced p21 protein levels and enhanced cell proliferation. In agreement with the epigenetic silencing of the loci, young muscle stem cells do not depend as much as old on ectopic FGF/pERK for their myogenic proliferation. In addition, other CDKIs, such asp15INK4B and p27KIP1, become elevated in satellite cells with age, confirming and explaining the profound regenerative defect of old muscle. This work enhances our understanding of tissue aging, promoting strategies for combating age-imposed tissue degeneration. PMID:25447026

  11. Control of cellular influx in lung and its role in pulmonary toxicology.

    PubMed Central

    Lynn, W S

    1984-01-01

    The pulmonary influx of cytotoxic inflammatory cells, normally, in response to external toxins, is now thought to be etiologic in many of the disease syndromes of man, such as bronchitis and emphysema. Many types of effector inflammatory cells are involved, e.g., eosinophils, neutrophils, T-lymphocytes, monocytes. The diseases are characterized either by tissue destruction or by tissue hyperplasia. Agents which initiate the influx and cytotoxic secretions by these cells are legion and in general are not cell-specific. They include agents, such as phorbol esters, formyl peptides-complement fragments, elastin fragments, fatty acids (leukotrienes) as well as many uncharacterized excretions of inflammatory cells themselves, which react with specific receptors on the inflammatory cells, and secreted proteins such as fibronectin. Other agents, such as linoleic acid, digitonin and hydroxy fatty acids which are not bound by specific receptors also activate motility of inflammatory cells. The precise role of the above multiple cytotoxins in specific cellular fluxes in most pulmonary disease remains undefined. Similarly, the mechanism of cytotoxicity used by specific invading cells in specific pulmonary syndromes remains unclear. In general, macrophages are thought to destroy using specific proteases, neutrophils use oxidant radicals and proteases and eosinophils use basic surface active peptides. T-cells kill by unknown mechanisms. However, in specific clinical syndromes, it is usually not clear which cell is the cytotoxic culprit, nor is the mechanism of destruction usually known. PMID:6376103

  12. Prodrug strategy for cancer cell-specific targeting: A recent overview.

    PubMed

    Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin

    2017-10-20

    The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.

  13. Advances in tumor diagnosis using OCT and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Kozlov, S. V.; Moryatov, A. A.; Kornilin, D. V.; Myakinin, O. O.; Artemyev, D. N.

    2014-05-01

    Complex investigation of malignant tumors was performed with combined optical coherence tomography (OCT) and Raman spectroscopy (RS) setup: 22 ex vivo lung tissue samples and 23 in vivo experiments with skin tumors. It was shown that combined RS-OCT unit may be used for precise tissue morphology visualization with simultaneous tumor type determination (BCC, malignant melanoma of skin tissues, adenocarcinoma and squamous cell carcinoma of lung). Fast RS phase method for skin and lung tumors identification was proposed. It is based on alteration of Raman spectral intensity in 1300-1340, 1440-1460 and 1640-1680 cm-1 bands for healthy and malignant tissue. Complex method could identify: malignant melanoma with 88.9% sensitivity and 87.8% specificity; adenocarcinoma with 100% sensitivity and 81.5% specificity; squamous cell carcinomas with 90.9% sensitivity and 77.8% specificity.

  14. Development of maternal seed tissue in barley is mediated by regulated cell expansion and cell disintegration and coordinated with endosperm growth.

    PubMed

    Radchuk, Volodymyr; Weier, Diana; Radchuk, Ruslana; Weschke, Winfriede; Weber, Hans

    2011-01-01

    After fertilization, filial grain organs are surrounded by the maternal nucellus embedded within the integuments and pericarp. Rapid early endosperm growth must be coordinated with maternal tissue development. Parameters of maternal tissue growth and development were analysed during early endosperm formation. In the pericarp, cell proliferation is accomplished around the time of fertilization, followed by cell elongation predominantly in longitudinal directions. The rapid cell expansion coincides with endosperm cellularization. Distribution of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei reveals distinct patterns starting in the nucellus at anthesis and followed later by the inner cell rows of the pericarp, then spreading to the whole pericarp. The pattern suggests timely and spatially regulated programmed cell death (PCD) processes in maternal seed tissues. When the endosperm is coenocytic, PCD events are only observed within the nucellus. Thereby, remobilization of nucellar storage compounds by PCD could nourish the early developing endosperm when functional interconnections are absent between maternal and filial seed organs. Specific proteases promote PCD events. Characterization of the barley vacuolar processing enzyme (VPE) gene family identified seven gene members specifically expressed in the developing grain. HvVPE2a (known as nucellain) together with closely similar HvVPE2b and HvVPE2d might be involved in nucellar PCD. HvVPE4 is strongly cell specific for pericarp parenchyma. Correlative evidence suggests that HvVPE4 plays a role in PCD events in the pericarp. Possible functions of PCD in the maternal tissues imply a potential nutritive role or the relief of a physical restraint for endosperm growth. PCD could also activate post-phloem transport functions.

  15. Tissue strands as "bioink" for scale-up organ printing.

    PubMed

    Yu, Yin; Ozbolat, Ibrahim T

    2014-01-01

    Organ printing, takes tissue spheroids as building blocks together with additive manufacturing technique to engineer tissue or organ replacement parts. Although a wide array of cell aggregation techniques has been investigated, and gained noticeable success, the application of tissue spheroids for scale-up tissue fabrication is still worth investigation. In this paper, we introduce a new micro-fabrication technique to create tissue strands at the scale of 500-700μm as a "bioink" for future robotic tissue printing. Printable alginate micro-conduits are used as semi-permeable capsules for tissue strand fabrication. Mouse insulinoma beta TC3 cell tissue strands were formed upon 4 days post fabrication with reasonable mechanical strength, high cell viability close to 90%, and tissue specific markers expression. Fusion was readily observed between strands when placing them together as early as 24h. Also, tissue strands were deposited with human umbilical vein smooth muscle cells (HUVSMCs) vascular conduits together to fabricated miniature pancreatic tissue analog. Our study provided a novel technique using tissue strands as "bioink" for scale-up bioprinting of tissues or organs.

  16. Extraction and Assembly of Tissue-Derived Gels for Cell Culture and Tissue Engineering

    PubMed Central

    Uriel, Shiri; Labay, Edwardine; Francis-Sedlak, Megan; Moya, Monica L.; Weichselbaum, Ralph R.; Ervin, Natalia; Cankova, Zdravka

    2009-01-01

    Interactions with the extracellular matrix (ECM) play an important role in regulating cell function. Cells cultured in, or on, three-dimensional ECM recapitulate similar features to those found in vivo that are not present in traditional two-dimensional culture. In addition, both natural and synthetic materials containing ECM components have shown promise in a number of tissue engineering applications. Current materials available for cell culture and tissue engineering do not adequately reflect the diversity of ECM composition between tissues. In this paper, a method is presented for extracting solutions of proteins and glycoproteins from soft tissues and inducing assembly of these proteins into gels. The extracts contain ECM proteins specific to the tissue source with low levels of intracellular molecules. Gels formed from the tissue-derived extracts have nanostructure similar to ECM in vivo and can be used to culture cells as both a thin substrate coating and a thick gel. This technique could be used to assemble hydrogels with varying composition depending upon the tissue source, hydrogels for three-dimensional culture, as scaffolds for tissue engineering therapies, and to study cell–matrix interactions. PMID:19115821

  17. A New Wnt1-CRE TomatoRosa Embryonic Stem Cell Line: A Tool for Studying Neural Crest Cell Integration Capacity.

    PubMed

    Acuna-Mendoza, Soledad; Martin, Sabrina; Kuchler-Bopp, Sabine; Ribes, Sandy; Thalgott, Jérémy; Chaussain, Catherine; Creuzet, Sophie; Lesot, Hervé; Lebrin, Franck; Poliard, Anne

    2017-12-01

    Neural crest (NC) cells are a migratory, multipotent population giving rise to numerous lineages in the embryo. Their plasticity renders attractive their use in tissue engineering-based therapies, but further knowledge on their in vivo behavior is required before clinical transfer may be envisioned. We here describe the isolation and characterization of a new mouse embryonic stem (ES) line derived from Wnt1-CRE-R26 Rosa TomatoTdv blastocyst and show that it displays the characteristics of typical ES cells. Further, these cells can be efficiently directed toward an NC stem cell-like phenotype as attested by concomitant expression of NC marker genes and Tomato fluorescence. As native NC progenitors, they are capable of differentiating toward typical derivative phenotypes and interacting with embryonic tissues to participate in the formation of neo-structures. Their specific fluorescence allows purification and tracking in vivo. This cellular tool should facilitate a better understanding of the mechanisms driving NC fate specification and help identify the key interactions developed within a tissue after in vivo implantation. Altogether, this novel model may provide important knowledge to optimize NC stem cell graft conditions, which are required for efficient tissue repair.

  18. Proteome labelling and protein identification in specific tissues and at specific developmental stages in an animal

    PubMed Central

    Elliott, Thomas S.; Townsley, Fiona M.; Bianco, Ambra; Ernst, Russell J.; Sachdeva, Amit; Elsässer, Simon J.; Davis, Lloyd; Lang, Kathrin; Pisa, Rudolf; Greiss, Sebastian.; Lilley, Kathryn S.; Chin, Jason W.

    2014-01-01

    Identifying the proteins synthesized in defined cells at specific times in an animal will facilitate the study of cellular functions and dynamic processes. Here we introduce stochastic orthogonal recoding of translation with chemoselective modification (SORT-M) to address this challenge. SORT-M involves modifying cells to express an orthogonal aminoacyl-tRNA synthetase/tRNA pair to enable the incorporation of chemically modifiable analogs of amino acids at diverse sense codons in cells in rich media. We apply SORT-M to Drosophila melanogaster fed standard food to label and image proteins in specific tissues at precise developmental stages with diverse chemistries, including cyclopropene-tetrazine inverse electron demand Diels-Alder cycloaddition reactions. We also use SORT-M to identify proteins synthesized in germ cells of the fly ovary without dissection. SORT-M will facilitate the definition of proteins synthesized in specific sets of cells to study development, and learning and memory in flies, and may be extended to other animals. PMID:24727715

  19. The cellular basis for animal regeneration

    PubMed Central

    Tanaka, Elly; Reddien, Peter W.

    2011-01-01

    The ability of animals to regenerate missing parts is a dramatic and poorly understood aspect of biology. The sources of new cells for these regenerative phenomena have been sought for decades. Recent advances involving cell fate tracking in complex tissues have shed new light on the cellular underpinnings of regeneration in Hydra, planarians, zebrafish, Xenopus, and Axolotl. Planarians accomplish regeneration with use of adult pluripotent stem cells, whereas several vertebrates utilize a collection of lineage-restricted progenitors from different tissues. Together, an array of cellular strategies—from pluripotent stem cells to tissue-specific stem cells and dedifferentiation—are utilized for regeneration. PMID:21763617

  20. An analysis of particle track effects on solid mammalian tissues

    NASA Technical Reports Server (NTRS)

    Todd, P.; Clarkson, T. W. (Principal Investigator)

    1992-01-01

    Relative biological effectiveness (RBE) and quality factor (Q) at extreme values of linear energy transfer (LET) have been determined on the basis of experiments with single-cell systems and specific tissue responses. In typical single-cell systems, each heavy particle (Ar or Fe) passes through a single cell or no cell. In experiments on animal tissues, however, each heavy particle passes through several cells, and the LET can exceed 200 keV micrometers-1 in every cell. In most laboratory animal tissue systems, however, only a small portion of the hit cells are capable of expressing the end-point being measured, such as cell killing, mutation or carcinogenesis. The following question was therefore addressed: do RBEs and Q factors derived from single-cell experiments properly account for the damage at high LET when multiple cells are hit by HZE tracks? A review is offered in which measured radiation effects and known tissue properties are combined to estimate on the one hand, the number of cells at risk, p3n, per track, where n is the number of cells per track based on tissue and organ geometry, and p3 is the probability that a cell in the track is capable of expressing the experimental end-point. On the other hand, the tissue and single-cell responses are compared by determining the ratio RBE in tissue/RBE in corresponding single cells. Experimental data from the literature indicate that tissue RBEs at very high LET (Fe and Ar ions) are higher than corresponding single-cell RBEs, especially in tissues in which p3n is high.

  1. Attenuation of HIV-associated human B cell exhaustion by siRNA downregulation of inhibitory receptors

    PubMed Central

    Kardava, Lela; Moir, Susan; Wang, Wei; Ho, Jason; Buckner, Clarisa M.; Posada, Jacqueline G.; O’Shea, Marie A.; Roby, Gregg; Chen, Jenny; Sohn, Hae Won; Chun, Tae-Wook; Pierce, Susan K.; Fauci, Anthony S.

    2011-01-01

    Chronic immune activation in HIV-infected individuals leads to accumulation of exhausted tissue-like memory B cells. Exhausted lymphocytes display increased expression of multiple inhibitory receptors, which may contribute to the inefficiency of HIV-specific antibody responses. Here, we show that downregulation of B cell inhibitory receptors in primary human B cells led to increased tissue-like memory B cell proliferation and responsiveness against HIV. In human B cells, siRNA knockdown of 9 known and putative B cell inhibitory receptors led to enhanced B cell receptor–mediated (BCR-mediated) proliferation of tissue-like memory but not other B cell subpopulations. The strongest effects were observed with the putative inhibitory receptors Fc receptor–like–4 (FCRL4) and sialic acid–binding Ig-like lectin 6 (Siglec-6). Inhibitory receptor downregulation also led to increased levels of HIV-specific antibody-secreting cells and B cell–associated chemokines and cytokines. The absence of known ligands for FCRL4 and Siglec-6 suggests these receptors may regulate BCR signaling through their own constitutive or tonic signaling. Furthermore, the extent of FCLR4 knockdown effects on BCR-mediated proliferation varied depending on the costimulatory ligand, suggesting that inhibitory receptors may engage specific pathways in inhibiting B cell proliferation. These findings on HIV-associated B cell exhaustion define potential targets for reversing the deleterious effect of inhibitory receptors on immune responses against persistent viral infections. PMID:21633172

  2. Tissue-specific programming of memory CD8 T cell subsets impacts protection against lethal respiratory virus infection

    PubMed Central

    Tahiliani, Vikas

    2016-01-01

    How tissue-specific anatomical distribution and phenotypic specialization are linked to protective efficacy of memory T cells against reinfection is unclear. Here, we show that lung environmental cues program recently recruited central-like memory cells with migratory potentials for their tissue-specific functions during lethal respiratory virus infection. After entering the lung, some central-like cells retain their original CD27hiCXCR3hi phenotype, enabling them to localize near the infected bronchiolar epithelium and airway lumen to function as the first line of defense against pathogen encounter. Others, in response to local cytokine triggers, undergo a secondary program of differentiation that leads to the loss of CXCR3, migration arrest, and clustering within peribronchoarterial areas and in interalveolar septa. Here, the immune system adapts its response to prevent systemic viral dissemination and mortality. These results reveal the striking and unexpected spatial organization of central- versus effector-like memory cells within the lung and how cooperation between these two subsets contributes to host defense. PMID:27879287

  3. Three-dimensional Model of Tissue and Heavy Ions Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Sundaresan, Alamelu; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A three-dimensional tissue model was incorporated into a new Monte Carlo algorithm that simulates passage of heavy ions in a tissue box . The tissue box was given as a realistic model of tissue based on confocal microscopy images. The action of heavy ions on the cellular matrix for 2- or 3-dimensional cases was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix), and as a multi-layer obtained from confocal microscopy (3-d case). Image segmentation was used to identify cells with precise areas/volumes in an irradiated cell culture monolayer, and slices of tissue with many cell layers. The cells were then inserted into the model box of the simulated physical space pixel by pixel. In the case of modeled tissues (3-d), the tissue box had periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. For the real tissue (3-d), specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated from current experimental data. A spatial correlation function indicating a higher spatial concentration of damaged cells from heavy ions relative to the low-LET radiation cell damage pattern is presented. The spatial correlation effects among necrotic cells can help studying microlesions in organs, and probable effects of directionality of heavy ion radiation on epithelium and endothelium.

  4. Tissues Use Resident Dendritic Cells and Macrophages to Maintain Homeostasis and to Regain Homeostasis upon Tissue Injury: The Immunoregulatory Role of Changing Tissue Environments

    PubMed Central

    Lech, Maciej; Gröbmayr, Regina; Weidenbusch, Marc; Anders, Hans-Joachim

    2012-01-01

    Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries. PMID:23251037

  5. Control of calcitonin/calcitonin gene-related peptide pre-mRNA processing by constitutive intron and exon elements.

    PubMed Central

    Yeakley, J M; Hedjran, F; Morfin, J P; Merillat, N; Rosenfeld, M G; Emeson, R B

    1993-01-01

    The calcitonin/calcitonin gene-related peptide (CGRP) primary transcript is alternatively spliced in thyroid C cells and neurons, resulting in the tissue-specific production of calcitonin and CGRP mRNAs. Analyses of mutated calcitonin/CGRP transcription units in permanently transfected cell lines have indicated that alternative splicing is regulated by a differential capacity to utilize the calcitonin-specific splice acceptor. The analysis of an extensive series of mutations suggests that tissue-specific regulation of calcitonin mRNA production does not depend on the presence of a single, unique cis-active element but instead appears to be a consequence of suboptimal constitutive splicing signals. While only those mutations that altered constitutive splicing signals affected splice choices, the action of multiple regulatory sequences cannot be formally excluded. Further, we have identified a 13-nucleotide purine-rich element from a constitutive exon that, when placed in exon 4, entirely switches splice site usage in CGRP-producing cells. These data suggest that specific exon recruitment sequences, in combination with other constitutive elements, serve an important function in exon recognition. These results are consistent with the hypothesis that tissue-specific alternative splicing of the calcitonin/CGRP primary transcript is mediated by cell-specific differences in components of the constitutive splicing machinery. Images PMID:8413203

  6. PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases

    PubMed Central

    Forrest, Alistair RR; Taylor, Darrin F; Fink, J Lynn; Gongora, M Milena; Flegg, Cameron; Teasdale, Rohan D; Suzuki, Harukazu; Kanamori, Mutsumi; Kai, Chikatoshi; Hayashizaki, Yoshihide; Grimmond, Sean M

    2006-01-01

    Background Protein kinases and protein phosphatases are the fundamental components of phosphorylation dependent protein regulatory systems. We have created a database for the protein kinase-like and phosphatase-like loci of mouse that integrates protein sequence, interaction, classification and pathway information with the results of a systematic screen of their sub-cellular localization and tissue specific expression data mined from the GNF tissue atlas of mouse. Results The database lets users query where a specific kinase or phosphatase is expressed at both the tissue and sub-cellular levels. Similarly the interface allows the user to query by tissue, pathway or sub-cellular localization, to reveal which components are co-expressed or co-localized. A review of their expression reveals 30% of these components are detected in all tissues tested while 70% show some level of tissue restriction. Hierarchical clustering of the expression data reveals that expression of these genes can be used to separate the samples into tissues of related lineage, including 3 larger clusters of nervous tissue, developing embryo and cells of the immune system. By overlaying the expression, sub-cellular localization and classification data we examine correlations between class, specificity and tissue restriction and show that tyrosine kinases are more generally expressed in fewer tissues than serine/threonine kinases. Conclusion Together these data demonstrate that cell type specific systems exist to regulate protein phosphorylation and that for accurate modelling and for determination of enzyme substrate relationships the co-location of components needs to be considered. PMID:16504016

  7. Cell-size distribution in epithelial tissue formation and homeostasis

    PubMed Central

    Primo, Luca; Celani, Antonio

    2017-01-01

    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size. PMID:28330988

  8. Cell-size distribution in epithelial tissue formation and homeostasis.

    PubMed

    Puliafito, Alberto; Primo, Luca; Celani, Antonio

    2017-03-01

    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size. © 2017 The Author(s).

  9. Ultrasound Technologies for the Spatial Patterning of Cells and Extracellular Matrix Proteins and the Vascularization of Engineered Tissue

    NASA Astrophysics Data System (ADS)

    Garvin, Kelley A.

    Technological advancements in the field of tissue engineering could save the lives of thousands of organ transplant patients who die each year while waiting for donor organs. Currently, two of the primary challenges preventing tissue engineers from developing functional replacement tissues and organs are the need to recreate complex cell and extracellular microenvironments and to vascularize the tissue to maintain cell viability and function. Ultrasound is a form of mechanical energy that can noninvasively and nondestructively interact with tissues at the cell and protein level. In this thesis, novel ultrasound-based technologies were developed for the spatial patterning of cells and extracellular matrix proteins and the vascularization of three-dimensional engineered tissue constructs. Acoustic radiation forces associated with ultrasound standing wave fields were utilized to noninvasively control the spatial organization of cells and cell-bound extracellular matrix proteins within collagen-based engineered tissue. Additionally, ultrasound induced thermal mechanisms were exploited to site-specifically pattern various extracellular matrix collagen microstructures within a single engineered tissue construct. Finally, ultrasound standing wave field technology was used to promote the rapid and extensive vascularization of three-dimensional tissue constructs. As such, the ultrasound technologies developed in these studies have the potential to provide the field of tissue engineering with novel strategies to spatially pattern cells and extracellular matrix components and to vascularize engineered tissue, and thus, could advance the fabrication of functional replacement tissues and organs in the field of tissue engineering.

  10. Emulating Native Periosteum Cell Population and Subsequent Paracrine Factor Production To Promote Tissue Engineered Periosteum-Mediated Allograft Healing

    PubMed Central

    Hoffman, Michael D.

    2015-01-01

    Emulating autograft healing within the context of decellularized bone allografts has immediate clinical applications in the treatment of critical-sized bone defects. The periosteum, a thin, osteogenic tissue that surrounds bone, houses a heterogeneous population of stem cells and osteoprogenitors. There is evidence that periosteum-cell derived paracrine factors, specifically vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2), orchestrate autograft healing through host cell recruitment and subsequent tissue elaboration. In previous work, we demonstrated that the use of poly(ethylene glycol) (PEG) hydrogels as a tissue engineered (T.E.) periosteum to localize mesenchymal stem cells (MSCs) to the surface of decellularized bone enhances allograft healing and integration. Herein, we utilize a mixed population of 50:50 MSCs and osteoprogenitor cells to better mimic native periosteum cell population and paracrine factor production to further promote allograft healing. This mixed cell population was localized to the surface of decellularized allografts within degradable hydrogels and shown to expedite allograft healing. Specifically, bone callus formation and biomechanical graft-host integration are increased as compared to unmodified allografts. These results demonstrate the dual importance of periosteum-mediated paracrine factors orchestrating host cell recruitment as well as new bone formation while developing clinically translatable strategies for allograft healing and integration. PMID:25818449

  11. Unique Metabolic Adaptations Dictate Distal Organ-Specific Metastatic Colonization

    PubMed Central

    Schild, Tanya; Low, Vivien; Blenis, John; Gomes, Ana P.

    2018-01-01

    Summary Metastases arising from tumors have the proclivity to colonize specific organs, suggesting that they must rewire their biology to meet the demands of the organ colonized, thus altering their primary properties. Each metastatic site presents distinct metabolic challenges to a colonizing cancer cell, ranging from fuel and oxygen availability to oxidative stress. Here, we discuss the organ-specific metabolic adaptations cancer cells must undergo, which provide the ability to overcome the unique barriers to colonization in foreign tissues and establish the metastatic tissue tropism phenotype. PMID:29533780

  12. Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation.

    PubMed

    Dueck, Hannah; Khaladkar, Mugdha; Kim, Tae Kyung; Spaethling, Jennifer M; Francis, Chantal; Suresh, Sangita; Fisher, Stephen A; Seale, Patrick; Beck, Sheryl G; Bartfai, Tamas; Kuhn, Bernhard; Eberwine, James; Kim, Junhyong

    2015-06-09

    Differentiation of metazoan cells requires execution of different gene expression programs but recent single-cell transcriptome profiling has revealed considerable variation within cells of seeming identical phenotype. This brings into question the relationship between transcriptome states and cell phenotypes. Additionally, single-cell transcriptomics presents unique analysis challenges that need to be addressed to answer this question. We present high quality deep read-depth single-cell RNA sequencing for 91 cells from five mouse tissues and 18 cells from two rat tissues, along with 30 control samples of bulk RNA diluted to single-cell levels. We find that transcriptomes differ globally across tissues with regard to the number of genes expressed, the average expression patterns, and within-cell-type variation patterns. We develop methods to filter genes for reliable quantification and to calibrate biological variation. All cell types include genes with high variability in expression, in a tissue-specific manner. We also find evidence that single-cell variability of neuronal genes in mice is correlated with that in rats consistent with the hypothesis that levels of variation may be conserved. Single-cell RNA-sequencing data provide a unique view of transcriptome function; however, careful analysis is required in order to use single-cell RNA-sequencing measurements for this purpose. Technical variation must be considered in single-cell RNA-sequencing studies of expression variation. For a subset of genes, biological variability within each cell type appears to be regulated in order to perform dynamic functions, rather than solely molecular noise.

  13. Engineering biosynthetic excitable tissues from unexcitable cells for electrophysiological and cell therapy studies

    PubMed Central

    Kirkton, Robert D.; Bursac, Nenad

    2012-01-01

    Patch-clamp recordings in single-cell expression systems have been traditionally used to study the function of ion channels. However, this experimental setting does not enable assessment of tissue-level function such as action potential (AP) conduction. Here we introduce a biosynthetic system that permits studies of both channel activity in single cells and electrical conduction in multicellular networks. We convert unexcitable somatic cells into an autonomous source of electrically excitable and conducting cells by stably expressing only three membrane channels. The specific roles that these expressed channels have on AP shape and conduction are revealed by different pharmacological and pacing protocols. Furthermore, we demonstrate that biosynthetic excitable cells and tissues can repair large conduction defects within primary 2- and 3-dimensional cardiac cell cultures. This approach enables novel studies of ion channel function in a reproducible tissue-level setting and may stimulate the development of new cell-based therapies for excitable tissue repair. PMID:21556054

  14. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice.

    PubMed

    Welborn, Joshua P; Davis, Matthew G; Ebers, Steven D; Stodden, Genna R; Hayashi, Kanako; Cheatwood, Joseph L; Rao, Manjeet K; MacLean, James A

    2015-07-01

    The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility. © 2015 by the Society for the Study of Reproduction, Inc.

  15. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice1

    PubMed Central

    Welborn, Joshua P.; Davis, Matthew G.; Ebers, Steven D.; Stodden, Genna R.; Hayashi, Kanako; Cheatwood, Joseph L.; Rao, Manjeet K.; MacLean, James A.

    2015-01-01

    The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility. PMID:25972016

  16. Rejuvenating Strategies for Stem Cell-based Therapies in Aging

    PubMed Central

    Neves, Joana; Sousa-Victor, Pedro; Jasper, Heinrich

    2017-01-01

    SUMMARY Recent advances in our understanding of tissue regeneration and the development of efficient approaches to induce and differentiate pluripotent stem cells for cell replacement therapies promise exciting avenues for treating degenerative age-related diseases. However, clinical studies and insights from model organisms have identified major roadblocks that normal aging processes impose on tissue regeneration. These new insights suggest that specific targeting of environmental niche components, including growth factors, ECM and immune cells, and intrinsic stem cell properties that are affected by aging will be critical for development of new strategies to improve stem cell function and optimize tissue repair processes. PMID:28157498

  17. Tissue and cellular localization of tannins in Tunisian dates (Phoenix dactylifera L.) by light and transmission electron microscopy.

    PubMed

    Hammouda, Hédi; Alvarado, Camille; Bouchet, Brigitte; Kalthoum-Chérif, Jamila; Trabelsi-Ayadi, Malika; Guyot, Sylvain

    2014-07-16

    A histological approach including light microscopy and transmission electron microscopy (TEM) was used to provide accurate information on the localization of condensed tannins in the edible tissues and in the stone of date fruits (Phoenix dactylifera L.). Light microscopy was carried out on fresh tissues after staining by 4-dimethylaminocinnamaldehyde (DMACA) for a specific detection of condensed tannins. Thus, whether under light microscopy or transmission electron microscopy (TEM), results showed that tannins are not located in the epidermis but more deeply in the mesocarp in the vacuole of very large cells. Regarding the stones, tannins are found in a specific cell layer located at 50 μm from the sclereid cells of the testa.

  18. Optimization and comprehensive characterization of a faithful tissue culture model of the benign and malignant human prostate.

    PubMed

    Maund, Sophia Lisette; Nolley, Rosalie; Peehl, Donna Mae

    2014-02-01

    Few preclinical models accurately depict normal human prostate tissue or primary prostate cancer (PCa). In vitro systems typically lack complex cellular interactions among structured prostatic epithelia and a stromal microenvironment, and genetic and molecular fidelity are concerns in both in vitro and in vivo models. 'Tissue slice cultures' (TSCs) provide realistic preclinical models of diverse tissues and organs, but have not been fully developed or widely utilized for prostate studies. Problems encountered include degeneration of differentiated secretory cells, basal cell hyperplasia, and poor survival of PCa. Here, we optimized, characterized, and applied a TSC model of primary human PCa and benign prostate tissue that overcomes many deficiencies of current in vitro models. Tissue cores from fresh prostatectomy specimens were precision-cut at 300 μm and incubated in a rotary culture apparatus. The ability of varied culture conditions to faithfully maintain benign and cancer cell and tissue structure and function over time was evaluated by immunohistological and biochemical assays. After optimization of the culture system, molecular and cellular responses to androgen ablation and to piperlongumine (PL), purported to specifically reduce androgen signaling in PCa, were investigated. Optimized culture conditions successfully maintained the structural and functional fidelity of both benign and PCa TSCs for 5 days. TSCs exhibited androgen dependence, appropriately undergoing ductal degeneration, reduced proliferation, and decreased prostate-specific antigen expression upon androgen ablation. Further, TSCs revealed cancer-specific reduction of androgen receptor and increased apoptosis upon treatment with PL, validating data from cell lines. We demonstrate a TSC model that authentically recapitulates the structural, cellular, and genetic characteristics of the benign and malignant human prostate, androgen dependence of the native tissue, and cancer-specific response to a potentially new therapeutic for PCa. The work described herein provides a basis for advancing the experimental utility of the TSC model.

  19. Hallmarks of pluripotency.

    PubMed

    De Los Angeles, Alejandro; Ferrari, Francesco; Xi, Ruibin; Fujiwara, Yuko; Benvenisty, Nissim; Deng, Hongkui; Hochedlinger, Konrad; Jaenisch, Rudolf; Lee, Soohyun; Leitch, Harry G; Lensch, M William; Lujan, Ernesto; Pei, Duanqing; Rossant, Janet; Wernig, Marius; Park, Peter J; Daley, George Q

    2015-09-24

    Stem cells self-renew and generate specialized progeny through differentiation, but vary in the range of cells and tissues they generate, a property called developmental potency. Pluripotent stem cells produce all cells of an organism, while multipotent or unipotent stem cells regenerate only specific lineages or tissues. Defining stem-cell potency relies upon functional assays and diagnostic transcriptional, epigenetic and metabolic states. Here we describe functional and molecular hallmarks of pluripotent stem cells, propose a checklist for their evaluation, and illustrate how forensic genomics can validate their provenance.

  20. Controlling tissue microenvironments: biomimetics, transport phenomena, and reacting systems.

    PubMed

    Fisher, Robert J; Peattie, Robert A

    2007-01-01

    The reconstruction of tissues ex vivo and production of cells capable of maintaining a stable performance for extended time periods in sufficient quantity for synthetic or therapeutic purposes are primary objectives of tissue engineering. The ability to characterize and manipulate the cellular microenvironment is critical for successful implementation of such cell-based bioengineered systems. As a result, knowledge of fundamental biomimetics, transport phenomena, and reaction engineering concepts is essential to system design and development. Once the requirements of a specific tissue microenvironment are understood, the biomimetic system specifications can be identified and a design implemented. Utilization of novel membrane systems that are engineered to possess unique transport and reactive features is one successful approach presented here. The limited availability of tissue or cells for these systems dictates the need for microscale reactors. A capstone illustration based on cellular therapy for type 1 diabetes mellitus via encapsulation techniques is presented as a representative example of this approach, to stress the importance of integrated systems.

  1. Viability of Bioprinted Cellular Constructs Using a Three Dispenser Cartesian Printer.

    PubMed

    Dennis, Sarah Grace; Trusk, Thomas; Richards, Dylan; Jia, Jia; Tan, Yu; Mei, Ying; Fann, Stephen; Markwald, Roger; Yost, Michael

    2015-09-22

    Tissue engineering has centralized its focus on the construction of replacements for non-functional or damaged tissue. The utilization of three-dimensional bioprinting in tissue engineering has generated new methods for the printing of cells and matrix to fabricate biomimetic tissue constructs. The solid freeform fabrication (SFF) method developed for three-dimensional bioprinting uses an additive manufacturing approach by depositing droplets of cells and hydrogels in a layer-by-layer fashion. Bioprinting fabrication is dependent on the specific placement of biological materials into three-dimensional architectures, and the printed constructs should closely mimic the complex organization of cells and extracellular matrices in native tissue. This paper highlights the use of the Palmetto Printer, a Cartesian bioprinter, as well as the process of producing spatially organized, viable constructs while simultaneously allowing control of environmental factors. This methodology utilizes computer-aided design and computer-aided manufacturing to produce these specific and complex geometries. Finally, this approach allows for the reproducible production of fabricated constructs optimized by controllable printing parameters.

  2. 3D multicellular model of shock wave-cell interaction.

    PubMed

    Li, Dongli; Hallack, Andre; Cleveland, Robin O; Jérusalem, Antoine

    2018-05-01

    Understanding the interaction between shock waves and tissue is critical for ad- vancing the use of shock waves for medical applications, such as cancer therapy. This work aims to study shock wave-cell interaction in a more realistic environment, relevant to in vitro and in vivo studies, by using 3D computational models of healthy and cancerous cells. The results indicate that for a single cell embedded in an extracellular environment, the cellular geometry does not influence significantly the membrane strain but does influence the von Mises stress. On the contrary, the presence of neighbouring cells has a strong effect on the cell response, by increasing fourfold both quantities. The membrane strain response of a cell converges with more than three neighbouring cell layers, indicating that a cluster of four layers of cells is sufficient to model the membrane strain in a large domain of tissue. However, a full 3D tissue model is needed if the stress evaluation is of main interest. A tumour mimicking multicellular spheroid model is also proposed to study mutual interaction between healthy and cancer cells and shows that cancer cells can be specifically targeted in an early stage tumour-mimicking environment. This work presents 3D computational models of shock-wave/cell interaction in a biophysically realistic environment using real cell morphology in tissue-mimicking phantom and multicellular spheroid. Results show that cell morphology does not strongly influence the membrane strain but influences the von Mises stress. While the presence of neighbouring cells significantly increases the cell response, four cell layers are enough to capture the membrane strain change in tissue. However, a full tissue model is necessary if accurate stress analysis is needed. The work also shows that cancer cells can be specifically targetted in early stage tumourmimicking environment. This work is a step towards realistic modelling of shock-wave/cell interactions in tissues and provides insight on the use of 3D models for different scenarios. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility.

    PubMed

    Oh, Se Heang; Lee, Jin Ho

    2013-02-01

    Porous scaffolds have been widely used in tissue engineering because they can guide cells and tissues to grow, synthesize extracellular matrix and other biological molecules, and facilitate the formation of functional tissues and organs. Although various natural and synthetic biodegradable polymers have been used to fabricate the scaffolds, synthetic polymers have been more widely used for scaffolds since they have good mechanical strength, reproducible/controllable mechanical-chemical properties, and controllable biodegradation rates. However, the 'hydrophobic character' of common synthetic polymers is considered a limitation for tissue engineering applications because it can lead to a low initial cell seeding density, heterogeneous cell distribution in the scaffold, and slow cell growth due to insufficient absorption/diffusion of cell culture medium into scaffold and lack of specific interaction sites with cells. The hydrophilization of porous synthetic polymer scaffolds has been considered as one of the simple but effective approaches to achieve desirable in vitro cell culture and in vivo tissue regeneration within the scaffolds. In this review paper, representative synthetic biodegradable polymers and techniques to fabricate porous scaffolds are briefly summarized and their hydrophilization techniques to improve cell/tissue compatibility are discussed.

