Sample records for specific variable density

  1. Prostate specific antigen density to predict prostate cancer upgrading in a contemporary radical prostatectomy series: a single center experience.

    PubMed

    Magheli, Ahmed; Hinz, Stefan; Hege, Claudia; Stephan, Carsten; Jung, Klaus; Miller, Kurt; Lein, Michael

    2010-01-01

    We investigated the value of pretreatment prostate specific antigen density to predict Gleason score upgrading in light of significant changes in grading routine in the last 2 decades. Of 1,061 consecutive men who underwent radical prostatectomy between 1999 and 2004, 843 were eligible for study. Prostate specific antigen density was calculated and a cutoff for highest accuracy to predict Gleason upgrading was determined using ROC curve analysis. The predictive accuracy of prostate specific antigen and prostate specific antigen density to predict Gleason upgrading was evaluated using ROC curve analysis based on predicted probabilities from logistic regression models. Prostate specific antigen and prostate specific antigen density predicted Gleason upgrading on univariate analysis (as continuous variables OR 1.07 and 7.21, each p <0.001) and on multivariate analysis (as continuous variables with prostate specific antigen density adjusted for prostate specific antigen OR 1.07, p <0.001 and OR 4.89, p = 0.037, respectively). When prostate specific antigen density was added to the model including prostate specific antigen and other Gleason upgrading predictors, prostate specific antigen lost its predictive value (OR 1.02, p = 0.423), while prostate specific antigen density remained an independent predictor (OR 4.89, p = 0.037). Prostate specific antigen density was more accurate than prostate specific antigen to predict Gleason upgrading (AUC 0.61 vs 0.57, p = 0.030). Prostate specific antigen density is a significant independent predictor of Gleason upgrading even when accounting for prostate specific antigen. This could be especially important in patients with low risk prostate cancer who seek less invasive therapy such as active surveillance since potentially life threatening disease may be underestimated. Further studies are warranted to help evaluate the role of prostate specific antigen density in Gleason upgrading and its significance for biochemical outcome.

  2. Exact statistical results for binary mixing and reaction in variable density turbulence

    NASA Astrophysics Data System (ADS)

    Ristorcelli, J. R.

    2017-02-01

    We report a number of rigorous statistical results on binary active scalar mixing in variable density turbulence. The study is motivated by mixing between pure fluids with very different densities and whose density intensity is of order unity. Our primary focus is the derivation of exact mathematical results for mixing in variable density turbulence and we do point out the potential fields of application of the results. A binary one step reaction is invoked to derive a metric to asses the state of mixing. The mean reaction rate in variable density turbulent mixing can be expressed, in closed form, using the first order Favre mean variables and the Reynolds averaged density variance, ⟨ρ2⟩ . We show that the normalized density variance, ⟨ρ2⟩ , reflects the reduction of the reaction due to mixing and is a mix metric. The result is mathematically rigorous. The result is the variable density analog, the normalized mass fraction variance ⟨c2⟩ used in constant density turbulent mixing. As a consequence, we demonstrate that use of the analogous normalized Favre variance of the mass fraction, c″ ⁣2˜ , as a mix metric is not theoretically justified in variable density turbulence. We additionally derive expressions relating various second order moments of the mass fraction, specific volume, and density fields. The central role of the density specific volume covariance ⟨ρ v ⟩ is highlighted; it is a key quantity with considerable dynamical significance linking various second order statistics. For laboratory experiments, we have developed exact relations between the Reynolds scalar variance ⟨c2⟩ its Favre analog c″ ⁣2˜ , and various second moments including ⟨ρ v ⟩ . For moment closure models that evolve ⟨ρ v ⟩ and not ⟨ρ2⟩ , we provide a novel expression for ⟨ρ2⟩ in terms of a rational function of ⟨ρ v ⟩ that avoids recourse to Taylor series methods (which do not converge for large density differences). We have derived analytic results relating several other second and third order moments and see coupling between odd and even order moments demonstrating a natural and inherent skewness in the mixing in variable density turbulence. The analytic results have applications in the areas of isothermal material mixing, isobaric thermal mixing, and simple chemical reaction (in progress variable formulation).

  3. Measured acoustic properties of variable and low density bulk absorbers

    NASA Technical Reports Server (NTRS)

    Dahl, M. D.; Rice, E. J.

    1985-01-01

    Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances.

  4. Subgrid-scale effects in compressible variable-density decaying turbulence

    DOE PAGES

    GS, Sidharth; Candler, Graham V.

    2018-05-08

    We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less

  5. Subgrid-scale effects in compressible variable-density decaying turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GS, Sidharth; Candler, Graham V.

    We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less

  6. Nonparametric model validations for hidden Markov models with applications in financial econometrics.

    PubMed

    Zhao, Zhibiao

    2011-06-01

    We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise.

  7. A sex-specific relationship between capillary density and anaerobic threshold

    PubMed Central

    Robbins, Jennifer L.; Duscha, Brian D.; Bensimhon, Daniel R.; Wasserman, Karlman; Hansen, James E.; Houmard, Joseph A.; Annex, Brian H.; Kraus, William E.

    2009-01-01

    Although both capillary density and peak oxygen consumption (V̇o2) improve with exercise training, it is difficult to find a relationship between these two measures. It has been suggested that peak V̇o2 may be more related to central hemodynamics than to the oxidative potential of skeletal muscle, which may account for this observation. We hypothesized that change in a measure of submaximal performance, anaerobic threshold, might be related to change in skeletal muscle capillary density, a marker of oxidative potential in muscle, with training. Due to baseline differences among these variables, we also hypothesized that relationships might be sex specific. A group of 21 subjects completed an inactive control period, whereas 28 subjects (17 men and 11 women) participated in a 6-mo high-intensity exercise program. All subjects were sedentary, overweight, and dyslipidemic. Potential relationships were assessed between change in capillary density with both change in V̇o2 at peak and at anaerobic threshold with exercise training. All variables and relationships were assessed for sex-specific effects. Change in peak V̇o2 was not related to change in capillary density after exercise training in either sex. Men had a positive correlation between change in V̇o2 at anaerobic threshold and change in capillary density with exercise training (r = 0.635; P < 0.01), whereas women had an inverse relationship (r = −0.636; P < 0.05) between the change in these variables. These findings suggest that, although enhanced capillary density is associated with training-induced improvements in submaximal performance in men, this relationship is different in women. PMID:19164774

  8. A sex-specific relationship between capillary density and anaerobic threshold.

    PubMed

    Robbins, Jennifer L; Duscha, Brian D; Bensimhon, Daniel R; Wasserman, Karlman; Hansen, James E; Houmard, Joseph A; Annex, Brian H; Kraus, William E

    2009-04-01

    Although both capillary density and peak oxygen consumption (Vo(2)) improve with exercise training, it is difficult to find a relationship between these two measures. It has been suggested that peak Vo(2) may be more related to central hemodynamics than to the oxidative potential of skeletal muscle, which may account for this observation. We hypothesized that change in a measure of submaximal performance, anaerobic threshold, might be related to change in skeletal muscle capillary density, a marker of oxidative potential in muscle, with training. Due to baseline differences among these variables, we also hypothesized that relationships might be sex specific. A group of 21 subjects completed an inactive control period, whereas 28 subjects (17 men and 11 women) participated in a 6-mo high-intensity exercise program. All subjects were sedentary, overweight, and dyslipidemic. Potential relationships were assessed between change in capillary density with both change in Vo(2) at peak and at anaerobic threshold with exercise training. All variables and relationships were assessed for sex-specific effects. Change in peak Vo(2) was not related to change in capillary density after exercise training in either sex. Men had a positive correlation between change in Vo(2) at anaerobic threshold and change in capillary density with exercise training (r = 0.635; P < 0.01), whereas women had an inverse relationship (r = -0.636; P < 0.05) between the change in these variables. These findings suggest that, although enhanced capillary density is associated with training-induced improvements in submaximal performance in men, this relationship is different in women.

  9. Geography and the costs of urban energy infrastructure: The case of electricity and natural gas capital investments

    NASA Astrophysics Data System (ADS)

    Senyel, Muzeyyen Anil

    Investments in the urban energy infrastructure for distributing electricity and natural gas are analyzed using (1) property data measuring distribution plant value at the local/tax district level, and (2) system outputs such as sectoral numbers of customers and energy sales, input prices, company-specific characteristics such as average wages and load factor. Socio-economic and site-specific urban and geographic variables, however, often been neglected in past studies. The purpose of this research is to incorporate these site-specific characteristics of electricity and natural gas distribution into investment cost model estimations. These local characteristics include (1) socio-economic variables, such as income and wealth; (2) urban-related variables, such as density, land-use, street pattern, housing pattern; (3) geographic and environmental variables, such as soil, topography, and weather, and (4) company-specific characteristics such as average wages, and load factor. The classical output variables include residential and commercial-industrial customers and sales. In contrast to most previous research, only capital investments at the local level are considered. In addition to aggregate cost modeling, the analysis focuses on the investment costs for the system components: overhead conductors, underground conductors, conduits, poles, transformers, services, street lighting, and station equipment for electricity distribution; and mains, services, regular and industrial measurement and regulation stations for natural gas distribution. The Box-Cox, log-log and additive models are compared to determine the best fitting cost functions. The Box-Cox form turns out to be superior to the other forms at the aggregate level and for network components. However, a linear additive form provides a better fit for end-user related components. The results show that, in addition to output variables and company-specific variables, various site-specific variables are statistically significant at the aggregate and disaggregate levels. Local electricity and natural gas distribution networks are characterized by a natural monopoly cost structure and economies of scale and density. The results provide evidence for the economies of scale and density for the aggregate electricity and natural gas distribution systems. However, distribution components have varying economic characteristics. The backbones of the networks (overhead conductors for electricity, and mains for natural gas) display economies of scale and density, but services in both systems and street lighting display diseconomies of scale and diseconomies of density. Finally multi-utility network cost analyses are presented for aggregate and disaggregate electricity and natural gas capital investments. Economies of scope analyses investigate whether providing electricity and natural gas jointly is economically advantageous, as compared to providing these products separately. Significant economies of scope are observed for both the total network and the underground capital investments.

  10. Nonparametric model validations for hidden Markov models with applications in financial econometrics

    PubMed Central

    Zhao, Zhibiao

    2011-01-01

    We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise. PMID:21750601

  11. Range of Density Variability from Surface To 120 km Altitude

    NASA Technical Reports Server (NTRS)

    Smith, Orvel E.; Chenoweth, Halsey B.

    1961-01-01

    A re-entry space vehicle development program, such as Project Apollo, requires a knowledge of the variability of atmospheric density from the surface of the earth to re-entry altitude (120 km). This report summarizes the data on density given in the most recent literature on the subject. The range of atmospheric density with respect to the ARDC 1959 Model Atmosphere is determined and shown graphically. From the surface to 30 km altitude abundant information on density is available. From 30 to 90 km altitude the summarized reports of observations made at a limited number of stations have been used. Between 90 and 120 km altitude the density is somewhat speculative, there being but few measurements available. Therefore, the qualitative values for the variability of density above 30 km must be considered tentative. Variations of atmospheric density by latitude and seasons made it necessary to develop a family of curves rather than a single profile. Three curves are presented to show the range of density deviation versus altitudes with respect to the ARDC 1959 Model Atmosphere. Each curve is used for a specific latitude range and season.

  12. Cell specific, variable density, polymer microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1977-01-01

    Biocompatible polymeric microspheres having an average diameter below about 3 microns and having density at least 15% greater or lesser than organic cells and having covalent binding sites are provided in accordance with this invention. The microspheres are obtained by copolymerizing a hydroxy or amine substituted acrylic monomer such as hydroxyethylmethacrylate with a light or dense comonomer such as a fluoromonomer. A lectin or antibody is bound to the hydroxy or amine site of the bead to provide cell specificity. When added to a cell suspension the marked bead will specifically label the cell membrane by binding to specific receptor sites thereon. The labelled membrane can then be separated by density gradient centrifugation.

  13. Associations of Breast Density With Demographic, Reproductive, and Lifestyle Factors in a Developing Southeast Asian Population.

    PubMed

    Dung Yun Trieu, Phuong; Mello-Thoms, Claudia; Peat, Jennifer K; Doan Do, Thuan; Brennan, Patrick C

    2017-07-01

    The aim of this study was to investigate how breast density interacted with demographic, reproductive, and lifestyle features among Vietnamese women. Mammographic density and established risk factors for breast cancer were collected from 1651 women (345 cancer cases and 1306 normal cases) in Vietnam. The association of breast density categories with potential risk factors was investigated using Spearman's test for continuous variables and χ 2 tests for categorical variables. Independent factors associated with high breast density and breast cancer in specific density groupings were assessed using logistic regression. Results showed that high breast density was significantly associated with young age, low body mass index, low number of children, early age at having the last child, premenopausal status, and increased vegetable consumption. Reproductive factors were key agents associated with breast cancer for women with high breast density, which was not so evident for women with low breast density.

  14. Receiver Operating Characteristic Curve Analysis of Beach Water Quality Indicator Variables

    PubMed Central

    Morrison, Ann Michelle; Coughlin, Kelly; Shine, James P.; Coull, Brent A.; Rex, Andrea C.

    2003-01-01

    Receiver operating characteristic (ROC) curve analysis is a simple and effective means to compare the accuracies of indicator variables of bacterial beach water quality. The indicator variables examined in this study were previous day's Enterococcus density and antecedent rainfall at 24, 48, and 96 h. Daily Enterococcus densities and 15-min rainfall values were collected during a 5-year (1996 to 2000) study of four Boston Harbor beaches. The indicator variables were assessed for their ability to correctly classify water as suitable or unsuitable for swimming at a maximum threshold Enterococcus density of 104 CFU/100 ml. Sensitivity and specificity values were determined for each unique previous day's Enterococcus density and antecedent rainfall volume and used to construct ROC curves. The area under the ROC curve was used to compare the accuracies of the indicator variables. Twenty-four-hour antecedent rainfall classified elevated Enterococcus densities more accurately than previous day's Enterococcus density (P = 0.079). An empirically derived threshold for 48-h antecedent rainfall, corresponding to a sensitivity of 0.75, was determined from the 1996 to 2000 data and evaluated to ascertain if the threshold would produce a 0.75 sensitivity with independent water quality data collected in 2001 from the same beaches. PMID:14602593

  15. Cell specific, variable density, polymer microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1978-01-01

    Biocompatible polymeric microspheres having an average diameter below about 3 microns and having a density at least 15% greater or lesser than organic cells and having covalent binding sites are provided in accordance with this invention. The microspheres are obtained by copolymerizing a hydroxy or amine substituted acrylic monomer such as hydroxyethylmethacrylate with a light or dense comonomer such as a fluoromonomer. A lectin or antibody is bound to the hydroxy or amine site of the bead to provide cell specificity. When added to a cell suspension the marked bead will specifically label the cell membrane by binding to specific receptor sites thereon. The labelled membrane can then be separated by density gradient centrifugation.

  16. Two-point spectral model for variable density homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Pal, Nairita; Kurien, Susan; Clark, Timothy; Aslangil, Denis; Livescu, Daniel

    2017-11-01

    We present a comparison between a two-point spectral closure model for buoyancy-driven variable density homogeneous turbulence, with Direct Numerical Simulation (DNS) data of the same system. We wish to understand how well a suitable spectral model might capture variable density effects and the transition to turbulence from an initially quiescent state. Following the BHRZ model developed by Besnard et al. (1990), the spectral model calculation computes the time evolution of two-point correlations of the density fluctuations with the momentum and the specific-volume. These spatial correlations are expressed as function of wavenumber k and denoted by a (k) and b (k) , quantifying mass flux and turbulent mixing respectively. We assess the accuracy of the model, relative to a full DNS of the complete hydrodynamical equations, using a and b as metrics. Work at LANL was performed under the auspices of the U.S. DOE Contract No. DE-AC52-06NA25396.

  17. Convection in the Rayleigh-Bénard flow with all fluid properties variable

    NASA Astrophysics Data System (ADS)

    Sassos, Athanasios; Pantokratoras, Asterios

    2011-10-01

    In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Bénard problem is investigated. The investigation concerns water, air, and engine oil by taking into account the variation of fluid properties with temperature. The results are obtained by numerically solving the governing equations, using the SIMPLE algorithm and covering large temperature differences. It is found that the critical Rayleigh number increases as the temperature difference increases considering all fluid properties variable. However, when the fluid properties are kept constant, calculated at the mean temperature, and only density is considered variable, the critical Rayleigh number either decreases or remains constant.

  18. Autosomal Dominant Cataract: Intrafamilial Phenotypic Variability, Interocular Asymmetry, and Variable Progression in Four Chilean Families

    PubMed Central

    Shafie, Suraiya M.; Barria von-Bischhoffshausen, Fernando R.; Bateman, J. Bronwyn

    2006-01-01

    PURPOSE To document intrafamilial and interocular phenotypic variability of autosomal dominant cataract (ADC). DESIGN Prospective observational case series. METHODS We performed ophthalmologic examination in four Chilean ADC families. RESULTS The families exhibited variability with respect to morphology, location with the lens, color and density of cataracts among affected members. We documented asymmetry between eyes in the morphology, location within the lens, color and density of cataracts, and a variable rate of progression. CONCLUSIONS The cataracts in these families exhibit wide intrafamilial and interocular phenotypic variability, supporting the premise that the mutated genes are expressed differentially in individuals and between eyes; other genes or environmental factors may be the bases for this variability. Marked progression among some family members underscores the variable clinical course of a common mutation within a family. Like retinitis pigmentosa, classification of ADC will be most useful if based on the gene and specific mutation. PMID:16564818

  19. Favre-Averaged Turbulence Statistics in Variable Density Mixing of Buoyant Jets

    NASA Astrophysics Data System (ADS)

    Charonko, John; Prestridge, Kathy

    2014-11-01

    Variable density mixing of a heavy fluid jet with lower density ambient fluid in a subsonic wind tunnel was experimentally studied using Particle Image Velocimetry and Planar Laser Induced Fluorescence to simultaneously measure velocity and density. Flows involving the mixing of fluids with large density ratios are important in a range of physical problems including atmospheric and oceanic flows, industrial processes, and inertial confinement fusion. Here we focus on buoyant jets with coflow. Results from two different Atwood numbers, 0.1 (Boussinesq limit) and 0.6 (non-Boussinesq case), reveal that buoyancy is important for most of the turbulent quantities measured. Statistical characteristics of the mixing important for modeling these flows such as the PDFs of density and density gradients, turbulent kinetic energy, Favre averaged Reynolds stress, turbulent mass flux velocity, density-specific volume correlation, and density power spectra were also examined and compared with previous direct numerical simulations. Additionally, a method for directly estimating Reynolds-averaged velocity statistics on a per-pixel basis is extended to Favre-averages, yielding improved accuracy and spatial resolution as compared to traditional post-processing of velocity and density fields.

  20. Extracting a mix parameter from 2D radiography of variable density flow

    NASA Astrophysics Data System (ADS)

    Kurien, Susan; Doss, Forrest; Livescu, Daniel

    2017-11-01

    A methodology is presented for extracting quantities related to the statistical description of the mixing state from the 2D radiographic image of a flow. X-ray attenuation through a target flow is given by the Beer-Lambert law which exponentially damps the incident beam intensity by a factor proportional to the density, opacity and thickness of the target. By making reasonable assumptions for the mean density, opacity and effective thickness of the target flow, we estimate the contribution of density fluctuations to the attenuation. The fluctuations thus inferred may be used to form the correlation of density and specific-volume, averaged across the thickness of the flow in the direction of the beam. This correlation function, denoted by b in RANS modeling, quantifies turbulent mixing in variable density flows. The scheme is tested using DNS data computed for variable-density buoyancy-driven mixing. We quantify the deficits in the extracted value of b due to target thickness, Atwood number, and modeled noise in the incident beam. This analysis corroborates the proposed scheme to infer the mix parameter from thin targets at moderate to low Atwood numbers. The scheme is then applied to an image of counter-shear flow obtained from experiments at the National Ignition Facility. US Department of Energy.

  1. A New Formulation for Fresh Snow Density over Antarctica for the regional climate model Modèle Atmosphérique Régionale (MAR).

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Datta, R.; Fettweis, X.; Agosta, C.

    2015-12-01

    Surface-layer snow density is important to processes contributing to surface mass balance, but is highly variable over Antarctica due to a wide range of near-surface climate conditions over the continent. Formulations for fresh snow density have typically either used fixed values or been modeled empirically using field data that is limited to specific seasons or regions. There is also currently limited work exploring how the sensitivity to fresh snow density in regional climate models varies with resolution. Here, we present a new formulation compiled from (a) over 1600 distinct density profiles from multiple sources across Antarctica and (b) near-surface variables from the regional climate model Modèle Atmosphérique Régionale (MAR). Observed values represent coastal areas as well as the plateau, in both West and East Antarctica (although East Antarctica is dominant). However, no measurements are included from the Antarctic Peninsula, which is both highly topographically variable and extends to lower latitudes than the remainder of the continent. In order to assess the applicability of this fresh snow density formulation to the Antarctic Peninsula at high resolutions, a version of MAR is run for several years both at low-resolution at the continental scale and at a high resolution for the Antarctic Peninsula alone. This setup is run both with and without the new fresh density formulation to quantify the sensitivity of the energy balance and SMB components to fresh snow density. Outputs are compared with near-surface atmospheric variables available from AWS stations (provided by the University of Wisconsin Madison) as well as net accumulation values from the SAMBA database (provided from the Laboratoire de Glaciologie et Géophysique de l'Environnement).

  2. Variability in goethite surface site density: evidence from proton and carbonate sorption.

    PubMed

    Villalobos, Mario; Trotz, Maya A; Leckie, James O

    2003-12-15

    Goethite is a representative iron oxide in natural environments due to its abundance and thermodynamic stability and may be responsible for many surface-mediated processes, including ion retention and mobility in aqueous settings. A large variability in morphologies and specific surface areas of goethite crystals exists but little work has been done to compare surface reactivity between them. The present work offers experimental evidence for the existence of an inverse relationship between sorption capacity for protons and carbonate ions and specific surface area of goethite for three synthetic goethite preparations spanning surface area differences by a factor of 2. An explanation for this was found by assuming a variable reactive site density between preparations in direct relationship to their sorption capacity based on congruency of carbonate sorption computed on a per-site basis. Previous evidence of maximum sorption capacities supports this explanation, and site density ratios between the goethites studied here were obtained. Triple layer surface complexation modeling was successful in describing adsorption data for all goethite preparations using equal stoichiometries. A new formulation of standard state for activities of surface species based on a 1.0 mole fraction of sites on the solid allowed transformation of the conventional molar concentration-based affinity constants to values based on site occupancy. In this fashion, by applying the appropriate site density ratios, a single set of affinity constant values was found that described accurately the adsorption data for all preparations.

  3. Population-regulating processes during the adult phase in flatfish

    NASA Astrophysics Data System (ADS)

    Rijnsdorp, A. D.

    Flatfish support major fisheries and the study of regulatory processes are of paramount importance for evaluating the resilience of the resource to exploitation. This paper reviews the evidence for processes operating during the adult phase that may 1. generate interannual variability in recruitment; 2. contribute to population regulation through density-dependent growth, density-dependent ripening of adults and density-dependent egg production. With regard to (1), there is evidence that in the adult phase processes do occur that may generate recruitment variability through variation in size-specific fecundity, contraction of spawning season, reduction in egg quality, change in sex ratio and size composition of the adult population. However, time series of recruitment do not provide support for this hypothesis. With regard to (2), there is ample evidence that exploitation of flatfish coincides with an increase in growth, although the mechanisms involved are not always clear. The presence of density-dependent growth in the adult phase of unexploited populations appears to be the most likely explanation in some cases. From the early years of exploitation of flatfish stocks inhabiting cold waters, evidence exists that adult fish do not spawn each year. Fecundity schedules show annual variations, but the available information suggests that size-specific fecundity is stable over a broad range of population abundance and may only decrease at high population abundance. The analysis is complicated by the possibility of a trade-off between egg numbers and egg size. Nevertheless, a density-dependent decrease in growth will automatically result in a decrease in absolute fecundity because of the reduced body size. The potential contribution of these regulatory effects on population regulation is explored. Results indicate that density-dependent ripening and absolute fecundity, mediated through density-dependent growth, may control recruitment at high levels of population abundance. The effect of a density-dependent decrease in size-specific fecundity seems to play a minor role, although this role may become important at extremely high levels of population abundance.

  4. Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    1998-01-01

    High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research.

  5. Relationships between wintering waterbirds and invertebrates, sediments and hydrology of coastal marsh ponds

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2004-01-01

    We studied relationships among sediment variables (carbon content, C:N, hardness, oxygen penetration, silt-clay fraction), hydrologic variables (dissolved oxygen, salinity, temperature, transparency, water depth), sizes and biomass of common invertebrate classes, and densities of 15 common waterbird species in ponds of impounded freshwater, oligohaline, mesohaline, and unimpounded mesohaline marshes during winters 1997-98 to 1999-2000 on Rockefeller State Wildlife Refuge, Louisiana, USA. Canonical correspondence analysis and forward selection was used to analyze the above variables. Water depth and oxygen penetration were the variables that best segregated habitat characteristics that resulted in maximum densities of common waterbird species. Most common waterbird species were associated with specific marsh types, except Green-winged Teal (Anas crecca) and Northern Shoveler (Anas clypeata). We concluded that hydrologic manipulation of marsh ponds is the best way to manage habitats for these birds, if the hydrology can be controlled adequately.

  6. Characterization of blood lipoproteins and validation of cholesterol and triacylglycerol assays for free-ranging polar bears (Ursus maritimus).

    PubMed

    Whiteman, John P; Frank, Nicholas; Greller, Katie A; Harlow, Henry J; Ben-David, Merav

    2013-05-01

    Blood triacylglycerol (TG) and lipoproteins are important variables for evaluating nutritional status of wildlife, but measurements are often expensive and difficult. Performance of a small, portable blood analyzer intended for human medical diagnostics was evaluated in measuring these variables in plasma and serum from free-ranging polar bears (Ursus maritimus), which are experiencing nutritional stress related to sea ice loss. The analyzer accurately tracked changes in concentration of total cholesterol (Ctotal), cholesterol associated with high-density lipoprotein (CHDL), and TG during a validation protocol of diluting samples and spiking them with exogenous cholesterol and glycerol. Values of Ctotal and TG agreed well with values obtained by other methods (ultracentrifugation followed by colorimetric assays); agreement was variable for values of cholesterol associated with specific lipoproteins. Similar to a study of captive polar bears, ultracentrifugation methods revealed greater TG in very low-density lipoproteins than in low-density lipoprotein, which is unusual and merits additional study.

  7. An automated method measures variability in P-glycoprotein and ABCG2 densities across brain regions and brain matter.

    PubMed

    Kannan, Pavitra; Schain, Martin; Kretzschmar, Warren W; Weidner, Lora; Mitsios, Nicholas; Gulyás, Balázs; Blom, Hans; Gottesman, Michael M; Innis, Robert B; Hall, Matthew D; Mulder, Jan

    2017-06-01

    Changes in P-glycoprotein and ABCG2 densities may play a role in amyloid-beta accumulation in Alzheimer's disease. However, previous studies report conflicting results from different brain regions, without correcting for changes in vessel density. We developed an automated method to measure transporter density exclusively within the vascular space, thereby correcting for vessel density. We then examined variability in transporter density across brain regions, matter, and disease using two cohorts of post-mortem brains from Alzheimer's disease patients and age-matched controls. Changes in transporter density were also investigated in capillaries near plaques and on the mRNA level. P-glycoprotein density varied with brain region and matter, whereas ABCG2 density varied with brain matter. In temporal cortex, P-glycoprotein density was 53% lower in Alzheimer's disease samples than in controls, and was reduced by 35% in capillaries near plaque deposits within Alzheimer's disease samples. ABCG2 density was unaffected in Alzheimer's disease. No differences were detected at the transcript level. Our study indicates that region-specific changes in transporter densities can occur globally and locally near amyloid-beta deposits in Alzheimer's disease, providing an explanation for conflicting results in the literature. When differences in region and matter are accounted for, changes in density can be reproducibly measured using our automated method.

  8. Simulation of saltwater movement in the Upper Floridan aquifer in the Savannah, Georgia-Hilton Head Island, South Carolina, area, predevelopment-2004, and projected movement for 2000 pumping conditions

    USGS Publications Warehouse

    Provost, Alden M.; Payne, Dorothy F.; Voss, Clifford I.

    2006-01-01

    A digital model was developed to simulate ground-water flow and solute transport for the Upper Floridan aquifer in the Savannah, Georgia-Hilton Head Island, South Carolina, area. The model was used to (1) simulate trends of saltwater intrusion from predevelopment to the present day (1885-2004), (2) project these trends from the present day into the future, and (3) evaluate the relative influence of different assumptions regarding initial and boundary conditions and physical properties. The model is based on a regional, single-density ground-water flow model of coastal Georgia and adjacent parts of South Carolina and Florida. Variable-density ground-water flow and solute transport were simulated using the U.S. Geological Survey finite-element, variable-density solute-transport simulator SUTRA, 1885-2004. The model comprises seven layers: the surficial aquifer system, the Brunswick aquifer system, the Upper Floridan aquifer, the Lower Floridan aquifer, and the intervening confining units. The model was calibrated to September 1998 water levels, for single-density freshwater conditions, then refined using variable density and chloride concentration to give a reasonable match to the trend in the chloride distribution in the Upper Floridan aquifer inferred from field measurements of specific conductance made during 2000, 2002, 2003, and 2004. The model was modified to simulate solute transport by allowing saltwater to enter the system through localized areas near the northern end of Hilton Head Island, at Pinckney Island, and near the Colleton River, and was calibrated to match chloride concentrations inferred from field measurements of specific conductance. This simulation is called the 'Base Case.'

  9. Spatial and temporal Brook Trout density dynamics: Implications for conservation, management, and monitoring

    USGS Publications Warehouse

    Wagner, Tyler; Jefferson T. Deweber,; Jason Detar,; Kristine, David; John A. Sweka,

    2014-01-01

    Many potential stressors to aquatic environments operate over large spatial scales, prompting the need to assess and monitor both site-specific and regional dynamics of fish populations. We used hierarchical Bayesian models to evaluate the spatial and temporal variability in density and capture probability of age-1 and older Brook Trout Salvelinus fontinalis from three-pass removal data collected at 291 sites over a 37-year time period (1975–2011) in Pennsylvania streams. There was high between-year variability in density, with annual posterior means ranging from 2.1 to 10.2 fish/100 m2; however, there was no significant long-term linear trend. Brook Trout density was positively correlated with elevation and negatively correlated with percent developed land use in the network catchment. Probability of capture did not vary substantially across sites or years but was negatively correlated with mean stream width. Because of the low spatiotemporal variation in capture probability and a strong correlation between first-pass CPUE (catch/min) and three-pass removal density estimates, the use of an abundance index based on first-pass CPUE could represent a cost-effective alternative to conducting multiple-pass removal sampling for some Brook Trout monitoring and assessment objectives. Single-pass indices may be particularly relevant for monitoring objectives that do not require precise site-specific estimates, such as regional monitoring programs that are designed to detect long-term linear trends in density.

  10. Inter-Population Variability of Endosymbiont Densities in the Asian Citrus Psyllid (Diaphorina citri Kuwayama).

    PubMed

    Chu, Chia-Ching; Gill, Torrence A; Hoffmann, Mark; Pelz-Stelinski, Kirsten S

    2016-05-01

    The Asian citrus psyllid (Diaphorina citri Kuwayama) is an insect pest capable of transmitting Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening in North America. D. citri also harbors three endosymbionts, Wolbachia, Candidatus Carsonella ruddii, and Candidatus Profftella armatura, which may influence D. citri physiology and fitness. Although genomic researches on these bacteria have been conducted, much remains unclear regarding their ecology and inter-population variability in D. citri. The present work examined the densities of each endosymbiont in adult D. citri sampled from different populations using quantitative PCR. Under field conditions, the densities of all three endosymbionts positively correlated with each other, and they are associated with D. citri gender and locality. In addition, the infection density of CLas also varied across populations. Although an analysis pooling D. citri from different populations showed that CLas-infected individuals tended to have lower endosymbiont densities compared to uninfected individuals, the difference was not significant when the population was included as a factor in the analysis, suggesting that other population-specific factors may have stronger effects on endosymbiont densities. To determine whether there is a genetic basis to the density differences, endosymbiont densities between aged CLas-negative females of two D. citri populations reared under standardized laboratory conditions were compared. Results suggested that inter-population variability in Wolbachia infection density is associated with the genotypes of the endosymbiont or the host. Findings from this work could facilitate understanding of D. citri-bacterial associations that may benefit the development of approaches for managing citrus greening, such as prevention of CLas transmission.

  11. Dimensional stability of flakeboards as affected by board specific gravity and flake alignment

    Treesearch

    Robert L. Geimer

    1982-01-01

    The objective was to determine the relationship between the variables specific gravity (SG) and flake alignment and the dimensional stability properties of flakeboard. Boards manufactured without a density gradient were exposed to various levels of relative humidity and a vacuum-pressure soak (VPS) treatment. Changes in moisture content (MC), thickness swelling, and...

  12. A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.

    2015-09-08

    A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,more » as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.« less

  13. Phytoplankton abundance, dominance and coexistence in an eutrophic reservoir in the state of Pernambuco, Northeast Brazil.

    PubMed

    Lira, Giulliari A S T; Araújo, Elcida L; Bittencourt-Oliveira, Maria Do Carmo; Moura, Ariadne N

    2011-12-01

    The present study reports the phytoplankton abundance, dominance and co-existence relationships in the eutrophic Carpina reservoir, Pernambuco, Brazil. Sampling was carried out at six different depths bimonthly at a single reservoir spanning two climatic periods: dry season (January, September, and November 2006) and rainy season (March, May, and July 2006). Density, abundance, dominance, specific diversity and equitability of the community were determined, along with chlorophyll a, and physical and chemical variables of the environment. Eight species were considered abundant, and their densities corresponded to more than 90% of the total phytoplankton community quantified. Cyanobacteria represented more than 80% of this density. Cylindrospermopsis raciborskii was the only dominant taxon in the dry season, and was co-dominant in the rainy season. C. raciborskii, Planktothrix agardhii and Geitlerinema amphibium had the greatest densities and lowest vertical variation coefficients. The statistical analysis indicated relationships with vertical and seasonal variations in the phytoplankton community and the following variables: total dissolved solids, water temperature, electrical conductivity and pH. The changes in the environmental variables were discrete and regulated by the establishment of precipitation however, they were able to promote vertical and seasonal instability in the structure of the phytoplankton community.

  14. Spheromak reactor-design study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Les, J.M.

    1981-06-30

    A general overview of spheromak reactor characteristics, such as MHD stability, start up, and plasma geometry is presented. In addition, comparisons are made between spheromaks, tokamaks and field reversed mirrors. The computer code Sphero is also discussed. Sphero is a zero dimensional time independent transport code that uses particle confinement times and profile parameters as input since they are not known with certainty at the present time. More specifically, Sphero numerically solves a given set of transport equations whose solutions include such variables as fuel ion (deuterium and tritium) density, electron density, alpha particle density and ion, electron temperatures.

  15. Egg buoyancy variability in local populations of Atlantic cod (Gadus morhua).

    PubMed

    Jung, Kyung-Mi; Folkvord, Arild; Kjesbu, Olav Sigurd; Agnalt, Ann Lisbeth; Thorsen, Anders; Sundby, Svein

    2012-01-01

    Previous studies have found strong evidences for Atlantic cod ( Gadus morhua ) egg retention in fjords, which are caused by the combination of vertical salinity structure, estuarine circulation, and egg specific gravity, supporting small-scaled geographical differentiations of local populations. Here, we assess the variability in egg specific gravity for selected local populations of this species, that is, two fjord-spawning populations and one coastal-spawning population from Northern Norway (66-71°N/10-25°E). Eggs were naturally spawned by raised broodstocks (March to April 2009), and egg specific gravity was measured by a density-gradient column. The phenotype of egg specific gravity was similar among the three local populations. However, the associated variability was greater at the individual level than at the population level. The noted gradual decrease in specific gravity from gastrulation to hatching with an increase just before hatching could be a generic pattern in pelagic marine fish eggs. This study provides needed input to adequately understand and model fish egg dispersal.

  16. Low genetic variability, female-biased dispersal and high movement rates in an urban population of Eurasian badgers Meles meles.

    PubMed

    Reeve, John D; Frantz, Alain C; Dawson, Deborah A; Burke, Terry; Roper, Timothy J

    2008-09-01

    1. Urban and rural populations of animals can differ in their behaviour, both in order to meet their ecological requirements and due to the constraints imposed by different environments. The study of urban populations can therefore offer useful insights into the behavioural flexibility of a species as a whole, as well as indicating how the species in question adapts to a specifically urban environment. 2. The genetic structure of a population can provide information about social structure and movement patterns that is difficult to obtain by other means. Using non-invasively collected hair samples, we estimated the population size of Eurasian badgers Meles meles in the city of Brighton, England, and calculated population-specific parameters of genetic variability and sex-specific rates of outbreeding and dispersal. 3. Population density was high in the context of badger densities reported throughout their range. This was due to a high density of social groups rather than large numbers of individuals per group. 4. The allelic richness of the population was low compared with other British populations. However, the rate of extra-group paternity and the relatively frequent (mainly temporary) intergroup movements suggest that, on a local scale, the population was outbred. Although members of both sexes visited other groups, there was a trend for more females to make intergroup movements. 5. The results reveal that urban badgers can achieve high densities and suggest that while some population parameters are similar between urban and rural populations, the frequency of intergroup movements is higher among urban badgers. In a wider context, these results demonstrate the ability of non-invasive genetic sampling to provide information about the population density, social structure and behaviour of urban wildlife.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar; McCulloch, Richard Chet James

    In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the mostmore » improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.« less

  18. Distributions of eight meteorological variables at Cape Kennedy, Florida and Vandenberg Air Force Base, California

    NASA Technical Reports Server (NTRS)

    Graves, M. E.; King, R. L.; Brown, S. C.

    1973-01-01

    Extreme values, median values, and nine percentile values are tabulated for eight meteorological variables at Cape Kennedy, Florida and at Vandenberg Air Force Base, California. The variables are temperature, relative humidity, station pressure, water vapor pressure, water vapor mixing ratio, density, and enthalpy. For each month eight hours are tabulated, namely, 0100, 0400, 0700, 1000, 1300, 1600, 1900, and 2200 local time. These statistics are intended for general use for the space shuttle design trade-off analysis and are not to be used for specific design values.

  19. A reagent strip for measuring the specific gravity of urine.

    PubMed

    Burkhardt, A E; Johnston, K G; Waszak, C E; Jackson, C E; Shafer, S R

    1982-10-01

    A solid-phase reagent for determination of urinary specific gravity (relative density) is described. This reagent strip, similar to others in the "N-Multistix" series (Ames), contains a polyacid whose acidity is sensitive to the ionic concentration in the urine in which it is immersed. As the acidity of the polyacid changes, pH changes are detected by a pH indicator within the reagent strip. In comparison studies, 84.4% of relative densities as measured with these reagent strips were within 0.005 of the corresponding results with a total-solids meter, and 89.9% were within 0.005 of the corresponding urinometer results. Adding a correction of +0.005 to the reagent-strip results for urines with high pH increased the percentage of results within 0.005 of the comparison method to 90.7% (TS meter) and 92.9% (urinometer). Lot-to-lot variability and reader-to-reader variability were both low. Reagent strip results are not affected by glucose, may be increased by albumin, and correlate with urea concentrations.

  20. Inadequate child supervision: The role of alcohol outlet density, parent drinking behaviors, and social support

    PubMed Central

    Freisthler, Bridget; Johnson-Motoyama, Michelle; Kepple, Nancy J.

    2014-01-01

    Supervisory neglect, or the failure of a caregiver to appropriately supervise a child, is one of the predominant types of neglectful behaviors, with alcohol use being considered a key antecedent to inadequate supervision of children. The current study builds on previous work by examining the role of parental drinking and alcohol outlet densities while controlling for caregiver and child characteristics. Data were obtained from 3,023 participants via a telephone survey from 50 cities throughout California. The telephone survey included items on neglectful parenting practices, drinking behaviors, and socio-demographic characteristics. Densities of alcohol outlets were measured for each of the 202 zip codes in the study. Multilevel Bernoulli models were used to analyze the relationship between four supervisory neglect parenting practices and individual-level and zip code-level variables. In our study, heavy drinking was only significantly related to one of our four outcome variables (leaving a child where he or she may not be safe). The density of on premise alcohol outlets was positively related to leaving a child home alone when an adult should be present. This study demonstrates that discrete relationships exist between alcohol related variables, social support, and specific supervisory neglect subtypes at the ecological and individual levels. PMID:25061256

  1. Mixed geographically weighted regression (MGWR) model with weighted adaptive bi-square for case of dengue hemorrhagic fever (DHF) in Surakarta

    NASA Astrophysics Data System (ADS)

    Astuti, H. N.; Saputro, D. R. S.; Susanti, Y.

    2017-06-01

    MGWR model is combination of linear regression model and geographically weighted regression (GWR) model, therefore, MGWR model could produce parameter estimation that had global parameter estimation, and other parameter that had local parameter in accordance with its observation location. The linkage between locations of the observations expressed in specific weighting that is adaptive bi-square. In this research, we applied MGWR model with weighted adaptive bi-square for case of DHF in Surakarta based on 10 factors (variables) that is supposed to influence the number of people with DHF. The observation unit in the research is 51 urban villages and the variables are number of inhabitants, number of houses, house index, many public places, number of healthy homes, number of Posyandu, area width, level population density, welfare of the family, and high-region. Based on this research, we obtained 51 MGWR models. The MGWR model were divided into 4 groups with significant variable is house index as a global variable, an area width as a local variable and the remaining variables vary in each. Global variables are variables that significantly affect all locations, while local variables are variables that significantly affect a specific location.

  2. Mesoscale density variability in the mesosphere and thermosphere: Effects of vertical flow accelerations

    NASA Technical Reports Server (NTRS)

    Revelle, D. O.

    1987-01-01

    A mechanistic one dimensional numerical (iteration) model was developed which can be used to simulate specific types of mesoscale atmospheric density (and pressure) variability in the mesosphere and the thermosphere, namely those due to waves and those due to vertical flow accelerations. The model was developed with the idea that it could be used as a supplement to the TGCMs (thermospheric general circulation models) since such models have a very limited ability to model phenomena on small spatial scales. The simplest case to consider was the integration upward through a time averaged, height independent, horizontally divergent flow field. Vertical winds were initialized at the lower boundary using the Ekman pumping theory over flat terrain. The results of the computations are summarized.

  3. Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration

    NASA Astrophysics Data System (ADS)

    Hassler, Sibylle; Markus, Weiler; Theresa, Blume

    2017-04-01

    Transpiration is a key process in the hydrological cycle and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions as well as for improving the parameterisation of hydrological and soil-vegetation-atmosphere transfer models. For individual trees, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status control sap flow amounts of individual trees. Within forest stands, properties such as species composition, basal area or stand density additionally affect sap flow, for example via competition mechanisms. Finally, sap flow patterns might also be influenced by landscape-scale characteristics such as geology, slope position or aspect because they affect water and energy availability; however, little is known about the dynamic interplay of these controls. We studied the relative importance of various tree-, stand- and site-specific characteristics with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites spread over a 290 km2-catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we modelled the daily sap velocities of these 61 trees and determined the importance of the different predictors. Results indicate that a combination of tree-, stand- and site-specific factors controls sap velocity patterns in the landscape, namely tree species, tree diameter, the stand density, geology and aspect. Compared to these predictors, spatial variability of atmospheric demand and soil moisture explains only a small fraction of the variability in the daily datasets. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, are correlated to the temporal dynamics of potential evaporation. Thus, transpiration estimates at the landscape scale would benefit from not only considering hydro-meteorological drivers, but also including tree, stand and site characteristics in order to improve the spatial representation of transpiration for hydrological and soil-vegetation-atmosphere transfer models.

  4. The role of density dependence in growth patterns of ceded territory walleye populations of northern Wisconsin: Effects of changing management regimes

    USGS Publications Warehouse

    Sass, G.G.; Hewett, S.W.; Beard, T.D.; Fayram, A.H.; Kitchell, J.F.

    2004-01-01

    We assessed density-related changes in growth of walleye Sander vitreus in the ceded territory of northern Wisconsin from 1977 to 1999. We used asymptotic length (Lz), growth rate near t0 (??), and body condition as measures of walleye growth to determine the relationship between growth and density. Among lakes, there was weak evidence of density-dependent growth: adult density explained only 0-6% of the variability in the growth metrics. Within lakes, growth was density dependent. Lz, ??, and body condition of walleyes changing with density for 69, 28, and 62% of the populations examined, respectively. Our results suggest that walleye growth was density dependent within individual lakes. However, growth was not coherently density dependent among lakes, which was possibly due to inherent differences in the productivity, surface area, forage base, landscape position, species composition, and management regime of lakes in the ceded territory. Densities of adult walleyes averaged 8.3 fish/ha and did not change significantly during 1990-1999. Mean Lz and body condition of walleyes were signilicantly higher before 1990 than after 1990, which may indicate an increase in density due to changes in management regimes. The observed growth changes do not appear to be a consequence of the statewide 15-in minimum size limit adopted in 1990 but rather a response to the treaty rights management regime. We conclude that walleye growth has the potential to predict regional-scale adult walleye densities if lake-specific variables are included in a model to account for regional-scale differences among walleye populations and lakes.

  5. Hydrologic controls on basin-scale distribution of benthic macroinvertebrates

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Ceola, S.; Singer, G. A.; Battin, T. J.; Montanari, A.; Rinaldo, A.

    2013-12-01

    The presentation deals with the role of streamflow variability on basin-scale distributions of benthic macroinvertebrates. Specifically, we present a probabilistic analysis of the impacts of the variability along the river network of relevant hydraulic variables on the density of benthic macroinvertebrate species. The relevance of this work is based on the implications of the predictability of macroinvertebrate patterns within a catchment on fluvial ecosystem health, being macroinvertebrates commonly used as sensitive indicators, and on the effects of anthropogenic activity. The analytical tools presented here outline a novel procedure of general nature aiming at a spatially-explicit quantitative assessment of how near-bed flow variability affects benthic macroinvertebrate abundance. Moving from the analytical characterization of the at-a-site probability distribution functions (pdfs) of streamflow and bottom shear stress, a spatial extension to a whole river network is performed aiming at the definition of spatial maps of streamflow and bottom shear stress. Then, bottom shear stress pdf, coupled with habitat suitability curves (e.g., empirical relations between species density and bottom shear stress) derived from field studies are used to produce maps of macroinvertebrate suitability to shear stress conditions. Thus, moving from measured hydrologic conditions, possible effects of river streamflow alterations on macroinvertebrate densities may be fairly assessed. We apply this framework to an Austrian river network, used as benchmark for the analysis, for which rainfall and streamflow time-series and river network hydraulic properties and macroinvertebrate density data are available. A comparison between observed vs "modeled" species' density in three locations along the examined river network is also presented. Although the proposed approach focuses on a single controlling factor, it shows important implications with water resources management and fluvial ecosystem protection.

  6. The rotating movement of three immiscible fluids - A benchmark problem

    USGS Publications Warehouse

    Bakker, M.; Oude, Essink G.H.P.; Langevin, C.D.

    2004-01-01

    A benchmark problem involving the rotating movement of three immiscible fluids is proposed for verifying the density-dependent flow component of groundwater flow codes. The problem consists of a two-dimensional strip in the vertical plane filled with three fluids of different densities separated by interfaces. Initially, the interfaces between the fluids make a 45??angle with the horizontal. Over time, the fluids rotate to the stable position whereby the interfaces are horizontal; all flow is caused by density differences. Two cases of the problem are presented, one resulting in a symmetric flow field and one resulting in an asymmetric flow field. An exact analytical solution for the initial flow field is presented by application of the vortex theory and complex variables. Numerical results are obtained using three variable-density groundwater flow codes (SWI, MOCDENS3D, and SEAWAT). Initial horizontal velocities of the interfaces, as simulated by the three codes, compare well with the exact solution. The three codes are used to simulate the positions of the interfaces at two times; the three codes produce nearly identical results. The agreement between the results is evidence that the specific rotational behavior predicted by the models is correct. It also shows that the proposed problem may be used to benchmark variable-density codes. It is concluded that the three models can be used to model accurately the movement of interfaces between immiscible fluids, and have little or no numerical dispersion. ?? 2003 Elsevier B.V. All rights reserved.

  7. Seasonal variability of rocky reef fish assemblages: Detecting functional and structural changes due to fishing effects

    NASA Astrophysics Data System (ADS)

    Henriques, Sofia; Pais, Miguel Pessanha; Costa, Maria José; Cabral, Henrique Nogueira

    2013-05-01

    The present study analyzed the effects of seasonal variation on the stability of fish-based metrics and their capability to detect changes in fish assemblages, which is yet poorly understood despite the general idea that guilds are more resilient to natural variability than species abundances. Three zones subject to different levels of fishing pressure inside the Arrábida Marine Protected Area (MPA) were sampled seasonally. The results showed differences between warm (summer and autumn) and cold (winter and spring) seasons, with the autumn clearly standing out. In general, the values of the metrics density of juveniles, density of invertebrate feeders and density of omnivores increased in warm seasons, which can be attributed to differences in recruitment patterns, spawning migrations and feeding activity among seasons. The density of generalist/opportunistic individuals was sensitive to the effect of fishing, with higher values at zones with the lowest level of protection, while the density of individuals with high commercial value only responded to fishing in the autumn, due to a cumulative result of both juveniles and adults abundances during this season. Overall, this study showed that seasonal variability affects structural and functional features of the fish assemblage and that might influence the detection of changes as a result of anthropogenic pressures. The choice of a specific season, during warm sea conditions after the spawning period (July-October), seems to be more adequate to assess changes on rocky-reef fish assemblages.

  8. FUSION++: A New Data Assimilative Model for Electron Density Forecasting

    NASA Astrophysics Data System (ADS)

    Bust, G. S.; Comberiate, J.; Paxton, L. J.; Kelly, M.; Datta-Barua, S.

    2014-12-01

    There is a continuing need within the operational space weather community, both civilian and military, for accurate, robust data assimilative specifications and forecasts of the global electron density field, as well as derived RF application product specifications and forecasts obtained from the electron density field. The spatial scales of interest range from a hundred to a few thousand kilometers horizontally (synoptic large scale structuring) and meters to kilometers (small scale structuring that cause scintillations). RF space weather applications affected by electron density variability on these scales include navigation, communication and geo-location of RF frequencies ranging from 100's of Hz to GHz. For many of these applications, the necessary forecast time periods range from nowcasts to 1-3 hours. For more "mission planning" applications, necessary forecast times can range from hours to days. In this paper we present a new ionosphere-thermosphere (IT) specification and forecast model being developed at JHU/APL based upon the well-known data assimilation algorithms Ionospheric Data Assimilation Four Dimensional (IDA4D) and Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE). This new forecast model, "Forward Update Simple IONosphere model Plus IDA4D Plus EMPIRE (FUSION++), ingests data from observations related to electron density, winds, electric fields and neutral composition and provides improved specification and forecast of electron density. In addition, the new model provides improved specification of winds, electric fields and composition. We will present a short overview and derivation of the methodology behind FUSION++, some preliminary results using real observational sources, example derived RF application products such as HF bi-static propagation, and initial comparisons with independent data sources for validation.

  9. Variable dual-frequency electrostatic wave launcher for plasma applications.

    PubMed

    Jorns, Benjamin; Sorenson, Robert; Choueiri, Edgar

    2011-12-01

    A variable tuning system is presented for launching two electrostatic waves concurrently in a magnetized plasma. The purpose of this system is to satisfy the wave launching requirements for plasma applications where maximal power must be coupled into two carefully tuned electrostatic waves while minimizing erosion to the launching antenna. Two parallel LC traps with fixed inductors and variable capacitors are used to provide an impedance match between a two-wave source and a loop antenna placed outside the plasma. Equivalent circuit analysis is then employed to derive an analytical expression for the normalized, average magnetic flux density produced by the antenna in this system as a function of capacitance and frequency. It is found with this metric that the wave launcher can couple to electrostatic modes at two variable frequencies concurrently while attenuating noise from the source signal at undesired frequencies. An example based on an experiment for plasma heating with two electrostatic waves is used to demonstrate a procedure for tailoring the wave launcher to accommodate the frequency range and flux densities of a specific two-wave application. This example is also used to illustrate a method based on averaging over wave frequencies for evaluating the overall efficacy of the system. The wave launcher is shown to be particularly effective for the illustrative example--generating magnetic flux densities in excess of 50% of the ideal case at two variable frequencies concurrently--with a high adaptability to a number of plasma dynamics and heating applications.

  10. Self-contained filtered density function

    DOE PAGES

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope; ...

    2017-09-18

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  11. Self-contained filtered density function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  12. Self-contained filtered density function

    NASA Astrophysics Data System (ADS)

    Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.

    2017-09-01

    The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  13. Human influence on California fire regimes.

    PubMed

    Syphard, Alexandra D; Radeloff, Volker C; Keeley, Jon E; Hawbaker, Todd J; Clayton, Murray K; Stewart, Susan I; Hammer, Roger B

    2007-07-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the spatial arrangement of ignitions and fuels on the landscape, in addition to nonlinear relationships, will be important to fire managers and conservation planners because fire risk may be related to specific levels of housing density that can be accounted for in land use planning. With more fires occurring in close proximity to human infrastructure, there may also be devastating ecological impacts if development continues to grow farther into wildland vegetation.

  14. Human influence on California fire regimes

    USGS Publications Warehouse

    Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B.

    2007-01-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the spatial arrangement of ignitions and fuels on the landscape, in addition to nonlinear relationships, will be important to fire managers and conservation planners because fire risk may be related to specific levels of housing density that can be accounted for in land use planning. With more fires occurring in close proximity to human infrastructure, there may also be devastating ecological impacts if development continues to grow farther into wildland vegetation. ?? 2007 by the Ecological Society of America.

  15. Multicollinearity in associations between multiple environmental features and body weight and abdominal fat: using matching techniques to assess whether the associations are separable.

    PubMed

    Leal, Cinira; Bean, Kathy; Thomas, Frédérique; Chaix, Basile

    2012-06-01

    Because of the strong correlations among neighborhoods' characteristics, it is not clear whether the associations of specific environmental exposures (e.g., densities of physical features and services) with obesity can be disentangled. Using data from the RECORD (Residential Environment and Coronary Heart Disease) Cohort Study (Paris, France, 2007-2008), the authors investigated whether neighborhood characteristics related to the sociodemographic, physical, service-related, and social-interactional environments were associated with body mass index and waist circumference. The authors developed an original neighborhood characteristic-matching technique (analyses within pairs of participants similarly exposed to an environmental variable) to assess whether or not these associations could be disentangled. After adjustment for individual/neighborhood socioeconomic variables, body mass index/waist circumference was negatively associated with characteristics of the physical/service environments reflecting higher densities (e.g., proportion of built surface, densities of shops selling fruits/vegetables, and restaurants). Multiple adjustment models and the neighborhood characteristic-matching technique were unable to identify which of these neighborhood variables were driving the associations because of high correlations between the environmental variables. Overall, beyond the socioeconomic environment, the physical and service environments may be associated with weight status, but it is difficult to disentangle the effects of strongly correlated environmental dimensions, even if they imply different causal mechanisms and interventions.

  16. Nonuniversality of density and disorder in jammed sphere packings

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Stillinger, Frank H.; Torquato, Salvatore

    2011-01-01

    We show for the first time that collectively jammed disordered packings of three-dimensional monodisperse frictionless hard spheres can be produced and tuned using a novel numerical protocol with packing density ϕ as low as 0.6. This is well below the value of 0.64 associated with the maximally random jammed state and entirely unrelated to the ill-defined "random loose packing" state density. Specifically, collectively jammed packings are generated with a very narrow distribution centered at any density ϕ over a wide density range ϕ ɛ(0.6,0.740 48…) with variable disorder. Our results support the view that there is no universal jamming point that is distinguishable based on the packing density and frequency of occurrence. Our jammed packings are mapped onto a density-order-metric plane, which provides a broader characterization of packings than density alone. Other packing characteristics, such as the pair correlation function, average contact number, and fraction of rattlers are quantified and discussed.

  17. On the Origins of the Intercorrelations Between Solar Wind Variables

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.

    2018-01-01

    It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.

  18. Data basic to the engineering of reconstituted flakeboard

    Treesearch

    Robert L. Geimer

    1979-01-01

    Flakeboards made with uniform densities throughout their thickness and different degrees of flake alignment were used to establish relationships between bending, tension, and compression values of modulus of elasticity or modulus of rupture (or stress to maximum load) and the variables of specific gravity and flake alignment. An equation using sonic velocity as an...

  19. A high-resolution frequency variable experimental setup for studying ferrofluids used in magnetic hyperthermia.

    PubMed

    Mazon, E E; Villa-Martínez, E; Hernández-Sámano, A; Córdova-Fraga, T; Ibarra-Sánchez, J J; Calleja, H A; Leyva Cruz, J A; Barrera, A; Estrada, J C; Paz, J A; Quintero, L H; Cano, M E

    2017-08-01

    A scanning system for specific absorption rate of ferrofluids with superparamagnetic nanoparticles is presented in this study. The system contains an induction heating device designed and built with a resonant inverter in order to generate magnetic field amplitudes up to 38 mT, over the frequency band 180-525 kHz. Its resonant circuit involves a variable capacitor with 1 nF of capacitance steps to easily select the desired frequency, reaching from 0.3 kHz/nF up to 5 kHz/nF of resolution. The device performance is characterized in order to compare with the theoretical predictions of frequency and amplitude, showing a good agreement with the resonant inverters theory. Additionally, the setup is tested using a synthetic iron oxide with 10 ± 1 nm diameter suspended in liquid glycerol, with concentrations at 1%. Meanwhile, the temperature rise is measured to determine the specific absorption rate and calculate the dissipated power density for each f. This device is a suitable alternative to studying ferrofluids and analyzes the dependence of the power absorption density with the magnetic field intensity and frequency.

  20. The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE).

    PubMed

    Szczepankiewicz, Filip; van Westen, Danielle; Englund, Elisabet; Westin, Carl-Fredrik; Ståhlberg, Freddy; Lätt, Jimmy; Sundgren, Pia C; Nilsson, Markus

    2016-11-15

    The structural heterogeneity of tumor tissue can be probed by diffusion MRI (dMRI) in terms of the variance of apparent diffusivities within a voxel. However, the link between the diffusional variance and the tissue heterogeneity is not well-established. To investigate this link we test the hypothesis that diffusional variance, caused by microscopic anisotropy and isotropic heterogeneity, is associated with variable cell eccentricity and cell density in brain tumors. We performed dMRI using a novel encoding scheme for diffusional variance decomposition (DIVIDE) in 7 meningiomas and 8 gliomas prior to surgery. The diffusional variance was quantified from dMRI in terms of the total mean kurtosis (MK T ), and DIVIDE was used to decompose MK T into components caused by microscopic anisotropy (MK A ) and isotropic heterogeneity (MK I ). Diffusion anisotropy was evaluated in terms of the fractional anisotropy (FA) and microscopic fractional anisotropy (μFA). Quantitative microscopy was performed on the excised tumor tissue, where structural anisotropy and cell density were quantified by structure tensor analysis and cell nuclei segmentation, respectively. In order to validate the DIVIDE parameters they were correlated to the corresponding parameters derived from microscopy. We found an excellent agreement between the DIVIDE parameters and corresponding microscopy parameters; MK A correlated with cell eccentricity (r=0.95, p<10 -7 ) and MK I with the cell density variance (r=0.83, p<10 -3 ). The diffusion anisotropy correlated with structure tensor anisotropy on the voxel-scale (FA, r=0.80, p<10 -3 ) and microscopic scale (μFA, r=0.93, p<10 -6 ). A multiple regression analysis showed that the conventional MK T parameter reflects both variable cell eccentricity and cell density, and therefore lacks specificity in terms of microstructure characteristics. However, specificity was obtained by decomposing the two contributions; MK A was associated only to cell eccentricity, and MK I only to cell density variance. The variance in meningiomas was caused primarily by microscopic anisotropy (mean±s.d.) MK A =1.11±0.33 vs MK I =0.44±0.20 (p<10 -3 ), whereas in the gliomas, it was mostly caused by isotropic heterogeneity MK I =0.57±0.30 vs MK A =0.26±0.11 (p<0.05). In conclusion, DIVIDE allows non-invasive mapping of parameters that reflect variable cell eccentricity and density. These results constitute convincing evidence that a link exists between specific aspects of tissue heterogeneity and parameters from dMRI. Decomposing effects of microscopic anisotropy and isotropic heterogeneity facilitates an improved interpretation of tumor heterogeneity as well as diffusion anisotropy on both the microscopic and macroscopic scale. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Response of fish communities to cropland density and natural environmental setting in the Eastern Highland Rim Ecoregion of the lower Tennessee River basin, Alabama and Tennessee, 1999

    USGS Publications Warehouse

    Powell, Jeffrey R.