  4. Role of substrate biomechanics in controlling (stem) cell fate: Implications in regenerative medicine.

    PubMed

    Macri-Pellizzeri, Laura; De-Juan-Pardo, Elena M; Prosper, Felipe; Pelacho, Beatriz

    2018-04-01

    Tissue-specific stem cells reside in a specialized environment known as niche. The niche plays a central role in the regulation of cell behaviour and, through the concerted action of soluble molecules, supportive somatic cells, and extracellular matrix components, directs stem cells to proliferate, differentiate, or remain quiescent. Great efforts have been done to decompose and separately analyse the contribution of these cues in the in vivo environment. Specifically, the mechanical properties of the extracellular matrix influence many aspects of cell behaviour, including self-renewal and differentiation. Deciphering the role of biomechanics could thereby provide important insights to control the stem cells responses in a more effective way with the aim to promote their therapeutic potential. In this review, we provide a wide overview of the effect that the microenvironment stiffness exerts on the control of cell behaviour with a particular focus on the induction of stem cells differentiation. We also describe the process of mechanotransduction and the molecular effectors involved. Finally, we critically discuss the potential involvement of tissue biomechanics in the design of novel tissue engineering strategies. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Tissue engineering: construction of a multicellular 3D scaffold for the delivery of layered cell sheets.

    PubMed

    Turner, William S; Sandhu, Nabjot; McCloskey, Kara E

    2014-10-03

    Many tissues, such as the adult human hearts, are unable to adequately regenerate after damage.(2,3) Strategies in tissue engineering propose innovations to assist the body in recovery and repair. For example, TE approaches may be able to attenuate heart remodeling after myocardial infarction (MI) and possibly increase total heart function to a near normal pre-MI level.(4) As with any functional tissue, successful regeneration of cardiac tissue involves the proper delivery of multiple cell types with environmental cues favoring integration and survival of the implanted cell/tissue graft. Engineered tissues should address multiple parameters including: soluble signals, cell-to-cell interactions, and matrix materials evaluated as delivery vehicles, their effects on cell survival, material strength, and facilitation of cell-to-tissue organization. Studies employing the direct injection of graft cells only ignore these essential elements.(2,5,6) A tissue design combining these ingredients has yet to be developed. Here, we present an example of integrated designs using layering of patterned cell sheets with two distinct types of biological-derived materials containing the target organ cell type and endothelial cells for enhancing new vessels formation in the "tissue". Although these studies focus on the generation of heart-like tissue, this tissue design can be applied to many organs other than heart with minimal design and material changes, and is meant to be an off-the-shelf product for regenerative therapies. The protocol contains five detailed steps. A temperature sensitive Poly(N-isopropylacrylamide) (pNIPAAM) is used to coat tissue culture dishes. Then, tissue specific cells are cultured on the surface of the coated plates/micropattern surfaces to form cell sheets with strong lateral adhesions. Thirdly, a base matrix is created for the tissue by combining porous matrix with neovascular permissive hydrogels and endothelial cells. Finally, the cell sheets are lifted from the pNIPAAM coated dishes and transferred to the base element, making the complete construct.

  6. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering.

    PubMed

    Kim, Byoung Soo; Kwon, Yang Woo; Kong, Jeong-Sik; Park, Gyu Tae; Gao, Ge; Han, Wonil; Kim, Moon-Bum; Lee, Hyungseok; Kim, Jae Ho; Cho, Dong-Woo

    2018-06-01

    3D cell-printing technique has been under spotlight as an appealing biofabrication platform due to its ability to precisely pattern living cells in pre-defined spatial locations. In skin tissue engineering, a major remaining challenge is to seek for a suitable source of bioink capable of supporting and stimulating printed cells for tissue development. However, current bioinks for skin printing rely on homogeneous biomaterials, which has several shortcomings such as insufficient mechanical properties and recapitulation of microenvironment. In this study, we investigated the capability of skin-derived extracellular matrix (S-dECM) bioink for 3D cell printing-based skin tissue engineering. S-dECM was for the first time formulated as a printable material and retained the major ECM compositions of skin as well as favorable growth factors and cytokines. This bioink was used to print a full thickness 3D human skin model. The matured 3D cell-printed skin tissue using S-dECM bioink was stabilized with minimal shrinkage, whereas the collagen-based skin tissue was significantly contracted during in vitro tissue culture. This physical stabilization and the tissue-specific microenvironment from our bioink improved epidermal organization, dermal ECM secretion, and barrier function. We further used this bioink to print 3D pre-vascularized skin patch able to promote in vivo wound healing. In vivo results revealed that endothelial progenitor cells (EPCs)-laden 3D-printed skin patch together with adipose-derived stem cells (ASCs) accelerates wound closure, re-epithelization, and neovascularization as well as blood flow. We envision that the results of this paper can provide an insightful step towards the next generation source for bioink manufacturing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.

    PubMed

    Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans

    2016-05-17

    Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs.

  8. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook

    2007-06-29

    Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types,more » including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications.« less

  9. TNFα-Mediated Liver Destruction by Kupffer Cells and Ly6Chi Monocytes during Entamoeba histolytica Infection

    PubMed Central

    Ernst, Thomas; Ittrich, Harald; Jacobs, Thomas; Heeren, Joerg; Tacke, Frank; Tannich, Egbert; Lotter, Hannelore

    2013-01-01

    Amebic liver abscess (ALA) is a focal destruction of liver tissue due to infection by the protozoan parasite Entamoeba histolytica (E. histolytica). Host tissue damage is attributed mainly to parasite pathogenicity factors, but massive early accumulation of mononuclear cells, including neutrophils, inflammatory monocytes and macrophages, at the site of infection raises the question of whether these cells also contribute to tissue damage. Using highly selective depletion strategies and cell-specific knockout mice, the relative contribution of innate immune cell populations to liver destruction during amebic infection was investigated. Neutrophils were not required for amebic infection nor did they appear to be substantially involved in tissue damage. In contrast, Kupffer cells and inflammatory monocytes contributed substantially to liver destruction during ALA, and tissue damage was mediated primarily by TNFα. These data indicate that besides direct antiparasitic drugs, modulating innate immune responses may potentially be beneficial in limiting ALA pathogenesis. PMID:23300453

  10. Antibody-secreting cells in respiratory tract tissues in the absence of eosinophils as supportive partners.

    PubMed

    Sealy, Robert E; Surman, Sherri L; Vogel, Peter; Hurwitz, Julia L

    2016-11-01

    Antibody-secreting cells (ASCs) in respiratory tract tissues provide a first line of defense against invading pathogens. These cells often secrete IgA that is efficiently transcytosed across epithelial barriers into the airway lumen where pathogens can be blocked at their point of entry. Previous literature has reported that in the bone marrow, eosinophils are required for the maintenance of ASCs, and that eosinophils co-localize with ASCs as nearest neighbors. To determine if these rules similarly apply to the maintenance of ASCs in respiratory tract tissues, we evaluated virus-specific responses 1 month and 4 months following an intranasal virus infection of eosinophil-null (∆dblGATA-1) mice. Results showed that ASCs were fractionally reduced, but were nonetheless observed in respiratory tract tissues in the absence of eosinophils. Virus-specific antibodies were similarly observed in the airways of eosinophil-deficient mice. Respiratory tract ASCs were also present in mice lacking neutrophils (Mcl1 ∆M ). The staining of tissue sections from the upper respiratory tract of wild-type mice following viral infections demonstrated that virus-specific ASCs were most frequently situated adjacent to epithelial cells rather than eosinophils or neutrophils. Taken together, these data emphasize that rules for cell maintenance are not absolute and that ASCs can survive in the respiratory tract without eosinophils or neutrophils as their nearest neighbors. © The Japanese Society for Immunology. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Cell-specific dysregulation of microRNA expression in obese white adipose tissue.

    PubMed

    Oger, Frédérik; Gheeraert, Celine; Mogilenko, Denis; Benomar, Yacir; Molendi-Coste, Olivier; Bouchaert, Emmanuel; Caron, Sandrine; Dombrowicz, David; Pattou, François; Duez, Hélène; Eeckhoute, Jérome; Staels, Bart; Lefebvre, Philippe

    2014-08-01

    Obesity is characterized by the excessive accumulation of dysfunctional white adipose tissue (WAT), leading to a strong perturbation of metabolic regulations. However, the molecular events underlying this process are not fully understood. MicroRNAs (miRNAs) are small noncoding RNAs acting as posttranscriptional regulators of gene expression in multiple tissues and organs. However, their expression and roles in WAT cell subtypes, which include not only adipocytes but also immune, endothelial, and mesenchymal stem cells as well as preadipocytes, have not been characterized. Design/Results: By applying differential miRNome analysis, we demonstrate that the expression of several miRNAs is dysregulated in epididymal WAT from ob/ob and high-fat diet-fed mice. Adipose tissue-specific down-regulation of miR-200a and miR-200b and the up-regulation of miR-342-3p, miR-335-5p, and miR-335-3p were observed. Importantly, a similarly altered expression of miR-200a and miR-200b was observed in obese diabetic patients. Furthermore, cell fractionation of mouse adipose tissue revealed that miRNAs are differentially expressed in adipocytes and in subpopulations from the stromal vascular fraction. Finally, integration of transcriptomic data showed that bioinformatically predicted miRNA target genes rarely showed anticorrelated expression with that of targeting miRNA, in contrast to experimentally validated target genes. Taken together, our data indicate that the dysregulated expression of miRNAs occurs in distinct cell types and is likely to affect cell-specific function(s) of obese WAT.

  12. A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity.

    PubMed

    Cerchiari, Alec E; Garbe, James C; Jee, Noel Y; Todhunter, Michael E; Broaders, Kyle E; Peehl, Donna M; Desai, Tejal A; LaBarge, Mark A; Thomson, Matthew; Gartner, Zev J

    2015-02-17

    Developing tissues contain motile populations of cells that can self-organize into spatially ordered tissues based on differences in their interfacial surface energies. However, it is unclear how self-organization by this mechanism remains robust when interfacial energies become heterogeneous in either time or space. The ducts and acini of the human mammary gland are prototypical heterogeneous and dynamic tissues comprising two concentrically arranged cell types. To investigate the consequences of cellular heterogeneity and plasticity on cell positioning in the mammary gland, we reconstituted its self-organization from aggregates of primary cells in vitro. We find that self-organization is dominated by the interfacial energy of the tissue-ECM boundary, rather than by differential homo- and heterotypic energies of cell-cell interaction. Surprisingly, interactions with the tissue-ECM boundary are binary, in that only one cell type interacts appreciably with the boundary. Using mathematical modeling and cell-type-specific knockdown of key regulators of cell-cell cohesion, we show that this strategy of self-organization is robust to severe perturbations affecting cell-cell contact formation. We also find that this mechanism of self-organization is conserved in the human prostate. Therefore, a binary interfacial interaction with the tissue boundary provides a flexible and generalizable strategy for forming and maintaining the structure of two-component tissues that exhibit abundant heterogeneity and plasticity. Our model also predicts that mutations affecting binary cell-ECM interactions are catastrophic and could contribute to loss of tissue architecture in diseases such as breast cancer.

  13. Possible roles of mechanical cell elimination intrinsic to growing tissues from the perspective of tissue growth efficiency and homeostasis.

    PubMed

    Lee, Sang-Woo; Morishita, Yoshihiro

    2017-07-01

    Cell competition is a phenomenon originally described as the competition between cell populations with different genetic backgrounds; losing cells with lower fitness are eliminated. With the progress in identification of related molecules, some reports described the relevance of cell mechanics during elimination. Furthermore, recent live imaging studies have shown that even in tissues composed of genetically identical cells, a non-negligible number of cells are eliminated during growth. Thus, mechanical cell elimination (MCE) as a consequence of mechanical cellular interactions is an unavoidable event in growing tissues and a commonly observed phenomenon. Here, we studied MCE in a genetically-homogeneous tissue from the perspective of tissue growth efficiency and homeostasis. First, we propose two quantitative measures, cell and tissue fitness, to evaluate cellular competitiveness and tissue growth efficiency, respectively. By mechanical tissue simulation in a pure population where all cells have the same mechanical traits, we clarified the dependence of cell elimination rate or cell fitness on different mechanical/growth parameters. In particular, we found that geometrical (specifically, cell size) and mechanical (stress magnitude) heterogeneities are common determinants of the elimination rate. Based on these results, we propose possible mechanical feedback mechanisms that could improve tissue growth efficiency and density/stress homeostasis. Moreover, when cells with different mechanical traits are mixed (e.g., in the presence of phenotypic variation), we show that MCE could drive a drastic shift in cell trait distribution, thereby improving tissue growth efficiency through the selection of cellular traits, i.e. intra-tissue "evolution". Along with the improvement of growth efficiency, cell density, stress state, and phenotype (mechanical traits) were also shown to be homogenized through growth. More theoretically, we propose a mathematical model that approximates cell competition dynamics, by which the time evolution of tissue fitness and cellular trait distribution can be predicted without directly simulating a cell-based mechanical model.

  14. Possible roles of mechanical cell elimination intrinsic to growing tissues from the perspective of tissue growth efficiency and homeostasis

    PubMed Central

    2017-01-01

    Cell competition is a phenomenon originally described as the competition between cell populations with different genetic backgrounds; losing cells with lower fitness are eliminated. With the progress in identification of related molecules, some reports described the relevance of cell mechanics during elimination. Furthermore, recent live imaging studies have shown that even in tissues composed of genetically identical cells, a non-negligible number of cells are eliminated during growth. Thus, mechanical cell elimination (MCE) as a consequence of mechanical cellular interactions is an unavoidable event in growing tissues and a commonly observed phenomenon. Here, we studied MCE in a genetically-homogeneous tissue from the perspective of tissue growth efficiency and homeostasis. First, we propose two quantitative measures, cell and tissue fitness, to evaluate cellular competitiveness and tissue growth efficiency, respectively. By mechanical tissue simulation in a pure population where all cells have the same mechanical traits, we clarified the dependence of cell elimination rate or cell fitness on different mechanical/growth parameters. In particular, we found that geometrical (specifically, cell size) and mechanical (stress magnitude) heterogeneities are common determinants of the elimination rate. Based on these results, we propose possible mechanical feedback mechanisms that could improve tissue growth efficiency and density/stress homeostasis. Moreover, when cells with different mechanical traits are mixed (e.g., in the presence of phenotypic variation), we show that MCE could drive a drastic shift in cell trait distribution, thereby improving tissue growth efficiency through the selection of cellular traits, i.e. intra-tissue “evolution”. Along with the improvement of growth efficiency, cell density, stress state, and phenotype (mechanical traits) were also shown to be homogenized through growth. More theoretically, we propose a mathematical model that approximates cell competition dynamics, by which the time evolution of tissue fitness and cellular trait distribution can be predicted without directly simulating a cell-based mechanical model. PMID:28704373

  15. 3D printing facilitated scaffold-free tissue unit fabrication.

    PubMed

    Tan, Yu; Richards, Dylan J; Trusk, Thomas C; Visconti, Richard P; Yost, Michael J; Kindy, Mark S; Drake, Christopher J; Argraves, William Scott; Markwald, Roger R; Mei, Ying

    2014-06-01

    Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing microdroplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit microdroplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell-cell adhesion, tissue formation and maturation.

  16. From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues.

    PubMed

    Borovjagin, Anton V; Ogle, Brenda M; Berry, Joel L; Zhang, Jianyi

    2017-01-06

    Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional 2-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and preclinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents. © 2017 American Heart Association, Inc.

  17. Construction of bioengineered hepatic tissue derived from human umbilical cord mesenchymal stem cells via aggregation culture in porcine decellularized liver scaffolds.

    PubMed

    Li, Yi; Wu, Qiong; Wang, Yujia; Li, Li; Chen, Fei; Shi, Yujun; Bao, Ji; Bu, Hong

    2017-01-01

    An individualized, tissue-engineered liver suitable for transplanting into a patient with liver disease would be of great benefit to the patient and the healthcare system. The tissue-engineered liver would possess the functions of the original healthy organ. Two fields of study, (i) using decellularized tissue as cell scaffolding, and (ii) stem cell differentiation into functional cells, are coming together to make this concept feasible. The decellularized liver scaffolds (DLS) can interact with cells to promote cell differentiation and signal transduction and three-dimensional (3D) stem cell aggregations can maintain the phenotypes and improve functions of stem cells after differentiation by undergoing cell-cell contact. Although the effects of DLS and stem cell aggregation culture have been intensively studied, few observations about the interaction between the two have been achieved. We established a method that combines the use of decellularized liver scaffolds and aggregation culture of MSCs (3D-DLS) and explored the effects of the two on hepatic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in bioengineered hepatic tissue. A higher percentage of albumin-producing cells, higher levels of liver-specific transcripts, higher urea cycle-related transcripts, and lower levels of stem cell-specific transcripts were observed in the 3D-DLS group when compared to that of hUC-MSCs in monolayer culture (2D), aggregation culture (3D), monolayer on DLS culture (2D-DLS). The gene arrays also indicated that 3D-DLS induced the differentiation from the hUC-MSC phenotype to the PHH phenotype. Liver-specific proteins albumin, CK-18, and glycogen storage were highly positive in the 3D-DLS group. Albumin secretion and ammonia conversion to urea were more effective with a higher cell survival rate in the 3D-DLS group for 14 days. This DLS and aggregation combination culture system provides a novel method to improve hepatic differentiation, maintain phenotype of hepatocyte-like cells and sustain survival for 14 days in vitro. This is a promising strategy to use to construct bioengineered hepatic tissue. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Annexin A2 in Proliferative Vitreoretinopathy

    DTIC Science & Technology

    2016-10-01

    migrate in the presence of macrophages in an in vitro system. In addition, analysis of human retinal tissue from subjects undergoing ocular surgery... tissue from subjects undergoing ocular surgery for PVR reveals the presence of A2- immunoreactive cells that express both macrophage and RPE cell...greatly attenuated in the absence of annexin A2. Task 2: Macrophage depletion and tissue specific knockout. We have completed the characterization

  19. Illegitimate transcription: transcription of any gene in any cell type.

    PubMed Central

    Chelly, J; Concordet, J P; Kaplan, J C; Kahn, A

    1989-01-01

    Using in vitro amplification of cDNA by the polymerase chain reaction, we have detected spliced transcripts of various tissue-specific genes (genes for anti-Müllerian hormone, beta-globin, aldolase A, and factor VIIIc) in human nonspecific cells, such as fibroblasts, hepatoma cells, and lymphoblasts. In rats, erythroid- and liver-type pyruvate kinase transcripts were also detected in brain, lung, and muscle. The abundance of these "illegitimate" transcripts is very low; yet, their existence and the possibility of amplifying them by the cDNA polymerase chain reaction provide a powerful tool to analyze pathological transcripts of any tissue-specific gene by using any accessible cell. Images PMID:2495532

  20. Active Vertex Model for cell-resolution description of epithelial tissue mechanics

    PubMed Central

    Barton, Daniel L.; Henkes, Silke

    2017-01-01

    We introduce an Active Vertex Model (AVM) for cell-resolution studies of the mechanics of confluent epithelial tissues consisting of tens of thousands of cells, with a level of detail inaccessible to similar methods. The AVM combines the Vertex Model for confluent epithelial tissues with active matter dynamics. This introduces a natural description of the cell motion and accounts for motion patterns observed on multiple scales. Furthermore, cell contacts are generated dynamically from positions of cell centres. This not only enables efficient numerical implementation, but provides a natural description of the T1 transition events responsible for local tissue rearrangements. The AVM also includes cell alignment, cell-specific mechanical properties, cell growth, division and apoptosis. In addition, the AVM introduces a flexible, dynamically changing boundary of the epithelial sheet allowing for studies of phenomena such as the fingering instability or wound healing. We illustrate these capabilities with a number of case studies. PMID:28665934

  1. Active Vertex Model for cell-resolution description of epithelial tissue mechanics.

    PubMed

    Barton, Daniel L; Henkes, Silke; Weijer, Cornelis J; Sknepnek, Rastko

    2017-06-01

    We introduce an Active Vertex Model (AVM) for cell-resolution studies of the mechanics of confluent epithelial tissues consisting of tens of thousands of cells, with a level of detail inaccessible to similar methods. The AVM combines the Vertex Model for confluent epithelial tissues with active matter dynamics. This introduces a natural description of the cell motion and accounts for motion patterns observed on multiple scales. Furthermore, cell contacts are generated dynamically from positions of cell centres. This not only enables efficient numerical implementation, but provides a natural description of the T1 transition events responsible for local tissue rearrangements. The AVM also includes cell alignment, cell-specific mechanical properties, cell growth, division and apoptosis. In addition, the AVM introduces a flexible, dynamically changing boundary of the epithelial sheet allowing for studies of phenomena such as the fingering instability or wound healing. We illustrate these capabilities with a number of case studies.

  2. Nano scaffolds and stem cell therapy in liver tissue engineering

    NASA Astrophysics Data System (ADS)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  3. Evaluation of Functionalized Spider Silk Matrices: Choice of Cell Types and Controls are Important for Detecting Specific Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, Jan, E-mail: janne.johansson@ki.se; Rising, Anna, E-mail: janne.johansson@ki.se; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala

    2014-11-06

    The ideal scaffold for engineering and regeneration of tissues would be a replica of the extracellular matrix (ECM), which is unique for each tissue type. The scaffold should mimic the mechanical properties of the targeted tissue and serve as matrix for adhesion, growth, migration, and differentiation of endogenous and/or implanted cells. Recent research has highlighted the potential of targeting also the environment of the intermediate states that are formed during tissue repair, since progenitor cells that contribute to tissue formation in a regenerative niche exist in an environment that is different from the final tissue (e.g., the fracture callus thatmore » is formed during osteogenesis is softer than mature bone tissue) (Polo-Corrales et al., 2014). In addition, the scaffold should not evoke inappropriate immune responses and should be degradable. To improve cell interactions, ECM-derived cell-binding peptide motifs have been extensively used (Sengupta and Heilshorn, 2010; Maia et al.,).« less

  4. Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering.

    PubMed

    Hanson, Summer; D'Souza, Rena N; Hematti, Peiman

    2014-08-01

    Cell-based treatments are being developed as a novel approach for the treatment of many diseases in an effort to repair injured tissues and regenerate lost tissues. Interest in the potential use of multipotent progenitor or stem cells has grown significantly in recent years, specifically the use of mesenchymal stem cells (MSCs), for tissue engineering in combination with extracellular matrix-based scaffolds. An area that warrants further attention is the local or systemic host responses toward the implanted cell-biomaterial constructs. Such immunological responses could play a major role in determining the clinical efficacy of the therapeutic device or biomaterials used. MSCs, due to their unique immunomodulatory properties, hold great promise in tissue engineering as they not only directly participate in tissue repair and regeneration but also modulate the host foreign body response toward the engineered constructs. The purpose of this review was to summarize the current state of knowledge and applications of MSC-biomaterial constructs as a potential immunoregulatory tool in tissue engineering. Better understanding of the interactions between biomaterials and cells could translate to the development of clinically relevant and novel cell-based therapeutics for tissue reconstruction and regenerative medicine.

  5. Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs

    PubMed Central

    Barrera, Leah O.; Li, Zirong; Smith, Andrew D.; Arden, Karen C.; Cavenee, Webster K.; Zhang, Michael Q.; Green, Roland D.; Ren, Bing

    2008-01-01

    By integrating genome-wide maps of RNA polymerase II (Polr2a) binding with gene expression data and H3ac and H3K4me3 profiles, we characterized promoters with enriched activity in mouse embryonic stem cells (mES) as well as adult brain, heart, kidney, and liver. We identified ∼24,000 promoters across these samples, including 16,976 annotated mRNA 5′ ends and 5153 additional sites validating cap-analysis of gene expression (CAGE) 5′ end data. We showed that promoters with CpG islands are typically non-tissue specific, with the majority associated with Polr2a and the active chromatin modifications in nearly all the tissues examined. By contrast, the promoters without CpG islands are generally associated with Polr2a and the active chromatin marks in a tissue-dependent way. We defined 4396 tissue-specific promoters by adapting a quantitative index of tissue-specificity based on Polr2a occupancy. While there is a general correspondence between Polr2a occupancy and active chromatin modifications at the tissue-specific promoters, a subset of them appear to be persistently marked by active chromatin modifications in the absence of detectable Polr2a binding, highlighting the complexity of the functional relationship between chromatin modification and gene expression. Our results provide a resource for exploring promoter Polr2a binding and epigenetic states across pluripotent and differentiated cell types in mammals. PMID:18042645

  6. Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics

    PubMed Central

    Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan

    2016-01-01

    The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics. PMID:26732734

  7. Emerging Functions of Regulatory T Cells in Tissue Homeostasis

    PubMed Central

    Sharma, Amit; Rudra, Dipayan

    2018-01-01

    CD4+Foxp3+ regulatory T-cells (Tregs) are a unique subset of helper T-cells, which regulate immune response and establish peripheral tolerance. Tregs not only maintain the tone and tenor of an immune response by dominant tolerance but, in recent years, have also been identified as key players in resolving tissue inflammation and as mediators of tissue healing. Apart from being diverse in their origin (thymic and peripheral) and location (lymphoid and tissue resident), Tregs are also phenotypically heterogeneous as per the orientation of ongoing immune response. In this review, we discuss the recent advances in the field of Treg biology in general, and non-lymphoid and tissue-resident Tregs in particular. We elaborate upon well-known visceral adipose tissue, colon, skin, and tumor-infiltrating Tregs and newly identified tissue Treg populations as in lungs, skeletal muscle, placenta, and other tissues. Our attempt is to differentiate Tregs based on distinctive properties of their location, origin, ligand specificity, chemotaxis, and specific suppressive mechanisms. Despite ever expanding roles in maintaining systemic homeostasis, Tregs are employed by large varieties of tumors to dampen antitumor immunity. Thus, a comprehensive understanding of Treg biology in the context of inflammation can be instrumental in effectively managing tissue transplantation, autoimmunity, and antitumor immune responses. PMID:29887862

  8. Generation of functional organs from stem cells.

    PubMed

    Liu, Yunying; Yang, Ru; He, Zuping; Gao, Wei-Qiang

    2013-01-01

    We are now well entering the exciting era of stem cells. Potential stem cell therapy holds great promise for the treatment of many diseases such as stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, amyotrophic lateral-sclerosis, myocardial infarction, muscular dystrophy, diabetes, and etc. It is generally believed that transplantation of specific stem cells into the injured tissue to replace the lost cells is an effective way to repair the tissue. In fact, organ transplantation has been successfully practiced in clinics for liver or kidney failure. However, the severe shortage of donor organs has been a major obstacle for the expansion of organ transplantation programs. Toward that direction, generation of transplantable organs using stem cells is a desirable approach for organ replacement and would be of great interest for both basic and clinical scientists. Here we review recent progress in the field of organ generation using various methods including single adult tissue stem cells, a blastocyst complementation system, tissue decellularization/recellularization and a combination of stem cells and tissue engineering.

  9. An atlas of histone deacetylase expression in breast cancer: fluorescence methodology for comparative semi-quantitative analysis

    PubMed Central

    Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    The histone deacetylase inhibitors, suberoylanilide hydroxamic acid (Vorinostat, Zolinza™) and depsipeptide (Romidepsin, Istodax™) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Numerous histone deacetylase inhibitors are currently undergoing clinical trials, predominantly in combination with other cancer modalities, for the treatment of various haematological and solid malignancies. Most of the traditional compounds are known as broad-spectrum or pan-histone deacetylase inhibitors, possessing activity against a number of the 11 metal-dependent enzymes. One of the main questions in the field is whether class- or isoform-specific compounds would offer a therapeutic benefit compared to broad-spectrum inhibitors. Therefore, analysis of the relative expression of the different histone deacetylase enzymes in cancer cells and tissues is important to determine whether there are specific targets. We used a panel of antibodies directed against the 11 known mammalian histone deacetylases to determine expression levels in MCF7 breast cancer cells and in tissue representative of invasive ductal cell carcinoma and ductal carcinoma in situ. Firstly, we utilized a semi-quantitative method based on immunofluorescence staining to examine expression of the different histone deacetylases in MCF7 cells. Our findings indicate high expression levels of HDAC1, 3 and 6 in accordance with findings from others using RT-PCR and immunoblotting. Following validation of our approach we examined the expression of the different isoforms in representative control and breast cancer tissue. In general, our findings indicate higher expression of class I histone deacetylases compared to class II enzymes in breast cancer tissue. Analysis of individual cancer cells in the same tissue indicated marked heterogeneity in the expression of most class I enzymes indicating potential complications with the use of class- or isoform-specific compounds. Overall, our approach can be utilized to rapidly compare, in an unbiased semi-quantitative manner, the differential levels of expression of histone deacetylase enzymes in cells and tissues using widely available imaging software. It is anticipated that such analysis will become increasingly important as class- or isoform-specific histone deacetylase inhibitors become more readily available. PMID:22347520

  10. An atlas of histone deacetylase expression in breast cancer: fluorescence methodology for comparative semi-quantitative analysis.

    PubMed

    Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    The histone deacetylase inhibitors, suberoylanilide hydroxamic acid (Vorinostat, Zolinza™) and depsipeptide (Romidepsin, Istodax™) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Numerous histone deacetylase inhibitors are currently undergoing clinical trials, predominantly in combination with other cancer modalities, for the treatment of various haematological and solid malignancies. Most of the traditional compounds are known as broad-spectrum or pan-histone deacetylase inhibitors, possessing activity against a number of the 11 metal-dependent enzymes. One of the main questions in the field is whether class- or isoform-specific compounds would offer a therapeutic benefit compared to broad-spectrum inhibitors. Therefore, analysis of the relative expression of the different histone deacetylase enzymes in cancer cells and tissues is important to determine whether there are specific targets. We used a panel of antibodies directed against the 11 known mammalian histone deacetylases to determine expression levels in MCF7 breast cancer cells and in tissue representative of invasive ductal cell carcinoma and ductal carcinoma in situ. Firstly, we utilized a semi-quantitative method based on immunofluorescence staining to examine expression of the different histone deacetylases in MCF7 cells. Our findings indicate high expression levels of HDAC1, 3 and 6 in accordance with findings from others using RT-PCR and immunoblotting. Following validation of our approach we examined the expression of the different isoforms in representative control and breast cancer tissue. In general, our findings indicate higher expression of class I histone deacetylases compared to class II enzymes in breast cancer tissue. Analysis of individual cancer cells in the same tissue indicated marked heterogeneity in the expression of most class I enzymes indicating potential complications with the use of class- or isoform-specific compounds. Overall, our approach can be utilized to rapidly compare, in an unbiased semi-quantitative manner, the differential levels of expression of histone deacetylase enzymes in cells and tissues using widely available imaging software. It is anticipated that such analysis will become increasingly important as class- or isoform-specific histone deacetylase inhibitors become more readily available.

  11. Expression and distribution of endocan in human tissues.

    PubMed

    Zhang, S M; Zuo, L; Zhou, Q; Gui, S Y; Shi, R; Wu, Q; Wei, W; Wang, Y

    2012-04-01

    Endocan is a novel human endothelial cell specific molecule. Its expression is regulated by cytokines and vascular endothelial growth factor (VEGF). The distribution of endocan in normal human tissues, however, remains unclear. We examined the expression of endocan in normal human tissue using immunohistochemical stains. Endocan was expressed in actively proliferative or neogeneic tissues and cells such as glandular tissues, endothelium of neovasculature, bronchial epithelium, germinal centers of lymph nodes etc. Endocan was not present in silent or resting tissues or cells such as endothelium of great arteries and spleen etc. Our findings suggest that endocan may act as a marker for angiogenesis or oncogenesis and could be regarded as a candidate gene for inflammatory tissue, neoplasia, tumor development and metastasis. The expression level of endocan may assist early diagnosis and prognosis of some tumors.

  12. Bioprinting for Neural Tissue Engineering.

    PubMed

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways

    PubMed Central

    Mitsche, Matthew A; McDonald, Jeffrey G; Hobbs, Helen H; Cohen, Jonathan C

    2015-01-01

    Two parallel pathways produce cholesterol: the Bloch and Kandutsch-Russell pathways. Here we used stable isotope labeling and isotopomer analysis to trace sterol flux through the two pathways in mice. Surprisingly, no tissue used the canonical K–R pathway. Rather, a hybrid pathway was identified that we call the modified K–R (MK–R) pathway. Proportional flux through the Bloch pathway varied from 8% in preputial gland to 97% in testes, and the tissue-specificity observed in vivo was retained in cultured cells. The distribution of sterol isotopomers in plasma mirrored that of liver. Sterol depletion in cultured cells increased flux through the Bloch pathway, whereas overexpression of 24-dehydrocholesterol reductase (DHCR24) enhanced usage of the MK–R pathway. Thus, relative use of the Bloch and MK–R pathways is highly variable, tissue-specific, flux dependent, and epigenetically fixed. Maintenance of two interdigitated pathways permits production of diverse bioactive sterols that can be regulated independently of cholesterol. DOI: http://dx.doi.org/10.7554/eLife.07999.001 PMID:26114596

  14. Tissue specific specialization of the nanoscale architecture of Arabidopsis.

    PubMed

    Liu, Jiliang; Inouye, Hideyo; Venugopalan, Nagarajan; Fischetti, Robert F; Gleber, S Charlotte; Vogt, Stefan; Cusumano, Joanne C; Kim, Jeong Im; Chapple, Clint; Makowski, Lee

    2013-11-01

    The Arabidopsis stem is composed of five tissues - the pith, xylem, phloem, cortex and epidermis - each of which fulfills specific roles in support of the growth and survival of the organism. The lignocellulosic scaffolding of cell walls is specialized to provide optimal support for the diverse functional roles of these layers, but little is known about this specialization. X-ray scattering can be used to study this tissue-specific diversity because the cellulosic components of the cell walls give rise to recognizable scattering features interpretable in terms of the underlying molecular architecture and distinct from the largely unoriented scatter from other constituents. Here we use scanning X-ray microdiffraction from thin sections to characterize the diversity of molecular architecture in the Arabidopsis stem and correlate that diversity to the functional roles the distinct tissues of the stem play in the growth and survival of the organism. Copyright © 2013. Published by Elsevier Inc.

  15. Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine

    PubMed Central

    Lee, Vivian K.; Dai, Guohao

    2016-01-01

    3-D cell printing, which can accurately deposit cells, biomaterial scaffolds and growth factors in precisely defined spatial patterns to form biomimetic tissue structures, has emerged as a powerful enabling technology to create live tissue and organ structures for drug discovery and tissue engineering applications. Unlike traditional 3-D printing that uses metals, plastics and polymers as the printing materials, cell printing has to be compatible with living cells and biological matrix. It is also required that the printing process preserves the biological functions of the cells and extracellular matrix, and to mimic the cell-matrix architectures and mechanical properties of the native tissues. Therefore, there are significant challenges in order to translate the technologies of traditional 3-D printing to cell printing, and ultimately achieve functional outcomes in the printed tissues. So it is essential to develop new technologies specially designed for cell printing and in-depth basic research in the bioprinted tissues, such as developing novel biomaterials specifically for cell printing applications, understanding the complex cell-matrix remodeling for the desired mechanical properties and functional outcomes, establishing proper vascular perfusion in bioprinted tissues, etc. In recent years, many exciting research progresses have been made in the 3-D cell printing technology and its application in engineering live tissue constructs. This review paper summarized the current development in 3-D cell printing technologies; focus on the outcomes of the live printed tissues and their potential applications in drug discovery and regenerative medicine. Current challenges and limitations are highlighted, and future directions of 3-D cell printing technology are also discussed. PMID:27066784

  16. From Three-Dimensional Cell Culture to Organs-on-Chips

    PubMed Central

    Huh, Dongeun; Hamilton, Geraldine A.; Ingber, Donald E.