    2003-01-01

    Response of fish communities to cropland density and natural environmental setting were evaluated at 20 streams in the Eastern Highland Rim Ecoregion of the lower Tennessee River Basin during the spring of 1999. Sites were selected to represent a gradient of cropland densities in basins draining about 30 to 100 square miles. Fish communities were sampled by using a combination of seining and electrofishing techniques. A total of 10,550 individual fish, representing 63 species and 15 families, were collected during the study and included the families Cyprinidae (minnows), 18 species; Percidae (perch and darters), 12 species; and Centrarchidae (sunfish), 12 species. Assessments of environmental characteristics, including instream and terrestrial data and land-cover data, were conducted for each site. Instream measurements, such as depth, velocity, substrate type, and embeddedness, were recorded at 3 points across 11 equidistant transects at each site. Terrestrial measurements, such as bank angle, canopy angle, and canopy closure percentage, were made along the stream bank and midchannel areas. Water-quality data collected included pH, dissolved oxygen, specific conductivity, water temperature, nutrients, and fecal-indicator bacteria. Substrate embeddedness was the only variable correlated with both cropland density and fish communities (as characterized by ordination scores and several community level metrics). Multivariate and nonparametric correlation techniques were used to evaluate fish-community responses to physical and chemical factors associated with a cropland-density gradient, where the gradient was defined as the percentage of the basin in row crops. Principal component analysis and correspondence analysis suggest that the Eastern Highland Rim Ecoregion is composed of three subgroups of sites based on inherent physical and biological differences. Data for the subgroup containing the largest number of sites were then re-analyzed, revealing that several environmental variables, such as nutrient concentrations, stream gradient, bankfull width, and substrate embeddedness, were related to cropland density; however, only a subset of those variables (substrate embeddedness, elevation, and streamflow) were related to fish communities. Results from this analysis suggest that although many water-quality and habitat variables are covariant with cropland density, most of the variables do not significantly affect fish-community composition; instead, fish communities primarily respond to the cumulative effects of sedimentation.

  2. Radical Prostatectomy Findings in Men on Active Surveillance: Variable Findings Dependent on Reason for Surgery and Entry Criteria.

    PubMed

    Matoso, Andres; Hassan, Oudai; Petrozzino, Florencia; Rao, B Vishal; Carter, H Ballentine; Epstein, Jonathan I

    2015-09-01

    We studied adverse radical prostatectomy findings in men on an active surveillance program with different entry and exit criteria. The study included 80 men with biopsy progression, 33 who opted out for personal reasons and 24 who initially did not meet entry criteria mainly due to increased prostate specific antigen density. Of men who opted out 78.8% had a higher Gleason score of 6 than men who progressed on biopsy (46.2%, p = 0.002) and men with high prostate specific antigen density (45.8%, p = 0.02). Men with high prostate specific antigen density had less organ confined disease than the group that opted out (p <0.006) and a trend compared to the biopsy progression group (p = 0.07). Mean dominant tumor volume was lower in men who opted out than in those with biopsy progression (0.56 vs 1.1 cc, p = 0.03). The incidence of insignificant cancer was higher in men who opted out (48.4%) than in those with biopsy progression (28.4%, p = 0.05) and those with high prostate specific antigen density (20.8%, p = 0.035). There was a higher incidence of anterior tumor in men with high prostate specific antigen density (55.0%) than with biopsy progression (21.3%, p = 0.009) and a trend compared to those who opted out (27.3%, p = 0.06). The majority of men with biopsy progression still had tumors with features of curable disease. Men who opted out without biopsy progression had even less adverse findings, which supports counseling men to stay on active surveillance while they meet followup criteria. Men with elevated prostate specific antigen density had more anterior tumors and less organ confined cancer, substantiating that the ideal patients for active surveillance are those who meet all entry criteria. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Prostate specific antigen and acinar density: a new dimension, the "Prostatocrit".

    PubMed

    Robinson, Simon; Laniado, Marc; Montgomery, Bruce

    2017-01-01

    Prostate-specific antigen densities have limited success in diagnosing prostate cancer. We emphasise the importance of the peripheral zone when considered with its cellular constituents, the "prostatocrit". Using zonal volumes and asymmetry of glandular acini, we generate a peripheral zone acinar volume and density. With the ratio to the whole gland, we can better predict high grade and all grade cancer. We can model the gland into its acinar and stromal elements. This new "prostatocrit" model could offer more accurate nomograms for biopsy. 674 patients underwent TRUS and biopsy. Whole gland and zonal volumes were recorded. We compared ratio and acinar volumes when added to a "clinic" model using traditional PSA density. Univariate logistic regression was used to find significant predictors for all and high grade cancer. Backwards multiple logistic regression was used to generate ROC curves comparing the new model to conventional density and PSA alone. Prediction of all grades of prostate cancer: significant variables revealed four significant "prostatocrit" parameters: log peripheral zone acinar density; peripheral zone acinar volume/whole gland acinar volume; peripheral zone acinar density/whole gland volume; peripheral zone acinar density. Acinar model (AUC 0.774), clinic model (AUC 0.745) (P=0.0105). Prediction of high grade prostate cancer: peripheral zone acinar density ("prostatocrit") was the only significant density predictor. Acinar model (AUC 0.811), clinic model (AUC 0.769) (P=0.0005). There is renewed use for ratio and "prostatocrit" density of the peripheral zone in predicting cancer. This outperforms all traditional density measurements. Copyright® by the International Brazilian Journal of Urology.

  4. Benthic invertebrate density, biomass, and instantaneous secondary production along a fifth-order human-impacted tropical river.

    PubMed

    Aguiar, Anna Carolina Fornero; Gücker, Björn; Brauns, Mario; Hille, Sandra; Boëchat, Iola Gonçalves

    2015-07-01

    The aim of this study was to assess land use effects on the density, biomass, and instantaneous secondary production (IP) of benthic invertebrates in a fifth-order tropical river. Invertebrates were sampled at 11 stations along the Rio das Mortes (upper Rio Grande, Southeast Brazil) in the dry and the rainy season 2010/2011. Invertebrates were counted, determined, and measured to estimate their density, biomass, and IP. Water chemical characteristics, sediment heterogeneity, and habitat structural integrity were assessed in parallel. Total invertebrate density, biomass, and IP were higher in the dry season than those in the rainy season, but did not differ significantly among sampling stations along the river. However, taxon-specific density, biomass, and IP differed similarly among sampling stations along the river and between seasons, suggesting that these metrics had the same bioindication potential. Variability in density, biomass, and IP was mainly explained by seasonality and the percentage of sandy sediment in the riverbed, and not directly by urban or agricultural land use. Our results suggest that the consistently high degradation status of the river, observed from its headwaters to mouth, weakened the response of the invertebrate community to specific land use impacts, so that only local habitat characteristics and seasonality exerted effects.

  5. Variable Density Effects in Stochastic Lagrangian Models for Turbulent Combustion

    DTIC Science & Technology

    2016-07-20

    PDF methods in dealing with chemical reaction and convection are preserved irrespective of density variation. Since the density variation in a typical...combustion process may be as large as factor of seven, including variable- density effects in PDF methods is of significance. Conventionally, the...strategy of modelling variable density flows in PDF methods is similar to that used for second-moment closure models (SMCM): models are developed based on

  6. Method of operating an oil shale kiln

    DOEpatents

    Reeves, Adam A.

    1978-05-23

    Continuously determining the bulk density of raw and retorted oil shale, the specific gravity of the raw oil shale and the richness of the raw oil shale provides accurate means to control process variables of the retorting of oil shale, predicting oil production, determining mining strategy, and aids in controlling shale placement in the kiln for the retorting.

  7. The macromolecular properties of blood-group-specific glycoproteins. Characterization of a series of fractions obtained by solvent fractionation

    PubMed Central

    Creeth, J. Michael; Bhaskar, K. Ramakrishnan; Donald, Alastair S. R.; Morgan, Walter T. J.

    1974-01-01

    1. The glycoprotein components of a human ovarian-cyst fluid were isolated by a solvent [95% (w/w) phenol]-extraction procedure; the phenol-insoluble water-soluble glycoprotein was further fractionated by (NH4)2SO4 and by ethanol to yield eight fractions. 2. The fractions were analysed in terms of amino acids, fucose, galactose, N-acetylglucosamine, N-acetylgalactosamine and sialic acid. Variations occurred, particularly in the proportion of peptide; these were partly correlated with varying extent of serological activity. 3. The fractions were characterized physicochemically in terms of buoyant density and degree of spreading in a density gradient, sedimentation velocity and molecular weight; their partial specific volumes and specific refraction increments were also determined. 4. The fractions showed wide variations in their sedimentation-velocity and density-gradient patterns, and gave evidence of pauci-dispersity in density. The fraction regarded as the most typical blood-group-specific glycoprotein sedimented as a single rapidly spreading peak and was of high molecular weight. 5. Significant correlations were observed between the physical properties of the glycoprotein fractions and the amount of their peptide component. The buoyant densities and sedimentation coefficients varied in a manner that suggested the existence of two families of glycoproteins. 6. It is suggested that variability in the extent of glycosylation, or in the degree of cross-linking, might account for the two families of glycoproteins, and that the extent of cross-linkage might also be a factor determining the solubility of these glycoproteins in hot saturated (NH4)2SO4. ImagesFig. 1.PLATE 1 PMID:4219280

  8. Environmental variability and population dynamics: Do European and North American ducks play by the same rules?

    USGS Publications Warehouse

    Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H.; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D.; Väänänen, Veli-Matti

    2016-01-01

    Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively “fast species” and governed by environmental variability) and diving (relatively “slow species” and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.

  9. Environmental variability and population dynamics: do European and North American ducks play by the same rules?

    PubMed

    Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D; Väänänen, Veli-Matti

    2016-10-01

    Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively "fast species" and governed by environmental variability) and diving (relatively "slow species" and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.

  10. Specification of ISS Plasma Environment Variability

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Neergaard, Linda F.; Bui, Them H.; Mikatarian, Ronald R.; Barsamian, H.; Koontz, Steven L.

    2004-01-01

    Quantifying spacecraft charging risks and associated hazards for the International Space Station (ISS) requires a plasma environment specification for the natural variability of ionospheric temperature (Te) and density (Ne). Empirical ionospheric specification and forecast models such as the International Reference Ionosphere (IRI) model typically only provide long term (seasonal) mean Te and Ne values for the low Earth orbit environment. This paper describes a statistical analysis of historical ionospheric low Earth orbit plasma measurements from the AE-C, AE-D, and DE-2 satellites used to derive a model of deviations of observed data values from IRI-2001 estimates of Ne, Te parameters for each data point to provide a statistical basis for modeling the deviations of the plasma environment from the IRI model output. Application of the deviation model with the IRI-2001 output yields a method for estimating extreme environments for the ISS spacecraft charging analysis.

  11. Testing the environmental Kuznets curve hypothesis with bird populations as habitat-specific environmental indicators: evidence from Canada.

    PubMed

    Lantz, Van; Martínez-Espiñeira, Roberto

    2008-04-01

    The traditional environmental Kuznets curve (EKC) hypothesis postulates that environmental degradation follows an inverted U-shaped relationship with gross domestic product (GDP) per capita. We tested the EKC hypothesis with bird populations in 5 different habitats as environmental quality indicators. Because birds are considered environmental goods, for them the EKC hypothesis would instead be associated with a U-shaped relationship between bird populations and GDP per capita. In keeping with the literature, we included other variables in the analysis-namely, human population density and time index variables (the latter variable captured the impact of persistent and exogenous climate and/or policy changes on bird populations over time). Using data from 9 Canadian provinces gathered over 37 years, we used a generalized least-squares regression for each bird habitat type, which accounted for the panel structure of the data, the cross-sectional dependence across provinces in the residuals, heteroskedasticity, and fixed- or random-effect specifications of the models. We found evidence that supports the EKC hypothesis for 3 of the 5 bird population habitat types. In addition, the relationship between human population density and the different bird populations varied, which emphasizes the complex nature of the impact that human populations have on the environment. The relationship between the time-index variable and the different bird populations also varied, which indicates there are other persistent and significant influences on bird populations over time. Overall our EKC results were consistent with those found for threatened bird species, indicating that economic prosperity does indeed act to benefit some bird populations.

  12. Maximum likelihood estimation for predicting the probability of obtaining variable shortleaf pine regeneration densities

    Treesearch

    Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin

    2003-01-01

    A logistic equation is the basis for a model that predicts the probability of obtaining regeneration at specified densities. The density of regeneration (trees/ha) for which an estimate of probability is desired can be specified by means of independent variables in the model. When estimating parameters, the dependent variable is set to 1 if the regeneration density (...

  13. Empirical relationships among atmospheric variables from rawinsonde and field data as surrogates for AVIRIS measurements: Estimation of regional land surface evapotranspiration

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Hoover, Gordon; Nolin, Anne; Alley, Ron; Margolis, Jack

    1992-01-01

    Empirical relationships between variables are ways of securing estimates of quantities difficult to measure by remote sensing methods. The use of empirical functions was explored between: (1) atmospheric column moisture abundance W (gm H2O/cm(sup 2) and surface absolute water vapor density rho(q-bar) (gm H2O/cm(sup 3), with rho density of moist air (gm/cm(sup 3), q-bar specific humidity (gm H2O/gm moist air), and (2) column abundance and surface moisture flux E (gm H2O/(cm(sup 2)sec)) to infer regional evapotranspiration from Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) water vapor mapping data. AVIRIS provides, via analysis of atmospheric water absorption features, estimates of column moisture abundance at very high mapping rate (at approximately 100 km(sup 2)/40 sec) over large areas at 20 m ground resolution.

  14. Spatio-Temporal Variability of Urban Heat Island and Urban Mobility

    NASA Astrophysics Data System (ADS)

    Kar, B.; Omitaomu, O.

    2017-12-01

    A 2016 report by the U.S. Census stated that while the rural areas cover 97% of the U.S. landmass, these areas house only 19.7% of the nation's population. Given that the U.S. coastal counties are home to more than 50% of the U.S. population, these urban areas are clustered along the coast that is susceptible to sea level rise induced impacts. In light of increasing climate variability and extreme events, it is pertinent to understand the Urban Heat Island (UHI) effect that results from increasing population density and mobility in the urban areas, and that contributes to increased energy consumption and temperature as well as unmitigated flooding events. For example, in Illinois, warmer summers contribute to heavy precipitation that overwhelms the region's drainage capacity. This study focuses on understanding the spatio-temporal variability of the relationship between population density and mobility distribution, and creation of UHI due to temperature change in selected cities across the U.S. This knowledge will help us understand the role of UHI in energy-water nexus in urban areas, specifically, energy consumption.

  15. Reassessment of the risk factors for biochemical recurrence in D'Amico intermediate-risk prostate cancer treated using radical prostatectomy.

    PubMed

    Narita, Shintaro; Mitsuzuka, Koji; Tsuchiya, Norihiko; Koie, Takuya; Kawamura, Sadafumi; Ohyama, Chikara; Tochigi, Tatsuo; Yamaguchi, Takuhiro; Arai, Yoichi; Habuchi, Tomonori

    2015-11-01

    To assess the risk factors for biochemical recurrence in D'Amico intermediate-risk prostate cancer patients treated using radical prostatectomy. We retrospectively reviewed the medical records of 1268 men with prostate cancer treated using radical prostatectomy without neoadjuvant therapy. The association between various risk factors and biochemical recurrence was then statistically evaluated. The Kaplan-Meier method, log-rank tests and Cox proportional hazards models were used for statistical analysis. In the intermediate-risk group, 96 patients (14.5%) experienced biochemical recurrence during a median follow up of 41 months. In the intermediate-risk group, preoperative prostate-specific antigen level, prostate volume and prostate-specific antigen density were significant preoperative risk factors for biochemical recurrence, whereas other factors including age, primary Gleason 4, clinical stage >T2 and percentage of positive biopsies were not. In multivariate analysis, higher preoperative prostate-specific antigen level and density, and a smaller prostate volume were independent risk factors for biochemical recurrence in the intermediate-risk group. Biochemical recurrence-free survival of patients in the intermediate-risk group with a higher prostate-specific antigen level and density (≥15 ng/mL, ≥0.6 ng/mL/cm(3), respectively), and lower prostate volume (≤10 mL) was comparable with that of high-risk group individuals (P = 0.632, 0.494 and 0.961, respectively). Preoperative prostate-specific antigen, prostate volume and prostate-specific antigen density are significant risk factors for biochemical recurrence in D'Amico intermediate-risk prostate cancer patients treated using radical prostatectomy. Using these variables, a subset of the intermediate-risk patients can be identified as having equivalent outcomes to high-risk patients. © 2015 The Japanese Urological Association.

  16. A geographic analysis of population density thresholds in the influenza pandemic of 1918-19.

    PubMed

    Chandra, Siddharth; Kassens-Noor, Eva; Kuljanin, Goran; Vertalka, Joshua

    2013-02-20

    Geographic variables play an important role in the study of epidemics. The role of one such variable, population density, in the spread of influenza is controversial. Prior studies have tested for such a role using arbitrary thresholds for population density above or below which places are hypothesized to have higher or lower mortality. The results of such studies are mixed. The objective of this study is to estimate, rather than assume, a threshold level of population density that separates low-density regions from high-density regions on the basis of population loss during an influenza pandemic. We study the case of the influenza pandemic of 1918-19 in India, where over 15 million people died in the short span of less than one year. Using data from six censuses for 199 districts of India (n=1194), the country with the largest number of deaths from the influenza of 1918-19, we use a sample-splitting method embedded within a population growth model that explicitly quantifies population loss from the pandemic to estimate a threshold level of population density that separates low-density districts from high-density districts. The results demonstrate a threshold level of population density of 175 people per square mile. A concurrent finding is that districts on the low side of the threshold experienced rates of population loss (3.72%) that were lower than districts on the high side of the threshold (4.69%). This paper introduces a useful analytic tool to the health geographic literature. It illustrates an application of the tool to demonstrate that it can be useful for pandemic awareness and preparedness efforts. Specifically, it estimates a level of population density above which policies to socially distance, redistribute or quarantine populations are likely to be more effective than they are for areas with population densities that lie below the threshold.

  17. A geographic analysis of population density thresholds in the influenza pandemic of 1918–19

    PubMed Central

    2013-01-01

    Background Geographic variables play an important role in the study of epidemics. The role of one such variable, population density, in the spread of influenza is controversial. Prior studies have tested for such a role using arbitrary thresholds for population density above or below which places are hypothesized to have higher or lower mortality. The results of such studies are mixed. The objective of this study is to estimate, rather than assume, a threshold level of population density that separates low-density regions from high-density regions on the basis of population loss during an influenza pandemic. We study the case of the influenza pandemic of 1918–19 in India, where over 15 million people died in the short span of less than one year. Methods Using data from six censuses for 199 districts of India (n=1194), the country with the largest number of deaths from the influenza of 1918–19, we use a sample-splitting method embedded within a population growth model that explicitly quantifies population loss from the pandemic to estimate a threshold level of population density that separates low-density districts from high-density districts. Results The results demonstrate a threshold level of population density of 175 people per square mile. A concurrent finding is that districts on the low side of the threshold experienced rates of population loss (3.72%) that were lower than districts on the high side of the threshold (4.69%). Conclusions This paper introduces a useful analytic tool to the health geographic literature. It illustrates an application of the tool to demonstrate that it can be useful for pandemic awareness and preparedness efforts. Specifically, it estimates a level of population density above which policies to socially distance, redistribute or quarantine populations are likely to be more effective than they are for areas with population densities that lie below the threshold. PMID:23425498

  18. Density regulation in Northeast Atlantic fish populations: Density dependence is stronger in recruitment than in somatic growth.

    PubMed

    Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko

    2018-05-01

    Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and catch composition, and therefore the benefits of maintaining fish populations at specific densities. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  19. Regional-scale brine migration along vertical pathways due to CO2 injection - Part 2: A simulated case study in the North German Basin

    NASA Astrophysics Data System (ADS)

    Kissinger, Alexander; Noack, Vera; Knopf, Stefan; Konrad, Wilfried; Scheer, Dirk; Class, Holger

    2017-06-01

    Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the hazards associated with the geological storage of CO2. Thus, in a site-specific risk assessment, models for predicting the fate of the displaced brine are required. Practical simulation of brine displacement involves decisions regarding the complexity of the model. The choice of an appropriate level of model complexity depends on multiple criteria: the target variable of interest, the relevant physical processes, the computational demand, the availability of data, and the data uncertainty. In this study, we set up a regional-scale geological model for a realistic (but not real) onshore site in the North German Basin with characteristic geological features for that region. A major aim of this work is to identify the relevant parameters controlling saltwater intrusion in a complex structural setting and to test the applicability of different model simplifications. The model that is used to identify relevant parameters fully couples flow in shallow freshwater aquifers and deep saline aquifers. This model also includes variable-density transport of salt and realistically incorporates surface boundary conditions with groundwater recharge. The complexity of this model is then reduced in several steps, by neglecting physical processes (two-phase flow near the injection well, variable-density flow) and by simplifying the complex geometry of the geological model. The results indicate that the initial salt distribution prior to the injection of CO2 is one of the key parameters controlling shallow aquifer salinization. However, determining the initial salt distribution involves large uncertainties in the regional-scale hydrogeological parameterization and requires complex and computationally demanding models (regional-scale variable-density salt transport). In order to evaluate strategies for minimizing leakage into shallow aquifers, other target variables can be considered, such as the volumetric leakage rate into shallow aquifers or the pressure buildup in the injection horizon. Our results show that simplified models, which neglect variable-density salt transport, can reach an acceptable agreement with more complex models.

  20. Correlation Between Bone Density and Instantaneous Torque at Implant Site Preparation: A Validation on Polyurethane Foam Blocks of a Device Assessing Density of Jawbones.

    PubMed

    Di Stefano, Danilo Alessio; Arosio, Paolo

    2016-01-01

    Bone density at implant placement sites is one of the key factors affecting implant primary stability, which is a determinant for implant osseointegration and rehabilitation success. Site-specific bone density assessment is, therefore, of paramount importance. Recently, an implant micromotor endowed with an instantaneous torque-measuring system has been introduced. The aim of this study was to assess the reliability of this system. Five blocks with different densities (0.16, 0.26, 0.33, 0.49, and 0.65 g/cm(3)) were used. A single trained operator measured the density of one of them (0.33 g/cm(3)), by means of five different devices (20 measurements/device). The five resulting datasets were analyzed through the analysis of variance (ANOVA) model to investigate interdevice variability. As differences were not significant (P = .41), the five devices were each assigned to a different operator, who collected 20 density measurements for each block, both under irrigation (I) and without irrigation (NI). Measurements were pooled and averaged for each block, and their correlation with the actual block-density values was investigated using linear regression analysis. The possible effect of irrigation on density measurement was additionally assessed. Different devices provided reproducible, homogenous results. No significant interoperator variability was observed. Within the physiologic range of densities (> 0.30 g/cm(3)), the linear regression analysis showed a significant linear correlation between the mean torque measurements and the actual bone densities under both drilling conditions (r = 0.990 [I], r = 0.999 [NI]). Calibration lines were drawn under both conditions. Values collected under irrigation were lower than those collected without irrigation at all densities. The NI/I mean torque ratio was shown to decrease linearly with density (r = 0.998). The mean error introduced by the device-operator system was less than 10% in the range of normal jawbone density. Measurements performed with the device were linearly correlated with the blocks' bone densities. The results validate the device as an objective intraoperative tool for bone-density assessment that may contribute to proper jawbone-density evaluation and implant-insertion planning.

  1. Density dependence in demography and dispersal generates fluctuating invasion speeds

    PubMed Central

    Li, Bingtuan; Miller, Tom E. X.

    2017-01-01

    Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating the highly variable nature of biological invasions, which often exhibit nonconstant spreading speeds, even in simple, controlled settings. Here, we explore endogenous density dependence as a mechanism for inducing variability in biological invasions with a set of population models that incorporate density dependence in demographic and dispersal parameters. We show that density dependence in demography at low population densities—i.e., an Allee effect—combined with spatiotemporal variability in population density behind the invasion front can produce fluctuations in spreading speed. The density fluctuations behind the front can arise from either overcompensatory population growth or density-dependent dispersal, both of which are common in nature. Our results show that simple rules can generate complex spread dynamics and highlight a source of variability in biological invasions that may aid in ecological forecasting. PMID:28442569

  2. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340; Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dualmore » descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.« less

  3. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  4. Energy density and variability in abundance of pigeon guillemot prey: Support for the quality-variability trade-off hypothesis

    USGS Publications Warehouse

    Litzow, Michael A.; Piatt, John F.; Abookire, Alisa A.; Robards, Martin D.

    2004-01-01

    1. The quality-variability trade-off hypothesis predicts that (i) energy density (kJ g-1) and spatial-temporal variability in abundance are positively correlated in nearshore marine fishes; and (ii) prey selection by a nearshore piscivore, the pigeon guillemot (Cepphus columba Pallas), is negatively affected by variability in abundance. 2. We tested these predictions with data from a 4-year study that measured fish abundance with beach seines and pigeon guillemot prey utilization with visual identification of chick meals. 3. The first prediction was supported. Pearson's correlation showed that fishes with higher energy density were more variable on seasonal (r = 0.71) and annual (r = 0.66) time scales. Higher energy density fishes were also more abundant overall (r = 0.85) and more patchy at a scale of 10s of km (r = 0.77). 4. Prey utilization by pigeon guillemots was strongly non-random. Relative preference, defined as the difference between log-ratio transformed proportions of individual prey taxa in chick diets and beach seine catches, was significantly different from zero for seven of the eight main prey categories. 5. The second prediction was also supported. We used principal component analysis (PCA) to summarize variability in correlated prey characteristics (energy density, availability and variability in abundance). Two PCA scores explained 32% of observed variability in pigeon guillemot prey utilization. Seasonal variability in abundance was negatively weighted by these PCA scores, providing evidence of risk-averse selection. Prey availability, energy density and km-scale variability in abundance were positively weighted. 6. Trophic interactions are known to create variability in resource distribution in other systems. We propose that links between resource quality and the strength of trophic interactions may produce resource quality-variability trade-offs.

  5. An Optimization Principle for Deriving Nonequilibrium Statistical Models of Hamiltonian Dynamics

    NASA Astrophysics Data System (ADS)

    Turkington, Bruce

    2013-08-01

    A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a vector of resolved variables, selected to describe the macroscopic state of the system, a family of quasi-equilibrium probability densities on phase space corresponding to the resolved variables is employed as a statistical model, and the evolution of the mean resolved vector is estimated by optimizing over paths of these densities. Specifically, a cost function is constructed to quantify the lack-of-fit to the microscopic dynamics of any feasible path of densities from the statistical model; it is an ensemble-averaged, weighted, squared-norm of the residual that results from submitting the path of densities to the Liouville equation. The path that minimizes the time integral of the cost function determines the best-fit evolution of the mean resolved vector. The closed reduced equations satisfied by the optimal path are derived by Hamilton-Jacobi theory. When expressed in terms of the macroscopic variables, these equations have the generic structure of governing equations for nonequilibrium thermodynamics. In particular, the value function for the optimization principle coincides with the dissipation potential that defines the relation between thermodynamic forces and fluxes. The adjustable closure parameters in the best-fit reduced equations depend explicitly on the arbitrary weights that enter into the lack-of-fit cost function. Two particular model reductions are outlined to illustrate the general method. In each example the set of weights in the optimization principle contracts into a single effective closure parameter.

  6. Effects of urban sprawl on obesity.

    PubMed

    Zhao, Zhenxiang; Kaestner, Robert

    2010-12-01

    In this paper, we examine the effect of changes in population density-urban sprawl-between 1970 and 2000 on BMI and obesity of residents in metropolitan areas in the U.S. We address the possible endogeneity of population density by using a two-step instrumental variables approach. We exploit the plausibly exogenous variation in population density caused by the expansion of the U.S. Interstate Highway System, which largely followed the original 1947 plan for the Interstate Highway System. We find a negative association between population density and obesity, and estimates are robust across a wide range of specifications. Estimates indicate that if the average metropolitan area had not experienced the decline in the proportion of population living in dense areas over the last 30 years, the rate of obesity would have been reduced by approximately 13%. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Age-structured gametocyte allocation links immunity to epidemiology in malaria parasites.

    PubMed

    Paul, Richard E; Bonnet, Sarah; Boudin, Christian; Tchuinkam, Timoleon; Robert, Vincent

    2007-09-12

    Despite a long history of attempts to model malaria epidemiology, the over-riding conclusion is that a detailed understanding of host-parasite interactions leading to immunity is required. It is still not known what governs the duration of an infection and how within-human parasite dynamics relate to malaria epidemiology. Immunity to Plasmodium falciparum develops slowly and requires repeated exposure to the parasite, which thus generates age-structure in the host-parasite interaction. An age-structured degree of immunity would present the parasite with humans of highly variable quality. Evolutionary theory suggests that natural selection will mould adaptive phenotypes that are more precise (less variant) in "high quality" habitats, where lifetime reproductive success is best. Variability in malaria parasite gametocyte density is predicted to be less variable in those age groups who best infect mosquitoes. Thus, the extent to which variation in gametocyte density is a simple parasite phenotype reflecting the complex within-host parasite dynamics is addressed. Gametocyte densities and corresponding infectiousness to mosquitoes from published data sets and studies in both rural and urban Cameroon are analysed. The mean and variation in gametocyte density according to age group are considered and compared with transmission success (proportion of mosquitoes infected). Across a wide range of settings endemic for malaria, the age group that infected most mosquitoes had the least variation in gametocyte density, i.e. there was a significant relationship between the variance rather than the mean gametocyte density and age-specific parasite transmission success. In these settings, the acquisition of immunity over time was evident as a decrease in asexual parasite densities with age. By contrast, in an urban setting, there were no such age-structured relationships either with variation in gametocyte density or asexual parasite density. Gametocyte production is seemingly predicted by evolutionary theory, insofar as a reproductive phenotype (gametocyte density) is most precisely expressed (i.e. is most invariant) in the most infectious human age group. This human age group would thus be expected to be the habitat most suitable for the parasite. Comprehension of the immuno-epidemiology of malaria, a requisite for any vaccine strategies, remains poor. Immunological characterization of the human population stratified by parasite gametocyte allocation would be a step forward in identifying the salient immunological pathways of what makes a human a good habitat.

  8. Specification of the ISS Plasma Environment Variability

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Neergaard, Linda F.; Bui, Them H.; Mikatarian, Ronald R.; Barsamian, H.; Koontz, Steven L.

    2002-01-01

    Quantifying the spacecraft charging risks and corresponding hazards for the International Space Station (ISS) requires a plasma environment specification describing the natural variability of ionospheric temperature (Te) and density (Ne). Empirical ionospheric specification and forecast models such as the International Reference Ionosphere (IRI) model typically only provide estimates of long term (seasonal) mean Te and Ne values for the low Earth orbit environment. Knowledge of the Te and Ne variability as well as the likelihood of extreme deviations from the mean values are required to estimate both the magnitude and frequency of occurrence of potentially hazardous spacecraft charging environments for a given ISS construction stage and flight configuration. This paper describes the statistical analysis of historical ionospheric low Earth orbit plasma measurements used to estimate Ne, Te variability in the ISS flight environment. The statistical variability analysis of Ne and Te enables calculation of the expected frequency of Occurrence of any particular values of Ne and Te, especially those that correspond to possibly hazardous spacecraft charging environments. The database used in the original analysis included measurements from the AE-C, AE-D, and DE-2 satellites. Recent work on the database has added additional satellites to the database and ground based incoherent scatter radar observations as well. Deviations of the data values from the IRI estimated Ne, Te parameters for each data point provide a statistical basis for modeling the deviations of the plasma environment from the IRI model output. This technique, while developed specifically for the Space Station analysis, can also be generalized to provide ionospheric plasma environment risk specification models for low Earth orbit over an altitude range of 200 km through approximately 1000 km.

  9. Double density dynamics: realizing a joint distribution of a physical system and a parameter system

    NASA Astrophysics Data System (ADS)

    Fukuda, Ikuo; Moritsugu, Kei

    2015-11-01

    To perform a variety of types of molecular dynamics simulations, we created a deterministic method termed ‘double density dynamics’ (DDD), which realizes an arbitrary distribution for both physical variables and their associated parameters simultaneously. Specifically, we constructed an ordinary differential equation that has an invariant density relating to a joint distribution of the physical system and the parameter system. A generalized density function leads to a physical system that develops under nonequilibrium environment-describing superstatistics. The joint distribution density of the physical system and the parameter system appears as the Radon-Nikodym derivative of a distribution that is created by a scaled long-time average, generated from the flow of the differential equation under an ergodic assumption. The general mathematical framework is fully discussed to address the theoretical possibility of our method, and a numerical example representing a 1D harmonic oscillator is provided to validate the method being applied to the temperature parameters.

  10. Exploring chemical variables in Ligustrum lucidum Ait. F. tricolor (rehd.) Rehd. in relation to air pollutants and environmental conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pignata, M.L.; Canas, M.S.; Carreras, H.A.

    1997-09-01

    A diagnostic study was done on Ligustrum lucidum Ait. f. tricolor (Rehd.) Rehd. in relation to atmospheric pollutants in Cordoba city, Argentina. The study area receives regional Pollutants and was categorized taking into account traffic level, industrial density, type of industry, location of the sample point in relation to the street corner, treeless condition, and topographic level. Dried weight/fresh weight ratio (DW/FW) and specific leaf area (SLA) were calculated, and concentrations of chlorophylls, carotenoids, total sulfur, soluble proteins, malondialdehyde (MDA), and hydroperoxy conjugated dienes (HPCD) were determined in leaf samples. Sulfur content correlates positively with traffic density and SLA correlatesmore » negatively with some combinations of the categorical variables; MDA correlates positively with topographic level and total protein concentration correlates negatively with treeless condition. On the basis of our results, traffic, location of trees, type of industry, situation of a tree with respect to others, and topographic level are the environmental variables to bear in mind when selecting analogous sampling points in a passive monitoring program. An approximation to predict tree injury may be obtained by measuring DW/FW ratio, proteins, pigments, HPCD, and MDA as they are responsible for the major variability of data.« less

  11. Seasonal Variability in Global Eddy Diffusion and the Effect on Thermospheric Neutral Density

    NASA Astrophysics Data System (ADS)

    Pilinski, M.; Crowley, G.

    2014-12-01

    We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time between January 2004 and January 2008 were estimated from residuals of neutral density measurements made by the CHallenging Minisatellite Payload (CHAMP) and simulations made using the Thermosphere Ionosphere Mesosphere Electrodynamics - Global Circulation Model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy-diffusivity models. The eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the RMS difference between the TIME-GCM model and density data from a variety of satellites is reduced by an average of 5%. This result, indicates that global thermospheric density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates how eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are some limitations of this method, which are discussed, including that the latitude-dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion consistent with diffusion observations made by other techniques.

  12. Seasonal variability in global eddy diffusion and the effect on neutral density

    NASA Astrophysics Data System (ADS)

    Pilinski, M. D.; Crowley, G.

    2015-04-01

    We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time were estimated from residuals of neutral density measurements made by the Challenging Minisatellite Payload (CHAMP) and simulations made using the thermosphere-ionosphere-mesosphere electrodynamics global circulation model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy diffusivity models. Eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the root-mean-square sum for the TIME-GCM model is reduced by an average of 5% when compared to density data from a variety of satellites, indicating that the fidelity of global density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates that eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are limitations to this method, which are discussed, including that the latitude dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion which is also consistent with diffusion observations made by other techniques.

  13. Variable-density thinning in coast redwood: a comparison of marking strategies to attain stand variability

    Treesearch

    Kevin L. O' Hara; Lathrop P. Leonard; Christopher R. Keyes

    2012-01-01

    Variable-density thinning (VDT) is an emerging thinning method that attempts to enhance stand structural heterogeneity by deliberately thinning at different intensities throughout a stand. VDT may create stands with dense areas, open areas, and other areas that may be intermediate in density. Subsequent stand development forms a more varied structure than is...

  14. The Holographic Electron Density Theorem, de-quantization, re-quantization, and nuclear charge space extrapolations of the Universal Molecule Model

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    2017-11-01

    Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.

  15. Influences of spatial and temporal variation on fish-habitat relationships defined by regression quantiles

    USGS Publications Warehouse

    Dunham, J.B.; Cade, B.S.; Terrell, J.W.

    2002-01-01

    We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The spatial and temporal stability of model predictions were examined across years and streams, respectively. Variation in fish density with width:depth ratio (10th-90th regression quantiles) modeled for streams sampled in 1993-1997 predicted the variation observed in 1998-1999, indicating similar habitat relationships across years. Both linear and nonlinear models described the limiting relationships well, the latter performing slightly better. Although estimated relationships were transferable in time, results were strongly dependent on the influence of spatial variation in fish density among streams. Density changes with width:depth ratio in a single stream were responsible for the significant (P < 0.10) negative slopes estimated for the higher quantiles (>80th). This suggests that stream-scale factors other than width:depth ratio play a more direct role in determining population density. Much of the variation in densities of cutthroat trout among streams was attributed to the occurrence of nonnative brook trout Salvelinus fontinalis (a possible competitor) or connectivity to migratory habitats. Regression quantiles can be useful for estimating the effects of limiting factors when ecological responses are highly variable, but our results indicate that spatiotemporal variability in the data should be explicitly considered. In this study, data from individual streams and stream-specific characteristics (e.g., the occurrence of nonnative species and habitat connectivity) strongly affected our interpretation of the relationship between width:depth ratio and fish density.

  16. Decreasing seagrass density negatively influences associated fauna

    PubMed Central

    McCloskey, Rosemary M.

    2015-01-01

    Seagrass meadows globally are disappearing at a rapid rate with physical disturbances being one of the major drivers of this habitat loss. Disturbance of seagrass can lead to fragmentation, a reduction in shoot density, canopy height and coverage, and potentially permanent loss of habitat. Despite being such a widespread issue, knowledge of how such small scale change affects the spatial distribution and abundances of motile fauna remains limited. The present study investigated fish and macro faunal community response patterns to a range of habitat variables (shoot length, cover and density), including individual species habitat preferences within a disturbed and patchy intertidal seagrass meadow. Multivariate analysis showed a measurable effect of variable seagrass cover on the abundance and distribution of the fauna, with species specific preferences to both high and low seagrass cover seagrass. The faunal community composition varied significantly with increasing/decreasing cover. The faunal species composition of low cover seagrass was more similar to sandy control plots than to higher cover seagrass. Shannon Wiener Diversity (H′) and species richness was significantly higher in high cover seagrass than in low cover seagrass, indicating increasing habitat value as density increases. The results of this study underline how the impacts of small scale disturbances from factors such as anchor damage, boat moorings and intertidal vehicle use on seagrass meadows that reduce shoot density and cover can impact upon associated fauna. These impacts have negative consequences for the delivery of ecosystem services such as the provision of nursery habitat. PMID:26137432

  17. BHR equations re-derived with immiscible particle effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, John Dennis; Horwitz, Jeremy A.

    2015-05-01

    Compressible and variable density turbulent flows with dispersed phase effects are found in many applications ranging from combustion to cloud formation. These types of flows are among the most challenging to simulate. While the exact equations governing a system of particles and fluid are known, computational resources limit the scale and detail that can be simulated in this type of problem. Therefore, a common method is to simulate averaged versions of the flow equations, which still capture salient physics and is relatively less computationally expensive. Besnard developed such a model for variable density miscible turbulence, where ensemble-averaging was applied tomore » the flow equations to yield a set of filtered equations. Besnard further derived transport equations for the Reynolds stresses, the turbulent mass flux, and the density-specific volume covariance, to help close the filtered momentum and continuity equations. We re-derive the exact BHR closure equations which include integral terms owing to immiscible effects. Physical interpretations of the additional terms are proposed along with simple models. The goal of this work is to extend the BHR model to allow for the simulation of turbulent flows where an immiscible dispersed phase is non-trivially coupled with the carrier phase.« less

  18. Role of Surface Charge Density in Nanoparticle-templated Assembly of Bromovirus Protein Cages

    PubMed Central

    Daniel, Marie-Christine; Tsvetkova, Irina B.; Quinkert, Zachary T.; Murali, Ayaluru; De, Mrinmoy; Rotello, Vincent M.; Kao, C. Cheng; Dragnea, Bogdan

    2010-01-01

    Self-assembling icosahedral protein cages have potencially useful physical and chemical characteristics for a variety of nanotechnology applications, ranging from therapeutic or diagnostic vectors to building blocks for hierarchical materials. For application-specific functional control of protein cage assemblies, a deeper understanding of the interaction between the protein cage and its payload is necessary. Protein-cage encapsulated nanoparticles, with their well-defined surface chemistry, allow for systematic control over key parameters of encapsulation such as the surface charge, hydrophobicity, and size. Independent control over these variables allows experimental testing of different assembly mechanism models. Previous studies done with Brome mosaic virus capsids and negatively-charged gold nanoparticles indicated that the result of the self-assembly process depends on the diameter of the particle. However, in these experiments, the surface-ligand density was maintained at saturation levels, while the total charge and the radius of curvature remained coupled variables, making the interpretation of the observed dependence on the core size difficult. The current work furnishes evidence of a critical surface charge density for assembly through an analysis aimed at decoupling the surface charge the core size. PMID:20575505

  19. Development of Weeds Density Evaluation System Based on RGB Sensor

    NASA Astrophysics Data System (ADS)

    Solahudin, M.; Slamet, W.; Wahyu, W.

    2018-05-01

    Weeds are plant competitors which potentially reduce the yields due to competition for sunlight, water and soil nutrients. Recently, for chemical-based weed control, site-specific weed management that accommodates spatial and temporal diversity of weeds attack in determining the appropriate dose of herbicide based on Variable Rate Technology (VRT) is preferable than traditional approach with single dose herbicide application. In such application, determination of the level of weed density is an important task. Several methods have been studied to evaluate the density of weed attack. The objective of this study is to develop a system that is able to evaluate weed density based on RGB (Red, Green, and Blue) sensors. RGB sensor was used to acquire the RGB values of the surface of the field. An artificial neural network (ANN) model was then used for determining the weed density. In this study the ANN model was trained with 280 training data (70%), 60 validation data (15%), and 60 testing data (15%). Based on the field test, using the proposed method the weed density could be evaluated with an accuracy of 83.75%.

  20. Improved first-pass spiral myocardial perfusion imaging with variable density trajectories.

    PubMed

    Salerno, Michael; Sica, Christopher; Kramer, Christopher M; Meyer, Craig H

    2013-11-01

    To develop and evaluate variable-density spiral first-pass perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility of an apodizing density compensation function (DCF) to improve signal-to-noise ratio (SNR) and reduce dark-rim artifact caused by cardiac motion and Gibbs Ringing. Three variable density spiral trajectories were designed, simulated, and evaluated in 18 normal subjects, and in eight patients with cardiac pathology on a 1.5T scanner. By using a DCF, which intentionally apodizes the k-space data, the sidelobe amplitude of the theoretical point spread function (PSF) is reduced by 68%, with only a 13% increase in the full-width at half-maximum of the main-lobe when compared with the same data corrected with a conventional variable-density DCF, and has an 8% higher resolution than a uniform density spiral with the same number of interleaves and readout duration. Furthermore, this strategy results in a greater than 60% increase in measured SNR when compared with the same variable-density spiral data corrected with a conventional DCF (P < 0.01). Perfusion defects could be clearly visualized with minimal off-resonance and dark-rim artifacts. Variable-density spiral pulse sequences using an apodized DCF produce high-quality first-pass perfusion images with minimal dark-rim and off-resonance artifacts, high SNR and contrast-to-noise ratio, and good delineation of resting perfusion abnormalities. Copyright © 2012 Wiley Periodicals, Inc.

  1. Analytic Expressions for the Gravity Gradient Tensor of 3D Prisms with Depth-Dependent Density

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Liu, Jie; Zhang, Jianzhong; Feng, Zhibing

    2017-12-01

    Variable-density sources have been paid more attention in gravity modeling. We conduct the computation of gravity gradient tensor of given mass sources with variable density in this paper. 3D rectangular prisms, as simple building blocks, can be used to approximate well 3D irregular-shaped sources. A polynomial function of depth can represent flexibly the complicated density variations in each prism. Hence, we derive the analytic expressions in closed form for computing all components of the gravity gradient tensor due to a 3D right rectangular prism with an arbitrary-order polynomial density function of depth. The singularity of the expressions is analyzed. The singular points distribute at the corners of the prism or on some of the lines through the edges of the prism in the lower semi-space containing the prism. The expressions are validated, and their numerical stability is also evaluated through numerical tests. The numerical examples with variable-density prism and basin models show that the expressions within their range of numerical stability are superior in computational accuracy and efficiency to the common solution that sums up the effects of a collection of uniform subprisms, and provide an effective method for computing gravity gradient tensor of 3D irregular-shaped sources with complicated density variation. In addition, the tensor computed with variable density is different in magnitude from that with constant density. It demonstrates the importance of the gravity gradient tensor modeling with variable density.

  2. On the modelling of scalar and mass transport in combustor flows

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; So, R. M. C.

    1989-01-01

    Results are presented of a numerical study of swirling and nonswirling combustor flows with and without density variations. Constant-density arguments are used to justify closure assumptions invoked for the transport equations for turbulent momentum and scalar fluxes, which are written in terms of density-weighted variables. Comparisons are carried out with measurements obtained from three different axisymmetric model combustor experiments covering recirculating flow, swirling flow, and variable-density swirling flow inside the model combustors. Results show that the Reynolds stress/flux models do a credible job of predicting constant-density swirling and nonswirling combustor flows with passive scalar transport. However, their improvements over algebraic stress/flux models are marginal. The extension of the constant-density models to variable-density flow calculations shows that the models are equally valid for such flows.

  3. Managers’ perspectives: practical experience and challenges associated with variable-density operations and uneven-aged management

    Treesearch

    Kurtis E. Steele

    2013-01-01

    Variable-density thinning has received a lot of public attention in recent years and has subsequently become standard language in most of the Willamette National Forest’s timber management projects. Many techniques have been tried, with varying on-the-ground successes. To accomplish variable-density thinning, the McKenzie River Ranger District currently uses...

  4. Variable-density thinning for parks and reserves: An experimental case study at Humboldt Redwoods State Park, California

    Treesearch

    Christopher R. Keyes; Thomas E. Perry; Jesse F. Plummer

    2010-01-01

    Variable-density thinning is emerging as a valuable tool for the silvicultural promotion of old-growth conditions in second-growth forests of the Pacific Coast. This paper reports on an experimental variable-density thinning prescription applied between 2006 and 2007 at north coastal California’s Humboldt Redwoods State Park. The prescription strategy relied on known...

  5. Differing Mechanisms Underlie Sexual Size-Dimorphism in Two Populations of a Sex-Changing Fish

    PubMed Central

    McCormick, Mark I.; Ryen, Christopher A.; Munday, Philip L.; Walker, Stefan P. W.

    2010-01-01

    Variability in the density of groups within a patchy environment lead to differences in interaction rates, growth dynamics and social organization. In protogynous hermaphrodites there are hypothesised trade-offs among sex-specific growth, reproductive output and mortality. When differences in density lead to changes to social organization the link between growth and the timing of sex-change is predicted to change. The present study explores this prediction by comparing the social organisation and sex-specific growth of two populations of a protogynous tropical wrasse, Halichoeres miniatus, which differ in density. At a low density population a strict harem structure was found, where males maintained a tight monopoly of access and spawning rights to females. In contrast, at a high density population a loosely organised system prevailed, where females could move throughout multiple male territories. Otolith microstructure revealed the species to be annual and deposit an otolith check associated with sex-change. Growth trajectories suggested that individuals that later became males in both populations underwent a growth acceleration at sex-change. Moreover, in the high density population, individuals that later became males were those individuals that had the largest otolith size at hatching and consistently deposited larger increments throughout early larval, juvenile and female life. This study demonstrates that previous growth history and growth rate changes associated with sex change can be responsible for the sexual dimorphism typically found in sex-changing species, and that the relative importance of these may be socially constrained. PMID:20485547

  6. Temporal changes in the abundance, leaf growth and photosynthesis of three co-occurring Philippine seagrasses.

    PubMed

    Agawin, N S.R.; Duarte, C M.; Fortes, M D.; Uri, J S.; Vermaat, J E.

    2001-06-01

    The analysis of the temporal changes in shoot density, areal leaf biomass, leaf growth and parameters of the photosynthesis-irradiance relationship of three tropical seagrass species (Enhalus acoroides, Thalassia hemprichii and Cymodocea rotundata), co-existing in a shallow subtidal meadow in Cape Bolinao, Philippines, shows that species-specific traits are significant sources of temporal variability, and indicates that these seagrass species respond differently to a common environmental forcing. Species-specific differences are much less important as source of variability of the temporal change in chlorophyll concentration of seagrass leaves. The results indicate that the temporal changes in photosynthetic performance of these seagrasses were driven by environmental forcing and their specific responses to it mostly, but the temporal change in their abundance and leaf growth was also controlled by other factors. The significant contribution of species-specific factors in the temporal changes of biomass, growth and photosynthetic performance of co-occurring seagrass species in Cape Bolinao should contribute to the maintenance of the multispecific, highly productive meadows characteristic of pristine coastal ecosystems in Southeast (SE) Asia.

  7. Direct numerical simulation of incompressible acceleration-driven variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Gat, Ilana; Matheou, Georgios; Chung, Daniel; Dimotakis, Paul

    2015-11-01

    Fully developed turbulence in variable-density flow driven by an externally imposed acceleration field, e.g., gravity, is fundamental in many applications, such as inertial confinement fusion, geophysics, and astrophysics. Aspects of this turbulence regime are poorly understood and are of interest to fluid modeling. We investigate incompressible acceleration-driven variable-density turbulence by a series of direct numerical simulations of high-density fluid in-between slabs of low-density fluid, in a triply-periodic domain. A pseudo-spectral numerical method with a Helmholtz-Hodge decomposition of the pressure field, which ensures mass conservation, is employed, as documented in Chung & Pullin (2010). A uniform dynamic viscosity and local Schmidt number of unity are assumed. This configuration encapsulates a combination of flow phenomena in a temporally evolving variable-density shear flow. Density ratios up to 10 and Reynolds numbers in the fully developed turbulent regime are investigated. The temporal evolution of the vertical velocity difference across the shear layer, shear-layer growth, mean density, and Reynolds number are discussed. Statistics of Lagrangian accelerations of fluid elements and of vorticity as a function of the density ratio are also presented. This material is based upon work supported by the AFOSR, the DOE, the NSF GRFP, and Caltech.

  8. The influence of landscape features on road development in a loess region, China.

    PubMed

    Bi, Xiaoli; Wang, Hui; Zhou, Rui

    2011-10-01

    Many ecologists focus on the effects of roads on landscapes, yet few consider how landscapes affect road systems. In this study, therefore, we quantitatively evaluated how land cover, topography, and building density affected the length density, node density, spatial pattern, and location of roads in Dongzhi Yuan, a typical loess region in China. Landscape factors and roads were mapped using images from SPOT satellite (Système Probatoire d'Observation de la Terre), initiated by the French space agency and a digital elevation model (DEM). Detrended canonical correspondence analysis (DCCA), a useful ordination technique to explain species-environment relations in community ecology, was applied to evaluate the ways in which landscapes may influence roads. The results showed that both farmland area and building density were positively correlated with road variables, whereas gully density and the coefficient of variation (CV of DEM) showed negative correlations. The CV of DEM, farmland area, grassland area, and building density explained variation in node density, length density, and the spatial pattern of roads, whereas gully density and building density explained variation in variables representing road location. In addition, node density, rather than length density, was the primary road variable affected by landscape variables. The results showed that the DCCA was effective in explaining road-landscape relations. Understanding these relations can provide information for landscape managers and transportation planners.

  9. Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2011-01-01

    Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.

  10. Ionosphere variability during the 2009 SSW: Influence of the lunar semidiurnal tide and mechanisms producing electron density variability

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.; Liu, H.-L.; Sassi, F.; Lei, J.; Chau, J. L.; Zhang, X.

    2014-05-01

    To investigate ionosphere variability during the 2009 sudden stratosphere warming (SSW), we present simulation results that combine the Whole Atmosphere Community Climate Model Extended version and the thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM). The simulations reveal notable enhancements in both the migrating semidiurnal solar (SW2) and lunar (M2) tides during the SSW. The SW2 and M2 amplitudes reach ˜50 m s-1 and ˜40 m s-1, respectively, in zonal wind at E region altitudes. The dramatic increase in the M2 at these altitudes influences the dynamo generation of electric fields, and the importance of the M2 on the ionosphere variability during the 2009 SSW is demonstrated by comparing simulations with and without the M2. TIME-GCM simulations that incorporate the M2 are found to be in good agreement with Jicamarca Incoherent Scatter Radar vertical plasma drifts and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations of the maximum F region electron density. The agreement with observations is worse if the M2 is not included in the simulation, demonstrating that the lunar tide is an important contributor to the ionosphere variability during the 2009 SSW. We additionally investigate sources of the F region electron density variability during the SSW. The primary driver of the electron density variability is changes in electric fields. Changes in meridional neutral winds and thermosphere composition are found to also contribute to the electron density variability during the 2009 SSW. The electron density variability for the 2009 SSW is therefore not solely due to variability in electric fields as previously thought.

  11. Calcium phosphate ceramics in drug delivery

    NASA Astrophysics Data System (ADS)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  12. Discrete capacity limits and neuroanatomical correlates of visual short-term memory for objects and spatial locations.

    PubMed

    Konstantinou, Nikos; Constantinidou, Fofi; Kanai, Ryota

    2017-02-01

    Working memory is responsible for keeping information in mind when it is no longer in view, linking perception with higher cognitive functions. Despite such crucial role, short-term maintenance of visual information is severely limited. Research suggests that capacity limits in visual short-term memory (VSTM) are correlated with sustained activity in distinct brain areas. Here, we investigated whether variability in the structure of the brain is reflected in individual differences of behavioral capacity estimates for spatial and object VSTM. Behavioral capacity estimates were calculated separately for spatial and object information using a novel adaptive staircase procedure and were found to be unrelated, supporting domain-specific VSTM capacity limits. Voxel-based morphometry (VBM) analyses revealed dissociable neuroanatomical correlates of spatial versus object VSTM. Interindividual variability in spatial VSTM was reflected in the gray matter density of the inferior parietal lobule. In contrast, object VSTM was reflected in the gray matter density of the left insula. These dissociable findings highlight the importance of considering domain-specific estimates of VSTM capacity and point to the crucial brain regions that limit VSTM capacity for different types of visual information. Hum Brain Mapp 38:767-778, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Analysis of an anisotropic coastal aquifer system using variable-density flow and solute transport simulation

    USGS Publications Warehouse

    Souza, W.R.; Voss, C.I.

    1987-01-01

    The groundwater system in southern Oahu, Hawaii consists of a thick, areally extensive freshwater lens overlying a zone of transition to a thick saltwater body. This system is analyzed in cross section with a variable-density groundwater flow and solute transport model on a regional scale. The simulation is difficult, because the coastal aquifer system has a saltwater transition zone that is broadly dispersed near the discharge area, but is very sharply defined inland. Steady-state simulation analysis of the transition zone in the layered basalt aquifer of southern Oahu indicates that a small transverse dispersivity is characteristic of horizontal regional flow. Further, in this system flow is generally parallel to isochlors and steady-state behavior is insensitive to the longitudinal dispersivity. Parameter analysis identifies that only six parameters control the complex hydraulics of the system: horizontal and vertical hydraulic conductivity of the basalt aquifer; hydraulic conductivity of the confining "caprock" layer; leakance below the caprock; specific yield; and aquifer matrix compressibility. The best-fitting models indicate the horizontal hydraulic conductivity is significantly greater than the vertical hydraulic conductivity. These models give values for specific yield and aquifer compressibility which imply a considerable degree of compressive storage in the water table aquifer. ?? 1987.

  14. Performance of Low-Density Parity-Check Coded Modulation

    NASA Astrophysics Data System (ADS)

    Hamkins, J.

    2011-02-01

    This article presents the simulated performance of a family of nine AR4JA low-density parity-check (LDPC) codes when used with each of five modulations. In each case, the decoder inputs are codebit log-likelihood ratios computed from the received (noisy) modulation symbols using a general formula which applies to arbitrary modulations. Suboptimal soft-decision and hard-decision demodulators are also explored. Bit-interleaving and various mappings of bits to modulation symbols are considered. A number of subtle decoder algorithm details are shown to affect performance, especially in the error floor region. Among these are quantization dynamic range and step size, clipping degree-one variable nodes, "Jones clipping" of variable nodes, approximations of the min* function, and partial hard-limiting messages from check nodes. Using these decoder optimizations, all coded modulations simulated here are free of error floors down to codeword error rates below 10^{-6}. The purpose of generating this performance data is to aid system engineers in determining an appropriate code and modulation to use under specific power and bandwidth constraints, and to provide information needed to design a variable/adaptive coded modulation (VCM/ACM) system using the AR4JA codes. IPNPR Volume 42-185 Tagged File.txt

  15. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.

    PubMed

    Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph

    2008-12-01

    Forest transpiration estimates are frequently based on xylem sap flux measurements in the outer sections of the hydro-active stem sapwood. We used Granier's constant-heating technique with heating probes at various xylem depths to analyze radial patterns of sap flux density in the sapwood of seven broad-leaved tree species differing in wood density and xylem structure. Study aims were to (1) compare radial sap flux density profiles between diffuse- and ring-porous trees and (2) analyze the relationship between hydro-active sapwood area and stem diameter. In all investigated species except the diffuse-porous beech (Fagus sylvatica L.) and ring-porous ash (Fraxinus excelsior L.), sap flux density peaked at a depth of 1 to 4 cm beneath the cambium, revealing a hump-shaped curve with species-specific slopes. Beech and ash reached maximum sap flux densities immediately beneath the cambium in the youngest annual growth rings. Experiments with dyes showed that the hydro-active sapwood occupied 70 to 90% of the stem cross-sectional area in mature trees of diffuse-porous species, whereas it occupied only about 21% in ring-porous ash. Dendrochronological analyses indicated that vessels in the older sapwood may remain functional for 100 years or more in diffuse-porous species and for up to 27 years in ring-porous ash. We conclude that radial sap flux density patterns are largely dependent on tree species, which may introduce serious bias in sap-flux-derived forest transpiration estimates, if non-specific sap flux profiles are assumed.

  16. Adenosine stress cardiovascular magnetic resonance with variable-density spiral pulse sequences accurately detects coronary artery disease: initial clinical evaluation.

    PubMed

    Salerno, Michael; Taylor, Angela; Yang, Yang; Kuruvilla, Sujith; Ragosta, Michael; Meyer, Craig H; Kramer, Christopher M

    2014-07-01

    Adenosine stress cardiovascular magnetic resonance perfusion imaging can be limited by motion-induced dark-rim artifacts, which may be mistaken for true perfusion abnormalities. A high-resolution variable-density spiral pulse sequence with a novel density compensation strategy has been shown to reduce dark-rim artifacts in first-pass perfusion imaging. We aimed to assess the clinical performance of adenosine stress cardiovascular magnetic resonance using this new perfusion sequence to detect obstructive coronary artery disease. Cardiovascular magnetic resonance perfusion imaging was performed during adenosine stress (140 μg/kg per minute) and at rest on a Siemens 1.5-T Avanto scanner in 41 subjects with chest pain scheduled for coronary angiography. Perfusion images were acquired during injection of 0.1 mmol/kg Gadolinium-diethylenetriaminepentacetate at 3 short-axis locations using a saturation recovery interleaved variable-density spiral pulse sequence. Significant stenosis was defined as >50% by quantitative coronary angiography. Two blinded reviewers evaluated the perfusion images for the presence of adenosine-induced perfusion abnormalities and assessed image quality using a 5-point scale (1 [poor] to 5 [excellent]). The prevalence of obstructive coronary artery disease by quantitative coronary angiography was 68%. The average sensitivity, specificity, and accuracy were 89%, 85%, and 88%, respectively, with a positive predictive value and negative predictive value of 93% and 79%, respectively. The average image quality score was 4.4±0.7, with only 1 study with more than mild dark-rim artifacts. There was good inter-reader reliability with a κ statistic of 0.67. Spiral adenosine stress cardiovascular magnetic resonance results in high diagnostic accuracy for the detection of obstructive coronary artery disease with excellent image quality and minimal dark-rim artifacts. © 2014 American Heart Association, Inc.

  17. Networks for image acquisition, processing and display

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.

    1990-01-01

    The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.

  18. Shallow rocky nursery habitat for fish: Spatial variability of juvenile fishes among this poorly protected essential habitat.

    PubMed

    Cheminée, Adrien; Rider, Mary; Lenfant, Philippe; Zawadzki, Audrey; Mercière, Alexandre; Crec'hriou, Romain; Mercader, Manon; Saragoni, Gilles; Neveu, Reda; Ternon, Quentin; Pastor, Jérémy

    2017-06-15

    Coastal nursery habitats are essential for the renewal of adult fish populations. We quantified the availability of a coastal nursery habitat (shallow heterogeneous rocky bottoms) and the spatial variability of its juvenile fish populations along 250km of the Catalan coastline (France and Spain). Nurseries were present in 27% of the coastline, but only 2% of them benefited from strict protection status. For nine taxa characteristic of this habitat, total juvenile densities varied significantly between nursery sites along the coastline, with the highest densities being found on the northern sites. Recruitment level (i.e. a proxy of nursery value) was not explained by protection level, but it was moderately and positively correlated with an anthropization index. Patterns of spatial variations were taxa-specific. Exceptional observations of four juveniles of the protected grouper Epinephelus marginatus were recorded. Our data on habitat availability and recruitment levels provides important informations which help to focus MPA management efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen

    2017-11-01

    The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  20. Sex-specific factors for bone density in patients with schizophrenia.

    PubMed

    Lin, Chieh-Hsin; Lin, Chun-Yuan; Huang, Tiao-Lai; Wang, Hong-Song; Chang, Yue-Cune; Lane, Hsien-Yuan

    2015-03-01

    Patients with schizophrenia are susceptible to low bone mineral density (BMD). Many risk factors have been suggested. However, it remains uncertain whether the risk factors differ between men and women. In addition, the study of bone density in men is neglected more often than that in women. This study aims to examine specific risk factors of low BMD in different sexes. Men (n=80) and women (n=115) with schizophrenia, similar in demographic and clinical characteristics, were enrolled in three centers. Clinical and laboratory variables (including blood levels of prolactin, sex and thyroid hormones, cortisol, calcium, and alkaline phosphatase) were collected. BMD was measured using a dual-energy X-ray absorptiometer. Men had lower BMD than women. Predictors for BMD in men included hyperprolactinemia (B=-0.821, P=0.009), body weight (B=0.024, P=0.046), and Global Assessment of Functioning score (B=0.027, P=0.043); in women, BMD was associated with menopause (B=-1.070, P<0.001), body weight (B=0.027, P=0.003), and positive symptoms (B=0.094, P<0.001). In terms of the effect of psychotic symptoms, positive symptoms were related positively to BMD in women, but not in men. The findings suggest that sex-specific risk factors should be considered for an individualized intervention of bone loss in patients with schizophrenia. Physicians should pay particular attention to bone density in men with hyperprolactinemia and postmenopausal women. Further prospective studies in other populations are warranted to confirm these findings.

  1. Site-specific management of nematodes pitfalls and practicalities.

    PubMed

    Evans, Ken; Webster, Richard M; Halford, Paul D; Barker, Anthony D; Russell, Michael D

    2002-09-01

    The greatest constraint to potato production in the United Kingdom (UK) is damage by the potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis. Management of PCN depends heavily on nematicides, which are costly. Of all the inputs in UK agriculture, nematicides offer the largest potential cost savings from spatially variable application, and these savings would be accompanied by environmental benefits. We mapped PCN infestations in potato fields and monitored the changes in population density and distribution that occurred when susceptible potato crops were grown. The inverse relationship between population density before planting and multiplication rate of PCN makes it difficult to devise reliable spatial nematicide application procedures, especially when the pre-planting population density is just less than the detection threshold. Also, the spatial dependence found suggests that the coarse sampling grids used commercially are likely to produce misleading distribution maps.

  2. Heart Rate Variability Can Be Used to Estimate Sleepiness-related Decrements in Psychomotor Vigilance during Total Sleep Deprivation

    PubMed Central

    Chua, Eric Chern-Pin; Tan, Wen-Qi; Yeo, Sing-Chen; Lau, Pauline; Lee, Ivan; Mien, Ivan Ho; Puvanendran, Kathiravelu; Gooley, Joshua J.

    2012-01-01

    Study Objectives: To assess whether changes in psychomotor vigilance during sleep deprivation can be estimated using heart rate variability (HRV). Design: HRV, ocular, and electroencephalogram (EEG) measures were compared for their ability to predict lapses on the Psychomotor Vigilance Task (PVT). Setting: Chronobiology and Sleep Laboratory, Duke-NUS Graduate Medical School Singapore. Participants: Twenty-four healthy Chinese men (mean age ± SD = 25.9 ± 2.8 years). Interventions: Subjects were kept awake continuously for 40 hours under constant environmental conditions. Every 2 hours, subjects completed a 10-minute PVT to assess their ability to sustain visual attention. Measurements and Results: During each PVT, we examined the electrocardiogram (ECG), EEG, and percentage of time that the eyes were closed (PERCLOS). Similar to EEG power density and PERCLOS measures, the time course of ECG RR-interval power density in the 0.02- 0.08-Hz range correlated with the 40-hour profile of PVT lapses. Based on receiver operating characteristic curves, RR-interval power density performed as well as EEG power density at identifying a sleepiness-related increase in PVT lapses above threshold. RR-interval power density (0.02-0.08 Hz) also classified subject performance with sensitivity and specificity similar to that of PERCLOS. Conclusions: The ECG carries information about a person's vigilance state. Hence, HRV measures could potentially be used to predict when an individual is at increased risk of attentional failure. Our results suggest that HRV monitoring, either alone or in combination with other physiologic measures, could be incorporated into safety devices to warn drowsy operators when their performance is impaired. Citation: Chua ECP; Tan WQ; Yeo SC; Lau P; Lee I; Mien IH; Puvanendran K; Gooley JJ. Heart rate variability can be used to estimate sleepiness-related decrements in psychomotor vigilance during total sleep deprivation. SLEEP 2012;35(3):325-334. PMID:22379238

  3. On the use of the noncentral chi-square density function for the distribution of helicopter spectral estimates

    NASA Technical Reports Server (NTRS)

    Garber, Donald P.

    1993-01-01

    A probability density function for the variability of ensemble averaged spectral estimates from helicopter acoustic signals in Gaussian background noise was evaluated. Numerical methods for calculating the density function and for determining confidence limits were explored. Density functions were predicted for both synthesized and experimental data and compared with observed spectral estimate variability.

  4. Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study.

    PubMed

    Ding, Huanjun; Molloi, Sabee

    2012-08-07

    A simple and accurate measurement of breast density is crucial for the understanding of its impact in breast cancer risk models. The feasibility to quantify volumetric breast density with a photon-counting spectral mammography system has been investigated using both computer simulations and physical phantom studies. A computer simulation model involved polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector has been evaluated for breast density quantification. The figure-of-merit (FOM), which was defined as the signal-to-noise ratio of the dual energy image with respect to the square root of mean glandular dose, was chosen to optimize the imaging protocols, in terms of tube voltage and splitting energy. A scanning multi-slit photon-counting spectral mammography system has been employed in the experimental study to quantitatively measure breast density using dual energy decomposition with glandular and adipose equivalent phantoms of uniform thickness. Four different phantom studies were designed to evaluate the accuracy of the technique, each of which addressed one specific variable in the phantom configurations, including thickness, density, area and shape. In addition to the standard calibration fitting function used for dual energy decomposition, a modified fitting function has been proposed, which brought the tube voltages used in the imaging tasks as the third variable in dual energy decomposition. For an average sized 4.5 cm thick breast, the FOM was maximized with a tube voltage of 46 kVp and a splitting energy of 24 keV. To be consistent with the tube voltage used in current clinical screening exam (∼32 kVp), the optimal splitting energy was proposed to be 22 keV, which offered a FOM greater than 90% of the optimal value. In the experimental investigation, the root-mean-square (RMS) error in breast density quantification for all four phantom studies was estimated to be approximately 1.54% using standard calibration function. The results from the modified fitting function, which integrated the tube voltage as a variable in the calibration, indicated a RMS error of approximately 1.35% for all four studies. The results of the current study suggest that photon-counting spectral mammography systems may potentially be implemented for an accurate quantification of volumetric breast density, with an RMS error of less than 2%, using the proposed dual energy imaging technique.

  5. Tables of critical-flow functions and thermodynamic properties for methane and computational procedures for both methane and natural gas

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1972-01-01

    Procedures for calculating the mass flow rate of methane and natural gas through nozzles are given, along with the FORTRAN 4 subroutines used to make these calculations. Three sets of independent variables are permitted in these routines. In addition to the plenum pressure and temperature, the third independent variable is either nozzle exit pressure, Mach number, or temperature. A critical-flow factor that becomes a convenient means for determining the mass flow rate of methane through critical-flow nozzles is tabulated. Other tables are included for nozzle throat velocity and critical pressure, density, and temperature ratios, along with some thermodynamic properties of methane, including compressibility factor, enthalpy, entropy, specific heat, specific-heat ratio, and speed of sound. These tabulations cover a temperature range from 120 to 600 K and pressures to 3 million N/sq m.

  6. A Plasma Diagnostic Set for the Study of a Variable Specific Impulse Magnetoplasma Rocket

    NASA Astrophysics Data System (ADS)

    Squire, J. P.; Chang-Diaz, F. R.; Bengtson Bussell, R., Jr.; Jacobson, V. T.; Wootton, A. J.; Bering, E. A.; Jack, T.; Rabeau, A.

    1997-11-01

    The Advanced Space Propulsion Laboratory (ASPL) is developing a Variable Specific Impulse Magnetoplasma Rocket (VASIMR) using an RF heated magnetic mirror operated asymmetrically. We will describe the initial set of plasma diagnostics and data acquisition system being developed and installed on the VASIMR experiment. A U.T. Austin team is installing two fast reciprocating probes: a quadruple Langmuir and a Mach probe. These measure electron density and temperature profiles, electrostatic plasma fluctuations, and plasma flow profiles. The University of Houston is developing an array of 20 highly directional Retarding Potential Analyzers (RPA) for measuring ion energy distribution function profiles in the rocket plume, giving a measurement of total thrust. We have also developed a CAMAC based data acquisition system using LabView running on a Power Macintosh communicating through a 2 MB/s serial highway. We will present data from initial plasma operations and discuss future diagnostic development.

  7. A new numerical benchmark for variably saturated variable-density flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Guevara, Carlos; Graf, Thomas

    2016-04-01

    In subsurface hydrological systems, spatial and temporal variations in solute concentration and/or temperature may affect fluid density and viscosity. These variations could lead to potentially unstable situations, in which a dense fluid overlies a less dense fluid. These situations could produce instabilities that appear as dense plume fingers migrating downwards counteracted by vertical upwards flow of freshwater (Simmons et al., Transp. Porous Medium, 2002). As a result of unstable variable-density flow, solute transport rates are increased over large distances and times as compared to constant-density flow. The numerical simulation of variable-density flow in saturated and unsaturated media requires corresponding benchmark problems against which a computer model is validated (Diersch and Kolditz, Adv. Water Resour, 2002). Recorded data from a laboratory-scale experiment of variable-density flow and solute transport in saturated and unsaturated porous media (Simmons et al., Transp. Porous Medium, 2002) is used to define a new numerical benchmark. The HydroGeoSphere code (Therrien et al., 2004) coupled with PEST (www.pesthomepage.org) are used to obtain an optimized parameter set capable of adequately representing the data set by Simmons et al., (2002). Fingering in the numerical model is triggered using random hydraulic conductivity fields. Due to the inherent randomness, a large number of simulations were conducted in this study. The optimized benchmark model adequately predicts the plume behavior and the fate of solutes. This benchmark is useful for model verification of variable-density flow problems in saturated and/or unsaturated media.

  8. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model--Documentation of the SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT)

    USGS Publications Warehouse

    Langevin, Christian D.; Shoemaker, W. Barclay; Guo, Weixing

    2003-01-01

    SEAWAT-2000 is the latest release of the SEAWAT computer program for simulation of three-dimensional, variable-density, transient ground-water flow in porous media. SEAWAT-2000 was designed by combining a modified version of MODFLOW-2000 and MT3DMS into a single computer program. The code was developed using the MODFLOW-2000 concept of a process, which is defined as ?part of the code that solves a fundamental equation by a specified numerical method.? SEAWAT-2000 contains all of the processes distributed with MODFLOW-2000 and also includes the Variable-Density Flow Process (as an alternative to the constant-density Ground-Water Flow Process) and the Integrated MT3DMS Transport Process. Processes may be active or inactive, depending on simulation objectives; however, not all processes are compatible. For example, the Sensitivity and Parameter Estimation Processes are not compatible with the Variable-Density Flow and Integrated MT3DMS Transport Processes. The SEAWAT-2000 computer code was tested with the common variable-density benchmark problems and also with problems representing evaporation from a salt lake and rotation of immiscible fluids.

  9. Development and Testing of a Decision Making Based Method to Adjust Automatically the Harrowing Intensity

    PubMed Central

    Rueda-Ayala, Victor; Weis, Martin; Keller, Martina; Andújar, Dionisio; Gerhards, Roland

    2013-01-01

    Harrowing is often used to reduce weed competition, generally using a constant intensity across a whole field. The efficacy of weed harrowing in wheat and barley can be optimized, if site-specific conditions of soil, weed infestation and crop growth stage are taken into account. This study aimed to develop and test an algorithm to automatically adjust the harrowing intensity by varying the tine angle and number of passes. The field variability of crop leaf cover, weed density and soil density was acquired with geo-referenced sensors to investigate the harrowing selectivity and crop recovery. Crop leaf cover and weed density were assessed using bispectral cameras through differential images analysis. The draught force of the soil opposite to the direction of travel was measured with electronic load cell sensor connected to a rigid tine mounted in front of the harrow. Optimal harrowing intensity levels were derived in previously implemented experiments, based on the weed control efficacy and yield gain. The assessments of crop leaf cover, weed density and soil density were combined via rules with the aforementioned optimal intensities, in a linguistic fuzzy inference system (LFIS). The system was evaluated in two field experiments that compared constant intensities with variable intensities inferred by the system. A higher weed density reduction could be achieved when the harrowing intensity was not kept constant along the cultivated plot. Varying the intensity tended to reduce the crop leaf cover, though slightly improving crop yield. A real-time intensity adjustment with this system is achievable, if the cameras are attached in the front and at the rear or sides of the harrow. PMID:23669712

  10. Climate variability has a stabilizing effect on the coexistence of prairie grasses

    PubMed Central

    Adler, Peter B.; HilleRisLambers, Janneke; Kyriakidis, Phaedon C.; Guan, Qingfeng; Levine, Jonathan M.

    2006-01-01

    How expected increases in climate variability will affect species diversity depends on the role of such variability in regulating the coexistence of competing species. Despite theory linking temporal environmental fluctuations with the maintenance of diversity, the importance of climate variability for stabilizing coexistence remains unknown because of a lack of appropriate long-term observations. Here, we analyze three decades of demographic data from a Kansas prairie to demonstrate that interannual climate variability promotes the coexistence of three common grass species. Specifically, we show that (i) the dynamics of the three species satisfy all requirements of “storage effect” theory based on recruitment variability with overlapping generations, (ii) climate variables are correlated with interannual variation in species performance, and (iii) temporal variability increases low-density growth rates, buffering these species against competitive exclusion. Given that environmental fluctuations are ubiquitous in natural systems, our results suggest that coexistence based on the storage effect may be underappreciated and could provide an important alternative to recent neutral theories of diversity. Field evidence for positive effects of variability on coexistence also emphasizes the need to consider changes in both climate means and variances when forecasting the effects of global change on species diversity. PMID:16908862

  11. Plant species invasions along the latitudinal gradient in the United States

    USGS Publications Warehouse

    Stohlgren, T.J.; Barnett, D.; Flather, C.; Kartesz, J.; Peterjohn, B.

    2005-01-01

    It has been long established that the richness of vascular plant species and many animal taxa decreases with increasing latitude, a pattern that very generally follows declines in actual and potential evapotranspiration, solar radiation, temperature, and thus, total productivity. Using county-level data on vascular plants from the United States (3000 counties in the conterminous 48 states), we used the Akaike Information Criterion (AIC) to evaluate competing models predicting native and nonnative plant species density (number of species per square kilometer in a county) from various combinations of biotic variables (e.g., native bird species density, vegetation carbon, normalized difference vegetation index), environmental/topographic variables (elevation, variation in elevation, the number of land cover classes in the county; radiation, mean precipitation, actual evapotranspiration, and potential evapotranspiration), and human variables (human population density, crop-land, and percentage of disturbed lands in a county). We found no evidence of a latitudinal gradient for the density of native plant species and a significant, slightly positive latitudinal gradient for the density of nonnative plant species. We found stronger evidence of a significant, positive productivity gradient (vegetation carbon) for the density of native plant species and nonnative plant species. We found much stronger significant relationships when biotic, environmental/topographic, and human variables were used to predict native plant species density and nonnative plant species density. Biotic variables generally had far greater influence in multivariate models than human or environmental/topographic variables. Later, we found that the best, single, positive predictor of the density of nonnative plant species in a county was the density of native plant species in a county. While further study is needed, it may be that, while humans facilitate the initial establishment invasions of nonnative plant species, the spread and subsequent distributions of nonnative species are controlled largely by biotic and environmental factors.

  12. Avoidable hospitalizations in Switzerland: a small area analysis on regional variation, density of physicians, hospital supply and rurality.

    PubMed

    Berlin, Claudia; Busato, André; Rosemann, Thomas; Djalali, Sima; Maessen, Maud

    2014-07-03

    Avoidable hospitalizations (AH) are hospital admissions for diseases and conditions that could have been prevented by appropriate ambulatory care. We examine regional variation of AH in Switzerland and the factors that determine AH. We used hospital service areas, and data from 2008-2010 hospital discharges in Switzerland to examine regional variation in AH. Age and sex standardized AH were the outcome variable, and year of admission, primary care physician density, medical specialist density, rurality, hospital bed density and type of hospital reimbursement system were explanatory variables in our multilevel poisson regression. Regional differences in AH were as high as 12-fold. Poisson regression showed significant increase of all AH over time. There was a significantly lower rate of all AH in areas with more primary care physicians. Rates increased in areas with more specialists. Rates of all AH also increased where the proportion of residences in rural communities increased. Regional hospital capacity and type of hospital reimbursement did not have significant associations. Inconsistent patterns of significant determinants were found for disease specific analyses. The identification of regions with high and low AH rates is a starting point for future studies on unwarranted medical procedures, and may help to reduce their incidence. AH have complex multifactorial origins and this study demonstrates that rurality and physician density are relevant determinants. The results are helpful to improve the performance of the outpatient sector with emphasis on local context. Rural and urban differences in health care delivery remain a cause of concern in Switzerland.

  13. Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation

    NASA Astrophysics Data System (ADS)

    Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Zhu, L.

    2006-11-01

    The Utah State University Gauss-Markov Kalman Filter (GMKF) was developed as part of the Global Assimilation of Ionospheric Measurements (GAIM) program. The GMKF uses a physics-based model of the ionosphere and a Gauss-Markov Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) observations. The physics-based model is the Ionospheric Forecast Model (IFM), which accounts for five ion species and covers the E region, F region, and the topside from 90 to 1400 km altitude. Within the GMKF, the IFM derived ionospheric densities constitute a background density field on which perturbations are superimposed based on the available data and their errors. In the current configuration, the GMKF assimilates slant total electron content (TEC) from a variable number of global positioning satellite (GPS) ground sites, bottomside electron density (Ne) profiles from a variable number of ionosondes, in situ Ne from four Defense Meteorological Satellite Program (DMSP) satellites, and nighttime line-of-sight ultraviolet (UV) radiances measured by satellites. To test the GMKF for real-time operations and to validate its ionospheric density specifications, we have tested the model performance for a variety of geophysical conditions. During these model runs various combination of data types and data quantities were assimilated. To simulate real-time operations, the model ran continuously and automatically and produced three-dimensional global electron density distributions in 15 min increments. In this paper we will describe the Gauss-Markov Kalman filter model and present results of our validation study, with an emphasis on comparisons with independent observations.

  14. Dendritic Cells in Kidney Transplant Biopsy Samples Are Associated with T Cell Infiltration and Poor Allograft Survival

    PubMed Central

    De Serres, Sacha A.; Safa, Kassem; Bijol, Vanesa; Ueno, Takuya; Onozato, Maristela L.; Iafrate, A. John; Herter, Jan M.; Lichtman, Andrew H.; Mayadas, Tanya N.; Guleria, Indira; Rennke, Helmut G.; Najafian, Nader; Chandraker, Anil

    2015-01-01

    Progress in long-term renal allograft survival continues to lag behind the progress in short-term transplant outcomes. Dendritic cells are the most efficient antigen-presenting cells, but surprisingly little attention has been paid to their presence in transplanted kidneys. We used dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin as a marker of dendritic cells in 105 allograft biopsy samples from 105 kidney transplant recipients. High dendritic cell density was associated with poor allograft survival independent of clinical variables. Moreover, high dendritic cell density correlated with greater T cell proliferation and poor outcomes in patients with high total inflammation scores, including inflammation in areas of tubular atrophy. We then explored the association between dendritic cells and histologic variables associated with poor prognosis. Multivariate analysis revealed an independent association between the densities of dendritic cells and T cells. In biopsy samples with high dendritic cell density, electron microscopy showed direct physical contact between infiltrating lymphocytes and cells that have the ultrastructural morphologic characteristics of dendritic cells. The origin of graft dendritic cells was sought in nine sex-mismatched recipients using XY fluorescence in situ hybridization. Whereas donor dendritic cells predominated initially, the majority of dendritic cells in late allograft biopsy samples were of recipient origin. Our data highlight the prognostic value of dendritic cell density in allograft biopsy samples, suggest a new role for these cells in shaping graft inflammation, and provide a rationale for targeting dendritic cell recruitment to promote long-term allograft survival. PMID:25855773

  15. Predator Cue and Prey Density Interactively Influence Indirect Effects on Basal Resources in Intertidal Oyster Reefs

    PubMed Central

    Hughes, A. Randall; Rooker, Kelly; Murdock, Meagan; Kimbro, David L.

    2012-01-01

    Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions. PMID:22970316

  16. Mars Global Surveyor Radio Science Electron Density Profiles: Interannual Variability and Implications for the Neutral Atmosphere

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    The Mars Global Surveyor (MGS) Radio Science (RS) experiment employs an ultrastable oscillator aboard the spacecraft. The signal from the oscillator to Earth is refracted by the Martian ionosphere, allowing retrieval of electron density profiles versus radius and geopotential. The present analysis is carried out on five sets of occultation measurements: (1) four obtained near northern summer solstice (Ls = 74-116, near aphelion) at high northern latitudes (64.7-77.6N), and (2) one set of profiles approaching equinox conditions (Ls = 135- 146) at high southern latitudes (64.7-69.1S). Electron density profiles (95 to 200 km) are examined over a narrow range of solar zenith angles (76.5-86.9 degrees) for local true solar times of (1) 3-4 hours and (2) 12.1 hours. Variations spanning 1-Martian year are specifically examined in the Northern hemisphere.

  17. Plasma Flow During RF Discharges in VASIMR

    NASA Technical Reports Server (NTRS)

    Jacobson, V. T.; Chang Diaz, F. R.; Squire, J. P.; Ilin, A. V.; Bengtson, R. D.; Carter, M. D.; Goulding, R. H.

    1999-01-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) plasma source consists of a helical antenna, driven at frequencies of 4 to 19 MHz with powers up to 1 kW, in a magnetic field up to 3 kG. Helium is the current test gas, and future experiments with hydrogen are planned. Plasma density and temperature profiles were measured by a reciprocating Langmuir probe, and plasma flow profiles were measured with a reciprocating Mach probe. Both probes were located about 0.5 m downstream from the helical antenna. The plasma source operated in capacitive and inductive modes in addition to a helicon mode. During capacitive and inductive modes, densities were low and plasma flow was < 0.5 Cs. When the plasma operated in a helicon mode, the densities measured downstream from the source were higher [10(exp 12) / cubic cm ] and plasma flow along the magnetic field was of the order Mach 1. Details of the measurements will be shown.

  18. MODFLOW/MT3DMS-based simulation of variable-density ground water flow and transport

    USGS Publications Warehouse

    Langevin, C.D.; Guo, W.

    2006-01-01

    This paper presents an approach for coupling MODFLOW and MT3DMS for the simulation of variable-density ground water flow. MODFLOW routines were modified to solve a variable-density form of the ground water flow equation in which the density terms are calculated using an equation of state and the simulated MT3DMS solute concentrations. Changes to the MODFLOW and MT3DMS input files were kept to a minimum, and thus existing data files and data files created with most pre- and postprocessors can be used directly with the SEAWAT code. The approach was tested by simulating the Henry problem and two of the saltpool laboratory experiments (low- and high-density cases). For the Henry problem, the simulated results compared well with the steady-state semianalytic solution and also the transient isochlor movement as simulated by a finite-element model. For the saltpool problem, the simulated breakthrough curves compared better with the laboratory measurements for the low-density case than for the high-density case but showed good agreement with the measured salinity isosurfaces for both cases. Results from the test cases presented here indicate that the MODFLOW/MT3DMS approach provides accurate solutions for problems involving variable-density ground water flow and solute transport. ?? 2006 National Ground Water Association.

  19. A Variable Frequency, Mis-Match Tolerant, Inductive Plasma Source

    NASA Astrophysics Data System (ADS)

    Rogers, Anthony; Kirchner, Don; Skiff, Fred

    2014-10-01

    Presented here is a survey and analysis of an inductively coupled, magnetically confined, singly ionized Argon plasma generated by a square-wave, variable frequency plasma source. The helicon-style antenna is driven directly by the class ``D'' amplifier without matching network for increased efficiency while maintaining independent control of frequency and applied power at the feed point. The survey is compared to similar data taken using a traditional exciter--power amplifier--matching network source. Specifically, the flexibility of this plasma source in terms of the independent control of electron plasma temperature and density is discussed in comparison to traditional source arrangements. Supported by US DOE Grant DE-FG02-99ER54543.

  20. Variability in energy density of forage fishes from the Bay of Biscay (north-east Atlantic Ocean): reliability of functional grouping based on prey quality.

    PubMed

    Spitz, J; Jouma'a, J

    2013-06-01

    Energy densities of 670 fishes belonging to nine species were measured to evaluate intraspecific variability. Functional groups based on energy density appeared to be sufficiently robust to individual variability to provide a classification of forage fish quality applicable in a variety of ecological fields including ecosystem modelling. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  1. The impact of visual layout factors on performance in Web pages: a cross-language study.

    PubMed

    Parush, Avi; Shwarts, Yonit; Shtub, Avy; Chandra, M Jeya

    2005-01-01

    Visual layout has a strong impact on performance and is a critical factor in the design of graphical user interfaces (GUIs) and Web pages. Many design guidelines employed in Web page design were inherited from human performance literature and GUI design studies and practices. However, few studies have investigated the more specific patterns of performance with Web pages that may reflect some differences between Web page and GUI design. We investigated interactions among four visual layout factors in Web page design (quantity of links, alignment, grouping indications, and density) in two experiments: one with pages in Hebrew, entailing right-to-left reading, and the other with English pages, entailing left-to-right reading. Some performance patterns (measured by search times and eye movements) were similar between languages. Performance was particularly poor in pages with many links and variable densities, but it improved with the presence of uniform density. Alignment was not shown to be a performance-enhancing factor. The findings are discussed in terms of the similarities and differences in the impact of layout factors between GUIs and Web pages. Actual or potential applications of this research include specific guidelines for Web page design.

  2. Dose specification for radiation therapy: dose to water or dose to medium?

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Li, Jinsheng

    2011-05-01

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.

  3. Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer.

    PubMed

    Kaur, Harsimar B; Guedes, Liana B; Lu, Jiayun; Maldonado, Laneisha; Reitz, Logan; Barber, John R; De Marzo, Angelo M; Tosoian, Jeffrey J; Tomlins, Scott A; Schaeffer, Edward M; Joshu, Corinne E; Sfanos, Karen S; Lotan, Tamara L

    2018-05-30

    The inflammatory microenvironment plays an important role in the pathogenesis and progression of tumors and may be associated with somatic genomic alterations. We examined the association of tumor-infiltrating T-cell density with clinical-pathologic variables, tumor molecular subtype, and oncologic outcomes in surgically treated primary prostate cancer occurring in patients of European-American or African-American ancestry. We evaluated 312 primary prostate tumors, enriched for patients with African-American ancestry and high grade disease. Tissue microarrays were immunostained for CD3, CD8, and FOXP3 and were previously immunostained for ERG and PTEN using genetically validated protocols. Image analysis for quantification of T-cell density in tissue microarray tumor spots was performed. Automated quantification of T-cell densities in tumor-containing regions of tissue microarray spots and standard histologic sections were correlated (r = 0.73, p < 0.00001) and there was good agreement between visual and automated T-cell density counts on tissue microarray spots (r = 0.93, p < 0.00001). There was a significant correlation between CD3+, CD8+, and FOXP3+ T-cell densities (p < 0.00001), but these were not associated with most clinical or pathologic variables. Increased T-cell density was significantly associated with ERG positivity (median 309 vs. 188 CD3+ T cells/mm 2 ; p = 0.0004) and also with PTEN loss (median 317 vs. 192 CD3+ T cells/mm 2 ; p = 0.001) in the combined cohort of matched European-American and African-American ancestry patients. The same association or a similar trend was present in patients of both ancestries when analyzed separately. When the African-American patients from the matched race set were combined with a separate high grade set of African-American cases, there was a weak association of increased FOXP3+ T-cell densities with increased risk of metastasis in multivariable analysis. Though high T-cell density is associated with specific molecular subclasses of prostate cancer, we did not find an association of T-cell density with racial ancestry.

  4. Site specific passive acoustic detection and densities of humpback whale calls off the coast of California

    NASA Astrophysics Data System (ADS)

    Helble, Tyler Adam

    Passive acoustic monitoring of marine mammal calls is an increasingly important method for assessing population numbers, distribution, and behavior. Automated methods are needed to aid in the analyses of the recorded data. When a mammal vocalizes in the marine environment, the received signal is a filtered version of the original waveform emitted by the marine mammal. The waveform is reduced in amplitude and distorted due to propagation effects that are influenced by the bathymetry and environment. It is important to account for these effects to determine a site-specific probability of detection for marine mammal calls in a given study area. A knowledge of that probability function over a range of environmental and ocean noise conditions allows vocalization statistics from recordings of single, fixed, omnidirectional sensors to be compared across sensors and at the same sensor over time with less bias and uncertainty in the results than direct comparison of the raw statistics. This dissertation focuses on both the development of new tools needed to automatically detect humpback whale vocalizations from single-fixed omnidirectional sensors as well as the determination of the site-specific probability of detection for monitoring sites off the coast of California. Using these tools, detected humpback calls are "calibrated" for environmental properties using the site-specific probability of detection values, and presented as call densities (calls per square kilometer per time). A two-year monitoring effort using these calibrated call densities reveals important biological and ecological information on migrating humpback whales off the coast of California. Call density trends are compared between the monitoring sites and at the same monitoring site over time. Call densities also are compared to several natural and human-influenced variables including season, time of day, lunar illumination, and ocean noise. The results reveal substantial differences in call densities between the two sites which were not noticeable using uncorrected (raw) call counts. Additionally, a Lombard effect was observed for humpback whale vocalizations in response to increasing ocean noise. The results presented in this thesis develop techniques to accurately measure marine mammal abundances from passive acoustic sensors.

  5. The association between higher nurse staffing standards in the fee schedules and the geographic distribution of hospital nurses: A cross-sectional study using nationwide administrative data.

    PubMed

    Morioka, Noriko; Tomio, Jun; Seto, Toshikazu; Kobayashi, Yasuki

    2017-01-01

    In Japan, the revision of the fee schedules in 2006 introduced a new category of general care ward for more advanced care, with a higher staffing standard, a patient-to-nurse ratio of 7:1. Previous studies have suggested that these changes worsened inequalities in the geographic distribution of nurses, but there have been few quantitative studies evaluating this effect. This study aimed to investigate the association between the distribution of 7:1 beds and the geographic distribution of hospital nursing staffs. We conducted a secondary data analysis of hospital reimbursement reports in 2012 in Japan. The study units were secondary medical areas (SMAs) in Japan, which are roughly comparable to hospital service areas in the United States. The outcome variable was the nurse density per 100,000 population in each SMA. The 7:1 bed density per 100,000 population was the main independent variable. To investigate the association between the nurse density and 7:1 bed density, adjusting for other variables, we applied a multiple linear regression model, with nurse density as an outcome variable, and the bed densities by functional category of inpatient ward as independent variables, adding other variables related to socio-economic status and nurse workforce. To investigate whether 7:1 bed density made the largest contribution to the nurse density, compared to other bed densities, we estimated the standardized regression coefficients. There were 344 SMAs in the study period, of which 343 were used because of data availability. There were approximately 553,600 full time equivalent nurses working in inpatient wards in hospitals. The mean (standard deviation) of the full time equivalent nurse density was 426.4 (147.5) and for 7:1 bed density, the figures were 271.9 (185.9). The 7:1 bed density ranged from 0.0 to 1,295.5. After adjusting for the possible confounders, there were more hospital nurses in the areas with higher densities of 7:1 beds (standardized regression coefficient 0.62, 95% confidence interval 0.56-0.68). We found that the 7:1 nurse staffing standard made the largest contribution to the geographic distribution of hospital nurses, adjusted for socio-economic status and nurse workforce-related factors.

  6. Density-dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus).

    PubMed

    Cubaynes, Sarah; MacNulty, Daniel R; Stahler, Daniel R; Quimby, Kira A; Smith, Douglas W; Coulson, Tim

    2014-11-01

    Understanding the population dynamics of top-predators is essential to assess their impact on ecosystems and to guide their management. Key to this understanding is identifying the mechanisms regulating vital rates. Determining the influence of density on survival is necessary to understand the extent to which human-caused mortality is compensatory or additive. In wolves (Canis lupus), empirical evidence for density-dependent survival is lacking. Dispersal is considered the principal way in which wolves adjust their numbers to prey supply or compensate for human exploitation. However, studies to date have primarily focused on exploited wolf populations, in which density-dependent mechanisms are likely weak due to artificially low wolf densities. Using 13 years of data on 280 collared wolves in Yellowstone National Park, we assessed the effect of wolf density, prey abundance and population structure, as well as winter severity, on age-specific survival in two areas (prey-rich vs. prey-poor) of the national park. We further analysed cause-specific mortality and explored the factors driving intraspecific aggression in the prey-rich northern area of the park. Overall, survival rates decreased during the study. In northern Yellowstone, density dependence regulated adult survival through an increase in intraspecific aggression, independent of prey availability. In the interior of the park, adult survival was less variable and density-independent, despite reduced prey availability. There was no effect of prey population structure in northern Yellowstone, or of winter severity in either area. Survival was similar among yearlings and adults, but lower for adults older than 6 years. Our results indicate that density-dependent intraspecific aggression is a major driver of adult wolf survival in northern Yellowstone, suggesting intrinsic density-dependent mechanisms have the potential to regulate wolf populations at high ungulate densities. When low prey availability or high removal rates maintain wolves at lower densities, limited inter-pack interactions may prevent density-dependent survival, consistent with our findings in the interior of the park. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  7. Marine reserves as linked social-ecological systems.

    PubMed

    Pollnac, Richard; Christie, Patrick; Cinner, Joshua E; Dalton, Tracey; Daw, Tim M; Forrester, Graham E; Graham, Nicholas A J; McClanahan, Timothy R

    2010-10-26

    Marine reserves are increasingly recognized as having linked social and ecological dynamics. This study investigates how the ecological performance of 56 marine reserves throughout the Philippines, Caribbean, and Western Indian Ocean (WIO) is related to both reserve design features and the socioeconomic characteristics in associated coastal communities. Ecological performance was measured as fish biomass in the reserve relative to nearby areas. Of the socioeconomic variables considered, human population density and compliance with reserve rules had the strongest effects on fish biomass, but the effects of these variables were region specific. Relationships between population density and the reserve effect on fish biomass were negative in the Caribbean, positive in the WIO, and not detectable in the Philippines. Differing associations between population density and reserve effectiveness defy simple explanation but may depend on human migration to effective reserves, depletion of fish stocks outside reserves, or other social factors that change with population density. Higher levels of compliance reported by resource users was related to higher fish biomass in reserves compared with outside, but this relationship was only statistically significant in the Caribbean. A heuristic model based on correlations between social, cultural, political, economic, and other contextual conditions in 127 marine reserves showed that high levels of compliance with reserve rules were related to complex social interactions rather than simply to enforcement of reserve rules. Comparative research of this type is important for uncovering the complexities surrounding human dimensions of marine reserves and improving reserve management.

  8. Common themes and cell type specific variations of higher order chromatin arrangements in the mouse

    PubMed Central

    Mayer, Robert; Brero, Alessandro; von Hase, Johann; Schroeder, Timm; Cremer, Thomas; Dietzel, Steffen

    2005-01-01

    Background Similarities as well as differences in higher order chromatin arrangements of human cell types were previously reported. For an evolutionary comparison, we now studied the arrangements of chromosome territories and centromere regions in six mouse cell types (lymphocytes, embryonic stem cells, macrophages, fibroblasts, myoblasts and myotubes) with fluorescence in situ hybridization and confocal laser scanning microscopy. Both species evolved pronounced differences in karyotypes after their last common ancestors lived about 87 million years ago and thus seem particularly suited to elucidate common and cell type specific themes of higher order chromatin arrangements in mammals. Results All mouse cell types showed non-random correlations of radial chromosome territory positions with gene density as well as with chromosome size. The distribution of chromosome territories and pericentromeric heterochromatin changed during differentiation, leading to distinct cell type specific distribution patterns. We exclude a strict dependence of these differences on nuclear shape. Positional differences in mouse cell nuclei were less pronounced compared to human cell nuclei in agreement with smaller differences in chromosome size and gene density. Notably, the position of chromosome territories relative to each other was very variable. Conclusion Chromosome territory arrangements according to chromosome size and gene density provide common, evolutionary conserved themes in both, human and mouse cell types. Our findings are incompatible with a previously reported model of parental genome separation. PMID:16336643

  9. Factorial experimental design for the culture of human embryonic stem cells as aggregates in stirred suspension bioreactors reveals the potential for interaction effects between bioprocess parameters.

    PubMed

    Hunt, Megan M; Meng, Guoliang; Rancourt, Derrick E; Gates, Ian D; Kallos, Michael S

    2014-01-01

    Traditional optimization of culture parameters for the large-scale culture of human embryonic stem cells (ESCs) as aggregates is carried out in a stepwise manner whereby the effect of varying each culture parameter is investigated individually. However, as evidenced by the wide range of published protocols and culture performance indicators (growth rates, pluripotency marker expression, etc.), there is a lack of systematic investigation into the true effect of varying culture parameters especially with respect to potential interactions between culture variables. Here we describe the design and execution of a two-parameter, three-level (3(2)) factorial experiment resulting in nine conditions that were run in duplicate 125-mL stirred suspension bioreactors. The two parameters investigated here were inoculation density and agitation rate, which are easily controlled, but currently, poorly characterized. Cell readouts analyzed included fold expansion, maximum density, and exponential growth rate. Our results reveal that the choice of best case culture parameters was dependent on which cell property was chosen as the primary output variable. Subsequent statistical analyses via two-way analysis of variance indicated significant interaction effects between inoculation density and agitation rate specifically in the case of exponential growth rates. Results indicate that stepwise optimization has the potential to miss out on the true optimal case. In addition, choosing an optimum condition for a culture output of interest from the factorial design yielded similar results when repeated with the same cell line indicating reproducibility. We finally validated that human ESCs remain pluripotent in suspension culture as aggregates under our optimal conditions and maintain their differentiation capabilities as well as a stable karyotype and strong expression levels of specific human ESC markers over several passages in suspension bioreactors.

  10. Prediction of isometric motor tasks and effort levels based on high-density EMG in patients with incomplete spinal cord injury

    NASA Astrophysics Data System (ADS)

    Jordanić, Mislav; Rojas-Martínez, Mónica; Mañanas, Miguel Angel; Francesc Alonso, Joan

    2016-08-01

    Objective. The development of modern assistive and rehabilitation devices requires reliable and easy-to-use methods to extract neural information for control of devices. Group-specific pattern recognition identifiers are influenced by inter-subject variability. Based on high-density EMG (HD-EMG) maps, our research group has already shown that inter-subject muscle activation patterns exist in a population of healthy subjects. The aim of this paper is to analyze muscle activation patterns associated with four tasks (flexion/extension of the elbow, and supination/pronation of the forearm) at three different effort levels in a group of patients with incomplete Spinal Cord Injury (iSCI). Approach. Muscle activation patterns were evaluated by the automatic identification of these four isometric tasks along with the identification of levels of voluntary contractions. Two types of classifiers were considered in the identification: linear discriminant analysis and support vector machine. Main results. Results show that performance of classification increases when combining features extracted from intensity and spatial information of HD-EMG maps (accuracy = 97.5%). Moreover, when compared to a population with injuries at different levels, a lower variability between activation maps was obtained within a group of patients with similar injury suggesting stronger task-specific and effort-level-specific co-activation patterns, which enable better prediction results. Significance. Despite the challenge of identifying both the four tasks and the three effort levels in patients with iSCI, promising results were obtained which support the use of HD-EMG features for providing useful information regarding motion and force intention.

  11. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  12. Fluctuation relation based continuum model for thermoviscoplasticity in metals

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, Shubhankar; Roy, Debasish; Reddy, J. N.; Srinivasa, Arun

    2016-11-01

    A continuum plasticity model for metals is presented from considerations of non-equilibrium thermodynamics. Of specific interest is the application of a fluctuation relation that subsumes the second law of thermodynamics en route to deriving the evolution equations for the internal state variables. The modelling itself is accomplished in a two-temperature framework that appears naturally by considering the thermodynamic system to be composed of two weakly interacting subsystems, viz. a kinetic vibrational subsystem corresponding to the atomic lattice vibrations and a configurational subsystem of the slower degrees of freedom describing the motion of defects in a plastically deforming metal. An apparently physical nature of the present model derives upon considering the dislocation density, which characterizes the configurational subsystem, as a state variable. Unlike the usual constitutive modelling aided by the second law of thermodynamics that merely provides a guideline to select the admissible (though possibly non-unique) processes, the present formalism strictly determines the process or the evolution equations for the thermodynamic states while including the effect of fluctuations. The continuum model accommodates finite deformation and describes plastic deformation in a yield-free setup. The theory here is essentially limited to face-centered cubic metals modelled with a single dislocation density as the internal variable. Limited numerical simulations are presented with validation against relevant experimental data.

  13. The mortality burden of hourly temperature variability in five capital cities, Australia: Time-series and meta-regression analysis.

    PubMed

    Cheng, Jian; Xu, Zhiwei; Bambrick, Hilary; Su, Hong; Tong, Shilu; Hu, Wenbiao

    2017-12-01

    Unstable weather, such as intra- and inter-day temperature variability, can impair the health and shorten the survival time of population around the world. Climate change will cause Earth's surface temperature rise, but has unclear effects on temperature variability, making it urgent to understand the characteristics of the burden of temperature variability on mortality, regionally and nationally. This paper aims to quantify the mortality risk of exposure to short-term temperature variability, estimate the resulting death toll and explore how the strength of temperature variability effects will vary as a function of city-level characteristics. Ten-year (2000-2009) time-series data on temperature and mortality were collected for five largest Australia's cities (Sydney, Melbourne, Brisbane, Perth and Adelaide), collectively registering 708,751 deaths in different climates. Short-term temperature variability was captured and represented as the hourly temperature standard deviation within two days. Three-stage analyses were used to assess the burden of temperature variability on mortality. First, we modelled temperature variability-mortality relation and estimated the relative risk of death for each city, using a time-series quasi-Poisson regression model. Second, we used meta-analysis to pool the city-specific estimates, and meta-regression to explore if some city-level factors will modify the population vulnerability to temperature variability. Finally, we calculated the city-specific deaths attributable to temperature variability, and applied such estimates to the whole of Australia as a reflection of the nation-wide death burden associated with temperature variability. We found evidence of significant associations between temperature variability and mortality in all cities assessed. Deaths associated with each 1°C rise in temperature variability elevated by 0.28% (95% confidence interval (CI): 0.05%, 0.52%) in Melbourne to 1.00% (95%CI: 0.52%, 1.48%) in Brisbane, with a pooled estimate of 0.51% (95%CI: 0.33%, 0.69%) for Australia. Subtropical and temperate regions showed no apparent difference in temperature variability impacts. Meta-regression analyses indicated that the mortality risk could be influenced by city-specific factors: latitude, mean temperature, population density and the prevalence of several chronic diseases. Taking account of contributions from the entire time-series, temperature variability was estimated to account for 0.99% to 3.24% of deaths across cities, with a nation-wide attributable fraction of 1.67% (9.59 deaths per 100, 000 population per year). Hourly temperature variability may be an important risk factor of weather-related deaths and led to a sizeable mortality burden. This study underscores the need for developing specific and effective interventions in Australia to lessen the health consequences of temperature variability. Copyright © 2017. Published by Elsevier Ltd.

  14. Estimation of the probability of success in petroleum exploration

    USGS Publications Warehouse

    Davis, J.C.

    1977-01-01

    A probabilistic model for oil exploration can be developed by assessing the conditional relationship between perceived geologic variables and the subsequent discovery of petroleum. Such a model includes two probabilistic components, the first reflecting the association between a geologic condition (structural closure, for example) and the occurrence of oil, and the second reflecting the uncertainty associated with the estimation of geologic variables in areas of limited control. Estimates of the conditional relationship between geologic variables and subsequent production can be found by analyzing the exploration history of a "training area" judged to be geologically similar to the exploration area. The geologic variables are assessed over the training area using an historical subset of the available data, whose density corresponds to the present control density in the exploration area. The success or failure of wells drilled in the training area subsequent to the time corresponding to the historical subset provides empirical estimates of the probability of success conditional upon geology. Uncertainty in perception of geological conditions may be estimated from the distribution of errors made in geologic assessment using the historical subset of control wells. These errors may be expressed as a linear function of distance from available control. Alternatively, the uncertainty may be found by calculating the semivariogram of the geologic variables used in the analysis: the two procedures will yield approximately equivalent results. The empirical probability functions may then be transferred to the exploration area and used to estimate the likelihood of success of specific exploration plays. These estimates will reflect both the conditional relationship between the geological variables used to guide exploration and the uncertainty resulting from lack of control. The technique is illustrated with case histories from the mid-Continent area of the U.S.A. ?? 1977 Plenum Publishing Corp.

  15. Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers.

    PubMed

    Björklund, Jesper; Seftigen, Kristina; Schweingruber, Fritz; Fonti, Patrick; von Arx, Georg; Bryukhanova, Marina V; Cuny, Henri E; Carrer, Marco; Castagneri, Daniele; Frank, David C

    2017-11-01

    Interannual variability of wood density - an important plant functional trait and environmental proxy - in conifers is poorly understood. We therefore explored the anatomical basis of density. We hypothesized that earlywood density is determined by tracheid size and latewood density by wall dimensions, reflecting their different functional tasks. To determine general patterns of variability, density parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree-ring width parameters and local climate. We performed the same analyses with density and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to density were disentangled with sensitivity analyses. Notably, correlations between density and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of density varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood density, while wall dimensions become more influential for latewood density. Our novel approach of integrating detailed anatomical data with large-scale tree-ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. On the design of paleoenvironmental data networks for estimating large-scale patterns of climate

    NASA Astrophysics Data System (ADS)

    Kutzbach, J. E.; Guetter, P. J.

    1980-09-01

    Guidelines are determined for the spatial density and location of climatic variables (temperature and precipitation) that are appropriate for estimating the continental- to hemispheric-scale pattern of atmospheric circulation (sea-level pressure). Because instrumental records of temperature and precipitation simulate the climatic information that is contained in certain paleoenvironmental records (tree-ring, pollen, and written-documentary records, for example), these guidelines provide useful sampling strategies for reconstructing the pattern of atmospheric circulation from paleoenvironmental records. The statistical analysis uses a multiple linear regression model. The sampling strategies consist of changes in site density (from 0.5 to 2.5 sites per million square kilometers) and site location (from western North American sites only to sites in Japan, North America, and western Europe) of the climatic data. The results showed that the accuracy of specification of the pattern of sea-level pressure: (1) is improved if sites with climatic records are spread as uniformly as possible over the area of interest; (2) increases with increasing site density-at least up to the maximum site density used in this study; (3) is improved if sites cover an area that extends considerably beyond the limits of the area of interest. The accuracy of specification was lower for independent data than for the data that were used to develop the regression model; some skill was found for almost all sampling strategies.

  17. The frequency-domain approach for apparent density mapping

    NASA Astrophysics Data System (ADS)

    Tong, T.; Guo, L.

    2017-12-01

    Apparent density mapping is a technique to estimate density distribution in the subsurface layer from the observed gravity data. It has been widely applied for geologic mapping, tectonic study and mineral exploration for decades. Apparent density mapping usually models the density layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the gravity anomalies to determine the density of each prism. Conventionally, the frequency-domain approach, which assumes that both top and bottom surfaces of the layer are horizontal, is usually utilized for fast density mapping. However, such assumption is not always valid in the real world, since either the top surface or the bottom surface may be variable-depth. Here, we presented a frequency-domain approach for apparent density mapping, which permits both the top and bottom surfaces of the layer to be variable-depth. We first derived the formula for forward calculation of gravity anomalies caused by the density layer, whose top and bottom surfaces are variable-depth, and the formula for inversion of gravity anomalies for the density distribution. Then we proposed the procedure for density mapping based on both the formulas of inversion and forward calculation. We tested the approach on the synthetic data, which verified its effectiveness. We also tested the approach on the real Bouguer gravity anomalies data from the central South China. The top surface was assumed to be flat and was on the sea level, and the bottom surface was considered as the Moho surface. The result presented the crustal density distribution, which was coinciding well with the basic tectonic features in the study area.

  18. Dying like rabbits: general determinants of spatio-temporal variability in survival.

    PubMed

    Tablado, Zulima; Revilla, Eloy; Palomares, Francisco

    2012-01-01

    1. Identifying general patterns of how and why survival rates vary across space and time is necessary to truly understand population dynamics of a species. However, this is not an easy task given the complexity and interactions of processes involved, and the interpopulation differences in main survival determinants. 2. Here, using European rabbits (Oryctolagus cuniculus) as a model and information from local studies, we investigated whether we could make inferences about trends and drivers of survival of a species that are generalizable to large spatio-temporal scales. To do this, we first focused on overall survival and then examined cause-specific mortalities, mainly predation and diseases, which may lead to those patterns. 3. Our results show that within the large-scale variability in rabbit survival, there exist general patterns that are explained by the integration of factors previously known to be important at the local level (i.e. age, climate, diseases, predation or density dependence). We found that both inter- and intrastudy survival rates increased in magnitude and decreased in variability as rabbits grow old, although this tendency was less pronounced in populations with epidemic diseases. Some causes leading to these higher mortalities in young rabbits could be the stronger effect of rainfall at those ages, as well as, other death sources like malnutrition or infanticide. 4. Predation is also greater for newborns and juveniles, especially in population without diseases. Apart from the effect of diseases, predation patterns also depended on factors, such as, density, season, and type and density of predators. Finally, we observed that infectious diseases also showed general relationships with climate, breeding (i.e. new susceptible rabbits) and age, although the association type varied between myxomatosis and rabbit haemorrhagic disease. 5. In conclusion, large-scale patterns of spatio-temporal variability in rabbit survival emerge from the combination of different factors that interrelate both directly and through density dependence. This highlights the importance of performing more comprehensive studies to reveal combined effects and complex relationships that help us to better understand the mechanisms underlying population dynamics. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  19. Effects of extrusion variables on the properties of waxy hulless barley extrudates.

    PubMed

    Köksel, Hamit; Ryu, Gy-Hyung; Başman, Arzu; Demiralp, Hande; Ng, Perry K W

    2004-02-01

    The objective of this research was to investigate the extrudability of waxy hulless barley flour under various extrusion conditions. Waxy hulless barley flour was processed in a laboratory-scale corotating twin-screw extruder with different levels of feed moisture content (22.3, 26.8, and 30.7%) and die temperature (130, 150, and 170 degrees C) to develop a snack food with high beta-glucan content. The effects of extrusion condition variables (screw configuration, moisture, and temperature) on the system variables (pressure and specific mechanical energy), the extrudate physical properties (sectional expansion index, bulk density), starch gelatinization, pasting properties (cold peak viscosity, trough viscosity, and final viscosity), and beta-glucan contents were determined. Results were evaluated by using response surface methodology. Increased extrusion temperature and feed moisture content resulted in decreases in exit die pressure and specific mechanical energy values. For extrudates extruded under low shear screw configuration (LS), increased barrel temperature decreased sectional expansion index (SEI) values at both low and high moisture contents. The feed moisture seems to have an inverse relationship with SEI over the range studied. Bulk density was higher at higher moisture contents, for both low and high barrel temperatures, for samples extruded under high shear screw configuration (HS) and LS. Cold peak viscosities (CV) were observed in all samples. The CV increased with the increase in extrusion temperature and feed moisture content. Although beta-glucan contents of the LS extrudates were comparable to that of barley flour sample, HS samples had generally lower beta-glucan contents. The extrusion cooking technique seems to be promising for the production of snack foods with high beta-glucan content, especially using LS conditions.

  20. Optimization of Layer Densities for Spacecraft Multilayered Insulation Systems

    NASA Technical Reports Server (NTRS)

    Johnson, W. L.

    2009-01-01

    Numerous tests of various multilayer insulation systems have indicated that there are optimal densities for these systems. However, the only method of calculating this optimal density was by a complex physics based algorithm developed by McIntosh. In the 1970's much data were collected on the performance of these insulation systems with many different variables analyzed. All formulas generated included number of layers and layer density as geometric variables in solving for the heat flux, none of them was in a differentiable form for a single geometric variable. It was recently discovered that by converting the equations from heat flux to thermal conductivity using Fourier's Law, the equations became functions of layer density, temperatures, and material properties only. The thickness and number of layers of the blanket were merged into a layer density. These equations were then differentiated with respect to layer density. By setting the first derivative equal to zero, and solving for the layer density, the critical layer density was determined. Taking a second derivative showed that the critical layer density is a minimum in the function and thus the optimum density for minimal heat leak, this is confirmed by plotting the original function. This method was checked and validated using test data from the Multipurpose Hydrogen Testbed which was designed using McIntosh's algorithm.

  1. Temporal and basin-specific population trends of quagga mussels on soft sediment of a multi-basin reservoir

    USGS Publications Warehouse

    Caldwell, Timothy J; Rosen, Michael R.; Chandra, Sudeep; Acharya, Kumud; Caires, Andrea M; Davis, Clinton J.; Thaw, Melissa; Webster, Daniel M.

    2015-01-01

    Invasive quagga (Dreissena bugnesis) and zebra (Dreissena ploymorpha) mussels have rapidly spread throughout North America. Understanding the relationships between environmental variables and quagga mussels during the early stages of invasion will help management strategies and allow researchers to predict patterns of future invasions. Quagga mussels were detected in Lake Mead, NV/AZ in 2007, we monitored early invasion dynamics in 3 basins (Boulder Basin, Las Vegas Bay, Overton Arm) bi-annually from 2008-2011. Mean quagga density increased over time during the first year of monitoring and stabilized for the subsequent two years at the whole-lake scale (8 to 132 individuals·m-2, geometric mean), in Boulder Basin (73 to 875 individuals·m-2), and in Overton Arm(2 to 126 individuals·m-2). In Las Vegas Bay, quagga mussel density was low (9 to 44 individuals·m-2), which was correlated with high sediment metal concentrations and warmer (> 30°C) water temperatures associated with that basin. Carbon content in the sediment increased with depth in Lake Mead and during some sampling periods quagga density was also positively correlated with depth, but more research is required to determine the significance of this interaction. Laboratory growth experiments suggested that food quantity may limit quagga growth in Boulder Basin, indicating an opportunity for population expansion in this basin if primary productivity were to increase, but was not the case in Overton Arm. Overall quagga mussel density in Lake Mead is highly variable and patchy, suggesting that temperature, sediment size, and sediment metal concentrations, and sediment carbon content all contribute to mussel distribution patterns. Quagga mussel density in the soft sediment of Lake Mead expanded during initial colonization, and began to stabilize approximately 3 years after the initial invasion.

  2. Evolution of stochastic demography with life history tradeoffs in density-dependent age-structured populations.

    PubMed

    Lande, Russell; Engen, Steinar; Sæther, Bernt-Erik

    2017-10-31

    We analyze the stochastic demography and evolution of a density-dependent age- (or stage-) structured population in a fluctuating environment. A positive linear combination of age classes (e.g., weighted by body mass) is assumed to act as the single variable of population size, [Formula: see text], exerting density dependence on age-specific vital rates through an increasing function of population size. The environment fluctuates in a stationary distribution with no autocorrelation. We show by analysis and simulation of age structure, under assumptions often met by vertebrate populations, that the stochastic dynamics of population size can be accurately approximated by a univariate model governed by three key demographic parameters: the intrinsic rate of increase and carrying capacity in the average environment, [Formula: see text] and [Formula: see text], and the environmental variance in population growth rate, [Formula: see text] Allowing these parameters to be genetically variable and to evolve, but assuming that a fourth parameter, [Formula: see text], measuring the nonlinearity of density dependence, remains constant, the expected evolution maximizes [Formula: see text] This shows that the magnitude of environmental stochasticity governs the classical trade-off between selection for higher [Formula: see text] versus higher [Formula: see text] However, selection also acts to decrease [Formula: see text], so the simple life-history trade-off between [Formula: see text]- and [Formula: see text]-selection may be obscured by additional trade-offs between them and [Formula: see text] Under the classical logistic model of population growth with linear density dependence ([Formula: see text]), life-history evolution in a fluctuating environment tends to maximize the average population size. Published under the PNAS license.

  3. Predictors of idiopathic pulmonary fibrosis in absence of radiologic honeycombing: A cross sectional analysis in ILD patients undergoing lung tissue sampling.