    2014-01-01

    Three-dimensional (3D) cell culture models have recently garnered great attention because they often promote levels of cell differentiation and tissue organization not possible in conventional two-dimensional (2D) culture systems. Here, we review new advances in 3D culture that leverage microfabrication technologies from the microchip industry and microfluidics approaches to create cell culture microenvironments that both support tissue differentiation and recapitulate the tissue-tissue interfaces, spatiotemporal chemical gradients, and mechanical microenvironments of living organs. These ‘organs-on-chips’ permit study of human physiology in an organ-specific context, enable development of novel in vitro disease models, and could potentially serve as replacements for animals used in drug development and toxin testing. PMID:22033488

  17. The Hippo signaling pathway in stem cell biology and cancer

    PubMed Central

    Mo, Jung-Soon; Park, Hyun Woo; Guan, Kun-Liang

    2014-01-01

    The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer. PMID:24825474

  18. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    PubMed Central

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  19. Use of a conformational switching aptamer for rapid and specific ex vivo identification of central nervous system lymphoma in a xenograft model

    NASA Astrophysics Data System (ADS)

    Georges, Joseph F.; Liu, Xiaowei; Eschbacher, Jennifer; Nichols, Joshua; Mooney, Michael A.; Joy, Anna; Spetzler, Robert F.; Feuerstein, Burt G.; Anderson, Trent; Preul, Mark C.; Yan, Hao; Nakaji, Peter

    2018-02-01

    Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 10 minutes of incubation. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making.

  20. Specification of embryonic stem cell-derived tissues into eye fields by Wnt signaling using rostral diencephalic tissue-inducing culture.

    PubMed

    Sakakura, Eriko; Eiraku, Mototsugu; Takata, Nozomu

    2016-08-01

    The eyes are subdivided from the rostral diencephalon in early development. How the neuroectoderm regulates this subdivision, however, is largely unknown. Taking advantage of embryonic stem cell (ESC) culture using a Rax reporter line to monitor rostral diencephalon formation, we found that ESC-derived tissues at day 7 grown in Glasgow Minimum Expression Media (GMEM) containing knockout serum replacement (KSR) exhibited higher levels of expression of axin2, a Wnt target gene, than those grown in chemically defined medium (CDM). Surprisingly, Wnt agonist facilitated eye field-like tissue specification in CDM. In contrast, the addition of Wnt antagonist diminished eye field tissue formation in GMEM+KSR. Furthermore, the morphological formation of the eye tissue anlage, including the optic vesicle, was accompanied by Wnt signaling activation. Additionally, using CDM culture, we developed an efficient method for generating Rax+/Chx10+ retinal progenitors, which could become fully stratified retina. Here we provide a new avenue for exploring the mechanisms of eye field specification in vitro. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Endocrinology of sex steroid hormones and cell dynamics in the periodontium.

    PubMed

    Mariotti, Angelo; Mawhinney, Michael

    2013-02-01

    Numerous scientific studies assert the existence of hormone-sensitive periodontal tissues. Tissue specificity of hormone localization, identification of hormone receptors and the metabolism of hormones are evidence that periodontal tissues are targets for sex steroid hormones. Although the etiologies of periodontal endocrinopathies are diverse, periodontal pathologies are primarily the consequence of the actions and interactions of sex steroid hormones on specific cells found in the periodontium. This review provides a broad overview of steroid hormone physiology, evidence for the periodontium being a target tissue for sex steroid hormones and theories regarding the roles of sex steroid hormones in periodontal pathogenesis. Using this information, a teleological argument for the actions of steroid hormones in the periodontium is assessed.

  2. Mesenchymal Stem Cell Levels of Human Spinal Tissues.

    PubMed

    Harris, Liam; Vangsness, C Thomas

    2018-05-01

    Systematic review. The aim of this study was to investigate, quantify, compare, and compile the various mesenchymal stem cell (MSC) tissue sources within human spinal tissues to act as a compendium for clinical and research application. Recent years have seen a dramatic increase in academic and clinical understanding of human MSCs. Previously limited to cells isolated from bone marrow, the past decade has illicited the characterization and isolation of human MSCs from adipose, bone marrow, synovium, muscle, periosteum, peripheral blood, umbilical cord, placenta, and numerous other tissues. As researchers explore practical applications of cells in these tissues, the absolute levels of MSCs in specific spinal tissue will be critical to guide future research. The PubMED, MEDLINE, EMBASE, and Cochrane databases were searched for articles relating to the harvest, characterization, isolation, and quantification of human MSCs from spinal tissues. Selected articles were examined for relevant data, categorized according to type of spinal tissue, and when possible, standardized to facilitate comparisons between sites. Human MSC levels varied widely between spinal tissues. Yields for intervertebral disc demonstrated roughly 5% of viable cells to be positive for MSC surface markers. Cartilage endplate cells yielded 18,500 to 61,875 cells/0.8 mm thick sample of cartilage end plate. Ligamentum flavum yielded 250,000 to 500,000 cells/g of tissue. Annulus fibrosus fluorescence activated cell sorting treatment found 29% of cells positive for MSC marker Stro-1. Nucleus pulposus yielded mean tissue samples of 40,584 to 234,137 MSCs per gram of tissue. Numerous tissues within and surrounding the spine represent a consistent and reliable source for the harvest and isolation of human MSCs. Among the tissues of the spine, the annulus fibrosus and ligamentum flavum each offer considerable levels of MSCs, and may prove comparable to that of bone marrow. 5.

  3. A difunctional squarylium indocyanine dye distinguishes dead cells through diverse staining of the cell nuclei/membranes.

    PubMed

    Li, Jie; Guo, Kunru; Shen, Jie; Yang, Wantai; Yin, Meizhen

    2014-04-09

    Functionalized fluorescent dyes have attracted great interest for the specific staining of subcellular organelles in multicellular organisms. A novel nanometer-sized water-soluble multi-functional squarylium indocyanine dye (D1) that contains four primary amines is synthesized. The dye exhibits good photostability, non-toxicity and biocompatibility. Isothermal titration calorimetry demonstrates that an affinity between D1 and DNA is higher than that between D1 and analogue of phospholipids. Analysis of circular dichroism spectra indicates that D1 targets to the DNA minor groove and aggregates to a helix. Because of the distinct affinity between the dye and subcellular organelles, the dye exhibits difunctional abilities to label the cell nuclei in fixed cells/tissue and the cell membranes in live cells/tissue. By combination of the two staining capabilities, the dye is further explored as a specific marker to distinguish apoptotic cells in live cells/tissue. The research opens a new way to design novel multifunctional dyes for life science applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. bmp15l, figla, smc1bl, and larp6l are preferentially expressed in germ cells in Atlantic salmon (Salmo salar L.).

    PubMed

    Kleppe, Lene; Edvardsen, Rolf Brudvik; Furmanek, Tomasz; Andersson, Eva; Juanchich, Amélie; Wargelius, Anna

    2017-01-01

    Atlantic salmon is a valuable commercial aquaculture species that would benefit economically and environmentally by controlling precocious puberty and preventing escapees from reproducing with wild populations. One solution to both these challenges is the production of sterile individuals by inhibiting the formation of germ cells, but achieving this requires more information on the specific factors that control germ cell formation. Here, we identified and characterized novel factors that are preferentially expressed in Atlantic salmon germ cells by screening for gonad-specific genes using available adult multi-tissue transcriptomes. We excluded genes with expression in tissues other than gonads based on quantity of reads, and then a subset of genes was selected for verification in a multi-tissue PCR screen. Four gonad-specific genes (bmp15l, figla, smc1bl, and larp6l) were chosen for further characterization, namely: germ cell specificity, investigated by comparing mRNA abundance in wild-type and germ cell-free gonads by quantitative real-time PCR, and cellular location, visualized by in situ hybridization. All four genes were expressed in both testis and ovary, and preferentially within the germ cells of both sexes. These genes may be essential players in salmon germ cell development, and could be important for future studies aiming to understand and control reproduction. Mol. Reprod. Dev. 84: 76-87, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Immunolocalization of a glycosylphosphatidylinositol-specific phospholipase D in mast cells found in normal tissue and neurofibromatosis lesions.

    PubMed

    Metz, C N; Thomas, P; Davitz, M A

    1992-06-01

    A large number of eukaryotic proteins have been shown to be anchored to the cell membrane by glycosylphosphatidylinositol (GPI). This glycolipid anchor can serve as a substrate for anchor-specific phospholipases that convert the GPI-anchored membrane proteins into soluble forms. Soluble forms of many GPI anchored proteins have been identified in vivo in connective tissue, plasma, and urine. The authors have discovered that mammalian plasma contains a GPI-specific phospholipase D (GPI-PLD). Because it recognizes a portion of the conserved glycan core structure, all GPI-anchored proteins are potential substrates. The authors report the development of a murine monoclonal antibody specific for one form of the human GPI-PLD and the immunohistochemical localization of this enzyme to mast cells.

  6. Tissue specific localization of pectin-Ca²⁺ cross-linkages and pectin methyl-esterification during fruit ripening in tomato (Solanum lycopersicum).

    PubMed

    Hyodo, Hiromi; Terao, Azusa; Furukawa, Jun; Sakamoto, Naoya; Yurimoto, Hisayoshi; Satoh, Shinobu; Iwai, Hiroaki

    2013-01-01

    Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca²⁺) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue-tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.

  7. Microstructure based hygromechanical modelling of deformation of fruit tissue

    NASA Astrophysics Data System (ADS)

    Abera, M. K.; Wang, Z.; Verboven, P.; Nicolai, B.

    2017-10-01

    Quality parameters such as firmness and susceptibility to mechanical damage are affected by the mechanical properties of fruit tissue. Fruit tissue is composed of turgid cells that keep cell walls under tension, and intercellular gas spaces where cell walls of neighboring cells have separated. How the structure and properties of these complex microstructures are affecting tissue mechanics is difficult to unravel experimentally. In this contribution, a modelling methodology is presented to calculate the deformation of apple fruit tissue affected by differences in structure and properties of cells and cell walls. The model can be used to perform compression experiments in silico using a hygromechanical model that computes the stress development and water loss during tissue deformation, much like in an actual compression test. The advantage of the model is that properties and structure can be changed to test the influence on the mechanical deformation process. The effect of microstructure, turgor pressure, cell membrane permeability, wall thickness and damping) on the compressibility of the tissue was simulated. Increasing the turgor pressure and thickness of the cell walls results in increased compression resistance of apple tissue increases, as do decreasing cell size and porosity. Geometric variability of the microstructure of tissues plays a major role, affecting results more than other model parameters. Different fruit cultivars were compared, and it was demonstrated, that microstructure variations within a cultivar are so large that interpretation of cultivar-specific effects is difficult.

  8. Identification of a cardiac specific protein transduction domain by in vivo biopanning using a M13 phage peptide display library in mice.

    PubMed

    Zahid, Maliha; Phillips, Brett E; Albers, Sean M; Giannoukakis, Nick; Watkins, Simon C; Robbins, Paul D

    2010-08-17

    A peptide able to transduce cardiac tissue specifically, delivering cargoes to the heart, would be of significant therapeutic potential for delivery of small molecules, proteins and nucleic acids. In order to identify peptide(s) able to transduce heart tissue, biopanning was performed in cell culture and in vivo with a M13 phage peptide display library. A cardiomyoblast cell line, H9C2, was incubated with a M13 phage 12 amino acid peptide display library. Internalized phage was recovered, amplified and then subjected to a total of three rounds of in vivo biopanning where infectious phage was isolated from cardiac tissue following intravenous injection. After the third round, 60% of sequenced plaques carried the peptide sequence APWHLSSQYSRT, termed cardiac targeting peptide (CTP). We demonstrate that CTP was able to transduce cardiomyocytes functionally in culture in a concentration and cell-type dependent manner. Mice injected with CTP showed significant transduction of heart tissue with minimal uptake by lung and kidney capillaries, and no uptake in liver, skeletal muscle, spleen or brain. The level of heart transduction by CTP also was greater than with a cationic transduction domain. Biopanning using a peptide phage display library identified a peptide able to transduce heart tissue in vivo efficiently and specifically. CTP could be used to deliver therapeutic peptides, proteins and nucleic acid specifically to the heart.

  9. Three-dimensional cell to tissue development process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)

    2008-01-01

    An improved three-dimensional cell to tissue development process using a specific time varying electromagnetic force, pulsed, square wave, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region.

  10. Hormonal and gravitropic specificity in the regulation of growth and cell wall synthesis in pulvini and internodes from shoots of Avena sativa L. (oat).

    PubMed Central

    Montague, M J

    1995-01-01

    Segments can be cut from the peduncular-1 internode of oat (Avena sativa L.) shoots so as to contain the graviresponsive leaf-sheath pulvinus and gibberellin-sensitive internodal tissue. Incorporation of [14C]glucose was used to monitor cell wall synthesis in these two tissues as affected by gravistimulus, indoleacetic acid (IAA), gibberellic acid (GA3), and fusicoccin (FC). Pulvinar cell wall synthesis was promoted by IAA and FC (both within about 1 h), as well as by gravistimulus (starting between 3 and 6 h), whereas GA3 had no effect on nongravistimulated pulvini. In contrast, GA3 and FC promoted internodal cell wall synthesis (initiated between 1 and 2 h), whereas IAA and gravistimulus caused a decrease in internodal uptake. FC preferentially promoted incorporation into the matrix component of the wall in both tissues. Gravistimulus failed to increase responsiveness of pulvinar tissue to IAA, whereas GA3 partially overcame gravistimulus-promoted incorporation into pulvinar cell wall, probably because of preferential movement of label into the rapidly elongating internode. The results demonstrate that these eight stimulus/tissue combinations can be examined easily in an isolated 10-mm stem segment, providing new opportunities for the comparative study of tissue- and stimulus-specific events in gene regulation and signal transduction in agronomically important cereals. PMID:11536686

  11. Tissue non-specific alkaline phosphatase production by human dental pulp stromal cells is enhanced by high density cell culture.

    PubMed

    Tomlinson, Matthew J; Dennis, Caitriona; Yang, Xuebin B; Kirkham, Jennifer

    2015-08-01

    The cell surface hydrolase tissue non-specific alkaline phosphatase (TNAP) (also known as MSCA-1) is used to identify a sub-population of bone marrow stromal cells (BMSCs) with high mineralising potential and is found on subsets of cells within the dental pulp. We aim to determine whether TNAP is co-expressed by human dental pulp stromal cells (hDPSCs) alongside a range of BMSC markers, whether this is an active form of the enzyme and the effects of culture duration and cell density on its expression. Cells from primary dental pulp and culture expanded hDPSCs expressed TNAP. Subsequent analyses revealed persistent TNAP expression and co-expression with BMSC markers such as CD73 and CD90. Flow cytometry and biochemical assays showed that increased culture durations and cell densities enhanced TNAP expression by hDPSCs. Arresting the hDPSC cell cycle also increased TNAP expression. These data confirm that TNAP is co-expressed by hDPSCs together with other BMSC markers and show that cell density affects TNAP expression levels. We conclude that TNAP is a potentially useful marker for hDPSC selection especially for uses in mineralised tissue regenerative therapies.

  12. Biomimicry in biomedical research

    PubMed Central

    Zhang, Ge

    2012-01-01

    Biomimicry (literally defined as the imitation of life or nature) has sparked a variety of human innovations and inspired countless cutting-edge designs. From spider silk-made artificial skin to lotus leaf-inspired self-cleaning materials, biomimicry endeavors to solve human problems. Biomimetic approaches have contributed significantly to advances biomedical research during recent years. Using polyacrylamide gels to mimic the elastic modulus of different biological tissues, Disher’s lab has directed meschymal stem cell differentiation into specific lineages.1 They have shown that soft substrates mimicking the elastic modulus of brain tissues (0.1~1 kPa) were neurogenic, substrates of intermediate elastic modulus mimicking muscle (8 ~17 kPa) were myogenic, and substrates with bone-like elastic modulus (25~40 kPa) were osteogenic. This work represents a novel way to regulate the fate of stem cells and exerts profound influence on stem cell research. Biomimcry also drives improvements in tissue engineering. Novel scaffolds have been designed to capture extracellular matrix-like structures, binding of ligands, sustained release of cytokines, and mechanical properties intrinsic to specific tissues for tissue engineering applications.2,3 For example, tissue engineering skin grafts have been designed to mimic the cell composition and layered structure of native skin.4 Similarly, in the field of regenerative medicine, researchers aim to create biomimetic scaffolds to mimic the properties of a native stem cell environment (niche) to dynamically interact with the entrapped stem cells and direct their response.5 PMID:23275257

  13. Macrophages: development and tissue specialization.

    PubMed

    Varol, Chen; Mildner, Alexander; Jung, Steffen

    2015-01-01

    Macrophages are myeloid immune cells that are strategically positioned throughout the body tissues, where they ingest and degrade dead cells, debris, and foreign material and orchestrate inflammatory processes. Here we review two major recent paradigm shifts in our understanding of tissue macrophage biology. The first is the realization that most tissue-resident macrophages are established prenatally and maintained through adulthood by longevity and self-renewal. Their generation and maintenance are thus independent from ongoing hematopoiesis, although the cells can be complemented by adult monocyte-derived macrophages. Second, aside from being immune sentinels, tissue macrophages form integral components of their host tissue. This entails their specialization in response to local environmental cues to contribute to the development and specific function of their tissue of residence. Factors that govern tissue macrophage specialization are emerging. Moreover, tissue specialization is reflected in discrete gene expression profiles of macrophages, as well as epigenetic signatures reporting actual and potential enhancer usage.

  14. Relating cell and tissue mechanics: implications and applications.

    PubMed

    Jakab, Karoly; Damon, Brook; Marga, Françoise; Doaga, Octavian; Mironov, Vladimir; Kosztin, Ioan; Markwald, Roger; Forgacs, Gabor

    2008-09-01

    The Differential Adhesion Hypothesis (DAH) posits that differences in adhesion provide the driving force for morphogenetic processes. A manifestation of differential adhesion is tissue liquidity and a measure for it is tissue surface tension. In terms of this property, DAH correctly predicts global developmental tissue patterns. However, it provides little information on how these patterns arise from the movement and shape changes of cells. We provide strong qualitative and quantitative support for tissue liquidity both in true developmental context and in vitro assays. We follow the movement and characteristic shape changes of individual cells in the course of specific tissue rearrangements leading to liquid-like configurations. Finally, we relate the measurable tissue-liquid properties to molecular entities, whose direct determination under realistic three-dimensional culture conditions is not possible. Our findings confirm the usefulness of tissue liquidity and provide the scientific underpinning for a novel tissue engineering technology.

  15. Stable phenotype of B-cell subsets following cryopreservation and thawing of normal human lymphocytes stored in a tissue biobank.

    PubMed

    Rasmussen, Simon Mylius; Bilgrau, Anders Ellern; Schmitz, Alexander; Falgreen, Steffen; Bergkvist, Kim Steve; Tramm, Anette Mai; Baech, John; Jacobsen, Chris Ladefoged; Gaihede, Michael; Kjeldsen, Malene Krag; Bødker, Julie Støve; Dybkaer, Karen; Bøgsted, Martin; Johnsen, Hans Erik

    2015-01-01

    Cryopreservation is an acknowledged procedure to store vital cells for future biomarker analyses. Few studies, however, have analyzed the impact of the cryopreservation on phenotyping. We have performed a controlled comparison of cryopreserved and fresh cellular aliquots prepared from individual healthy donors. We studied circulating B-cell subset membrane markers and global gene expression, respectively by multiparametric flow cytometry and microarray data. Extensive statistical analysis of the generated data tested the concept that "overall, there are no phenotypic differences between cryopreserved and fresh B-cell subsets." Subsequently, we performed an uncontrolled comparison of tonsil tissue samples. By multiparametric flow analysis, we documented no significant changes following cryopreservation of subset frequencies or membrane intensity for the differentiation markers CD19, CD20, CD22, CD27, CD38, CD45, and CD200. By gene expression profiling following cryopreservation, across all samples, only 16 out of 18708 genes were significantly up or down regulated, including FOSB, KLF4, RBP7, ANXA1 or CLC, DEFA3, respectively. Implementation of cryopreserved tissue in our research program allowed us to present a performance analysis, by comparing cryopreserved and fresh tonsil tissue. As expected, phenotypic differences were identified, but to an extent that did not affect the performance of the cryopreserved tissue to generate specific B-cell subset associated gene signatures and assign subset phenotypes to independent tissue samples. We have confirmed our working concept and illustrated the usefulness of vital cryopreserved cell suspensions for phenotypic studies of the normal B-cell hierarchy; however, storage procedures need to be delineated by tissue-specific comparative analysis. © 2014 Clinical Cytometry Society.

  16. Stable Phenotype Of B-Cell Subsets Following Cryopreservation and Thawing of Normal Human Lymphocytes Stored in a Tissue Biobank.

    PubMed

    Rasmussen, Simon Mylius; Bilgrau, Anders Ellern; Schmitz, Alexander; Falgreen, Steffen; Bergkvist, Kim Steve; Tramm, Anette Mai; Baech, John; Jacobsen, Chris Ladefoged; Gaihede, Michael; Kjeldsen, Malene Krag; Bødker, Julie Støve; Dybkaer, Karen; Bøgsted, Martin; Johnsen, Hans Erik

    2014-09-20

    Background Cryopreservation is an acknowledged procedure to store vital cells for future biomarker analyses. Few studies, however, have analyzed the impact of the cryopreservation on phenotyping. Methods We have performed a controlled comparison of cryopreserved and fresh cellular aliquots prepared from individual healthy donors. We studied circulating B-cell subset membrane markers and global gene expression, respectively by multiparametric flow cytometry and microarray data. Extensive statistical analysis of the generated data tested the concept that "overall, there are phenotypic differences between cryopreserved and fresh B-cell subsets". Subsequently, we performed a consecutive uncontrolled comparison of tonsil tissue samples. Results By multiparametric flow analysis, we documented no significant changes following cryopreservation of subset frequencies or membrane intensity for the differentiation markers CD19, CD20, CD22, CD27, CD38, CD45, and CD200. By gene expression profiling following cryopreservation, across all samples, only 16 out of 18708 genes were significantly up or down regulated, including FOSB, KLF4, RBP7, ANXA1 or CLC, DEFA3, respectively. Implementation of cryopreserved tissue in our research program allowed us to present a performance analysis, by comparing cryopreserved and fresh tonsil tissue. As expected, phenotypic differences were identified, but to an extent that did not affect the performance of the cryopreserved tissue to generate specific B-cell subset associated gene signatures and assign subset phenotypes to independent tissue samples. Conclusions We have confirmed our working concept and illustrated the usefulness of vital cryopreserved cell suspensions for phenotypic studies of the normal B-cell hierarchy; however, storage procedures need to be delineated by tissue specific comparative analysis. © 2014 Clinical Cytometry Society. Copyright © 2014 Clinical Cytometry Society.

  17. Application of laser-capture microdissection to analysis of gene expression in the testis.

    PubMed

    Sluka, Pavel; O'Donnell, Liza; McLachlan, Robert I; Stanton, Peter G

    2008-01-01

    The isolation and molecular analysis of highly purified cell populations from complex, heterogeneous tissues has been a challenge for many years. Spermatogenesis in the testis is a particularly difficult process to study given the unique multiple cellular associations within the seminiferous epithelium, making the isolation of specific cell types difficult. Laser-capture microdissection (LCM) is a recently developed technique that enables the isolation of individual cell populations from complex tissues. This technology has enhanced our ability to directly examine gene expression in enriched testicular cell populations by routine methods of gene expression analysis, such as real-time RT-PCR, differential display, and gene microarrays. The application of LCM has however introduced methodological hurdles that have not been encountered with more conventional molecular analyses of whole tissue. In particular, tissue handling (i.e. fixation, storage, and staining), consumables (e.g. slide choice), staining reagents (conventional H&E vs. fluorescence), extraction methods, and downstream applications have all required re-optimisation to facilitate differential gene expression analysis using the small amounts of material obtained using LCM. This review will discuss three critical issues that are essential for successful procurement of cells from testicular tissue sections; tissue morphology, capture success, and maintenance of molecular integrity. The importance of these issues will be discussed with specific reference to the two most commonly used LCM systems; the Arcturus PixCell IIe and PALM systems. The rat testis will be used as a model, and emphasis will be placed on issues of tissue handling, processing, and staining methods, including the application of fluorescence techniques to assist in the identification of cells of interest for the purposes of mRNA expression analysis.

  18. Pleiotropy of tissue-specific growth factors: from neurons to vessels via the bone marrow

    PubMed Central

    Duda, Dan G.; Jain, Rakesh K.

    2005-01-01

    Recent evidence has demonstrated that endothelial-specific growth factors affect the development of apparently unrelated organs and cells. Expanding this evidence further, new findings in this issue of the JCI show that neurotrophic factors can affect neovascularization. Neurotrophic factors achieve proangiogenic effects not only by directly affecting endothelial cells, but also by recruiting hematopoietic precursors. Further understanding of the biology of angiogenic factors, as well as of the function of hematopoietic cells in tissue neovascularization, will lead to improved therapeutic strategies for the treatment of diseases ranging from ischemia to cancer. PMID:15765145

  19. The spectrum of STAT functions in mammary gland development

    PubMed Central

    Hughes, Katherine; Watson, Christine J.

    2012-01-01

    The signal transducer and activator of transcription (STAT) family of transcription factors have a spectrum of functions in mammary gland development. In some cases these roles parallel those of STATs in other organ systems, while in other instances the function of individual STATs in the mammary gland is specific to this tissue. In the immune system, STAT6 is associated with differentiation of T helper cells, while in the mammary gland, it has a fundamental role in the commitment of luminal epithelial cells to the alveolar lineage. STAT5A is required for the production of luminal progenitor cells from mammary stem cells and is essential for the differentiation of milk producing alveolar cells during pregnancy. By contrast, the initiation of regression following weaning heralds a dramatic and specific activation of STAT3, reflecting its pivotal role in the regulation of cell death and tissue remodeling during mammary involution. Although it has been demonstrated that STAT1 is regulated during a mammary developmental cycle, it is not yet determined whether it has a specific, non-redundant function. Thus, the mammary gland constitutes an unusual example of an adult organ in which different STATs are sequentially activated to orchestrate the processes of functional differentiation, cell death and tissue remodeling. PMID:24058764

  20. Innate lymphoid cells in tissue homeostasis and diseases.

    PubMed

    Ignacio, Aline; Breda, Cristiane Naffah Souza; Camara, Niels Olsen Saraiva

    2017-08-18

    Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. They are a part of the innate immune system, but develop from the lymphoid lineage. They lack pattern-recognition receptors and rearranged receptors, and therefore cannot directly mediate antigen specific responses. The progenitors specifically associated with the ILCs lineage have been uncovered, enabling the distinction between ILCs and natural killer cells. Based on the requirement of specific transcription factors and their patterns of cytokine production, ILCs are categorized into three subsets (ILC1, ILC2 and ILC3). First observed in mucosal surfaces, these cell populations interact with hematopoietic and non-hematopoietic cells throughout the body during homeostasis and diseases, promoting immunity, commensal microbiota tolerance, tissue repair and inflammation. Over the last 8 years, ILCs came into the spotlight as an essential cell type able to integrate diverse host immune responses. Recently, it became known that ILC subsets play a key role in immune responses at barrier surfaces, interacting with the microbiota, nutrients and metabolites. Since the liver receives the venous blood directly from the intestinal vein, the intestine and liver are essential to maintain tolerance and can rapidly respond to infections or tissue damage. Therefore, in this review, we discuss recent findings regarding ILC functions in homeostasis and disease, with a focus on the intestine and liver.

  1. A Systems Biology Approach Reveals that Tissue Tropism to West Nile Virus Is Regulated by Antiviral Genes and Innate Immune Cellular Processes

    PubMed Central

    Suthar, Mehul S.; Brassil, Margaret M.; Blahnik, Gabriele; McMillan, Aimee; Ramos, Hilario J.; Proll, Sean C.; Belisle, Sarah E.; Katze, Michael G.; Gale, Michael

    2013-01-01

    The actions of the RIG-I like receptor (RLR) and type I interferon (IFN) signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV). In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen) and nonpermissive (liver) tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs−/−×Ifnar−/− mice revealed the loss of expression of several key components within the natural killer (NK) cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs−/−×Ifnar−/− infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue-specific antiviral effector gene expression and innate immune cellular processes that control tissue tropism to WNV infection. PMID:23544010

  2. In vitro spatially organizing the differentiation in individual multicellular stem cell aggregates.

    PubMed

    Qi, Hao; Huang, Guoyou; Han, Yu Long; Lin, Wang; Li, Xiujun; Wang, Shuqi; Lu, Tian Jian; Xu, Feng

    2016-01-01

    With significant potential as a robust source to produce specific somatic cells for regenerative medicine, stem cells have attracted increasing attention from both academia and government. In vivo, stem cell differentiation is a process under complicated regulations to precisely build tissue with unique spatial structures. Since multicellular spheroidal aggregates of stem cells, commonly called as embryoid bodies (EBs), are considered to be capable of recapitulating the events in early stage of embryonic development, a variety of methods have been developed to form EBs in vitro for studying differentiation of embryonic stem cells. The regulation of stem cell differentiation is crucial in directing stem cells to build tissue with the correct spatial architecture for specific functions. However, stem cells within the three-dimensional multicellular aggregates undergo differentiation in a less unpredictable and spatially controlled manner in vitro than in vivo. Recently, various microengineering technologies have been developed to manipulate stem cells in vitro in a spatially controlled manner. Herein, we take the spotlight on these technologies and researches that bring us the new potential for manipulation of stem cells for specific purposes.

  3. Three-dimensional bioprinting of thick vascularized tissues

    NASA Astrophysics Data System (ADS)

    Kolesky, David B.; Homan, Kimberly A.; Skylar-Scott, Mark A.; Lewis, Jennifer A.

    2016-03-01

    The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.

  4. An enhancer located in a CpG-island 3' to the TCR/CD3-epsilon gene confers T lymphocyte-specificity to its promoter.

    PubMed Central

    Clevers, H; Lonberg, N; Dunlap, S; Lacy, E; Terhorst, C

    1989-01-01

    The gene encoding the CD3-epsilon chain of the T cell receptor (TCR/CD3) complex is uniquely transcribed in all T lymphocyte lineage cells. The human CD3-epsilon gene, when introduced into the mouse germ line, was expressed in correct tissue-specific fashion. The gene was then screened for T lymphocyte-specific cis-acting elements in transient chloramphenicol transferase assays. The promoter (-228 to +100) functioned irrespective of cell type. A 1225 bp enhancer with strict T cell-specificity was found in a DNase I hypersensitive site downstream of the last exon, 12 kb from the promoter. This site was present in T cells only. The CD3-epsilon enhancer did not display sequence similarity with the T cell-specific enhancer of CD3-delta, a related gene co-regulated with CD3-epsilon during intrathymic differentiation. The CD3-epsilon enhancer was unusual in that it constituted a CpG island, and was hypomethylated independent of tissue type. Two HTLV I-transformed T cell lines were identified in which the CD3-epsilon gene was not expressed, and in which the enhancer was inactive. Images PMID:2583122

  5. ACVP-03: Novel CD4+ T Cell Specific Immunohistochemistry Detection and Analysis Utilizing Masking of Not-T Cell CD4 in Fixed Tissues from Virally Infected and Uninfected Specimens | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Tissue Analysis Core (TAC) within the AIDS and Cancer Virus Program will process, embed, and perform microtomy on fixed tissue samples presented in ethanol. CD4 (DAB) and CD68/CD163 (FastRed) double immunohistochemistry will be performed, in whic

  6. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression

    PubMed Central

    Ponnaluri, V. K. Chaithanya; Ehrlich, Kenneth C.; Zhang, Guoqiang; Lacey, Michelle; Johnston, Douglas; Pradhan, Sriharsa; Ehrlich, Melanie

    2017-01-01

    ABSTRACT Differentially methylated or hydroxymethylated regions (DMRs) in mammalian DNA are often associated with tissue-specific gene expression but the functional relationships are still being unraveled. To elucidate these relationships, we studied 16 human genes containing myogenic DMRs by analyzing profiles of their epigenetics and transcription and quantitatively assaying 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) at specific sites in these genes in skeletal muscle (SkM), myoblasts, heart, brain, and diverse other samples. Although most human promoters have little or no methylation regardless of expression, more than half of the genes that we chose to study—owing to their myogenic DMRs—overlapped tissue-specific alternative or cryptic promoters displaying corresponding tissue-specific differences in histone modifications. The 5mC levels in myoblast DMRs were significantly associated with 5hmC levels in SkM at the same site. Hypermethylated myogenic DMRs within CDH15, a muscle- and cerebellum-specific cell adhesion gene, and PITX3, a homeobox gene, were used for transfection in reporter gene constructs. These intragenic DMRs had bidirectional tissue-specific promoter activity that was silenced by in vivo-like methylation. The CDH15 DMR, which was previously associated with an imprinted maternal germline DMR in mice, had especially strong promoter activity in myogenic host cells. These findings are consistent with the controversial hypothesis that intragenic DNA methylation can facilitate transcription and is not just a passive consequence of it. Our results support varied roles for tissue-specific 5mC- or 5hmC-enrichment in suppressing inappropriate gene expression from cryptic or alternative promoters and in increasing the plasticity of gene expression required for development and rapid responses to tissue stress or damage. PMID:27911668

  7. Cross-Laboratory Analysis of Brain Cell Type Transcriptomes with Applications to Interpretation of Bulk Tissue Data

    PubMed Central

    Toker, Lilah; Rocco, Brad; Sibille, Etienne

    2017-01-01

    Establishing the molecular diversity of cell types is crucial for the study of the nervous system. We compiled a cross-laboratory database of mouse brain cell type-specific transcriptomes from 36 major cell types from across the mammalian brain using rigorously curated published data from pooled cell type microarray and single-cell RNA-sequencing (RNA-seq) studies. We used these data to identify cell type-specific marker genes, discovering a substantial number of novel markers, many of which we validated using computational and experimental approaches. We further demonstrate that summarized expression of marker gene sets (MGSs) in bulk tissue data can be used to estimate the relative cell type abundance across samples. To facilitate use of this expanding resource, we provide a user-friendly web interface at www.neuroexpresso.org. PMID:29204516

  8. Robust cell tracking in epithelial tissues through identification of maximum common subgraphs.

    PubMed

    Kursawe, Jochen; Bardenet, Rémi; Zartman, Jeremiah J; Baker, Ruth E; Fletcher, Alexander G

    2016-11-01

    Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a 'maximum common subgraph' to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell-cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues. © 2016 The Authors.