    PubMed

    Salisbury, Margaret L; Xia, Meng; Murray, Susan; Bartholmai, Brian J; Kazerooni, Ella A; Meldrum, Catherine A; Martinez, Fernando J; Flaherty, Kevin R

    2016-09-01

    Idiopathic pulmonary fibrosis (IPF) can be diagnosed confidently and non-invasively when clinical and computed tomography (CT) criteria are met. Many do not meet these criteria due to absence of CT honeycombing. We investigated predictors of IPF and combinations allowing accurate diagnosis in individuals without honeycombing. We utilized prospectively collected clinical and CT data from patients enrolled in the Lung Tissue Research Consortium. Included patients had no honeycombing, no connective tissue disease, underwent diagnostic lung biopsy, and had CT pattern consistent with fibrosing ILD (n = 200). Logistic regression identified clinical and CT variables predictive of IPF. The probability of IPF was assessed at various cut-points of important clinical and CT variables. A multivariable model adjusted for age and gender found increasingly extensive reticular densities (OR 2.93, CI 95% 1.55-5.56, p = 0.001) predicted IPF, while increasing ground glass densities predicted a diagnosis other than IPF (OR 0.55, CI 95% 0.34-0.89, p = 0.02). The model-based probability of IPF was 80% or greater in patients with age at least 60 years and extent of reticular density one-third or more of total lung volume; for patients meeting or exceeding these clinical thresholds the specificity for IPF is 96% (CI 95% 91-100%) with 21 of 134 (16%) biopsies avoided. In patients with suspected fibrotic ILD and absence of CT honeycombing, extent of reticular and ground glass densities predict a diagnosis of IPF. The probability of IPF exceeds 80% in subjects over age 60 years with one-third of total lung having reticular densities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Predicting word-recognition performance in noise by young listeners with normal hearing using acoustic, phonetic, and lexical variables.

    PubMed

    McArdle, Rachel; Wilson, Richard H

    2008-06-01

    To analyze the 50% correct recognition data that were from the Wilson et al (this issue) study and that were obtained from 24 listeners with normal hearing; also to examine whether acoustic, phonetic, or lexical variables can predict recognition performance for monosyllabic words presented in speech-spectrum noise. The specific variables are as follows: (a) acoustic variables (i.e., effective root-mean-square sound pressure level, duration), (b) phonetic variables (i.e., consonant features such as manner, place, and voicing for initial and final phonemes; vowel phonemes), and (c) lexical variables (i.e., word frequency, word familiarity, neighborhood density, neighborhood frequency). The descriptive, correlational study will examine the influence of acoustic, phonetic, and lexical variables on speech recognition in noise performance. Regression analysis demonstrated that 45% of the variance in the 50% point was accounted for by acoustic and phonetic variables whereas only 3% of the variance was accounted for by lexical variables. These findings suggest that monosyllabic word-recognition-in-noise is more dependent on bottom-up processing than on top-down processing. The results suggest that when speech-in-noise testing is used in a pre- and post-hearing-aid-fitting format, the use of monosyllabic words may be sensitive to changes in audibility resulting from amplification.

  5. A torque-measuring micromotor provides operator independent measurements marking four different density areas in maxillae.

    PubMed

    Di Stefano, Danilo Alessio; Arosio, Paolo; Piattelli, Adriano; Perrotti, Vittoria; Iezzi, Giovanna

    2015-02-01

    Bone density at implant placement site is a key factor to obtain the primary stability of the fixture, which, in turn, is a prognostic factor for osseointegration and long-term success of an implant supported rehabilitation. Recently, an implant motor with a bone density measurement probe has been introduced. The aim of the present study was to test the objectiveness of the bone densities registered by the implant motor regardless of the operator performing them. A total of 3704 bone density measurements, performed by means of the implant motor, were registered by 39 operators at different implant sites during routine activity. Bone density measurements were grouped according to their distribution across the jaws. Specifically, four different areas were distinguished: a pre-antral (between teeth from first right maxillary premolar to first left maxillary premolar) and a sub-antral (more distally) zone in the maxilla, and an interforaminal (between and including teeth from first left mandibular premolar to first right mandibular premolar) and a retroforaminal (more distally) zone in the lower one. A statistical comparison was performed to check the inter-operators variability of the collected data. The device produced consistent and operator-independent bone density values at each tooth position, showing a reliable bone-density measurement. The implant motor demonstrated to be a helpful tool to properly plan implant placement and loading irrespective of the operator using it.

  6. A one-dimensional model for gas-solid heat transfer in pneumatic conveying

    NASA Astrophysics Data System (ADS)

    Smajstrla, Kody Wayne

    A one-dimensional ODE model reduced from a two-fluid model of a higher dimensional order is developed to study dilute, two-phase (air and solid particles) flows with heat transfer in a horizontal pneumatic conveying pipe. Instead of using constant air properties (e.g., density, viscosity, thermal conductivity) evaluated at the initial flow temperature and pressure, this model uses an iteration approach to couple the air properties with flow pressure and temperature. Multiple studies comparing the use of constant or variable air density, viscosity, and thermal conductivity are conducted to study the impact of the changing properties to system performance. The results show that the fully constant property calculation will overestimate the results of the fully variable calculation by 11.4%, while the constant density with variable viscosity and thermal conductivity calculation resulted in an 8.7% overestimation, the constant viscosity with variable density and thermal conductivity overestimated by 2.7%, and the constant thermal conductivity with variable density and viscosity calculation resulted in a 1.2% underestimation. These results demonstrate that gas properties varying with gas temperature can have a significant impact on a conveying system and that the varying density accounts for the majority of that impact. The accuracy of the model is also validated by comparing the simulation results to the experimental values found in the literature.

  7. Sample sizes to control error estimates in determining soil bulk density in California forest soils

    Treesearch

    Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber

    2016-01-01

    Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...

  8. Escherichia coli bacteria density in relation to turbidity, streamflow characteristics, and season in the Chattahoochee River near Atlanta, Georgia, October 2000 through September 2008—Description, statistical analysis, and predictive modeling

    USGS Publications Warehouse

    Lawrence, Stephen J.

    2012-01-01

    Regression analyses show that E. coli density in samples was strongly related to turbidity, streamflow characteristics, and season at both sites. The regression equation chosen for the Norcross data showed that 78 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), streamflow event (dry-weather flow or stormflow), season (cool or warm), and an interaction term that is the cross product of streamflow event and turbidity. The regression equation chosen for the Atlanta data showed that 76 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), water temperature, streamflow event, and an interaction term that is the cross product of streamflow event and turbidity. Residual analysis and model confirmation using new data indicated the regression equations selected at both sites predicted E. coli density within the 90 percent prediction intervals of the equations and could be used to predict E. coli density in real time at both sites.

  9. Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: A feasibility study

    PubMed Central

    Ding, Huanjun; Molloi, Sabee

    2012-01-01

    Purpose A simple and accurate measurement of breast density is crucial for the understanding of its impact in breast cancer risk models. The feasibility to quantify volumetric breast density with a photon-counting spectral mammography system has been investigated using both computer simulations and physical phantom studies. Methods A computer simulation model involved polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector has been evaluated for breast density quantification. The figure-of-merit (FOM), which was defined as the signal-to-noise ratio (SNR) of the dual energy image with respect to the square root of mean glandular dose (MGD), was chosen to optimize the imaging protocols, in terms of tube voltage and splitting energy. A scanning multi-slit photon-counting spectral mammography system has been employed in the experimental study to quantitatively measure breast density using dual energy decomposition with glandular and adipose equivalent phantoms of uniform thickness. Four different phantom studies were designed to evaluate the accuracy of the technique, each of which addressed one specific variable in the phantom configurations, including thickness, density, area and shape. In addition to the standard calibration fitting function used for dual energy decomposition, a modified fitting function has been proposed, which brought the tube voltages used in the imaging tasks as the third variable in dual energy decomposition. Results For an average sized breast of 4.5 cm thick, the FOM was maximized with a tube voltage of 46kVp and a splitting energy of 24 keV. To be consistent with the tube voltage used in current clinical screening exam (~ 32 kVp), the optimal splitting energy was proposed to be 22 keV, which offered a FOM greater than 90% of the optimal value. In the experimental investigation, the root-mean-square (RMS) error in breast density quantification for all four phantom studies was estimated to be approximately 1.54% using standard calibration function. The results from the modified fitting function, which integrated the tube voltage as a variable in the calibration, indicated a RMS error of approximately 1.35% for all four studies. Conclusions The results of the current study suggest that photon-counting spectral mammography systems may potentially be implemented for an accurate quantification of volumetric breast density, with an RMS error of less than 2%, using the proposed dual energy imaging technique. PMID:22771941

  10. Effect of concurrent training on gender-specific biochemical variables and adiposity in obese adolescents.

    PubMed

    Antunes, Barbara de Moura Mello; Christofaro, Diego Giuliano Destro; Monteiro, Paula Alves; Silveira, Loreana Sanches; Fernandes, Rômulo Araújo; Mota, Jorge; Freitas Júnior, Ismael Forte

    2015-08-01

    The purpose of the present study was to analyze the effects of a 20-week concurrent training (20 WCT) intervention program on gender-specific body composition and metabolic variables in obese adolescents. Sample was composed of twenty-five obese adolescents, aged between 12 and 15 (13.4 ± 0.96) years. Fat-free mass (FFM), percentage trunk fat mass (TFM%) and percentage fat mass (%FM) were evaluated through dual-energy X-ray absorptiometry (DXA). Measurement of intra-abdominal adiposity (IAAT) was performed using ultrasound. Blood pressure was measured and blood samples analyzed for total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG) and plasma glucose. All participants performed the concurrent training (combination of weight training and aerobic training) three times per week, one hour per day, for 20 weeks. Descriptive analysis and analysis of variance (ANOVA) for repeated measures were used to compare baseline, 10 week and 20 week moments using the Bonferroni post-hoc test. Statistical significance was set at p < 0.05. Significant decrease in TC, LDL-c and TFM% were verified in both genders after the 10 initial weeks of concurrent training. A significant increase in height was found in both the male and female groups (p = 0.001 and p = 0.047, respectively), after 20 weeks of concurrent training. In addition, several modifications were observed in body composition and metabolic variables, with a significant decrease in BMI (p = 0.002 and p = 0.017), BMI z-score (p = 0.033 and p = 0.004), FM% (p = 0.002 and p = 0.002), TFM% (p = 0.009 and p = 0.018), TC (p = 0.042 and p = 0.001) and LDL-c (p = 0.006 and p = 0.001) in the male and female groups, respectively, after 20 weeks of intervention when compared with baseline. Our results identified that concurrent training was an effective intervention for treating metabolic variable and body composition disorders, in both genders, by decreasing adiposity with consequent improvement in BMI and BMI z-scores, and enhancement in lipid profile variables.

  11. Effects of methylmercury on muscarinic receptors in the mouse brain: A quantitative autoradiographic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Haesung; Yee, S.; Geddes, J.

    1991-03-11

    Methylmercury (MeHg) is reported to inhibit several stages of cholinergic neurotransmission in brain tissue in-vitro and in-vivo. To examine whether or not behavioral disturbances and/or selective vulnerability of specific neuronal groups in MeHg poisoning may be related to MeHg effects on cholinergic receptors in specific regions of the brain, the density and distribution of muscarinic receptors in the brains of C57BL/6J mice were determined following repeated injections of 5 mg/kg of methylmercuric chloride (MMC). The receptor densities in six cortical laminae of seven cerebral cortical regions, hippocampus and striatum were quantitated by computer-assisted imaging system following in-vitro labeling with ({supmore » 3}H)-pirenzepine (M1) and ({sup 3}H)N-methyl scopolamine (M2). The results showed heterogeneous distribution of M1 and M2 sites in different regions of the brain, and significant reduction in the density of both receptor subtypes following MeHg poisoning in many cortical and subcortical regions. However, the changes in the density were variable in different laminae even in the same cortical regions. Prominent reductions in M1 densities were noted in the temporal and entorhinal cortices, CA3 and hilar regions of the hippocampus as compared to control, whereas the reduction in M2 receptor density was most prominently noted in the frontal, perirhinal and entorhinal cortices, and CA1 and hilar regions of the hippocampus. Thus, it is apparent that MeHg significantly affects muscarinic receptors in the mouse brain, and that these data when used in conjunction with immunocytochemical and other morphological studies would provide further insights into the mechanisms of neurotoxic effects of MeHg.« less

  12. Spatial vs. individual variability with inheritance in a stochastic Lotka-Volterra system

    NASA Astrophysics Data System (ADS)

    Dobramysl, Ulrich; Tauber, Uwe C.

    2012-02-01

    We investigate a stochastic spatial Lotka-Volterra predator-prey model with randomized interaction rates that are either affixed to the lattice sites and quenched, and / or specific to individuals in either population. In the latter situation, we include rate inheritance with mutations from the particles' progenitors. Thus we arrive at a simple model for competitive evolution with environmental variability and selection pressure. We employ Monte Carlo simulations in zero and two dimensions to study the time evolution of both species' densities and their interaction rate distributions. The predator and prey concentrations in the ensuing steady states depend crucially on the environmental variability, whereas the temporal evolution of the individualized rate distributions leads to largely neutral optimization. Contrary to, e.g., linear gene expression models, this system does not experience fixation at extreme values. An approximate description of the resulting data is achieved by means of an effective master equation approach for the interaction rate distribution.

  13. RR Lyrae variables in M33: two new fields and an analysis of the galaxy's population

    NASA Astrophysics Data System (ADS)

    Tanakul, Nahathai; Yang, Soung-Chul; Sarajedini, Ata

    2017-06-01

    We present a re-analysis of M33 RR Lyrae variables in four different fields: two inner disc fields and two outer disc fields. These are located at 8.5, 8.7, 36 and 46 arcmin from the centre of M33, respectively. We identify 48 new RR Lyrae variable stars and refine the light-curve properties of 51 previously identified variables. From the light curves, we calculate reddenings and metallicities for each star. Using data in this paper and previously published material, we are able to construct a radial density profile for the RR Lyrae stars in M33. This profile, when plotted in log space, has a slope of ˜-2.0 ± 0.15 which agrees with the radial distribution of halo stars in the Milky Way and M31. This suggests that the majority of M33 RR Lyrae variables observed so far belong to the halo. We also examine the RR Lyrae specific frequency and absolute magnitude relation in M33 and find good agreement with previous studies.

  14. Standard cell electrical and physical variability analysis based on automatic physical measurement for design-for-manufacturing purposes

    NASA Astrophysics Data System (ADS)

    Shauly, Eitan; Parag, Allon; Khmaisy, Hafez; Krispil, Uri; Adan, Ofer; Levi, Shimon; Latinski, Sergey; Schwarzband, Ishai; Rotstein, Israel

    2011-04-01

    A fully automated system for process variability analysis of high density standard cell was developed. The system consists of layout analysis with device mapping: device type, location, configuration and more. The mapping step was created by a simple DRC run-set. This database was then used as an input for choosing locations for SEM images and for specific layout parameter extraction, used by SPICE simulation. This method was used to analyze large arrays of standard cell blocks, manufactured using Tower TS013LV (Low Voltage for high-speed applications) Platforms. Variability of different physical parameters like and like Lgate, Line-width-roughness and more as well as of electrical parameters like drive current (Ion), off current (Ioff) were calculated and statistically analyzed, in order to understand the variability root cause. Comparison between transistors having the same W/L but with different layout configurations and different layout environments (around the transistor) was made in terms of performances as well as process variability. We successfully defined "robust" and "less-robust" transistors configurations, and updated guidelines for Design-for-Manufacturing (DfM).

  15. Spatial distribution of structural defects in Cz-seeded directionally solidified silicon ingots: An etch pit study

    NASA Astrophysics Data System (ADS)

    Lantreibecq, A.; Legros, M.; Plassat, N.; Monchoux, J. P.; Pihan, E.

    2018-02-01

    The PV properties of wafers processed from Cz-seeded directionally solidified silicon ingots suffer from variable structural defects. In this study, we draw an overview on the types of structural defects encountered in the specific case of full 〈1 0 0〉 oriented growth. We found micro twins, background dislocations, and subgrains boundaries. We discuss the possible links between thermomechanical stresses and growth processes with spatial evolution of both background dislocation densities and subgrain boundaries length.

  16. Implementation of a Mechanochemical Model for Dynamic Brittle Fracture in SIERRA

    DTIC Science & Technology

    2014-08-01

    equations of state could be used in the future.† The energy associated with the deviatoric deformation is taken to be eiso(L ∗) = µ tr [ (L∗)2 ] (33...internal state variable can also be found in the book by Holzapfel.9 In the types of damage models considered by Kachanov, the energy density equation is...13b) The dimensions of K are: [K] = 1 [Time][ Stress ] . (14) The specific choice of equations 13 contain two physically questionable features,

  17. Humans and great apes share increased neocortical neuropeptide Y innervation compared to other haplorhine primates.

    PubMed

    Raghanti, Mary Ann; Edler, Melissa K; Meindl, Richard S; Sudduth, Jessica; Bohush, Tatiana; Erwin, Joseph M; Stimpson, Cheryl D; Hof, Patrick R; Sherwood, Chet C

    2014-01-01

    Neuropeptide Y (NPY) plays a role in a variety of basic physiological functions and has also been implicated in regulating cognition, including learning and memory. A decrease in neocortical NPY has been reported for Alzheimer's disease, schizophrenia, bipolar disorder, and depression, potentially contributing to associated cognitive deficits. The goal of the present analysis was to examine variation in neocortical NPY-immunoreactive axon and varicosity density among haplorhine primates (monkeys, apes, and humans). Stereologic methods were used to measure the ratios of NPY-expressing axon length density to total neuron density (ALv/Nv) and NPY-immunoreactive varicosity density to neuron density (Vv/Nv), as well as the mean varicosity spacing in neocortical areas 10, 24, 44, and 22 (Tpt) of humans, African great apes, New World monkeys, and Old World monkeys. Humans and great apes showed increased cortical NPY innervation relative to monkey species for ALv/Nv and Vv/Nv. Furthermore, humans and great apes displayed a conserved pattern of varicosity spacing across cortical areas and layers, with no differences between cortical layers or among cortical areas. These phylogenetic differences may be related to shared life history variables and may reflect specific cognitive abilities.

  18. Dynamic Segmentation Of Behavior Patterns Based On Quantity Value Movement Using Fuzzy Subtractive Clustering Method

    NASA Astrophysics Data System (ADS)

    Sangadji, Iriansyah; Arvio, Yozika; Indrianto

    2018-03-01

    to understand by analyzing the pattern of changes in value movements that can dynamically vary over a given period with relative accuracy, an equipment is required based on the utilization of technical working principles or specific analytical method. This will affect the level of validity of the output that will occur from this system. Subtractive clustering is based on the density (potential) size of data points in a space (variable). The basic concept of subtractive clustering is to determine the regions in a variable that has high potential for the surrounding points. In this paper result is segmentation of behavior pattern based on quantity value movement. It shows the number of clusters is formed and that has many members.

  19. Variable density management in riparian reserves: lessons learned from an operational study in managed forests of western Oregon, USA.

    Treesearch

    Samuel Chan; Paul Anderson; John Cissel; Larry Lateen; Charley Thompson

    2004-01-01

    A large-scale operational study has been undertaken to investigate variable density management in conjunction with riparian buffers as a means to accelerate development of late-seral habitat, facilitate rare species management, and maintain riparian functions in 40-70 year-old headwater forests in western Oregon, USA. Upland variable retention treatments include...

  20. Variable density thinning promotes variable structural responses 14 years after treatment in the Pacific Northwest

    Treesearch

    John L. Willis; Scott D. Roberts; Constance A. Harrington

    2018-01-01

    Young stands are commonly assumed to require centuries to develop into late-successional forest habitat. This viewpoint reflects the fact that young stands often lack many of the structural features that define late-successional habitat, and that these features derive from complex stand dynamics that are difficult to mimic with forest management. Variable density...

  1. Native Predators Do Not Influence Invasion Success of Pacific Lionfish on Caribbean Reefs

    PubMed Central

    Hackerott, Serena; Valdivia, Abel; Green, Stephanie J.; Côté, Isabelle M.; Cox, Courtney E.; Akins, Lad; Layman, Craig A.; Precht, William F.; Bruno, John F.

    2013-01-01

    Biotic resistance, the process by which new colonists are excluded from a community by predation from and/or competition with resident species, can prevent or limit species invasions. We examined whether biotic resistance by native predators on Caribbean coral reefs has influenced the invasion success of red lionfishes (Pterois volitans and Pterois miles), piscivores from the Indo-Pacific. Specifically, we surveyed the abundance (density and biomass) of lionfish and native predatory fishes that could interact with lionfish (either through predation or competition) on 71 reefs in three biogeographic regions of the Caribbean. We recorded protection status of the reefs, and abiotic variables including depth, habitat type, and wind/wave exposure at each site. We found no relationship between the density or biomass of lionfish and that of native predators. However, lionfish densities were significantly lower on windward sites, potentially because of habitat preferences, and in marine protected areas, most likely because of ongoing removal efforts by reserve managers. Our results suggest that interactions with native predators do not influence the colonization or post-establishment population density of invasive lionfish on Caribbean reefs. PMID:23874565

  2. Native predators do not influence invasion success of pacific lionfish on Caribbean reefs.

    PubMed

    Hackerott, Serena; Valdivia, Abel; Green, Stephanie J; Côté, Isabelle M; Cox, Courtney E; Akins, Lad; Layman, Craig A; Precht, William F; Bruno, John F

    2013-01-01

    Biotic resistance, the process by which new colonists are excluded from a community by predation from and/or competition with resident species, can prevent or limit species invasions. We examined whether biotic resistance by native predators on Caribbean coral reefs has influenced the invasion success of red lionfishes (Pterois volitans and Pterois miles), piscivores from the Indo-Pacific. Specifically, we surveyed the abundance (density and biomass) of lionfish and native predatory fishes that could interact with lionfish (either through predation or competition) on 71 reefs in three biogeographic regions of the Caribbean. We recorded protection status of the reefs, and abiotic variables including depth, habitat type, and wind/wave exposure at each site. We found no relationship between the density or biomass of lionfish and that of native predators. However, lionfish densities were significantly lower on windward sites, potentially because of habitat preferences, and in marine protected areas, most likely because of ongoing removal efforts by reserve managers. Our results suggest that interactions with native predators do not influence the colonization or post-establishment population density of invasive lionfish on Caribbean reefs.

  3. Five willow varieties cultivated across diverse field environments reveal stem density variation associated with high tension wood abundance

    PubMed Central

    Berthod, Nicolas; Brereton, Nicholas J. B.; Pitre, Frédéric E.; Labrecque, Michel

    2015-01-01

    Sustainable and inexpensive production of biomass is necessary to make biofuel production feasible, but represents a challenge. Five short rotation coppice willow cultivars, selected for high biomass yield, were cultivated on sites at four diverse regions of Quebec in contrasting environments. Wood composition and anatomical traits were characterized. Tree height and stem diameter were measured to evaluate growth performance of the cultivars according to the diverse pedoclimatic conditions. Each cultivar showed very specific responses to its environment. While no significant variation in lignin content was observed between sites, there was variation between cultivars. Surprisingly, the pattern of substantial genotype variability in stem density was maintained across all sites. However, wood anatomy did differ between sites in a cultivar (producing high and low density wood), suggesting a probable response to an abiotic stress. Furthermore, twice as many cellulose-rich G-fibers, comprising over 50% of secondary xylem, were also found in the high density wood, a finding with potential to bring higher value to the lignocellulosic bioethanol industry. PMID:26583024

  4. Partial least squares density modeling (PLS-DM) - a new class-modeling strategy applied to the authentication of olives in brine by near-infrared spectroscopy.

    PubMed

    Oliveri, Paolo; López, M Isabel; Casolino, M Chiara; Ruisánchez, Itziar; Callao, M Pilar; Medini, Luca; Lanteri, Silvia

    2014-12-03

    A new class-modeling method, referred to as partial least squares density modeling (PLS-DM), is presented. The method is based on partial least squares (PLS), using a distance-based sample density measurement as the response variable. Potential function probability density is subsequently calculated on PLS scores and used, jointly with residual Q statistics, to develop efficient class models. The influence of adjustable model parameters on the resulting performances has been critically studied by means of cross-validation and application of the Pareto optimality criterion. The method has been applied to verify the authenticity of olives in brine from cultivar Taggiasca, based on near-infrared (NIR) spectra recorded on homogenized solid samples. Two independent test sets were used for model validation. The final optimal model was characterized by high efficiency and equilibrate balance between sensitivity and specificity values, if compared with those obtained by application of well-established class-modeling methods, such as soft independent modeling of class analogy (SIMCA) and unequal dispersed classes (UNEQ). Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Urban form relationships with walk trip frequency and distance among youth.

    PubMed

    Frank, Lawrence; Kerr, Jacqueline; Chapman, Jim; Sallis, James

    2007-01-01

    To assess the relationship among objectively measured urban form variables, age, and walking in youth. Cross-sectional analyses of travel diary data mapped against urban form characteristics within a 1-km buffer of participant's place of residence. Setting. Youth in the Atlanta, Georgia region with selection stratified by income, household size, and residential density. A total of 3161 5- to 20-year-olds who completed 2-day travel diaries. Diaries of those under 15 years were completed by a parent or legal guardian. Walking distances were calculated from a 2-day travel diary. Residential density, intersection density, land use mix, and commercial and recreation space were assessed within a 1-km network distance around residences. Analysis. Logistic regression analyses were performed for each urban form variable by age groups controlling for the demographic variables. All variables were then entered simultaneously into an analysis of the whole sample. All five urban form variables tested were related to walking. Recreation space was the only variables associated with walking across the four different age groups. All the urban form variables were related to walking in the 12 to 15 years age cohort. For this group, the odds of walking were 3. 7 times greater for those in highest- versus lowest-density tertile and 2.6 times greater for those with at least one commercial and 2.5 times greater for those with at least one recreational destination within 1 km from home. In the analysis of the full sample, number of cars, recreation space, and residential density were most strongly related to walking. Access to recreation or open space was the most important urban form variable related to walking for all age groups. Children aged 12 to 15 years old may be particularly influenced by urban form.

  6. The dynamics of zooxanthellae populations: A long-term study in the field

    PubMed

    Fagoonee; Wilson; Hassell; Turner

    1999-02-05

    Coral bleaching characterized by the expulsion of symbiotic algae (zooxanthellae) is an increasing problem worldwide. Global warming has been implicated as one cause, but the phenomenon cannot be fully comprehended without an understanding of the variability of zooxanthellae populations in field conditions. Results from a 6-year field study are presented, providing evidence of density regulation but also of large variability in the zooxanthellae population with regular episodes of very low densities. These bleaching events are likely to be part of a constant variability in zooxanthellae density caused by environmental fluctuations superimposed on a strong seasonal cycle in abundance.

  7. Optimizing dewaterability of drinking water treatment sludge by ultrasound treatment: Correlations to sludge physicochemical properties.

    PubMed

    Meng, Zhili; Zhou, Zhiwei; Zheng, Dan; Liu, Lujian; Dong, Jun; Yang, Yanling; Li, Xing; Zhang, Tingting

    2018-07-01

    Sludge dewatering has proven to be an effective method to reduce the volume of sludge. In this study, drinking water treatment sludge (DWTS) was treated by ultra-sonication under variable conditions comparing two sonoreactor types (bath and probe), four frequencies (25, 40, 68, 160 kHz) and four energy density levels (0.03, 1, 3, 5 W/mL). The effects of these conditions were studied using specific resistance to filtration and capillary suction time as measures of dewaterability, and floc size, the Brunauer, Emmett and Teller (BET) specific surface area and Zeta potential to determine treated sludge characteristics. The results indicated that the dewaterability of sonicated sludge improved at relatively low energy densities of 0.03 and 1.0 W/mL, while an optimum for sonication duration (within 10 min) was also identified. Higher frequencies (tested up to 160 kHz) with acoustic energy density of 0.03 W/mL also reduced the dewatering property. At higher energy densities of 3.0 and 5.0 W/mL, dewaterability of sludge deteriorated regardless of ultra-sonication time, with an increase of solubilized organic matter content and severely changed floc characteristics. The deterioration of the dewatering capacity was closely related to the considerably reduced floc sizes, dissolution of proteins and polysaccharides, and to the Zeta potential of sonicated sludge flocs. The dewaterability was not correlated with BET specific surface area. Mechanistic explanations for the observations were discussed by analyzing corrosion patterns of aluminum foil as a measure for cavitation field distribution. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. An investigation of meaningful understanding and effectiveness of the implementation of Piagetian and Ausubelian theories in physics instruction

    NASA Astrophysics Data System (ADS)

    Williams, Karen Ann

    One section of college students (N = 25) enrolled in an algebra-based physics course was selected for a Piagetian-based learning cycle (LC) treatment while a second section (N = 25) studied in an Ausubelian-based meaningful verbal reception learning treatment (MVRL). This study examined the students' overall (concept + problem solving + mental model) meaningful understanding of force, density/Archimedes Principle, and heat. Also examined were students' meaningful understanding as measured by conceptual questions, problems, and mental models. In addition, students' learning orientations were examined. There were no significant posttest differences between the LC and MVRL groups for students' meaningful understanding or learning orientation. Piagetian and Ausubelian theories explain meaningful understanding for each treatment. Students from each treatment increased their meaningful understanding. However, neither group altered their learning orientation. The results of meaningful understanding as measured by conceptual questions, problem solving, and mental models were mixed. Differences were attributed to the weaknesses and strengths of each treatment. This research also examined four variables (treatment, reasoning ability, learning orientation, and prior knowledge) to find which best predicted students' overall meaningful understanding of physics concepts. None of these variables were significant predictors at the.05 level. However, when the same variables were used to predict students' specific understanding (i.e. concept, problem solving, or mental model understanding), the results were mixed. For forces and density/Archimedes Principle, prior knowledge and reasoning ability significantly predicted students' conceptual understanding. For heat, however, reasoning ability was the only significant predictor of concept understanding. Reasoning ability and treatment were significant predictors of students' problem solving for heat and forces. For density/Archimedes Principle, treatment was the only significant predictor of students' problem solving. None of the variables were significant predictors of mental model understanding. This research suggested that Piaget and Ausubel used different terminology to describe learning yet these theories are similar. Further research is needed to validate this premise and validate the blending of the two theories.

  9. [Dynamics of sap flow density in stems of typical desert shrub Calligonum mongolicum and its responses to environmental variables].

    PubMed

    Xu, Shi-qin; Ji, Xi-bin; Jin, Bo-wen

    2016-02-01

    Independent measurements of stem sap flow in stems of Calligonum mongolicum and environmental variables using commercial sap flow gauges and a micrometeorological monitoring system, respectively, were made to simulate the variation of sap flow density in the middle range of Hexi Corridor, Northwest China during June to September, 2014. The results showed that the diurnal process of sap flow density in C. mongolicum showed a broad unimodal change, and the maximum sap flow density reached about 30 minutes after the maximum of photosynthetically active radiation (PAR) , while about 120 minutes before the maximum of temperature and vapor pressure deficit (VPD). During the studying period, sap flow density closely related with atmosphere evapor-transpiration demand, and mainly affected by PAR, temperature and VPD. The model was developed which directly linked the sap flow density with climatic variables, and good correlation between measured and simulated sap flow density was observed in different climate conditions. The accuracy of simulation was significantly improved if the time-lag effect was taken into consideration, while this model underestimated low and nighttime sap flow densities, which was probably caused by plant physiological characteristics.

  10. Interannual variability in the extent of wetland-stream connectivity within the Prairie Pothole Region

    Treesearch

    Melanie Vanderhoof; Laurie Alexander

    2016-01-01

    The degree of hydrological connectivity between wetland systems and downstream receiving waters can be expected to influence the volume and variability of stream discharge. The Prairie Pothole Region contains a high density of depressional wetland features, a consequence of glacial retreat. Spatial variability in wetland density, drainage evolution, and precipitation...

  11. Effects of lidar pulse density and sample size on a model-assisted approach to estimate forest inventory variables

    Treesearch

    Jacob Strunk; Hailemariam Temesgen; Hans-Erik Andersen; James P. Flewelling; Lisa Madsen

    2012-01-01

    Using lidar in an area-based model-assisted approach to forest inventory has the potential to increase estimation precision for some forest inventory variables. This study documents the bias and precision of a model-assisted (regression estimation) approach to forest inventory with lidar-derived auxiliary variables relative to lidar pulse density and the number of...

  12. Predicting crappie recruitment in Ohio reservoirs with spawning stock size, larval density, and chlorophyll concentrations

    USGS Publications Warehouse

    Bunnell, David B.; Hale, R. Scott; Vanni, Michael J.; Stein, Roy A.

    2006-01-01

    Stock-recruit models typically use only spawning stock size as a predictor of recruitment to a fishery. In this paper, however, we used spawning stock size as well as larval density and key environmental variables to predict recruitment of white crappies Pomoxis annularis and black crappies P. nigromaculatus, a genus notorious for variable recruitment. We sampled adults and recruits from 11 Ohio reservoirs and larvae from 9 reservoirs during 1998-2001. We sampled chlorophyll as an index of reservoir productivity and obtained daily estimates of water elevation to determine the impact of hydrology on recruitment. Akaike's information criterion (AIC) revealed that Ricker and Beverton-Holt stock-recruit models that included chlorophyll best explained the variation in larval density and age-2 recruits. Specifically, spawning stock catch per effort (CPE) and chlorophyll explained 63-64% of the variation in larval density. In turn, larval density and chlorophyll explained 43-49% of the variation in age-2 recruit CPE. Finally, spawning stock CPE and chlorophyll were the best predictors of recruit CPE (i.e., 74-86%). Although larval density and recruitment increased with chlorophyll, neither was related to seasonal water elevation. Also, the AIC generally did not distinguish between Ricker and Beverton-Holt models. From these relationships, we concluded that crappie recruitment can be limited by spawning stock CPE and larval production when spawning stock sizes are low (i.e., CPE , 5 crappies/net-night). At higher levels of spawning stock sizes, spawning stock CPE and recruitment were less clearly related. To predict recruitment in Ohio reservoirs, managers should assess spawning stock CPE with trap nets and estimate chlorophyll concentrations. To increase crappie recruitment in reservoirs where recruitment is consistently poor, managers should use regulations to increase spawning stock size, which, in turn, should increase larval production and recruits to the fishery.

  13. Resist heating effect on e-beam mask writing at 75 kV and 60 A/cm2

    NASA Astrophysics Data System (ADS)

    Benes, Zdenek; Deverich, Christina; Huang, Chester; Lawliss, Mark

    2003-12-01

    Resist heating has been known to be one of the main contributors to local CD variation in mask patterning using variable shape e-beam tools. Increasingly complex mask patterns require increased number of shapes which drives the need for higher electron beam current densities to maintain reasonable write times. As beam current density is increased, CD error resulting from resist heating may become a dominating contributor to local CD variations. In this experimental study, the IBM EL4+ mask writer with high voltage and high current density has been used to quantitatively investigate the effect of resist heating on the local CD uniformity. ZEP 7000 and several chemically amplified resists have been evaluated under various exposure conditions (single-pass, multi-pass, variable spot size) and pattern densities. Patterns were designed specifically to allow easy measurement of local CD variations with write strategies designed to maximize the effect of resist heating. Local CD variations as high as 15 nm in 18.75 × 18.75 μm sub-field size have been observed for ZEP 7000 in a single-pass writing with full 1000 nm spots at 50% pattern density. This number can be reduced by increasing the number of passes or by decreasing the maximum spot size. The local CD variation has been reduced to as low as 2 nm for ZEP 7000 for the same pattern under modified exposure conditions. The effectiveness of various writing strategies is discussed as well as their possible deficiencies. Minimal or no resist heating effects have been observed for the chemically amplified resists studied. The results suggest that the resist heating effect can be well controlled by careful selection of the resist/process system and/or writing strategy and that resist heating does not have to pose a problem for high throughput e-beam mask making that requires high voltage and high current densities.

  14. Individual differences in transcranial electrical stimulation current density

    PubMed Central

    Russell, Michael J; Goodman, Theodore; Pierson, Ronald; Shepherd, Shane; Wang, Qiang; Groshong, Bennett; Wiley, David F

    2013-01-01

    Transcranial electrical stimulation (TCES) is effective in treating many conditions, but it has not been possible to accurately forecast current density within the complex anatomy of a given subject's head. We sought to predict and verify TCES current densities and determine the variability of these current distributions in patient-specific models based on magnetic resonance imaging (MRI) data. Two experiments were performed. The first experiment estimated conductivity from MRIs and compared the current density results against actual measurements from the scalp surface of 3 subjects. In the second experiment, virtual electrodes were placed on the scalps of 18 subjects to model simulated current densities with 2 mA of virtually applied stimulation. This procedure was repeated for 4 electrode locations. Current densities were then calculated for 75 brain regions. Comparison of modeled and measured external current in experiment 1 yielded a correlation of r = .93. In experiment 2, modeled individual differences were greatest near the electrodes (ten-fold differences were common), but simulated current was found in all regions of the brain. Sites that were distant from the electrodes (e.g. hypothalamus) typically showed two-fold individual differences. MRI-based modeling can effectively predict current densities in individual brains. Significant variation occurs between subjects with the same applied electrode configuration. Individualized MRI-based modeling should be considered in place of the 10-20 system when accurate TCES is needed. PMID:24285948

  15. Demographic indicators of change in a deposit-feeding abyssal holothurian community (Station M, 4000 m)

    NASA Astrophysics Data System (ADS)

    Huffard, Christine L.; Kuhnz, Linda A.; Lemon, Larissa; Sherman, Alana D.; Smith, Kenneth L.

    2016-03-01

    Holothurians are among the most abundant benthic megafauna at abyssal depths, and important consumers and bioturbators of organic carbon on the sea floor. Significant fluctuations in abyssal holothurian density are often attributed to species-specific responses to variable particulate organic carbon flux (food supply) stemming from surface ocean events. We report changes in densities of 19 holothurian species at the abyssal monitoring site Station M in the northeast Pacific, recorded during 11 remotely operated vehicle surveys between Dec 2006 and Oct 2014. Body size demographics are presented for Abyssocucumis abyssorum, Synallactidae sp. 1, Paelopatides confundens, Elpidia sp. A, Peniagone gracilis, Peniagone papillata, Peniagone vitrea, Peniagone sp. A, Peniagone sp. 1, and Scotoplanes globosa. Densities were lower and species evenness was higher from 2006-2009 compared to 2011-2014. Food supply of freshly-settled phytodetritus was exceptionally high during this latter period. Based on relationships between median body length and density, numerous immigration and juvenile recruitment events of multiple species appeared to take place between 2011 and 2014. These patterns were dominated by elpidiids (Holothuroidea: Elasipodida: Elpidiidae), which consistently increased in density during a period of high food availability, while other groups showed inconsistent responses. We considered minimum body length to be a proxy for size at juvenile recruitment. Patterns in density clustered by this measure, which was a stronger predictor of maximum density than median and mean body length.

  16. Use of complex hydraulic variables to predict the distribution and density of unionids in a side channel of the Upper Mississippi River

    USGS Publications Warehouse

    Steuer, J.J.; Newton, T.J.; Zigler, S.J.

    2008-01-01

    Previous attempts to predict the importance of abiotic and biotic factors to unionids in large rivers have been largely unsuccessful. Many simple physical habitat descriptors (e.g., current velocity, substrate particle size, and water depth) have limited ability to predict unionid density. However, more recent studies have found that complex hydraulic variables (e.g., shear velocity, boundary shear stress, and Reynolds number) may be more useful predictors of unionid density. We performed a retrospective analysis with unionid density, current velocity, and substrate particle size data from 1987 to 1988 in a 6-km reach of the Upper Mississippi River near Prairie du Chien, Wisconsin. We used these data to model simple and complex hydraulic variables under low and high flow conditions. We then used classification and regression tree analysis to examine the relationships between hydraulic variables and unionid density. We found that boundary Reynolds number, Froude number, boundary shear stress, and grain size were the best predictors of density. Models with complex hydraulic variables were a substantial improvement over previously published discriminant models and correctly classified 65-88% of the observations for the total mussel fauna and six species. These data suggest that unionid beds may be constrained by threshold limits at both ends of the flow regime. Under low flow, mussels may require a minimum hydraulic variable (Rez.ast;, Fr) to transport nutrients, oxygen, and waste products. Under high flow, areas with relatively low boundary shear stress may provide a hydraulic refuge for mussels. Data on hydraulic preferences and identification of other conditions that constitute unionid habitat are needed to help restore and enhance habitats for unionids in rivers. ?? 2008 Springer Science+Business Media B.V.

  17. Increased Force Variability in Chronic Stroke: Contributions of Force Modulation below 1 Hz

    PubMed Central

    Lodha, Neha; Misra, Gaurav; Coombes, Stephen A.; Christou, Evangelos A.; Cauraugh, James H.

    2013-01-01

    Increased force variability constitutes a hallmark of arm disabilities following stroke. Force variability is related to the modulation of force below 1 Hz in healthy young and older adults. However, whether the increased force variability observed post stroke is related to the modulation of force below 1 Hz remains unknown. Thus, the purpose of this study was to compare force modulation below 1 Hz in chronic stroke and age-matched healthy individuals. Both stroke and control individuals (N = 26) performed an isometric grip task to submaximal force levels. Coefficient of variation quantified force variability, and power spectrum density of force quantified force modulation below 1 Hz with a high resolution (0.07 Hz). Analyses indicated that force variability was greater for the stroke group compared with to healthy controls and for the paretic hand compared with the non-paretic hand. Force modulation below 1 Hz differentiated the stroke individuals and healthy controls, as well as the paretic and non-paretic hands. Specifically, stroke individuals (paretic hand) exhibited greater power ∼0.2 Hz (0.07–0.35 Hz) and lesser power ∼0.6 Hz (0.49–0.77 Hz) compared to healthy controls (non-dominant hand). Similarly, the paretic hand exhibited greater power ∼0.2 Hz, and lesser power ∼0.6 Hz than the non-paretic hand. Moreover, variability of force was strongly predicted from the modulation of specific frequencies below 1 Hz (R 2 = 0.80). Together, these findings indicate that the modulation of force below 1 Hz provides significant insight into changes in motor control after stroke. PMID:24386208

  18. Macroalgal communities on multi-stressed coral reefs in the Caribbean: Long-term changes, spatial variations, and relationships with environmental variables

    NASA Astrophysics Data System (ADS)

    Sangil, Carlos; Guzman, Hector M.

    2016-11-01

    Long-term changes in macroalgal cover, spatial variation between macroalgal communities, and relationships with environmental variables and benthic groups were assessed in coral reefs along the Caribbean coast of Panama. Sampling was conducted in two regions: Western and Central. Data collected between 2000 and 2012 showed a continuous increase in macroalgal abundance, although patterns differed according to region and site. There were differences in macroalgal communities between regions, as well as within regions between different wave-exposure levels. There were also differences between sites within regions exposed to the same level of wave action. Multivariate analysis found that wave exposure along with herbivore density (Echinometra viridis) and sedimentation were the variables that explained most of the variability between communities. Other variables such as Echinometra lucunter and Diadema antillarum densities, fish density, productivity, and live coral cover had significant relationships with community structure, but explained less of the variability.

  19. Sampling strategies for subsampled segmented EPI PRF thermometry in MR guided high intensity focused ultrasound

    PubMed Central

    Odéen, Henrik; Todd, Nick; Diakite, Mahamadou; Minalga, Emilee; Payne, Allison; Parker, Dennis L.

    2014-01-01

    Purpose: To investigate k-space subsampling strategies to achieve fast, large field-of-view (FOV) temperature monitoring using segmented echo planar imaging (EPI) proton resonance frequency shift thermometry for MR guided high intensity focused ultrasound (MRgHIFU) applications. Methods: Five different k-space sampling approaches were investigated, varying sample spacing (equally vs nonequally spaced within the echo train), sampling density (variable sampling density in zero, one, and two dimensions), and utilizing sequential or centric sampling. Three of the schemes utilized sequential sampling with the sampling density varied in zero, one, and two dimensions, to investigate sampling the k-space center more frequently. Two of the schemes utilized centric sampling to acquire the k-space center with a longer echo time for improved phase measurements, and vary the sampling density in zero and two dimensions, respectively. Phantom experiments and a theoretical point spread function analysis were performed to investigate their performance. Variable density sampling in zero and two dimensions was also implemented in a non-EPI GRE pulse sequence for comparison. All subsampled data were reconstructed with a previously described temporally constrained reconstruction (TCR) algorithm. Results: The accuracy of each sampling strategy in measuring the temperature rise in the HIFU focal spot was measured in terms of the root-mean-square-error (RMSE) compared to fully sampled “truth.” For the schemes utilizing sequential sampling, the accuracy was found to improve with the dimensionality of the variable density sampling, giving values of 0.65 °C, 0.49 °C, and 0.35 °C for density variation in zero, one, and two dimensions, respectively. The schemes utilizing centric sampling were found to underestimate the temperature rise, with RMSE values of 1.05 °C and 1.31 °C, for variable density sampling in zero and two dimensions, respectively. Similar subsampling schemes with variable density sampling implemented in zero and two dimensions in a non-EPI GRE pulse sequence both resulted in accurate temperature measurements (RMSE of 0.70 °C and 0.63 °C, respectively). With sequential sampling in the described EPI implementation, temperature monitoring over a 192 × 144 × 135 mm3 FOV with a temporal resolution of 3.6 s was achieved, while keeping the RMSE compared to fully sampled “truth” below 0.35 °C. Conclusions: When segmented EPI readouts are used in conjunction with k-space subsampling for MR thermometry applications, sampling schemes with sequential sampling, with or without variable density sampling, obtain accurate phase and temperature measurements when using a TCR reconstruction algorithm. Improved temperature measurement accuracy can be achieved with variable density sampling. Centric sampling leads to phase bias, resulting in temperature underestimations. PMID:25186406

  20. Sensitivity, specificity, and predictive values of pediatric metabolic syndrome components in relation to adult metabolic syndrome: the Princeton LRC follow-up study.

    PubMed

    Huang, Terry T-K; Nansel, Tonja R; Belsheim, Allen R; Morrison, John A

    2008-02-01

    To estimate the sensitivity, specificity, and predictive values of pediatric metabolic syndrome (MetS) components (obesity, fasting glucose, triglycerides, high-density lipoprotein, and blood pressure) at various cutoff points in relation to adult MetS. Data from the National Heart, Lung, and Blood Institute Lipid Research Clinics Princeton Prevalence Study (1973-1976) and the Princeton Follow-up Study (2000-2004) were used to calculate sensitivity, specificity, and positive and negative predictive values for each component at a given cutoff point and for aggregates of components. Individual pediatric components alone showed low to moderate sensitivity, high specificity, and moderate predictive values in relation to adult MetS. When all 5 pediatric MetS components were considered, the presence of at least 1 abnormality had higher sensitivity for adult MetS than individual components alone. When multiple abnormalities were mandatory for MetS, positive predictive value was high and sensitivity was low. Childhood body mass alone showed neither high sensitivity nor high positive predictive value for adult MetS. Considering multiple metabolic variables in childhood can improve the predictive usefulness for adult MetS, compared with each component or body mass alone. MetS variables may be useful for identifying some children who are at risk for prevention interventions.

  1. Characterization of drinking water treatment sludge after ultrasound treatment.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Zhang, Yang; Guo, Xuan

    2015-05-01

    Ultrasonic technology alone or the combination of ultrasound with alkaline or thermal hydrolysis as pretreatment for anaerobic digestion of activated sludge has been extensively documented. However, there are few reports on ultrasound as pretreatment of drinking water treatment sludge (DWTS), and thereby the characteristic variability of sonicated DWTS has not been fully examined. This research presents a lab-scale study on physical, chemical and biological characteristics of a DWTS sample collected from a water plant after ultrasonic treatment via a bath/probe sonoreactor. By doing this work, we provide implications for using ultrasound as pretreatment of enhanced coagulation of recycling sludge, and for the conditioning of water and wastewater mixed sludge by ultrasound combined with polymers. Our results indicate that the most vigorous DWTS disintegration quantified by particles' size reduction and organic solubilization is achieved with 5 W/ml for 30 min ultra-sonication (specific energy of 1590 kWh/kg TS). The Brunauer, Emmett and Teller (BET) specific surface area of sonicated DWTS flocs increase as ultra-sonication prolongs at lower energy densities (0.03 and 1 W/ml), while decrease as ultra-sonication prolongs at higher energy densities (3 and 5 W/ml). Additionally, the pH and zeta potential of sonicated DWTS slightly varies under all conditions observed. A shorter sonication with higher energy density plays a more effective role in restraining microbial activity than longer sonication with lower energy density. Copyright © 2015. Published by Elsevier B.V.

  2. Specifying the ISS Plasma Environment

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Diekmann, Anne; Neergaard, Linda; Bui, Them; Mikatarian, Ronald; Barsamian, Hagop; Koontz, Steven

    2002-01-01

    Quantifying the spacecraft charging risks and corresponding hazards for the International Space Station (ISS) requires a plasma environment specification describing the natural variability of ionospheric temperature (Te) and density (Ne). Empirical ionospheric specification and forecast models such as the International Reference Ionosphere (IN) model typically only provide estimates of long term (seasonal) mean Te and Ne values for the low Earth orbit environment. Knowledge of the Te and Ne variability as well as the likelihood of extreme deviations from the mean values are required to estimate both the magnitude and frequency of occurrence of potentially hazardous spacecraft charging environments for a given ISS construction stage and flight configuration. This paper describes the statistical analysis of historical ionospheric low Earth orbit plasma measurements used to estimate Ne, Te variability in the ISS flight environment. The statistical variability analysis of Ne and Te enables calculation of the expected frequency of occurrence of any particular values of Ne and Te, especially those that correspond to possibly hazardous spacecraft charging environments. The database used in the original analysis included measurements from the AE-C, AE-D, and DE-2 satellites. Recent work on the database has added additional satellites to the database and ground based incoherent scatter radar observations as well. Deviations of the data values from the IRI estimated Ne, Te parameters for each data point provide a statistical basis for modeling the deviations of the plasma environment from the IRI model output.

  3. The trans-generational impact of population density signals on host-parasite interactions.

    PubMed

    Michel, Jessica; Ebert, Dieter; Hall, Matthew D

    2016-11-25

    The density of a host population is a key parameter underlying disease transmission, but it also has implications for the expression of disease through its effect on host physiology. In response to higher densities, individuals are predicted to either increase their immune investment in response to the elevated risk of parasitism, or conversely to decrease their immune capacity as a consequence of the stress of a crowded environment. However, an individual's health is shaped by many different factors, including their genetic background, current environmental conditions, and maternal effects. Indeed, population density is often sensed through the presence of info-chemicals in the environment, which may influence a host's interaction with parasites, and also those of its offspring. All of which may alter the expression of disease, and potentially uncouple the presumed link between changes in host density and disease outcomes. In this study, we used the water flea Daphnia magna and its obligate bacterial parasite Pasteuria ramosa, to investigate how signals of high host density impact on host-parasite interactions over two consecutive generations. We found that the chemical signals from crowded treatments induced phenotypic changes in both the parental and offspring generations. In the absence of a pathogen, life-history changes were genotype-specific, but consistent across generations, even when the signal of density was removed. In contrast, the influence of density on infected animals depended on the trait and generation of exposure. When directly exposed to signals of high-density, host genotypes responded differently in how they minimised the severity of disease. Yet, in the subsequent generation, the influence of density was rarely genotype-specific and instead related to ability of the host to minimise the onset of infection. Our findings reveal that population level correlations between host density and infection capture only part of the complex relationship between crowding and the severity of disease. We suggest that besides its role in horizontal transmission, signals of density can influence parasite epidemiology by modifying mechanisms of resistance across multiple generations, and elevating variability via genotype-by-environment interactions. Our results help resolve why some studies are able to find a positive correlation between high density and resistance, while others uncover a negative correlation, or even no direct relationship at all.

  4. From grand-canonical density functional theory towards rational compound design

    NASA Astrophysics Data System (ADS)

    von Lilienfeld, Anatole

    2008-03-01

    The fundamental challenge of rational compound design, ie the reverse engineering of chemical compounds with predefined specific properties, originates in the high-dimensional combinatorial nature of chemical space. Chemical space is the hyper-space of a given set of molecular observables that is spanned by the grand-canonical variables (particle densities of electrons and nuclei) which define chemical composition. A brief but rigorous description of chemical space within the molecular grand-canonical ensemble multi-component density functional theory framework will be given [1]. Numerical results will be presented for intermolecular energies as a continuous function of alchemical variations within a neutral and isoelectronic 10 proton system, including CH4, NH3, H2O, and HF, interacting with formic acid [2]. Furthermore, engineering the Fermi level through alchemical generation of boron-nitrogen doped mutants of benzene shall be discussed [3].[1] von Lilienfeld and Tuckerman JCP 125 154104 (2006)[2] von Lilienfeld and Tuckerman JCTC 3 1083 (2007)[3] Marcon et al. JCP 127 064305 (2007)

  5. DENSITY-DEPENDENT FLOW IN ONE-DIMENSIONAL VARIABLY-SATURATED MEDIA

    EPA Science Inventory

    A one-dimensional finite element is developed to simulate density-dependent flow of saltwater in variably saturated media. The flow and solute equations were solved in a coupled mode (iterative), in a partially coupled mode (non-iterative), and in a completely decoupled mode. P...

  6. Three-dimensional benchmark for variable-density flow and transport simulation: matching semi-analytic stability modes for steady unstable convection in an inclined porous box

    USGS Publications Warehouse

    Voss, Clifford I.; Simmons, Craig T.; Robinson, Neville I.

    2010-01-01

    This benchmark for three-dimensional (3D) numerical simulators of variable-density groundwater flow and solute or energy transport consists of matching simulation results with the semi-analytical solution for the transition from one steady-state convective mode to another in a porous box. Previous experimental and analytical studies of natural convective flow in an inclined porous layer have shown that there are a variety of convective modes possible depending on system parameters, geometry and inclination. In particular, there is a well-defined transition from the helicoidal mode consisting of downslope longitudinal rolls superimposed upon an upslope unicellular roll to a mode consisting of purely an upslope unicellular roll. Three-dimensional benchmarks for variable-density simulators are currently (2009) lacking and comparison of simulation results with this transition locus provides an unambiguous means to test the ability of such simulators to represent steady-state unstable 3D variable-density physics.

  7. Exhaustive Search for Sparse Variable Selection in Linear Regression

    NASA Astrophysics Data System (ADS)

    Igarashi, Yasuhiko; Takenaka, Hikaru; Nakanishi-Ohno, Yoshinori; Uemura, Makoto; Ikeda, Shiro; Okada, Masato

    2018-04-01

    We propose a K-sparse exhaustive search (ES-K) method and a K-sparse approximate exhaustive search method (AES-K) for selecting variables in linear regression. With these methods, K-sparse combinations of variables are tested exhaustively assuming that the optimal combination of explanatory variables is K-sparse. By collecting the results of exhaustively computing ES-K, various approximate methods for selecting sparse variables can be summarized as density of states. With this density of states, we can compare different methods for selecting sparse variables such as relaxation and sampling. For large problems where the combinatorial explosion of explanatory variables is crucial, the AES-K method enables density of states to be effectively reconstructed by using the replica-exchange Monte Carlo method and the multiple histogram method. Applying the ES-K and AES-K methods to type Ia supernova data, we confirmed the conventional understanding in astronomy when an appropriate K is given beforehand. However, we found the difficulty to determine K from the data. Using virtual measurement and analysis, we argue that this is caused by data shortage.

  8. Lateral Root Initiation in Arabidopsis: Developmental Window, Spatial Patterning, Density and Predictability

    PubMed Central

    DUBROVSKY, J. G.; GAMBETTA, G. A.; HERNÁNDEZ-BARRERA, A.; SHISHKOVA, S.; GONZÁLEZ, I.

    2006-01-01

    • Background and Aims The basic regulatory mechanisms that control lateral root (LR) initiation are still poorly understood. An attempt is made to characterize the pattern and timing of LR initiation, to define a developmental window in which LR initiation takes place and to address the question of whether LR initiation is predictable. • Methods The spatial patterning of LRs and LR primordia (LRPs) on cleared root preparations were characterized. New measures of LR and LRP densities (number of LRs and/or LRPs divided by the length of the root portions where they are present) were introduced and illustrate the shortcomings of the more customarily used measure through a comparative analysis of the mutant aux1-7. The enhancer trap line J0121 was used to monitor LR initiation in time-lapse experiments and a plasmolysis-based method was developed to determine the number of pericycle cells between successive LRPs. • Key Results LRP initiation occurred strictly acropetally and no de novo initiation events were found between already developed LRs or LRPs. However, LRPs did not become LRs in a similar pattern. The longitudinal spacing of lateral organs was variable and the distance between lateral organs was proportional to the number of cells and the time between initiations of successive LRPs. There was a strong tendency towards alternation in LR initiation between the two pericycle cell files adjacent to the protoxylem poles. LR density increased with time due to the emergence of slowly developing LRPs and appears to be unique for individual Arabidopsis accessions. • Conclusions. In Arabidopsis there is a narrow developmental window for LR initiation, and no specific cell-count or distance-measuring mechanisms have been found that determine the site of successive initiation events. Nevertheless, the branching density and lateral organ density (density of LRs and LRPs) are accession-specific, and based on the latter density the average distance between successive LRs can be predicted. PMID:16390845

  9. Childhood factors associated with mammographic density in adult women.

    PubMed

    Lope, Virginia; Pérez-Gómez, Beatriz; Moreno, María Pilar; Vidal, Carmen; Salas-Trejo, Dolores; Ascunce, Nieves; Román, Isabel González; Sánchez-Contador, Carmen; Santamariña, María Carmen; Carrete, Jose Antonio Vázquez; Collado-García, Francisca; Pedraz-Pingarrón, Carmen; Ederra, María; Ruiz-Perales, Francisco; Peris, Mercé; Abad, Soledad; Cabanes, Anna; Pollán, Marina

    2011-12-01

    Growth and development factors could contribute to the development of breast cancer associated with an increase in mammographic density. This study examines the influence of certain childhood-related, socio-demographic and anthropometric variables on mammographic density in adult woman. The study covered 3574 women aged 45-68 years, participating in breast cancer-screening programmes in seven Spanish cities. Based on a craniocaudal mammogram, blind, anonymous measurement of mammographic density was made by a single radiologist, using Boyd's semiquantitative scale. Data associated with the early stages of life were obtained from a direct survey. Ordinal logistic regression and generalised linear models were employed to estimate the association between mammographic density and the variables covered by the questionnaire. Screening programme was introduced as a random effects term. Age, number of children, body mass index (BMI) and other childhood-related variables were used as adjustment variables, and stratified by menopausal status. A total of 811 women (23%) presented mammographic density of over 50%, and 5% of densities exceeded 75%. Our results show a greater prevalence of high mammographic density in women with low prepubertal weight (OR: 1.18; 95% CI: 1.02-1.36); marked prepubertal height (OR: 1.25; 95% CI: 0.97-1.60) and advanced age of their mothers at their birth (>39 years: OR: 1.28; 95% CI: 1.03-1.60); and a lower prevalence of high mammographic density in women with higher prepubertal weight, low birth weight and earlier menarche. The influence of these early-life factors may be explained by greater exposure to hormones and growth factors during the development of the breast gland, when breast tissue would be particularly susceptible to proliferative and carcinogenic stimulus.

  10. Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement.

    PubMed

    Gao, Nuo; Zhu, S A; He, Bin

    2005-06-07

    We have developed a new algorithm for magnetic resonance electrical impedance tomography (MREIT), which uses only one component of the magnetic flux density to reconstruct the electrical conductivity distribution within the body. The radial basis function (RBF) network and simplex method are used in the present approach to estimate the conductivity distribution by minimizing the errors between the 'measured' and model-predicted magnetic flux densities. Computer simulations were conducted in a realistic-geometry head model to test the feasibility of the proposed approach. Single-variable and three-variable simulations were performed to estimate the brain-skull conductivity ratio and the conductivity values of the brain, skull and scalp layers. When SNR = 15 for magnetic flux density measurements with the target skull-to-brain conductivity ratio being 1/15, the relative error (RE) between the target and estimated conductivity was 0.0737 +/- 0.0746 in the single-variable simulations. In the three-variable simulations, the RE was 0.1676 +/- 0.0317. Effects of electrode position uncertainty were also assessed by computer simulations. The present promising results suggest the feasibility of estimating important conductivity values within the head from noninvasive magnetic flux density measurements.

  11. Breast density estimation from high spectral and spatial resolution MRI

    PubMed Central

    Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.

    2016-01-01

    Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (p<0.0001) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 (p<0.0001) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590

  12. Variable density mixing in turbulent jets with coflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charonko, John James; Prestridge, Katherine Philomena

    Two sets of experiments are performed to study variable-density effects in turbulent round jets with co flow at density ratios, s = 4.2 and s = 1.2. 10,000 instantaneous realisations of simultaneous 2-D PIV and PLIF at three axial locations in the momentumdominated region of the jet allow us to calculate the full t.k.e. budgets, providing insights into the mechanisms of density fluctuation correlations both axially and radially in a non- Boussinesq flow. The strongest variable-density effects are observed within the velocity half-width of the jet, r ~u1/2 . Variable density effects decrease the Reynolds stresses via increased turbulent massmore » flux in the heavy jet, as shown by previous jet centreline measurements. Radial pro les of turbulent flux show that in the lighter jet t.k.e. is moving away from the centreline, while in the heavy jet it is being transported both inwards towards the centreline and radially outwards. Negative t.k.e. production is observed in the heavy jet, and we demonstrate that this is caused by both reduced gradient stretching in the axial direction and increased turbulent mass fluxes. Large differences in advection are also observed between the two jets. The air jet has higher total advection caused by strong axial components, while density fluctuations in the heavy jet reduce the axial advection signi cantly. The budget mechanisms in the non-Boussinesq regime are best understood using effective density and velocity half-width, ρeff ¯u 3 1,CL/r ~u1/2,eff , a modi cation of previous scaling.« less

  13. Variable density mixing in turbulent jets with coflow

    DOE PAGES

    Charonko, John James; Prestridge, Katherine Philomena

    2017-07-24

    Two sets of experiments are performed to study variable-density effects in turbulent round jets with co flow at density ratios, s = 4.2 and s = 1.2. 10,000 instantaneous realisations of simultaneous 2-D PIV and PLIF at three axial locations in the momentumdominated region of the jet allow us to calculate the full t.k.e. budgets, providing insights into the mechanisms of density fluctuation correlations both axially and radially in a non- Boussinesq flow. The strongest variable-density effects are observed within the velocity half-width of the jet, r ~u1/2 . Variable density effects decrease the Reynolds stresses via increased turbulent massmore » flux in the heavy jet, as shown by previous jet centreline measurements. Radial pro les of turbulent flux show that in the lighter jet t.k.e. is moving away from the centreline, while in the heavy jet it is being transported both inwards towards the centreline and radially outwards. Negative t.k.e. production is observed in the heavy jet, and we demonstrate that this is caused by both reduced gradient stretching in the axial direction and increased turbulent mass fluxes. Large differences in advection are also observed between the two jets. The air jet has higher total advection caused by strong axial components, while density fluctuations in the heavy jet reduce the axial advection signi cantly. The budget mechanisms in the non-Boussinesq regime are best understood using effective density and velocity half-width, ρeff ¯u 3 1,CL/r ~u1/2,eff , a modi cation of previous scaling.« less

  14. Circulating and intraprostatic sex steroid hormonal profiles in relation to male pattern baldness and chest hair density among men diagnosed with localized prostate cancers.

    PubMed

    Zhou, Cindy Ke; Stanczyk, Frank Z; Hafi, Muhannad; Veneroso, Carmela C; Lynch, Barlow; Falk, Roni T; Niwa, Shelley; Emanuel, Eric; Gao, Yu-Tang; Hemstreet, George P; Zolfghari, Ladan; Carroll, Peter R; Manyak, Michael J; Sesterhenn, Isabell A; Levine, Paul H; Hsing, Ann W; Cook, Michael B

    2017-12-01

    Prospective cohort studies of circulating sex steroid hormones and prostate cancer risk have not provided a consistent association, despite evidence from animal and clinical studies. However, studies using male pattern baldness as a proxy of early-life or cumulative androgen exposure have reported significant associations with aggressive and fatal prostate cancer risk. Given that androgens underlie the development of patterned hair loss and chest hair, we assessed whether these two dermatological characteristics were associated with circulating and intraprostatic concentrations of sex steroid hormones among men diagnosed with localized prostate cancer. We included 248 prostate cancer patients from the NCI Prostate Tissue Study, who answered surveys and provided a pre-treatment blood sample as well as fresh frozen adjacent normal prostate tissue. Male pattern baldness and chest hair density were assessed by trained nurses before surgery. General linear models estimated geometric means and 95% confidence intervals (95%CIs) of each hormone variable by dermatological phenotype with adjustment for potential confounding variables. Subgroup analyses were performed by Gleason score (<7 vs ≥7) and race (European American vs. African American). We found strong positive associations of balding status with serum testosterone, dihydrotestosterone (DHT), estradiol, and sex hormone-binding globulin (SHBG), and a weak association with elevated intraprostatic testosterone. Conversely, neither circulating nor intraprostatic sex hormones were statistically significantly associated with chest hair density. Age-adjusted correlation between binary balding status and three-level chest hair density was weak (r = 0.05). There was little evidence to suggest that Gleason score or race modified these associations. This study provides evidence that balding status assessed at a mean age of 60 years may serve as a clinical marker for circulating sex hormone concentrations. The weak-to-null associations between balding status and intraprostatic sex hormones reaffirm differences in organ-specific sex hormone metabolism, implying that other sex steroid hormone-related factors (eg, androgen receptor) play important roles in organ-specific androgenic actions, and that other overlapping pathways may be involved in associations between the two complex conditions. © 2017 Wiley Periodicals, Inc.

  15. High precision and high yield fabrication of dense nanoparticle arrays onto DNA origami at statistically independent binding sites

    NASA Astrophysics Data System (ADS)

    Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph T.; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.

    2014-10-01

    High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities.High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03069a

  16. Vertical overlap of probability density functions of cloud and precipitation hydrometeors: CLOUD AND PRECIPITATION PDF OVERLAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikov, Mikhail; Lim, Kyo-Sun Sunny; Larson, Vincent E.

    Coarse-resolution climate models increasingly rely on probability density functions (PDFs) to represent subgrid-scale variability of prognostic variables. While PDFs characterize the horizontal variability, a separate treatment is needed to account for the vertical structure of clouds and precipitation. When sub-columns are drawn from these PDFs for microphysics or radiation parameterizations, appropriate vertical correlations must be enforced via PDF overlap specifications. This study evaluates the representation of PDF overlap in the Subgrid Importance Latin Hypercube Sampler (SILHS) employed in the assumed PDF turbulence and cloud scheme called the Cloud Layers Unified By Binormals (CLUBB). PDF overlap in CLUBB-SILHS simulations of continentalmore » and tropical oceanic deep convection is compared with overlap of PDF of various microphysics variables in cloud-resolving model (CRM) simulations of the same cases that explicitly predict the 3D structure of cloud and precipitation fields. CRM results show that PDF overlap varies significantly between different hydrometeor types, as well as between PDFs of mass and number mixing ratios for each species, - a distinction that the current SILHS implementation does not make. In CRM simulations that explicitly resolve cloud and precipitation structures, faster falling species, such as rain and graupel, exhibit significantly higher coherence in their vertical distributions than slow falling cloud liquid and ice. These results suggest that to improve the overlap treatment in the sub-column generator, the PDF correlations need to depend on hydrometeor properties, such as fall speeds, in addition to the currently implemented dependency on the turbulent convective length scale.« less

  17. Variable density randomized stack of spirals (VDR-SoS) for compressive sensing MRI.

    PubMed

    Valvano, Giuseppe; Martini, Nicola; Landini, Luigi; Santarelli, Maria Filomena

    2016-07-01

    To develop a 3D sampling strategy based on a stack of variable density spirals for compressive sensing MRI. A random sampling pattern was obtained by rotating each spiral by a random angle and by delaying for few time steps the gradient waveforms of the different interleaves. A three-dimensional (3D) variable sampling density was obtained by designing different variable density spirals for each slice encoding. The proposed approach was tested with phantom simulations up to a five-fold undersampling factor. Fully sampled 3D dataset of a human knee, and of a human brain, were obtained from a healthy volunteer. The proposed approach was tested with off-line reconstructions of the knee dataset up to a four-fold acceleration and compared with other noncoherent trajectories. The proposed approach outperformed the standard stack of spirals for various undersampling factors. The level of coherence and the reconstruction quality of the proposed approach were similar to those of other trajectories that, however, require 3D gridding for the reconstruction. The variable density randomized stack of spirals (VDR-SoS) is an easily implementable trajectory that could represent a valid sampling strategy for 3D compressive sensing MRI. It guarantees low levels of coherence without requiring 3D gridding. Magn Reson Med 76:59-69, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  19. Dynamical Mapping of Anopheles darlingi Densities in a Residual Malaria Transmission Area of French Guiana by Using Remote Sensing and Meteorological Data.

    PubMed

    Adde, Antoine; Roux, Emmanuel; Mangeas, Morgan; Dessay, Nadine; Nacher, Mathieu; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien

    2016-01-01

    Local variation in the density of Anopheles mosquitoes and the risk of exposure to bites are essential to explain the spatial and temporal heterogeneities in the transmission of malaria. Vector distribution is driven by environmental factors. Based on variables derived from satellite imagery and meteorological observations, this study aimed to dynamically model and map the densities of Anopheles darlingi in the municipality of Saint-Georges de l'Oyapock (French Guiana). Longitudinal sampling sessions of An. darlingi densities were conducted between September 2012 and October 2014. Landscape and meteorological data were collected and processed to extract a panel of variables that were potentially related to An. darlingi ecology. Based on these data, a robust methodology was formed to estimate a statistical predictive model of the spatial-temporal variations in the densities of An. darlingi in Saint-Georges de l'Oyapock. The final cross-validated model integrated two landscape variables-dense forest surface and built surface-together with four meteorological variables related to rainfall, evapotranspiration, and the minimal and maximal temperatures. Extrapolation of the model allowed the generation of predictive weekly maps of An. darlingi densities at a resolution of 10-m. Our results supported the use of satellite imagery and meteorological data to predict malaria vector densities. Such fine-scale modeling approach might be a useful tool for health authorities to plan control strategies and social communication in a cost-effective, targeted, and timely manner.

  20. Development and validation of a subject-specific finite element model of the functional spinal unit to predict vertebral strength.

    PubMed

    Lee, Chu-Hee; Landham, Priyan R; Eastell, Richard; Adams, Michael A; Dolan, Patricia; Yang, Lang

    2017-09-01

    Finite element models of an isolated vertebral body cannot accurately predict compressive strength of the spinal column because, in life, compressive load is variably distributed across the vertebral body and neural arch. The purpose of this study was to develop and validate a patient-specific finite element model of a functional spinal unit, and then use the model to predict vertebral strength from medical images. A total of 16 cadaveric functional spinal units were scanned and then tested mechanically in bending and compression to generate a vertebral wedge fracture. Before testing, an image processing and finite element analysis framework (SpineVox-Pro), developed previously in MATLAB using ANSYS APDL, was used to generate a subject-specific finite element model with eight-node hexahedral elements. Transversely isotropic linear-elastic material properties were assigned to vertebrae, and simple homogeneous linear-elastic properties were assigned to the intervertebral disc. Forward bending loading conditions were applied to simulate manual handling. Results showed that vertebral strengths measured by experiment were positively correlated with strengths predicted by the functional spinal unit finite element model with von Mises or Drucker-Prager failure criteria ( R 2  = 0.80-0.87), with areal bone mineral density measured by dual-energy X-ray absorptiometry ( R 2  = 0.54) and with volumetric bone mineral density from quantitative computed tomography ( R 2  = 0.79). Large-displacement non-linear analyses on all specimens did not improve predictions. We conclude that subject-specific finite element models of a functional spinal unit have potential to estimate the vertebral strength better than bone mineral density alone.

  1. Reconstructing the gravitational field of the local Universe

    NASA Astrophysics Data System (ADS)

    Desmond, Harry; Ferreira, Pedro G.; Lavaux, Guilhem; Jasche, Jens

    2018-03-01

    Tests of gravity at the galaxy scale are in their infancy. As a first step to systematically uncovering the gravitational significance of galaxies, we map three fundamental gravitational variables - the Newtonian potential, acceleration and curvature - over the galaxy environments of the local Universe to a distance of approximately 200 Mpc. Our method combines the contributions from galaxies in an all-sky redshift survey, haloes from an N-body simulation hosting low-luminosity objects, and linear and quasi-linear modes of the density field. We use the ranges of these variables to determine the extent to which galaxies expand the scope of generic tests of gravity and are capable of constraining specific classes of model for which they have special significance. Finally, we investigate the improvements afforded by upcoming galaxy surveys.

  2. Calibration of ultrasonic power output in water, ethanol and sodium polytungstate

    NASA Astrophysics Data System (ADS)

    Mentler, Axel; Schomakers, Jasmin; Kloss, Stefanie; Zechmeister-Boltenstern, Sophie; Schuller, Reinhard; Mayer, Herwig

    2017-10-01

    Ultrasonic power is the main variable that forms the basis for many soil disaggregation experiments. Thus, a procedure for the rapid determination of this variable has been developed and is described in this article. Calorimetric experiments serve to measure specific heat capacity and ultrasonic power. Ultrasonic power is determined experimentally for deionised water, 30% ethanol and sodium polytungstate with a density of 1.6 g cm-3 and 1.8 g cm-3. All experiments are performed with a pre-selected ultrasonic probe vibration amplitude. Under these conditions, it was found that the emitted ultrasonic power was comparable in the four fluids. It is suggested, however, to perform calibration experiments prior to dispersion experiments, since the used fluid, as well as the employed ultrasonic equipment, may influence the power output.

  3. Natural Tissue Microenvironmental Conditions Modulate Adhesive Material Performance

    PubMed Central

    Oliva, Nuria; Shitreet, Sagi; Abraham, Eytan; Stanley, Butch; Edelman, Elazer R.; Artzi, Natalie

    2015-01-01

    We designed and optimized tissue-responsive adhesive materials by matching material and tissue properties. A two-component material based on dextran aldehyde and dendrimer amine provides a cohesive gel through aldehyde–amine cross-linking and an adhesive interface created by a dextran aldehyde-selective reaction with tissue amines. By altering aldehyde–amine chemistry, we examined how variations in tissue surfaces (serosal amine density in the duodenum, jejunum, and ileum) affect interactions with adhesive materials of varied compositions (aldehyde content). Interestingly, the same adhesive formulation reacts differentially with the three regions of the small intestine as a result of variation in the tissue amine density along the intestinal tract, affecting the tissue–material interfacial morphology, adhesion strength, and adhesive mechanical properties. Whereas tissues provide chemical anchors for interaction with materials, we were able to tune the adhesion strength for each section of the small intestine tissue by altering the adhesive formulation using a two-component material with flexible variables aimed at controlling the aldehyde/amine ratio. This tissue-specific approach should be applied to the broad spectrum of biomaterials, taking into account specific microenvironmental conditions in material design. PMID:23046479

  4. Interference of Wing and Fuselage from Tests of 209 Combinations in the NACA Variable-Density Tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Ward, Kenneth E

    1936-01-01

    This report presents the results of tests of 209 simple wing-fuselage combinations made in the NACA variable-density wind tunnel to provide information regarding the effects of aerodynamic interference between wings and fuselages at a large value of Reynolds number.

  5. The influence of CS-US interval on several different indices of learning in appetitive conditioning

    PubMed Central

    Delamater, Andrew R.; Holland, Peter C.

    2010-01-01

    Four experiments examined the effects of varying the CS-US interval (and US density) on learning in an appetitive magazine approach task with rats. Learning was assessed with conditioned response (CR) measures, as well as measures of sensory-specific stimulus-outcome associations (Pavlovian-instrumental transfer, potentiated feeding, and US devaluation). The results from these studies indicate that there exists an inverse relation between CS-US interval and magazine approach CRs, but that sensory-specific stimulus-outcome associations are established over a wide range of relatively long, but not short, CS-US intervals. These data suggest that simple CR measures provide us with different information about what is learned than measures of the specific stimulus-outcome association, and that time is a more critical variable for the former than latter component of learning. PMID:18426304

  6. A mechanistic stress model of protein evolution accounts for site-specific evolutionary rates and their relationship with packing density and flexibility

    PubMed Central

    2014-01-01

    Background Protein sites evolve at different rates due to functional and biophysical constraints. It is usually considered that the main structural determinant of a site’s rate of evolution is its Relative Solvent Accessibility (RSA). However, a recent comparative study has shown that the main structural determinant is the site’s Local Packing Density (LPD). LPD is related with dynamical flexibility, which has also been shown to correlate with sequence variability. Our purpose is to investigate the mechanism that connects a site’s LPD with its rate of evolution. Results We consider two models: an empirical Flexibility Model and a mechanistic Stress Model. The Flexibility Model postulates a linear increase of site-specific rate of evolution with dynamical flexibility. The Stress Model, introduced here, models mutations as random perturbations of the protein’s potential energy landscape, for which we use simple Elastic Network Models (ENMs). To account for natural selection we assume a single active conformation and use basic statistical physics to derive a linear relationship between site-specific evolutionary rates and the local stress of the mutant’s active conformation. We compare both models on a large and diverse dataset of enzymes. In a protein-by-protein study we found that the Stress Model outperforms the Flexibility Model for most proteins. Pooling all proteins together we show that the Stress Model is strongly supported by the total weight of evidence. Moreover, it accounts for the observed nonlinear dependence of sequence variability on flexibility. Finally, when mutational stress is controlled for, there is very little remaining correlation between sequence variability and dynamical flexibility. Conclusions We developed a mechanistic Stress Model of evolution according to which the rate of evolution of a site is predicted to depend linearly on the local mutational stress of the active conformation. Such local stress is proportional to LPD, so that this model explains the relationship between LPD and evolutionary rate. Moreover, the model also accounts for the nonlinear dependence between evolutionary rate and dynamical flexibility. PMID:24716445

  7. Geographic variation in racial disparities in child maltreatment: The influence of county poverty and population density.

    PubMed

    Maguire-Jack, Kathryn; Lanier, Paul; Johnson-Motoyama, Michelle; Welch, Hannah; Dineen, Michael

    2015-09-01

    There are documented disparities in the rates at which black children come into contact with the child welfare system in the United States compared to white children. A great deal of research has proliferated aimed at understanding whether systematic biases or differential rates of risk among different groups drive these disparities (Drake et al., 2011). In the current study, county rates of maltreatment disparity are compared across the United States and examined in relation to rates of poverty disparity as well as population density. Specifically, using hierarchical linear modeling with a spatially lagged dependent variable, the current study examined data from the National Child Abuse and Neglect Data System (NCANDS) and found that poverty disparities were associated with rates of maltreatment disparities, and densely populated metropolitan counties tended to have the greatest levels of maltreatment disparity for both black and Hispanic children. A significant curvilinear relationship was also observed between these variables, such that in addition to the most densely populated counties, the most sparsely populated counties also tended to have higher rates of maltreatment disparity for black and Hispanic children. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Housing price gradient and immigrant population: Data from the Italian real estate market.

    PubMed

    Antoniucci, Valentina; Marella, Giuliano

    2018-02-01

    The database presented here was collected by Antoniucci and Marella to analyze the correlation between the housing price gradient and the immigrant population in Italy during 2016. It may also be useful in other statistical analyses, be they on the real estate market or in another branches of social science. The data sample relates to 112 Italian provincial capitals. It provides accurate information on urban structure, and specifically on urban density. The two most significant variables are original indicators constructed from official data sources: the housing price gradient, or the ratio between average prices in the center and suburbs by city; and building density, which is the average number of housing units per residential building. The housing price gradient is calculated for the two residential sub-markets, new-build and existing units, providing an original and detailed sample of the Italian residential market. Rather than average prices, the housing price gradient helps to identify potential divergences in residential market trends. As well as house prices, two other data clusters are considered: socio-economic variables, which provide a framework of each city, in terms of demographic and economic information; and various data on urban structure, which are rarely included in the same database.

  9. Matter density versus distance for the neutrino beam from Fermilab to Lead, South Dakota, and comparison of oscillations with variable and constant density

    NASA Astrophysics Data System (ADS)

    Roe, Byron

    2017-06-01

    This paper is divided into two parts. In the first part, the material densities passed through for neutrinos going from FNAL to Sanford Laboratory are calculated using two recent density tables, Crustal [G. Laske, G. Masters, Z. Ma, and M. Pasyanos, Update on CRUST1.0—A 1-degree global model of Earth's crust, Geophys. Res. Abstracts 15, EGU2013-2658 (2013),; For the programs and tables, see the website: http://igppweb.ucsd.edu/ gabi/crust1.html.] and Shen-Ritzwoller [W. Shen and M. H. Ritzwoller, Crustal and uppermost mantle structure beneath the United States, J. Geophys. Res.: Solid Earth 121, 4306 (2016)], as well as the values from an older table PEMC [A. M. Dziewonski, A. L. Hales, and E. R. Lapwood, Parametrically simple earth models consistent with geophysical data, Phys. Earth Plan. Int. 10, 12 (1975); For further information see the website: http://ds.iris.edu/ds/products/emc-pem/.]. In the second part, neutrino oscillations at Sanford Laboratory are examined for the variable density table of Shen-Ritzwoller. These results are then compared with oscillation results using the mean density from the Shen-Ritzwoller tables and with one other fixed density. For the tests made here, the mean density results are quite similar to the results using the variable density vs distance.

  10. Plasma volume methodology: Evans blue, hemoglobin-hematocrit, and mass density transformations

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Hinghofer-Szalkay, H.

    1985-01-01

    Methods for measuring absolute levels and changes in plasma volume are presented along with derivations of pertinent equations. Reduction in variability of the Evans blue dye dilution technique using chromatographic column purification suggests that the day-to-day variability in the plasma volume in humans is less than + or - 20 m1. Mass density determination using the mechanical-oscillator technique provides a method for measuring vascular fluid shifts continuously for assessing the density of the filtrate, and for quantifying movements of protein across microvascular walls. Equations for the calculation of volume and density of shifted fluid are presented.

  11. Identifying student difficulties with basic scientific reasoning skills: An example from control of variables

    NASA Astrophysics Data System (ADS)

    Boudreaux, Andrew

    2006-05-01

    Current national and local standards for the science learning of K-12 students emphasize both basic concepts (such as density) and fundamental reasoning skills (such as proportional reasoning, the interpretation of graphs, and the use of control of variables). At Western Washington University (WWU) and the University of Washington (UW), an effort is underway to examine the ability of university students to apply these same concepts and skills. Populations include students in liberal arts physics courses, introductory calculus-based physics courses, and special courses for the preparation of teachers. One focus of the research has been on the idea of control of variables. This topic is studied by students at all levels, from the primary grades, in which the notion of a ``fair test,'' is sometimes used, to university courses. This talk will discuss research tasks in which students are expected to infer from experimental data whether a particular variable influences (i.e., affects) or by itself determines (i.e., predicts) a given result. Student responses will be presented to identify specific difficulties.

  12. Fourier analysis of blazar variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finke, Justin D.; Becker, Peter A., E-mail: justin.finke@nrl.navy.mil

    Blazars display strong variability on multiple timescales and in multiple radiation bands. Their variability is often characterized by power spectral densities (PSDs) and time lags plotted as functions of the Fourier frequency. We develop a new theoretical model based on the analysis of the electron transport (continuity) equation, carried out in the Fourier domain. The continuity equation includes electron cooling and escape, and a derivation of the emission properties includes light travel time effects associated with a radiating blob in a relativistic jet. The model successfully reproduces the general shapes of the observed PSDs and predicts specific PSD and timemore » lag behaviors associated with variability in the synchrotron, synchrotron self-Compton, and external Compton emission components, from submillimeter to γ-rays. We discuss applications to BL Lacertae objects and to flat-spectrum radio quasars (FSRQs), where there are hints that some of the predicted features have already been observed. We also find that FSRQs should have steeper γ-ray PSD power-law indices than BL Lac objects at Fourier frequencies ≲ 10{sup –4} Hz, in qualitative agreement with previously reported observations by the Fermi Large Area Telescope.« less

  13. Incorporating Planetary-Scale Waves Into the VTGCM: Understanding the Waves Impact on the Upper Atmosphere of Venus.

    NASA Technical Reports Server (NTRS)

    Brecht, A. S.; Bougher, S. W.; Shields, D.; Liu, H.

    2017-01-01

    Venus has proven to have a very dynamic upper atmosphere. The upper atmosphere of Venus has been observed for many decades by multiple means of observation (e.g. ground-based, orbiters, probes, fly-by missions going to other planets). As of late, the European Space Agency Venus Express (VEX) orbiter has been a main observer of the Venusian atmosphere. Specifically, observations of Venus' O2 IR nightglow emission have been presented to show its variability. Nightglow emission is directly connected to Venus' circulation and is utilized as a tracer for the atmospheric global wind system. More recent observations are adding and augmenting temperature and density (e.g. CO, CO2, SO2) datasets. These additional datasets provide a means to begin analyzing the variability and study the potential drivers of the variability. A commonly discussed driver of variability is wave deposition. Evidence of waves has been observed, but these waves have not been completely analyzed to understand how and where they are important. A way to interpret the observations and test potential drivers is by utilizing numerical models.

  14. Fish community changes in the St. Louis River estuary, Lake Superior, 1989-1996: Is it ruffe or population dynamics?

    USGS Publications Warehouse

    Bronte, Charles R.; Evrard, Lori M.; Brown, William P.; Mayo, Kathleen R.; Edwards, Andrew J.

    1998-01-01

    Ruffe (Gymnocephalus cernuus) have been implicated in density declines of native species through egg predation and competition for food in some European waters where they were introduced. Density estimates for ruffe and principal native fishes in the St. Louis River estuary (western Lake Superior) were developed for 1989 to 1996 to measure changes in the fish community in response to an unintentional introduction of ruffe. During the study, ruffe density increased and the densities of several native species decreased. The reductions of native stocks to the natural population dynamics of the same species from Chequamegon Bay, Lake Superior (an area with very few ruffe) were developed, where there was a 24-year record of density. Using these data, short- and long-term variations in catch and correlations among species within years were compared, and species-specific distributions were developed of observed trends in abundance of native fishes in Chequamegon Bay indexed by the slopes of densities across years. From these distributions and our observed trend-line slopes from the St. Louis River, probabilities of measuring negative change at the magnitude observed in the St. Louis River were estimated. Compared with trends in Chequamegon Bay, there was a high probability of obtaining the negative slopes measured for most species, which suggests natural population dynamics could explain, the declines rather than interactions with ruffe. Variable recruitment, which was not related to ruffe density, and associated density-dependent changes in mortality likely were responsible for density declines of native species.

  15. Physiogenomic analysis of CYP450 drug metabolism correlates dyslipidemia with pharmacogenetic functional status in psychiatric patients

    PubMed Central

    Ruaño, Gualberto; Villagra, David; Szarek, Bonnie; Windemuth, Andreas; Kocherla, Mohan; Gorowski, Krystyna; Berrezueta, Christopher; Schwartz, Harold I; Goethe, John

    2011-01-01

    Aims To investigate associations between novel human cytochrome P450 (CYP450) combinatory (multigene) and substrate-specific drug metabolism indices, and elements of metabolic syndrome, such as low density lipoprotein cholesterol (LDLc), high density lipoprotein cholesterol (HDLc), triglycerides and BMI, using physiogenomic analysis. Methods CYP2C9, CYP2C19 and CYP2D6 genotypes and clinical data were obtained for 150 consecutive, consenting hospital admissions with a diagnosis of major depressive disorder and who were treated with psychotropic medications. Data analysis compared clinical measures of LDLc, HDLc, triglyceride and BMI with novel combinatory and substrate-specific CYP450 drug metabolism indices. Results We found that a greater metabolic reserve index score is related to lower LDLc and higher HDLc, and that a greater metabolic alteration index score corresponds with higher LDLc and lower HLDc values. We also discovered that the sertraline drug-specific indices correlated with cholesterol and triglyceride values. Conclusions Overall, we demonstrated how a multigene approach to CYP450 genotype analysis yields more accurate and significant results than single-gene analyses. Ranking the individual with respect to the population represents a potential tool for assessing risk of dyslipidemia in major depressive disorder patients who are being treated with psychotropics. In addition, the drug-specific indices appear useful for modeling a variable of potential relevance to an individual’s risk of drug-related dyslipidemia. PMID:21861666

  16. Physiogenomic analysis of CYP450 drug metabolism correlates dyslipidemia with pharmacogenetic functional status in psychiatric patients.

    PubMed

    Ruaño, Gualberto; Villagra, David; Szarek, Bonnie; Windemuth, Andreas; Kocherla, Mohan; Gorowski, Krystyna; Berrezueta, Christopher; Schwartz, Harold I; Goethe, John

    2011-08-01

    To investigate associations between novel human cytochrome P450 (CYP450) combinatory (multigene) and substrate-specific drug metabolism indices, and elements of metabolic syndrome, such as low density lipoprotein cholesterol (LDLc), high density lipoprotein cholesterol (HDLc), triglycerides and BMI, using physiogenomic analysis. CYP2C9, CYP2C19 and CYP2D6 genotypes and clinical data were obtained for 150 consecutive, consenting hospital admissions with a diagnosis of major depressive disorder and who were treated with psychotropic medications. Data analysis compared clinical measures of LDLc, HDLc, triglyceride and BMI with novel combinatory and substrate-specific CYP450 drug metabolism indices. We found that a greater metabolic reserve index score is related to lower LDLc and higher HDLc, and that a greater metabolic alteration index score corresponds with higher LDLc and lower HLDc values. We also discovered that the sertraline drug-specific indices correlated with cholesterol and triglyceride values. Overall, we demonstrated how a multigene approach to CYP450 genotype analysis yields more accurate and significant results than single-gene analyses. Ranking the individual with respect to the population represents a potential tool for assessing risk of dyslipidemia in major depressive disorder patients who are being treated with psychotropics. In addition, the drug-specific indices appear useful for modeling a variable of potential relevance to an individual's risk of drug-related dyslipidemia.

  17. Controlled Fab installation onto polymeric micelle nanoparticles for tuned bioactivity

    NASA Astrophysics Data System (ADS)

    Chen, Shaoyi; Florinas, Stelios; Teitgen, Abigail; Xu, Ze-Qi; Gao, Changshou; Wu, Herren; Kataoka, Kazunori; Cabral, Horacio; Christie, R. James

    2017-12-01

    Antibodies and antigen-binding fragments (Fabs) can be used to modify the surface of nanoparticles for enhanced target binding. In our previous work, site-specific conjugation of Fabs to polymeric micelles using conventional methods was limited to approximately 30% efficiency, possibly due to steric hindrance related to macromolecular reactants. Here, we report a new method that enables conjugation of Fabs onto a micelle surface in a controlled manner with up to quantitative conversion of nanoparticle reactive groups. Variation of (i) PEG spacer length in a heterofunctionalized cross-linker and (ii) Fab/polymer feed ratios resulted in production of nanoparticles with a range of Fab densities on the surface up to the theoretical maximum value. The biological impact of variable Fab density was evaluated in vitro with respect to cell uptake and cytotoxicity of a drug-loaded (SN38) targeted polymeric micelle bearing anti-EphA2 Fabs. Fab conjugation increased cell uptake and potency compared with non-targeted micelles, although a Fab density of 60% resulted in decreased uptake and potency of the targeted micelles. Altogether, our findings demonstrate that conjugation strategies can be optimized to allow control of Fab density on the surface of nanoparticles and also that Fab density may need to be optimized for a given cell-surface target to achieve the highest bioactivity.

  18. Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration

    NASA Astrophysics Data System (ADS)

    Kathrin Hassler, Sibylle; Weiler, Markus; Blume, Theresa

    2018-01-01

    Transpiration is a key process in the hydrological cycle, and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions as well as for improving the parameterisation and evaluation of hydrological and soil-vegetation-atmosphere transfer models. For individual trees, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status control sap flow amounts of individual trees. Within forest stands, properties such as species composition, basal area or stand density additionally affect sap flow, for example via competition mechanisms. Finally, sap flow patterns might also be influenced by landscape-scale characteristics such as geology and soils, slope position or aspect because they affect water and energy availability; however, little is known about the dynamic interplay of these controls.We studied the relative importance of various tree-, stand- and site-specific characteristics with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites across a 290 km2 catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we modelled the daily sap velocity and derived sap flow patterns of these 61 trees, and we determined the importance of the different controls.Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in the landscape, namely tree species, tree diameter, geology and aspect. For sap flow we included only the stand- and site-specific predictors in the models to ensure variable independence. Of those, geology and aspect were most important. Compared to these predictors, spatial variability of atmospheric demand and soil moisture explains only a small fraction of the variability in the daily datasets. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, are correlated to the temporal dynamics of potential evaporation. We conclude that transpiration estimates on the landscape scale would benefit from not only consideration of hydro-meteorological drivers, but also tree, stand and site characteristics in order to improve the spatial and temporal representation of transpiration for hydrological and soil-vegetation-atmosphere transfer models.

  19. Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data.

    PubMed

    González-Ferreiro, Eduardo; Arellano-Pérez, Stéfano; Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Álvarez-González, Juan Gabriel; Ruiz-González, Ana Daría

    2017-01-01

    The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.

  20. Ecology of invasive Melilotus albus on Alaskan glacial river floodplains

    USGS Publications Warehouse

    Conn, Jeff S.; Werdin-Pfisterer, Nancy R.; Beattie, Katherine L.; Densmore, Roseann V.

    2011-01-01

    Melilotus albus (white sweetclover) has invaded Alaskan glacial river floodplains. We measured cover and density of plant species and environmental variables along transects perpendicular to the Nenana, Matanuska, and Stikine Rivers to study interactions between M. albus and other plant species and to characterize the environment where it establishes. Melilotus albus was a pioneer species on recently disturbed sites and did not persist into closed canopy forests. The relationships between M. albus cover and density and other species were site-specific.Melilotus albus was negatively correlated with native species Elaeagnus commutata at the Nenana River, but not at the Matanuska River. Melilotus albus was positively correlated with the exotic species Crepis tectorumand Taraxacum officinale at the Matanuska River and T. officinale on the upper Stikine River. However, the high density of M. albus at a lower Stikine River site was negatively correlated with T. officinale and several native species including Lathyrus japonicus var. maritimus and Salix alaxensis. Glacial river floodplains in Alaska are highly disturbed and are corridors for exotic plant species movement. Melilotus albus at moderate to low densities may facilitate establishment of exotic species, but at high densities can reduce the cover and density of both exotic and native species.

  1. Ultrasonic hydrometer. [Specific gravity of electrolyte

    DOEpatents

    Swoboda, C.A.

    1982-03-09

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time t between the initial and returning impulses. Considering the distance d between the spaced sonic surfaces and the measured time t, the sonic velocity V is calculated with the equation V = 2d/t. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0 and 40/sup 0/C and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation.

  2. Sampling strategies for subsampled segmented EPI PRF thermometry in MR guided high intensity focused ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odéen, Henrik, E-mail: h.odeen@gmail.com; Diakite, Mahamadou; Todd, Nick

    2014-09-15

    Purpose: To investigate k-space subsampling strategies to achieve fast, large field-of-view (FOV) temperature monitoring using segmented echo planar imaging (EPI) proton resonance frequency shift thermometry for MR guided high intensity focused ultrasound (MRgHIFU) applications. Methods: Five different k-space sampling approaches were investigated, varying sample spacing (equally vs nonequally spaced within the echo train), sampling density (variable sampling density in zero, one, and two dimensions), and utilizing sequential or centric sampling. Three of the schemes utilized sequential sampling with the sampling density varied in zero, one, and two dimensions, to investigate sampling the k-space center more frequently. Two of the schemesmore » utilized centric sampling to acquire the k-space center with a longer echo time for improved phase measurements, and vary the sampling density in zero and two dimensions, respectively. Phantom experiments and a theoretical point spread function analysis were performed to investigate their performance. Variable density sampling in zero and two dimensions was also implemented in a non-EPI GRE pulse sequence for comparison. All subsampled data were reconstructed with a previously described temporally constrained reconstruction (TCR) algorithm. Results: The accuracy of each sampling strategy in measuring the temperature rise in the HIFU focal spot was measured in terms of the root-mean-square-error (RMSE) compared to fully sampled “truth.” For the schemes utilizing sequential sampling, the accuracy was found to improve with the dimensionality of the variable density sampling, giving values of 0.65 °C, 0.49 °C, and 0.35 °C for density variation in zero, one, and two dimensions, respectively. The schemes utilizing centric sampling were found to underestimate the temperature rise, with RMSE values of 1.05 °C and 1.31 °C, for variable density sampling in zero and two dimensions, respectively. Similar subsampling schemes with variable density sampling implemented in zero and two dimensions in a non-EPI GRE pulse sequence both resulted in accurate temperature measurements (RMSE of 0.70 °C and 0.63 °C, respectively). With sequential sampling in the described EPI implementation, temperature monitoring over a 192 × 144 × 135 mm{sup 3} FOV with a temporal resolution of 3.6 s was achieved, while keeping the RMSE compared to fully sampled “truth” below 0.35 °C. Conclusions: When segmented EPI readouts are used in conjunction with k-space subsampling for MR thermometry applications, sampling schemes with sequential sampling, with or without variable density sampling, obtain accurate phase and temperature measurements when using a TCR reconstruction algorithm. Improved temperature measurement accuracy can be achieved with variable density sampling. Centric sampling leads to phase bias, resulting in temperature underestimations.« less

  3. Dimmable electronic ballasts by variable power density modulation technique

    NASA Astrophysics Data System (ADS)

    Borekci, Selim; Kesler, Selami

    2014-11-01

    Dimming can be accomplished commonly by switching frequency and pulse density modulation techniques and a variable inductor. In this study, a variable power density modulation (VPDM) control technique is proposed for dimming applications. A fluorescent lamp is operated in several states to meet the desired lamp power in a modulation period. The proposed technique has the same advantages of magnetic dimming topologies have. In addition, a unique and flexible control technique can be achieved. A prototype dimmable electronic ballast is built and experiments related to it have been conducted. As a result, a 36WT8 fluorescent lamp can be driven for a desired lamp power from several alternatives without modulating the switching frequency.

  4. The method for measuring the groove density of variable-line-space gratings with elimination of the eccentricity effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qingbo; Liu, Zhengkun, E-mail: zhkliu@ustc.edu.cn; Chen, Huoyao

    2015-02-15

    To eliminate the eccentricity effect, a new method for measuring the groove density of a variable-line-space grating was adapted. Based on grating equation, groove density is calculated by measuring the internal angles between zeroth-order and first-order diffracted light for two different wavelengths with the same angle of incidence. The measurement system mainly includes two laser sources, a phase plate, plane mirror, and charge coupled device. The measurement results of a variable-line-space grating demonstrate that the experiment data agree well with theoretical values, and the value of measurement error (ΔN/N) is less than 2.72 × 10{sup −4}.

  5. Density of wild prey modulates lynx kill rates on free-ranging domestic sheep.

    PubMed

    Odden, John; Nilsen, Erlend B; Linnell, John D C

    2013-01-01

    Understanding the factors shaping the dynamics of carnivore-livestock conflicts is vital to facilitate large carnivore conservation in multi-use landscapes. We investigated how the density of their main wild prey, roe deer Capreolus capreolus, modulates individual Eurasian lynx Lynx lynx kill rates on free-ranging domestic sheep Ovis aries across a range of sheep and roe deer densities. Lynx kill rates on free-ranging domestic sheep were collected in south-eastern Norway from 1995 to 2011 along a gradient of different livestock and wild prey densities using VHF and GPS telemetry. We used zero-inflated negative binomial (ZINB) models including lynx sex, sheep density and an index of roe deer density as explanatory variables to model observed kill rates on sheep, and ranked the models based on their AICc values. The model including the effects of lynx sex and sheep density in the zero-inflation model and the effect of lynx sex and roe deer density in the negative binomial part received most support. Irrespective of sheep density and sex, we found the lowest sheep kill rates in areas with high densities of roe deer. As roe deer density decreased, males killed sheep at higher rates, and this pattern held for both high and low sheep densities. Similarly, females killed sheep at higher rates in areas with high densities of sheep and low densities of roe deer. However, when sheep densities were low females rarely killed sheep irrespective of roe deer density. Our quantification of depredation rates can be the first step towards establishing fairer compensation systems based on more accurate and area specific estimation of losses. This study demonstrates how we can use ecological theory to predict where losses of sheep will be greatest, and can be used to identify areas where mitigation measures are most likely to be needed.

  6. Density of Wild Prey Modulates Lynx Kill Rates on Free-Ranging Domestic Sheep

    PubMed Central

    Odden, John; Nilsen, Erlend B.; Linnell, John D. C.

    2013-01-01

    Understanding the factors shaping the dynamics of carnivore–livestock conflicts is vital to facilitate large carnivore conservation in multi-use landscapes. We investigated how the density of their main wild prey, roe deer Capreolus capreolus, modulates individual Eurasian lynx Lynx lynx kill rates on free-ranging domestic sheep Ovis aries across a range of sheep and roe deer densities. Lynx kill rates on free-ranging domestic sheep were collected in south-eastern Norway from 1995 to 2011 along a gradient of different livestock and wild prey densities using VHF and GPS telemetry. We used zero-inflated negative binomial (ZINB) models including lynx sex, sheep density and an index of roe deer density as explanatory variables to model observed kill rates on sheep, and ranked the models based on their AICc values. The model including the effects of lynx sex and sheep density in the zero-inflation model and the effect of lynx sex and roe deer density in the negative binomial part received most support. Irrespective of sheep density and sex, we found the lowest sheep kill rates in areas with high densities of roe deer. As roe deer density decreased, males killed sheep at higher rates, and this pattern held for both high and low sheep densities. Similarly, females killed sheep at higher rates in areas with high densities of sheep and low densities of roe deer. However, when sheep densities were low females rarely killed sheep irrespective of roe deer density. Our quantification of depredation rates can be the first step towards establishing fairer compensation systems based on more accurate and area specific estimation of losses. This study demonstrates how we can use ecological theory to predict where losses of sheep will be greatest, and can be used to identify areas where mitigation measures are most likely to be needed. PMID:24278123

  7. Reader performance in visual assessment of breast density using visual analogue scales: Are some readers more predictive of breast cancer?

    NASA Astrophysics Data System (ADS)

    Rayner, Millicent; Harkness, Elaine F.; Foden, Philip; Wilson, Mary; Gadde, Soujanya; Beetles, Ursula; Lim, Yit Y.; Jain, Anil; Bundred, Sally; Barr, Nicky; Evans, D. Gareth; Howell, Anthony; Maxwell, Anthony; Astley, Susan M.

    2018-03-01

    Mammographic breast density is one of the strongest risk factors for breast cancer, and is used in risk prediction and for deciding appropriate imaging strategies. In the Predicting Risk Of Cancer At Screening (PROCAS) study, percent density estimated by two readers on Visual Analogue Scales (VAS) has shown a strong relationship with breast cancer risk when assessed against automated methods. However, this method suffers from reader variability. This study aimed to assess the performance of PROCAS readers using VAS, and to identify those most predictive of breast cancer. We selected the seven readers who had estimated density on over 6,500 women including at least 100 cancer cases, analysing their performance using multivariable logistic regression and Receiver Operator Characteristic (ROC) analysis. All seven readers showed statistically significant odds ratios (OR) for cancer risk according to VAS score after adjusting for classical risk factors. The OR was greatest for reader 18 at 1.026 (95% Cl 1.018-1.034). Adjusted Area Under the ROC Curves (AUCs) were statistically significant for all readers, but greatest for reader 14 at 0.639. Further analysis of the VAS scores for these two readers showed reader 14 had higher sensitivity (78.0% versus 42.2%), whereas reader 18 had higher specificity (78.0% versus 46.0%). Our results demonstrate individual differences when assigning VAS scores; one better identified those with increased risk, whereas another better identified low risk individuals. However, despite their different strengths, both readers showed similar predictive abilities overall. Standardised training for VAS may improve reader variability and consistency of VAS scoring.

  8. Estimating black bear density using DNA data from hair snares

    USGS Publications Warehouse

    Gardner, B.; Royle, J. Andrew; Wegan, M.T.; Rainbolt, R.E.; Curtis, P.D.

    2010-01-01

    DNA-based mark-recapture has become a methodological cornerstone of research focused on bear species. The objective of such studies is often to estimate population size; however, doing so is frequently complicated by movement of individual bears. Movement affects the probability of detection and the assumption of closure of the population required in most models. To mitigate the bias caused by movement of individuals, population size and density estimates are often adjusted using ad hoc methods, including buffering the minimum polygon of the trapping array. We used a hierarchical, spatial capturerecapture model that contains explicit components for the spatial-point process that governs the distribution of individuals and their exposure to (via movement), and detection by, traps. We modeled detection probability as a function of each individual's distance to the trap and an indicator variable for previous capture to account for possible behavioral responses. We applied our model to a 2006 hair-snare study of a black bear (Ursus americanus) population in northern New York, USA. Based on the microsatellite marker analysis of collected hair samples, 47 individuals were identified. We estimated mean density at 0.20 bears/km2. A positive estimate of the indicator variable suggests that bears are attracted to baited sites; therefore, including a trap-dependence covariate is important when using bait to attract individuals. Bayesian analysis of the model was implemented in WinBUGS, and we provide the model specification. The model can be applied to any spatially organized trapping array (hair snares, camera traps, mist nests, etc.) to estimate density and can also account for heterogeneity and covariate information at the trap or individual level. ?? The Wildlife Society.

  9. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction.

    PubMed

    Li, Zuoping; Kindig, Matthew W; Subit, Damien; Kent, Richard W

    2010-11-01

    The purpose of this paper was to investigate the sensitivity of the structural responses and bone fractures of the ribs to mesh density, cortical thickness, and material properties so as to provide guidelines for the development of finite element (FE) thorax models used in impact biomechanics. Subject-specific FE models of the second, fourth, sixth and tenth ribs were developed to reproduce dynamic failure experiments. Sensitivity studies were then conducted to quantify the effects of variations in mesh density, cortical thickness, and material parameters on the model-predicted reaction force-displacement relationship, cortical strains, and bone fracture locations for all four ribs. Overall, it was demonstrated that rib FE models consisting of 2000-3000 trabecular hexahedral elements (weighted element length 2-3mm) and associated quadrilateral cortical shell elements with variable thickness more closely predicted the rib structural responses and bone fracture force-failure displacement relationships observed in the experiments (except the fracture locations), compared to models with constant cortical thickness. Further increases in mesh density increased computational cost but did not markedly improve model predictions. A ±30% change in the major material parameters of cortical bone lead to a -16.7 to 33.3% change in fracture displacement and -22.5 to +19.1% change in the fracture force. The results in this study suggest that human rib structural responses can be modeled in an accurate and computationally efficient way using (a) a coarse mesh of 2000-3000 solid elements, (b) cortical shells elements with variable thickness distribution and (c) a rate-dependent elastic-plastic material model. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Generalized Growth of Estuarine, Household and Clinical Isolates of Pseudomonas aeruginosa.

    PubMed

    Diaz, Kelly E; Remold, Susanna K; Onyiri, Ogochukwu; Bozeman, Maura; Raymond, Peter A; Turner, Paul E

    2018-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen of particular concern to immune-compromised people, such as cystic fibrosis patients and burn victims. These bacteria grow in built environments including hospitals and households, and in natural environments such as rivers and estuaries. However, there is conflicting evidence whether recent environments like the human lung and open ocean affect P. aeruginosa growth performance in alternate environments. We hypothesized that bacteria recently isolated from dissimilar habitats should grow differently in media containing artificial versus natural resources. To test this idea, we examined growth of P. aeruginosa isolates from three environments (estuary, household, and clinic) in three media types: minimal-glucose lab medium, and media prepared from sugar maple leaves or big bluestem grass. We used automated spectrophotometry to measure high-resolution growth curves for all isolate by media combinations, and studied two fitness parameters: growth rate and maximum population density. Results showed high variability in growth rate among isolates, both overall and in its dependence on assay media, but this variability was not associated with habitat of isolation. In contrast, total growth (change in absorbance over the experiment) differed overall among habitats of isolation, and there were media-specific differences in mean total growth among habitats of isolation, and in among-habitat variability in the media-specific response. This was driven primarily by greater total growth of estuary isolates when compared with those from other habitats of origin, and greater media-specific variability among household isolates than those from other habitats of origin. Taken together, these results suggest that for growth rate P. aeruginosa bacteria appear to be broad generalists without regard to current or recent habitat, whereas for total growth a signature of recent ecological history can be detected.

  11. Generalized Growth of Estuarine, Household and Clinical Isolates of Pseudomonas aeruginosa

    PubMed Central

    Diaz, Kelly E.; Remold, Susanna K.; Onyiri, Ogochukwu; Bozeman, Maura; Raymond, Peter A.; Turner, Paul E.

    2018-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen of particular concern to immune-compromised people, such as cystic fibrosis patients and burn victims. These bacteria grow in built environments including hospitals and households, and in natural environments such as rivers and estuaries. However, there is conflicting evidence whether recent environments like the human lung and open ocean affect P. aeruginosa growth performance in alternate environments. We hypothesized that bacteria recently isolated from dissimilar habitats should grow differently in media containing artificial versus natural resources. To test this idea, we examined growth of P. aeruginosa isolates from three environments (estuary, household, and clinic) in three media types: minimal-glucose lab medium, and media prepared from sugar maple leaves or big bluestem grass. We used automated spectrophotometry to measure high-resolution growth curves for all isolate by media combinations, and studied two fitness parameters: growth rate and maximum population density. Results showed high variability in growth rate among isolates, both overall and in its dependence on assay media, but this variability was not associated with habitat of isolation. In contrast, total growth (change in absorbance over the experiment) differed overall among habitats of isolation, and there were media-specific differences in mean total growth among habitats of isolation, and in among-habitat variability in the media-specific response. This was driven primarily by greater total growth of estuary isolates when compared with those from other habitats of origin, and greater media-specific variability among household isolates than those from other habitats of origin. Taken together, these results suggest that for growth rate P. aeruginosa bacteria appear to be broad generalists without regard to current or recent habitat, whereas for total growth a signature of recent ecological history can be detected. PMID:29599754

  12. Reader variability in breast density estimation from full-field digital mammograms: the effect of image postprocessing on relative and absolute measures.

    PubMed

    Keller, Brad M; Nathan, Diane L; Gavenonis, Sara C; Chen, Jinbo; Conant, Emily F; Kontos, Despina

    2013-05-01

    Mammographic breast density, a strong risk factor for breast cancer, may be measured as either a relative percentage of dense (ie, radiopaque) breast tissue or as an absolute area from either raw (ie, "for processing") or vendor postprocessed (ie, "for presentation") digital mammograms. Given the increasing interest in the incorporation of mammographic density in breast cancer risk assessment, the purpose of this study is to determine the inherent reader variability in breast density assessment from raw and vendor-processed digital mammograms, because inconsistent estimates could to lead to misclassification of an individual woman's risk for breast cancer. Bilateral, mediolateral-oblique view, raw, and processed digital mammograms of 81 women were retrospectively collected for this study (N = 324 images). Mammographic percent density and absolute dense tissue area estimates for each image were obtained from two radiologists using a validated, interactive software tool. The variability of interreader agreement was not found to be affected by the image presentation style (ie, raw or processed, F-test: P > .5). Interreader estimates of relative and absolute breast density are strongly correlated (Pearson r > 0.84, P < .001) but systematically different (t-test, P < .001) between the two readers. Our results show that mammographic density may be assessed with equal reliability from either raw or vendor postprocessed images. Furthermore, our results suggest that the primary source of density variability comes from the subjectivity of the individual reader in assessing the absolute amount of dense tissue present in the breast, indicating the need to use standardized tools to mitigate this effect. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  13. Effects of urbanization on benthic macroinvertebrate communities in streams, Anchorage, Alaska

    USGS Publications Warehouse

    Ourso, Robert T.

    2001-01-01

    The effect of urbanization on stream macroinvertebrate communities was examined by using data gathered during a 1999 reconnaissance of 14 sites in the Municipality of Anchorage, Alaska. Data collected included macroinvertebrate abundance, water chemistry, and trace elements in bed sediments. Macroinvertebrate relative-abundance data were edited and used in metric and index calculations. Population density was used as a surrogate for urbanization. Cluster analysis (unweighted-paired-grouping method) using arithmetic means of macroinvertebrate presence-absence data showed a well-defined separation between urbanized and nonurbanized sites as well as extracted sites that did not cleanly fall into either category. Water quality in Anchorage generally declined with increasing urbanization (population density). Of 59 variables examined, 31 correlated with urbanization. Local regression analysis extracted 11 variables that showed a significant impairment threshold response and 6 that showed a significant linear response. Significant biological variables for determining the impairment threshold in this study were the Margalef diversity index, Ephemeroptera-Plecoptera-Trichoptera taxa richness, and total taxa richness. Significant thresholds were observed in the water-chemistry variables conductivity, dissolved organic carbon, potassium, and total dissolved solids. Significant thresholds in trace elements in bed sediments included arsenic, iron, manganese, and lead. Results suggest that sites in Anchorage that have ratios of population density to road density greater than 70, storm-drain densities greater than 0.45 miles per square mile, road densities greater than 4 miles per square mile, or population densities greater than 125-150 persons per square mile may require further monitoring to determine if the stream has become impaired. This population density is far less than the 1,000 persons per square mile used by the U.S. Census Bureau to define an urban area.

  14. Development of European NO2 Land Use Regression Model for present and future exposure assessment: Implications for policy analysis.

    PubMed

    Vizcaino, Pilar; Lavalle, Carlo

    2018-05-04

    A new Land Use Regression model was built to develop pan-European 100 m resolution maps of NO 2 concentrations. The model was built using NO 2 concentrations from routine monitoring stations available in the Airbase database as dependent variable. Predictor variables included land use, road traffic proxies, population density, climatic and topographical variables, and distance to sea. In order to capture international and inter regional disparities not accounted for with the mentioned predictor variables, additional proxies of NO 2 concentrations, like levels of activity intensity and NO x emissions for specific sectors, were also included. The model was built using Random Forest techniques. Model performance was relatively good given the EU-wide scale (R 2  = 0.53). Output predictions of annual average concentrations of NO 2 were in line with other existing models in terms of spatial distribution and values of concentration. The model was validated for year 2015, comparing model predictions derived from updated values of independent variables, with concentrations in monitoring stations for that year. The algorithm was then used to model future concentrations up to the year 2030, considering different emission scenarios as well as changes in land use, population distribution and economic factors assuming the most likely socio-economic trends. Levels of exposure were derived from maps of concentration. The model proved to be a useful tool for the ex-ante evaluation of specific air pollution mitigation measures, and more broadly, for impact assessment of EU policies on territorial development. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Local and neighboring patch conditions alter sex-specific movement in banana weevils.

    PubMed

    Carval, Dominique; Perrin, Benjamin; Duyck, Pierre-François; Tixier, Philippe

    2015-12-01

    Understanding the mechanisms underlying the movements and spread of a species over time and space is a major concern of ecology. Here, we assessed the effects of an individual's sex and the density and sex ratio of conspecifics in the local and neighboring environment on the movement probability of the banana weevil, Cosmopolites sordidus. In a "two patches" experiment, we used radiofrequency identification tags to study the C. sordidus movement response to patch conditions. We showed that local and neighboring densities of conspecifics affect the movement rates of individuals but that the density-dependent effect can be either positive or negative depending on the relative densities of conspecifics in local and neighboring patches. We demonstrated that sex ratio also influences the movement of C. sordidus, that is, the weevil exhibits nonfixed sex-biased movement strategies. Sex-biased movement may be the consequence of intrasexual competition for resources (i.e., oviposition sites) in females and for mates in males. We also detected a high individual variability in the propensity to move. Finally, we discuss the role of demographic stochasticity, sex-biased movement, and individual heterogeneity in movement on the colonization process.

  16. Modelling Soil-Landscapes in Coastal California Hills Using Fine Scale Terrestrial Lidar

    NASA Astrophysics Data System (ADS)

    Prentice, S.; Bookhagen, B.; Kyriakidis, P. C.; Chadwick, O.

    2013-12-01

    Digital elevation models (DEMs) are the dominant input to spatially explicit digital soil mapping (DSM) efforts due to their increasing availability and the tight coupling between topography and soil variability. Accurate characterization of this coupling is dependent on DEM spatial resolution and soil sampling density, both of which may limit analyses. For example, DEM resolution may be too coarse to accurately reflect scale-dependent soil properties yet downscaling introduces artifactual uncertainty unrelated to deterministic or stochastic soil processes. We tackle these limitations through a DSM effort that couples moderately high density soil sampling with a very fine scale terrestrial lidar dataset (20 cm) implemented in a semiarid rolling hillslope domain where terrain variables change rapidly but smoothly over short distances. Our guiding hypothesis is that in this diffusion-dominated landscape, soil thickness is readily predicted by continuous terrain attributes coupled with catenary hillslope segmentation. We choose soil thickness as our keystone dependent variable for its geomorphic and hydrologic significance, and its tendency to be a primary input to synthetic ecosystem models. In defining catenary hillslope position we adapt a logical rule-set approach that parses common terrain derivatives of curvature and specific catchment area into discrete landform elements (LE). Variograms and curvature-area plots are used to distill domain-scale terrain thresholds from short range order noise characteristic of very fine-scale spatial data. The revealed spatial thresholds are used to condition LE rule-set inputs, rendering a catenary LE map that leverages the robustness of fine-scale terrain data to create a generalized interpretation of soil geomorphic domains. Preliminary regressions show that continuous terrain variables alone (curvature, specific catchment area) only partially explain soil thickness, and only in a subset of soils. For example, at spatial scales up 20, curvature explains 40% of soil thickness variance among soils <3 m deep, while soils >3 m deep show no clear relation to curvature. To further demonstration our geomorphic segmentation approach, we apply it to DEM domains where diffusion processes are less dominant than in our primary study area. Classified landform map derived from fine scale terrestrial lidar. Color classes depict hydrogeomorphic process domains in zero order watersheds.

  17. Mean-field density functional theory of a nanoconfined classical, three-dimensional Heisenberg fluid. I. The role of molecular anchoring

    NASA Astrophysics Data System (ADS)

    Cattes, Stefanie M.; Gubbins, Keith E.; Schoen, Martin

    2016-05-01

    In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.

  18. Electron-Beam Diagnostic Methods for Hypersonic Flow Diagnostics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The purpose of this work was the evaluation of the use of electron-bean fluorescence for flow measurements during hypersonic flight. Both analytical and numerical models were developed in this investigation to evaluate quantitatively flow field imaging concepts based upon the electron beam fluorescence technique for use in flight research and wind tunnel applications. Specific models were developed for: (1) fluorescence excitation/emission for nitrogen, (2) rotational fluorescence spectrum for nitrogen, (3) single and multiple scattering of electrons in a variable density medium, (4) spatial and spectral distribution of fluorescence, (5) measurement of rotational temperature and density, (6) optical filter design for fluorescence imaging, and (7) temperature accuracy and signal acquisition time requirements. Application of these models to a typical hypersonic wind tunnel flow is presented. In particular, the capability of simulating the fluorescence resulting from electron impact ionization in a variable density nitrogen or air flow provides the capability to evaluate the design of imaging instruments for flow field mapping. The result of this analysis is a recommendation that quantitative measurements of hypersonic flow fields using electron-bean fluorescence is a tractable method with electron beam energies of 100 keV. With lower electron energies, electron scattering increases with significant beam divergence which makes quantitative imaging difficult. The potential application of the analytical and numerical models developed in this work is in the design of a flow field imaging instrument for use in hypersonic wind tunnels or onboard a flight research vehicle.

  19. High/variable mixture ratio O2/H2 engine

    NASA Technical Reports Server (NTRS)

    Adams, A.; Parsley, R. C.

    1988-01-01

    Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.

  20. Exploring variable patterns of density-dependent larval settlement among corals with distinct and shared functional traits

    NASA Astrophysics Data System (ADS)

    Doropoulos, Christopher; Gómez-Lemos, Luis A.; Babcock, Russell C.

    2018-03-01

    Coral settlement is a key process for the recovery and maintenance of coral reefs, yet interspecific variations in density-dependent settlement are unknown. Settlement of the submassive Goniastrea retiformis and corymbose Acropora digitifera and A. millepora was quantified at densities ranging from 1 to 50 larvae per 20 mL from 110 to 216 h following spawning. Settlement patterns were distinct for each species. Goniastrea settlement was rapid and increased linearly with time, whereas both Acropora spp. hardly settled until crustose coralline algae was provided. Both Goniastrea and A. digitifera showed positive density-dependent settlement, but the relationship was exponential for Goniastrea but linear for A. digitifera. Settlement was highest but density independent in A. millepora. Our results suggest that larval density can have significant effects on settler replenishment, and highlight variability in density-dependent settlement among corals with distinct functional traits as well as those with similar functional forms.