  9. Using oligonucleotide aptamer probes for immunostaining of formalin-fixed and paraffin-embedded tissues

    PubMed Central

    Zeng, Zihua; Zhang, Peng; Zhao, Nianxi; Sheehan, Andrea M; Tung, Ching-Hsuan; Chang, Chung-Che; Zu, Youli

    2011-01-01

    For tissue immunostaining, antibodies are currently the only clinically validated and commercially available probes. Aptamers, which belong to a class of small molecule ligands composed of short single-stranded oligonucleotides, have emerged as probes over the last several decades; however, their potential clinical value has not yet been fully explored. Using cultured cells and an RNA-based CD30 aptamer, we recently demonstrated that the synthetic aptamer is useful as a specific probe for flow cytometric detection of CD30-expressing lymphoma cells. In this study, we further validated the use of this aptamer probe for immunostaining of formalin-fixed and paraffin-embedded lymphoma tissues. Using CD30 antibody as a standard control, we demonstrated that the synthetic CD30 aptamer specifically recognized and immunostained tumor cells of classical Hodgkin lymphoma and anaplastic large cell lymphoma, but did not react with background cells within tumor sites. Notably, the CD30 aptamer probe optimally immunostained lymphoma cells with lower temperature antigen retrieval (37 vs 96°C for antibody) and shorter probing reaction times (20 vs 90 min for antibody) than typical antibody immunostaining protocols. In addition, the CD30 aptamer probe showed no nonspecific background staining of cell debris in necrotic tissue and exhibited no cross-reaction to tissues that do not express CD30, as confirmed by a standard CD30 antibody staining. Therefore, our findings indicate that the synthetic oligonucleotide CD30 aptamer can be used as a probe for immunostaining of fixed tissue sections for disease diagnosis. PMID:20693984

  10. Characterization of Breast Cancer Cell Death Induced by Interferons and Retinoids

    DTIC Science & Technology

    1999-07-01

    treated cells. Cells were treated for 48 hr, before RNA extraction . Figure 4: Expression of GRIM-I in different mouse tissues. A multiple tissue...knockout approach (12). In this teria were scraped from the plates, and plasmid DNA was extracted and purified approach specific cell death-associated genes...ml), and Hirt DNA extracts intracellular redox regulatory enzyme (16). We show that cel- were prepared (22). DNA was digested with DpnI and

  11. In vitro 3D regeneration-like growth of human patient brain tissue.

    PubMed

    Tang-Schomer, M D; Wu, W B; Kaplan, D L; Bookland, M J

    2018-05-01

    In vitro culture of primary neurons is widely adapted with embryonic but not mature brain tissue. Here, we extended a previously developed bioengineered three-dimensional (3D) embryonic brain tissue model to resected normal patient brain tissue in an attempt to regenerate human neurons in vitro. Single cells and small sized (diameter < 100 μm) spheroids from dissociated brain tissue were seeded into 3D silk fibroin-based scaffolds, with or without collagen or Matrigel, and compared with two-dimensional cultures and scaffold-free suspension cultures. Changes of cell phenotypes (neuronal, astroglial, neural progenitor, and neuroepithelial) were quantified with flow cytometry and analyzed with a new method of statistical analysis specifically designed for percentage comparison. Compared with a complete lack of viable cells in conventional neuronal cell culture condition, supplements of vascular endothelial growth factor-containing pro-endothelial cell condition led to regenerative growth of neurons and astroglial cells from "normal" human brain tissue of epilepsy surgical patients. This process involved delayed expansion of Nestin+ neural progenitor cells, emergence of TUJ1+ immature neurons, and Vimentin+ neuroepithelium-like cell sheet formation in prolonged cultures (14 weeks). Micro-tissue spheroids, but not single cells, supported the brain tissue growth, suggesting importance of preserving native cell-cell interactions. The presence of 3D scaffold, but not hydrogel, allowed for Vimentin+ cell expansion, indicating a different growth mechanism than pluripotent cell-based brain organoid formation. The slow and delayed process implied an origin of quiescent neural precursors in the neocortex tissue. Further optimization of the 3D tissue model with primary human brain cells could provide personalized brain disease models. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Tissue-Restricted Adaptive Type 2 Immunity Is Orchestrated by Expression of the Costimulatory Molecule OX40L on Group 2 Innate Lymphoid Cells.

    PubMed

    Halim, Timotheus Y F; Rana, Batika M J; Walker, Jennifer A; Kerscher, Bernhard; Knolle, Martin D; Jolin, Helen E; Serrao, Eva M; Haim-Vilmovsky, Liora; Teichmann, Sarah A; Rodewald, Hans-Reimer; Botto, Marina; Vyse, Timothy J; Fallon, Padraic G; Li, Zhi; Withers, David R; McKenzie, Andrew N J

    2018-06-19

    The local regulation of type 2 immunity relies on dialog between the epithelium and the innate and adaptive immune cells. Here we found that alarmin-induced expression of the co-stimulatory molecule OX40L on group 2 innate lymphoid cells (ILC2s) provided tissue-restricted T cell co-stimulation that was indispensable for Th2 and regulatory T (Treg) cell responses in the lung and adipose tissue. Interleukin (IL)-33 administration resulted in organ-specific surface expression of OX40L on ILC2s and the concomitant expansion of Th2 and Treg cells, which was abolished upon deletion of OX40L on ILC2s (Il7ra Cre/+ Tnfsf4 fl/fl mice). Moreover, Il7ra Cre/+ Tnfsf4 fl/fl mice failed to mount effective Th2 and Treg cell responses and corresponding adaptive type 2 pulmonary inflammation arising from Nippostrongylus brasiliensis infection or allergen exposure. Thus, the increased expression of OX40L in response to IL-33 acts as a licensing signal in the orchestration of tissue-specific adaptive type 2 immunity, without which this response fails to establish. Copyright © 2018 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.

  13. A novel, tissue-specific, Drosophila homeobox gene.

    PubMed

    Barad, M; Jack, T; Chadwick, R; McGinnis, W

    1988-07-01

    The homeobox gene family of Drosophila appears to control a variety of position-specific patterning decisions during embryonic and imaginal development. Most of these patterning decisions determine groups of cells on the anterior-posterior axis of the Drosophila germ band. We have isolated a novel homeobox gene from Drosophila, designated H2.0. H2.0 has the most diverged homeobox so far characterized in metazoa, and, in contrast to all previously isolated homeobox genes, H2.0 exhibits a tissue-specific pattern of expression. The cells that accumulate transcripts for this novel gene correspond to the visceral musculature and its anlagen.

  14. How to grow a kidney: patient-specific kidney organoids come of age.

    PubMed

    Schmidt-Ott, Kai M

    2017-01-01

    The notion of regrowing a patient's kidney in a dish has fascinated researchers for decades and has spurred visions of revolutionary clinical applications. Recently, this option has come closer to reality. Key technologies have been developed to generate patient-specific pluripotent stem cells and to edit their genome. Several laboratories have devised protocols to differentiate patient-specific pluripotent stem cells into kidney cells or into in vitro organoids that resemble the kidney with respect to cell types, tissue architecture and disease pathology. This was possible because of rapidly expanding knowledge regarding the cellular and molecular basis of embryonic kidney development. Generating kidney cells or organoids from patient-specific stem cells may prove to be clinically useful in several ways. First, patient-specific kidney cells or organoids could be used to predict an individual's response to stressors, toxins or medications and thereby develop personalized treatment decisions. Second, patient-specific stem cells harbour the individual's genetic defects. This may potentially enable genetic rescue attempts to establish the significance of a genetic defect in a stem cell-derived organoid or it may allow testing of patient-specific targeted therapies for kidney disease in vitro. From a tissue engineering perspective, patient-specific kidney organoids might provide a key advance towards engineering immunocompatible transplantable kidneys. This review article summarizes recent developments in the field and discusses its current limitations and future perspectives. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  15. Use of a conformational switching aptamer for rapid and specific ex vivo identification of central nervous system lymphoma in a xenograft model.

    PubMed

    Georges, Joseph F; Liu, Xiaowei; Eschbacher, Jennifer; Nichols, Joshua; Mooney, Michael A; Joy, Anna; Spetzler, Robert F; Feuerstein, Burt G; Preul, Mark C; Anderson, Trent; Yan, Hao; Nakaji, Peter

    2015-01-01

    Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 15 minutes of incubation as observed by flow cytometry. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making.

  16. Nanomaterials for Engineering Stem Cell Responses.

    PubMed

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-05

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Stem Cells and Scaffolds for Vascularizing Engineered Tissue Constructs

    NASA Astrophysics Data System (ADS)

    Luong, E.; Gerecht, S.

    The clinical impact of tissue engineering depends upon our ability to direct cells to form tissues with characteristic structural and mechanical properties from the molecular level up to organized tissue. Induction and creation of functional vascular networks has been one of the main goals of tissue engineering either in vitro, for the transplantation of prevascularized constructs, or in vivo, for cellular organization within the implantation site. In most cases, tissue engineering attempts to recapitulate certain aspects of normal development in order to stimulate cell differentiation and functional tissue assembly. The induction of tissue growth generally involves the use of biodegradable and bioactive materials designed, ideally, to provide a mechanical, physical, and biochemical template for tissue regeneration. Human embryonic stem cells (hESCs), derived from the inner cell mass of a developing blastocyst, are capable of differentiating into all cell types of the body. Specifically, hESCs have the capability to differentiate and form blood vessels de novo in a process called vasculogenesis. Human ESC-derived endothelial progenitor cells (EPCs) and endothelial cells have substantial potential for microvessel formation, in vitro and in vivo. Human adult EPCs are being isolated to understand the fundamental biology of how these cells are regulated as a population and to explore whether these cells can be differentiated and reimplanted as a cellular therapy in order to arrest or even reverse damaged vasculature. This chapter focuses on advances made toward the generation and engineering of functional vascular tissue, focusing on both the scaffolds - the synthetic and biopolymer materials - and the cell sources - hESCs and hEPCs.

  18. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis.

    PubMed

    Guerrero, Julien; Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle

    2015-03-01

    Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion.

  19. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink

    PubMed Central

    Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo

    2014-01-01

    The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method. PMID:24887553

  20. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink

    NASA Astrophysics Data System (ADS)

    Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo

    2014-06-01

    The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.

  1. A home away from home: challenges and opportunities in engineering in vitro muscle satellite cell niches

    PubMed Central

    Cosgrove, Benjamin D.; Sacco, Alessandra; Gilbert, Penney M.; Blau, Helen M.

    2009-01-01

    Satellite cells are skeletal muscle stem cells with a principal role in postnatal skeletal muscle regeneration. Satellite cells, like many tissue-specific adult stem cells, reside in a quiescent state in an instructive, anatomically defined niche. The satellite cell niche constitutes a distinct membrane-enclosed compartment within the muscle fiber, containing a diversity of biochemical and biophysical signals that influence satellite cell function. A major limitation to the study and clinical utility of satellite cells is that upon removal from the muscle fiber and plating in traditional plastic tissue culture platforms, their muscle stem cell properties are rapidly lost. Clearly, the maintenance of stem cell function is critically dependent on in vivo niche signals, highlighting the need to create novel in vitro microenvironments that allow for the maintenance and propagation of satellite cells while retaining their potential to function as muscle stem cells. Here, we discuss how emerging biomaterials technologies offer great promise for engineering in vitro microenvironments to meet these challenges. In engineered biomaterials, signaling molecules can be presented in a manner that more closely mimics cell-cell and cell-matrix interactions and matrices can be fabricated with diverse rigidities that approximate in vivo tissues. The development of in vitro microenvironments in which niche features can be systematically modulated will be instrumental not only to future insights into muscle stem cell biology and therapeutic approaches to muscle diseases and muscle wasting with aging, but also will provide a paradigm for the analysis of numerous adult tissue-specific stem cells. PMID:19751902

  2. Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application.

    PubMed

    Kim, Changsung

    2014-03-01

    Induced pluripotent stem cell (iPSC) technology has shown us great hope to treat various human diseases which have been known as untreatable and further endows personalized medicine for future therapy without ethical issues and immunological rejection which embryonic stem cell (hES) treatment has faced. It has been agreed that iPSCs knowledge can be harnessed from disease modeling which mimics human pathological development rather than trials utilizing conventional rodent and cell lines. Now, we can routinely generate iPSC from patient specific cell sources, such as skin fibroblast, hair follicle cells, patient blood samples and even urine containing small amount of epithelial cells. iPSC has both similarity and dissimilarity to hES. iPSC is similar enough to regenerate tissue and even full organism as ES does, however what we want for therapeutic advantage is limited to regenerated tissue and lineage specific differentiation. Depending on the lineage and type of cells, both tissue memory containing (DNA rearrangement/epigenetics) and non-containing iPSC can be generated. This makes iPSC even better choice to perform disease modeling as well as cell based therapy. Tissue memory containing iPSC from mature leukocytes would be beneficial for curing cancer and infectious disease. In this review, the benefit of iPSC for translational approaches will be presented.

  3. The Role of Transporters in the Toxicity of Nucleoside and Nucleotide Analogs

    PubMed Central

    Koczor, Christopher A; Torres, Rebecca A

    2013-01-01

    Introduction Two families of nucleoside analogs have been developed to treat viral infections and cancer, but these compounds can cause tissue and cell-specific toxicity related to their uptake and subcellular activity which are dictated by host enzymes and transporters. Cellular uptake of these compounds requires nucleoside transporters that share functional similarities but differ in substrate specificity. Tissue-specific cellular expression of these transporters enables nucleoside analogs to produce their tissue specific toxic effects, a limiting factor in the treatment of retroviruses and cancer. Areas Covered This review discusses the families of nucleoside transporters and how they mediate cellular uptake of nucleoside analogs. Specific focus is placed on examples of known cases of transporter-mediated cellular toxicity and classification of the toxicities resulting. Efflux transporters are also explored as a contributor to analog toxicity and cell-specific effects. Expert Opinion Efforts to modulate transporter uptake/clearance remain long-term goals of oncologists and virologists. Accordingly, subcellular approaches that either increase or decrease intracellular nucleoside analog concentrations are eagerly sought and include transporter inhibitors and targeting transporter expression. However, additional understanding of nucleoside transporter kinetics, tissue expression, and genetic polymorphisms are required to design better molecules and better therapies. PMID:22509856

  4. Different Cells Make Different Proteins: A Laboratory Exercise Illustrating Tissue-Specific Protein Expression in Animals

    ERIC Educational Resources Information Center

    Ibarguren, Izaskun; Villamarín, Antonio

    2017-01-01

    All the cells of higher organisms have the same DNA but not the same proteins. Each type of specialised cell that forms a tissue has its own pattern of gene expression and, consequently, it contains a particular set of proteins that determine its function. Here, we describe a laboratory exercise addressed to undergraduate students that aims to…

  5. Septin functions in organ system physiology and pathology

    PubMed Central

    Dolat, Lee; Hu, Qicong

    2015-01-01

    Human septins comprise a family of 13 genes that encode for >30 protein isoforms with ubiquitous and tissue-specific expressions. Septins are GTP-binding proteins that assemble into higher-order oligomers and filamentous polymers, which associate with cell membranes and the cytoskeleton. In the last decade, much progress has been made in understanding the biochemical properties and cell biological functions of septins. In parallel, a growing number of studies show that septins play important roles for the development and physiology of specific tissues and organs. Here, we review the expression and function of septins in the cardiovascular, immune, nervous, urinary, digestive, respiratory, endocrine, reproductive, and integumentary organ systems. Furthermore, we discuss how the tissue-specific functions of septins relate to the pathology of human diseases that arise from aberrations in septin expression. PMID:24114910

  6. Self-Organized Cerebellar Tissue from Human Pluripotent Stem Cells and Disease Modeling with Patient-Derived iPSCs.

    PubMed

    Muguruma, Keiko

    2018-02-01

    Recent advances in the techniques that differentiate induced pluripotent stem cells (iPSCs) into specific types of cells enabled us to establish in vitro cell-based models as a platform for drug discovery. iPSC-derived disease models are advantageous to generation of a large number of cells required for high-throughput screening. Furthermore, disease-relevant cells differentiated from patient-derived iPSCs are expected to recapitulate the disorder-specific pathogenesis and physiology in vitro. Such disease-relevant cells will be useful for developing effective therapies. We demonstrated that cerebellar tissues are generated from human PSCs (hPSCs) in 3D culture systems that recapitulate the in vivo microenvironments associated with the isthmic organizer. Recently, we have succeeded in generation of spinocerebellar ataxia (SCA) patient-derived Purkinje cells by combining the iPSC technology and the self-organizing stem cell 3D culture technology. We demonstrated that SCA6-derived Purkinje cells exhibit vulnerability to triiodothyronine depletion, which is suppressed by treatment with thyrotropin-releasing hormone and Riluzole. We further discuss applications of patient-specific iPSCs to intractable cerebellar disease.

  7. Coaction of intercellular adhesion and cortical tension specifies tissue surface tension

    PubMed Central

    Manning, M. Lisa; Foty, Ramsey A.; Steinberg, Malcolm S.; Schoetz, Eva-Maria

    2010-01-01

    In the course of animal morphogenesis, large-scale cell movements occur, which involve the rearrangement, mutual spreading, and compartmentalization of cell populations in specific configurations. Morphogenetic cell rearrangements such as cell sorting and mutual tissue spreading have been compared with the behaviors of immiscible liquids, which they closely resemble. Based on this similarity, it has been proposed that tissues behave as liquids and possess a characteristic surface tension, which arises as a collective, macroscopic property of groups of mobile, cohering cells. But how are tissue surface tensions generated? Different theories have been proposed to explain how mesoscopic cell properties such as cell–cell adhesion and contractility of cell interfaces may underlie tissue surface tensions. Although recent work suggests that both may be contributors, an explicit model for the dependence of tissue surface tension on these mesoscopic parameters has been missing. Here we show explicitly that the ratio of adhesion to cortical tension determines tissue surface tension. Our minimal model successfully explains the available experimental data and makes predictions, based on the feedback between mechanical energy and geometry, about the shapes of aggregate surface cells, which we verify experimentally. This model indicates that there is a crossover from adhesion dominated to cortical-tension dominated behavior as a function of the ratio between these two quantities. PMID:20616053

  8. Elements of the niche for adult stem cell expansion

    PubMed Central

    Redondo, Patricia A; Pavlou, Marina; Loizidou, Marilena; Cheema, Umber

    2017-01-01

    Adult stem cells are crucial for tissue homeostasis. These cells reside within exclusive locations in tissues, termed niches, which protect adult stem cell fidelity and regulate their many functions through biophysical-, biochemical- and cellular-mediated mechanisms. There is a growing understanding of how these mechanisms and their components contribute towards maintaining stem cell quiescence, self-renewal, expansion and differentiation patterns. In vitro expansion of adult stem cells is a powerful tool for understanding stem cell biology, and for tissue engineering and regenerative medicine applications. However, it is technically challenging, since adult stem cell removal from their native microenvironment has negative repercussions on their sustainability. In this review, we overview specific elements of the biomimetic niche and how recreating such elements can help in vitro propagation of adult stem cells. PMID:28890779

  9. Elements of the niche for adult stem cell expansion.

    PubMed

    Redondo, Patricia A; Pavlou, Marina; Loizidou, Marilena; Cheema, Umber

    2017-01-01

    Adult stem cells are crucial for tissue homeostasis. These cells reside within exclusive locations in tissues, termed niches, which protect adult stem cell fidelity and regulate their many functions through biophysical-, biochemical- and cellular-mediated mechanisms. There is a growing understanding of how these mechanisms and their components contribute towards maintaining stem cell quiescence, self-renewal, expansion and differentiation patterns. In vitro expansion of adult stem cells is a powerful tool for understanding stem cell biology, and for tissue engineering and regenerative medicine applications. However, it is technically challenging, since adult stem cell removal from their native microenvironment has negative repercussions on their sustainability. In this review, we overview specific elements of the biomimetic niche and how recreating such elements can help in vitro propagation of adult stem cells.

  10. Reliable LC3 and p62 autophagy marker detection in formalin fixed paraffin embedded human tissue by immunohistochemistry.

    PubMed

    Schläfli, A M; Berezowska, S; Adams, O; Langer, R; Tschan, M P

    2015-05-05

    Autophagy assures cellular homeostasis, and gains increasing importance in cancer, where it impacts on carcinogenesis, propagation of the malignant phenotype and development of resistance. To date, its tissue-based analysis by immunohistochemistry remains poorly standardized. Here we show the feasibility of specifically and reliably assessing the autophagy markers LC3B and p62 (SQSTM1) in formalin fixed and paraffin embedded human tissue by immunohistochemistry. Preceding functional experiments consisted of depleting LC3B and p62 in H1299 lung cancer cells with subsequent induction of autophagy. Western blot and immunofluorescence validated antibody specificity, knockdown efficiency and autophagy induction prior to fixation in formalin and embedding in paraffin. LC3B and p62 antibodies were validated on formalin fixed and paraffin embedded cell pellets of treated and control cells and finally applied on a tissue microarray with 80 human malignant and non-neoplastic lung and stomach formalin fixed and paraffin embedded tissue samples. Dot-like staining of various degrees was observed in cell pellets and 18/40 (LC3B) and 22/40 (p62) tumors, respectively. Seventeen tumors were double positive for LC3B and p62. P62 displayed additional significant cytoplasmic and nuclear staining of unknown significance. Interobserver-agreement for grading of staining intensities and patterns was substantial to excellent (kappa values 0.60 - 0.83). In summary, we present a specific and reliable IHC staining of LC3B and p62 on formalin fixed and paraffin embedded human tissue. Our presented protocol is designed to aid reliable investigation of dysregulated autophagy in solid tumors and may be used on large tissue collectives.

  11. Switchgrass (Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass

    DOE PAGES

    Liu, Wusheng; Mazarei, Mitra; Ye, Rongjian; ...

    2018-04-24

    Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. We identified and functionally characterized three switchgrass green tissue-specific promoters and assessedmore » marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice. PvMYB4 is a master repressor of lignin biosynthesis. The green tissue-specific expression of PvMYB4 via each promoter in transgenic switchgrass led to significant gains in saccharification efficiency, decreased lignin, and decreased S/G lignin ratios. In contrast to constitutive overexpression of PvMYB4, which negatively impacts switchgrass root growth, plant growth was not compromised in green tissue-expressed PvMYB4 switchgrass plants in the current study. Each of the newly described green tissue-specific promoters from switchgrass has utility to change cell wall biosynthesis exclusively in aboveground harvestable biomass without altering root systems. The truncated green tissue promoters are very short and should be useful for targeted expression in a number of monocots to improve shoot traits while restricting gene expression from roots. Green tissue-specific expression of PvMYB4 is an effective strategy for improvement of transgenic feedstocks.« less

  12. Switchgrass (Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wusheng; Mazarei, Mitra; Ye, Rongjian

    Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. We identified and functionally characterized three switchgrass green tissue-specific promoters and assessedmore » marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice. PvMYB4 is a master repressor of lignin biosynthesis. The green tissue-specific expression of PvMYB4 via each promoter in transgenic switchgrass led to significant gains in saccharification efficiency, decreased lignin, and decreased S/G lignin ratios. In contrast to constitutive overexpression of PvMYB4, which negatively impacts switchgrass root growth, plant growth was not compromised in green tissue-expressed PvMYB4 switchgrass plants in the current study. Each of the newly described green tissue-specific promoters from switchgrass has utility to change cell wall biosynthesis exclusively in aboveground harvestable biomass without altering root systems. The truncated green tissue promoters are very short and should be useful for targeted expression in a number of monocots to improve shoot traits while restricting gene expression from roots. Green tissue-specific expression of PvMYB4 is an effective strategy for improvement of transgenic feedstocks.« less

  13. Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

    PubMed Central

    Ostrowski, Anja; Nordmeyer, Daniel; Boreham, Alexander; Holzhausen, Cornelia; Mundhenk, Lars; Graf, Christina; Meinke, Martina C; Vogt, Annika; Hadam, Sabrina; Lademann, Jürgen; Rühl, Eckart; Alexiev, Ulrike

    2015-01-01

    Summary The increasing interest and recent developments in nanotechnology pose previously unparalleled challenges in understanding the effects of nanoparticles on living tissues. Despite significant progress in in vitro cell and tissue culture technologies, observations on particle distribution and tissue responses in whole organisms are still indispensable. In addition to a thorough understanding of complex tissue responses which is the domain of expert pathologists, the localization of particles at their sites of interaction with living structures is essential to complete the picture. In this review we will describe and compare different imaging techniques for localizing inorganic as well as organic nanoparticles in tissues, cells and subcellular compartments. The visualization techniques include well-established methods, such as standard light, fluorescence, transmission electron and scanning electron microscopy as well as more recent developments, such as light and electron microscopic autoradiography, fluorescence lifetime imaging, spectral imaging and linear unmixing, superresolution structured illumination, Raman microspectroscopy and X-ray microscopy. Importantly, all methodologies described allow for the simultaneous visualization of nanoparticles and evaluation of cell and tissue changes that are of prime interest for toxicopathologic studies. However, the different approaches vary in terms of applicability for specific particles, sensitivity, optical resolution, technical requirements and thus availability, and effects of labeling on particle properties. Specific bottle necks of each technology are discussed in detail. Interpretation of particle localization data from any of these techniques should therefore respect their specific merits and limitations as no single approach combines all desired properties. PMID:25671170

  14. Robust cell tracking in epithelial tissues through identification of maximum common subgraphs

    PubMed Central

    Bardenet, Rémi; Zartman, Jeremiah J.; Baker, Ruth E.

    2016-01-01

    Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a ‘maximum common subgraph’ to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell–cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues. PMID:28334699

  15. Extended specificity studies of mRNA assays used to infer human organ tissues and body fluids.

    PubMed

    van den Berge, Margreet; Sijen, Titia

    2017-12-01

    Messenger RNA (mRNA) profiling is a technique increasingly applied for the forensic identification of body fluids and skin. More recently, an mRNA-based organ typing assay was developed which allows for the inference of brain, lung, liver, skeletal muscle, heart, kidney, and skin tissue. When applying this organ typing system in forensic casework for the presence of animal, rather than human, tissue is an alternative scenario to be proposed, for instance that bullets carry cell material from a hunting event. Even though mRNA profiling systems are commonly in silico designed to be primate specific, physical testing against other animal species is generally limited. In this study, human specificity of the organ tissue inferring system was assessed against organ tissue RNAs of various animals. Results confirm human specificity of the system, especially when utilizing interpretation rules considering multiple markers per cell type. Besides, we cross-tested our organ and body fluid mRNA assays against the target types covered by the other assay. Marker expression in the nontarget organ tissues and body fluids was observed to a limited extent, which emphasizes the importance of involving the case-specific context of the forensic samples in deciding which mRNA profiling assay to use and when for interpreting results. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Eye Absence Does Not Regulate Planarian Stem Cells during Eye Regeneration.

    PubMed

    LoCascio, Samuel A; Lapan, Sylvain W; Reddien, Peter W

    2017-02-27

    Dividing cells called neoblasts contain pluripotent stem cells and drive planarian flatworm regeneration from diverse injuries. A long-standing question is whether neoblasts directly sense and respond to the identity of missing tissues during regeneration. We used the eye to investigate this question. Surprisingly, eye removal was neither sufficient nor necessary for neoblasts to increase eye progenitor production. Neoblasts normally increase eye progenitor production following decapitation, facilitating regeneration. Eye removal alone, however, did not induce this response. Eye regeneration following eye-specific resection resulted from homeostatic rates of eye progenitor production and less cell death in the regenerating eye. Conversely, large head injuries that left eyes intact increased eye progenitor production. Large injuries also non-specifically increased progenitor production for multiple uninjured tissues. We propose a model for eye regeneration in which eye tissue production by planarian stem cells is not directly regulated by the absence of the eye itself. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Microsphere-Based Scaffolds for Cartilage Tissue Engineering: Using Sub-critical CO2 as a Sintering Agentξ

    PubMed Central

    Singh, Milind; Sandhu, Brindar; Scurto, Aaron; Berkland, Cory; Detamore, Michael S.

    2009-01-01

    Shape-specific, macroporous tissue engineering scaffolds were fabricated and homogeneously seeded with cells in a single step. This method brings together CO2 polymer processing and microparticle-based scaffolds in a manner that allows each to solve the key limitation of the other. Specifically, microparticle-based scaffolds have suffered from the limitation that conventional microsphere sintering methods (e.g., heat, solvents) are not cytocompatible, yet we have shown that cell viability was sustained with sub-critical (i.e., gaseous) CO2 sintering of microspheres in the presence of cells at near-ambient temperatures. On the other hand, the fused microspheres provided the pore interconnectivity that has eluded supercritical CO2 foaming approaches. Here, fused poly(lactide-co-glycolide) microsphere scaffolds were seeded with human umbilical cord mesenchymal stromal cells to demonstrate the feasibility of utilizing these matrices for cartilage regeneration. We also demonstrated that the approach may be modified to produce thin cell-loaded patches as a promising alternative for skin tissue engineering applications. PMID:19660579

  18. Rapid Genetic Analysis of Epithelial-Mesenchymal Signaling During Hair Regeneration

    PubMed Central

    Zhen, Hanson H.; Oro, Anthony E.

    2013-01-01

    Hair follicle morphogenesis, a complex process requiring interaction between epithelia-derived keratinocytes and the underlying mesenchyme, is an attractive model system to study organ development and tissue-specific signaling. Although hair follicle development is genetically tractable, fast and reproducible analysis of factors essential for this process remains a challenge. Here we describe a procedure to generate targeted overexpression or shRNA-mediated knockdown of factors using lentivirus in a tissue-specific manner. Using a modified version of a hair regeneration model 5, 6, 11, we can achieve robust gain- or loss-of-function analysis in primary mouse keratinocytes or dermal cells to facilitate study of epithelial-mesenchymal signaling pathways that lead to hair follicle morphogenesis. We describe how to isolate fresh primary mouse keratinocytes and dermal cells, which contain dermal papilla cells and their precursors, deliver lentivirus containing either shRNA or cDNA to one of the cell populations, and combine the cells to generate fully formed hair follicles on the backs of nude mice. This approach allows analysis of tissue-specific factors required to generate hair follicles within three weeks and provides a fast and convenient companion to existing genetic models. PMID:23486463

  19. Exploring the Transcriptome of Ciliated Cells Using In Silico Dissection of Human Tissues

    PubMed Central

    Ivliev, Alexander E.; 't Hoen, Peter A. C.; van Roon-Mom, Willeke M. C.; Peters, Dorien J. M.; Sergeeva, Marina G.

    2012-01-01

    Cilia are cell organelles that play important roles in cell motility, sensory and developmental functions and are involved in a range of human diseases, known as ciliopathies. Here, we search for novel human genes related to cilia using a strategy that exploits the previously reported tendency of cell type-specific genes to be coexpressed in the transcriptome of complex tissues. Gene coexpression networks were constructed using the noise-resistant WGCNA algorithm in 12 publicly available microarray datasets from human tissues rich in motile cilia: airways, fallopian tubes and brain. A cilia-related coexpression module was detected in 10 out of the 12 datasets. A consensus analysis of this module's gene composition recapitulated 297 known and predicted 74 novel cilia-related genes. 82% of the novel candidates were supported by tissue-specificity expression data from GEO and/or proteomic data from the Human Protein Atlas. The novel findings included a set of genes (DCDC2, DYX1C1, KIAA0319) related to a neurological disease dyslexia suggesting their potential involvement in ciliary functions. Furthermore, we searched for differences in gene composition of the ciliary module between the tissues. A multidrug-and-toxin extrusion transporter MATE2 (SLC47A2) was found as a brain-specific central gene in the ciliary module. We confirm the localization of MATE2 in cilia by immunofluorescence staining using MDCK cells as a model. While MATE2 has previously gained attention as a pharmacologically relevant transporter, its potential relation to cilia is suggested for the first time. Taken together, our large-scale analysis of gene coexpression networks identifies novel genes related to human cell cilia. PMID:22558177

  20. Dynamically Tunable Cell Culture Platforms for Tissue Engineering and Mechanobiology

    PubMed Central

    Uto, Koichiro; Tsui, Jonathan H.; DeForest, Cole A.; Kim, Deok-Ho

    2016-01-01

    Human tissues are sophisticated ensembles of many distinct cell types embedded in the complex, but well-defined, structures of the extracellular matrix (ECM). Dynamic biochemical, physicochemical, and mechano-structural changes in the ECM define and regulate tissue-specific cell behaviors. To recapitulate this complex environment in vitro, dynamic polymer-based biomaterials have emerged as powerful tools to probe and direct active changes in cell function. The rapid evolution of polymerization chemistries, structural modulation, and processing technologies, as well as the incorporation of stimuli-responsiveness, now permit synthetic microenvironments to capture much of the dynamic complexity of native tissue. These platforms are comprised not only of natural polymers chemically and molecularly similar to ECM, but those fully synthetic in origin. Here, we review recent in vitro efforts to mimic the dynamic microenvironment comprising native tissue ECM from the viewpoint of material design. We also discuss how these dynamic polymer-based biomaterials are being used in fundamental cell mechanobiology studies, as well as towards efforts in tissue engineering and regenerative medicine. PMID:28522885

  1. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis

    PubMed Central

    Falter, Christian; Ellinger, Dorothea; von Hülsen, Behrend; Heim, René; Voigt, Christian A.

    2015-01-01

    The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant–microbe interaction with their potential outreach into crop breeding. PMID:25870605

  2. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis.

    PubMed

    Falter, Christian; Ellinger, Dorothea; von Hülsen, Behrend; Heim, René; Voigt, Christian A

    2015-01-01

    The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape - liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.

  3. Multimodal autofluorescence detection of cancer: from single cells to living organism

    NASA Astrophysics Data System (ADS)

    Horilova, J.; Cunderlikova, B.; Cagalinec, M.; Chorvat, D.; Marcek Chorvatova, A.

    2018-02-01

    Multimodal optical imaging of suspected tissues is showing to be a promising method for distinguishing suspected cancerous tissues from healthy ones. In particular, the combination of steady-state spectroscopic methods with timeresolved fluorescence provides more precise insight into native metabolism when focused on tissue autofluorescence. Cancer is linked to specific metabolic remodelation detectable spectroscopically. In this work, we evaluate possibilities and limitations of multimodal optical cancer detection in single cells, collagen-based 3D cell cultures and in living organisms (whole mice), as a representation of gradually increasing complexity of model systems.

  4. Compositions and methods for xylem-specific expression in plant cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kyung-Hwan; Ko, Jae-Heung

    The invention provides promoter sequences that regulate specific expression of operably linked sequences in developing xylem cells and/or in developing xylem tissue. The developing xylem-specific sequences are exemplified by the DX5, DX8, DX11, and DX15 promoters, portions thereof, and homologs thereof. The invention further provides expression vectors, cells, tissues and plants that contain the invention's sequences. The compositions of the invention and methods of using them are useful in, for example, improving the quantity (biomass) and/or the quality (wood density, lignin content, sugar content etc.) of expressed biomass feedstock products that may be used for bioenergy, biorefinary, and generating woodmore » products such as pulp, paper, and solid wood.« less

  5. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep.

    PubMed

    Lee, Chang H; Rodeo, Scott A; Fortier, Lisa Ann; Lu, Chuanyong; Erisken, Cevat; Mao, Jeremy J

    2014-12-10

    Regeneration of complex tissues, such as kidney, liver, and cartilage, continues to be a scientific and translational challenge. Survival of ex vivo cultured, transplanted cells in tissue grafts is among one of the key barriers. Meniscus is a complex tissue consisting of collagen fibers and proteoglycans with gradient phenotypes of fibrocartilage and functions to provide congruence of the knee joint, without which the patient is likely to develop arthritis. Endogenous stem/progenitor cells regenerated the knee meniscus upon spatially released human connective tissue growth factor (CTGF) and transforming growth factor-β3 (TGFβ3) from a three-dimensional (3D)-printed biomaterial, enabling functional knee recovery. Sequentially applied CTGF and TGFβ3 were necessary and sufficient to propel mesenchymal stem/progenitor cells, as a heterogeneous population or as single-cell progenies, into fibrochondrocytes that concurrently synthesized procollagens I and IIα. When released from microchannels of 3D-printed, human meniscus scaffolds, CTGF and TGFβ3 induced endogenous stem/progenitor cells to differentiate and synthesize zone-specific type I and II collagens. We then replaced sheep meniscus with anatomically correct, 3D-printed scaffolds that incorporated spatially delivered CTGF and TGFβ3. Endogenous cells regenerated the meniscus with zone-specific matrix phenotypes: primarily type I collagen in the outer zone, and type II collagen in the inner zone, reminiscent of the native meniscus. Spatiotemporally delivered CTGF and TGFβ3 also restored inhomogeneous mechanical properties in the regenerated sheep meniscus. Survival and directed differentiation of endogenous cells in a tissue defect may have implications in the regeneration of complex (heterogeneous) tissues and organs. Copyright © 2014, American Association for the Advancement of Science.

  6. Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions

    PubMed Central

    Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji

    2016-01-01

    Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation. PMID:27966584

  7. Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions.

    PubMed

    Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji

    2016-12-14

    Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation.

  8. Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity[OPEN

    PubMed Central

    Rebocho, Alexandra B.

    2016-01-01

    Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth. PMID:27553356

  9. Comparative studies of mesenchymal stem cells derived from different cord tissue compartments - The influence of cryopreservation and growth media.