  1. Variability in sublingual microvessel density and flow measurements in healthy volunteers.

    PubMed

    Hubble, Sheena M A; Kyte, Hayley L; Gooding, Kim; Shore, Angela C

    2009-02-01

    As sublingual microvascular indices are increasingly heralded as new resuscitation end-points, better population data are required to power clinical studies. This paper describes improved methods to quantify sublingual microvessel flow and density in images obtained by sidestream dark field (SDF) technology in healthy volunteers, including vessels under 10 microm in diameter. Measurements of sublingual capillary density and flow were obtained by recording three 15-second images in 20 healthy volunteers over three days. Two independent observers quantified capillary density by using two methods: total vessel length (mm/mm2) and counting (number/mm). Both intraoral and temporal variabilities within subject and observer reproducibilities were determined by using coefficients of variability and reproducibility indices. For small (1-10 microm), medium (11-20 microm), and large (21-50 microm) diameter, mean vessel density with standard deviations (SDs) in volunteers was 21.3(+/- 4.9), 5.2 (+/- 1.2), and 2.7 (+/- 0.9) mm/mm2, respectively. Also, 94.0 +/- 1.4% of small vessels, 94.5 +/- 1.4% of medium vessels, and 94.5+/- 4.0% of large vessels had continuous perfusion. Within subjects, the means of all measurements over three days varied less than 13, 22, and 35% in small, medium, and large vessels, respectively. Interobserver reproducibility was good, especially for capillary (1-10 microm) density and flow measurements. Our methods of microvessel flow and density quantification have low observer variability and confirm the stability of microcirculatory measurements over time. These results facilitate the development of SDF-acquired sublingual microvascular indices as feasible microperfusion markers in shock resuscitation.

  2. Analytical Modeling and Test Correlation of Variable Density Multilayer Insulation for Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Hedayat, A.; Brown, T. M.

    2004-01-01

    A unique foam/multilayer insulation (MLI) combination concept for orbital cryogenic storage was experimentally evaluated using a large-scale hydrogen tank. The foam substrate insulates for ground-hold periods and enables a gaseous nitrogen purge as opposed to helium. The MLI, designed for an on-orbit storage period for 45 days, includes several unique features including a variable layer density and larger but fewer perforations for venting during ascent to orbit. Test results with liquid hydrogen indicated that the MLI weight or tank heat leak is reduced by about half in comparison with standard MLI. The focus of this effort is on analytical modeling of the variable density MLI (VD-MLI) on-orbit performance. The foam/VD-MLI model is considered to have five segments. The first segment represents the optional foam layer. The second, third, and fourth segments represent three different MLI layer densities. The last segment is an environmental boundary or shroud that surrounds the last MLI layer. Two approaches are considered: a variable density MLI modeled layer by layer and a semiempirical model or "modified Lockheed equation." Results from the two models were very comparable and were within 5-8 percent of the measured data at the 300 K boundary condition.

  3. A stepwedge-based method for measuring breast density: observer variability and comparison with human reading

    NASA Astrophysics Data System (ADS)

    Diffey, Jenny; Berks, Michael; Hufton, Alan; Chung, Camilla; Verow, Rosanne; Morrison, Joanna; Wilson, Mary; Boggis, Caroline; Morris, Julie; Maxwell, Anthony; Astley, Susan

    2010-04-01

    Breast density is positively linked to the risk of developing breast cancer. We have developed a semi-automated, stepwedge-based method that has been applied to the mammograms of 1,289 women in the UK breast screening programme to measure breast density by volume and area. 116 images were analysed by three independent operators to assess inter-observer variability; 24 of these were analysed on 10 separate occasions by the same operator to determine intra-observer variability. 168 separate images were analysed using the stepwedge method and by two radiologists who independently estimated percentage breast density by area. There was little intra-observer variability in the stepwedge method (average coefficients of variation 3.49% - 5.73%). There were significant differences in the volumes of glandular tissue obtained by the three operators. This was attributed to variations in the operators' definition of the breast edge. For fatty and dense breasts, there was good correlation between breast density assessed by the stepwedge method and the radiologists. This was also observed between radiologists, despite significant inter-observer variation. Based on analysis of thresholds used in the stepwedge method, radiologists' definition of a dense pixel is one in which the percentage of glandular tissue is between 10 and 20% of the total thickness of tissue.

  4. Analytical Modeling of Variable Density Multilayer Insulation for Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Hastings, L. J.; Brown, T.; Cruit, Wendy (Technical Monitor)

    2001-01-01

    A unique foam/Multilayer Insulation (MLI) combination concept for orbital cryogenic storage was experimentally evaluated at NASA Marshall Space Flight Center (MSFC) using the Multipurpose Hydrogen Test Bed (MHTB). The MLI was designed for an on-orbit storage period of 45 days and included several unique features such as: a variable layer density and larger but fewer perforations for venting during ascent to orbit. Test results with liquid hydrogen indicated that the MLI weight or heat leak is reduced by about half in comparison with standard MLI. The focus of this paper is on analytical modeling of the Variable Density MLI (VD-MLI) on-orbit performance (i.e. vacuum/low pressure environment). The foam/VD-MLI combination model is considered to have five segments. The first segment represents the optional foam layer. The second, third, and fourth segments represent three MLI segments with different layer densities. The last segment is considered to be a shroud that surrounds the last MLI layer. Two approaches are considered. In the first approach, the variable density MLI is modeled layer by layer while in the second approach, a semi-empirical model is applied. Both models account for thermal radiation between shields, gas conduction, and solid conduction through the layer separator materials.

  5. Socio-demographic diversity and unexplained variation in death rates among the most deprived parliamentary constituencies in Britain.

    PubMed

    Tunstall, H; Mitchell, R; Gibbs, J; Platt, S; Dorling, D

    2012-06-01

    There is considerable unexplained variation in death rates between deprived areas of Britain. This analysis assesses the degree of variation in socio-demographic factors among deprivation deciles and how variables associated with deaths differ among the most deprived areas. Death rates 1996-2001, Carstairs' 2001 deprivation score and indicators, population density, black and minority ethnic group (BME) and population change 1971-2001 were calculated for 641 parliamentary constituencies in Britain. Constituencies were grouped into Carstairs' deciles. We assessed standard errors of all variables by decile and the relationship between death rates and socio-demographic variables with Pearson's correlations and linear regression by decile and for all constituencies combined. Standard errors in death rates and most socio-demographic variables were greatest for the most deprived decile. Death rates among all constituencies were positively correlated with Carstairs' score and indicators, density and BME, but for the most deprived decile, there was no association with Carstairs and a negative correlation with overcrowding, density and BME. For the most deprived decile multivariate models containing population density, BME and change had substantially higher R(2). Understanding variations in death rates between deprived areas requires greater consideration of their socio-demographic diversity including their population density, ethnicity and migration.

  6. Benchmarking variable-density flow in saturated and unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas

    2015-04-01

    In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.

  7. Relationships between ecosystem metabolism, benthic macroinvertebrate densities, and environmental variables in a sub-arctic Alaskan river

    USGS Publications Warehouse

    Benson, Emily R.; Wipfli, Mark S.; Clapcott, Joanne E.; Hughes, Nicholas F.

    2013-01-01

    Relationships between environmental variables, ecosystem metabolism, and benthos are not well understood in sub-arctic ecosystems. The goal of this study was to investigate environmental drivers of river ecosystem metabolism and macroinvertebrate density in a sub-arctic river. We estimated primary production and respiration rates, sampled benthic macroinvertebrates, and monitored light intensity, discharge rate, and nutrient concentrations in the Chena River, interior Alaska, over two summers. We employed Random Forests models to identify predictor variables for metabolism rates and benthic macroinvertebrate density and biomass, and calculated Spearman correlations between in-stream nutrient levels and metabolism rates. Models indicated that discharge and length of time between high water events were the most important factors measured for predicting metabolism rates. Discharge was the most important variable for predicting benthic macroinvertebrate density and biomass. Primary production rate peaked at intermediate discharge, respiration rate was lowest at the greatest time since last high water event, and benthic macroinvertebrate density was lowest at high discharge rates. The ratio of dissolved inorganic nitrogen to soluble reactive phosphorus ranged from 27:1 to 172:1. We found that discharge plays a key role in regulating stream ecosystem metabolism, but that low phosphorous levels also likely limit primary production in this sub-arctic stream.

  8. Variability in human cone topography assessed by adaptive optics scanning laser ophthalmoscopy

    PubMed Central

    Zhang, Tianjiao; Godara, Pooja; Blanco, Ernesto R.; Griffin, Russell L; Wang, Xiaolin; Curcio, Christine A.; Zhang, Yuhua

    2015-01-01

    Purpose To assess between- and within-individual variability of macular cone topography in the eyes of young adults. Design Observational case series. Methods Cone photoreceptors in 40 eyes of 20 subjects aged 19–29 years with normal maculae were imaged using a research adaptive optics scanning laser ophthalmoscope. Refractive errors ranged from −3.0 D to 0.63 D and differed by <0.50 D in fellow eyes. Cone density was assessed on a two-dimensional sampling grid over the central 2.4 mm × 2.4 mm. Between-individual variability was evaluated by coefficient of variation (CV). Within-individual variability was quantified by maximum difference and root-mean-square (RMS). Cones were cumulated over increasing eccentricity. Results Peak densities of foveal cones are 168,162 ± 23,529 cones/mm2 (mean ± SD) (CV = 0.14). The number of cones within the cone-dominated foveola (0.8–0.9 mm diameter) is 38,311 ± 2,319 (CV = 0.06). The RMS cone density difference between fellow eyes is 6.78%, and the maximum difference is 23.6%. Mixed model statistical analysis found no difference in the association between eccentricity and cone density in the superior/nasal (p=0.8503), superior/temporal (p=0.1551), inferior/nasal (p=0.8609), and inferior/temporal (p=0.6662) quadrants of fellow eyes. Conclusions New instrumentation imaged the smallest foveal cones, thus allowing accurate assignment of foveal centers and assessment of variability in macular cone density in a large sample of eyes. Though cone densities vary significantly in the fovea, the total number of foveolar cones are very similar both between- and within-subjects. Thus, the total number of foveolar cones may be an important measure of cone degeneration and loss. PMID:25935100

  9. Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests

    USGS Publications Warehouse

    Hall, S. A.; Burke, I.C.; Box, D. O.; Kaufmann, M. R.; Stoker, Jason M.

    2005-01-01

    The ponderosa pine forests of the Colorado Front Range, USA, have historically been subjected to wildfires. Recent large burns have increased public interest in fire behavior and effects, and scientific interest in the carbon consequences of wildfires. Remote sensing techniques can provide spatially explicit estimates of stand structural characteristics. Some of these characteristics can be used as inputs to fire behavior models, increasing our understanding of the effect of fuels on fire behavior. Others provide estimates of carbon stocks, allowing us to quantify the carbon consequences of fire. Our objective was to use discrete-return lidar to estimate such variables, including stand height, total aboveground biomass, foliage biomass, basal area, tree density, canopy base height and canopy bulk density. We developed 39 metrics from the lidar data, and used them in limited combinations in regression models, which we fit to field estimates of the stand structural variables. We used an information–theoretic approach to select the best model for each variable, and to select the subset of lidar metrics with most predictive potential. Observed versus predicted values of stand structure variables were highly correlated, with r2 ranging from 57% to 87%. The most parsimonious linear models for the biomass structure variables, based on a restricted dataset, explained between 35% and 58% of the observed variability. Our results provide us with useful estimates of stand height, total aboveground biomass, foliage biomass and basal area. There is promise for using this sensor to estimate tree density, canopy base height and canopy bulk density, though more research is needed to generate robust relationships. We selected 14 lidar metrics that showed the most potential as predictors of stand structure. We suggest that the focus of future lidar studies should broaden to include low density forests, particularly systems where the vertical structure of the canopy is important, such as fire prone forests.

  10. Extrusion-spheronization: process variables and characterization.

    PubMed

    Sinha, V R; Agrawal, M K; Agarwal, A; Singh, G; Ghai, D

    2009-01-01

    Multiparticulate systems have undergone great development in the past decade fueled by the better understanding of their multiple roles as a suitable delivery system. With the passage of time, significant advances have been made in the process of pelletization due to the incorporation of specialized techniques for their development. Extrusion-spheronization seems to be the most promising process for the optimum delivery of many potent drugs having high systemic toxicity. It also offers immense pharmaceutical applicability due to the benefits of high loading capacity of active ingredient(s), narrow size distribution, and cost-effectiveness. On application of a specific coat, these systems can also aid in site-specific delivery, thereby enhancing the bioavailability of many drugs. The current review focuses on the process of extrusion-spheronization and the operational (extruder types, screen pressure, screw speed, temperature, moisture content, spheronization load, speed and time) and formulation (excipients and drugs) variables, which may affect the quality of the final pellets. Various methods for the evaluation of the quality of the pellets with regard to the size distribution, shape, friability, granule strength, density, porosity, flow properties, and surface texture are discussed.

  11. A wood density and aboveground biomass variability assessment using pre-felling inventory data in Costa Rica.

    PubMed

    Svob, Sienna; Arroyo-Mora, J Pablo; Kalacska, Margaret

    2014-12-01

    The high spatio-temporal variability of aboveground biomass (AGB) in tropical forests is a large source of uncertainty in forest carbon stock estimation. Due to their spatial distribution and sampling intensity, pre-felling inventories are a potential source of ground level data that could help reduce this uncertainty at larger spatial scales. Further, exploring the factors known to influence tropical forest biomass, such as wood density and large tree density, will improve our knowledge of biomass distribution across tropical regions. Here, we evaluate (1) the variability of wood density and (2) the variability of AGB across five ecosystems of Costa Rica. Using forest management (pre-felling) inventories we found that, of the regions studied, Huetar Norte had the highest mean wood density of trees with a diameter at breast height (DBH) greater than or equal to 30 cm, 0.623 ± 0.182 g cm -3 (mean ± standard deviation). Although the greatest wood density was observed in Huetar Norte, the highest mean estimated AGB (EAGB) of trees with a DBH greater than or equal to 30 cm was observed in Osa peninsula (173.47 ± 60.23 Mg ha -1 ). The density of large trees explained approximately 50% of EAGB variability across the five ecosystems studied. Comparing our study's EAGB to published estimates reveals that, in the regions of Costa Rica where AGB has been previously sampled, our forest management data produced similar values. This study presents the most spatially rich analysis of ground level AGB data in Costa Rica to date. Using forest management data, we found that EAGB within and among five Costa Rican ecosystems is highly variable. Combining commercial logging inventories with ecological plots will provide a more representative ground level dataset for the calibration of the models and remotely sensed data used to EAGB at regional and national scales. Additionally, because the non-protected areas of the tropics offer the greatest opportunity to reduce rates of deforestation and forest degradation, logging inventories offer a promising source of data to support mechanisms such as the United Nations REDD + (Reducing Emissions from Tropical Deforestation and Degradation) program.

  12. Spatial variability of shelf sediments in the STRATAFORM natural laboratory, Northern California

    USGS Publications Warehouse

    Goff, J.A.; Wheatcroft, R.A.; Lee, H.; Drake, D.E.; Swift, D.J.P.; Fan, S.

    2002-01-01

    The "Correlation Length Experiment", an intensive box coring effort on the Eel River shelf (Northern California) in the summer of 1997, endeavored to characterize the lateral variability of near-surface shelf sediments over scales of meters to kilometers. Coring focused on two sites, K60 and S60, separated by ??? 15 km along the 60 m isobath. The sites are near the sand-to-mud transition, although K60 is sandier owing to its proximity to the Eel River mouth. Nearly 140 cores were collected on dip and strike lines with core intervals from < 10m to 1 km. Measurements on each core included bulk density computed from gamma-ray attenuation, porosity converted from resistivity measurements, and surficial grain size. Grain size was also measured over the full depth range within a select subset of cores. X-radiograph images were also examined. Semi-variograms were computed for strike, dip, and down-hole directions at each site. The sand-to-mud transition exerts a strong influence on all measurements: on average, bulk density increases and porosity decreases with regional increases in mean grain size. Analysis of bulk density measurements indicates very strong contrasts in the sediment variability at K60 and S60. No coherent bedding is seen at K60; in the strike direction, horizontal variability is "white" (fully uncorrelated) from the smallest scales examined (a few meters) to the largest (8 km), with a variance equal to that seen within the cores. In contrast, coherent bedding exists at S60 related to the preservation of the 1995 flood deposit. A correlatable structure is found in the strike direction with a decorrelation distance of ??? 800 m, and can be related to long-wavelength undulations in the topography and/or thickness of the flood layer or overburden. We hypothesize that the high degree of bulk density variability at K60 is a result of more intense physical reworking of the seabed in the sandier environment. Without significant averaging, the resistivity-based porosity measurements are only marginally correlated to gamma-ray-bulk density measurements, and are largely independent of mean grain size. Furthermore, porosity displays a high degree of incoherent variability at both sites. Porosity, with a much smaller sample volume than bulk density, may therefore resolve small-scale biogenic variability which is filtered out in the bulk density measurement. ?? 2002 Elsevier Science Ltd. All rights reserved.

  13. Morphological and physiological divergences within Quercus ilex support the existence of different ecotypes depending on climatic dryness

    PubMed Central

    Peguero-Pina, José Javier; Sancho-Knapik, Domingo; Barrón, Eduardo; Camarero, Julio Jesús; Vilagrosa, Alberto; Gil-Pelegrín, Eustaquio

    2014-01-01

    Background and Aims Several studies show apparently contradictory findings about the functional convergence within the Mediterranean woody flora. In this context, this study evaluates the variability of functional traits within holm oak (Quercus ilex) to elucidate whether provenances corresponding to different morphotypes represent different ecotypes locally adapted to the prevaling stress levels. Methods Several morphological and physiological traits were measured at leaf and shoot levels in 9-year-old seedlings of seven Q. ilex provenances including all recognized morphotypes. Plants were grown in a common garden for 9 years under the same environmental conditions to avoid possible biases due to site-specific characteristics. Key Results Leaf morphometry clearly separates holm oak provenances into ‘ilex’ (more elongated leaves with low vein density) and ‘rotundifolia’ (short and rounded leaves with high vein density) morphotypes. Moreover, these morphotypes represent two consistent and very contrasting functional types in response to dry climates, mainly in terms of leaf area, major vein density, leaf specific conductivity, resistance to drought-induced cavitation and turgor loss point. Conclusions The ‘ilex’ and ‘rotundifolia’ morphotypes correspond to different ecotypes as inferred from their contrasting functional traits. To the best of our knowledge, this is the first time that the combined use of morphological and physiological traits has provided support for the concept of these two holm oak morphotypes being regarded as two different species. PMID:24941998

  14. Are age and sex differences in brain oxytocin receptors related to maternal and infanticidal behavior in naïve mice?

    PubMed

    Olazábal, Daniel E; Alsina-Llanes, Marcela

    2016-01-01

    This article is part of a Special Issue "Parental Care". There is significant variability in the behavioral responses displayed by naïve young and adult mice when first exposed to pups. This variability has been associated with differences in the expression of oxytocin receptors (OXTRs) in the brain in several species. Experiment I investigated the behavioral responses of juvenile, adolescent, and adult CB57BL/6 males and females when first exposed to pups. We found an age increase in maternal females (11% of juveniles, 20% of adolescents, and 50% of young adults), and infanticidal males (0% of juveniles, 30% of adolescents, 44.5% of young adults, and 100% of older adults). Experiment II investigated OXTR density in the brain of juvenile and adult mice. Our results revealed an age decline in the density of OXTR in several brain regions, including the lateral septum, cingulated and posterior paraventricular thalamic nucleus in both males and females. Adult females had higher OXTR density in the ventromedial nucleus/postero-ventral hypothalamus (VMH) and the accessory olfactory bulb (AOB), but lower density in the ventral region of the lateral septum (LSv) than juveniles. Males had lower OXTR density in the anterior olfactory area (AOA) compared to juveniles. No age or sex differences were found in the medial preoptic area, and amygdaloid nuclei, among other brain regions. This study suggests that 1) maturation of parental and infanticidal behavioral responses is not reached until adulthood; 2) the pattern of development of OXTR in the mouse brain is unique, region specific, and differs from that observed in other rodents; 3) either up or down regulation of OXTR in a few brain regions (VMH/AOB/LSv/AOA) might contribute to age or sex differences in parental or infanticidal behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Linear Stability Analysis of Gravitational Effects on a Low-Density Gas Jet Injected into a High-Density Medium

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony L.; Parthasarathy, Ramkumar N.

    2005-01-01

    The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The Briggs-Bers criterion was combined with the spatio-temporal stability analysis to determine the nature of the absolute instability of the jet whether absolutely or convectively unstable. The roles of the density ratio, Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the absolute instability of the jet were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be.

  16. A comprehensive tool for measuring mammographic density changes over time.

    PubMed

    Eriksson, Mikael; Li, Jingmei; Leifland, Karin; Czene, Kamila; Hall, Per

    2018-06-01

    Mammographic density is a marker of breast cancer risk and diagnostics accuracy. Density change over time is a strong proxy for response to endocrine treatment and potentially a stronger predictor of breast cancer incidence. We developed STRATUS to analyse digital and analogue images and enable automated measurements of density changes over time. Raw and processed images from the same mammogram were randomly sampled from 41,353 healthy women. Measurements from raw images (using FDA approved software iCAD) were used as templates for STRATUS to measure density on processed images through machine learning. A similar two-step design was used to train density measures in analogue images. Relative risks of breast cancer were estimated in three unique datasets. An alignment protocol was developed using images from 11,409 women to reduce non-biological variability in density change. The protocol was evaluated in 55,073 women having two regular mammography screens. Differences and variances in densities were compared before and after image alignment. The average relative risk of breast cancer in the three datasets was 1.6 [95% confidence interval (CI) 1.3-1.8] per standard deviation of percent mammographic density. The discrimination was AUC 0.62 (CI 0.60-0.64). The type of image did not significantly influence the risk associations. Alignment decreased the non-biological variability in density change and re-estimated the yearly overall percent density decrease from 1.5 to 0.9%, p < 0.001. The quality of STRATUS density measures was not influenced by mammogram type. The alignment protocol reduced the non-biological variability between images over time. STRATUS has the potential to become a useful tool for epidemiological studies and clinical follow-up.

  17. What drives interaction strengths in complex food webs? A test with feeding rates of a generalist stream predator.

    PubMed

    Preston, Daniel L; Henderson, Jeremy S; Falke, Landon P; Segui, Leah M; Layden, Tamara J; Novak, Mark

    2018-05-08

    Describing the mechanisms that drive variation in species interaction strengths is central to understanding, predicting, and managing community dynamics. Multiple factors have been linked to trophic interaction strength variation, including species densities, species traits, and abiotic factors. Yet most empirical tests of the relative roles of multiple mechanisms that drive variation have been limited to simplified experiments that may diverge from the dynamics of natural food webs. Here, we used a field-based observational approach to quantify the roles of prey density, predator density, predator-prey body-mass ratios, prey identity, and abiotic factors in driving variation in feeding rates of reticulate sculpin (Cottus perplexus). We combined data on over 6,000 predator-prey observations with prey identification time functions to estimate 289 prey-specific feeding rates at nine stream sites in Oregon. Feeding rates on 57 prey types showed an approximately log-normal distribution, with few strong and many weak interactions. Model selection indicated that prey density, followed by prey identity, were the two most important predictors of prey-specific sculpin feeding rates. Feeding rates showed a positive relationship with prey taxon densities that was inconsistent with predator saturation predicted by current functional response models. Feeding rates also exhibited four orders-of-magnitude in variation across prey taxonomic orders, with the lowest feeding rates observed on prey with significant anti-predator defenses. Body-mass ratios were the third most important predictor variable, showing a hump-shaped relationship with the highest feeding rates at intermediate ratios. Sculpin density was negatively correlated with feeding rates, consistent with the presence of intraspecific predator interference. Our results highlight how multiple co-occurring drivers shape trophic interactions in nature and underscore ways in which simplified experiments or reliance on scaling laws alone may lead to biased inferences about the structure and dynamics of species-rich food webs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Impact of Variable-Density Flow on the Value-of-Information from Pressure and Concentration Data for Saline Aquifer Characterization

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Williams, J. R.; Juanes, R.; Kang, P. K.

    2017-12-01

    Managed aquifer recharge (MAR) is becoming an important solution for ensuring sustainable water resources and mitigating saline water intrusion in coastal aquifers. Accurate estimates of hydrogeological parameters in subsurface flow and solute transport models are critical for making predictions and managing aquifer systems. In the presence of a density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial distribution of salinity distribution, and therefore experiences transient changes. The variable-density effects can be quantified by a mixed convection ratio between two characteristic types of convection: free convection due to density contrast, and forced convection due to a hydraulic gradient. We analyze the variable-density effects on the value-of-information of pressure and concentration data for saline aquifer characterization. An ensemble Kalman filter is used to estimate permeability fields by assimilating the data, and the performance of the estimation is analyzed in terms of the accuracy and the uncertainty of estimated permeability fields and the predictability of arrival times of breakthrough curves in a realistic push-pull setting. This study demonstrates that: 1. Injecting fluids with the velocity that balances the two characteristic convections maximizes the value of data for saline aquifer characterization; 2. The variable-density effects on the value of data for the inverse estimation decrease as the permeability heterogeneity increases; 3. The advantage of joint inversion of pressure and concentration data decreases as the coupling effects between flow and transport increase.

  19. Geographical variability of the incidence of Type 1 diabetes in subjects younger than 30 years in Catalonia, Spain.

    PubMed

    Abellana, Rosa; Ascaso, Carlos; Carrasco, Josep L; Castell, Conxa; Tresserras, Ricard

    2009-04-04

    We decided to assess the geographical variability of the incidence of Type 1 diabetes in Catalonia (Spain) in subjects younger than 30 years at onset during the period 1989-1998. The effect of sex, age at onset, periods of years, and population density was also analyzed. Data were obtained from the prospective Catalan Registry of Diabetes Mellitus. Generalized linear mixed models were used to determine the effects of the risk factors and to find out the geographical distribution. The best model was selected by the AKAIKE information criterion. The crude incidence of type 1 diabetes in subjects younger than 30 years was 11.8/100,000/year (95% CI 11.4-12.3). The incidence was similar between males and females in the 0-14 age group. However, there was a male preponderance in young adults. The incidence did not vary annually and was not associated with population density. The incidence did not present a spatial pattern around Catalonia. There was an unstructured geographical variability. Some regions of Catalonia displayed values of type I diabetes higher or lower than the expected incidence. Counties with extreme values of incidence were specific for each demographic group and in no case did these counties make up clusters, suggesting that there are explanatory factors with patterns of geographic distribution. The incidence of diabetes in young male adults in some counties was similar to that of European countries with a high incidence.

  20. Spatial and seasonal variations of fish assemblages in mangrove creek systems in Zanzibar (Tanzania)

    NASA Astrophysics Data System (ADS)

    Mwandya, Augustine W.; Gullström, Martin; Andersson, Mathias H.; Öhman, Marcus C.; Mgaya, Yunus D.; Bryceson, Ian

    2010-11-01

    Spatial and seasonal variations of fish assemblage composition were studied in three non-estuarine mangrove creeks of Zanzibar (Tanzania). Fish were collected monthly for one year at three sites (lower, intermediate and upper reaches) in each creek using a seine net (each haul covering 170 m 2). Density, species number and diversity of fish were all higher at sites with dense cover of macrophytes (seagrass and macroalgae) than over unvegetated sandy sites. In general, fish assemblages mainly comprised juveniles of a few abundant taxa, e.g. Mugil cephalus, Mugilidae spp. and Leiognathus equulus at sites with mud substratum and Gerres oyena, Lethrinus harak and Sillago sihama at sites dominated by macrophytes. Multivariate analyses revealed significant separations in fish assemblage composition within the two creeks where the bottom substratum differed among sites. Overall, season seemed to have little effect on density, species number, diversity index ( H') and assemblage structure of fish. Water condition variables were also relatively stable across the season, although a short-term fluctuation primarily induced by decreased salinity, occurred during the heavy rains in April and May. Fish assemblage structure was not significantly affected by any of the abiotic factors tested. However, significant regressions were found between the other fish variables and environmental variables, but since these associations were mostly species-specific and generally inconsistent, we suggest that the overall distribution patterns of fish were mainly an effect of particular substrate preferences of fish species rather than contemporary water conditions.

  1. Can Sap Flow Help Us to Better Understand Transpiration Patterns in Landscapes?

    NASA Astrophysics Data System (ADS)

    Hassler, S. K.; Weiler, M.; Blume, T.

    2017-12-01

    Transpiration is a key process in the hydrological cycle and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions and for improving the parameterisation of hydrological and soil-vegetation-atmosphere transfer models. At the tree scale, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status, stand-specific characteristics such as basal area or stand density and site-specific characteristics such as geology, slope position or aspect control sap flow of individual trees. However, little is known about the relative importance or the dynamic interplay of these controls. We studied these influences with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites spread over a 290 km²-catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we applied linear models to the daily spatial pattern of sap velocity and determined the importance of the different predictors. By upscaling sap velocities to the tree level with the help of species-dependent empirical estimates for sapwood area we also examined patterns of sap flow as a more direct representation of transpiration. Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in this landscape, namely tree species, tree diameter, geology and aspect. For sap flow, the site-specific predictors provided the largest contribution to the explained variance, however, in contrast to the sap velocity analysis, geology was more important than aspect. Spatial variability of atmospheric demand and soil moisture explained only a small fraction of the variance. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, were correlated to the temporal dynamics of potential evaporation. We conclude that spatial representation of transpiration in models could benefit from including patterns according to tree and site characteristics.

  2. Sensitivity, Specificity, and Predictive Values of Pediatric Metabolic Syndrome Components in Relation to Adult Metabolic Syndrome: The Princeton LRC Follow-up Study

    PubMed Central

    Huang, Terry T-K; Nansel, Tonja R.; Belsheim, Allen R.; Morrison, John A.

    2008-01-01

    Objective To estimate the sensitivity, specificity, and predictive values of pediatric metabolic syndrome (MetS) components (obesity, fasting glucose, triglycerides, high-density lipoprotein, and blood pressure) at various cutoffs in relation to adult MetS. Study design Data from the NHLBI Lipid Research Clinics (LRC) Princeton Prevalence Study (1973–76) and the Princeton Follow-up Study (PFS, 2000-4) were used to calculate sensitivity, specificity, and positive and negative predictive values for each component at a given cutoff, as well as for aggregates of components. Results Individual pediatric components alone showed low to moderate sensitivity, high specificity, and moderate predictive values in relation to adult MetS. When all five pediatric MetS components were considered, the presence of at least one abnormality had higher sensitivity for adult MetS than individual components alone. When multiple abnormalities were mandatory for MetS, positive predictive value was high and sensitivity was low. Childhood body mass alone showed neither high sensitivity nor high positive predictive value for adult MetS. Conclusions Considering multiple metabolic variables in childhood can improve the predictive utility for adult MetS, compared to each component or body mass alone. MetS variables may be useful for identifying some at risk children for prevention interventions. PMID:18206687

  3. Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data

    PubMed Central

    Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Ruiz-González, Ana Daría

    2017-01-01

    The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard. PMID:28448524

  4. Tree and understory responses to variable-density thinning in western Washington.

    Treesearch

    Constance A. Harrington; Scott D. Roberts; Leslie C. Brodie

    2005-01-01

    The Olympic Habitat Development Study was initiated in 1994 to evaluate whether active management in 35- to 70-year-old stands could accelerate development of stand structures and plant and animal communities associated with late-successional forests. The study used a variable-density thinning prescription as the main tool to alter stand structure; the prescription...

  5. Computing the Power-Density Spectrum for an Engineering Model

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1982-01-01

    Computer program for calculating of power-density spectrum (PDS) from data base generated by Advanced Continuous Simulation Language (ACSL) uses algorithm that employs fast Fourier transform (FFT) to calculate PDS of variable. Accomplished by first estimating autocovariance function of variable and then taking FFT of smoothed autocovariance function to obtain PDS. Fast-Fourier-transform technique conserves computer resources.

  6. Does variable-density thinning increase wind damage in conifer stands on the Olympic Peninsula?

    Treesearch

    S.D. Roberts; C.A. Harrington; K.R. Buermeyer

    2007-01-01

    Silvicultural treatments designed to enhance stand structural diversity may result in increased wind damage. The ability to avoid conditions that might lead to excessive wind damage would benefit forest managers. We analyzed wind damage following implementation of a variable-density thinning at four sites on the Olympic National Forest in northwest Washington. The...

  7. Spatial variability of wildland fuel characteristics in northern Rocky Mountain ecosystems

    Treesearch

    Robert E. Keane; Kathy Gray; Valentina Bacciu

    2012-01-01

    We investigated the spatial variability of a number of wildland fuel characteristics for the major fuel components found in six common northern Rocky Mountain ecosystems. Surface fuel characteristics of loading, particle density, bulk density, and mineral content were measured for eight fuel components - four downed dead woody fuel size classes (1, 10, 100, 1000 hr),...

  8. Reconstructing the gravitational field of the local Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desmond, Harry; Ferreira, Pedro G.; Lavaux, Guilhem

    Tests of gravity at the galaxy scale are in their infancy. As a first step to systematically uncovering the gravitational significance of galaxies, we map three fundamental gravitational variables – the Newtonian potential, acceleration and curvature – over the galaxy environments of the local Universe to a distance of approximately 200 Mpc. Our method combines the contributions from galaxies in an all-sky redshift survey, haloes from an N-body simulation hosting low-luminosity objects, and linear and quasi-linear modes of the density field. We use the ranges of these variables to determine the extent to which galaxies expand the scope of genericmore » tests of gravity and are capable of constraining specific classes of model for which they have special significance. In conclusion, we investigate the improvements afforded by upcoming galaxy surveys.« less

  9. Reconstructing the gravitational field of the local Universe

    DOE PAGES

    Desmond, Harry; Ferreira, Pedro G.; Lavaux, Guilhem; ...

    2017-11-25

    Tests of gravity at the galaxy scale are in their infancy. As a first step to systematically uncovering the gravitational significance of galaxies, we map three fundamental gravitational variables – the Newtonian potential, acceleration and curvature – over the galaxy environments of the local Universe to a distance of approximately 200 Mpc. Our method combines the contributions from galaxies in an all-sky redshift survey, haloes from an N-body simulation hosting low-luminosity objects, and linear and quasi-linear modes of the density field. We use the ranges of these variables to determine the extent to which galaxies expand the scope of genericmore » tests of gravity and are capable of constraining specific classes of model for which they have special significance. In conclusion, we investigate the improvements afforded by upcoming galaxy surveys.« less

  10. The variation of polar firn subject to percolation - characterizing processes and glacier mass budget uncertainty using high-resolution instruments

    NASA Astrophysics Data System (ADS)

    Demuth, M. N.; Marshall, H.; Morris, E. M.; Burgess, D. O.; Gray, L.

    2009-12-01

    As the Earth's glaciers and ice sheets are subjected to the effects of recent and predicted warming, the distribution of their glaciological facies zones will alter. Percolation and wet snow facies zones will, in general, move upwards; encroaching upon, for some glacier configurations, regions of dry snow facies. Meltwater percolation and internal accumulation processes that characterize these highly variable facies may confound reliable estimates of surface mass budgets based on traditional point measurements alone. If the extents of these zones are indeed increasing, as has been documented through recent analysis of QuickScat data for the ice caps of the Canadian Arctic, then the certainty of glacier mass budget estimates using traditional techniques may be degraded to an as yet un-quantified degree. Indeed, the application of remote sensing, in particular that utilizing repeat altimetry to retrieve surface mass budget estimates, is also subject to the complexity of glacier facies from the standpoint of their near-surface stratigraphy, density variations and rates of compaction. We first review the problem of measuring glacier mass budgets in the context of nested scales of variability, where auto-correlation structure varies with the scale of observation. We then consider specifically firn subject to percolation and describe the application of high-resolution instruments to characterize variability at the field-scale. The data collected include measurements of micro-topography, snow hardness, and snow density and texture; retrieved using airborne scanning lidar, a snow micro-penetrometer, neutron probe and ground-penetrating radars. The analysis suggests corresponding scales of correlation as it concerns the influence of antecedent conditions (surface roughness and hardness, and stratigraphic variability) and post-depositional processes (percolation and refreezing of surface melt water).

  11. Diving Behaviors and Habitat Use of Adult Female Steller Sea Lion (Eumetopias jubatus), A Top Predator of the Bering Sea and North Pacific Ocean Ecosystems

    NASA Astrophysics Data System (ADS)

    Lander, M. E.; Fadely, B.; Gelatt, T.; Sterling, J.; Johnson, D.; Haulena, M.; McDermott, S.

    2016-02-01

    Decreased natality resulting from nutritional stress is one hypothesized mechanism for declines of Steller sea lions (SSLs; Eumetopias jubatus) in western Alaska, but little is known of the winter foraging habitats or behavior of adult females. To address this critical data need, adult female Steller sea lions were chemically immobilized and tagged with Fastloc® GPS satellite transmitters during the fall at Southeast Alaska (SEAK) during 2010 (n=3), and the central and western Aleutian Islands (AI) from 2011-2014 (n=9). To identify habitat features of biological importance to these animals, location data were processed with a continuous-time correlated random walk model and kernel density estimates of predicted locations were used to compute individual-based utilization distributions. Kernel density estimates and diving behaviors (i.e. mean, maximum, and frequency of dive depths) were examined with respect to a series of static and dynamic environmental variables using linear mixed-effects models. Habitat use varied within and among individuals, but overall, all response variables were significantly related to a combination of the predictor variables season, distance to nearest SSL site, bathymetric slope, on/off shelf, sea surface temperature, sea surface height, proportion of daylight, and some interaction effects (P≤0.05). The habitat use of SSL from SEAK was consistent with previous reports and reflected the seasonal distribution of predictable forage fish, whereas SSL from the AI used a variety of marine ecosystems and habitat use was more variable, likely reflecting specific prey behaviors encountered in different areas. These results have improved our understanding of the habitat features necessary for the conservation of adult female SSL and have been useful for reviewing designated critical habitat for Steller sea lions throughout the U.S. range.

  12. Longitudinal Variations in the Variability of Spread F Occurrence

    NASA Astrophysics Data System (ADS)

    Groves, K. M.; Bridgwood, C.; Carrano, C. S.

    2017-12-01

    The complex dynamics of the equatorial ionosphere have attracted the interest and attention of researchers for many decades. The relatively local processes that give rise to large meridional gradients have been well documented and the associated terminology has entered the common lexicon of ionospheric research (e.g., fountain effect, equatorial anomaly, bubbles, Spread F). Zonal variations have also been noted, principally at the level of determining longitudinal differences in seasonal activity patterns. Due to a historical lack of high resolution ground-based observations at low latitudes, the primary source of data for such analyses has been space-based observations from satellites such as ROCSAT, DMSP, C/NOFS that measure in situ electron density variations. An important longitudinal variation in electron density structure associated with non-migrating diurnal tides was discovered by Immel et al. in 2006 using data from the FUV sensor aboard the NASA IMAGE satellite. These satellite observations have been very helpful in identifying the structural characteristics of the equatorial ionosphere and the occurrence of Spread F, but they provide little insight into variations in scintillation features and potential differences in bubble development characteristics. Moreover space-based studies tend towards the statistics of occurrence frequency over periods of weeks to months. A recent analysis of daily spread F occurrence as determined by low latitude VHF scintillation activity shows that statistical results that are consistent with previous space-based observations, but the level of variability in the occurrence data show marked variations with longitude. For example, the American sector shows very low in-season variability while the African and Asian sectors exhibit true day-to-day variability regardless of seasonal variations. The results have significant implications for space weather as they suggest that long-term forecasts of equatorial scintillation may be meaningful within specific longitude boundaries.

  13. 40 CFR 98.468 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... design capacity, the calculation must include a site-specific density. If the design capacity is within... process that can reasonably be expected to change the site-specific waste density, the site-specific waste density must be redetermined and the design capacity must be recalculated based on the new waste density...

  14. 40 CFR 98.468 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... design capacity, the calculation must include a site-specific density. If the design capacity is within... process that can reasonably be expected to change the site-specific waste density, the site-specific waste density must be redetermined and the design capacity must be recalculated based on the new waste density...

  15. Associations between the neighbourhood food environment, neighbourhood socioeconomic status, and diet quality: An observational study.

    PubMed

    McInerney, Maria; Csizmadi, Ilona; Friedenreich, Christine M; Uribe, Francisco Alaniz; Nettel-Aguirre, Alberto; McLaren, Lindsay; Potestio, Melissa; Sandalack, Beverly; McCormack, Gavin R

    2016-09-15

    The neighbourhood environment may play an important role in diet quality. Most previous research has examined the associations between neighbourhood food environment and diet quality, and neighbourhood socioeconomic status and diet quality separately. This study investigated the independent and joint effects of neighbourhood food environment and neighbourhood socioeconomic status in relation to diet quality in Canadian adults. We undertook a cross-sectional study with n = 446 adults in Calgary, Alberta (Canada). Individual-level data on diet and socio-demographic and health-related characteristics were captured from two self-report internet-based questionnaires, the Canadian Diet History Questionnaire II (C-DHQ II) and the Past Year Physical Activity Questionnaire (PAQ). Neighbourhood environment data were derived from dissemination area level Canadian Census data, and Geographical Information Systems (GIS) databases. Neighbourhood was defined as a 400 m network-based 'walkshed' around each participant's household. Using GIS we objectively-assessed the density, diversity, and presence of specific food destination types within the participant's walkshed. A seven variable socioeconomic deprivation index was derived from Canadian Census variables and estimated for each walkshed. The Canadian adapted Healthy Eating Index (C-HEI), used to assess diet quality was estimated from food intakes reported on C-DHQ II. Multivariable linear regression was used to test for associations between walkshed food environment variables, walkshed socioeconomic status, and diet quality (C-HEI), adjusting for individual level socio-demographic and health-related covariates. Interaction effects between walkshed socioeconomic status and walkshed food environment variables on diet quality (C-HEI) were also tested. After adjustment for covariates, food destination density was positively associated with the C-HEI (β 0.06, 95 % CI 0.01-0.12, p = 0.04) though the magnitude of the association was small. Walkshed socioeconomic status was not significantly associated with the C-HEI. We found no statistically significant interactions between walkshed food environment variables and socioeconomic status in relation to the C-HEI. Self-reported physical and mental health, time spent in neighbourhood, and dog ownership were also significantly (p < .05) associated with diet quality. Our findings suggest that larger density of local food destinations may is associated with better diet quality in adults.

  16. A Lagrangian discontinuous Galerkin hydrodynamic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less

  17. Progress in Titanium Metal Powder Injection Molding.

    PubMed

    German, Randall M

    2013-08-20

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied-density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  18. A dynamic model of the radiation-belt electron phase-space density based on POLAR/HIST measurements

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Green, J. C.

    2007-12-01

    The response of the energetic-electron phase-space density (PSD) in the radiation belts is subject to a delicate combination of acceleration and loss processes which are strongly determined by the magnetospheric configuration and field disturbance level. We quantify the response of the density to stormtime fields as observed by the HIST detector on board POLAR. Several distinct modes are identified, characterized by peak second- and third- adiabatic invariants and peak delay time. The modes represent quasiadiabatic transport due to ring current activity; high L* (~6), day-long acceleration linked to ULF wave-particle interaction; and low-L* (~3), minute- to hour-long acceleration interpreted to be due to transient inductive fields or VLF wave-particle interaction. The net transport due to these responses is not always or everywhere diffusive, therefore we quantify the degree of departure from diffusive transport for specific storm intervals and radial ranges. Taken together the response modes comprise a dynamic, nonlinear model which allows us to better understand the historic variability of the high-energy tail of the electron distribution in the inner magnetosphere.

  19. Perceptual learning in a non-human primate model of artificial vision

    PubMed Central

    Killian, Nathaniel J.; Vurro, Milena; Keith, Sarah B.; Kyada, Margee J.; Pezaris, John S.

    2016-01-01

    Visual perceptual grouping, the process of forming global percepts from discrete elements, is experience-dependent. Here we show that the learning time course in an animal model of artificial vision is predicted primarily from the density of visual elements. Three naïve adult non-human primates were tasked with recognizing the letters of the Roman alphabet presented at variable size and visualized through patterns of discrete visual elements, specifically, simulated phosphenes mimicking a thalamic visual prosthesis. The animals viewed a spatially static letter using a gaze-contingent pattern and then chose, by gaze fixation, between a matching letter and a non-matching distractor. Months of learning were required for the animals to recognize letters using simulated phosphene vision. Learning rates increased in proportion to the mean density of the phosphenes in each pattern. Furthermore, skill acquisition transferred from trained to untrained patterns, not depending on the precise retinal layout of the simulated phosphenes. Taken together, the findings suggest that learning of perceptual grouping in a gaze-contingent visual prosthesis can be described simply by the density of visual activation. PMID:27874058

  20. A Lagrangian discontinuous Galerkin hydrodynamic method

    DOE PAGES

    Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.

    2017-12-11

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezák, Viktor, E-mail: bezak@fmph.uniba.sk

    Quantum theory of the non-harmonic oscillator defined by the energy operator proposed by Yurke and Buks (2006) is presented. Although these authors considered a specific problem related to a model of transmission lines in a Kerr medium, our ambition is not to discuss the physical substantiation of their model. Instead, we consider the problem from an abstract, logically deductive, viewpoint. Using the Yurke–Buks energy operator, we focus attention on the imaginary-time propagator. We derive it as a functional of the Mehler kernel and, alternatively, as an exact series involving Hermite polynomials. For a statistical ensemble of identical oscillators defined bymore » the Yurke–Buks energy operator, we calculate the partition function, average energy, free energy and entropy. Using the diagonal element of the canonical density matrix of this ensemble in the coordinate representation, we define a probability density, which appears to be a deformed Gaussian distribution. A peculiarity of this probability density is that it may reveal, when plotted as a function of the position variable, a shape with two peaks located symmetrically with respect to the central point.« less

  2. Progress in Titanium Metal Powder Injection Molding

    PubMed Central

    German, Randall M.

    2013-01-01

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied—density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors. PMID:28811458

  3. Low-cost, high-density sensor network for urban emission monitoring: BEACO2N

    NASA Astrophysics Data System (ADS)

    Kim, J.; Shusterman, A.; Lieschke, K.; Newman, C.; Cohen, R. C.

    2017-12-01

    In urban environments, air quality is spatially and temporally heterogeneous as diverse emission sources create a high degree of variability even at the neighborhood scale. Conventional air quality monitoring relies on continuous measurements with limited spatial resolution or passive sampling with high-density and low temporal resolution. Either approach averages the air quality information over space or time and hinders our attempts to understand emissions, chemistry, and human exposure in the near-field of emission sources. To better capture the true spatio-temporal heterogeneity of urban conditions, we have deployed a low-cost, high-density air quality monitoring network in San Francisco Bay Area distributed at 2km horizontal spacing. The BErkeley Atmospheric CO2 Observation Network (BEACO2N) consists of approximately 50 sensor nodes, measuring CO2, CO, NO, NO2, O­3, and aerosol. Here we describe field-based calibration approaches that are consistent with the low-cost strategy of the monitoring network. Observations that allow inference of emission factors and identification of specific local emission sources will also be presented.

  4. Preliminary biplane tests in the variable density wind tunnel

    NASA Technical Reports Server (NTRS)

    Shoemaker, James M

    1928-01-01

    Biplane cellules using the N.A.C.A.-M6 airfoil section have been tested in the variable density wind tunnel of the National Advisory Committee for Aeronautics. Three cellules, differing only in the amount of stagger, were tested at two air densities, corresponding to pressures of one atmosphere and of twenty atmospheres. The range of angle of attack was from -2 degrees to +48 degrees. The effect of stagger on the lift and drag, and on the shielding effect of the upper wing by the lower at high angles of attack was determined.

  5. Zooplankton variability and larval striped bass foraging: Evaluating potential match/mismatch regulation

    USGS Publications Warehouse

    Chick, J.H.; Van Den Avyle, M.J.

    1999-01-01

    We quantified temporal and spatial variability of zooplankton in three potential nursery sites (river, transition zone, lake) for larval striped bass (Morone saxatilis) in Lake Marion, South Carolina, during April and May 1993-1995. In two of three years, microzooplankton (rotifers and copepod nauplii) density was significantly greater in the lake site than in the river or transition zone. Macrozooplankton (>200 ??m) composition varied among the three sites in all years with adult copepods and cladocerans dominant at the lake, and juvenile Corbicula fluminea dominant at the river and transition zone. Laboratory feeding experiments, simulating both among-site (site treatments) and within-site (density treatments) variability, were conducted in 1995 to quantify the effects of the observed zooplankton variability on foraging success of larval striped bass. A greater proportion of larvae fed in the lake than in the river or transition-zone treatments across all density treatments: mean (x), 10x and 100x. Larvae also ingested significantly more dry mass of prey in the lake treatment in both the mean and 10x density treatments. Field zooplankton and laboratory feeding data suggest that both spatial and temporal variability of zooplankton influence larval striped bass foraging. Prey density levels that supported successful foraging in our feeding experiments occurred in the lake during late April and May in 1994 and 1995 but were never observed in the river or transition zone. Because the rivers flowing into Lake Marion are regulated, it may be possible to devise flow management schemes that facilitate larval transport to the lake and thereby increase the proportion of larvae matched to suitable prey resources.

  6. Continuing Development of a Hybrid Model (VSH) of the Neutral Thermosphere

    NASA Technical Reports Server (NTRS)

    Burns, Alan

    1996-01-01

    We propose to continue the development of a new operational model of neutral thermospheric density, composition, temperatures and winds to improve current engineering environment definitions of the neutral thermosphere. This model will be based on simulations made with the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere- Electrodynamic General Circulation Model (TIEGCM) and on empirical data. It will be capable of using real-time geophysical indices or data from ground-based and satellite inputs and provides neutral variables at specified locations and times. This "hybrid" model will be based on a Vector Spherical Harmonic (VSH) analysis technique developed (over the last 8 years) at the University of Michigan that permits the incorporation of the TIGCM outputs and data into the model. The VSH model will be a more accurate version of existing models of the neutral thermospheric, and will thus improve density specification for satellites flying in low Earth orbit (LEO).

  7. Use of noncrystallographic symmetry for automated model building at medium to low resolution.

    PubMed

    Wiegels, Tim; Lamzin, Victor S

    2012-04-01

    A novel method is presented for the automatic detection of noncrystallographic symmetry (NCS) in macromolecular crystal structure determination which does not require the derivation of molecular masks or the segmentation of density. It was found that throughout structure determination the NCS-related parts may be differently pronounced in the electron density. This often results in the modelling of molecular fragments of variable length and accuracy, especially during automated model-building procedures. These fragments were used to identify NCS relations in order to aid automated model building and refinement. In a number of test cases higher completeness and greater accuracy of the obtained structures were achieved, specifically at a crystallographic resolution of 2.3 Å or poorer. In the best case, the method allowed the building of up to 15% more residues automatically and a tripling of the average length of the built fragments.

  8. Flood type specific construction of synthetic design hydrographs

    NASA Astrophysics Data System (ADS)

    Brunner, Manuela I.; Viviroli, Daniel; Sikorska, Anna E.; Vannier, Olivier; Favre, Anne-Catherine; Seibert, Jan

    2017-02-01

    Accurate estimates of flood peaks, corresponding volumes, and hydrographs are required to design safe and cost-effective hydraulic structures. In this paper, we propose a statistical approach for the estimation of the design variables peak and volume by constructing synthetic design hydrographs for different flood types such as flash-floods, short-rain floods, long-rain floods, and rain-on-snow floods. Our approach relies on the fitting of probability density functions to observed flood hydrographs of a certain flood type and accounts for the dependence between peak discharge and flood volume. It makes use of the statistical information contained in the data and retains the process information of the flood type. The method was tested based on data from 39 mesoscale catchments in Switzerland and provides catchment specific and flood type specific synthetic design hydrographs for all of these catchments. We demonstrate that flood type specific synthetic design hydrographs are meaningful in flood-risk management when combined with knowledge on the seasonality and the frequency of different flood types.

  9. Effects of variable-density thinning on understory diversity and heterogeneity in young Douglas-fir forests.

    Treesearch

    Juliann E. Aukema; Andrew B. Carey

    2008-01-01

    Nine years after variable-density thinning (VDT) on the Forest Ecosystem Study, we examined low understory vegetation in 60 plots of eight stands (four pairs of VDT and control). We compared native, exotic, ruderal, and nonforest species richness among the stands. We used clustering, ordination, and indicator species analysis to look for distinctive patches of plant...

  10. Ecosystem responses to variable-density thinning for forest restoration in Mill Creek

    Treesearch

    Lathrop P. Leonard; John-Pascal Berrill; Christa M. Dagley

    2017-01-01

    Variable-density thinning (VDT) has promise as a forest restoration tool that accelerates development of old-growth redwood (Sequoia sempervirens (D.Don) Endl.) forest characteristics (O’Hara et al. 2010) but can lead to bear damage in north coastal California (Hosack and Fulgham 1998, Perry et al. 2016). Three novel VDT prescriptions (O’...

  11. Individual tree growth response to variable-density thinning in coastal Pacific Northwest forests.

    Treesearch

    Scott D.s Roberts; Constance A. Harrington

    2008-01-01

    We examined 5-year basal area growth of nearly 2600 trees in stem-mapped plots at five locations differing in site characteristics, species composition, and management history on the Olympic Peninsula in Western Washington, USA. Our objectives were to determine if internal edges, the boundaries within the stand between components of the variable-density thinning,...

  12. Association between neighbourhood fast-food and full-service restaurant density and body mass index: a cross-sectional study of Canadian adults.

    PubMed

    Hollands, Simon; Campbell, M Karen; Gilliland, Jason; Sarma, Sisira

    2014-05-07

    Frequent fast-food consumption is a well-known risk factor for obesity. This study sought to determine whether the availability of fast-food restaurants has an influence on body mass index (BMI). BMI and individual-level confounding variables were obtained from the 2007-08 Canadian Community Health Survey. Neighbourhood socio-demographic variables were acquired from the 2006 Canadian Census. The geographic locations of all restaurants in Canada were assembled from a validated business registry database. The density of fast-food, full-service and non-chain restaurants per 10,000 individuals was calculated for respondents' forward sortation area. Multivariable regression analyses were conducted to analyze the association between restaurant density and BMI. Fast-food, full-service and non-chain restaurant density variables were statistically significantly associated with BMI. Fast-food density had a positive association whereas full-service and non-chain restaurant density had a negative association with BMI (additional 10 fast-food restaurants per capita corresponded to a weight increase of 1 kilogram; p<0.001). These associations were primarily found in Canada's major urban jurisdictions. This research was the first to investigate the influence of fast-food and full-service restaurant density on BMI using individual-level data from a nationally representative Canadian survey. The finding of a positive association between fast-food restaurant density and BMI suggests that interventions aiming to restrict the availability of fast-food restaurants in local neighbourhoods may be a useful obesity prevention strategy.

  13. Habitat relationships and nest site characteristics of cavity-nesting birds in cottonwood floodplains

    USGS Publications Warehouse

    Sedgwick, James A.; Knopf, Fritz L.

    1990-01-01

    We examined habitat relationships and nest site characteristics for 6 species of cavity-nesting birds--American kestrel (Falco sparverius), northern flicker (Colaptes auratus), red-headed woodpecker (Melanerpes erythrocephalus), black-capped chickadee (Parus atricapillus), house wren (Troglodytes aedon), and European starling (Sturnus vulgaris)--in a mature plains cottonwood (Populus sargentii) bottomland along the South Platte River in northeastern Colorado in 1985 and 1986. We examined characteristics of cavities, nest trees, and the habitat surrounding nest trees. Density of large trees (>69 cm dbh), total length of dead limbs ≥10 cm diameter (TDLL), and cavity density were the most important habitat variables; dead limb length (DLL), dbh, and species were the most important tree variables; and cavity height, cavity entrance diameter, and substrate condition at the cavity (live vs. dead) were the most important cavity variables in segregating cavity nesters along habitat, tree, and cavity dimensions, respectively. Random sites differed most from cavity-nesting bird sites on the basis of dbh, DLL, limb tree density (trees with ≥1 m dead limbs ≥10 cm diameter), and cavity density. Habitats of red-headed woodpeckers and American kestrels were the most unique, differing most from random sites. Based on current trends in cottonwood demography, densities of cavity-nesting birds will probably decline gradually along the South Platte River, paralleling a decline in DLL, limb tree density, snag density, and the concurrent lack of cottonwood regeneration.

  14. Exhaust Plume Measurements of the VASIMR VX-200

    NASA Astrophysics Data System (ADS)

    Longmier, Benjamin; Bering, Edgar, III; Squire, Jared; Glover, Tim; Chang-Diaz, Franklin; Brukardt, Michael

    2008-11-01

    Recent progress is discussed in the development of an advanced RF electric propulsion concept: the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) VX-200 engine, a 200 kW flight-technology prototype. Results from high power Helicon only and Helicon with ICRH experiments are performed on the VX-200 using argon plasma. Recent measurements of axial plasma density and potential profiles, magnetic field-line shaping, charge exchange, and force measurements taken in the plume of the VX-200 exhaust are made within a new 125 cubic meter cryo-pumped vacuum chamber and are presented in the context of RF plasma thruster physics.

  15. Short-term response of Dicamptodon tenebrosus larvae to timber management in southwestern Oregon

    USGS Publications Warehouse

    Leuthold, Niels; Adams, Michael J.; Hayes, John P.

    2012-01-01

    In the Pacific Northwest, previous studies have found a negative effect of timber management on the abundance of stream amphibians, but results have been variable and region specific. These studies have generally used survey methods that did not account for differences in capture probability and focused on stands that were harvested under older management practices. We examined the influences of contemporary forest practices on larval Dicamptodon tenebrosus as part of the Hinkle Creek paired watershed study. We used a mark-recapture analysis to estimate D. tenebrosus density at 100 1-m sites spread throughout the basin and used extended linear models that accounted for correlation resulting from the repeated surveys at sites across years. Density was associated with substrate, but we found no evidence of an effect of harvest. While holding other factors constant, the model-averaged estimates indicated; 1) each 10% increase in small cobble or larger substrate increased median density of D. tenebrosus 1.05 times, 2) each 100-ha increase in the upstream area drained decreased median density of D. tenebrosus 0.96 times, and 3) increasing the fish density in the 40 m around a site by 0.01 increased median salamander density 1.01 times. Although this study took place in a single basin, it suggests that timber management in similar third-order basins of the southwestern Oregon Cascade foothills is unlikely to have short-term effects of D. tenebrosus larvae.

  16. Thermodynamic neutral density: A new physically-based, energy-constrained, materially conserved neutral density variable for quantifying mixing and tracking water masses in the ocean

    NASA Astrophysics Data System (ADS)

    Tailleux, R.