    PubMed

    Dulugiac, Magda; Moldovan, Lucia; Zarnescu, Otilia

    2015-10-01

    We have identified some critical aspects concerning umbilical cord tissue mesenchymal stem cells: the lack of standards for cell isolation, expansion and cryopreservation, the lack of unanimous opinions upon their multilineage differentiation potential and the existence of very few results related to the functional characterization of the cells isolated from cryopreserved umbilical cord tissue. Umbilical cord tissue cryopreservation appears to be the optimal solution for umbilical cord tissue mesenchymal stem cells storage for future clinical use. Umbilical cord tissue cryopreservation allows mesenchymal stem cells isolation before expected use, according with the specific clinical applications, by different customized isolation and expansion protocols agreed by cell therapy institutions. Using an optimized protocol for umbilical cord tissue cryopreservation in autologous cord blood plasma, isolation explant method and growth media supplemented with FBS or human serum, we performed comparative studies with respect to the characteristics of mesenchymal stem cells (MSC) isolated from different compartments of the same umbilical cord tissue such as Wharton's jelly, vein, arteries, before cryopreservation (pre freeze) and after cryopreservation (post thaw). Expression of histochemical and immunohistochemical markers as well as electron microscopy observations revealed similar adipogenic, chondrogenic and osteogenic differentiation capacity for cells isolated from pre freeze and corresponding post thaw tissue fragments of Wharton's jelly, vein or arteries of the same umbilical cord tissue, regardless growth media used for cells isolation and expansion. Our efficient umbilical cord tissue cryopreservation protocol is reliable for clinical applicability of mesenchymal stem cells that could next be isolated and expanded in compliance with future accepted standards. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Cell separation: Terminology and practical considerations

    PubMed Central

    Tomlinson, Sophie; Yang, Xuebin B; Kirkham, Jennifer

    2013-01-01

    Cell separation is a powerful tool in biological research. Increasing usage, particularly within the tissue engineering and regenerative medicine communities, means that researchers from a diverse range of backgrounds are utilising cell separation technologies. This review aims to offer potential solutions to cell sorting problems and to clarify common ambiguities in terminology and experimental design. The frequently used cell separation terms of ‘purity’, ‘recovery’ and ‘viability’ are discussed, and attempts are made to reach a consensus view of their sometimes ambiguous meanings. The importance of appropriate experimental design is considered, with aspects such as marker expression, tissue isolation and original cell population analysis discussed. Finally, specific technical issues such as cell clustering, dead cell removal and non-specific antibody binding are considered and potential solutions offered. The solutions offered may provide a starting point to improve the quality of cell separations achieved by both the novice and experienced researcher alike. PMID:23440031

  11. Stimulation of ovarian stem cells by follicle stimulating hormone and basic fibroblast growth factor during cortical tissue culture.

    PubMed

    Parte, Seema; Bhartiya, Deepa; Manjramkar, Dhananjay D; Chauhan, Anahita; Joshi, Amita

    2013-04-01

    Cryopreserved ovarian cortical tissue acts as a source of primordial follicles (PF) which can either be auto-transplanted or cultured in vitro to obtain mature oocytes. This offers a good opportunity to attain biological parenthood to individuals with gonadal insufficiency including cancer survivors. However, role of various intra- and extra-ovarian factors during PF growth initiation still remain poorly understood. Ovarian biology has assumed a different dimension due to emerging data on presence of pluripotent very small embryonic-like stem cells (VSELs) and ovarian germ stem cells (OGSCs) in ovary surface epithelium (OSE) and the concept of postnatal oogenesis. The present study was undertaken to decipher effect of follicle stimulating hormone (FSH) and basic fibroblast growth factor (bFGF) on the growth initiation of PF during organ culture with a focus on ovarian stem cells. Serum-free cultures of marmoset (n=3) and human (young and peri-menopausal) ovarian cortical tissue pieces were established. Cortical tissue pieces stimulated with FSH (0.5 IU/ml) or bFGF (100 ng/ml) were collected on Day 3 for histological and molecular studies. Gene transcripts specific for pluripotency (Oct-4A, Nanog), early germ cells (Oct-4, c-Kit, Vasa) and to reflect PF growth initiation (oocyte-specific Gdf-9 and Lhx8, and granulosa cells specific Amh) were studied by q-RTPCR. A prominent proliferation of OSE (which harbors stem cells) and transition of PF to primary follicles was observed after FSH and bFGF treatment. Ovarian stem cells were found to be released on the culture inserts and retained the potential to spontaneously differentiate into oocyte-like structures in extended cultures. q-RTPCR analysis revealed an increased expression of gene transcripts specific for VSELs, OGSCs and early germ cells suggestive of follicular transition. The present study shows that both FSH and bFGF stimulate stem cells present in OSE and also lead to PF growth initiation. Thus besides being a source of PF, cryopreserved ovarian cortical tissue could also be a source of stem cells which retain the ability to spontaneously differentiate into oocyte-like structures in vitro. Results provide a paradigm shift in the basic understanding of FSH action and also offer a new perspective to the field of oncofertility research.

  12. β-Catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche.

    PubMed

    Deschene, Elizabeth R; Myung, Peggy; Rompolas, Panteleimon; Zito, Giovanni; Sun, Thomas Yang; Taketo, Makoto M; Saotome, Ichiko; Greco, Valentina

    2014-03-21

    Wnt/β-catenin signaling is critical for tissue regeneration. However, it is unclear how β-catenin controls stem cell behaviors to coordinate organized growth. Using live imaging, we show that activation of β-catenin specifically within mouse hair follicle stem cells generates new hair growth through oriented cell divisions and cellular displacement. β-Catenin activation is sufficient to induce hair growth independently of mesenchymal dermal papilla niche signals normally required for hair regeneration. Wild-type cells are co-opted into new hair growths by β-catenin mutant cells, which non-cell autonomously activate Wnt signaling within the neighboring wild-type cells via Wnt ligands. This study demonstrates a mechanism by which Wnt/β-catenin signaling controls stem cell-dependent tissue growth non-cell autonomously and advances our understanding of the mechanisms that drive coordinated regeneration.

  13. HLA-G peptide preferences change in transformed cells: impact on the binding motif.

    PubMed

    Celik, Alexander A; Simper, Gwendolin S; Hiemisch, Wiebke; Blasczyk, Rainer; Bade-Döding, Christina

    2018-03-30

    HLA-G is known for its strictly restricted tissue distribution. HLA-G expression could be detected in immune privileged organs and many tumor entities such as leukemia, multiple myeloma, and non-Hodgkin and Hodgkin's lymphoma. This functional variability from mediation of immune tolerance to facilitation of tumor immune evasion strategies might translate to a differential NK cell inhibition between immune-privileged organs and tumor cells. The biophysical invariability of the HLA-G heavy chain and its contrary diversity in immunity implicates a strong influence of the bound peptides on the pHLA-G structure. The aim was to determine if HLA-G displays a tissue-specific peptide repertoire. Therefore, using soluble sHLA-G technology, we analyzed the K562 and HDLM-2 peptide repertoires. Although both cell lines possess a comparable proteome and recruit HLA-G-restricted peptides through the same peptide-loading pathway, the peptide features appear to be cell specific. HDLM-2 derived HLA-G peptides are anchored by an Arg at p1 and K562-derived peptides are anchored by a Lys. At p2, no anchor motif could be determined while peptides were anchored at pΩ with a Leu and showed an auxiliary anchor motif Pro at p3. To appreciate if the peptide anchor alterations are due to a cell-specific differential peptidome, we performed analysis of peptide availability within the different cell types. Yet, the comparison of the cell-specific proteome and HLA-G-restricted ligandome clearly demonstrates a tissue-specific peptide selection by HLA-G molecules. This exclusive and unexpected observation suggests an exquisite immune function of HLA-G.

  14. Novel assay for simultaneous measurement of pyridine mononucleotides synthesizing activities allows dissection of the NAD(+) biosynthetic machinery in mammalian cells.

    PubMed

    Zamporlini, Federica; Ruggieri, Silverio; Mazzola, Francesca; Amici, Adolfo; Orsomando, Giuseppe; Raffaelli, Nadia

    2014-11-01

    The redox coenzyme NAD(+) is also a rate-limiting co-substrate for several enzymes that consume the molecule, thus rendering its continuous re-synthesis indispensable. NAD(+) biosynthesis has emerged as a therapeutic target due to the relevance of NAD(+) -consuming reactions in complex intracellular signaling networks whose alteration leads to many neurologic and metabolic disorders. Distinct metabolic routes, starting from various precursors, are known to support NAD(+) biosynthesis with tissue/cell-specific efficiencies, probably reflecting differential expression of the corresponding rate-limiting enzymes, i.e. nicotinamide phosphoribosyltransferase, quinolinate phosphoribosyltransferase, nicotinate phosphoribosyltransferase and nicotinamide riboside kinase. Understanding the contribution of these enzymes to NAD(+) levels depending on the tissue/cell type and metabolic status is necessary for the rational design of therapeutic strategies aimed at modulating NAD(+) availability. Here we report a simple, fast and sensitive coupled fluorometric assay that enables simultaneous determination of the four activities in whole-cell extracts and biological fluids. Its application to extracts from various mouse tissues, human cell lines and plasma yielded for the first time an overall picture of the tissue/cell-specific distribution of the activities of the various enzymes. The screening enabled us to gather novel findings, including (a) the presence of quinolinate phosphoribosyltransferase and nicotinamide riboside kinase in all examined tissues/cell lines, indicating that quinolinate and nicotinamide riboside are relevant NAD(+) precursors, and (b) the unexpected occurrence of nicotinate phosphoribosyltransferase in human plasma. © 2014 FEBS.

  15. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    PubMed

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells. © 2016 Federation of European Biochemical Societies.

  16. Tissue Specific Localization of Pectin–Ca2+ Cross-Linkages and Pectin Methyl-Esterification during Fruit Ripening in Tomato (Solanum lycopersicum)

    PubMed Central

    Hyodo, Hiromi; Terao, Azusa; Furukawa, Jun; Sakamoto, Naoya; Yurimoto, Hisayoshi; Satoh, Shinobu; Iwai, Hiroaki

    2013-01-01

    Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca2+) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue–tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue. PMID:24236073

  17. Selective imaging of cancer cells with a pH-activatable lysosome-targeting fluorescent probe.

    PubMed

    Shi, Rongguang; Huang, Lu; Duan, Xiaoxue; Sun, Guohao; Yin, Gui; Wang, Ruiyong; Zhu, Jun-Jie

    2017-10-02

    Fluorescence imaging with tumor-specific fluorescent probe has emerged as a tool to aid surgeons in the identification and removal of tumor tissue. We report here a new lysosome-targeting fluorescent probe (NBOH) with BODIPY fluorephore to distinguish tumor tissue out of normal tissue based on different pH environment. The probe exhibited remarkable pH-dependent fluorescence behavior in a wide pH range from 3.0 to 11.0, especially a sensitive pH-dependent fluorescence change at pH range between 3.5 and 5.5, corresponding well to the acidic microenvironment of tumor cells, in aqueous solution. The response time of NBOH was extremely short and the photostability was proved to be good. Toxicity test and fluorescence cell imaging together with a sub-cellular localization study were carried out revealing its low biotoxicity and good cell membrane permeability. And NBOH was successfully applied to the imaging of tumor tissue in tumor-bearing mice suggesting potential application to surgery as a tumor-specific probe. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Conserved Role of Intragenic DNA Methylation in Regulating Alternative Promoters

    PubMed Central

    Maunakea, Alika K.; Nagarajan, Raman P.; Bilenky, Mikhail; Ballinger, Tracy J.; D’Souza, Cletus; Fouse, Shaun D.; Johnson, Brett E.; Hong, Chibo; Nielsen, Cydney; Zhao, Yongjun; Turecki, Gustavo; Delaney, Allen; Varhol, Richard; Thiessen, Nina; Shchors, Ksenya; Heine, Vivi M.; Rowitch, David H.; Xing, Xiaoyun; Fiore, Chris; Schillebeeckx, Maximiliaan; Jones, Steven J.M.; Haussler, David; Marra, Marco A.; Hirst, Martin; Wang, Ting; Costello, Joseph F.

    2014-01-01

    While the methylation of DNA in 5′ promoters suppresses gene expression, the role of DNA methylation in gene bodies is unclear1–5. In mammals, tissue- and cell type-specific methylation is present in a small percentage of 5′ CpG island (CGI) promoters, while a far greater proportion occurs across gene bodies, coinciding with highly conserved sequences5–10. Tissue-specific intragenic methylation might reduce,3 or, paradoxically, enhance transcription elongation efficiency1,2,4,5. Capped analysis of gene expression (CAGE) experiments also indicate that transcription commonly initiates within and between genes11–15. To investigate the role of intragenic methylation, we generated a map of DNA methylation from human brain encompassing 24.7 million of the 28 million CpG sites. From the dense, high-resolution coverage of CpG islands, the majority of methylated CpG islands were revealed to be in intragenic and intergenic regions, while less than 3% of CpG islands in 5′ promoters were methylated. The CpG islands in all three locations overlapped with RNA markers of transcription initiation, and unmethylated CpG islands also overlapped significantly with trimethylation of H3K4, a histone modification enriched at promoters16. The general and CpG-island-specific patterns of methylation are conserved in mouse tissues. An in-depth investigation of the human SHANK3 locus17,18 and its mouse homologue demonstrated that this tissue-specific DNA methylation regulates intragenic promoter activity in vitro and in vivo. These methylation-regulated, alternative transcripts are expressed in a tissue and cell type-specific manner, and are expressed differentially within a single cell type from distinct brain regions. These results support a major role for intragenic methylation in regulating cell context-specific alternative promoters in gene bodies. PMID:20613842

  19. Tissue Engineering Platforms to Replicate the Tumor Microenvironment of Multiple Myeloma.

    PubMed

    Zhang, Wenting; Lee, Woo Y; Zilberberg, Jenny

    2017-01-01

    We described here the manufacturing and implementation of two prototype perfusion culture devices designed primarily for the cultivation of difficult-to-preserve primary patient-derived multiple myeloma cells (MMC). The first device consists of an osteoblast (OSB)-derived 3D tissue scaffold constructed in a perfused microfluidic environment. The second platform is a 96-well plate-modified perfusion culture device that can be utilized to reconstruct several tissue and tumor microenvironments utilizing both primary human and murine cells. This culture device was designed and fabricated specifically to: (1) enable the preservation of primary MMC for downstream use in biological studies and chemosensitivity analyses and, (2) provide a high-throughput format that is compatible with plate readers specifically seeing that this system is built on an industry standard 96-well tissue culture plate.

  20. Staining Methods for Normal and Regenerative Myelin in the Nervous System.

    PubMed

    Carriel, Víctor; Campos, Antonio; Alaminos, Miguel; Raimondo, Stefania; Geuna, Stefano

    2017-01-01

    Histochemical techniques enable the specific identification of myelin by light microscopy. Here we describe three histochemical methods for the staining of myelin suitable for formalin-fixed and paraffin-embedded materials. The first method is conventional luxol fast blue (LFB) method which stains myelin in blue and Nissl bodies and mast cells in purple. The second method is a LBF-based method called MCOLL, which specifically stains the myelin as well the collagen fibers and cells, giving an integrated overview of the histology and myelin content of the tissue. Finally, we describe the osmium tetroxide method, which consist in the osmication of previously fixed tissues. Osmication is performed prior the embedding of tissues in paraffin giving a permanent positive reaction for myelin as well as other lipids present in the tissue.

  1. A study of cryogenic tissue-engineered liver slices in calcium alginate gel for drug testing.

    PubMed

    Chen, Ruomeng; Wang, Bo; Liu, Yaxiong; Lin, Rong; He, Jiankang; Li, Dichen

    2018-06-01

    To address issues such as transportation and the time-consuming nature of tissue-engineered liver for use as an effective drug metabolism and toxicity testing model, "ready-to-use" cryogenic tissue-engineered liver needs to be studied. The research developed a cryogenic tissue-engineered liver slice (TELS), which comprised of HepG2 cells and calcium alginate gel. Cell viability and liver-specific functions were examined after different cryopreservation and recovery culture times. Then, cryogenic TELSs were used as a drug-testing model and treated with Gefitinib. Cryogenic TELSs were stored at -80 °C to ensure high cell viability. During recovery in culture, the cells in the cryogenic TELS were evenly distributed, massively proliferated, and then formed spheroid-like aggregates from day 1 to day 13. The liver-specific functions in the cryogenic TELS were closely related to cryopreservation time and cell proliferation. As a reproducible drug-testing model, the cryogenic TELS showed an obvious drug reaction after treatment with the Gefitinib. The present study shows that the cryopreservation techniques can be used in drug-testing models. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Quantification of Adipose Tissue Leukocytosis in Obesity

    PubMed Central

    Grant, Ryan; Youm, Yun-Hee; Ravussin, Anthony; Dixit, Vishwa Deep

    2014-01-01

    Summary The infiltration of immune cell subsets in adipose tissue termed ‘adipose tissue leukocytosis’ is a critical event in the development of chronic inflammation and obesity-associated comorbidities. Given that a significant proportion of cells in adipose tissue of obese patients are of hematopoietic lineage, the distinct adipose depots represent an uncharacterized immunological organ that can impact metabolic functions. Here, we describe approaches to characterize and isolate leukocytes from the complex adipose tissue microenvironment to aid mechanistic studies to understand the role of specific pattern recognition receptors (PRRs) such as inflammasomes in adipose-immune crosstalk. PMID:23852606

  3. Single-Cell Sequencing of the Healthy and Diseased Heart Reveals Ckap4 as a New Modulator of Fibroblasts Activation.

    PubMed

    Gladka, Monika M; Molenaar, Bas; de Ruiter, Hesther; van der Elst, Stefan; Tsui, Hoyee; Versteeg, Danielle; Lacraz, Grègory P A; Huibers, Manon M H; van Oudenaarden, Alexander; van Rooij, Eva

    2018-01-31

    Background -Genome-wide transcriptome analysis has greatly advanced our understanding of the regulatory networks underlying basic cardiac biology and mechanisms driving disease. However, so far, the resolution of studying gene expression patterns in the adult heart has been limited to the level of extracts from whole tissues. The use of tissue homogenates inherently causes the loss of any information on cellular origin or cell type-specific changes in gene expression. Recent developments in RNA amplification strategies provide a unique opportunity to use small amounts of input RNA for genome-wide sequencing of single cells. Methods -Here, we present a method to obtain high quality RNA from digested cardiac tissue from adult mice for automated single-cell sequencing of both the healthy and diseased heart. Results -After optimization, we were able to perform single-cell sequencing on adult cardiac tissue under both homeostatic conditions and after ischemic injury. Clustering analysis based on differential gene expression unveiled known and novel markers of all main cardiac cell types. Based on differential gene expression we were also able to identify multiple subpopulations within a certain cell type. Furthermore, applying single-cell sequencing on both the healthy and the injured heart indicated the presence of disease-specific cell subpopulations. As such, we identified cytoskeleton associated protein 4 ( Ckap4 ) as a novel marker for activated fibroblasts that positively correlates with known myofibroblast markers in both mouse and human cardiac tissue. Ckap4 inhibition in activated fibroblasts treated with TGFβ triggered a greater increase in the expression of genes related to activated fibroblasts compared to control, suggesting a role of Ckap4 in modulating fibroblast activation in the injured heart. Conclusions -Single-cell sequencing on both the healthy and diseased adult heart allows us to study transcriptomic differences between cardiac cells, as well as cell type-specific changes in gene expression during cardiac disease. This new approach provides a wealth of novel insights into molecular changes that underlie the cellular processes relevant for cardiac biology and pathophysiology. Applying this technology could lead to the discovery of new therapeutic targets relevant for heart disease.

  4. Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7.

    PubMed

    Darabi, Radbod; Perlingeiro, Rita C R

    2016-01-01

    Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient's own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.

  5. Comprehensive proteomic characterization of stem cell-derived extracellular matrices.

    PubMed

    Ragelle, Héloïse; Naba, Alexandra; Larson, Benjamin L; Zhou, Fangheng; Prijić, Miralem; Whittaker, Charles A; Del Rosario, Amanda; Langer, Robert; Hynes, Richard O; Anderson, Daniel G

    2017-06-01

    In the stem-cell niche, the extracellular matrix (ECM) serves as a structural support that additionally provides stem cells with signals that contribute to the regulation of stem-cell function, via reciprocal interactions between cells and components of the ECM. Recently, cell-derived ECMs have emerged as in vitro cell culture substrates to better recapitulate the native stem-cell microenvironment outside the body. Significant changes in cell number, morphology and function have been observed when mesenchymal stem cells (MSC) were cultured on ECM substrates as compared to standard tissue-culture polystyrene (TCPS). As select ECM components are known to regulate specific stem-cell functions, a robust characterization of cell-derived ECM proteomic composition is critical to better comprehend the role of the ECM in directing cellular processes. Here, we characterized and compared the protein composition of ECM produced in vitro by bone marrow-derived MSC, adipose-derived MSC and neonatal fibroblasts from different donors, employing quantitative proteomic methods. Each cell-derived ECM displayed a specific and unique matrisome signature, yet they all shared a common set of proteins. We evaluated the biological response of cells cultured on the different matrices and compared them to cells on standard TCPS. The matrices lead to differential survival and gene-expression profiles among the cell types and as compared to TCPS, indicating that the cell-derived ECMs influence each cell type in a different manner. This general approach to understanding the protein composition of different tissue-specific and cell-derived ECM will inform the rational design of defined systems and biomaterials that recapitulate critical ECM signals for stem-cell culture and tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Modulation of NADP(+)-dependent isocitrate dehydrogenase in aging.

    PubMed

    Kil, In Sup; Lee, Young Sup; Bae, Young Seuk; Huh, Tae Lin; Park, Jeen-Woo

    2004-01-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-specific isocitrate dehydrogenases (ICDHs). Here, we investigated age-related changes in ICDH activity and protein expression in IMR-90 human diploid fibroblast cells and tissues from Fischer 344 rats. We found that in IMR-90 cells the activity of cytosolic ICDH (IDPc) gradually increased with age up to the 46-48 population doubling level (PDL) and then gradually decreased at later PDL. 2',7'-Dichloro-fluorescein fluorescence which reflects intracellular ROS generation was increased with aging in IMR-90 cells. In ad libitum-fed rats, we noted age-related, tissue-specific modulations of IDPc and mitochondrial ICDH (IDPm) activities and protein expression in the liver, kidney and testes. In contrast, ICDH activities and protein expression were not significantly modulated in diet-restricted rats. These data suggest that modulation of ICDH is an age-dependent and a tissue-specific phenomenon.

  7. Complex tissue-specific epigenotypes in Russell-Silver Syndrome associated with 11p15 ICR1 hypomethylation.

    PubMed

    Azzi, Salah; Blaise, Annick; Steunou, Virginie; Harbison, Madeleine D; Salem, Jennifer; Brioude, Frédéric; Rossignol, Sylvie; Habib, Walid Abi; Thibaud, Nathalie; Neves, Cristina Das; Jule, Marilyne Le; Brachet, Cécile; Heinrichs, Claudine; Bouc, Yves Le; Netchine, Irène

    2014-10-01

    Russell-Silver Syndrome (RSS) is a prenatal and postnatal growth retardation syndrome caused mainly by 11p15 ICR1 hypomethylation. Clinical presentation is heterogeneous in RSS patients with 11p15 ICR1 hypomethylation. We previously identified a subset of RSS patients with 11p15 ICR1 and multilocus hypomethylation. Here, we examine the relationships between IGF2 expression, 11p15 ICR1 methylation, and multilocus imprinting defects in various cell types from 39 RSS patients with 11p15 ICR1 hypomethylation in leukocyte DNA. 11p15 ICR1 hypomethylation was more pronounced in leukocytes than in buccal mucosa cells. Skin fibroblast IGF2 expression was correlated with the degree of ICR1 hypomethylation. Different tissue-specific multilocus methylation defects coexisted in 38% of cases, with some loci hypomethylated and others hypermethylated within the same cell type in some cases. Our new results suggest that tissue-specific epigenotypes may lead to clinical heterogeneity in RSS. © 2014 WILEY PERIODICALS, INC.

  8. Ligand-targeted delivery of small interfering RNAs to malignant cells and tissues.

    PubMed

    Thomas, Mini; Kularatne, Sumith A; Qi, Longwu; Kleindl, Paul; Leamon, Christopher P; Hansen, Michael J; Low, Philip S

    2009-09-01

    Potential clinical applications of small interfering RNA (siRNA) are hampered primarily by delivery issues. We have successfully addressed the delivery problems associated with off-site targeting of highly toxic chemotherapeutic agents by attaching the drugs to tumor-specific ligands that will carry the attached cargo into the desired cancer cell. Indeed, several such tumor-targeted drugs are currently undergoing human clinical trials. We now show that efficient targeting of siRNA to malignant cells and tissues can be achieved by covalent conjugation of small-molecular-weight, high-affinity ligands, such as folic acid and DUPA (2-[3-(1, 3-dicarboxy propyl)-ureido] pentanedioic acid), to siRNA. The former ligand binds a folate receptor that is overexpressed on a variety of cancers, whereas the latter ligand binds to prostate-specific membrane antigen that is overexpressed specifically on prostate cancers and the neovasculature of all solid tumors. Using these ligands, we show remarkable receptor-mediated targeting of siRNA to cancer tissues in vitro and in vivo.

  9. A convex optimization approach for identification of human tissue-specific interactomes.

    PubMed

    Mohammadi, Shahin; Grama, Ananth

    2016-06-15

    Analysis of organism-specific interactomes has yielded novel insights into cellular function and coordination, understanding of pathology, and identification of markers and drug targets. Genes, however, can exhibit varying levels of cell type specificity in their expression, and their coordinated expression manifests in tissue-specific function and pathology. Tissue-specific/tissue-selective interaction mechanisms have significant applications in drug discovery, as they are more likely to reveal drug targets. Furthermore, tissue-specific transcription factors (tsTFs) are significantly implicated in human disease, including cancers. Finally, disease genes and protein complexes have the tendency to be differentially expressed in tissues in which defects cause pathology. These observations motivate the construction of refined tissue-specific interactomes from organism-specific interactomes. We present a novel technique for constructing human tissue-specific interactomes. Using a variety of validation tests (Edge Set Enrichment Analysis, Gene Ontology Enrichment, Disease-Gene Subnetwork Compactness), we show that our proposed approach significantly outperforms state-of-the-art techniques. Finally, using case studies of Alzheimer's and Parkinson's diseases, we show that tissue-specific interactomes derived from our study can be used to construct pathways implicated in pathology and demonstrate the use of these pathways in identifying novel targets. http://www.cs.purdue.edu/homes/mohammas/projects/ActPro.html mohammadi@purdue.edu. © The Author 2016. Published by Oxford University Press.

  10. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis.

    PubMed

    Cheung, Laurence C; Strickland, Deborah H; Howlett, Meegan; Ford, Jette; Charles, Adrian K; Lyons, Karen M; Brigstock, David R; Goldschmeding, Roel; Cole, Catherine H; Alexander, Warren S; Kees, Ursula R

    2014-07-01

    Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. Copyright© Ferrata Storti Foundation.

  11. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis

    PubMed Central

    Cheung, Laurence C.; Strickland, Deborah H.; Howlett, Meegan; Ford, Jette; Charles, Adrian K.; Lyons, Karen M.; Brigstock, David R.; Goldschmeding, Roel; Cole, Catherine H.; Alexander, Warren S.; Kees, Ursula R.

    2014-01-01

    Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. PMID:24727816

  12. Characterization and promoter activity of chromoplast specific carotenoid associated gene (CHRC) from Oncidium Gower Ramsey.

    PubMed

    Chiou, Chung-Yi; Wu, Keqiang; Yeh, Kai-Wun

    2008-10-01

    Tissue-specific promoters are required for plant molecular breeding to drive a target gene in the appropriate location in plants. A chromoplast-specific, carotenoid-associated gene (OgCHRC) and its promoter (Pchrc) were isolated from Oncidium orchid and characterized. Northern blot analysis revealed that OgCHRC is specifically expressed in flowers, not in roots and leaves. Transient expression assay of Pchrc by bombardment transformation confirmed its differential expression pattern in floral tissues of different horticulture plants and cell-type location in conical papillate cells of adaxial epidermis of flower. These results suggest that Pchrc could serve as a useful tool in ornamental plant biotechnology to modify flower color.

  13. Vascular tissue engineering by computer-aided laser micromachining.

    PubMed

    Doraiswamy, Anand; Narayan, Roger J

    2010-04-28

    Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.

  14. Tissue-specific distribution of hemicelluloses in six different sugarcane hybrids as related to cell wall recalcitrance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Thales H. F.; Vega-Sánchez, Miguel E.; Milagres, Adriane M. F.

    Background: Grasses are lignocellulosic materials useful to supply the billion-tons annual requirement for renewable resources that aim to produce transportation fuels and a variety of chemicals. However, the polysaccharides contained in grass cell walls are built in a recalcitrant composite. Deconstruction of these cell walls is still a challenge for the energy-efficient and economically viable transformation of lignocellulosic materials. The varied tissue-specific distribution of cell wall components adds complexity to the origins of cell wall recalcitrance in grasses. This complexity usually led to empirically developed pretreatment processes to overcome recalcitrance. A further complication is that efficient pretreatment procedures generally treatmore » the less recalcitrant tissues more than necessary, which results in the generation of undesirable biomass degradation products. Results: Six different sugarcane hybrids were used as model grasses to evaluate the tissue-specific distribution of hemicelluloses and the role of these components in cell wall recalcitrance. Acetylated glucuronoarabinoxylan (GAX) occurs in all tissues. Mixed-linkage glucan (MLG) was relevant in the innermost regions of the sugarcane internodes (up to 15.4 % w/w), especially in the low-lignin content hybrids. Immunofluorescence microscopy showed that xylans predominated in vascular bundles, whereas MLG occurred mostly in the parenchyma cell walls from the pith region of the hybrids with low-lignin content. Evaluation of the digestibility of sugarcane polysaccharides by commercial enzymes indicated that the cell wall recalcitrance varied considerably along the internode regions and in the sugarcane hybrids. Pith regions of the hybrids with high MLG and low-lignin contents reached up to 85 % cellulose conversion after 72 h of hydrolysis, without any pretreatment. Conclusions: The collective characteristics of the internode regions were related to the varied recalcitrance found in the samples. Components such as lignin and GAX were critical for the increased recalcitrance, but low cellulose crystallinity index, high MLG contents, and highly substituted GAX contributed to the generation of a less recalcitrant material.« less

  15. Tissue-specific distribution of hemicelluloses in six different sugarcane hybrids as related to cell wall recalcitrance

    DOE PAGES

    Costa, Thales H. F.; Vega-Sánchez, Miguel E.; Milagres, Adriane M. F.; ...

    2016-05-04

    Background: Grasses are lignocellulosic materials useful to supply the billion-tons annual requirement for renewable resources that aim to produce transportation fuels and a variety of chemicals. However, the polysaccharides contained in grass cell walls are built in a recalcitrant composite. Deconstruction of these cell walls is still a challenge for the energy-efficient and economically viable transformation of lignocellulosic materials. The varied tissue-specific distribution of cell wall components adds complexity to the origins of cell wall recalcitrance in grasses. This complexity usually led to empirically developed pretreatment processes to overcome recalcitrance. A further complication is that efficient pretreatment procedures generally treatmore » the less recalcitrant tissues more than necessary, which results in the generation of undesirable biomass degradation products. Results: Six different sugarcane hybrids were used as model grasses to evaluate the tissue-specific distribution of hemicelluloses and the role of these components in cell wall recalcitrance. Acetylated glucuronoarabinoxylan (GAX) occurs in all tissues. Mixed-linkage glucan (MLG) was relevant in the innermost regions of the sugarcane internodes (up to 15.4 % w/w), especially in the low-lignin content hybrids. Immunofluorescence microscopy showed that xylans predominated in vascular bundles, whereas MLG occurred mostly in the parenchyma cell walls from the pith region of the hybrids with low-lignin content. Evaluation of the digestibility of sugarcane polysaccharides by commercial enzymes indicated that the cell wall recalcitrance varied considerably along the internode regions and in the sugarcane hybrids. Pith regions of the hybrids with high MLG and low-lignin contents reached up to 85 % cellulose conversion after 72 h of hydrolysis, without any pretreatment. Conclusions: The collective characteristics of the internode regions were related to the varied recalcitrance found in the samples. Components such as lignin and GAX were critical for the increased recalcitrance, but low cellulose crystallinity index, high MLG contents, and highly substituted GAX contributed to the generation of a less recalcitrant material.« less

  16. Compartmentalization of HIV-1 within the female genital tract is due to monotypic and low-diversity variants not distinct viral populations.

    PubMed

    Bull, Marta; Learn, Gerald; Genowati, Indira; McKernan, Jennifer; Hitti, Jane; Lockhart, David; Tapia, Kenneth; Holte, Sarah; Dragavon, Joan; Coombs, Robert; Mullins, James; Frenkel, Lisa

    2009-09-22

    Compartmentalization of HIV-1 between the genital tract and blood was noted in half of 57 women included in 12 studies primarily using cell-free virus. To further understand differences between genital tract and blood viruses of women with chronic HIV-1 infection cell-free and cell-associated virus populations were sequenced from these tissues, reasoning that integrated viral DNA includes variants archived from earlier in infection, and provides a greater array of genotypes for comparisons. Multiple sequences from single-genome-amplification of HIV-1 RNA and DNA from the genital tract and blood of each woman were compared in a cross-sectional study. Maximum likelihood phylogenies were evaluated for evidence of compartmentalization using four statistical tests. Genital tract and blood HIV-1 appears compartmentalized in 7/13 women by >/=2 statistical analyses. These subjects' phylograms were characterized by low diversity genital-specific viral clades interspersed between clades containing both genital and blood sequences. Many of the genital-specific clades contained monotypic HIV-1 sequences. In 2/7 women, HIV-1 populations were significantly compartmentalized across all four statistical tests; both had low diversity genital tract-only clades. Collapsing monotypic variants into a single sequence diminished the prevalence and extent of compartmentalization. Viral sequences did not demonstrate tissue-specific signature amino acid residues, differential immune selection, or co-receptor usage. In women with chronic HIV-1 infection multiple identical sequences suggest proliferation of HIV-1-infected cells, and low diversity tissue-specific phylogenetic clades are consistent with bursts of viral replication. These monotypic and tissue-specific viruses provide statistical support for compartmentalization of HIV-1 between the female genital tract and blood. However, the intermingling of these clades with clades comprised of both genital and blood sequences and the absence of tissue-specific genetic features suggests compartmentalization between blood and genital tract may be due to viral replication and proliferation of infected cells, and questions whether HIV-1 in the female genital tract is distinct from blood.

  17. Targeted expression of suicide gene by tissue-specific promoter and microRNA regulation for cancer gene therapy.

    PubMed

    Danda, Ravikanth; Krishnan, Gopinath; Ganapathy, Kalaivani; Krishnan, Uma Maheswari; Vikas, Khetan; Elchuri, Sailaja; Chatterjee, Nivedita; Krishnakumar, Subramanian

    2013-01-01

    In order to realise the full potential of cancer suicide gene therapy that allows the precise expression of suicide gene in cancer cells, we used a tissue specific Epithelial cell adhesion molecule (EpCAM) promoter (EGP-2) that directs transgene Herpes simplex virus-thymidine kinase (HSV-TK) expression preferentially in EpCAM over expressing cancer cells. EpCAM levels are considerably higher in retinoblastoma (RB), a childhood eye cancer with limited expression in normal cells. Use of miRNA regulation, adjacent to the use of the tissue-specific promoter, would provide the second layer of control to the transgene expression only in the tumor cells while sparing the normal cells. To test this hypothesis we cloned let-7b miRNA targets in the 3'UTR region of HSV-TK suicide gene driven by EpCAM promoter because let-7 family miRNAs, including let-7b, were found to be down regulated in the RB tumors and cell lines. We used EpCAM over expressing and let-7 down regulated RB cell lines Y79, WERI-Rb1 (EpCAM (+ve)/let-7b(down-regulated)), EpCAM down regulated, let-7 over expressing normal retinal Müller glial cell line MIO-M1(EpCAM (-ve)/let-7b(up-regulated)), and EpCAM up regulated, let-7b up-regulated normal thyroid cell line N-Thy-Ori-3.1(EpCAM (+ve)/let-7b(up-regulated)) in the study. The cell proliferation was measured by MTT assay, apoptosis was measured by probing cleaved Caspase3, EpCAM and TK expression were quantified by Western blot. Our results showed that the EGP2-promoter HSV-TK (EGP2-TK) construct with 2 or 4 copies of let-7b miRNA targets expressed TK gene only in Y79, WERI-Rb-1, while the TK gene did not express in MIO-M1. In summary, we have developed a tissue-specific, miRNA-regulated dual control vector, which selectively expresses the suicide gene in EpCAM over expressing cells.