    2016-02-01

    A new materially-conserved quasi-neutral density variable has been constructed, called thermodynamic neutral density. It is composed of two parts. The first part is the Lorenz reference density entering Lorenz theory of available potential energy, which can be interpreted as the potential density of a fluid parcel referenced to the pressure it would have in Lorenz reference state of minimum potential energy. The second part is an empirical correction for pressure, which can be suitably chosen to make thermodynamic neutral density a very good approximation of Jackett and McDougall (1997) neutral density over most of the ocean water masses for which the latter is defined. Thermodynamic neutral density possesses many advantages over the empirically constructed Jackett and McDougall (1997) neutral density: 1) it is physically-based; 2) it is easily computed using fast and efficient methods for arbitrary states of the ocean, not just the present state, using the recently developed methodology by Saenz et al. (2015); 3) it is exactly neutral in a state of rest, and approximately neutral in the present ocean; 4) it is exactly materially conserved (it is a function of salinity and potential temperature only) and not plagued by unphysical nonmaterial effects, so can be used unambiguously to define and diagnose diapycnal and isopycnal mixing; 5) it is based on available potential energy, and therefore is the most suitable variable to discuss the energy cost of adiabatic stirring; 6) it is the variable that should be used to define the isopycnal and diapycnal directions in rotated diffusion tensor, as it can be shown that using the directions defined by the local neutral tangent plane as currently done causes spurious destruction of water masses. References: J. A. Saenz, R. Tailleux, E.D. Butler, G.O. Hughes, and K.I.C. Oliver, 2015: Estimating Lorenz's reference state in an ocean with a nonlinear equation of state for seawater. J. Phys. Oceanogr., 45, 1242—1257

  17. On the distinction between open and closed economies.

    PubMed Central

    Timberlake, W; Peden, B F

    1987-01-01

    Open and closed economies have been assumed to produce opposite relations between responding and the programmed density of reward (the amount of reward divided by its cost). Experimental procedures that are treated as open economies typically dissociate responding and total reward by providing supplemental income outside the experimental session; procedures construed as closed economies do not. In an open economy responding is assumed to be directly related to reward density, whereas in a closed economy responding is assumed to be inversely related to reward density. In contrast to this predicted correlation between response-reward relations and type of economy, behavior regulation theory predicts both direct and inverse relations in both open and closed economies. Specifically, responding should be a bitonic function of reward density regardless of the type of economy and is dependent only on the ratio of the schedule terms rather than on their absolute size. These predictions were tested by four experiments in which pigeons' key pecking produced food on fixed-ratio and variable-interval schedules over a range of reward magnitudes and under several open- and closed-economy procedures. The results better supported the behavior regulation view by showing a general bitonic function between key pecking and food density in all conditions. In most cases, the absolute size of the schedule requirement and the magnitude of reward had no effect; equal ratios of these terms produced approximately equal responding. PMID:3625103

  18. Atmospheric forcing on the seasonal variability of sea level at Cochin, southwest coast of India

    NASA Astrophysics Data System (ADS)

    Srinivas, K.; Dinesh Kumar, P. K.

    2006-07-01

    The seasonal cycles of some atmospheric parameters at Cochin (southwest coast of India) have been studied with a specific emphasis on the role played by them in forcing the seasonal sea level. Equatorward along-shore wind stress as well as equatorward volume transport by coastal currents along the Indian peninsula could play an important role in the sea level low during the premonsoon and southwest monsoon seasons. During postmonsoon season, along-shore wind stress plays no major role in the high sea level whereas this could be due to the poleward volume transport by the coastal along-shore currents. Atmospheric pressure and river discharge do not seem to influence much the sea level during the southwest monsoon period, even though the river discharge during that period is considerable. The sea level was minimal during the southwest monsoon season, when the river discharge was at its annual maximum. The difference between the seasonal march of observed and pressure corrected sea level (CSL) was not significant for the study region. Harmonic analysis of the climatological data on the various parameters revealed that air temperature is the only parameter with a dominance of the semi-annual over the annual cycle. Cross-shore wind stress indicated strong interannual variability whereas relative density showed strong seasonal variability. The climatological seasonal cycles of CSL at eight other tide gauge stations along the west coast of the Indian subcontinent are also examined, to assess the role of various forcings on the seasonal sea level cycle. The signatures of El Nino-Southern Oscillation (ENSO) phenomenon could be seen in some of the parameters (SST, air temperature, atmospheric pressure, along-shore wind stress, relative density and sea level). The signature of ENSO was particularly strong in the case of atmospheric pressure followed by relative density, the variance accounted by the relationship being 47% and 16%, respectively.

  19. Variability in Phytoplankton Morphology and Macromolecular Composition With Nutrient Starvation and The Implications for Oceanic Elemental Stoichiometry

    NASA Astrophysics Data System (ADS)

    Liefer, J. D.; Benner, I.; Brown, C. M.; Garg, A.; Fiset, C.; Irwin, A. J.; Follows, M. J.; Finkel, Z.

    2016-02-01

    Trait based modeling efforts are an important tool for predicting the distribution of phytoplankton communities in the ocean and their interaction with elemental stoichiometry. The elemental stoichiometry of phytoplankton is based on their macromolecular composition. Many phytoplankton species accumulate C-rich storage products (carbohydrates and lipids) and reduce N and P-rich functional components (proteins and nucleic acids) upon N- or P-starvation. Reconciling global patterns in C:N:P stoichiometry and phytoplankton community structure and succession requires a better understanding of how phytoplankton macromolecular composition varies across taxa, size class, and growth conditions. We examined changes in cell size and composition from exponential growth to nitrogen starvation in four common phytoplankton species representing two size classes each of chlorophytes and diatoms. Variation in cell size, cell mass, and length of stationary growth phase appeared to be size dependent. The larger species of chlorophyte and diatom had a significant increase in cell mass and cell size with N-starvation and showed no significant change in cell density after starvation for 5-7 days. The smaller size species of both phyla showed no significant change in cell size or mass upon N-starvation and a consistent decline in cell density 1-2 days after peak densities were reached. All species had a similar significant increase in C quota, but changes in N quota and C:N were more variable and species-specific. We also present changes in macromolecular composition and C, N, and P-allocation due to N-starvation and their implications for elemental stoichiometry under natural conditions. These results are compared to field observations of C:N:P stoichiometry and phytoplankton community structure to examine the physiological plasticity that may underlie global oceanic C:N:P variability and demonstrate the importance of this plasticity in trait based models.

  20. Current Density Scaling in Electrochemical Flow Capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, NC; Wainright, JS; Savinell, RF

    Electrochemical flow capacitors (EFCs) are a recently developed energy storage technology. One of the principal performance metrics of an EFC is the steady-state electrical current density that it can accept or deliver. Numerical models exist to predict this performance for specific cases, but here we present a study of how the current varies with respect to the applied cell voltage, flow rate, cell dimensions, and slurry properties using scaling laws. The scaling relationships are confirmed by numerical simulations and then subsequently by comparison to results from symmetric cell EFC experiments. This modeling approach permits the delimitation of three distinct operationalmore » regimes dependent on the values of two nondimensional combinations of the pertinent variables (specifically, a capacitive Graetz number and a conductivity ratio). Lastly, the models and nondimensional numbers are used to provide design guidance in terms of criteria for proper EFC operation. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.« less

  1. How Thin Is Foil? Applying Density to Find the Thickness of Aluminum Foil

    ERIC Educational Resources Information Center

    Concannon, James P.

    2011-01-01

    In this activity, I show how high school students apply their knowledge of density to solve an unknown variable, such as thickness. Students leave this activity with a better understanding of density, the knowledge that density is a characteristic property of a given substance, and the ways density can be measured. (Contains 4 figures and 1 table.)

  2. Comparison of trends in habitat and resource selection by the Spanish Festoon, Zerynthia rumina , and the whole butterfly community in a semiarid Mediterranean ecosystem

    PubMed Central

    Ochoa-Hueso, Raúl; de la Puente Ranea, Daniel; Viejo, José Luis

    2014-01-01

    Abstract Butterfly community and single species based approaches were taken to establish conservation priorities within a nature reserve in Central Spain. In this study, patch type (sclerophyllous, halophilous, or disturbed), potential herbaceous nectar availability, potential woody plant nectar availability, total nectar availability, and two approximations to plant diversity (herbaceous and woody plant diversity) were evaluated as variables that account for adult butterfly density. Butterfly communities in the reserve, which consist mostly of generalist species, were denser in relatively wet areas dominated by halophilous vegetation. Diversity did not significantly vary between ecologically different transects. Total nectar availability correlated with higher butterfly densities within both undisturbed and disturbed areas, which could be primarily explained by the lack of water typical of semiarid Mediterranean climates, where fresh, nectariferous vegetation is scarce. Woody plants were also found to be important sources of nectar and shelter. In the dryer sclerophyllous sites, adult butterfly density was best explained by herbaceous plant diversity, suggesting better quality of available resources. The endangered specialist Zerynthia rumina (L.) (Lepidoptera: Papilionidae) was only present at the sclerophyllous sites. Its density was very low in all sampled transects, excluding one relatively isolated transect with high larval hostplant density. In contrast to the community-based approach, density of Z. rumina adults is better explained by the density of its larval hostplant than by nectar availability, a trend previously described for other sedentary species. Management strategies for protecting insect-rich areas should consider the specific ecological requirements of endangered species. PMID:25373198

  3. Controls on the spatial variability of key soil properties: comparing field data with a mechanistic soilscape evolution model

    NASA Astrophysics Data System (ADS)

    Vanwalleghem, T.; Román, A.; Giraldez, J. V.

    2016-12-01

    There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of a geostatistical versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.

  4. POLAMI: Polarimetric Monitoring of Active Galactic Nuclei at Millimetre Wavelengths - III. Characterization of total flux density and polarization variability of relativistic jets

    NASA Astrophysics Data System (ADS)

    Agudo, Iván; Thum, Clemens; Ramakrishnan, Venkatessh; Molina, Sol N.; Casadio, Carolina; Gómez, José L.

    2018-01-01

    We report on the first results of the POLAMI (Polarimetric Monitoring of AGNs with Millimetre Wavelengths) programme, a simultaneous 3.5 and 1.3 mm full-Stokes-polarization monitoring of a sample of 36 of the brightest active galactic nuclei in the northern sky with the IRAM 30 m telescope. Through a systematic statistical study of data taken from 2006 October (from 2009 December for the case of the 1.3 mm observations) to 2014 August, we characterize the variability of the total flux density and linear polarization. We find that all sources in the sample are highly variable in total flux density at both 3.5 and 1.3 mm, as well as in spectral index, which (except in particularly prominent flares) is found to be optically thin between these two wavelengths. The total flux-density variability at 1.3 mm is found, in general, to be faster, and to have larger fractional amplitude and flatter power-spectral-density slopes than at 3.5 mm. The polarization degree is on average larger at 1.3 mm than at 3.5 mm, by a factor of 2.6. The variability of linear polarization degree is faster and has higher fractional amplitude than for total flux density, with the typical time-scales during prominent polarization peaks being significantly faster at 1.3 mm than at 3.5 mm. The polarization angle at both 3.5 and 1.3 mm is highly variable. Most of the sources show one or two excursions of >180° on time-scales from a few weeks to about a year during the course of our observations. The 3.5 and 1.3 mm polarization angle evolution follows each other rather well, although the 1.3 mm data show a clear preference to more prominent variability on the short time-scales, i.e. weeks. The data are compatible with multizone models of conical jets involving smaller emission regions for the shortest-wavelength emitting sites. Such smaller emitting regions should also be more efficient in energising particle populations, as implied by the coherent evolution of the spectral index and the total flux density during flaring activity of strong enough sources. The data also favour the integrated emission at 1.3 mm to have better ordered magnetic fields than the one at 3.5 mm.

  5. Correlating Solar Wind Modulation with Ionospheric Variability at Mars from MEX and MAVEN Observations

    NASA Astrophysics Data System (ADS)

    Kopf, A. J.; Morgan, D. D.; Halekas, J. S.; Ruhunusiri, S.; Gurnett, D. A.; Connerney, J. E. P.

    2017-12-01

    The synthesis of observations by the Mars Express and Mars Atmosphere and Volatiles Evolution (MAVEN) spacecraft allows for a unique opportunity to study variability in the Martian ionosphere from multiple perspectives. One major source for this variability is the solar wind. Due to its elliptical orbit which precesses over time, MAVEN periodically spends part of its orbit outside the Martian bow shock, allowing for direct measurements of the solar wind impacting the Martian plasma environment. When the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument aboard Mars Express is simultaneously sounding the ionosphere, the influence from changes in the solar wind can be observed. Previous studies have suggested a positive correlation, connecting ionospheric density to the solar wind proton flux, but depended on Earth-based measurements for solar wind conditions. More recently, research has indicated that observations of ionospheric variability from these two spacecraft can be connected in special cases, such as shock wave impacts or specific solar wind magnetic field orientations. Here we extend this to more general solar wind conditions and examine how changes in the solar wind properties measured by MAVEN instruments correlate with ionospheric structure and dynamics observed simultaneously in MARSIS remote and local measurements.

  6. Computational neuroanatomy: mapping cell-type densities in the mouse brain, simulations from the Allen Brain Atlas

    NASA Astrophysics Data System (ADS)

    Grange, Pascal

    2015-09-01

    The Allen Brain Atlas of the adult mouse (ABA) consists of digitized expression profiles of thousands of genes in the mouse brain, co-registered to a common three-dimensional template (the Allen Reference Atlas).This brain-wide, genome-wide data set has triggered a renaissance in neuroanatomy. Its voxelized version (with cubic voxels of side 200 microns) is available for desktop computation in MATLAB. On the other hand, brain cells exhibit a great phenotypic diversity (in terms of size, shape and electrophysiological activity), which has inspired the names of some well-studied cell types, such as granule cells and medium spiny neurons. However, no exhaustive taxonomy of brain cell is available. A genetic classification of brain cells is being undertaken, and some cell types have been chraracterized by their transcriptome profiles. However, given a cell type characterized by its transcriptome, it is not clear where else in the brain similar cells can be found. The ABA can been used to solve this region-specificity problem in a data-driven way: rewriting the brain-wide expression profiles of all genes in the atlas as a sum of cell-type-specific transcriptome profiles is equivalent to solving a quadratic optimization problem at each voxel in the brain. However, the estimated brain-wide densities of 64 cell types published recently were based on one series of co-registered coronal in situ hybridization (ISH) images per gene, whereas the online ABA contains several image series per gene, including sagittal ones. In the presented work, we simulate the variability of cell-type densities in a Monte Carlo way by repeatedly drawing a random image series for each gene and solving the optimization problem. This yields error bars on the region-specificity of cell types.

  7. Drought and detritivores determine leaf litter decomposition in calcareous streams of the Ebro catchment (Spain).

    PubMed

    Monroy, Silvia; Menéndez, Margarita; Basaguren, Ana; Pérez, Javier; Elosegi, Arturo; Pozo, Jesús

    2016-12-15

    Drought, an important environmental factor affecting the functioning of stream ecosystems, is likely to become more prevalent in the Mediterranean region as a consequence of climate change and enhanced water demand. Drought can have profound impacts on leaf litter decomposition, a key ecosystem process in headwater streams, but there is still limited information on its effects at the regional scale. We measured leaf litter decomposition across a gradient of aridity in the Ebro River basin. We deployed coarse- and fine-mesh bags with alder and oak leaves in 11 Mediterranean calcareous streams spanning a range of over 400km, and determined changes in discharge, water quality, leaf-associated macroinvertebrates, leaf quality and decomposition rates. The study streams were subject to different degrees of drought, specific discharge (Ls -1 km -2 ) ranging from 0.62 to 9.99. One of the streams dried out during the experiment, another one reached residual flow, whereas the rest registered uninterrupted flow but with different degrees of flow variability. Decomposition rates differed among sites, being lowest in the 2 most water-stressed sites, but showed no general correlation with specific discharge. Microbial decomposition rates were not correlated with final nutrient content of litter nor to fungal biomass. Total decomposition rate of alder was positively correlated to the density and biomass of shredders; that of oak was not. Shredder density in alder bags showed a positive relationship with specific discharge during the decomposition experiment. Overall, the results point to a complex pattern of litter decomposition at the regional scale, as drought affects decomposition directly by emersion of bags and indirectly by affecting the functional composition and density of detritivores. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Hydraulic adjustment of Scots pine across Europe.

    PubMed

    Martínez-Vilalta, J; Cochard, H; Mencuccini, M; Sterck, F; Herrero, A; Korhonen, J F J; Llorens, P; Nikinmaa, E; Nolè, A; Poyatos, R; Ripullone, F; Sass-Klaassen, U; Zweifel, R

    2009-10-01

    * The variability of branch-level hydraulic properties was assessed across 12 Scots pine populations covering a wide range of environmental conditions, including some of the southernmost populations of the species. The aims were to relate this variability to differences in climate, and to study the potential tradeoffs between traits. * Traits measured included wood density, radial growth, xylem anatomy, sapwood- and leaf-specific hydraulic conductivity (K(S) and K(L)), vulnerability to embolism, leaf-to-sapwood area ratio (A(L) : A(S)), needle carbon isotope discrimination (Delta13C) and nitrogen content, and specific leaf area. * Between-population variability was high for most of the hydraulic traits studied, but it was directly associated with climate dryness (defined as a combination of atmospheric moisture demand and availability) only for A(L) : A(S), K(L) and Delta13C. Shoot radial growth and A(L) : A(S) declined with stand development, which is consistent with a strategy to avoid exceedingly low water potentials as tree size increases. In addition, we did not find evidence at the intraspecific level of some associations between hydraulic traits that have been commonly reported across species. * The adjustment of Scots pine's hydraulic system to local climatic conditions occurred primarily through modifications of A(L) : A(S) and direct stomatal control, whereas intraspecific variation in vulnerability to embolism and leaf physiology appears to be limited.

  9. Spatio-temporal variability of ichthyophagous bird assemblage around western Mediterranean open-sea cage fish farms.

    PubMed

    Aguado-Giménez, Felipe; Eguía-Martínez, Sergio; Cerezo-Valverde, Jesús; García-García, Benjamín

    2018-06-14

    Ichthyophagous birds aggregate at cage fish farms attracted by caged and associated wild fish. Spatio-temporal variability of such birds was studied for a year through seasonal visual counts at eight farms in the western Mediterranean. Correlation with farm and location descriptors was assessed. Considerable spatio-temporal variability in fish-eating bird density and assemblage structure was observed among farms and seasons. Bird density increased from autumn to winter, with the great cormorant being the most abundant species, also accounting largely for differences among farms. Grey heron and little egret were also numerous at certain farms during the coldest seasons. Cattle egret was only observed at one farm. No shags were observed during winter. During spring and summer, bird density decreased markedly and only shags and little egrets were observed at only a few farms. Season and distance from farms to bird breeding/wintering grounds helped to explain some of the spatio-temporal variability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The prostate health index PHI predicts oncological outcome and biochemical recurrence after radical prostatectomy - analysis in 437 patients

    PubMed Central

    Maxeiner, Andreas; Kilic, Ergin; Matalon, Julia; Friedersdorff, Frank; Miller, Kurt; Jung, Klaus; Stephan, Carsten; Busch, Jonas

    2017-01-01

    The purpose of this study was to investigate the Prostate-Health-Index (PHI) for pathological outcome prediction following radical prostatectomy and also for biochemical recurrence prediction in comparison to established parameters such as Gleason-score, pathological tumor stage, resection status (R0/1) and prostate-specific antigen (PSA). Out of a cohort of 460 cases with preoperative PHI-measurements (World Health Organization calibration: Beckman Coulter Access-2-Immunoassay) between 2001 and 2014, 437 patients with complete follow up data were included. From these 437 patients, 87 (19.9%) developed a biochemical recurrence. Patient characteristics were compared by using chi-square test. Predictors were analyzed by multivariate adjusted logistic and Cox regression. The median follow up for a biochemical recurrence was 65 (range 3-161) months. PHI, PSA, [-2]proPSA, PHI- and PSA-density performed as significant variables (p < 0.05) for cancer aggressiveness: Gleason-score <7 or ≥7 (ISUP grade 1 or ≥2) . Concerning pathological tumor stage discrimination and prediction, variables as PHI, PSA, %fPSA, [-2]proPSA, PHI- and PSA-density significantly discriminated between stages

  11. The prostate health index PHI predicts oncological outcome and biochemical recurrence after radical prostatectomy - analysis in 437 patients.

    PubMed

    Maxeiner, Andreas; Kilic, Ergin; Matalon, Julia; Friedersdorff, Frank; Miller, Kurt; Jung, Klaus; Stephan, Carsten; Busch, Jonas

    2017-10-03

    The purpose of this study was to investigate the Prostate-Health-Index (PHI) for pathological outcome prediction following radical prostatectomy and also for biochemical recurrence prediction in comparison to established parameters such as Gleason-score, pathological tumor stage, resection status (R0/1) and prostate-specific antigen (PSA). Out of a cohort of 460 cases with preoperative PHI-measurements (World Health Organization calibration: Beckman Coulter Access-2-Immunoassay) between 2001 and 2014, 437 patients with complete follow up data were included. From these 437 patients, 87 (19.9%) developed a biochemical recurrence. Patient characteristics were compared by using chi-square test. Predictors were analyzed by multivariate adjusted logistic and Cox regression. The median follow up for a biochemical recurrence was 65 (range 3-161) months. PHI, PSA, [-2]proPSA, PHI- and PSA-density performed as significant variables (p < 0.05) for cancer aggressiveness: Gleason-score <7 or ≥7 (ISUP grade 1 or ≥2) . Concerning pathological tumor stage discrimination and prediction, variables as PHI, PSA, %fPSA, [-2]proPSA, PHI- and PSA-density significantly discriminated between stages

  12. A statistical survey of heat input parameters into the cusp thermosphere

    NASA Astrophysics Data System (ADS)

    Moen, J. I.; Skjaeveland, A.; Carlson, H. C.

    2017-12-01

    Based on three winters of observational data, we present those ionosphere parameters deemed most critical to realistic space weather ionosphere and thermosphere representation and prediction, in regions impacted by variability in the cusp. The CHAMP spacecraft revealed large variability in cusp thermosphere densities, measuring frequent satellite drag enhancements, up to doublings. The community recognizes a clear need for more realistic representation of plasma flows and electron densities near the cusp. Existing average-value models produce order of magnitude errors in these parameters, resulting in large under estimations of predicted drag. We fill this knowledge gap with statistics-based specification of these key parameters over their range of observed values. The EISCAT Svalbard Radar (ESR) tracks plasma flow Vi , electron density Ne, and electron, ion temperatures Te, Ti , with consecutive 2-3 minute windshield-wipe scans of 1000x500 km areas. This allows mapping the maximum Ti of a large area within or near the cusp with high temporal resolution. In magnetic field-aligned mode the radar can measure high-resolution profiles of these plasma parameters. By deriving statistics for Ne and Ti , we enable derivation of thermosphere heating deposition under background and frictional-drag-dominated magnetic reconnection conditions. We separate our Ne and Ti profiles into quiescent and enhanced states, which are not closely correlated due to the spatial structure of the reconnection foot point. Use of our data-based parameter inputs can make order of magnitude corrections to input data driving thermosphere models, enabling removal of previous two fold drag errors.

  13. Summer temperature variation and implications for juvenile Atlantic salmon

    USGS Publications Warehouse

    Mather, M. E.; Parrish, D.L.; Campbell, C.A.; McMenemy, J.R.; Smith, Joseph M.

    2008-01-01

    Temperature is important to fish in determining their geographic distribution. For cool- and cold-water fish, thermal regimes are especially critical at the southern end of a species' range. Although temperature is an easy variable to measure, biological interpretation is difficult. Thus, how to determine what temperatures are meaningful to fish in the field is a challenge. Herein, we used the Connecticut River as a model system and Atlantic salmon (Salmo salar) as a model species with which to assess the effects of summer temperatures on the density of age 0 parr. Specifically, we asked: (1) What are the spatial and temporal temperature patterns in the Connecticut River during summer? (2) What metrics might detect effects of high temperatures? and (3) How is temperature variability related to density of Atlantic salmon during their first summer? Although the most southern site was the warmest, some northern sites were also warm, and some southern sites were moderately cool. This suggests localized, within basin variation in temperature. Daily and hourly means showed extreme values not apparent in the seasonal means. We observed significant relationships between age 0 parr density and days at potentially stressful, warm temperatures (???23??C). Based on these results, we propose that useful field reference points need to incorporate the synergistic effect of other stressors that fish encounter in the field as well as the complexity associated with cycling temperatures and thermal refuges. Understanding the effects of temperature may aid conservation efforts for Atlantic salmon in the Connecticut River and other North Atlantic systems. ?? 2008 Springer Science+Business Media B.V.

  14. Effects of Habitat Structure and Fragmentation on Diversity and Abundance of Primates in Tropical Deciduous Forests in Bolivia.

    PubMed

    Pyritz, Lennart W; Büntge, Anna B S; Herzog, Sebastian K; Kessler, Michael

    2010-10-01

    Habitat structure and anthropogenic disturbance are known to affect primate diversity and abundance. However, researchers have focused on lowland rain forests, whereas endangered deciduous forests have been neglected. We aimed to investigate the relationships between primate diversity and abundance and habitat parameters in 10 deciduous forest fragments southeast of Santa Cruz, Bolivia. We obtained primate data via line-transect surveys and visual and acoustic observations. In addition, we assessed the vegetation structure (canopy height, understory density), size, isolation time, and surrounding forest area of the fragments. We interpreted our results in the context of the historical distribution data for primates in the area before fragmentation and interviews with local people. We detected 5 of the 8 historically observed primate species: Alouatta caraya, Aotus azarae boliviensis, Callithrix melanura, Callicebus donacophilus, and Cebus libidinosus juruanus. Total species number and detection rates decreased with understory density. Detection rates also negatively correlated with forest areas in the surroundings of a fragment, which may be due to variables not assessed, i.e., fragment shape, distance to nearest town. Observations for Alouatta and Aotus were too few to conduct further statistics. Cebus and Callicebus were present in 90% and 70% of the sites, respectively, and their density did not correlate with any of the habitat variables assessed, signaling high ecological plasticity and adaptability to anthropogenic impact in these species. Detections of Callithrix were higher in areas with low forest strata. Our study provides baseline data for future fragmentation studies in Neotropical dry deciduous forests and sets a base for specific conservation measures.

  15. Growth rates of rainbow smelt in Lake Champlain: Effects of density and diet

    USGS Publications Warehouse

    Stritzel, Thomson J.L.; Parrish, D.L.; Parker-Stetter, S. L.; Rudstam, L. G.; Sullivan, P.J.

    2011-01-01

    Stritzel Thomson JL, Parrish DL, Parker-Stetter SL, Rudstam LG, Sullivan PJ. Growth rates of rainbow smelt in Lake Champlain: effects of density and diet. Ecology of Freshwater Fish 2010. ?? 2010 John Wiley & Sons A/S Abstract- We estimated the densities of rainbow smelt (Osmerus mordax) using hydroacoustics and obtained specimens for diet analysis and groundtruthed acoustics data from mid-water trawl sampling in four areas of Lake Champlain, USA-Canada. Densities of rainbow smelt cohorts alternated during the 2-year study; age-0 rainbow smelt were very abundant in 2001 (up to 6fish per m2) and age-1 and older were abundant (up to 1.2fish per m2) in 2002. Growth rates and densities varied among areas and years. We used model selection on eight area-year-specific variables to investigate biologically plausible predictors of rainbow smelt growth rates. The best supported model of growth rates of age-0 smelt indicated a negative relationship with age-0 density, likely associated with intraspecific competition for zooplankton. The next best-fit model had age-1 density as a predictor of age-0 growth. The best supported models (N=4) of growth rates of age-1 fish indicated a positive relationship with availability of age-0 smelt and resulting levels of cannibalism. Other plausible models were contained variants of these parameters. Cannibalistic rainbow smelt consumed younger conspecifics that were up to 53% of their length. Prediction of population dynamics for rainbow smelt requires an understanding of the relationship between density and growth as age-0 fish outgrow their main predators (adult smelt) by autumn in years with fast growth rates, but not in years with slow growth rates. ?? 2011 John Wiley & Sons A/S.

  16. Features of the normal choriocapillaris with OCT-angiography: Density estimation and textural properties.

    PubMed

    Montesano, Giovanni; Allegrini, Davide; Colombo, Leonardo; Rossetti, Luca M; Pece, Alfredo

    2017-01-01

    The main objective of our work is to perform an in depth analysis of the structural features of normal choriocapillaris imaged with OCT Angiography. Specifically, we provide an optimal radius for a circular Region of Interest (ROI) to obtain a stable estimate of the subfoveal choriocapillaris density and characterize its textural properties using Markov Random Fields. On each binarized image of the choriocapillaris OCT Angiography we performed simulated measurements of the subfoveal choriocapillaris densities with circular Regions of Interest (ROIs) of different radii and with small random displacements from the center of the Foveal Avascular Zone (FAZ). We then calculated the variability of the density measure with different ROI radii. We then characterized the textural features of choriocapillaris binary images by estimating the parameters of an Ising model. For each image we calculated the Optimal Radius (OR) as the minimum ROI radius required to obtain a standard deviation in the simulation below 0.01. The density measured with the individual OR was 0.52 ± 0.07 (mean ± STD). Similar density values (0.51 ± 0.07) were obtained using a fixed ROI radius of 450 μm. The Ising model yielded two parameter estimates (β = 0.34 ± 0.03; γ = 0.003 ± 0.012; mean ± STD), characterizing pixel clustering and white pixel density respectively. Using the estimated parameters to synthetize new random textures via simulation we obtained a good reproduction of the original choriocapillaris structural features and density. In conclusion, we developed an extensive characterization of the normal subfoveal choriocapillaris that might be used for flow analysis and applied to the investigation pathological alterations.

  17. Effects of Shoreline Dynamics on Saltmarsh Vegetation

    PubMed Central

    Sharma, Shailesh; Goff, Joshua; Moody, Ryan M.; McDonald, Ashley; Byron, Dorothy; Heck, Kenneth L.; Powers, Sean P.; Ferraro, Carl; Cebrian, Just

    2016-01-01

    We evaluated the impact of shoreline dynamics on fringing vegetation density at mid- and low-marsh elevations at a high-energy site in the northern Gulf of Mexico. Particularly, we selected eight unprotected shoreline stretches (75 m each) at a historically eroding site and measured their inter-annual lateral movement rate using the DSAS method for three consecutive years. We observed high inter-annual variability of shoreline movement within the selected stretches. Specifically, shorelines retrograded (eroded) in year 1 and year 3, whereas, in year 2, shorelines advanced seaward. Despite shoreline advancement in year 2, an overall net erosion was recorded during the survey period. Additionally, vegetation density generally declined at both elevations during the survey period; however, probably due to their immediate proximity with lateral erosion agents (e.g., waves, currents), marsh grasses at low-elevation exhibited abrupt reduction in density, more so than grasses at mid elevation. Finally, contrary to our hypothesis, despite shoreline advancement, vegetation density did not increase correspondingly in year 2 probably due to a lag in response from biota. More studies in other coastal systems may advance our knowledge of marsh edge systems; however, we consider our results could be beneficial to resource managers in preparing protection plans for coastal wetlands against chronic stressors such as lateral erosion. PMID:27442515

  18. Effects of Shoreline Dynamics on Saltmarsh Vegetation.

    PubMed

    Sharma, Shailesh; Goff, Joshua; Moody, Ryan M; McDonald, Ashley; Byron, Dorothy; Heck, Kenneth L; Powers, Sean P; Ferraro, Carl; Cebrian, Just

    2016-01-01

    We evaluated the impact of shoreline dynamics on fringing vegetation density at mid- and low-marsh elevations at a high-energy site in the northern Gulf of Mexico. Particularly, we selected eight unprotected shoreline stretches (75 m each) at a historically eroding site and measured their inter-annual lateral movement rate using the DSAS method for three consecutive years. We observed high inter-annual variability of shoreline movement within the selected stretches. Specifically, shorelines retrograded (eroded) in year 1 and year 3, whereas, in year 2, shorelines advanced seaward. Despite shoreline advancement in year 2, an overall net erosion was recorded during the survey period. Additionally, vegetation density generally declined at both elevations during the survey period; however, probably due to their immediate proximity with lateral erosion agents (e.g., waves, currents), marsh grasses at low-elevation exhibited abrupt reduction in density, more so than grasses at mid elevation. Finally, contrary to our hypothesis, despite shoreline advancement, vegetation density did not increase correspondingly in year 2 probably due to a lag in response from biota. More studies in other coastal systems may advance our knowledge of marsh edge systems; however, we consider our results could be beneficial to resource managers in preparing protection plans for coastal wetlands against chronic stressors such as lateral erosion.

  19. Specific growth rate and multiplicity of infection affect high-cell-density fermentation with bacteriophage M13 for ssDNA production.

    PubMed

    Kick, Benjamin; Hensler, Samantha; Praetorius, Florian; Dietz, Hendrik; Weuster-Botz, Dirk

    2017-04-01

    The bacteriophage M13 has found frequent applications in nanobiotechnology due to its chemically and genetically tunable protein surface and its ability to self-assemble into colloidal membranes. Additionally, its single-stranded (ss) genome is commonly used as scaffold for DNA origami. Despite the manifold uses of M13, upstream production methods for phage and scaffold ssDNA are underexamined with respect to future industrial usage. Here, the high-cell-density phage production with Escherichia coli as host organism was studied in respect of medium composition, infection time, multiplicity of infection, and specific growth rate. The specific growth rate and the multiplicity of infection were identified as the crucial state variables that influence phage amplification rate on one hand and the concentration of produced ssDNA on the other hand. Using a growth rate of 0.15 h -1 and a multiplicity of infection of 0.05 pfu cfu -1 in the fed-batch production process, the concentration of pure isolated M13 ssDNA usable for scaffolded DNA origami could be enhanced by 54% to 590 mg L -1 . Thus, our results help enabling M13 production for industrial uses in nanobiotechnology. Biotechnol. Bioeng. 2017;114: 777-784. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Density and Specific Gravity Metrics in Biomass Research

    Treesearch

    Micheal C. Wiemann; G. Bruce Williamson

    2012-01-01

    Following the 2010 publication of Measuring Wood Specific Gravity… Correctly in the American Journal of Botany, readers contacted us to inquire about application of wood density and specific gravity to biomass research. Here we recommend methods for sample collection, volume measurement, and determination of wood density and specific gravity for...

  1. Influence of fine-scale habitat structure on nest-site occupancy, laying date and clutch size in Blue Tits Cyanistes caeruleus

    NASA Astrophysics Data System (ADS)

    Amininasab, Seyed Mehdi; Vedder, Oscar; Schut, Elske; de Jong, Berber; Magrath, Michael J. L.; Korsten, Peter; Komdeur, Jan

    2016-01-01

    Most birds have specific habitat requirements for breeding. The vegetation structure surrounding nest-sites is an important component of habitat quality, and can have large effects on avian breeding performance. We studied 13 years of Blue Tit Cyanistes caeruleus population data to determine whether characteristics of vegetation structure predict site occupancy, laying date and number of eggs laid. Measurements of vegetation structure included the density of English Oak Quercus robur, European Beech Fagus sylvatica, and other deciduous, coniferous and non-coniferous evergreen trees, within a 20-m radius of nest-boxes used for breeding. Trees were further sub-divided into specific classes of trunk circumferences to determine the densities for different maturity levels. Based on Principal Component Analysis (PCA), we reduced the total number of 17 measured vegetation variables to 7 main categories, which we used for further analyses. We found that the occupancy rate of sites and the number of eggs laid correlated positively with the proportion of deciduous trees and negatively with the density of coniferous trees. Laying of the first egg was advanced with a greater proportion of deciduous trees. Among deciduous trees, the English Oak appeared to be most important, as a higher density of more mature English Oak trees was associated with more frequent nest-box occupancy, a larger number of eggs laid, and an earlier laying start. Furthermore, laying started earlier and more eggs were laid in nest-boxes with higher occupancy rates. Together, these findings highlight the role of deciduous trees, particularly more mature English Oak, as important predictors of high-quality preferred habitat. These results aid in defining habitat quality and will facilitate future studies on the importance of environmental quality for breeding performance.

  2. Interactions between environmental variables determine immunity in the Indian meal moth Plodia interpunctella.

    PubMed

    Triggs, Alison; Knell, Robert J

    2012-03-01

    1. Animals raised in good environmental conditions are expected to have more resources to invest in immunity than those raised in poor conditions. Variation in immune activity and parasite resistance in response to changes in environmental temperature, population density and food quality have been shown in many invertebrate species. 2. Almost all studies to date have examined the effects of individual variables in isolation. The aim of this study was to address whether environmental factors interact to produce synergistic effects on phenoloxidase (PO) activity and haemocyte count, both indicators of immune system activity. Temperature, food quality and density were varied in a fully factorial design for a total of eight treatment combinations. 3. Strong interactions between the three environmental variables led to the magnitude and in some cases the direction of the effect of most variables changing as the other environmental factors were altered. Overall, food quality had the most important and consistent influence, larvae raised on a good-quality diet having substantially higher PO activity in every case and substantially higher haemocyte counts in all treatments except unheated/low density. 4. When food quality was good, the larvae showed 'density-dependent prophylaxis': raising their investment in immunity when population density is high. When food quality was poor and the temperature low, however, those larvae raised at high densities invested less in immunity. 5. Increased temperature is often thought to lead to increased immune reactivity in ectotherms, but we found that the effect of temperature was strongly dependent on the values of other environmental variables. PO activity increased with temperature when larvae were raised on good food or when density was high, but when food was poor and density low, a higher temperature led to reduced PO activity. A higher temperature led to higher haemocyte counts when density was high and food quality was poor, but in all other cases, the effect of increased temperature was either close to zero or somewhat negative. 6. Although PO activity and haemocyte count were weakly correlated across the whole data set, there were a number of treatments where the two measures responded in different ways to environmental change. Overall, effect sizes for PO activity were substantially higher than those for haemocyte count, indicating that the different components of the immune system vary in their sensitivity to environmental change. 7. Predictions of the effect of environmental or population change on immunity and disease dynamics based on laboratory experiments that only investigate the effects of single variable are likely to be inaccurate or even entirely wrong. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  3. Improved ablative materials for the ASRM nozzle

    NASA Technical Reports Server (NTRS)

    Canfield, A.; Clinton, R. G.; Armour, W.; Koenig, J.

    1992-01-01

    Rayon precursor carbon-cloth phenolic was developed more than 30 years ago and is used in most nozzles today including the Poseidon, Trident, Peacekeeper, Small ICBM, Space Shuttle, and numerous tactical and space systems. Specifications and manufacturing controls were placed on these materials and, once qualified, a no-change policy was instituted. The current material is acceptable; however, prepreg variability does not always accommodate the requirements of automation. The advanced solid rocket motor requires material with less variability for automated manufacturing. An advanced solid rocket motor materials team, composed of NASA, Thiokol, Aerojet, SRI, and Lockheed specialists, along with materials suppliers ICI Fiberite/Polycarbon, BP Chemicals/Hitco, and Amoco, embarked on a program to improve the current materials. The program consisted of heat treatment studies and standard and low-density material improvements evaluation. Improvements evaluated included fiber/fabric heat treatments, weave variations, resin application methods, process controls, and monitors.

  4. Life Prediction Issues in Thermal/Environmental Barrier Coatings in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Brewer, David N.; Murthy, Pappu L. N.

    2001-01-01

    Issues and design requirements for the environmental barrier coating (EBC)/thermal barrier coating (TBC) life that are general and those specific to the NASA Ultra-Efficient Engine Technology (UEET) development program have been described. The current state and trend of the research, methods in vogue related to the failure analysis, and long-term behavior and life prediction of EBCITBC systems are reported. Also, the perceived failure mechanisms, variables, and related uncertainties governing the EBCITBC system life are summarized. A combined heat transfer and structural analysis approach based on the oxidation kinetics using the Arrhenius theory is proposed to develop a life prediction model for the EBC/TBC systems. Stochastic process-based reliability approach that includes the physical variables such as gas pressure, temperature, velocity, moisture content, crack density, oxygen content, etc., is suggested. Benefits of the reliability-based approach are also discussed in the report.

  5. Eddy Viscosity for Variable Density Coflowing Streams,

    DTIC Science & Technology

    EDDY CURRENTS, *JET MIXING FLOW, *VISCOSITY, *AIR FLOW, MATHEMATICAL MODELS, INCOMPRESSIBLE FLOW, AXISYMMETRIC FLOW, MATHEMATICAL PREDICTION, THRUST AUGMENTATION , EJECTORS , COMPUTER PROGRAMMING, SECONDARY FLOW, DENSITY, MODIFICATION.

  6. Instability Analysis of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony Layiwola

    2001-01-01

    The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas were performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. It was found that the presence of variable density within the shear layer resulted in an increase in the temporal amplification rate of the disturbances and an increase in the range of unstable frequencies, accompanied by a reduction in the phase velocities of the disturbances. Also, the temporal growth rates of the disturbances were increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity. The spatio-temporal stability analysis was performed to determine the nature of the absolute instability of the jet. The roles of the density ratio, Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the jet s absolute instability were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be. Experiments were carried out to observe the qualitative differences between a round low-density gas jet injected into a high-density gas (helium jet injected into air) and a round constant density jet (air jet injected into air). Flow visualizations and velocity measurements in the near-injector region of the helium jet show more mixing and spreading of the helium jet than the air jet. The vortex structures develop and contribute to the jet spreading causing the helium jet to oscillate.

  7. Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption.

    PubMed

    Zou, Jiaxiu; Peng, Xiaolan; Li, Miao; Xiong, Ying; Wang, Bing; Dong, Faqin; Wang, Bin

    2017-03-01

    In the present study, the electrochemical oxidation of real wastewaters discharged by textile industry was carried out using a boron-doped diamond (BDD) anode. The effect of operational variables, such as applied current density (20-100 mA·cm -2 ), NaCl concentration added to the real wastewaters (0-3 g·L -1 ), and pH value (2.0-10.0), on the kinetics of COD oxidation and on the energy consumption was carefully investigated. The obtained experimental results could be well matched with a proposed kinetic model, in which the indirect oxidation mediated by electrogenerated strong oxidants would be described through a pseudo-first-order kinetic constant k. Values of k exhibited a linear increase with increasing applied current density and decreasing pH value, and an exponential increase with NaCl concentration. Furthermore, high oxidation kinetics resulted in low specific energy consumption, but this conclusion was not suitable to the results obtained under different applied current density. Under the optimum operational conditions, it only took 3 h to complete remove the COD in the real textile wastewaters and the specific energy consumption could be as low as 11.12 kWh·kg -1  COD. The obtained results, low energy consumption and short electrolysis time, allowed to conclude that the electrochemical oxidation based on BDD anodes would have practical industrial application for the treatment of real textile wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Epizootiology of cranial abscess disease in white-tailed deer (Odocoileus virginianus) of Georgia, USA

    USGS Publications Warehouse

    Cohen, Bradley S.; Belser, Emily H.; Killmaster, Charlie H.; Bowers, John W.; Irwin, Brian J.; Yabsley, Michael J.; Miller, Karl V.

    2015-01-01

    Intracranial abscess disease is a cause of natural mortality for mature male white-tailed deer (Odocoileus virginianus). Most cases of abscesses are associated with bacterial infection byTrueperella (Arcanobacterium) pyogenes, but a complete understanding of the epidemiology of this disease is lacking. We quantified the effects of individual characteristics, site-specific herd demographics, land cover, and soil variables in estimating the probability of this disease. We examined 7,545 white-tailed deer from 60 sites throughout Georgia US for signs of cranial abscesses, the predecessor of intracranial abscesses, and recorded the presence or absence of cranial abscesses for each individual examined. We detected no cranial abscesses in 2,562 female deer but 91 abscesses in 4,983 male deer examined (1.8%). A generalized linear mixed model, treating site as a random effect, was used to examine several potential explanatory risk factors including site-level landscape and soil characteristics (soil and forest type), demographic factors (deer density and male to female ratio), and individual host factors (deer sex and age). Model results indicated that the probability of a male having a cranial abscess increased with age and that adult sex ratio (male:female) was positively associated with this disease. Site-specific variables for land cover and soil types were not strongly associated with observations of the disease at the scale measured and a large amount of among-site variability remained. Given the demonstrated effect of age, gender, and local sex ratios but the remaining unexplained spatial variability, additional investigation into spatiotemporal variation of the presumed bacterial causative agent of cranial abscesses appears warranted.

  9. Why did bluetongue spread the way it did? Environmental factors influencing the velocity of bluetongue virus serotype 8 epizootic wave in France.

    PubMed

    Pioz, Maryline; Guis, Hélène; Crespin, Laurent; Gay, Emilie; Calavas, Didier; Durand, Benoît; Abrial, David; Ducrot, Christian

    2012-01-01

    Understanding where and how fast an infectious disease will spread during an epidemic is critical for its control. However, the task is a challenging one as numerous factors may interact and drive the spread of a disease, specifically when vector-borne diseases are involved. We advocate the use of simultaneous autoregressive models to identify environmental features that significantly impact the velocity of disease spread. We illustrate this approach by exploring several environmental factors influencing the velocity of bluetongue (BT) spread in France during the 2007-2008 epizootic wave to determine which ones were the most important drivers. We used velocities of BT spread estimated in 4,495 municipalities and tested sixteen covariates defining five thematic groups of related variables: elevation, meteorological-related variables, landscape-related variables, host availability, and vaccination. We found that ecological factors associated with vector abundance and activity (elevation and meteorological-related variables), as well as with host availability, were important drivers of the spread of the disease. Specifically, the disease spread more slowly in areas with high elevation and when heavy rainfall associated with extreme temperature events occurred one or two months prior to the first clinical case. Moreover, the density of dairy cattle was correlated negatively with the velocity of BT spread. These findings add substantially to our understanding of BT spread in a temperate climate. Finally, the approach presented in this paper can be used with other infectious diseases, and provides a powerful tool to identify environmental features driving the velocity of disease spread.

  10. Why Did Bluetongue Spread the Way It Did? Environmental Factors Influencing the Velocity of Bluetongue Virus Serotype 8 Epizootic Wave in France

    PubMed Central

    Pioz, Maryline; Guis, Hélène; Crespin, Laurent; Gay, Emilie; Calavas, Didier; Durand, Benoît; Abrial, David; Ducrot, Christian

    2012-01-01

    Understanding where and how fast an infectious disease will spread during an epidemic is critical for its control. However, the task is a challenging one as numerous factors may interact and drive the spread of a disease, specifically when vector-borne diseases are involved. We advocate the use of simultaneous autoregressive models to identify environmental features that significantly impact the velocity of disease spread. We illustrate this approach by exploring several environmental factors influencing the velocity of bluetongue (BT) spread in France during the 2007–2008 epizootic wave to determine which ones were the most important drivers. We used velocities of BT spread estimated in 4,495 municipalities and tested sixteen covariates defining five thematic groups of related variables: elevation, meteorological-related variables, landscape-related variables, host availability, and vaccination. We found that ecological factors associated with vector abundance and activity (elevation and meteorological-related variables), as well as with host availability, were important drivers of the spread of the disease. Specifically, the disease spread more slowly in areas with high elevation and when heavy rainfall associated with extreme temperature events occurred one or two months prior to the first clinical case. Moreover, the density of dairy cattle was correlated negatively with the velocity of BT spread. These findings add substantially to our understanding of BT spread in a temperate climate. Finally, the approach presented in this paper can be used with other infectious diseases, and provides a powerful tool to identify environmental features driving the velocity of disease spread. PMID:22916249

  11. Stochastic transport models for mixing in variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Bakosi, J.; Ristorcelli, J. R.

    2011-11-01

    In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.

  12. Documentation of a numerical code for the simulation of variable density ground-water flow in three dimensions

    USGS Publications Warehouse

    Kuiper, L.K.

    1985-01-01

    A numerical code is documented for the simulation of variable density time dependent groundwater flow in three dimensions. The groundwater density, although variable with distance, is assumed to be constant in time. The Integrated Finite Difference grid elements in the code follow the geologic strata in the modeled area. If appropriate, the determination of hydraulic head in confining beds can be deleted to decrease computation time. The strongly implicit procedure (SIP), successive over-relaxation (SOR), and eight different preconditioned conjugate gradient (PCG) methods are used to solve the approximating equations. The use of the computer program that performs the calculations in the numerical code is emphasized. Detailed instructions are given for using the computer program, including input data formats. An example simulation and the Fortran listing of the program are included. (USGS)

  13. Modelling the Influence of Long-Term Hydraulic Conditions on Juvenile Salmon Habitats in AN Upland Scotish River

    NASA Astrophysics Data System (ADS)

    Fabris, L.; Malcolm, I.; Millidine, K. J.; Buddendorf, B.; Tetzlaff, D.; Soulsby, C.

    2015-12-01

    Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream.Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream.

  14. Bone mineral density reference standards for Chinese children aged 3-18: cross-sectional results of the 2013-2015 China Child and Adolescent Cardiovascular Health (CCACH) Study.

    PubMed

    Liu, Junting; Wang, Liang; Sun, Jinghui; Liu, Gongshu; Yan, Weili; Xi, Bo; Xiong, Feng; Ding, Wenqing; Huang, Guimin; Heymsfield, Steven; Mi, Jie

    2017-05-29

    No nationwide paediatric reference standards for bone mineral density (BMD) are available in China. We aimed to provide sex-specific BMD reference values for Chinese children and adolescents (3-18 years). Data (10 818 participants aged 3-18 years) were obtained from cross-sectional surveys of the China Child and Adolescent Cardiovascular Health in 2015, which included four municipality cities and three provinces. BMD was measured using Hologic Discovery Dual Energy X-ray Absorptiometry (DXA) scanner. The DXA measures were modelled against age, with height as an independent variable. The LMS statistical method using a curve fitting procedure was used to construct reference smooth cross-sectional centile curves for dependent versus independent variables. Children residing in Northeast China had the highest total body less head (TBLH) BMD while children residing in Shandong Province had the lowest values. Among children, TBLH BMD was higher for boys as compared with girls; but, it increased with age and height in both sexes. Furthermore, TBLH BMD was higher among US children as compared with Chinese children. There was a large difference in BMD for height among children from these two countries. US children had a much higher BMD at each percentile (P) than Chinese children; the largest observed difference was at P50 and P3 and the smallest difference was at P97. This is the first study to present a sex-specific reference dataset for Chinese children aged 3-18 years. The data can help clinicians improve interpretation, assessment and monitoring of densitometry results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Automated finite element meshing of the lumbar spine: Verification and validation with 18 specimen-specific models.

    PubMed

    Campbell, J Q; Coombs, D J; Rao, M; Rullkoetter, P J; Petrella, A J

    2016-09-06

    The purpose of this study was to seek broad verification and validation of human lumbar spine finite element models created using a previously published automated algorithm. The automated algorithm takes segmented CT scans of lumbar vertebrae, automatically identifies important landmarks and contact surfaces, and creates a finite element model. Mesh convergence was evaluated by examining changes in key output variables in response to mesh density. Semi-direct validation was performed by comparing experimental results for a single specimen to the automated finite element model results for that specimen with calibrated material properties from a prior study. Indirect validation was based on a comparison of results from automated finite element models of 18 individual specimens, all using one set of generalized material properties, to a range of data from the literature. A total of 216 simulations were run and compared to 186 experimental data ranges in all six primary bending modes up to 7.8Nm with follower loads up to 1000N. Mesh convergence results showed less than a 5% difference in key variables when the original mesh density was doubled. The semi-direct validation results showed that the automated method produced results comparable to manual finite element modeling methods. The indirect validation results showed a wide range of outcomes due to variations in the geometry alone. The studies showed that the automated models can be used to reliably evaluate lumbar spine biomechanics, specifically within our intended context of use: in pure bending modes, under relatively low non-injurious simulated in vivo loads, to predict torque rotation response, disc pressures, and facet forces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Characterization of Seasonally Dependent Emergent Vegetation Variables for Coastal Impact Models

    NASA Astrophysics Data System (ADS)

    Stellern, C.; Grossman, E.; Linneman, S. R.; Fuller, R.

    2015-12-01

    Emergent wetland vegetation has been shown to mitigate coastal inundation and erosion hazards by reducing wave energy through friction (Shepard et al., 2011), although its use in coastal protection planning is limited because predictive models require improved vegetation data. We isolated biophysical characteristics (biomass, stem density, rigidity, etc.) of plants using horizontal digital photographs (Side-On Photos) in conjunction with remote sensing and physical surveys. We studied the dominant salt-marsh species/assemblages in Port Susan Bay of Washington State, a vulnerable estuary that has experienced up to 1 kilometer of marsh retreat since the mid-1960s. We measured plant height, stem diameter, stem density (area available for flow) from fall to early spring (August 2014 through April 2015) using Side-On Photography and digital image processing techniques. Metrics from Side-On Photography were highly correlated to physical lab measurements. Vegetation rigidity was measured in-situ with a handheld digital scale with respect to measurement height and bending angle. Plant elasticity showed a strong correlation to stem diameter in two dominant bulrush species. We employed remote sensing supervised classifications techniques (Maximum-Likelihood and Decision Tree Classifiers) to hyperspectral imagery to map the spatial extent of vegetation assemblages with an overall accuracy of 86.7%. Combining these methods enabled us to extrapolate and validate vegetation characteristics across the study area and to estimate species-specific friction coefficients for input to cross-shore wave models. On-going studies include sensitivity analyses of wave models to seasonally-dependent vegetation parameters in the nearshore and ultimately wave impacts along the coast. By accounting for site-specific and spatiotemporal variability in vegetation data, we inform scientific understanding of the interactions of vegetation, waves, and sediment processes.

  17. Analytical Models for Variable Density Multilayer Insulation Used in Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Hastings, L. J.; Brown, T.

    2001-01-01

    A unique multilayer insulation concept for orbital cryogenic storage was experimentally evaluated at NASA Marshall Space Flight Center (MSFC) using the Multipurpose Hydrogen Test Bed (MHTB). A combination of foam/Multi layer Insulation (MLI) was used. The MLI (45 layers of Double Aluminized Mylar (DAM) with Dacron net spacers) was designed for an on-orbit storage period of 45 days and included several unique features such as: a variable layer density and larger but fewer DAM perforations for venting during ascent to orbit. The focus of this paper is on analytical modeling of the variable density MLI performance during orbital coast periods. The foam/MLI combination model is considered to have five segments. The first segment represents the foam layer. The second, third, and fourth segments represent the three layers of MLI with different layer densities and number of shields. Finally, the last segment is considered to be a shroud that surrounds the last MLI layer. The hot boundary temperature is allowed to vary from 164 K to 305 K. To simulate MLI performance, two approaches are considered. In the first approach, the variable density MLI is modeled layer by layer while in the second approach, a semi-empirical model is applied. Both models account for thermal radiation between shields, gas conduction, and solid conduction through the separator materials. The heat flux values predicted by each approach are compared for different boundary temperatures and MLI systems with 30, 45, 60, and 75 layers.

  18. Changes in Keratocyte Density and Visual Function Five Years After Laser In Situ Keratomileusis: Femtosecond Laser Versus Mechanical Microkeratome.

    PubMed

    McLaren, Jay W; Bourne, William M; Maguire, Leo J; Patel, Sanjay V

    2015-07-01

    To determine the effects of keratocyte loss on optical properties and vision after laser in situ keratomileusis (LASIK) with the flap created with a femtosecond laser or a mechanical microkeratome. Randomized clinical paired-eye study. Both eyes of 21 patients received LASIK for myopia or myopic astigmatism. One eye of each patient was randomized by ocular dominance to flap creation with a femtosecond laser and the other eye to flap creation with a mechanical microkeratome. Before LASIK and at 1, 3, and 6 months and 1, 3, and 5 years after LASIK, keratocyte density was measured using confocal microscopy, and high-contrast visual acuity and anterior corneal wavefront aberrations were measured by standard methods. At each visit, all variables were compared between methods of creating the flap and to the same variable before treatment using paired tests with Bonferroni correction for multiple comparisons. Keratocyte density in the flap decreased by 20% during the first year after LASIK and remained low through 5 years (P < .001). High-order wavefront aberrations increased and uncorrected visual acuity improved immediately after surgery, but these variables did not change further to 5 years. There were no differences in any variables between treatments. A sustained reduction in keratocyte density does not affect vision or optical properties of the cornea through 5 years after LASIK. The method of creating a LASIK flap does not influence the changes in keratocyte density in the flap. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Multi-wavelength campaign on NGC 7469. II. Column densities and variability in the X-ray spectrum

    NASA Astrophysics Data System (ADS)

    Peretz, U.; Behar, E.; Kriss, G. A.; Kaastra, J.; Arav, N.; Bianchi, S.; Branduardi-Raymont, G.; Cappi, M.; Costantini, E.; De Marco, B.; Di Gesu, L.; Ebrero, J.; Kaspi, S.; Mehdipour, M.; Middei, R.; Paltani, S.; Petrucci, P. O.; Ponti, G.; Ursini, F.

    2018-01-01

    We have investigated the ionic column density variability of the ionized outflows associated with NGC 7469, to estimate their location and power. This could allow a better understanding of galactic feedback of AGNs to their host galaxies. Analysis of seven XMM-Newton grating observations from 2015 is reported. We used an individual-ion spectral fitting approach, and compared different epochs to accurately determine variability on timescales of years, months, and days. We find no significant column density variability in a ten-year period implying that the outflow is far from the ionizing source. The implied lower bound on the ionization equilibrium time, ten years, constrains the lower limit on the distance to be at least 12 pc, and up to 31 pc, much less but consistent with the 1 kpc wide starburst ring. The ionization distribution of column density is reconstructed from measured column densities, nicely matching results of two 2004 observations, with one large high ionization parameter (ξ) component at 2 < log ξ< 3.5, and one at 0.5 < log ξ< 1 in cgs units. The strong dependence of the expression for kinetic power, ∝ 1 /ξ, hampers tight constraints on the feedback mechanism of outflows with a large range in ionization parameter, which is often observed and indicates a non-conical outflow. The kinetic power of the outflow is estimated here to be within 0.4 and 60% of the Eddington luminosity, depending on the ion used to estimate ξ.

  20. Predicting coastal cliff erosion using a Bayesian probabilistic model

    USGS Publications Warehouse

    Hapke, Cheryl J.; Plant, Nathaniel G.

    2010-01-01

    Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70–90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale.

  1. Quantifying Individual Brain Connectivity with Functional Principal Component Analysis for Networks.

    PubMed

    Petersen, Alexander; Zhao, Jianyang; Carmichael, Owen; Müller, Hans-Georg

    2016-09-01

    In typical functional connectivity studies, connections between voxels or regions in the brain are represented as edges in a network. Networks for different subjects are constructed at a given graph density and are summarized by some network measure such as path length. Examining these summary measures for many density values yields samples of connectivity curves, one for each individual. This has led to the adoption of basic tools of functional data analysis, most commonly to compare control and disease groups through the average curves in each group. Such group differences, however, neglect the variability in the sample of connectivity curves. In this article, the use of functional principal component analysis (FPCA) is demonstrated to enrich functional connectivity studies by providing increased power and flexibility for statistical inference. Specifically, individual connectivity curves are related to individual characteristics such as age and measures of cognitive function, thus providing a tool to relate brain connectivity with these variables at the individual level. This individual level analysis opens a new perspective that goes beyond previous group level comparisons. Using a large data set of resting-state functional magnetic resonance imaging scans, relationships between connectivity and two measures of cognitive function-episodic memory and executive function-were investigated. The group-based approach was implemented by dichotomizing the continuous cognitive variable and testing for group differences, resulting in no statistically significant findings. To demonstrate the new approach, FPCA was implemented, followed by linear regression models with cognitive scores as responses, identifying significant associations of connectivity in the right middle temporal region with both cognitive scores.

  2. Further influence of the eastern boundary on the seasonal variability of the Atlantic Meridional Overturning Circulation at 26N

    NASA Astrophysics Data System (ADS)

    Baehr, Johanna; Schmidt, Christian

    2016-04-01

    The seasonal cycle of the Atlantic Meridional Overturning Circulation (AMOC) at 26.5 N has been shown to arise predominantly from sub-surface density variations at the Eastern boundary. Here, we suggest that these sub-surface density variations have their origin in the seasonal variability of the Canary Current system, in particular the Poleward Undercurrent (PUC). We use a high-resolution ocean model (STORM) for which we show that the seasonal variability resembles observations for both sub-surface density variability and meridional transports. In particular, the STORM model simulation density variations at the eastern boundary show seasonal variations reaching down to well over 1000m, a pattern that most model simulations systematically underestimate. We find that positive wind stress curl anomalies in late summer and already within one degree off the eastern boundary result -through water column stretching- in strong transport anomlies in PUC in fall, coherent down to 1000m depth. Simultaneously with a westward propagation of these transport anomalies, we find in winter a weak PUC between 200 m and 500m, and southward transports between 600m and 1300m. This variability is in agreement with the observationally-based suggestion of a seasonal reversal of the meridional transports at intermediate depths. Our findings extend earlier studies which suggested that the seasonal variability at of the meridional transports across 26N is created by changes in the basin-wide thermocline through wind-driven upwelling at the eastern boundary analyzing wind stress curl anomalies 2 degrees off the eastern boundary. Our results suggest that the investigation of AMOC variability and particular its seasonal cycle modulations require the analysis of boundary wind stress curl and the upper ocean transports within 1 degree off the eastern boundary. These findings also implicate that without high-resolution coverage of the eastern boundary, coarser model simulation might not fully represent the AMOC's seasonal variability.