  18. Sparse Feature Selection Identifies H2A.Z as a Novel, Pattern-Specific Biomarker for Asymmetrically Self-Renewing Distributed Stem Cells

    PubMed Central

    Huh, Yang Hoon; Noh, Minsoo; Burden, Frank R.; Chen, Jennifer C.; Winkler, David A.; Sherley, James L.

    2015-01-01

    There is a long-standing unmet clinical need for biomarkers with high specificity for distributed stem cells (DSCs) in tissues, or for use in diagnostic and therapeutic cell preparations (e.g., bone marrow). Although DSCs are essential for tissue maintenance and repair, accurate determination of their numbers for medical applications has been problematic. Previous searches for biomarkers expressed specifically in DSCs were hampered by difficulty obtaining pure DSCs and by the challenges in mining complex molecular expression data. To identify DSC such useful and specific biomarkers, we combined a novel sparse feature selection method with combinatorial molecular expression data focused on asymmetric self-renewal, a conspicuous property of DSCs. The analysis identified reduced expression of the histone H2A variant H2A.Z as a superior molecular discriminator for DSC asymmetric self-renewal. Subsequent molecular expression studies showed H2A.Z to be a novel “pattern-specific biomarker” for asymmetrically self-renewing cells with sufficient specificity to count asymmetrically self-renewing DSCs in vitro and potentially in situ. PMID:25636161

  19. Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity.

    PubMed

    Baudoin, Régis; Corlu, Anne; Griscom, Laurent; Legallais, Cécile; Leclerc, Eric

    2007-06-01

    Current developments in the technological fields of liver tissue engineering, bioengineering, biomechanics, microfabrication and microfluidics have lead to highly complex and pertinent new tools called "cell biochips" for in vitro toxicology. The purpose of "cell biochips" is to mimic organ tissues in vitro in order to partially reduce the amount of in vivo testing. These "cell biochips" consist of microchambers containing engineered tissue and living cell cultures interconnected by a microfluidic network, which allows the control of microfluidic flows for dynamic cultures, by continuous feeding of nutrients to cultured cells and waste removal. Cell biochips also allow the control of physiological contact times of diluted molecules with the tissues and cells, for rapid testing of sample preparations or specific addressing. Cell biochips can be situated between in vitro and in vivo testing. These types of systems can enhance functionality of cells by mimicking the tissue architecture complexities when compared to in vitro analysis but at the same time present a more rapid and simple process when compared to in vivo testing procedures. In this paper, we first introduce the concepts of microfluidic and biochip systems based on recent progress in microfabrication techniques used to mimic liver tissue in vitro. This includes progress and understanding in biomaterials science (cell culture substrate), biomechanics (dynamic cultures conditions) and biology (tissue engineering). The development of new "cell biochips" for chronic toxicology analysis of engineered tissues can be achieved through the combination of these research domains. Combining these advanced research domains, we then present "cell biochips" that allow liver chronic toxicity analysis in vitro on engineered tissues. An extension of the "cell biochip" idea has also allowed "organ interactions on chip", which can be considered as a first step towards the replacement of animal testing using a combined liver/lung organ model.

  20. IL-15 regulates memory CD8+ T cell O-glycan synthesis and affects trafficking

    PubMed Central

    Nolz, Jeffrey C.; Harty, John T.

    2014-01-01

    Memory and naive CD8+ T cells exhibit distinct trafficking patterns. Specifically, memory but not naive CD8+ T cells are recruited to inflamed tissues in an antigen-independent manner. However, the molecular mechanisms that regulate memory CD8+ T cell trafficking are largely unknown. Here, using murine models of infection and T cell transfer, we found that memory but not naive CD8+ T cells dynamically regulate expression of core 2 O-glycans, which interact with P- and E-selectins to modulate trafficking to inflamed tissues. Following infection, antigen-specific effector CD8+ T cells strongly expressed core 2 O-glycans, but this glycosylation pattern was lost by most memory CD8+ T cells. After unrelated infection or inflammatory challenge, memory CD8+ T cells synthesized core 2 O-glycans independently of antigen restimulation. The presence of core 2 O-glycans subsequently directed these cells to inflamed tissue. Memory and naive CD8+ T cells exhibited the opposite pattern of epigenetic modifications at the Gcnt1 locus, which encodes the enzyme that initiates core 2 O-glycan synthesis. The open chromatin configuration in memory CD8+ T cells permitted de novo generation of core 2 O-glycans in a TCR-independent, but IL-15–dependent, manner. Thus, IL-15 stimulation promotes antigen-experienced memory CD8+ T cells to generate core 2 O-glycans, which subsequently localize them to inflamed tissues. These findings suggest that CD8+ memory T cell trafficking potentially can be manipulated to improve host defense and immunotherapy. PMID:24509081

  1. THE GERMLINE STEM CELL NICHE UNIT IN MAMMALIAN TESTES

    PubMed Central

    Oatley, Jon M.; Brinster, Ralph L.

    2014-01-01

    This review addresses current understanding of the germline stem cell niche unit in mammalian testes. Spermatogenesis is a classic model of tissue-specific stem cell function relying on self-renewal and differentiation of spermatogonial stem cells (SSCs). These fate decisions are influenced by a niche microenvironment composed of a growth factor milieu that is provided by several testis somatic support cell populations. Investigations over the last two decades have identified key determinants of the SSC niche including cytokines that regulate SSC functions and support cells providing these factors, adhesion molecules that influence SSC homing, and developmental heterogeneity of the niche during postnatal aging. Emerging evidence suggests that Sertoli cells are a key support cell population influencing the formation and function of niches by secreting soluble factors and possibly orchestrating contributions of other support cells. Investigations with mice have shown that niche influence on SSC proliferation differs during early postnatal development and adulthood. Moreover, there is mounting evidence of an age-related decline in niche function, which is likely influenced by systemic factors. Defining the attributes of stem cell niches is key to developing methods to utilize these cells for regenerative medicine. The SSC population and associated niche comprise a valuable model system for study that provides fundamental knowledge about the biology of tissue-specific stem cells and their capacity to sustain homeostasis of regenerating tissue lineages. While the stem cell is essential for maintenance of all self-renewing tissues and has received considerable attention, the role of niche cells is at least as important and may prove to be more receptive to modification in regenerative medicine. PMID:22535892

  2. Tissue-specific time courses of spontaneous mutation frequency and deviations in mutation pattern are observed in middle to late adulthood in Big Blue mice.

    PubMed

    Hill, Kathleen A; Halangoda, Asanga; Heinmoeller, Petra W; Gonzalez, Kelly; Chitaphan, Chaniga; Longmate, Jeffrey; Scaringe, William A; Wang, Ji-Cheng; Sommer, Steve S

    2005-06-01

    To better define the time course of spontaneous mutation frequency in middle to late adulthood of the mouse, measurements were made at 10, 14, 17, 23, 25, and 30 months of age in samples of adipose tissue, liver, cerebellum (90% neurons), and the male germline (95% germ cells). A total of 46 million plaque-forming units (pfus) were screened at the six time points and 1,450 circular blue plaques were harvested and sequenced. These data improve resolution and confirm the previously observed occurrence of at least two tissue-specific profiles of spontaneous mutation frequency (elevation with age in adipose tissue and liver, and constancy with age in neurons and male germ cells), a low mutation frequency in the male germline, and a mutation pattern unchanged with age within a tissue. These findings appear to extend to very old age (30 months). Additional findings include interanimal variation in spontaneous mutation frequency is larger in adipose tissues and liver compared with neurons and male germ cells, and subtle but significant differences in the mutation pattern among tissues, consistent with a minor effect of tissue-specific metabolism. The presumptive unaltered balance of DNA damage and repair with age in the male germline has evolutionary consequences. It is of particular interest given the controversy over whether or not increasing germline mutation frequency with paternal age underlies the reports associating older males with a higher incidence of some types of genetic disease. These most detailed measurements available to date regarding the time course of spontaneous mutation frequency and pattern in individual tissues help to constrain hypotheses regarding the role of mutational mechanisms in DNA repair and aging.

  3. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink

    PubMed Central

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D.; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-01-01

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types. PMID:27166839

  4. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.

    PubMed

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-04-21

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.

  5. Region-Specific Effect of the Decellularized Meniscus Extracellular Matrix on Mesenchymal Stem Cell-Based Meniscus Tissue Engineering.

    PubMed

    Shimomura, Kazunori; Rothrauff, Benjamin B; Tuan, Rocky S

    2017-03-01

    The meniscus is the most commonly injured knee structure, and surgical repair is often ineffective. Tissue engineering-based repair or regeneration may provide a needed solution. Decellularized, tissue-derived extracellular matrices (ECMs) have received attention for their potential use as tissue-engineered scaffolds. In considering meniscus-derived ECMs (mECMs) for meniscus tissue engineering, it is noteworthy that the inner and outer regions of the meniscus have different structural and biochemical features, potentially directing the differentiation of cells toward region-specific phenotypes. To investigate the applicability of mECMs for meniscus tissue engineering by specifically comparing region-dependent effects of mECMs on 3-dimensional constructs seeded with human bone marrow mesenchymal stem cells (hBMSCs). Controlled laboratory study. Bovine menisci were divided into inner and outer halves and were minced, treated with Triton X-100 and DNase, and extracted with urea. Then, hBMSCs (1 × 10 6 cells/mL) were encapsulated in a photo-cross-linked 10% polyethylene glycol diacrylate scaffold containing mECMs (60 μg/mL) derived from either the inner or outer meniscus, with an ECM-free scaffold as a control. The cell-seeded constructs were cultured with chondrogenic medium containing recombinant human transforming growth factor β3 (TGF-β3) and were analyzed for expression of meniscus-associated genes as well as for the collagen (hydroxyproline) and glycosaminoglycan content as a function of time. Decellularization was verified by the absence of 4',6-diamidino-2-phenylindole (DAPI)-stained cell nuclei and a reduction in the DNA content. Quantitative real-time polymerase chain reaction showed that collagen type I expression was significantly higher in the outer mECM group than in the other groups, while collagen type II and aggrecan expression was highest in the inner mECM group. The collagen (hydroxyproline) content was highest in the outer mECM group, while the glycosaminoglycan content was higher in both the inner and outer mECM groups compared with the control group. These results showed that the inner mECM enhances the fibrocartilaginous differentiation of hBMSCs, while the outer mECM promotes a more fibroblastic phenotype. Our findings support the feasibility of fabricating bioactive scaffolds using region-specific mECM preparations for meniscus tissue engineering. This is the first report to demonstrate the feasibility of applying region-specific mECMs for the engineering of meniscus implants capable of reproducing the biphasic, anatomic, and biochemical characteristics of the meniscus, features that should contribute to the feasibility of their clinical application.

  6. An atlas of active enhancers across human cell types and tissues

    NASA Astrophysics Data System (ADS)

    Andersson, Robin; Gebhard, Claudia; Miguel-Escalada, Irene; Hoof, Ilka; Bornholdt, Jette; Boyd, Mette; Chen, Yun; Zhao, Xiaobei; Schmidl, Christian; Suzuki, Takahiro; Ntini, Evgenia; Arner, Erik; Valen, Eivind; Li, Kang; Schwarzfischer, Lucia; Glatz, Dagmar; Raithel, Johanna; Lilje, Berit; Rapin, Nicolas; Bagger, Frederik Otzen; Jørgensen, Mette; Andersen, Peter Refsing; Bertin, Nicolas; Rackham, Owen; Burroughs, A. Maxwell; Baillie, J. Kenneth; Ishizu, Yuri; Shimizu, Yuri; Furuhata, Erina; Maeda, Shiori; Negishi, Yutaka; Mungall, Christopher J.; Meehan, Terrence F.; Lassmann, Timo; Itoh, Masayoshi; Kawaji, Hideya; Kondo, Naoto; Kawai, Jun; Lennartsson, Andreas; Daub, Carsten O.; Heutink, Peter; Hume, David A.; Jensen, Torben Heick; Suzuki, Harukazu; Hayashizaki, Yoshihide; Müller, Ferenc; Consortium, The Fantom; Forrest, Alistair R. R.; Carninci, Piero; Rehli, Michael; Sandelin, Albin

    2014-03-01

    Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.

  7. The sex of specific neurons controls female body growth in Drosophila.

    PubMed

    Sawala, Annick; Gould, Alex P

    2017-10-01

    Sexual dimorphisms in body size are widespread throughout the animal kingdom but their underlying mechanisms are not well characterized. Most models for how sex chromosome genes specify size dimorphism have emphasized the importance of gonadal hormones and cell-autonomous influences in mammals versus strictly cell-autonomous mechanisms in Drosophila melanogaster. Here, we use tissue-specific genetics to investigate how sexual size dimorphism (SSD) is established in Drosophila. We find that the larger body size characteristic of Drosophila females is established very early in larval development via an increase in the growth rate per unit of body mass. We demonstrate that the female sex determination gene, Sex-lethal (Sxl), functions in central nervous system (CNS) neurons as part of a relay that specifies the early sex-specific growth trajectories of larval but not imaginal tissues. Neuronal Sxl acts additively in 2 neuronal subpopulations, one of which corresponds to 7 median neurosecretory cells: the insulin-producing cells (IPCs). Surprisingly, however, male-female differences in the production of insulin-like peptides (Ilps) from the IPCs do not appear to be involved in establishing SSD in early larvae, although they may play a later role. These findings support a relay model in which Sxl in neurons and Sxl in local tissues act together to specify the female-specific growth of the larval body. They also reveal that, even though the sex determination pathways in Drosophila and mammals are different, they both modulate body growth via a combination of tissue-autonomous and nonautonomous inputs.

  8. The sex of specific neurons controls female body growth in Drosophila

    PubMed Central

    Sawala, Annick

    2017-01-01

    Sexual dimorphisms in body size are widespread throughout the animal kingdom but their underlying mechanisms are not well characterized. Most models for how sex chromosome genes specify size dimorphism have emphasized the importance of gonadal hormones and cell-autonomous influences in mammals versus strictly cell-autonomous mechanisms in Drosophila melanogaster. Here, we use tissue-specific genetics to investigate how sexual size dimorphism (SSD) is established in Drosophila. We find that the larger body size characteristic of Drosophila females is established very early in larval development via an increase in the growth rate per unit of body mass. We demonstrate that the female sex determination gene, Sex-lethal (Sxl), functions in central nervous system (CNS) neurons as part of a relay that specifies the early sex-specific growth trajectories of larval but not imaginal tissues. Neuronal Sxl acts additively in 2 neuronal subpopulations, one of which corresponds to 7 median neurosecretory cells: the insulin-producing cells (IPCs). Surprisingly, however, male-female differences in the production of insulin-like peptides (Ilps) from the IPCs do not appear to be involved in establishing SSD in early larvae, although they may play a later role. These findings support a relay model in which Sxl in neurons and Sxl in local tissues act together to specify the female-specific growth of the larval body. They also reveal that, even though the sex determination pathways in Drosophila and mammals are different, they both modulate body growth via a combination of tissue-autonomous and nonautonomous inputs. PMID:28976974

  9. Redundant role of tissue-selective TAF(II)105 in B lymphocytes.

    PubMed

    Freiman, Richard N; Albright, Shane R; Chu, Leslie E; Zheng, Shuang; Liang, Hong-Erh; Sha, William C; Tjian, Robert

    2002-09-01

    Regulated gene expression is a complex process achieved through the function of multiple protein factors acting in concert at a given promoter. The transcription factor TFIID is a central component of the machinery regulating mRNA synthesis by RNA polymerase II. This large multiprotein complex is composed of the TATA box binding protein (TBP) and several TBP-associated factors (TAF(II)s). The recent discovery of multiple TBP-related factors and tissue-specific TAF(II)s suggests the existence of specialized TFIID complexes that likely play a critical role in regulating transcription in a gene- and tissue-specific manner. The tissue-selective factor TAF(II)105 was originally identified as a component of TFIID derived from a human B-cell line. In this report we demonstrate the specific induction of TAF(II)105 in cultured B cells in response to bacterial lipopolysaccharide (LPS). To examine the in vivo role of TAF(II)105, we have generated TAF(II)105-null mice by homologous recombination. Here we show that B-lymphocyte development is largely unaffected by the absence of TAF(II)105. TAF(II)105-null B cells can proliferate in response to LPS, produce relatively normal levels of resting antibodies, and can mount an immune response by producing antigen-specific antibodies in response to immunization. Taken together, we conclude that the function of TAF(II)105 in B cells is likely redundant with the function of other TAF(II)105-related cellular proteins.

  10. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    PubMed Central

    Yu, Hye-Sun; Kim, Jung-Ju; Kim, Hae-Won; Lewis, Mark P; Wall, Ivan

    2016-01-01

    Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations. PMID:26977284

  11. Proteomic analysis of porcine mesenchymal stem cells derived from bone marrow and umbilical cord: implication of the proteins involved in the higher migration capability of bone marrow mesenchymal stem cells.

    PubMed

    Huang, Lei; Niu, Chenguang; Willard, Belinda; Zhao, Weimin; Liu, Lan; He, Wei; Wu, Tianwen; Yang, Shulin; Feng, Shutang; Mu, Yulian; Zheng, Lemin; Li, Kui

    2015-04-15

    Mesenchymal stem cells (MSCs) have the ability to proliferate in vivo with a large variety of differentiation potentials and therefore are widely used as an ideal material for cell therapy. MSCs derived from pig and human sources are similar in many aspects, such as cell immunophenotype and functional characteristics. However, differences in proteomics and the molecular mechanisms of cell functions between porcine bone marrow MSCs (BM-MSCs) and umbilical cord MSCs (UC-MSCs) are largely unknown. To the best of our knowledge, MSCs collected from different tissue have specific phenotype and differentiation ability in response to microenvironment, known as a niche. Porcine BM-MSCs and UC-MSCs were evaluated with flow cytometric and adipogenic and osteogenic differentiation analyses. We used isobaric tagging for relative and absolute quantitation (iTRAQ), combined with liquid chromatography-tandem mass spectrometry, to identify differentially expressed proteins (DEPs) between these two types of MSCs. Kyoto Encyclopedia of Genes and Genomes pathway and phenotype analyses were used to understand the links between cell migration ability and DEPs. Two separate iTRAQ experiments were conducted, identifying 95 DEPs (95% confidence interval). Five of these proteins were verified by Western blotting. These 95 DEPs were classified in terms of biological regulation, metabolic process, developmental process, immune system process, reproduction, death, growth, signaling, localization, response to stimulus, biological adhesion, and cellular component organization. Our study is the first to show results indicating that porcine BM-MSCs have a higher migration capability than UC-MSCs. Finally, one of the DEPs, Vimentin, was verified to have a positive role in MSC migration. These results represent the first attempt to use proteomics specifically targeted to porcine MSCs of different tissues. The identified components should help reveal a variety of tissue-specific functions in tissue-derived MSC populations and could serve as important tools for the regeneration of particular tissues in future stem cell-based tissue engineering studies using animal models.

  12. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hu, Fanghao; Chen, Zhixing; Zhang, Luyuan; Shen, Yihui; Wei, Lu; Min, Wei

    2016-03-01

    Glucose is consumed as an energy source by virtually all living organisms, from bacteria to humans. Its uptake activity closely reflects the cellular metabolic status in various pathophysiological transformations, such as diabetes and cancer. Extensive efforts such as positron emission tomography, magnetic resonance imaging and fluorescence microscopy have been made to specifically image glucose uptake activity but all with technical limitations. Here, we report a new platform to visualize glucose uptake activity in live cells and tissues with subcellular resolution and minimal perturbation. A novel glucose analogue with a small alkyne tag (carbon-carbon triple bond) is developed to mimic natural glucose for cellular uptake, which can be imaged with high sensitivity and specificity by targeting the strong and characteristic alkyne vibration on stimulated Raman scattering (SRS) microscope to generate a quantitative three dimensional concentration map. Cancer cells with differing metabolic characteristics can be distinguished. Heterogeneous uptake patterns are observed in tumor xenograft tissues, neuronal culture and mouse brain tissues with clear cell-cell variations. Therefore, by offering the distinct advantage of optical resolution but without the undesirable influence of bulky fluorophores, our method of coupling SRS with alkyne labeled glucose will be an attractive tool to study energy demands of living systems at the single cell level.

  13. Lung microenvironment promotes the metastasis of human hepatocellular carcinoma cells to the lungs.

    PubMed

    Jin, Yun; Ai, Junhua; Shi, Jun

    2015-01-01

    Cancer metastasis is a highly tissue-specific and organ-selective process. It has been shown that the affected tissues and/or organs play a major role in this complex process. The lung is the most common target organ of extrahepatic hepatocellular carcinoma (HCC) metastasis, but the precise molecular mechanism underlying this organ-specific metastasis remains unclear. We hypothesized that lung microenvironment was able to promote the metastasis of HCC cells to the lungs leading to distant metastases. In support of our hypothesis, we provided evidence from targeted metastasis in various types of cancer and contributing factors in the microenvironment of targeted tissues/organs. A better understanding of the steps involved in the interplay between HCC cells and lung microenvironment may offer new perspectives for the medical management of lung metastases of HCC.

  14. Differential splicing generates a nervous system-specific form of Drosophila neuroglian.

    PubMed

    Hortsch, M; Bieber, A J; Patel, N H; Goodman, C S

    1990-05-01

    We recently described the characterization and cloning of Drosophila neuroglian, a member of the immunoglobulin superfamily. Neuroglian contains six immunoglobulin-like domains and five fibronectin type III domains and shows strong sequence homology to the mouse neural cell adhesion molecule L1. Here we show that the neuroglian gene generates at least two different protein products by tissue-specific alternative splicing. The two protein forms differ in their cytoplasmic domains. The long form is restricted to the surface of neurons in the CNS and neurons and some support cells in the PNS; in contrast, the short form is expressed on a wide range of other cells and tissues. Thus, whereas the mouse L1 gene appears to encode only one protein that functions largely as a neural cell adhesion molecule, its Drosophila homolog, the neuroglian gene, encodes at least two protein forms that may play two different roles, one as a neural cell adhesion molecule and the other as a more general cell adhesion molecule involved in other tissues and imaginal disc morphogenesis.

  15. Immunophenotypical characterization of canine mesenchymal stem cells from perivisceral and subcutaneous adipose tissue by a species-specific panel of antibodies.

    PubMed

    Ivanovska, Ana; Grolli, Stefano; Borghetti, Paolo; Ravanetti, Francesca; Conti, Virna; De Angelis, Elena; Macchi, Francesca; Ramoni, Roberto; Martelli, Paolo; Gazza, Ferdinando; Cacchioli, Antonio

    2017-10-01

    Immunophenotypical characterization of mesenchymal stem cells is fundamental for the design and execution of sound experimental and clinical studies. The scarce availability of species-specific antibodies for canine antigens has hampered the immunophenotypical characterization of canine mesenchymal stem cells (MSC). The aim of this study was to select a panel of species-specific direct antibodies readily useful for canine mesenchymal stem cells characterization. They were isolated from perivisceral and subcutaneous adipose tissue samples collected during regular surgeries from 8 dogs. Single color flow cytometric analysis of mesenchymal stem cells (P3) deriving from subcutaneous and perivisceral adipose tissue with a panel of 7 direct anti-canine antibodies revealed two largely homogenous cell populations with a similar pattern: CD29 + , CD44 + , CD73 + , CD90 + , CD34 - , CD45 - and MHC-II - with no statistically significant differences among them. Antibody reactivity was demonstrated on canine peripheral blood mononuclear cells. The similarities are reinforced by their in vitro cell morphology, trilineage differentiation ability and RT-PCR analysis (CD90 + , CD73 + , CD105 + , CD44 + , CD13 + , CD29 + , Oct-4 + gene and CD31 - and CD45 - expression). Our results report for the first time a comparison between the immunophenotypic profile of canine MSC deriving from perivisceral and subcutaneous adipose tissue. The substantial equivalence between the two populations has practical implication on clinical applications, giving the opportunity to choose the source depending on the patient needs. The results contribute to routine characterization of MSC populations grown in vitro, a mandatory process for the definition of solid and reproducible laboratory and therapeutic procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Intermediate Filaments and the Regulation of Cell Motility during Regeneration and Wound Healing.

    PubMed

    Cheng, Fang; Eriksson, John E

    2017-09-01

    SUMMARYIntermediate filaments (IFs) comprise a diverse group of flexible cytoskeletal structures, the assembly, dynamics, and functions of which are regulated by posttranslational modifications. Characteristically, the expression of IF proteins is specific for tissues, differentiation stages, cell types, and functional contexts. Recent research has rapidly expanded the knowledge of IF protein functions. From being regarded as primarily structural proteins, it is now well established that IFs act as powerful modulators of cell motility and migration, playing crucial roles in wound healing and tissue regeneration, as well as inflammatory and immune responses. Although many of these IF-associated functions are essential for tissue repair, the involvement of IF proteins has been established in many additional facets of tissue healing and regeneration. Here, we review the recent progress in understanding the multiple functions of cytoplasmic IFs that relate to cell motility in the context of wound healing, taking examples from studies on keratin, vimentin, and nestin. Wound healing and regeneration include orchestration of a broad range of cellular processes, including regulation of cell attachment and migration, proliferation, differentiation, immune responses, angiogenesis, and remodeling of the extracellular matrix. In this respect, IF proteins now emerge as multifactorial and tissue-specific integrators of tissue regeneration, thereby acting as essential guardian biopolymers at the interface between health and disease, the failing of which contributes to a diverse range of pathologies. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  17. Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue.

    PubMed

    Visser, Jetze; Levett, Peter A; te Moller, Nikae C R; Besems, Jeremy; Boere, Kristel W M; van Rijen, Mattie H P; de Grauw, Janny C; Dhert, Wouter J A; van Weeren, P René; Malda, Jos

    2015-04-01

    Decellularized tissues have proven to be versatile matrices for the engineering of tissues and organs. These matrices usually consist of collagens, matrix-specific proteins, and a set of largely undefined growth factors and signaling molecules. Although several decellularized tissues have found their way to clinical applications, their use in the engineering of cartilage tissue has only been explored to a limited extent. We set out to generate hydrogels from several tissue-derived matrices, as hydrogels are the current preferred cell carriers for cartilage repair. Equine cartilage, meniscus, and tendon tissue was harvested, decellularized, enzymatically digested, and functionalized with methacrylamide groups. After photo-cross-linking, these tissue digests were mechanically characterized. Next, gelatin methacrylamide (GelMA) hydrogel was functionalized with these methacrylated tissue digests. Equine chondrocytes and mesenchymal stromal cells (MSCs) (both from three donors) were encapsulated and cultured in vitro up to 6 weeks. Gene expression (COL1A1, COL2A1, ACAN, MMP-3, MMP-13, and MMP-14), cartilage-specific matrix formation, and hydrogel stiffness were analyzed after culture. The cartilage, meniscus, and tendon digests were successfully photo-cross-linked into hydrogels. The addition of the tissue-derived matrices to GelMA affected chondrogenic differentiation of MSCs, although no consequent improvement was demonstrated. For chondrocytes, the tissue-derived matrix gels performed worse compared to GelMA alone. This work demonstrates for the first time that native tissues can be processed into crosslinkable hydrogels for the engineering of tissues. Moreover, the differentiation of encapsulated cells can be influenced in these stable, decellularized matrix hydrogels.

  18. mAb C19 targets a novel surface marker for the isolation of human cardiac progenitor cells from human heart tissue and differentiated hESCs.

    PubMed

    Leung, Hau Wan; Moerkamp, Asja T; Padmanabhan, Jayanthi; Ng, Sze-Wai; Goumans, Marie-José; Choo, Andre

    2015-05-01

    Cardiac progenitor cells (CPCs) have been isolated from adult and developing hearts using an anti-mouse Sca-1 antibody. However, the absence of a human Sca-1 homologue has hampered the clinical application of the CPCs. Therefore, we generated novel monoclonal antibodies (mAbs) specifically raised against surface markers expressed by resident human CPCs. Here, we explored the suitability of one of these mAbs, mAb C19, for the identification, isolation and characterization of CPCs from fetal heart tissue and differentiating cultures of human embryonic stem cells (hESCs). Using whole-cell immunization, mAbs were raised against Sca-1+ CPCs and screened for reactivity to various CPC lines by flow cytometry. mAb C19 was found to be specific for Sca-1+ CPCs, with high cell surface binding capabilities. mAb C19 stained small stem-like cells in cardiac tissue sections. Moreover, during differentiation of hESCs towards cardiomyocytes, a transient population of cells with mAb C19 reactivity was identified and isolated using magnetic-activated cell sorting. Their cell fate was tracked and found to improve cardiomyocyte purity from hESC-derived cultures. mAb C19+ CPCs, from both hESC differentiation and fetal heart tissues, were maintained and expanded in culture, while retaining their CPC-like characteristics and their ability to further differentiate into cardiomyocytes by stimulation with TGFβ1. Finally, gene expression profiling of these mAb C19+ CPCs suggested a highly angiogenic nature, which was further validated by cell-based angiogenesis assays. mAb C19 is a new surface marker for the isolation of multipotent CPCs from both human heart tissues and differentiating hESCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Widespread Non-Hematopoietic Tissue Distribution by Transplanted Human Progenitor Cells with High Aldehyde Dehydrogenase Activity

    PubMed Central

    Hess, David A.; Craft, Timothy P.; Wirthlin, Louisa; Hohm, Sarah; Zhou, Ping; Eades, William C.; Creer, Michael H.; Sands, Mark S.; Nolta, Jan A.

    2011-01-01

    Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However, development of cell-based regenerative therapies has been hindered by the lack of pre-clinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/MPSVII mice, we characterized the distribution of lineage depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase activity (ALDH) with CD133 co-expression. ALDHhi or ALDHhiCD133+ cells produced robust hematopoietic reconstitution, and variable levels of tissue distribution in multiple organs. GUSB+ donor cells that co-expressed human (HLA-A,B,C) and hematopoietic (CD45+) cell surface markers were the primary cell phenotype found adjacent to the vascular beds of several tissues, including islet and ductal regions of mouse pancreata. In contrast, variable phenotypes were detected in the chimeric liver, with HLA+/CD45+ cells demonstrating robust GUSB expression adjacent to blood vessels, and CD45−/HLA− cells with diluted GUSB expression predominant in the liver parenchyma. However, true non-hematopoietic human (HLA+/CD45−) cells were rarely detected in other peripheral tissues, suggesting that these GUSB+/HLA−/CD45− cells in the liver were a result of downregulated human surface marker expression in vivo, not widespread seeding of non-hematopoietic cells. However, relying solely on continued expression of cell surface markers, as employed in traditional xenotransplantation models, may underestimate true tissue distribution. ALDH-expressing progenitor cells demonstrated widespread and tissue-specific distribution of variable cellular phenotypes, indicating that these adult progenitor cells should be explored in transplantation models of tissue damage. PMID:18055447

  20. Differential tissue-specific expression of NtAQP1 in Arabidopsis thaliana reveals a role for this protein in stomatal and mesophyll conductance of CO₂ under standard and salt-stress conditions.

    PubMed

    Sade, Nir; Gallé, Alexander; Flexas, Jaume; Lerner, Stephen; Peleg, Gadi; Yaaran, Adi; Moshelion, Menachem

    2014-02-01

    The regulation of plant hydraulic conductance and gas conductance involves a number of different morphological, physiological and molecular mechanisms working in harmony. At the molecular level, aquaporins play a key role in the transport of water, as well as CO₂, through cell membranes. Yet, their tissue-related function, which controls whole-plant gas exchange and water relations, is less understood. In this study, we examined the tissue-specific effects of the stress-induced tobacco Aquaporin1 (NtAQP1), which functions as both a water and CO₂ channel, on whole-plant behavior. In tobacco and tomato plants, constitutive overexpression of NtAQP1 increased net photosynthesis (A(N)), mesophyll CO₂ conductance (g(m)) and stomatal conductance (g(s)) and, under stress, increased root hydraulic conductivity (L(pr)) as well. Our results revealed that NtAQP1 that is specifically expressed in the mesophyll tissue plays an important role in increasing both A(N) and g(m). Moreover, targeting NtAQP1 expression to the cells of the vascular envelope significantly improved the plants' stress response. Surprisingly, NtAQP1 expression in the guard cells did not have a significant effect under any of the tested conditions. The tissue-specific involvement of NtAQP1 in hydraulic and gas conductance via the interaction between the vasculature and the stomata is discussed.

  1. Epigenetic identification of ZNF545 as a functional tumor suppressor in multiple myeloma via activation of p53 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Yu; Zhan, Qian; Xu, Hongying

    The KRAB–zinc-finger protein ZNF545 was recently identified as a potential suppressor gene in several tumors. However, the regulatory mechanisms of ZNF545 in tumorigenesis remain unclear. In this study, we investigated the expression and roles of ZNF545 in multiple myeloma (MM). ZNF545 was frequently downregulated in MM tissues compared with non-tumor bone marrow tissues. ZNF545 expression was silenced by promoter methylation in MM cell lines, and could be restored by demethylation treatment. ZNF545 methylation was detected in 28.3% of MM tissues, compared with 4.3% of normal bone marrow tissues. ZNF545 transcriptionally activated the p53 signaling pathway but had no effect onmore » Akt in MM, whereas ectopic expression of ZNF545 in silenced cells suppressed their proliferation and induced apoptosis. We therefore identified ZNF545 as a novel tumor suppressor inhibiting tumor growth through activation of the p53 pathway in MM. Moreover, tumor-specific methylation of ZNF545 may represent an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. -- Highlights: •Downregulated ZNF545 in MM tissues and cell lines and ectopic expression of ZNF545 suppresses tumor growth. •Tumor-specific methylation of ZNF545 represents an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. •ZNF545 exerts its tumor suppressive effects via transcriptional activating p53 pathway.« less

  2. Stem cells in the Drosophila digestive system.

    PubMed

    Zeng, Xiankun; Chauhan, Chhavi; Hou, Steven X

    2013-01-01

    Adult stem cells maintain tissue homeostasis by continuously replenishing damaged, aged and dead cells in any organism. Five types of region and organ-specific multipotent adult stem cells have been identified in the Drosophila digestive system: intestinal stem cells (ISCs) in the posterior midgut; hindgut intestinal stem cells (HISCs) at the midgut/hindgut junction; renal and nephric stem cells (RNSCs) in the Malpighian Tubules; type I gastric stem cells (GaSCs) at foregut/midgut junction; and type II gastric stem cells (GSSCs) at the middle of the midgut. Despite the fact that each type of stem cell is unique to a particular organ, they share common molecular markers and some regulatory signaling pathways. Due to the simpler tissue structure, ease of performing genetic analysis, and availability of abundant mutants, Drosophila serves as an elegant and powerful model system to study complex stem cell biology. The recent discoveries, particularly in the Drosophila ISC system, have greatly advanced our understanding of stem cell self-renewal, differentiation, and the role of stem cells play in tissue homeostasis/regeneration and adaptive tissue growth.

  3. The myofibroblast, multiple origins for major roles in normal and pathological tissue repair

    PubMed Central

    2012-01-01

    Myofibroblasts differentiate, invade and repair injured tissues by secreting and organizing the extracellular matrix and by developing contractile forces. When tissues are damaged, tissue homeostasis must be re-established, and repair mechanisms have to rapidly provide harmonious mechanical tissue organization, a process essentially supported by (myo)fibroblasts. Under physiological conditions, the secretory and contractile activities of myofibroblasts are terminated when the repair is complete (scar formation) but the functionality of the tissue is only rarely perfectly restored. At the end of the normal repair process, myofibroblasts disappear by apoptosis but in pathological situations, myofibroblasts likely remain leading to excessive scarring. Myofibroblasts originate from different precursor cells, the major contribution being from local recruitment of connective tissue fibroblasts. However, local mesenchymal stem cells, bone marrow-derived mesenchymal stem cells and cells derived from an epithelial-mesenchymal transition process, may represent alternative sources of myofibroblasts when local fibroblasts are not able to satisfy the requirement for these cells during repair. These diverse cell types probably contribute to the appearance of myofibroblast subpopulations which show specific biological properties and which are important to understand in order to develop new therapeutic strategies for treatment of fibrotic and scarring diseases. PMID:23259712

  4. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering.

    PubMed

    Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won

    2016-01-01

    Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration-culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch.

  5. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering

    PubMed Central

    Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won

    2016-01-01

    Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration—culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch. PMID:26989897

  6. The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed by cells of epithelial origin and may be altered during epithelial-to-mesenchymal transition.

    PubMed

    Kahounová, Zuzana; Kurfürstová, Daniela; Bouchal, Jan; Kharaishvili, Gvantsa; Navrátil, Jiří; Remšík, Ján; Šimečková, Šárka; Študent, Vladimír; Kozubík, Alois; Souček, Karel

    2017-04-06

    The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-β1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (EpCAM) identification of fibroblasts from breast and prostate tumor tissues is advised. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  7. Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow.

    PubMed

    Lee, Junmin; Abdeen, Amr A; Tang, Xin; Saif, Taher A; Kilian, Kristopher A

    2016-09-15

    Mesenchymal stem cells (MSCs) can differentiate into multiple lineages through guidance from the biophysical and biochemical properties of the extracellular matrix. In this work we conduct a combinatorial study of matrix properties that influence adipogenesis and neurogenesis including: adhesion proteins, stiffness, and cell geometry, for mesenchymal stem cells derived from adipose tissue (AT-MSCs) and bone marrow (BM-MSCs). We uncover distinct differences in integrin expression, the magnitude of traction stress, and lineage specification to adipocytes and neuron-like cells between cell sources. In the absence of media supplements, adipogenesis in AT-MSCs is not significantly influenced by matrix properties, while the converse is true in BM-MSCs. Both cell types show changes in the expression of neurogenesis markers as matrix cues are varied. When cultured on laminin conjugated microislands of the same adhesive area, BM-MSCs display elevated adipogenesis markers, while AT-MSCs display elevated neurogenesis markers; integrin analysis suggests neurogenesis in AT-MSCs is guided by adhesion through integrin αvβ3. Overall, the properties of the extracellular matrix guides MSC adhesion and lineage specification to different degrees and outcomes, in spite of their similarities in general characteristics. This work will help guide the selection of MSCs and matrix components for applications where high fidelity of differentiation outcome is desired. Mesenchymal stem cells (MSCs) are an attractive cell type for stem cell therapies; however, in order for these cells to be useful in medicine, we need to understand how they respond to the physical and chemical environments of tissue. Here, we explore how two promising sources of MSCs-those derived from bone marrow and from adipose tissue-respond to the compliance and composition of tissue using model extracellular matrices. Our results demonstrate a source-specific propensity to undergo adipogenesis and neurogenesis, and uncover a role for adhesion, and the degree of traction force exerted on the substrate in guiding these lineage outcomes. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Deep Proteome Profiling Reveals Common Prevalence of MZB1-Positive Plasma B Cells in Human Lung and Skin Fibrosis.

    PubMed

    Schiller, Herbert B; Mayr, Christoph H; Leuschner, Gabriela; Strunz, Maximilian; Staab-Weijnitz, Claudia; Preisendörfer, Stefan; Eckes, Beate; Moinzadeh, Pia; Krieg, Thomas; Schwartz, David A; Hatz, Rudolf A; Behr, Jürgen; Mann, Matthias; Eickelberg, Oliver

    2017-11-15

    Analyzing the molecular heterogeneity of different forms of organ fibrosis may reveal common and specific factors and thus identify potential future therapeutic targets. We sought to use proteome-wide profiling of human tissue fibrosis to (1) identify common and specific signatures across end-stage interstitial lung disease (ILD) cases, (2) characterize ILD subgroups in an unbiased fashion, and (3) identify common and specific features of lung and skin fibrosis. We collected samples of ILD tissue (n = 45) and healthy donor control samples (n = 10), as well as fibrotic skin lesions from localized scleroderma and uninvolved skin (n = 6). Samples were profiled by quantitative label-free mass spectrometry, Western blotting, or confocal imaging. We determined the abundance of more than 7,900 proteins and stratified these proteins according to their detergent solubility profiles. Common protein regulations across all ILD cases, as well as distinct ILD subsets, were observed. Proteomic comparison of lung and skin fibrosis identified a common upregulation of marginal zone B- and B1-cell-specific protein (MZB1), the expression of which identified MZB1 + /CD38 + /CD138 + /CD27 + /CD45 - /CD20 - plasma B cells in fibrotic lung and skin tissue. MZB1 levels correlated positively with tissue IgG and negatively with diffusing capacity of the lung for carbon monoxide. Despite the presumably high molecular and cellular heterogeneity of ILD, common protein regulations are observed, even across organ boundaries. The surprisingly high prevalence of MZB1-positive plasma B cells in tissue fibrosis warrants future investigations regarding the causative role of antibody-mediated autoimmunity in idiopathic cases of organ fibrosis, such as idiopathic pulmonary fibrosis.

  9. Cell renewal and apoptosis in macrostomum sp. [Lignano].

    PubMed

    Nimeth, K; Ladurner, P; Gschwentner, R; Salvenmoser, W; Rieger, R

    2002-01-01

    In platyhelminths, all cell renewal is accomplished by totipotent stem cells (neoblasts). Tissue maintenance is achieved in a balance between cell proliferation and apoptosis. It is known that in Macrostomum sp. the epidermis undergoes extensive cell renewal. Here we show that parenchymal cells also exhibit a high rate of cell turnover. We demonstrate cell renewal using continuous 5'bromo-2-deoxyuridine (BrdU) exposure. About one-third of all cells are replaced after 14 days. The high level of replacement requires an equivalent removal of cells by apoptosis. Cell death is characterized using a combination of three methods: (1). terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL), (2). specific binding of phosphatidyl-serine to fluorescent-labelled annexin V and (3). identification of apoptotic stages by ultrastructure. The number of cells observed in apoptosis is insufficient to explain the homeostasis of tissues in Macrostomum. Apoptosis-independent mechanisms may play an additional role in tissue dynamics.

  10. Stem cell plasticity.

    PubMed

    Lakshmipathy, Uma; Verfaillie, Catherine

    2005-01-01

    The central dogma in stem cell biology has been that cells isolated from a particular tissue can renew and differentiate into lineages of the tissue it resides in. Several studies have challenged this idea by demonstrating that tissue specific cell have considerable plasticity and can cross-lineage restriction boundary and give rise to cell types of other lineages. However, the lack of a clear definition for plasticity has led to confusion with several reports failing to demonstrate that a single cell can indeed differentiate into multiple lineages at significant levels. Further, differences between results obtained in different labs has cast doubt on some results and several studies still await independent confirmation. In this review, we critically evaluate studies that report stem cell plasticity using three rigid criteria to define stem cell plasticity; differentiation of a single cell into multiple cell lineages, functionality of differentiated cells in vitro and in vivo, robust and persistent engraft of transplanted cells.

  11. Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.

    PubMed

    Getzenberg, R H; Coffey, D S

    1990-09-01

    The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.

  12. The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis.

    PubMed

    Amit, Ido; Winter, Deborah R; Jung, Steffen

    2016-01-01

    Macrophages provide a critical systemic network cells of the innate immune system. Emerging data suggest that in addition, they have important tissue-specific functions that range from clearance of surfactant from the lungs to neuronal pruning and establishment of gut homeostasis. The differentiation and tissue-specific activation of macrophages require precise regulation of gene expression, a process governed by epigenetic mechanisms such as DNA methylation, histone modification and chromatin structure. We argue that epigenetic regulation of macrophages is determined by lineage- and tissue-specific transcription factors controlled by the built-in programming of myeloid development in combination with signaling from the tissue environment. Perturbation of epigenetic mechanisms of tissue macrophage identity can affect normal macrophage tissue function and contribute to pathologies ranging from obesity and autoimmunity to neurodegenerative diseases.

  13. Tissue-engineered microenvironment systems for modeling human vasculature.

    PubMed

    Tourovskaia, Anna; Fauver, Mark; Kramer, Gregory; Simonson, Sara; Neumann, Thomas

    2014-09-01

    The high attrition rate of drug candidates late in the development process has led to an increasing demand for test assays that predict clinical outcome better than conventional 2D cell culture systems and animal models. Government agencies, the military, and the pharmaceutical industry have started initiatives for the development of novel in-vitro systems that recapitulate functional units of human tissues and organs. There is growing evidence that 3D cell arrangement, co-culture of different cell types, and physico-chemical cues lead to improved predictive power. A key element of all tissue microenvironments is the vasculature. Beyond transporting blood the microvasculature assumes important organ-specific functions. It is also involved in pathologic conditions, such as inflammation, tumor growth, metastasis, and degenerative diseases. To provide a tool for modeling this important feature of human tissue microenvironments, we developed a microfluidic chip for creating tissue-engineered microenvironment systems (TEMS) composed of tubular cell structures. Our chip design encompasses a small chamber that is filled with an extracellular matrix (ECM) surrounding one or more tubular channels. Endothelial cells (ECs) seeded into the channels adhere to the ECM walls and grow into perfusable tubular tissue structures that are fluidically connected to upstream and downstream fluid channels in the chip. Using these chips we created models of angiogenesis, the blood-brain barrier (BBB), and tumor-cell extravasation. Our angiogenesis model recapitulates true angiogenesis, in which sprouting occurs from a "parent" vessel in response to a gradient of growth factors. Our BBB model is composed of a microvessel generated from brain-specific ECs within an ECM populated with astrocytes and pericytes. Our tumor-cell extravasation model can be utilized to visualize and measure tumor-cell migration through vessel walls into the surrounding matrix. The described technology can be used to create TEMS that recapitulate structural, functional, and physico-chemical elements of vascularized human tissue microenvironments in vitro. © 2014 by the Society for Experimental Biology and Medicine.

  14. α5β1 Integrin-Fibronectin Interactions Specify Liquid to Solid Phase Transition of 3D Cellular Aggregates

    PubMed Central

    Caicedo-Carvajal, Carlos E.; Shinbrot, Troy; Foty, Ramsey A.

    2010-01-01

    Background Tissue organization during embryonic development and wound healing depends on the ability of cells on the one hand to exchange adhesive bonds during active rearrangement and on the other to become fixed in place as tissue homeostasis is reached. Cells achieve these contradictory tasks by regulating either cell-cell adhesive bonds, mediated by cadherins, or cell-extracellular matrix (ECM) connections, regulated by integrins. Integrin α5β1 and soluble fibronectin (sFN) are key players in cell-ECM force generation and in ECM polymerization. Here, we explore the interplay between integrin α5β1 and sFN and its influence on tissue mechanical properties and cell sorting behavior. Methodology/Principal Findings We generated a series of cell lines varying in α5β1 receptor density. We then systematically explored the effects of different sFN concentrations on aggregate biomechanical properties using tissue surface tensiometry. We found previously unreported complex behaviors including the observation that interactions between fibronectin and integrin α5β1 generates biphasic tissue cohesion profiles. Specifically, we show that at constant sFn concentration, aggregate cohesion increases linearly as α5β1 receptor density is increased from low to moderate levels, producing a transition from viscoelastic-liquid to pseudo viscoelastic-solid behavior. However, further increase in receptor density causes an abrupt drop in tissue cohesion and a transition back to viscoelastic-liquid properties. We propose that this may be due to depletion of sFn below a critical value in the aggregate microenvironment at high α5β1 levels. We also show that differential expression of α5β1 integrin can promote phase-separation between cells. Conclusions/Significance The interplay between α5-integrin and sFn contributes significantly to tissue cohesion and, depending on their level of expression, can mediate a shift from liquid to elastic behavior. This interplay represents a tunable level of control between integrins and the ECM that can influence tissue cohesion and other mechanical properties, which may translate to the specification of tissue structure and function. These studies provide insights into important biological processes such as embryonic development, wound healing, and for tissue engineering applications. PMID:20686611

  15. A Unique Procedure to Identify Cell Surface Markers Through a Spherical Self-Organizing Map Applied to DNA Microarray Analysis.

    PubMed

    Sugii, Yuh; Kasai, Tomonari; Ikeda, Masashi; Vaidyanath, Arun; Kumon, Kazuki; Mizutani, Akifumi; Seno, Akimasa; Tokutaka, Heizo; Kudoh, Takayuki; Seno, Masaharu

    2016-01-01

    To identify cell-specific markers, we designed a DNA microarray platform with oligonucleotide probes for human membrane-anchored proteins. Human glioma cell lines were analyzed using microarray and compared with normal and fetal brain tissues. For the microarray analysis, we employed a spherical self-organizing map, which is a clustering method suitable for the conversion of multidimensional data into two-dimensional data and displays the relationship on a spherical surface. Based on the gene expression profile, the cell surface characteristics were successfully mirrored onto the spherical surface, thereby distinguishing normal brain tissue from the disease model based on the strength of gene expression. The clustered glioma-specific genes were further analyzed by polymerase chain reaction procedure and immunocytochemical staining of glioma cells. Our platform and the following procedure were successfully demonstrated to categorize the genes coding for cell surface proteins that are specific to glioma cells. Our assessment demonstrates that a spherical self-organizing map is a valuable tool for distinguishing cell surface markers and can be employed in marker discovery studies for the treatment of cancer.

  16. Vaginal type-II mucosa is an inductive site for primary CD8+ T-cell mucosal immunity

    PubMed Central

    Wang, Yichuan; Sui, Yongjun; Kato, Shingo; Hogg, Alison E.; Steel, Jason C.; Morris, John C.; Berzofsky, Jay A.

    2014-01-01

    The structured lymphoid tissues are considered the only inductive sites where primary T cell immune responses occur. The naïve T cells in structured lymphoid tissues, once being primed by antigen -bearing dendritic cells, differentiate into memory T cells and traffic back to the mucosal sites through the bloodstream. Contrary to this belief, here we show that the vaginal type-II mucosa itself, despite lack of structured lymphoid tissues, can act as an inductive site during primary CD8+ T cell immune responses. We provide evidence that the vaginal mucosa supports both the local immune priming of naïve CD8+ T cells and the local expansion of antigen-specific CD8+ T cells, thereby demonstrating a different paradigm for primary mucosal T cell immune induction. PMID:25600442

  17. A novel CBL-Bflox/flox mouse model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem cells

    PubMed Central

    Goetz, Benjamin; An, Wei; Mohapatra, Bhopal; Zutshi, Neha; Iseka, Fany; Storck, Matthew D.; Meza, Jane; Sheinin, Yuri; Band, Vimla; Band, Hamid

    2016-01-01

    CBL-family ubiquitin ligases are critical negative regulators of tyrosine kinase signaling, with a clear redundancy between CBL and CBL-B evident in the immune cell and hematopoietic stem cell studies. Since CBL and CBL-B are negative regulators of immune cell activation, elimination of their function to boost immune cell activities could be beneficial in tumor immunotherapy. However, mutations of CBL are associated with human leukemias, pointing to tumor suppressor roles of CBL proteins; hence, it is critical to assess the tumor-intrinsic roles of CBL and CBL-B in cancers. This has not been possible since the only available whole-body CBL-B knockout mice exhibit constitutive tumor rejection. We engineered a new CBL-Bflox/flox mouse, combined this with an existing CBLflox/flox mouse to generate CBLflox/flox; CBL-Bflox/flox mice, and tested the tissue-specific concurrent deletion of CBL and CBL-B using the widely-used CD4-Cre transgenic allele to produce a T-cell-specific double knockout. Altered T-cell development, constitutive peripheral T-cell activation, and a lethal multi-organ immune infiltration phenotype largely resembling the previous Lck-Cre driven floxed-CBL deletion on a CBL-B knockout background establish the usefulness of the new model for tissue-specific CBL/CBL-B deletion. Unexpectedly, CD4-Cre-induced deletion in a small fraction of hematopoietic stem cells led to expansion of certain non-T-cell lineages, suggesting caution in the use of CD4-Cre for T-cell-restricted gene deletion. The establishment of a new model of concurrent tissue-selective CBL/CBL-B deletion should allow a clear assessment of the tumor-intrinsic roles of CBL/CBL-B in non-myeloid malignancies and help test the potential for CBL/CBL-B inactivation in immunotherapy of tumors. PMID:27276677

  18. NMR imaging of cell phone radiation absorption in brain tissue

    PubMed Central

    Gultekin, David H.; Moeller, Lothar

    2013-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293

  19. NMR imaging of cell phone radiation absorption in brain tissue.

    PubMed

    Gultekin, David H; Moeller, Lothar

    2013-01-02

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry.

  20. Innate lymphoid cells in tissue homeostasis and diseases

    PubMed Central

    Ignacio, Aline; Breda, Cristiane Naffah Souza; Camara, Niels Olsen Saraiva

    2017-01-01

    Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. They are a part of the innate immune system, but develop from the lymphoid lineage. They lack pattern-recognition receptors and rearranged receptors, and therefore cannot directly mediate antigen specific responses. The progenitors specifically associated with the ILCs lineage have been uncovered, enabling the distinction between ILCs and natural killer cells. Based on the requirement of specific transcription factors and their patterns of cytokine production, ILCs are categorized into three subsets (ILC1, ILC2 and ILC3). First observed in mucosal surfaces, these cell populations interact with hematopoietic and non-hematopoietic cells throughout the body during homeostasis and diseases, promoting immunity, commensal microbiota tolerance, tissue repair and inflammation. Over the last 8 years, ILCs came into the spotlight as an essential cell type able to integrate diverse host immune responses. Recently, it became known that ILC subsets play a key role in immune responses at barrier surfaces, interacting with the microbiota, nutrients and metabolites. Since the liver receives the venous blood directly from the intestinal vein, the intestine and liver are essential to maintain tolerance and can rapidly respond to infections or tissue damage. Therefore, in this review, we discuss recent findings regarding ILC functions in homeostasis and disease, with a focus on the intestine and liver. PMID:28878863

  1. Screening phage display libraries for organ-specific vascular immunotargeting in vivo

    PubMed Central

    Valadon, Philippe; Garnett, Jeff D.; Testa, Jacqueline E.; Bauerle, Marc; Oh, Phil; Schnitzer, Jan E.

    2006-01-01

    The molecular diversity of the luminal endothelial cell surface arising in vivo from local variations in genetic expression and tissue microenvironment may create opportunities for achieving targeted molecular imaging and therapies. Here, we describe a strategy to identify probes and their cognate antigens for targeting vascular endothelia of specific organs in vivo. We differentially screen phage libraries to select organ-targeting antibodies by using luminal endothelial cell plasma membranes isolated directly from tissue and highly enriched in natively expressed proteins exposed to the bloodstream. To obviate liver uptake of intravenously injected phage, we convert the phage-displayed antibodies into scFv-Fc fusion proteins, which then are able to rapidly target select organ(s) in vivo as visualized directly by γ-scintigraphic whole-body imaging. Mass spectrometry helps identify the antigen targets. This comprehensive strategy provides new promise for harnessing the power of phage display for mapping vascular endothelia natively in tissue and for achieving vascular targeting of specific tissues in vivo. PMID:16384919

  2. Evaluation of two-dimensional electrophoresis and liquid chromatography – tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schad, Martina; Lipton, Mary S.; Giavalisco, Patrick

    2005-07-14

    Laser microdissection (LM) allows the collection of homogeneous tissue- and cell specific plant samples. The employment of this technique with subsequent protein analysis has thus far not been reported for plant tissues, probably due to the difficulties associated with defining a reasonable cellular morphology and, in parallel, allowing efficient protein extraction from tissue samples. The relatively large sample amount needed for successful proteome analysis is an additional issue that complicates protein profiling on a tissue- or even cell-specific level. In contrast to transcript profiling that can be performed from very small sample amounts due to efficient amplification strategies, there ismore » as yet no amplification procedure for proteins available. In the current study, we compared different tissue preparation techniques prior to LM/laser pressure catapulting (LMPC) with respect to their suitability for protein retrieval. Cryosectioning was identified as the best compromise between tissue morphology and effective protein extraction. After collection of vascular bundles from Arabidopsis thaliana stem tissue by LMPC, proteins were extracted and subjected to protein analysis, either by classical two-dimensional gel electrophoresis (2-DE), or by high-efficiency liquid chromatography (LC) in conjunction with tandem mass spectrometry (MS/MS). Our results demonstrate that both methods can be used with LMPC collected plant material. But because of the significantly lower sample amount required for LC-MS/MS than for 2-DE, the combination of LMPC and LC-MS/MS has a higher potential to promote comprehensive proteome analysis of specific plant tissues.« less

  3. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds.

    PubMed

    Battiston, Kyle G; Cheung, Jane W C; Jain, Devika; Santerre, J Paul

    2014-05-01

    Most natural tissues consist of multi-cellular systems made up of two or more cell types. However, some of these tissues may not regenerate themselves following tissue injury or disease without some form of intervention, such as from the use of tissue engineered constructs. Recent studies have increasingly used co-cultures in tissue engineering applications as these systems better model the natural tissues, both physically and biologically. This review aims to identify the challenges of using co-culture systems and to highlight different approaches with respect to the use of biomaterials in the use of such systems. The application of co-culture systems to stimulate a desired biological response and examples of studies within particular tissue engineering disciplines are summarized. A description of different analytical co-culture systems is also discussed and the role of biomaterials in the future of co-culture research are elaborated on. Understanding the complex cell-cell and cell-biomaterial interactions involved in co-culture systems will ultimately lead the field towards biomaterial concepts and designs with specific biochemical, electrical, and mechanical characteristics that are tailored towards the needs of distinct co-culture systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems.

    PubMed

    Naderi, Hojjat; Matin, Maryam M; Bahrami, Ahmad Reza

    2011-11-01

    Tissue engineering is a newly emerging biomedical technology, which aids and increases the repair and regeneration of deficient and injured tissues. It employs the principles from the fields of materials science, cell biology, transplantation, and engineering in an effort to treat or replace damaged tissues. Tissue engineering and development of complex tissues or organs, such as heart, muscle, kidney, liver, and lung, are still a distant milestone in twenty-first century. Generally, there are four main challenges in tissue engineering which need optimization. These include biomaterials, cell sources, vascularization of engineered tissues, and design of drug delivery systems. Biomaterials and cell sources should be specific for the engineering of each tissue or organ. On the other hand, angiogenesis is required not only for the treatment of a variety of ischemic conditions, but it is also a critical component of virtually all tissue-engineering strategies. Therefore, controlling the dose, location, and duration of releasing angiogenic factors via polymeric delivery systems, in order to ultimately better mimic the stem cell niche through scaffolds, will dictate the utility of a variety of biomaterials in tissue regeneration. This review focuses on the use of polymeric vehicles that are made of synthetic and/or natural biomaterials as scaffolds for three-dimensional cell cultures and for locally delivering the inductive growth factors in various formats to provide a method of controlled, localized delivery for the desired time frame and for vascularized tissue-engineering therapies.

  5. The rat alpha-tropomyosin gene generates a minimum of six different mRNAs coding for striated, smooth, and nonmuscle isoforms by alternative splicing.

    PubMed Central

    Wieczorek, D F; Smith, C W; Nadal-Ginard, B

    1988-01-01

    Tropomyosin (TM), a ubiquitous protein, is a component of the contractile apparatus of all cells. In nonmuscle cells, it is found in stress fibers, while in sarcomeric and nonsarcomeric muscle, it is a component of the thin filament. Several different TM isoforms specific for nonmuscle cells and different types of muscle cell have been described. As for other contractile proteins, it was assumed that smooth, striated, and nonmuscle isoforms were each encoded by different sets of genes. Through the use of S1 nuclease mapping, RNA blots, and 5' extension analyses, we showed that the rat alpha-TM gene, whose expression was until now considered to be restricted to muscle cells, generates many different tissue-specific isoforms. The promoter of the gene appears to be very similar to other housekeeping promoters in both its pattern of utilization, being active in most cell types, and its lack of any canonical sequence elements. The rat alpha-TM gene is split into at least 13 exons, 7 of which are alternatively spliced in a tissue-specific manner. This gene arrangement, which also includes two different 3' ends, generates a minimum of six different mRNAs each with the capacity to code for a different protein. These distinct TM isoforms are expressed specifically in nonmuscle and smooth and striated (cardiac and skeletal) muscle cells. The tissue-specific expression and developmental regulation of these isoforms is, therefore, produced by alternative mRNA processing. Moreover, structural and sequence comparisons among TM genes from different phyla suggest that alternative splicing is evolutionarily a very old event that played an important role in gene evolution and might have appeared concomitantly with or even before constitutive splicing. Images PMID:3352602

  6. Pluripotent Stem Cells for Retinal Tissue Engineering: Current Status and Future Prospects.

    PubMed

    Singh, Ratnesh; Cuzzani, Oscar; Binette, François; Sternberg, Hal; West, Michael D; Nasonkin, Igor O

    2018-04-19

    The retina is a very fine and layered neural tissue, which vitally depends on the preservation of cells, structure, connectivity and vasculature to maintain vision. There is an urgent need to find technical and biological solutions to major challenges associated with functional replacement of retinal cells. The major unmet challenges include generating sufficient numbers of specific cell types, achieving functional integration of transplanted cells, especially photoreceptors, and surgical delivery of retinal cells or tissue without triggering immune responses, inflammation and/or remodeling. The advances of regenerative medicine enabled generation of three-dimensional tissues (organoids), partially recreating the anatomical structure, biological complexity and physiology of several tissues, which are important targets for stem cell replacement therapies. Derivation of retinal tissue in a dish creates new opportunities for cell replacement therapies of blindness and addresses the need to preserve retinal architecture to restore vision. Retinal cell therapies aimed at preserving and improving vision have achieved many improvements in the past ten years. Retinal organoid technologies provide a number of solutions to technical and biological challenges associated with functional replacement of retinal cells to achieve long-term vision restoration. Our review summarizes the progress in cell therapies of retina, with focus on human pluripotent stem cell-derived retinal tissue, and critically evaluates the potential of retinal organoid approaches to solve a major unmet clinical need-retinal repair and vision restoration in conditions caused by retinal degeneration and traumatic ocular injuries. We also analyze obstacles in commercialization of retinal organoid technology for clinical application.

  7. The use of lectins as markers for differentiated secretory cells in planarians.

    PubMed

    Zayas, Ricardo M; Cebrià, Francesc; Guo, Tingxia; Feng, Junjie; Newmark, Phillip A

    2010-11-01

    Freshwater planarians have reemerged as excellent models to investigate mechanisms underlying regeneration. The introduction of molecular tools has facilitated the study of planarians, but cell- and tissue-specific markers are still needed to examine differentiation of most cell types. Here we report the utility of fluorescent lectin-conjugates to label tissues in the planarian Schmidtea mediterranea. We show that 16 lectin-conjugates stain planarian cells or tissues; 13 primarily label the secretory cells, their cytoplasmic projections, and terminal pores. Thus, we examined regeneration of the secretory system using lectin markers and functionally characterized two genes expressed in the secretory cells: marginal adhesive gland-1 (mag-1) and Smed-reticulocalbin1 (Smed-rcn1). RNAi knockdown of these genes caused a dramatic reduction of secretory cell lectin staining, suggesting a role for mag-1 and Smed-rcn1 in secretory cell differentiation. Our results provide new insights into planarian secretory system regeneration and add new markers for labeling several planarian tissues. © 2010 Wiley-Liss, Inc.

  8. Expansion of stem cells counteracts age-related mammary regression in compound Timp1/Timp3 null mice.

    PubMed

    Jackson, Hartland W; Waterhouse, Paul; Sinha, Ankit; Kislinger, Thomas; Berman, Hal K; Khokha, Rama

    2015-03-01

    Age is the primary risk factor for breast cancer in women. Bipotent basal stem cells actively maintain the adult mammary ductal tree, but with age tissues atrophy. We show that cell-extrinsic factors maintain the adult stem cell pool during ageing and dictate tissue stoichiometry. Mammary stem cells spontaneously expand more than 11-fold in virgin adult female mice lacking specific genes for TIMPs, the natural metalloproteinase inhibitors. Compound Timp1/Timp3 null glands exhibit Notch activation and accelerated gestational differentiation. Proteomics of mutant basal cells uncover altered cytoskeletal and extracellular protein repertoires, and we identify aberrant mitotic spindle orientation in these glands, a process that instructs asymmetric cell division and fate. We find that progenitor activity normally declines with age, but enriched stem/progenitor pools prevent tissue regression in Timp mutant mammary glands without affecting carcinogen-induced cancer susceptibility. Thus, improved stem cell content can extend mouse mammary tissue lifespan without altering cancer risk in this mouse model.

  9. Epigenetic inactivation of VGF associated with Urothelial Cell Carcinoma and its potential as a non-invasive biomarker using urine.

    PubMed

    Hayashi, Masamichi; Bernert, Heike; Kagohara, Luciane Tsukamoto; Maldonado, Leonel; Brait, Mariana; Schoenberg, Mark; Bivalacqua, Trinity; Netto, George J; Koch, Wayne; Sidransky, David; Hoque, Mohammad O

    2014-05-30

    To identify new epigenetic markers and further characterize Urothelial Cell Carcinoma (UCC), we tested the promoter methylation (PM) status of 19 genes previously identified as cancer specific methylated genes in other solid tumors. We used bisulfite sequencing, methylation specific PCR and quantitative methylation specific PCR (QMSP) to test the PM status of 19 genes in urothelial cancer cell lines. Among the 19 genes tested, VGF was found to be completely methylated in several UCC cell lines. VGF QMSP analysis showed that methylation values of almost all the primary 19 UCC tissues were higher than the paired normal tissues (P=0.009). In another cohort, 12/35 (34.3%) of low grade UCC cases displayed VGF methylation. As a biomarker for non-invasive detection of UCC, VGF showed a significantly higher frequency of methylation in urine from UCC cases (8/20) compared to controls (1/20) (P=0.020). After treatment of cell lines with 5-Aza-2'-deoxycytidine, VGF was robustly re-expressed. Forced expression of VGF in bladder cancer cell lines inhibited cell growth. Selection of candidates from genome-wide screening approach in other solid tumors successfully identified UCC specific methylated genes.

  10. TLR-Dependent Human Mucosal Epithelial Cell Responses to Microbial Pathogens

    PubMed Central

    McClure, Ryan; Massari, Paola

    2014-01-01

    Toll-like receptor (TLR) signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in human being as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners), their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut, and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling. PMID:25161655

  11. Mechanobiological simulations of peri-acetabular bone ingrowth: a comparative analysis of cell-phenotype specific and phenomenological algorithms.

    PubMed

    Mukherjee, Kaushik; Gupta, Sanjay

    2017-03-01

    Several mechanobiology algorithms have been employed to simulate bone ingrowth around porous coated implants. However, there is a scarcity of quantitative comparison between the efficacies of commonly used mechanoregulatory algorithms. The objectives of this study are: (1) to predict peri-acetabular bone ingrowth using cell-phenotype specific algorithm and to compare these predictions with those obtained using phenomenological algorithm and (2) to investigate the influences of cellular parameters on bone ingrowth. The variation in host bone material property and interfacial micromotion of the implanted pelvis were mapped onto the microscale model of implant-bone interface. An overall variation of 17-88 % in peri-acetabular bone ingrowth was observed. Despite differences in predicted tissue differentiation patterns during the initial period, both the algorithms predicted similar spatial distribution of neo-tissue layer, after attainment of equilibrium. Results indicated that phenomenological algorithm, being computationally faster than the cell-phenotype specific algorithm, might be used to predict peri-prosthetic bone ingrowth. The cell-phenotype specific algorithm, however, was found to be useful in numerically investigating the influence of alterations in cellular activities on bone ingrowth, owing to biologically related factors. Amongst the host of cellular activities, matrix production rate of bone tissue was found to have predominant influence on peri-acetabular bone ingrowth.

  12. Advances in hydrogel delivery systems for tissue regeneration.

    PubMed

    Toh, Wei Seong; Loh, Xian Jun

    2014-12-01

    Hydrogels are natural or synthetic polymer networks that have high water-absorbing capacity and closely mimic native extracellular matrices. As hydrogel-based cell delivery systems are being increasingly employed in regenerative medicine, several advances have been made in the hydrogel chemistry and modification for enhanced control of cell fate and functions, and modulation of cell and tissue responses against oxidative stress and inflammation in the tissue environment. This review aims to provide the state-of-the-art overview of the recent advances in field, discusses new perspectives and challenges in the regeneration of specific tissues, and highlights some of the limitations of current systems for possible future advancements. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Using Polymeric Materials to Control Stem Cell Behavior for Tissue Regeneration

    PubMed Central

    Zhang, Nianli; Kohn, David H.

    2017-01-01

    Patients with organ failure often suffer from increased morbidity and decreased quality of life. Current strategies of treating organ failure have limitations, including shortage of donor organs, low efficiency of grafts, and immunological problems. Tissue engineering emerged about two decades ago as a strategy to restore organ function with a living, functional engineered substitute. However, the ability to engineer a functional organ substitute is limited by a limited understanding of the interactions between materials and cells that are required to yield functional tissue equivalents. Polymeric materials are one of the most promising classes of materials for use in tissue engineering due to their biodegradability, flexibility in processing and property design, and the potential to use polymer properties to control cell function. Stem cells offer potential in tissue engineering because of their unique capacity to self renew and differentiate into neurogenic, osteogenic, chondrogenic, myogenic lineages under appropriate stimuli from extracellular components. This review examines recent advances in stem cell-polymer interactions for tissue regeneration, specifically highlighting control of polymer properties to direct adhesion, proliferation, and differentiation of stem cells, and how biomaterials can be designed to provide some of the stimuli to cells that the natural extracellular matrix does. PMID:22457178

  14. Bioanalytical and chemical sensors using living taste, olfactory, and neural cells and tissues: a short review.

    PubMed

    Wu, Chunsheng; Lillehoj, Peter B; Wang, Ping

    2015-11-07

    Biosensors utilizing living tissues and cells have recently gained significant attention as functional devices for chemical sensing and biochemical analysis. These devices integrate biological components (i.e. single cells, cell networks, tissues) with micro-electro-mechanical systems (MEMS)-based sensors and transducers. Various types of cells and tissues derived from natural and bioengineered sources have been used as recognition and sensing elements, which are generally characterized by high sensitivity and specificity. This review summarizes the state of the art in tissue- and cell-based biosensing platforms with an emphasis on those using taste, olfactory, and neural cells and tissues. Many of these devices employ unique integration strategies and sensing schemes based on sensitive transducers including microelectrode arrays (MEAs), field effect transistors (FETs), and light-addressable potentiometric sensors (LAPSs). Several groups have coupled these hybrid biosensors with microfluidics which offers added benefits of small sample volumes and enhanced automation. While this technology is currently limited to lab settings due to the limited stability of living biological components, further research to enhance their robustness will enable these devices to be employed in field and clinical settings.

  15. Localization of early germ cells in a stony coral, Euphyllia ancora: potential implications for a germline stem cell system in coral gametogenesis

    NASA Astrophysics Data System (ADS)

    Shikina, Shinya; Chung, Yi-Jou; Wang, Hsiang-Ming; Chiu, Yi-Ling; Shao, Zih-Fang; Lee, Yan-Horn; Chang, Ching-Fong

    2015-06-01

    Most corals exhibit annual or multiple gametogenic cycles. Thus far, coral gametogenesis has been studied in many species and locations during the past three decades; however, currently, only a few papers exist that describe the origin of germ cells, such as germline stem cells (GSCs), which support the continuous production of gametes in every reproductive cycle. To address this issue, in this study, we focused on and identified piwi gene, which has been used as a marker of germline cells, including GSCs, in various metazoans, in a scleractinian coral, Euphyllia ancora. Reverse-transcription PCR and Western blotting analyses revealed that E. ancora piwi-like ( Eapiwi) is expressed in mesentery tissues where the sites of gametogenesis are located for both sexes. Immunohistochemistry with a specific antibody against Eapiwi revealed strong immunoreactivity in the spermatogonia in males and in the oogonia and early oocytes in females, demonstrating that Eapiwi could be used as an early germ cell marker in E. ancora. Subsequent immunohistochemical analyses regarding the spatial and temporal distribution patterns of early germ cells in mesentery tissues revealed that early germ cells were present throughout the year in the mesentery tissue we examined, regardless of the sexual reproductive cycle. In particular, small numbers of early germ cells were observed in specific sites of mesentery tissues with fully matured gonads in both sexes. These early germ cells were not released together with mature gametes during the spawning period and remained in the mesentery tissues. These results suggested that these early germ cells most likely serve as a reservoir of germline cells and that some of these cells would produce differentiated germ cells for the upcoming sexual reproduction period; hence, these cells would function as GSCs. Our data provide new information for understanding continuous gamete production in corals.

  16. Divergent Kinetics of Proliferating T Cell Subsets in Simian Immunodeficiency Virus (SIV) Infection: SIV Eliminates the “First Responder” CD4+ T Cells in Primary Infection

    PubMed Central

    Wang, Xiaolei; Xu, Huanbin; Pahar, Bapi; Lackner, Andrew A.

    2013-01-01

    Although increased lymphocyte turnover in chronic human immunodeficiency virus and simian immunodeficiency virus (SIV) infection has been reported in blood, there is little information on cell turnover in tissues, particularly in primary SIV infection. Here we examined the levels of proliferating T cell subsets in mucosal and peripheral lymphoid tissues of adult macaques throughout SIV infection. To specifically label cells in S-phase division, all animals were inoculated with bromodeoxyuridine 24 h prior to sampling. In healthy macaques, the highest levels of proliferating CD4+ and CD8+ T cells were in blood and, to a lesser extent, in spleen. Substantial percentages of proliferating cells were also found in intestinal tissues, including the jejunum, ileum, and colon, but very few proliferating cells were detected in lymph nodes (axillary and mesenteric). Moreover, essentially all proliferating T cells in uninfected animals coexpressed CD95 and many coexpressed CCR5 in the tissues examined. Confocal microscopy also demonstrated that proliferating cells were substantial viral target cells for SIV infection and viral replication. After acute SIV infection, percentages of proliferating CD4+ and CD8+ T cells were significantly higher in tissues of chronically infected macaques and macaques with AIDS than in those of the controls. Surprisingly, however, we found that proliferating CD4+ T cells were selectively decreased in very early infection (8 to 10 days postinoculation [dpi]). In contrast, levels of proliferating CD8+ T cells rapidly increased after SIV infection, peaked by 13 to 21 dpi, and thereafter remained significantly higher than those in the controls. Taken together, these findings suggest that SIV selectively infects and destroys dividing, nonspecific CD4+ T cells in acute infection, resulting in homeostatic changes and perhaps continuing loss of replication capacity to respond to nonspecific and, later, SIV-specific antigens. PMID:23596288

  17. Divergent kinetics of proliferating T cell subsets in simian immunodeficiency virus (SIV) infection: SIV eliminates the "first responder" CD4+ T cells in primary infection.

    PubMed

    Wang, Xiaolei; Xu, Huanbin; Pahar, Bapi; Lackner, Andrew A; Veazey, Ronald S

    2013-06-01

    Although increased lymphocyte turnover in chronic human immunodeficiency virus and simian immunodeficiency virus (SIV) infection has been reported in blood, there is little information on cell turnover in tissues, particularly in primary SIV infection. Here we examined the levels of proliferating T cell subsets in mucosal and peripheral lymphoid tissues of adult macaques throughout SIV infection. To specifically label cells in S-phase division, all animals were inoculated with bromodeoxyuridine 24 h prior to sampling. In healthy macaques, the highest levels of proliferating CD4(+) and CD8(+) T cells were in blood and, to a lesser extent, in spleen. Substantial percentages of proliferating cells were also found in intestinal tissues, including the jejunum, ileum, and colon, but very few proliferating cells were detected in lymph nodes (axillary and mesenteric). Moreover, essentially all proliferating T cells in uninfected animals coexpressed CD95 and many coexpressed CCR5 in the tissues examined. Confocal microscopy also demonstrated that proliferating cells were substantial viral target cells for SIV infection and viral replication. After acute SIV infection, percentages of proliferating CD4(+) and CD8(+) T cells were significantly higher in tissues of chronically infected macaques and macaques with AIDS than in those of the controls. Surprisingly, however, we found that proliferating CD4(+) T cells were selectively decreased in very early infection (8 to 10 days postinoculation [dpi]). In contrast, levels of proliferating CD8(+) T cells rapidly increased after SIV infection, peaked by 13 to 21 dpi, and thereafter remained significantly higher than those in the controls. Taken together, these findings suggest that SIV selectively infects and destroys dividing, nonspecific CD4(+) T cells in acute infection, resulting in homeostatic changes and perhaps continuing loss of replication capacity to respond to nonspecific and, later, SIV-specific antigens.

  18. Application of the laser capture microdissection technique for molecular definition of skeletal cell differentiation in vivo.

    PubMed

    Benayahu, Dafna; Socher, Rina; Shur, Irena

    2008-01-01

    Laser capture microdissection (LCM) method allows selection of individual or clustered cells from intact tissues. This technology enables one to pick cells from tissues that are difficult to study individually, sort the anatomical complexity of these tissues, and make the cells available for molecular analyses. Following the cells' extraction, the nucleic acids and proteins can be isolated and used for multiple applications that provide an opportunity to uncover the molecular control of cellular fate in the natural microenvironment. Utilization of LCM for the molecular analysis of cells from skeletal tissues will enable one to study differential patterns of gene expression in the native intact skeletal tissue with reliable interpretation of function for known genes as well as to discover novel genes. Variability between samples may be caused either by differences in the tissue samples (different areas isolated from the same section) or some variances in sample handling. LCM is a multi-task technology that combines histology, microscopy work, and dedicated molecular biology. The LCM application will provide results that will pave the way toward high throughput profiling of tissue-specific gene expression using Gene Chip arrays. Detailed description of in vivo molecular pathways will make it possible to elaborate on control systems to apply for the repair of genetic or metabolic diseases of skeletal tissues.

  19. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche.

    PubMed

    Templeton, Zach S; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V; Tamaresis, John S; Bachmann, Michael H; Lee, Kitty; Maloney, William J; Contag, Christopher H; King, Bonnie L

    2015-12-01

    Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Adipogenic Differentiation of Mesenchymal Stem Cells Alters Their Immunomodulatory Properties in a Tissue-Specific Manner.

    PubMed

    Munir, Hafsa; Ward, Lewis S C; Sheriff, Lozan; Kemble, Samuel; Nayar, Saba; Barone, Francesca; Nash, Gerard B; McGettrick, Helen M

    2017-06-01

    Chronic inflammation is associated with formation of ectopic fat deposits that might represent damage-induced aberrant mesenchymal stem cell (MSC) differentiation. Such deposits are associated with increased levels of inflammatory infiltrate and poor prognosis. Here we tested the hypothesis that differentiation from MSC to adipocytes in inflamed tissue might contribute to chronicity through loss of immunomodulatory function. We assessed the effects of adipogenic differentiation of MSC isolated from bone marrow or adipose tissue on their capacity to regulate neutrophil recruitment by endothelial cells and compared the differentiated cells to primary adipocytes from adipose tissue. Bone marrow derived MSC were immunosuppressive, inhibiting neutrophil recruitment to TNFα-treated endothelial cells (EC), but MSC-derived adipocytes were no longer able to suppress neutrophil adhesion. Changes in IL-6 and TGFβ1 signalling appeared critical for the loss of the immunosuppressive phenotype. In contrast, native stromal cells, adipocytes derived from them, and mature adipocytes from adipose tissue were all immunoprotective. Thus disruption of normal tissue stroma homeostasis, as occurs in chronic inflammatory diseases, might drive "abnormal" adipogenesis which adversely influences the behavior of MSC and contributes to pathogenic recruitment of leukocytes. Interestingly, stromal cells programmed in native fat tissue retain an immunoprotective phenotype. Stem Cells 2017;35:1636-1646. © 2017 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  1. Developmental and cell-specific expression of thyroid hormone transporters in the mouse cochlea.

    PubMed

    Sharlin, David S; Visser, Theo J; Forrest, Douglas

    2011-12-01

    Thyroid hormone is essential for the development of the cochlea and auditory function. Cochlear response tissues, which express thyroid hormone receptor β (encoded by Thrb), include the greater epithelial ridge and sensory epithelium residing inside the bony labyrinth. However, these response tissues lack direct blood flow, implying that mechanisms exist to shuttle hormone from the circulation to target tissues. Therefore, we investigated expression of candidate thyroid hormone transporters L-type amino acid transporter 1 (Lat1), monocarboxylate transporter (Mct)8, Mct10, and organic anion transporting polypeptide 1c1 (Oatp1c1) in mouse cochlear development by in situ hybridization and immunofluorescence analysis. L-type amino acid transporter 1 localized to cochlear blood vessels and transiently to sensory hair cells. Mct8 localized to the greater epithelial ridge, tympanic border cells underlying the sensory epithelium, spiral ligament fibrocytes, and spiral ganglion neurons, partly overlapping with the Thrb expression pattern. Mct10 was detected in a highly restricted pattern in the outer sulcus epithelium and weakly in tympanic border cells and hair cells. Organic anion transporting polypeptide 1c1 localized primarily to fibrocytes in vascularized tissues of the spiral limbus and spiral ligament and to tympanic border cells. Investigation of hypothyroid Tshr(-/-) mice showed that transporter expression was delayed consistent with retardation of cochlear tissue maturation but not with compensatory responses to hypothyroidism. The results demonstrate specific expression of thyroid hormone transporters in the cochlea and suggest that a network of thyroid hormone transport underlies cochlear development.

  2. Research progress on the proliferation and differentiation of

    NASA Astrophysics Data System (ADS)

    An, A.; Tan, B.

    Space environments such as microgravity magnetic field radiation and heavy metal ions affects the development and functions of human and mammalian cells To study these influences and the corresponding metabolisms is in favour of knowing about the development and differentiation process of organism cells In recent years researches on the differentiation of stem cells induced in vitro provide a new pathway for the repair of tissue lesion and therapy of human diseases Stem cells are potential in capable of differentiating into different functional cells But there has no reliable methods to induce the stem cells differentiating forward specific cells and to gain enough cells for transplantation which limited their application on clinical therapy It has been indicated that microgravity influenced embryonic development hematopoietic and mesenchymal stem cells and so on Hematopoietic stem cell migration and its differentiation were affected by microgravity The specific differentiation of hematopoietic stem cells was inhibited under microgravity The expression of proteins regulating cell cycle period also changed Mesenchymal stem cells provide a source of cells for the repair of musculoskeletal tissue in ground experiment While under microgravity the proliferation and differentiation of mesenchymal stem cells were influenced along with the differentiated cells function changed Furthermore in the differentiation process of stem cells under microgravity the mechanism of signal transport was also affected and the specific differentiation

  3. Donor-Specific Antibodies Are Produced Locally in Ectopic Lymphoid Structures in Cardiac Allografts.

    PubMed

    Huibers, M M H; Gareau, A J; Beerthuijzen, J M T; Siera-de Koning, E; van Kuik, J; Kamburova, E G; Vink, A; de Jonge, N; Lee, T D G; Otten, H G; de Weger, R A

    2017-01-01

    Cardiac allograft vasculopathy (CAV) is a transplant pathology, limiting graft survival after heart transplantation. CAV arteries are surrounded by ectopic lymphoid structures (ELS) containing B cells and plasma cells. The aim of this study was to characterize the antigenic targets of antibodies produced in ELS. Coronary arteries and surrounding epicardial tissue from 56 transplant recipients were collected during autopsy. Immunofluorescence was used to identify antibody-producing plasma cells. Immunoglobulin levels in tissue lysates were measured by enzyme-linked immunosorbent assay and analyzed for donor-specific HLA antibodies by Luminex assay. Cytokine and receptor expression levels were quantified using quantitative polymerase chain reaction. Plasma cells in ELS were polyclonal and produced IgG and/or IgM antibodies. In epicardial tissue, IgG (p < 0.05) and IgM levels were higher in transplant patients with larger ELS than smaller ELS. In 4 of 21 (19%) patients with ELS, donor-specific HLA type II antibodies were detected locally. Cytokine and receptor expression (CXCR3, interferon γ and TGF-β) was higher in large ELS in the epicardial tissue than in other vessel wall layers, suggesting active recruitment and proliferation of T and B lymphocytes. ELS exhibited active plasma cells producing locally manufactured antibodies that, in some cases, were directed against the donor HLA, potentially mediating rejection with major consequences for the graft. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  4. Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine.

    PubMed

    Rana, Deepti; Ramasamy, Keerthana; Leena, Maria; Jiménez, Constanza; Campos, Javier; Ibarra, Paula; Haidar, Ziyad S; Ramalingam, Murugan

    2016-05-01

    Stem cell-based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial-based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell-based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554-567, 2016. © 2016 American Institute of Chemical Engineers.

  5. Expression of small cytoplasmic transcripts of the rat identifier element in vivo and in cultured cells.

    PubMed Central

    McKinnon, R D; Danielson, P; Brow, M A; Bloom, F E; Sutcliffe, J G

    1987-01-01

    We examined the level of expression of small RNA transcripts hybridizing to a rodent repetitive DNA element, the identifier (ID) sequence, in a variety of cell types in vivo and in cultured mammalian cells. A 160-nucleotide (160n) cytoplasmic poly(A)+ RNA (BC1) appeared in late embryonic and early postnatal rat brain development, was enriched in the cerebral cortex, and appeared to be restricted to neural tissue and the anterior pituitary gland. A 110n RNA (BC2) was specifically enriched in brain, especially the postnatal cortex, but was detectable at low levels in peripheral tissues. A third, related 75n poly(A)- RNA (T3) was found in rat brain and at lower levels in peripheral tissues but was very abundant in the testes. The BC RNAs were found in a variety of rat cell lines, and their level of expression was dependent upon cell culture conditions. A rat ID probe detected BC-like RNAs in mouse brain but not liver and detected a 200n RNA in monkey brain but not liver at lower hybridization stringencies. These RNAs were expressed by mouse and primate cell lines. Thus, tissue-specific expression of small ID-sequence-related transcripts is conserved among mammals, but the tight regulation found in vivo is lost by cells in culture. Images PMID:2439903

  6. Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development.

    PubMed

    ten Berge, Derk; Brugmann, Samantha A; Helms, Jill A; Nusse, Roel

    2008-10-01

    A fundamental question in developmental biology is how does an undifferentiated field of cells acquire spatial pattern and undergo coordinated differentiation? The development of the vertebrate limb is an important paradigm for understanding these processes. The skeletal and connective tissues of the developing limb all derive from a population of multipotent progenitor cells located in its distal tip. During limb outgrowth, these progenitors segregate into a chondrogenic lineage, located in the center of the limb bud, and soft connective tissue lineages located in its periphery. We report that the interplay of two families of signaling proteins, fibroblast growth factors (FGFs) and Wnts, coordinate the growth of the multipotent progenitor cells with their simultaneous segregation into these lineages. FGF and Wnt signals act together to synergistically promote proliferation while maintaining the cells in an undifferentiated, multipotent state, but act separately to determine cell lineage specification. Withdrawal of both signals results in cell cycle withdrawal and chondrogenic differentiation. Continued exposure to Wnt, however, maintains proliferation and re-specifies the cells towards the soft connective tissue lineages. We have identified target genes that are synergistically regulated by Wnts and FGFs, and show how these factors actively suppress differentiation and promote growth. Finally, we show how the spatial restriction of Wnt and FGF signals to the limb ectoderm, and to a specialized region of it, the apical ectodermal ridge, controls the distribution of cell behaviors within the growing limb, and guides the proper spatial organization of the differentiating tissues.

  7. GIANT API: an application programming interface for functional genomics

    PubMed Central

    Roberts, Andrew M.; Wong, Aaron K.; Fisk, Ian; Troyanskaya, Olga G.

    2016-01-01

    GIANT API provides biomedical researchers programmatic access to tissue-specific and global networks in humans and model organisms, and associated tools, which includes functional re-prioritization of existing genome-wide association study (GWAS) data. Using tissue-specific interaction networks, researchers are able to predict relationships between genes specific to a tissue or cell lineage, identify the changing roles of genes across tissues and uncover disease-gene associations. Additionally, GIANT API enables computational tools like NetWAS, which leverages tissue-specific networks for re-prioritization of GWAS results. The web services covered by the API include 144 tissue-specific functional gene networks in human, global functional networks for human and six common model organisms and the NetWAS method. GIANT API conforms to the REST architecture, which makes it stateless, cacheable and highly scalable. It can be used by a diverse range of clients including web browsers, command terminals, programming languages and standalone apps for data analysis and visualization. The API is freely available for use at http://giant-api.princeton.edu. PMID:27098035

  8. Isolation and Phenotyping of Intestinal Macrophages.

    PubMed

    Petit, Vanessa

    2018-01-01

    Macrophages are one of the most abundant leucocytes in the intestinal mucosa where they are essential for maintaining homeostasis. However they are also implicated in the pathogenesis of disorders such as inflammatory bowel disease (IBD), offering potential targets for novel therapies.Tissue macrophages are a heterogeneous population of immune cells that fulfill tissue-specific and niche-specific functions. These unique phenotypes likely reflect the heterogeneity of tissue macrophage origins and influence the tissue environment in which they reside. Here we describe how we can characterize and isolate the colonic macrophages.

  9. Comparative analysis of human tissue interactomes reveals factors leading to tissue-specific manifestation of hereditary diseases.

    PubMed

    Barshir, Ruth; Shwartz, Omer; Smoly, Ilan Y; Yeger-Lotem, Esti

    2014-06-01

    An open question in human genetics is what underlies the tissue-specific manifestation of hereditary diseases, which are caused by genomic aberrations that are present in cells across the human body. Here we analyzed this phenomenon for over 300 hereditary diseases by using comparative network analysis. We created an extensive resource of protein expression and interactions in 16 main human tissues, by integrating recent data of gene and protein expression across tissues with data of protein-protein interactions (PPIs). The resulting tissue interaction networks (interactomes) shared a large fraction of their proteins and PPIs, and only a small fraction of them were tissue-specific. Applying this resource to hereditary diseases, we first show that most of the disease-causing genes are widely expressed across tissues, yet, enigmatically, cause disease phenotypes in few tissues only. Upon testing for factors that could lead to tissue-specific vulnerability, we find that disease-causing genes tend to have elevated transcript levels and increased number of tissue-specific PPIs in their disease tissues compared to unaffected tissues. We demonstrate through several examples that these tissue-specific PPIs can highlight disease mechanisms, and thus, owing to their small number, provide a powerful filter for interrogating disease etiologies. As two thirds of the hereditary diseases are associated with these factors, comparative tissue analysis offers a meaningful and efficient framework for enhancing the understanding of the molecular basis of hereditary diseases.

  10. Modulating the stem cell niche for tissue regeneration

    PubMed Central

    Lane, Steven W; Williams, David A; Watt, Fiona M

    2015-01-01

    The field of regenerative medicine holds considerable promise for treating diseases that are currently intractable. Although many researchers are adopting the strategy of cell transplantation for tissue repair, an alternative approach to therapy is to manipulate the stem cell microenvironment, or niche, to facilitate repair by endogenous stem cells. The niche is highly dynamic, with multiple opportunities for intervention. These include administration of small molecules, biologics or biomaterials that target specific aspects of the niche, such as cell-cell and cell–extracellular matrix interactions, to stimulate expansion or differentiation of stem cells, or to cause reversion of differentiated cells to stem cells. Nevertheless, there are several challenges in targeting the niche therapeutically, not least that of achieving specificity of delivery and responses. We envisage that successful treatments in regenerative medicine will involve different combinations of factors to target stem cells and niche cells, applied at different times to effect recovery according to the dynamics of stem cell–niche interactions. PMID:25093887

  11. Multiomics Analysis of Tumor Microenvironment Reveals Gata2 and miRNA-124-3p as Potential Novel Biomarkers in Ovarian Cancer.

    PubMed

    Gov, Esra; Kori, Medi; Arga, Kazim Yalcin

    2017-10-01

    Ovarian cancer is a common and, yet, one of the most deadly human cancers due to its insidious onset and the current lack of robust early diagnostic tests. Tumors are complex tissues comprised of not only malignant cells but also genetically stable stromal cells. Understanding the molecular mechanisms behind epithelial-stromal crosstalk in ovarian cancer is a great challenge in particular. In the present study, we performed comparative analyses of transcriptome data from laser microdissected epithelial, stromal, and ovarian tumor tissues, and identified common and tissue-specific reporter biomolecules-genes, receptors, membrane proteins, transcription factors (TFs), microRNAs (miRNAs), and metabolites-by integration of transcriptome data with genome-scale biomolecular networks. Tissue-specific response maps included common differentially expressed genes (DEGs) and reporter biomolecules were reconstructed and topological analyses were performed. We found that CDK2, EP300, and SRC as receptor-related functions or membrane proteins; Ets1, Ar, Gata2, and Foxp3 as TFs; and miR-16-5p and miR-124-3p as putative biomarkers and warrant further validation research. In addition, we report in this study that Gata2 and miR-124-3p are potential novel reporter biomolecules for ovarian cancer. The study of tissue-specific reporter biomolecules in epithelial cells, stroma, and tumor tissues as exemplified in the present study offers promise in biomarker discovery and diagnostics innovation for common complex human diseases such as ovarian cancer.

  12. Tissue-specific mutation accumulation in human adult stem cells during life

    NASA Astrophysics Data System (ADS)

    Blokzijl, Francis; de Ligt, Joep; Jager, Myrthe; Sasselli, Valentina; Roerink, Sophie; Sasaki, Nobuo; Huch, Meritxell; Boymans, Sander; Kuijk, Ewart; Prins, Pjotr; Nijman, Isaac J.; Martincorena, Inigo; Mokry, Michal; Wiegerinck, Caroline L.; Middendorp, Sabine; Sato, Toshiro; Schwank, Gerald; Nieuwenhuis, Edward E. S.; Verstegen, Monique M. A.; van der Laan, Luc J. W.; de Jonge, Jeroen; Ijzermans, Jan N. M.; Vries, Robert G.; van de Wetering, Marc; Stratton, Michael R.; Clevers, Hans; Cuppen, Edwin; van Boxtel, Ruben

    2016-10-01

    The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.

  13. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    PubMed

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. An ancient defense system eliminates unfit cells from developing tissues during cell competition

    PubMed Central

    Meyer, S. N.; Amoyel, M.; Bergantiños, C.; de la Cova, C.; Schertel, C.; Basler, K.; Johnston, L. A.

    2016-01-01

    Developing tissues that contain mutant or compromised cells present risks to animal health. Accordingly, the appearance of a population of suboptimal cells in a tissue elicits cellular interactions that prevent their contribution to the adult. Here we report that this quality control process, cell competition, uses specific components of the evolutionarily ancient and conserved innate immune system to eliminate Drosophila cells perceived as unfit. We find that Toll-related receptors (TRRs) and the cytokine Spätzle (Spz) lead to NFκB-dependent apoptosis. Diverse “loser” cells require different TRRs and NFκB factors and activate distinct pro-death genes, implying that the particular response is stipulated by the competitive context. Our findings demonstrate a functional repurposing of components of TRRs and NFκB signaling modules in the surveillance of cell fitness during development. PMID:25477468

  15. Estrogen receptor (ER)α-regulated lipocalin 2 expression in adipose tissue links obesity with breast cancer progression.

    PubMed

    Drew, Brian G; Hamidi, Habib; Zhou, Zhenqi; Villanueva, Claudio J; Krum, Susan A; Calkin, Anna C; Parks, Brian W; Ribas, Vicent; Kalajian, Nareg Y; Phun, Jennifer; Daraei, Pedram; Christofk, Heather R; Hewitt, Sylvia C; Korach, Kenneth S; Tontonoz, Peter; Lusis, Aldons J; Slamon, Dennis J; Hurvitz, Sara A; Hevener, Andrea L

    2015-02-27

    Obesity is associated with increased breast cancer (BrCA) incidence. Considering that inactivation of estrogen receptor (ER)α promotes obesity and metabolic dysfunction in women and female mice, understanding the mechanisms and tissue-specific sites of ERα action to combat metabolic-related disease, including BrCA, is of clinical importance. To study the role of ERα in adipose tissue we generated fat-specific ERα knock-out (FERKO) mice. Herein we show that ERα deletion increased adipocyte size, fat pad weight, and tissue expression and circulating levels of the secreted glycoprotein, lipocalin 2 (Lcn2), an adipokine previously associated with BrCA development. Chromatin immunoprecipitation and luciferase reporter studies showed that ERα binds the Lcn2 promoter to repress its expression. Because adipocytes constitute an important cell type of the breast microenvironment, we examined the impact of adipocyte ERα deletion on cancer cell behavior. Conditioned medium from ERα-null adipocytes and medium containing pure Lcn2 increased proliferation and migration of a subset of BrCA cells in culture. The proliferative and promigratory effects of ERα-deficient adipocyte-conditioned medium on BrCA cells was reversed by Lcn2 deletion. BrCA cell responsiveness to exogenous Lcn2 was heightened in cell types where endogenous Lcn2 expression was minimal, but components of the Lcn2 signaling pathway were enriched, i.e. SLC22A17 and 3-hydroxybutyrate dehydrogenase (BDH2). In breast tumor biopsies from women diagnosed with BrCA we found that BDH2 expression was positively associated with adiposity and circulating Lcn2 levels. Collectively these data suggest that reduction of ERα expression in adipose tissue promotes adiposity and is linked with the progression and severity of BrCA via increased adipocyte-specific Lcn2 production and enhanced tumor cell Lcn2 sensitivity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Silk-based multilayered angle-ply annulus fibrosus construct to recapitulate form and function of the intervertebral disc.

    PubMed

    Bhunia, Bibhas K; Kaplan, David L; Mandal, Biman B

    2018-01-16

    Recapitulation of the form and function of complex tissue organization using appropriate biomaterials impacts success in tissue engineering endeavors. The annulus fibrosus (AF) represents a complex, multilamellar, hierarchical structure consisting of collagen, proteoglycans, and elastic fibers. To mimic the intricacy of AF anatomy, a silk protein-based multilayered, disc-like angle-ply construct was fabricated, consisting of concentric layers of lamellar sheets. Scanning electron microscopy and fluorescence image analysis revealed cross-aligned and lamellar characteristics of the construct, mimicking the native hierarchical architecture of the AF. Induction of secondary structure in the silk constructs was confirmed by infrared spectroscopy and X-ray diffraction. The constructs showed a compressive modulus of 499.18 ± 86.45 kPa. Constructs seeded with porcine AF cells and human mesenchymal stem cells (hMSCs) showed ∼2.2-fold and ∼1.7-fold increases in proliferation on day 14, respectively, compared with initial seeding. Biochemical analysis, histology, and immunohistochemistry results showed the deposition of AF-specific extracellular matrix (sulfated glycosaminoglycan and collagen type I), indicating a favorable environment for both cell types, which was further validated by the expression of AF tissue-specific genes. The constructs seeded with porcine AF cells showed ∼11-, ∼5.1-, and ∼6.7-fold increases in col I α 1 , sox 9, and aggrecan genes, respectively. The differentiation of hMSCs to AF-like tissue was evident from the enhanced expression of the AF-specific genes. Overall, the constructs supported cell proliferation, differentiation, and ECM deposition resulting in AF-like tissue features based on ECM deposition and morphology, indicating potential for future studies related to intervertebral disc replacement therapy.

  17. Lactoferrin Expression in Human and Murine Ocular Tissue.

    PubMed

    Rageh, Abrar A; Ferrington, Deborah A; Roehrich, Heidi; Yuan, Ching; Terluk, Marcia R; Nelson, Elizabeth F; Montezuma, Sandra R

    2016-07-01

    Lactoferrin (LF) is a multifunctional protein known to provide innate defense due to its antimicrobial and anti-inflammatory properties. In the eye, LF has been identified in the tears and vitreous humor. Its presence in other ocular tissues has not been determined. Our aim is to assess the presence of LF in the cornea, iris, retina and retinal pigment epithelium (RPE) of humans and mice. To test for the endogenous production of LF, reverse transcription polymerase chain reaction was performed in cultured human cells from the cornea and RPE and in murine tissues. To confirm LF localization in specific ocular tissue, immunohistochemistry was performed on flat mounts of cornea, retina and RPE in human donor eyes. The presence of LF was assessed by western blotting in human and mouse ocular tissue and human culture cells (cornea and RPE). To verify antibody specificity, purified human LF and transferrin (TF) were used on 1D and 2D western blots. LF gene expression was confirmed in the cornea and RPE cell cultures from humans, suggesting that LF is an endogenously produced protein. PCR results from mouse ocular tissue showed LF expression in cornea, iris, RPE, but not in retina. These results were also consistent with immunohistochemical localization of LF in human donor tissue. Antibody reaction for human LF was specific and western blotting showed its presence in the cornea, iris and RPE tissues. A faint reaction for the retina was observed but was likely due to contamination from other ocular tissues. Multiple commercially available antibodies for murine LF cross-reacted with TF, so no reliable results were obtained for murine western blot. LF is expressed in multiple eye tissues of humans and mice. This widespread expression and multifunctional activity of LF suggests that it may play an important role in protecting eye tissues from inflammation-associated diseases.

  18. Knockdown of MAGEA6 Activates AMP-Activated Protein Kinase (AMPK) Signaling to Inhibit Human Renal Cell Carcinoma Cells.

    PubMed

    Ye, Xueting; Xie, Jing; Huang, Hang; Deng, Zhexian

    2018-01-01

    Melanoma antigen A6 (MAGEA6) is a cancer-specific ubiquitin ligase of AMP-activated protein kinase (AMPK). The current study tested MAGEA6 expression and potential function in renal cell carcinoma (RCC). MAGEA6 and AMPK expression in human RCC tissues and RCC cells were tested by Western blotting assay and qRT-PCR assay. shRNA method was applied to knockdown MAGEA6 in human RCC cells. Cell survival and proliferation were tested by MTT assay and BrdU ELISA assay, respectively. Cell apoptosis was tested by the TUNEL assay and single strand DNA ELISA assay. The 786-O xenograft in nude mouse model was established to test RCC cell growth in vivo. MAGEA6 is specifically expressed in RCC tissues as well as in the established (786-O and A498) and primary human RCC cells. MAGEA6 expression is correlated with AMPKα1 downregulation in RCC tissues and cells. It is not detected in normal renal tissues nor in the HK-2 renal epithelial cells. MAGEA6 knockdown by targeted-shRNA induced AMPK stabilization and activation, which led to mTOR complex 1 (mTORC1) in-activation and RCC cell death/apoptosis. AMPK inhibition, by AMPKα1 shRNA or the dominant negative AMPKα1 (T172A), almost reversed MAGEA6 knockdown-induced RCC cell apoptosis. Conversely, expression of the constitutive-active AMPKα1 (T172D) mimicked the actions by MAGEA6 shRNA. In vivo, MAGEA6 shRNA-bearing 786-O tumors grew significantly slower in nude mice than the control tumors. AMPKα1 stabilization and activation as well as mTORC1 in-activation were detected in MAGEA6 shRNA tumor tissues. MAGEA6 knockdown inhibits human RCC cells via activating AMPK signaling. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. The Role of Mechanical Variance and Spatial Clustering on the Likelihood of Tumor Incidence and Growth

    NASA Astrophysics Data System (ADS)

    Mirzakhel, Zibah

    When considering factors that contribute to cancer progression, modifications to both the biological and mechanical pathways play significant roles. However, less attention is placed on how the mechanical pathways can specifically contribute to cancerous behavior. Experimental studies have found that malignant cells are significantly softer than healthy, normal cells. In a tissue environment where healthy or malignant cells exist, a distribution of cell stiffness values is observed, with the mean values used to differentiate between these two populations. Rather than focus on the mean values, emphasis will be placed on the distribution, where instances of soft and stiff cells exist in the healthy tissue environment. Since cell deformability is a trait associated with cancer, the question arises as to whether the mechanical variation observed in healthy tissue cell stiffness distributions can influence any instances of tumor growth. To approach this, a 3D discrete model of cells is used, able to monitor and predict the behavior of individual cells while determining any instances of tumor growth in a healthy tissue. In addition to the mechanical variance, the spatial arrangement of cells will also be modeled, as cell interaction could further implicate any incidences of tumor-like malignant populations within the tissue. Results have shown that the likelihood of tumor incidence is driven by both by the increases in the mechanical variation in the distributions as well as larger clustering of cells that are mechanically similar, quantified primarily through higher proliferation rates of tumor-like soft cells. This can be observed though prominent negative shifts in the mean of the distribution, as it begins to transition and show instances of earlystage tumor growth. The model reveals the impact that both the mechanical variation and spatial arrangement of cells has on tumor progression, suggesting the use of these parameters as potential novel biomarkers. With a patient-specific approach in mind, the model may be applied for early-stage cancer detection, useful to establish a timeline on tumor progression.

  20. Identification and characterization of HIV-specific resident memory CD8+ T cells in human lymphoid tissue.

    PubMed

    Buggert, Marcus; Nguyen, Son; Salgado-Montes de Oca, Gonzalo; Bengsch, Bertram; Darko, Samuel; Ransier, Amy; Roberts, Emily R; Del Alcazar, Daniel; Brody, Irene Bukh; Vella, Laura A; Beura, Lalit; Wijeyesinghe, Sathi; Herati, Ramin S; Del Rio Estrada, Perla M; Ablanedo-Terrazas, Yuria; Kuri-Cervantes, Leticia; Sada Japp, Alberto; Manne, Sasikanth; Vartanian, Shant; Huffman, Austin; Sandberg, Johan K; Gostick, Emma; Nadolski, Gregory; Silvestri, Guido; Canaday, David H; Price, David A; Petrovas, Constantinos; Su, Laura F; Vahedi, Golnaz; Dori, Yoav; Frank, Ian; Itkin, Maxim G; Wherry, E John; Deeks, Steven G; Naji, Ali; Reyes-Terán, Gustavo; Masopust, David; Douek, Daniel C; Betts, Michael R

    2018-06-01

    Current paradigms of CD8 + T cell-mediated protection in HIV infection center almost exclusively on studies of peripheral blood, which is thought to provide a window into immune activity at the predominant sites of viral replication in lymphoid tissues (LTs). Through extensive comparison of blood, thoracic duct lymph (TDL), and LTs in different species, we show that many LT memory CD8 + T cells bear phenotypic, transcriptional, and epigenetic signatures of resident memory T cells (T RMs ). Unlike their circulating counterparts in blood or TDL, most of the total and follicular HIV-specific CD8 + T cells in LTs also resemble T RMs Moreover, high frequencies of HIV-specific CD8 + T RMs with skewed clonotypic profiles relative to matched blood samples are present in LTs of individuals who spontaneously control HIV replication in the absence of antiretroviral therapy (elite controllers). Single-cell RNA sequencing analysis confirmed that HIV-specific T RMs are enriched for effector-related immune genes and signatures compared with HIV-specific non-T RMs in elite controllers. Together, these data indicate that previous studies in blood have largely failed to capture the major component of HIV-specific CD8 + T cell responses resident within LTs. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Top