  3. Dynamical Mapping of Anopheles darlingi Densities in a Residual Malaria Transmission Area of French Guiana by Using Remote Sensing and Meteorological Data

    PubMed Central

    Adde, Antoine; Roux, Emmanuel; Mangeas, Morgan; Dessay, Nadine; Nacher, Mathieu; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien

    2016-01-01

    Local variation in the density of Anopheles mosquitoes and the risk of exposure to bites are essential to explain the spatial and temporal heterogeneities in the transmission of malaria. Vector distribution is driven by environmental factors. Based on variables derived from satellite imagery and meteorological observations, this study aimed to dynamically model and map the densities of Anopheles darlingi in the municipality of Saint-Georges de l’Oyapock (French Guiana). Longitudinal sampling sessions of An. darlingi densities were conducted between September 2012 and October 2014. Landscape and meteorological data were collected and processed to extract a panel of variables that were potentially related to An. darlingi ecology. Based on these data, a robust methodology was formed to estimate a statistical predictive model of the spatial-temporal variations in the densities of An. darlingi in Saint-Georges de l’Oyapock. The final cross-validated model integrated two landscape variables—dense forest surface and built surface—together with four meteorological variables related to rainfall, evapotranspiration, and the minimal and maximal temperatures. Extrapolation of the model allowed the generation of predictive weekly maps of An. darlingi densities at a resolution of 10-m. Our results supported the use of satellite imagery and meteorological data to predict malaria vector densities. Such fine-scale modeling approach might be a useful tool for health authorities to plan control strategies and social communication in a cost-effective, targeted, and timely manner. PMID:27749938

  4. Crowding and Neighborhood Mediation of Urban Density.

    ERIC Educational Resources Information Center

    Baum, Andrew; And Others

    The study of density and crowding has expanded rapidly, due in part to concern about the impact of high density on the quality of life. In this paper results of a study which focused upon the intervening role of neighborhood variables in the experience of urban density are reported. Residents of moderately dense urban areas were surveyed and…

  5. Efficacy of variable density thinning and prescribed fire for restoring forest heterogeneity to mixed-conifer forest in the central Sierra Nevada, CA

    Treesearch

    Eric E. Knapp; Jamie M. Lydersen; Malcolm P. North; Brandon M. Collins

    2017-01-01

    Frequent-fire forests were historically characterized by lower tree density, a higher proportion of pine species, and greater within-stand spatial variability, compared to many contemporary forests where fire has been excluded. As a result, such forests are now increasingly unstable, prone to uncharacteristically severe wildfire or high levels of tree mortality in...

  6. Topside ionosphere of Mars: Variability, transient layers, and the role of crustal magnetic fields

    NASA Astrophysics Data System (ADS)

    Gopika, P. G.; Venkateswara Rao, N.

    2018-04-01

    The topside ionosphere of Mars is known to show variability and transient topside layers. In this study, we analyzed the electron density profiles measured by the radio occultation technique aboard the Mars Global Surveyor spacecraft to study the topside ionosphere of Mars. The electron density profiles that we used in the present study span between 1998 and 2005. All the measurements are done from the northern high latitudes, except 220 profiles which were measured in the southern hemisphere, where strong crustal magnetic fields are present. We binned the observations into six measurement periods: 1998, 1999-north, 1999-south, 2000-2001, 2002-2003, and 2004-2005. We found that the topside ionosphere in the southern high latitudes is more variable than that from the northern hemisphere. This feature is clearly seen with fluctuations of wavelengths less than 20 km. Some of the electron density profiles show a transient topside layer with a local maximum in electron density between 160 km and 210 km. The topside layer is more prone to occur in the southern hemispheric crustal magnetic field regions than in the other regions. In addition, the peak density of the topside layer is greater in regions of strong crustal magnetic fields than in other regions. The variability of the topside ionosphere and the peak density of the topside layer, however, do not show one-to-one correlation with the strength of the crustal magnetic fields and magnetic field inclination. The results of the present study are discussed in the light of current understanding on the topside ionosphere, transient topside layers, and the role of crustal magnetic fields on plasma motions.

  7. Variability in understory evapotranspiration with overstory density in Siberian larch forests

    NASA Astrophysics Data System (ADS)

    Tobio, A.; Loranty, M. M.; Kropp, H.; Pena, H., III; Alexander, H. D.; Natali, S.; Kholodov, A. L.

    2016-12-01

    Arctic ecosystems are changing rapidly in response to amplified rates of climate change. Increased vegetation productivity, altered ecosystem carbon and hydrologic cycling, and increased wildfire severity are among the key responses to changing permafrost and climate conditions. Boreal larch forests in northeastern Siberia are a critical but understudied ecosystem affected by these modifications. Understory vegetation in these ecosystems, which typically have low canopy cover, may account for half of all water fluxes. Despite the potential importance of the understory for ecosystem water exchange, there has been relatively little research examining variability in understory evapotranspiration in boreal larch forests. In particular, the water balance of understory shrubs and mosses is largely undefined and could provide insight on how understory vegetation and our changing climate interact. This is especially important because both observed increases in vegetation productivity and wildfire severity could lead to increases in forests density, altering the proportional contributions of over- and understory vegetation to whole ecosystem evapotranspiration. In order to better understand variability in understory evapotranspiration we measured in larch forests with differing overstory density and permafrost conditions that likely vary as a consequence of fire severity. We used the static chamber technique to measure fluxes across a range of understory vegetation types and environmental conditions. In general, we found that the understory vegetation in low density stands transpires more than that in high density stands. This tends to be correlated with a larger amount of aboveground biomass in the low density stands, and an increase in solar radiation, due to less shading by overstory trees. These results will help us to better understand water balances, evapotranspiration variability, and productivity changes associated with climate on understory vegetation. Additionally, our results will help understand how fire regime shifts may alter understory contributions to ecosystem evapotranspiration in Siberian larch forests.

  8. [Population of Lytechinus variegatus (Echinoidea: Toxopneustidae) and structural characteristics of seagrass of Thalassia testudinum in Mochima Bay, Venezuela)].

    PubMed

    Noriega, Nicida; Cróquer, Aldo; Pauls, Sheila M

    2002-03-01

    To compare the general features of Thalassia testudinum seagrass at Mochima Bay with sea urchin (Lxtechinus variegatus) abundance and distribution, three T. testudinum seagrass beds were selected, from the mouth (strong wave exposure) to the inner bay (calm waters). Each site was surveyed by using 5 line transects (20 m long) parallel to the coast and 1 m2 quadrats. In situ measurements of T. testudinum cover, shoot and leaf density were taken. Estimation of dry biomass for each seagrass fraction (leaves, rhizomes and roots) and leaf length were obtained from 25 vegetation samples extracted per site using cores (15 cm diameter). A multivariate analysis of variance (Manova) and a less significative difference test (LSD) were performed to examine differences between sites and within sites at different depths. A stepwise multiple regression analysis was done, dependent variable was sea urchin density; independent variables: vegetation values at each site. The only seagrass species found in the three sites was T. testudinum, and cover was 56-100%, leaf density 100-1000 leaf/m2, lengths 6-18.8 cm and shoot density 20-475 shoots/m2. The highest sea urchin densities were found at Isla Redonda and Ensenada Toporo (1-3.6 ind/m2), the lowest at Playa Colorada (0.6-0.8 ind/m2). Significant differences in seagrass features between sites were obtained (Manova p < 0.001), but not between depths (Manova p < 0.320). The regression coefficient between sea urchin density and seagrass parameters was statistically significant (r2 = 0.154, p < 0.007), however, total biomass was the only variable with a significant effect on sea urchin distribution (beta = 0.308, p < 0.032). The other variables did not explain satisfactorily L. variegatus abundance and distribution.

  9. Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer

    NASA Astrophysics Data System (ADS)

    Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel

    2017-04-01

    This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.

  10. Saturn's ionosphere - Inferred electron densities

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1984-01-01

    During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densities measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings. Previously announced in STAR as N84-17102

  11. Saturn's ionosphere: Inferred electron densities

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1983-01-01

    During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densitis measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings.

  12. Exact and Approximate Statistical Inference for Nonlinear Regression and the Estimating Equation Approach.

    PubMed

    Demidenko, Eugene

    2017-09-01

    The exact density distribution of the nonlinear least squares estimator in the one-parameter regression model is derived in closed form and expressed through the cumulative distribution function of the standard normal variable. Several proposals to generalize this result are discussed. The exact density is extended to the estimating equation (EE) approach and the nonlinear regression with an arbitrary number of linear parameters and one intrinsically nonlinear parameter. For a very special nonlinear regression model, the derived density coincides with the distribution of the ratio of two normally distributed random variables previously obtained by Fieller (1932), unlike other approximations previously suggested by other authors. Approximations to the density of the EE estimators are discussed in the multivariate case. Numerical complications associated with the nonlinear least squares are illustrated, such as nonexistence and/or multiple solutions, as major factors contributing to poor density approximation. The nonlinear Markov-Gauss theorem is formulated based on the near exact EE density approximation.

  13. A new numerical benchmark of a freshwater lens

    NASA Astrophysics Data System (ADS)

    Stoeckl, L.; Walther, M.; Graf, T.

    2016-04-01

    A numerical benchmark for 2-D variable-density flow and solute transport in a freshwater lens is presented. The benchmark is based on results of laboratory experiments conducted by Stoeckl and Houben (2012) using a sand tank on the meter scale. This benchmark describes the formation and degradation of a freshwater lens over time as it can be found under real-world islands. An error analysis gave the appropriate spatial and temporal discretization of 1 mm and 8.64 s, respectively. The calibrated parameter set was obtained using the parameter estimation tool PEST. Comparing density-coupled and density-uncoupled results showed that the freshwater-saltwater interface position is strongly dependent on density differences. A benchmark that adequately represents saltwater intrusion and that includes realistic features of coastal aquifers or freshwater lenses was lacking. This new benchmark was thus developed and is demonstrated to be suitable to test variable-density groundwater models applied to saltwater intrusion investigations.

  14. Optimizing Dense Plasma Focus Neutron Yields with Fast Gas Jets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Kueny, Christopher; Stein, Elizabeth; Link, Anthony; Schmidt, Andrea

    2016-10-01

    We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high density jet models fast gas puffs which allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of the jet compared to the background fill increases we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration is explored. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density

    NASA Astrophysics Data System (ADS)

    Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi

    2018-06-01

    A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.

  16. A formal method for identifying distinct states of variability in time-varying sources: SGR A* as an example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, L.; Witzel, G.; Ghez, A. M.

    2014-08-10

    Continuously time variable sources are often characterized by their power spectral density and flux distribution. These quantities can undergo dramatic changes over time if the underlying physical processes change. However, some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic supermassive black hole, where 2.2 μm flux is observed from a source associated with Sgr A* and where two distinct states have recently been suggested. Our approach is taken from mathematical finance and works withmore » conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden) state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly available Very Large Telescope data have been merged, we show that Sgr A* is sufficiently described by a single intrinsic state. However, the observed flux densities exhibit two states: noise dominated and source dominated. Our methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on its way toward the black hole and might create a new state of variability.« less

  17. Improved First Pass Spiral Myocardial Perfusion Imaging with Variable Density Trajectories

    PubMed Central

    Salerno, Michael; Sica, Christopher; Kramer, Christopher M.; Meyer, Craig H.

    2013-01-01

    Purpose To develop and evaluate variable-density (VD) spiral first-pass perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility of an apodizing density compensation function (DCF) to improve SNR and reduce dark-rim artifact caused by cardiac motion and Gibbs Ringing. Methods Three variable density spiral trajectories were designed, simulated, and evaluated in 18 normal subjects, and in 8 patients with cardiac pathology on a 1.5T scanner. Results By utilizing a density compensation function (DCF) which intentionally apodizes the k-space data, the side-lobe amplitude of the theoretical PSF is reduced by 68%, with only a 13% increase in the FWHM of the main-lobe as compared to the same data corrected with a conventional VD DCF, and has an 8% higher resolution than a uniform density spiral with the same number of interleaves and readout duration. Furthermore, this strategy results in a greater than 60% increase in measured SNR as compared to the same VD spiral data corrected with a conventional DCF (p<0.01). Perfusion defects could be clearly visualized with minimal off-resonance and dark-rim artifacts. Conclusion VD spiral pulse sequences using an apodized DCF produce high-quality first-pass perfusion images with minimal dark-rim and off-resonance artifacts, high SNR and CNR and good delineation of resting perfusion abnormalities. PMID:23280884

  18. Effects of semantic neighborhood density in abstract and concrete words.

    PubMed

    Reilly, Megan; Desai, Rutvik H

    2017-12-01

    Concrete and abstract words are thought to differ along several psycholinguistic variables, such as frequency and emotional content. Here, we consider another variable, semantic neighborhood density, which has received much less attention, likely because semantic neighborhoods of abstract words are difficult to measure. Using a corpus-based method that creates representations of words that emphasize featural information, the current investigation explores the relationship between neighborhood density and concreteness in a large set of English nouns. Two important observations emerge. First, semantic neighborhood density is higher for concrete than for abstract words, even when other variables are accounted for, especially for smaller neighborhood sizes. Second, the effects of semantic neighborhood density on behavior are different for concrete and abstract words. Lexical decision reaction times are fastest for words with sparse neighborhoods; however, this effect is stronger for concrete words than for abstract words. These results suggest that semantic neighborhood density plays a role in the cognitive and psycholinguistic differences between concrete and abstract words, and should be taken into account in studies involving lexical semantics. Furthermore, the pattern of results with the current feature-based neighborhood measure is very different from that with associatively defined neighborhoods, suggesting that these two methods should be treated as separate measures rather than two interchangeable measures of semantic neighborhoods. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Application of Accelerometer Data to Mars Odyssey Aerobraking and Atmospheric Modeling

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.; Keating, G. M.; George, B. E.; Escalera, P. E.; Werner, M. R.; Dwyer, A. M.; Hanna, J. L.

    2002-01-01

    Aerobraking was an enabling technology for the Mars Odyssey mission even though it involved risk due primarily to the variability of the Mars upper atmosphere. Consequently, numerous analyses based on various data types were performed during operations to reduce these risk and among these data were measurements from spacecraft accelerometers. This paper reports on the use of accelerometer data for determining atmospheric density during Odyssey aerobraking operations. Acceleration was measured along three orthogonal axes, although only data from the component along the axis nominally into the flow was used during operations. For a one second count time, the RMS noise level varied from 0.07 to 0.5 mm/s2 permitting density recovery to between 0.15 and 1.1 kg per cu km or about 2% of the mean density at periapsis during aerobraking. Accelerometer data were analyzed in near real time to provide estimates of density at periapsis, maximum density, density scale height, latitudinal gradient, longitudinal wave variations and location of the polar vortex. Summaries are given of the aerobraking phase of the mission, the accelerometer data analysis methods and operational procedures, some applications to determining thermospheric properties, and some remaining issues on interpretation of the data. Pre-flight estimates of natural variability based on Mars Global Surveyor accelerometer measurements proved reliable in the mid-latitudes, but overestimated the variability inside the polar vortex.

  20. Changes in Breast Density Reporting Patterns of Radiologists After Publication of the 5th Edition BI-RADS Guidelines: A Single Institution Experience.

    PubMed

    Irshad, Abid; Leddy, Rebecca; Lewis, Madelene; Cluver, Abbie; Ackerman, Susan; Pavic, Dag; Collins, Heather

    2017-10-01

    The objective of our study was to determine the impact of 5th edition BI-RADS breast density assessment guidelines on density reporting patterns in our clinical practice. PenRad reporting system was used to collect mammographic breast density data reported by five radiologists: 16,907 density assignments using 5th edition BI-RADS guidelines were compared with 19,066 density assessments using 4th edition guidelines. Changes in the density assessment pattern were noted between the 4th and 5th edition guidelines, and agreement in density distribution was compared using the intraclass correlation coefficient. A chi-square analysis was conducted for each reader to examine the change in the proportion of dense versus nondense assignments and on each category type to examine specific changes in proportion of density assignments from the 4th to the 5th edition. All reported p values are two-sided, and statistical significance was considered at the p < 0.001 threshold. Using the 5th edition, there was an overall 5.0% decrease in fatty assessments (p < 0.001), 2.8% increase in scattered densities (p < 0.001), 2.6% increase in heterogeneously dense (p < 0.001), and 0.4% decrease in extremely dense assessments (p = 0.15). Comparing the dense with nondense categories, there was a 2.3% overall increase in the dense assessments (p < 0.001) using 5th edition guidelines, mainly in the heterogeneously dense category. Two radiologists showed increased dense assessments (p < 0.001) using the 5th edition, and three radiologists showed no change (p = 0.39, 0.67, and 0.76). There was an overall increase in the dense assessments using the 5th edition, but individual radiologists in our clinical practice showed a variable adaptation to new guidelines.

  1. Future Road Density

    EPA Pesticide Factsheets

    Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  2. Road density

    EPA Pesticide Factsheets

    Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  3. The changes of densities and patterns of roads and rural buildings: a case study on Dongzhi Yuan of the Loess Plateau, China.

    PubMed

    Bi, Xiaoli; Wang, Hui; Ge, Jianping

    2010-05-01

    Roads and buildings are considered as primary causes of rural landscape changes. In this study, linear regression models were used to analyze the dynamic influences of environmental factors and variables on roads and rural buildings from 1979 to 2005 in Dongzhi Yuan (tableland) of the Loess Plateau, China. The relationship between roads and rural buildings and their effects on Dongzhi Yuan are discussed also. The results showed that three environmental factors (topography, land cover, and development level) explained roads better than rural buildings referring densities and patterns. The environmental variables significantly related to roads have decreased, whereas those related to rural buildings have increased over time. Among these significant variables, percent of farmland mostly determined the densities and patterns of both roads and rural buildings. There was significant correlation between roads and rural buildings in terms of density and pattern. In addition, roads and rural buildings have increased greatly in gully areas of this region. Therefore, more attention should be paid to planning of roads and rural buildings in Dongzhi Yuan.

  4. Flow Velocity Computation, from Temperature and Number Density Measurements using Spontaneous Raman Scattering, for Supersonic Chemically Reacting Flows.

    NASA Astrophysics Data System (ADS)

    Satish Jeyashekar, Nigil; Seiner, John

    2006-11-01

    The closure problem in chemically reacting turbulent flows would be solved when velocity, temperature and number density (transport variables) are known. The transport variables provide input to momentum, heat and mass transport equations leading to analysis of turbulence-chemistry interaction, providing a pathway to improve combustion efficiency. There are no measurement techniques to determine all three transport variables simultaneously. This paper shows the formulation to compute flow velocity from temperature and number density measurements, made from spontaneous Raman scattering, using kinetic theory of dilute gases coupled with Maxwell-Boltzmann velocity distribution. Temperature and number density measurements are made in a mach 1.5 supersonic air flow with subsonic hydrogen co-flow. Maxwell-Boltzmann distribution can be used to compute the average molecular velocity of each species, which in turn is used to compute the mass-averaged velocity or flow velocity. This formulation was validated by Raman measurements in a laminar adiabatic burner where the computed flow velocities were in good agreement with hot-wire velocity measurements.

  5. Climatic, high tide and vector variables and the transmission of Ross River virus.

    PubMed

    Tong, S; Hu, W; Nicholls, N; Dale, P; MacKenzie, J S; Patz, J; McMichael, A J

    2005-11-01

    This report assesses the impact of the variability in environmental and vector factors on the transmission of Ross River virus (RRV) in Brisbane, Australia. Poisson time series regression analyses were conducted using monthly data on the counts of RRV cases, climate variables (Southern Oscillation Index and rainfall), high tides and mosquito density for the period of 1998-2001. The results indicate that increases in the high tide (relative risk (RR): 1.65; 95% confidence interval (CI): 1.20-2.26), rainfall (RR: 1.45; 95% CI: 1.21-1.73), mosquito density (RR: 1.17; 95% CI: 1.09-1.27), the density of Culex annulirostris (RR: 1.25; 95% CI: 1.13-1.37) and the density of Ochlerotatus vigilax (RR: 2.39; 95% CI: 2.30-2.48), each at a lag of 1 month, were statistically significantly associated with the rise of monthly RRV incidence. The results of the present study might facilitate the development of early warning systems for reducing the incidence of this wide-spread disease in Australia and other Pacific island nations.

  6. Functional relationships between wood structure and vulnerability to xylem cavitation in races of Eucalyptus globulus differing in wood density.

    PubMed

    Barotto, Antonio José; Monteoliva, Silvia; Gyenge, Javier; Martinez-Meier, Alejandro; Fernandez, María Elena

    2018-02-01

    Wood density can be considered as a measure of the internal wood structure, and it is usually used as a proxy measure of other mechanical and functional traits. Eucalyptus is one of the most important commercial forestry genera worldwide, but the relationship between wood density and vulnerability to cavitation in this genus has been little studied. The analysis is hampered by, among other things, its anatomical complexity, so it becomes necessary to address more complex techniques and analyses to elucidate the way in which the different anatomical elements are functionally integrated. In this study, vulnerability to cavitation in two races of Eucalyptus globulus Labill. with different wood density was evaluated through Path analysis, a multivariate method that allows evaluation of descriptive models of causal relationship between variables. A model relating anatomical variables with wood properties and functional parameters was proposed and tested. We found significant differences in wood basic density and vulnerability to cavitation between races. The main exogenous variables predicting vulnerability to cavitation were vessel hydraulic diameter and fibre wall fraction. Fibre wall fraction showed a direct impact on wood basic density and the slope of vulnerability curve, and an indirect and negative effect over the pressure imposing 50% of conductivity loss (P50) through them. Hydraulic diameter showed a direct negative effect on P50, but an indirect and positive influence over this variable through wood density on one hand, and through maximum hydraulic conductivity (ks max) and slope on the other. Our results highlight the complexity of the relationship between xylem efficiency and safety in species with solitary vessels such as Eucalyptus spp., with no evident compromise at the intraspecific level. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density.

    PubMed

    Wasson, Anton P; Chiu, Grace S; Zwart, Alexander B; Binns, Timothy R

    2017-01-01

    Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly "above ground," little progress has been made "below ground"; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an "idealized" relative intensity function for the root distribution over depth. Our approach was used to determine heritability : how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity.

  8. Numerical investigation of the spreading of self-excited stratified jets

    NASA Technical Reports Server (NTRS)

    Batcho, P. F.; Karniadakis, G. E.; Orszag, S. A.

    1990-01-01

    The structure and evolution of self-excited subsonic periodic arrays of jets of constant and variable density are studied using spectral-element direct numerical simulations. The governing equation of motion is presented, and a method based on spectral element discretizations appropriate for simulating arbitrarily complex geometry jets and large density variations for subsonic flows is developed. Variable density fields are found to be more unstable than the corresponding uniform density fields with much higher rms values; as a result, their spreading is also considerably larger. There is a dramatic increase in spreading after a few pairings occur. Findings presented for low and high side-momentum flux reveal a shifting of the origin of instability from the near-field to the far-field, respectively, and suggest possible routes of stabilization.

  9. Cloudy Skies over AGN: Observations with Simbol-X

    NASA Astrophysics Data System (ADS)

    Salvati, M.; Risaliti, G.

    2009-05-01

    Recent time-resolved spectroscopic X-ray studies of bright obscured AGN show that column density variability on time scales of hours/days may be common, at least for sources with NH>1023 cm-2. This opens new oppurtunities in the analysis of the structure of the circumnuclear medium and of the X-ray source: resolving the variations due to single clouds covering/uncovering the X-ray source provides tight constraints on the source size, the clouds' size and distance, and their average number, density and column density. We show how Simbol-X will provide a breakthrough in this field, thanks to its broad band coverage, allowing (a) to precisely disentangle the continuum and NH variations, and (2) to extend the NH variability analysis to column densities >1023 cm-2.

  10. Two Centuries of Climate Variability From a Gulf of Papua Coral Confirms a Coherent, Widespread Multidecadal Signal

    NASA Astrophysics Data System (ADS)

    Cole, J. E.; Lough, J.; Reed, E. V.; Schrag, D. P.

    2016-12-01

    The Indo-Pacific warm pool is intimately involved with large-scale climate variability on seasonal to secular time scales. The lack of long instrumental observations in this region has motivated paleoclimatic analyses using diverse proxy data sources. We present here new multicentury paleoclimate records from a Gulf of Papua coral that capture past variability with a Pacific-wide signature. We have developed stable isotope, Sr/Ca, skeletal density, and luminescence data from a coral core recovered at Bramble Cay, Australia (9°S, 144°E). The geochemical records span CE 1775-1993 and are dominated by low-frequency (decade-century scale) variability that is consistent with records from other proxies in the same region, and with other coral records from far-flung sites across the southwest Pacific. Unlike in many Pacific coral records, we observe no strong trend towards warmer conditions. Although skeletal density bands are clearly visible, they show inconsistent seasonal phasing with the geochemical tracers of sea surface temperature (SST; Sr/Ca and oxygen isotope content), and skeletal density does not correlate with these tracers on longer time scales. In this coral, density banding must be controlled by a more complex mix of internal and/or external factors. Luminescent banding and reconstructed salinity provide similar histories, suggesting a common hydroclimatic signal with significant variability at periods of decades and longer. The strong low-frequency behavior in these new climate records of SST and hydroclimate, from a remote region of the Indo-Pacific, confirms an important source of internal climate variability, on a poorly documented time scale, from a region with far-reaching climatic importance.

  11. Intraspecific variability in functional traits matters: case study of Scots pine.

    PubMed

    Laforest-Lapointe, Isabelle; Martínez-Vilalta, Jordi; Retana, Javier

    2014-08-01

    Although intraspecific trait variability is an important component of species ecological plasticity and niche breadth, its implications for community and functional ecology have not been thoroughly explored. We characterized the intraspecific functional trait variability of Scots pine (Pinus sylvestris) in Catalonia (NE Spain) in order to (1) compare it to the interspecific trait variability of trees in the same region, (2) explore the relationships among functional traits and the relationships between them and stand and climatic variables, and (3) study the role of functional trait variability as a determinant of radial growth. We considered five traits: wood density (WD), maximum tree height (H max), leaf nitrogen content (Nmass), specific leaf area (SLA), and leaf biomass-to-sapwood area ratio (B L:A S). A unique dataset was obtained from the Ecological and Forest Inventory of Catalonia (IEFC), including data from 406 plots. Intraspecific trait variation was substantial for all traits, with coefficients of variation ranging between 8% for WD and 24% for B L:A S. In some cases, correlations among functional traits differed from those reported across species (e.g., H max and WD were positively related, whereas SLA and Nmass were uncorrelated). Overall, our model accounted for 47% of the spatial variability in Scots pine radial growth. Our study emphasizes the hierarchy of factors that determine intraspecific variations in functional traits in Scots pine and their strong association with spatial variability in radial growth. We claim that intraspecific trait variation is an important determinant of responses of plants to changes in climate and other environmental factors, and should be included in predictive models of vegetation dynamics.

  12. Fusion of Hard and Soft Information in Nonparametric Density Estimation

    DTIC Science & Technology

    2015-06-10

    and stochastic optimization models, in analysis of simulation output, and when instantiating probability models. We adopt a constrained maximum...particular, density estimation is needed for generation of input densities to simulation and stochastic optimization models, in analysis of simulation output...an essential step in simulation analysis and stochastic optimization is the generation of probability densities for input random variables; see for

  13. MicroRNA let-7, T cells, and patient survival in colorectal cancer

    PubMed Central

    Dou, Ruoxu; Nishihara, Reiko; Cao, Yin; Hamada, Tsuyoshi; Mima, Kosuke; Masuda, Atsuhiro; Masugi, Yohei; Shi, Yan; Gu, Mancang; Li, Wanwan; da Silva, Annacarolina; Nosho, Katsuhiko; Zhang, Xuehong; Meyerhardt, Jeffrey A.; Giovannucci, Edward L.; Chan, Andrew T.; Fuchs, Charles S.; Qian, Zhi Rong; Ogino, Shuji

    2016-01-01

    Experimental evidence suggests that the let-7 family of noncoding RNAs suppresses adaptive immune responses, contributing to immune evasion by the tumor. We hypothesized that the amount of let-7a and let-7b expression in colorectal carcinoma might be associated with limited T-lymphocyte infiltrates in the tumor microenvironment and worse clinical outcome. Utilizing the molecular pathological epidemiology resources of 795 rectal and colon cancers in two U.S.-nationwide prospective cohort studies, we measured tumor-associated let-7a and let-7b expression levels by quantitative reverse-transcription PCR, and CD3+, CD8+, CD45RO (PTPRC)+, and FOXP3+ cell densities by tumor tissue microarray immunohistochemistry and computer-assisted image analysis. Logistic regression analysis and Cox proportional hazards regression were used to assess associations of let-7a (and let-7b) expression (quartile predictor variables) with T-cell densities (binary outcome variables) and mortality, respectively, controlling for tumor molecular features, including microsatellite instability, CpG island methylator phenotype, LINE-1 methylation, and KRAS, BRAF, and PIK3CA mutations. Compared with cases in the lowest quartile of let-7a expression, those in the highest quartile were associated with lower densities of CD3+ [multivariate odds ratio (OR), 0.40; 95% confidence interval (CI), 0.23 to 0.67; Ptrend = 0.003] and CD45RO+ cells (multivariate OR, 0.31; 95% CI, 0.17 to 0.58; Ptrend = 0.0004), and higher colorectal cancer-specific mortality (multivariate hazard ratio, 1.82; 95% CI, 1.42 to 3.13; Ptrend = 0.001). In contrast, let-7b expression was not significantly associated with T-cell density or colorectal cancer prognosis. Our data support the role of let-7a in suppressing antitumor immunity in colorectal cancer, and suggest let-7a as a potential target of immunotherapy. PMID:27737877

  14. User's guide to SEAWAT; a computer program for simulation of three-dimensional variable-density ground-water flow

    USGS Publications Warehouse

    Guo, Weixing; Langevin, C.D.

    2002-01-01

    This report documents a computer program (SEAWAT) that simulates variable-density, transient, ground-water flow in three dimensions. The source code for SEAWAT was developed by combining MODFLOW and MT3DMS into a single program that solves the coupled flow and solute-transport equations. The SEAWAT code follows a modular structure, and thus, new capabilities can be added with only minor modifications to the main program. SEAWAT reads and writes standard MODFLOW and MT3DMS data sets, although some extra input may be required for some SEAWAT simulations. This means that many of the existing pre- and post-processors can be used to create input data sets and analyze simulation results. Users familiar with MODFLOW and MT3DMS should have little difficulty applying SEAWAT to problems of variable-density ground-water flow.

  15. Spatial analysis of geologic and hydrologic features relating to sinkhole occurrence in Jefferson County, West Virginia

    USGS Publications Warehouse

    Doctor, Daniel H.; Doctor, Katarina Z.

    2012-01-01

    In this study the influence of geologic features related to sinkhole susceptibility was analyzed and the results were mapped for the region of Jefferson County, West Virginia. A model of sinkhole density was constructed using Geographically Weighted Regression (GWR) that estimated the relations among discrete geologic or hydrologic features and sinkhole density at each sinkhole location. Nine conditioning factors on sinkhole occurrence were considered as independent variables: distance to faults, fold axes, fracture traces oriented along bedrock strike, fracture traces oriented across bedrock strike, ponds, streams, springs, quarries, and interpolated depth to groundwater. GWR model parameter estimates for each variable were evaluated for significance, and the results were mapped. The results provide visual insight into the influence of these variables on localized sinkhole density, and can be used to provide an objective means of weighting conditioning factors in models of sinkhole susceptibility or hazard risk.

  16. Temporal Variation of Wood Density and Carbon in Two Elevational Sites of Pinus cooperi in Relation to Climate Response in Northern Mexico

    PubMed Central

    Pompa-García, Marín; Venegas-González, Alejandro

    2016-01-01

    Forest ecosystems play an important role in the global carbon cycle. Therefore, understanding the dynamics of carbon uptake in forest ecosystems is much needed. Pinus cooperi is a widely distributed species in the Sierra Madre Occidental in northern Mexico and future climatic variations could impact these ecosystems. Here, we analyze the variations of trunk carbon in two populations of P. cooperi situated at different elevational gradients, combining dendrochronological techniques and allometry. Carbon sequestration (50% biomass) was estimated from a specific allometric equation for this species based on: (i) variation of intra-annual wood density and (ii) diameter reconstruction. The results show that the population at a higher elevation had greater wood density, basal area, and hence, carbon accumulation. This finding can be explained by an ecological response of trees to adverse weather conditions, which would cause a change in the cellular structure affecting the within-ring wood density profile. The influence of variations in climate on the maximum density of chronologies showed a positive correlation with precipitation and the Multivariate El Niño Southern Oscillation Index during the winter season, and a negative correlation with maximum temperature during the spring season. Monitoring previous conditions to growth is crucial due to the increased vulnerability to extreme climatic variations on higher elevational sites. We concluded that temporal variability of wood density contributes to a better understanding of environmental historical changes and forest carbon dynamics in Northern Mexico, representing a significant improvement over previous studies on carbon sequestration. Assuming a uniform density according to tree age is incorrect, so this method can be used for environmental mitigation strategies, such as for managing P. cooperi, a dominant species of great ecological amplitude and widely used in forest industries. PMID:27272519

  17. Comparison of trends in habitat and resource selection by the Spanish Festoon, Zerynthia rumina, and the whole butterfly community in a semiarid Mediterranean ecosystem.

    PubMed

    Ochoa-Hueso, Raúl; de la Puente Ranea, Daniel; Viejo, José Luis

    2014-04-10

    Butterfly community and single species based approaches were taken to establish conservation priorities within a nature reserve in Central Spain. In this study, patch type (sclerophyllous, halophilous, or disturbed), potential herbaceous nectar availability, potential woody plant nectar availability, total nectar availability, and two approximations to plant diversity (herbaceous and woody plant diversity) were evaluated as variables that account for adult butterfly density. Butterfly communities in the reserve, which consist mostly of generalist species, were denser in relatively wet areas dominated by halophilous vegetation. Diversity did not significantly vary between ecologically different transects. Total nectar availability correlated with higher butterfly densities within both undisturbed and disturbed areas, which could be primarily explained by the lack of water typical of semiarid Mediterranean climates, where fresh, nectariferous vegetation is scarce. Woody plants were also found to be important sources of nectar and shelter. In the dryer sclerophyllous sites, adult butterfly density was best explained by herbaceous plant diversity, suggesting better quality of available resources. The endangered specialist Zerynthia rumina (L.) (Lepidoptera: Papilionidae) was only present at the sclerophyllous sites. Its density was very low in all sampled transects, excluding one relatively isolated transect with high larval hostplant density. In contrast to the community-based approach, density of Z. rumina adults is better explained by the density of its larval hostplant than by nectar availability, a trend previously described for other sedentary species. Management strategies for protecting insect-rich areas should consider the specific ecological requirements of endangered species. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  18. Temporal Variation of Wood Density and Carbon in Two Elevational Sites of Pinus cooperi in Relation to Climate Response in Northern Mexico.

    PubMed

    Pompa-García, Marín; Venegas-González, Alejandro

    2016-01-01

    Forest ecosystems play an important role in the global carbon cycle. Therefore, understanding the dynamics of carbon uptake in forest ecosystems is much needed. Pinus cooperi is a widely distributed species in the Sierra Madre Occidental in northern Mexico and future climatic variations could impact these ecosystems. Here, we analyze the variations of trunk carbon in two populations of P. cooperi situated at different elevational gradients, combining dendrochronological techniques and allometry. Carbon sequestration (50% biomass) was estimated from a specific allometric equation for this species based on: (i) variation of intra-annual wood density and (ii) diameter reconstruction. The results show that the population at a higher elevation had greater wood density, basal area, and hence, carbon accumulation. This finding can be explained by an ecological response of trees to adverse weather conditions, which would cause a change in the cellular structure affecting the within-ring wood density profile. The influence of variations in climate on the maximum density of chronologies showed a positive correlation with precipitation and the Multivariate El Niño Southern Oscillation Index during the winter season, and a negative correlation with maximum temperature during the spring season. Monitoring previous conditions to growth is crucial due to the increased vulnerability to extreme climatic variations on higher elevational sites. We concluded that temporal variability of wood density contributes to a better understanding of environmental historical changes and forest carbon dynamics in Northern Mexico, representing a significant improvement over previous studies on carbon sequestration. Assuming a uniform density according to tree age is incorrect, so this method can be used for environmental mitigation strategies, such as for managing P. cooperi, a dominant species of great ecological amplitude and widely used in forest industries.

  19. Intraspecific Variation in Wood Anatomical, Hydraulic, and Foliar Traits in Ten European Beech Provenances Differing in Growth Yield

    PubMed Central

    Hajek, Peter; Kurjak, Daniel; von Wühlisch, Georg; Delzon, Sylvain; Schuldt, Bernhard

    2016-01-01

    In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0–14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ13C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ13C, both hydraulic efficiency and embolism resistance were unrelated, disproving the assumed trade-off between hydraulic efficiency and safety. European beech seems to compensate increasing water stress with growing size mainly by adjusting vessel number and not vessel diameter. In conclusion, European beech has a high potential capacity to cope with climate change due to the high degree of intra-population genetic variability. PMID:27379112

  20. Intraspecific Variation in Wood Anatomical, Hydraulic, and Foliar Traits in Ten European Beech Provenances Differing in Growth Yield.

    PubMed

    Hajek, Peter; Kurjak, Daniel; von Wühlisch, Georg; Delzon, Sylvain; Schuldt, Bernhard

    2016-01-01

    In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0-14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ(13)C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ(13)C, both hydraulic efficiency and embolism resistance were unrelated, disproving the assumed trade-off between hydraulic efficiency and safety. European beech seems to compensate increasing water stress with growing size mainly by adjusting vessel number and not vessel diameter. In conclusion, European beech has a high potential capacity to cope with climate change due to the high degree of intra-population genetic variability.

  1. Using satellite remote sensing to model and map the distribution of Bicknell's thrush (Catharus bicknelli) in the White Mountains of New Hampshire

    NASA Astrophysics Data System (ADS)

    Hale, Stephen Roy

    Landsat-7 Enhanced Thematic Mapper satellite imagery was used to model Bicknell's Thrush (Catharus bicknelli) distribution in the White Mountains of New Hampshire. The proof-of-concept was established for using satellite imagery in species-habitat modeling, where for the first time imagery spectral features were used to estimate a species-habitat model variable. The model predicted rising probabilities of thrush presence with decreasing dominant vegetation height, increasing elevation, and decreasing distance to nearest Fir Sapling cover type. To solve the model at all locations required regressor estimates at every pixel, which were not available for the dominant vegetation height and elevation variables. Topographically normalized imagery features Normalized Difference Vegetation Index and Band 1 (blue) were used to estimate dominant vegetation height using multiple linear regression; and a Digital Elevation Model was used to estimate elevation. Distance to nearest Fir Sapling cover type was obtained for each pixel from a land cover map specifically constructed for this project. The Bicknell's Thrush habitat model was derived using logistic regression, which produced the probability of detecting a singing male based on the pattern of model covariates. Model validation using Bicknell's Thrush data not used in model calibration, revealed that the model accurately estimated thrush presence at probabilities ranging from 0 to <0.40 and from 0.50 to <0.60. Probabilities from 0.40 to <0.50 and greater than 0.60 significantly underestimated and overestimated presence, respectively. Applying the model to the study area illuminated an important implication for Bicknell's Thrush conservation. The model predicted increasing numbers of presences and increasing relative density with rising elevation, with which exists a concomitant decrease in land area. Greater land area of lower density habitats may account for more total individuals and reproductive output than higher density less abundant land area. Efforts to conserve areas of highest individual density under the assumption that density reflects habitat quality could target the smallest fraction of the total population.

  2. Effects of social organization, trap arrangement and density, sampling scale, and population density on bias in population size estimation using some common mark-recapture estimators.

    PubMed

    Gupta, Manan; Joshi, Amitabh; Vidya, T N C

    2017-01-01

    Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species.

  3. Effects of social organization, trap arrangement and density, sampling scale, and population density on bias in population size estimation using some common mark-recapture estimators

    PubMed Central

    Joshi, Amitabh; Vidya, T. N. C.

    2017-01-01

    Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species. PMID:28306735

  4. Evaluation of the rapid diagnostic test SDFK40 (Pf-pLDH/pan-pLDH) for the diagnosis of malaria in a non-endemic setting

    PubMed Central

    2011-01-01

    Background The present study evaluated the SD Bioline Malaria Ag 05FK40 (SDFK40), a three-band RDT detecting Plasmodium falciparum-specific parasite lactate dehydrogenase (Pf-pLDH) and pan Plasmodium-specific pLDH (pan-pLDH), in a reference setting. Methods The SDFK40 was retrospectively and prospectively tested against a panel of stored (n = 341) and fresh (n = 181) whole blood samples obtained in international travelers suspected of malaria, representing the four Plasmodium species as well as Plasmodium negative samples, and compared to microscopy and PCR results. The prospective panel was run together with OptiMAL (Pf-pLDH/pan-pLDH) and SDFK60 (histidine-rich protein-2 (HRP-2)/pan-pLDH). Results Overall sensitivities for P. falciparum tested retrospectively and prospectively were 67.9% and 78.8%, reaching 100% and 94.6% at parasite densities >1,000/μl. Sensitivity at parasite densities ≤ 100/μl was 9.1%. Overall sensitivities for Plasmodium vivax and Plasmodium ovale were 86.7% and 80.0% (retrospectively) and 92.9% and 76.9% (prospectively), reaching 94.7% for both species (retrospective panel) at parasite densities >500/μl. Sensitivity for Plasmodium malariae was 21.4%. Species mismatch occurred in 0.7% of samples (3/411) and was limited to non-falciparum species erroneously identified as P. falciparum. None of the Plasmodium negative samples in the retrospective panel reacted positive. Compared to OptiMAL and SDFK60, SDFK40 showed lower sensitivities for P. falciparum, but better detection of P. ovale. Inter-observer agreement and test reproducibility were excellent, but lot-to-lot variability was observed for pan-pLDH results in case of P. falciparum. Conclusion SDFK40 performance was poor at low (≤ 100/μl) parasite densities, precluding its use as the only diagnostic tool for malaria diagnosis. SDFK40 performed excellent for P. falciparum samples at high (>1,000/μl) parasite densities as well as for detection of P. vivax and P. ovale at parasite densities >500/μl. PMID:21226920

  5. Evaluation of the rapid diagnostic test SDFK40 (Pf-pLDH/pan-pLDH) for the diagnosis of malaria in a non-endemic setting.

    PubMed

    Maltha, Jessica; Gillet, Philippe; Cnops, Lieselotte; Bottieau, Emmanuel; Van Esbroeck, Marjan; Bruggeman, Cathrien; Jacobs, Jan

    2011-01-12

    The present study evaluated the SD Bioline Malaria Ag 05FK40 (SDFK40), a three-band RDT detecting Plasmodium falciparum-specific parasite lactate dehydrogenase (Pf-pLDH) and pan Plasmodium-specific pLDH (pan-pLDH), in a reference setting. The SDFK40 was retrospectively and prospectively tested against a panel of stored (n = 341) and fresh (n = 181) whole blood samples obtained in international travelers suspected of malaria, representing the four Plasmodium species as well as Plasmodium negative samples, and compared to microscopy and PCR results. The prospective panel was run together with OptiMAL (Pf-pLDH/pan-pLDH) and SDFK60 (histidine-rich protein-2 (HRP-2)/pan-pLDH). Overall sensitivities for P. falciparum tested retrospectively and prospectively were 67.9% and 78.8%, reaching 100% and 94.6% at parasite densities >1,000/μl. Sensitivity at parasite densities ≤ 100/μl was 9.1%. Overall sensitivities for Plasmodium vivax and Plasmodium ovale were 86.7% and 80.0% (retrospectively) and 92.9% and 76.9% (prospectively), reaching 94.7% for both species (retrospective panel) at parasite densities >500/μl. Sensitivity for Plasmodium malariae was 21.4%. Species mismatch occurred in 0.7% of samples (3/411) and was limited to non-falciparum species erroneously identified as P. falciparum. None of the Plasmodium negative samples in the retrospective panel reacted positive. Compared to OptiMAL and SDFK60, SDFK40 showed lower sensitivities for P. falciparum, but better detection of P. ovale. Inter-observer agreement and test reproducibility were excellent, but lot-to-lot variability was observed for pan-pLDH results in case of P. falciparum. SDFK40 performance was poor at low (≤ 100/μl) parasite densities, precluding its use as the only diagnostic tool for malaria diagnosis. SDFK40 performed excellent for P. falciparum samples at high (>1,000/μl) parasite densities as well as for detection of P. vivax and P. ovale at parasite densities >500/μl.

  6. Age of acquisition persists as the main factor in picture naming when cumulative word frequency and frequency trajectory are controlled.

    PubMed

    Pérez, Miguel A

    2007-01-01

    The aim of this study was to address the effect of objective age of acquisition (AoA) on picture-naming latencies when different measures of frequency (cumulative and adult word frequency) and frequency trajectory are taken into account. A total of 80 Spanish participants named a set of 178 pictures. Several multiple regression analyses assessed the influence of AoA, word frequency, frequency trajectory, object familiarity, name agreement, image agreement, image variability, name length, and orthographic neighbourhood density on naming times. The results revealed that AoA is the main predictor of picture-naming times. Cumulative frequency and adult word frequency (written or spoken) appeared as important factors in picture naming, but frequency trajectory and object familiarity did not. Other significant variables were image agreement, image variability, and neighbourhood density. These results (a) provide additional evidence of the predictive power of AoA in naming times independent of word-frequency and (b) suggest that image variability and neighbourhood density should also be taken into account in models of lexical production.

  7. Geographical, Ethnic and Socio-Economic Differences in Utilization of Obstetric Care in the Netherlands.

    PubMed

    Posthumus, Anke G; Borsboom, Gerard J; Poeran, Jashvant; Steegers, Eric A P; Bonsel, Gouke J

    2016-01-01

    All women in the Netherlands should have equal access to obstetric care. However, utilization of care is shaped by demand and supply factors. Demand is increased in high risk groups (non-Western women, low socio-economic status (SES)), and supply is influenced by availability of hospital facilities (hospital density). To explore the dynamics of obstetric care utilization we investigated the joint association of hospital density and individual characteristics with prototype obstetric interventions. A logistic multi-level model was fitted on retrospective data from the Netherlands Perinatal Registry (years 2000-2008, 1.532.441 singleton pregnancies). In this analysis, the first level comprised individual maternal characteristics, the second of neighbourhood SES and hospital density. The four outcome variables were: referral during pregnancy, elective caesarean section (term and post-term breech pregnancies), induction of labour (term and post-term pregnancies), and birth setting in assumed low-risk pregnancies. Higher hospital density is not associated with more obstetric interventions. Adjusted for maternal characteristics and hospital density, living in low SES neighbourhoods, and non-Western ethnicity were generally associated with a lower probability of interventions. For example, non-Western women had considerably lower odds for induction of labour in all geographical areas, with strongest effects in the more rural areas (non-Western women: OR 0.78, 95% CI 0.77-0.80, p<0.001). Our results suggest inequalities in obstetric care utilization in the Netherlands, and more specifically a relative underservice to the deprived, independent of level of supply.

  8. Temporal soil bulk density following tillage

    USDA-ARS?s Scientific Manuscript database

    Soil is the medium for air, energy, water, and chemical transport between the atmosphere and the solid earth. Soil bulk density is a key variable impacting the rate at which this transport occurs. Typically, soil bulk density is measured by the gravimetric method, where a sample of known volume is t...

  9. Cortical cell and neuron density estimates in one chimpanzee hemisphere.

    PubMed

    Collins, Christine E; Turner, Emily C; Sawyer, Eva Kille; Reed, Jamie L; Young, Nicole A; Flaherty, David K; Kaas, Jon H

    2016-01-19

    The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm(2) of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates.

  10. Rhodnius prolixus and Rhodnius robustus-like (Hemiptera, Reduviidae) wing asymmetry under controlled conditions of population density and feeding frequency.

    PubMed

    Márquez, E J; Saldamando-Benjumea, C I

    2013-09-01

    Habitat change in Rhodnius spp may represent an environmental challenge for the development of the species, particularly when feeding frequency and population density vary in nature. To estimate the effect of these variables in stability on development, the degree of directional asymmetry (DA) and fluctuating asymmetry (FA) in the wing size and shape of R. prolixus and R. robustus-like were measured under laboratory controlled conditions. DA and FA in wing size and shape were significant in both species, but their variation patterns showed both inter-specific and sexual dimorphic differences in FA of wing size and shape induced by nutrition stress. These results suggest different abilities of the genotypes and sexes of two sylvatic and domestic genotypes of Rhodnius to buffer these stress conditions. However, both species showed non-significant differences in the levels of FA between treatments that simulated sylvan vs domestic conditions, indicating that the developmental noise did not explain the variation in wing size and shape found in previous studies. Thus, this result confirm that the variation in wing size and shape in response to treatments constitute a plastic response of these genotypes to population density and feeding frequency.

  11. Predicting cancellous bone failure during screw insertion.

    PubMed

    Reynolds, Karen J; Cleek, Tammy M; Mohtar, Aaron A; Hearn, Trevor C

    2013-04-05

    Internal fixation of fractures often requires the tightening of bone screws to stabilise fragments. Inadequate application of torque can leave the fracture unstable, while over-tightening results in the stripping of the thread and loss of fixation. The optimal amount of screw torque is specific to each application and in practice is difficult to attain due to the wide variability in bone properties including bone density. The aim of the research presented in this paper is to investigate the relationships between motor torque and screw compression during powered screw insertion, and to evaluate whether the torque during insertion can be used to predict the ultimate failure torque of the bone. A custom test rig was designed and built for bone screw experiments. By inserting cancellous bone screws into synthetic, ovine and human bone specimens, it was established that variations related to bone density could be automatically detected through the effects of the bone on the rotational characteristics of the screw. The torque measured during screw insertion was found to be directly related to bone density and can be used, on its own, as a good predictor of ultimate failure torque of the bone. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. HDL cholesterol and bone mineral density: Is there a genetic link?

    PubMed Central

    Ackert-Bicknell, Cheryl L.

    2011-01-01

    Overwhelming evidence has linked cardiovascular disease and osteoporosis, but the shared root cause of these two diseases of the elderly remains unknown. Low levels of high-density lipoprotein cholesterol (HDL) and bone mineral density (BMD) are risk factors for cardiovascular disease and osteoporosis respectively. A number of correlation studies have attempted to determine if there is a relationship between serum HDL and BMD but these studies are confounded by a number of variables including age, diet, genetic background, gender and hormonal status. Collectively, these data suggest that there is a relationship between these two phenotypes, but that the nature of this relationship is context specific. Studies in mice plainly demonstrate that genetic loci for BMD and HDL co-map and transgenic mouse models have been used to show that a single gene can affect both serum HDL and BMD. Work completed to date has demonstrated that HDL can interact directly with both osteoblasts and osteoclasts, but no direct evidence links bone back to the regulation of HDL levels. Understanding the genetic relationship between BMD and HDL has huge implications for understanding the clinical relationship between CVD and osteoporosis and for the development of safe treatment options for both diseases. PMID:21810493

  13. Coccolithophore ecology at the HOT station ALOHA, Hawaii

    NASA Astrophysics Data System (ADS)

    Cortés, Mara Y.; Bollmann, Jörg; Thierstein, Hans R.

    Cell densities of total coccolithophores and dominant taxa were determined in 183 samples from the upper 200 m of the water column at about monthly intervals between January 1994 and August 1996 at the HOT station ALOHA, Hawaii. High cell densities were observed twice a year, in March (up to 41×10 3 cells l -1) and in September/October (up to 52×10 3 cells l -1). In the intervening months, cell densities were extremely low (0-20×10 3 cells l -1), reflecting a strong seasonality. The main production of coccolithophores took place in the middle photic zone between 50 and 100 m water depth. In total 125 coccolithophore species were identified but only five constituted on average more than 30% of the community: Emiliania huxleyi, Umbellosphaera irregularis, U. tenuis, Florisphaera profunda and Gephyrocapsa ericsonii. The generally low, but seasonally dynamic coccolithophore cell density variability is compared with in situ measurements of environmental parameters. Correlation analyses between cell density variability of the dominant taxa and potentially controlling environmental parameters show significant correlation coefficients when the data set was separated into upper and lower photic zone. Cell densities of all dominant taxa are most highly correlated with temperature variability. U. irregularis is positively correlated in the upper photic zone, whereas E. huxleyi and G. ericsonii are negatively correlated. In the lower photic zone, F. profunda cell densities are positively correlated with light, which corresponds to the maximum bottom-up control (i.e. by physical forcing) of any species encountered. The surprisingly low correlations of cell densities with nitrate and phosphate may be caused by insufficient sampling resolution, nutrient levels close to detection limits, or both.

  14. Variability in vegetation effects on density and nesting success of grassland birds

    USGS Publications Warehouse

    Winter, Maiken; Johnson, Douglas H.; Shaffer, Jill A.

    2005-01-01

    The structure of vegetation in grassland systems, unlike that in forest systems, varies dramatically among years on the same sites, and among regions with similar vegetation. The role of this variation in vegetation structure on bird density and nesting success of grassland birds is poorly understood, primarily because few studies have included sufficiently large temporal and spatial scales to capture the variation in vegetation structure, bird density, or nesting success. To date, no large-scale study on grassland birds has been conducted to investigate whether grassland bird density and nesting success respond similarly to changes in vegetation structure. However, reliable management recommendations require investigations into the distribution and nesting success of grassland birds over larger temporal and spatial scales. In addition, studies need to examine whether bird density and nesting success respond similarly to changing environmental conditions. We investigated the effect of vegetation structure on the density and nesting success of 3 grassland-nesting birds: clay-colored sparrow (Spizella pallida), Savannah sparrow (Passerculus sandwichensis), and bobolink (Dolichonyx oryzivorus) in 3 regions of the northern tallgrass prairie in 1998-2001. Few vegetation features influenced the densities of our study species, and each species responded differently to those vegetation variables. We could identify only 1 variable that clearly influenced nesting success of 1 species: clay-colored sparrow nesting success increased with increasing percentage of nest cover from the surrounding vegetation. Because responses of avian density and nesting success to vegetation measures varied among regions, years, and species, land managers at all times need to provide grasslands with different types of vegetation structure. Management guidelines developed from small-scale, short-term studies may lead to misrepresentations of the needs of grassland-nesting birds.

  15. Laser system refinements to reduce variability in infarct size in the rat photothrombotic stroke model

    PubMed Central

    Alaverdashvili, Mariam; Paterson, Phyllis G.; Bradley, Michael P.

    2015-01-01

    Background The rat photothrombotic stroke model can induce brain infarcts with reasonable biological variability. Nevertheless, we observed unexplained high inter-individual variability despite using a rigorous protocol. Of the three major determinants of infarct volume, photosensitive dye concentration and illumination period were strictly controlled, whereas undetected fluctuation in laser power output was suspected to account for the variability. New method The frequently utilized Diode Pumped Solid State (DPSS) lasers emitting 532 nm (green) light can exhibit fluctuations in output power due to temperature and input power alterations. The polarization properties of the Nd:YAG and Nd:YVO4 crystals commonly used in these lasers are another potential source of fluctuation, since one means of controlling output power uses a polarizer with a variable transmission axis. Thus, the properties of DPSS lasers and the relationship between power output and infarct size were explored. Results DPSS laser beam intensity showed considerable variation. Either a polarizer or a variable neutral density filter allowed adjustment of a polarized laser beam to the desired intensity. When the beam was unpolarized, the experimenter was restricted to using a variable neutral density filter. Comparison with existing method(s) Our refined approach includes continuous monitoring of DPSS laser intensity via beam sampling using a pellicle beamsplitter and photodiode sensor. This guarantees the desired beam intensity at the targeted brain area during stroke induction, with the intensity controlled either through a polarizer or variable neutral density filter. Conclusions Continuous monitoring and control of laser beam intensity is critical for ensuring consistent infarct size. PMID:25840363

  16. The effects of landscape position on plant species density: Evidence of past environmental effects in a coastal wetland

    USGS Publications Warehouse

    Grace, J.B.; Guntenspergen, G.R.

    1999-01-01

    Here we propose that an important cause of variation in species density may be prior environmental conditions that continue to influence current patterns. In this paper we investigated the degree to which species density varies with location within the landscape, independent of contemporaneous environmental conditions. The area studied was a coastal marsh landscape subject to periodic storm events. To evaluate the impact of historical effects, it was assumed that the landscape position of a plot relative to the river's mouth ('distance from sea') and to the edge of a stream channel ('distance from shore') would correlate with the impact of prior storm events, an assumption supported by previous studies. To evaluate the importance of spatial location on species density, data were collected from five sites located at increasing distances from the river's mouth along the Middle Pearl River in Louisiana. At each site, plots were established systematically along transects perpendicular to the shoreline. For each of the 175 Plots, we measured elevation, soil salinity, percent of plot recently disturbed, percent of sunlight captured by the plant canopy (as a measure of plant abundance), and plant species density. Structural equation analysis ascertained the degree to which landscape position variables explained variation in species density that could not be explained by current environmental indicators. Without considering landscape variables, 54% of the variation in species density could be explained by the effects of salinity, flooding, and plant abundance. When landscape variables were included, distance from shore was unimportant but distance from sea explained an additional 12% of the variance in species density (R2 of final model = 66%). Based on these results it appears that at least some of the otherwise unexplained variation in species density can be attributed to landscape position, and presumably previous storm events. We suggest that future studies may gain additional insight into the factors controlling current patterns of species density by examining the effects of position within the landscape.

  17. Interactive FORTRAN IV computer programs for the thermodynamic and transport properties of selected cryogens (fluids pack)

    NASA Technical Reports Server (NTRS)

    Mccarty, R. D.

    1980-01-01

    The thermodynamic and transport properties of selected cryogens had programmed into a series of computer routines. Input variables are any two of P, rho or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs. The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid.

  18. Assessing the roles of population density and predation risk in the evolution of offspring size in populations of a placental fish

    PubMed Central

    Schrader, Matthew; Travis, Joseph

    2012-01-01

    Population density is an ecological variable that is hypothesized to be a major agent of selection on offspring size. In high-density populations, high levels of intraspecific competition are expected to favor the production of larger offspring. In contrast, lower levels of intraspecific competition and selection for large offspring should be weaker and more easily overridden by direct selection for increased fecundity in low-density populations. Some studies have found associations between population density and offspring size consistent with this hypothesis. However, their interpretations are often clouded by a number of issues. Here, we use data from a 10-year study of nine populations of the least killifish, Heterandria formosa, to describe the associations of offspring size with habitat type, population density, and predation risk. We found that females from spring populations generally produced larger offspring than females from ponds; however, the magnitude of this difference varied among years. Across all populations, larger offspring were associated with higher densities and lower risks of predation. Interestingly, the associations between the two ecological variables (density and predation risk) and offspring size were largely independent of one another. Our results suggest that previously described genetic differences in offspring size are due to density-dependent natural selection. PMID:22957156

  19. A pilot survey for transients and variables with the Australian Square Kilometre Array Pathfinder

    NASA Astrophysics Data System (ADS)

    Bhandari, S.; Bannister, K. W.; Murphy, T.; Bell, M.; Raja, W.; Marvil, J.; Hancock, P. J.; Whiting, M.; Flynn, C. M.; Collier, J. D.; Kaplan, D. L.; Allison, J. R.; Anderson, C.; Heywood, I.; Hotan, A.; Hunstead, R.; Lee-Waddell, K.; Madrid, J. P.; McConnell, D.; Popping, A.; Rhee, J.; Sadler, E.; Voronkov, M. A.

    2018-05-01

    We present a pilot search for variable and transient sources at 1.4 GHz with the Australian Square Kilometre Array Pathfinder (ASKAP). The search was performed in a 30 deg2 area centred on the NGC 7232 galaxy group over 8 epochs and observed with a near-daily cadence. The search yielded nine potential variable sources, rejecting the null hypothesis that the flux densities of these sources do not change with 99.9% confidence. These nine sources displayed flux density variations with modulation indices m ≥ 0.1 above our flux density limit of ˜1.5 mJy. They are identified to be compact AGN/quasars or galaxies hosting an AGN, whose variability is consistent with refractive interstellar scintillation. We also detect a highly variable source with modulation index m > 0.5 over a time interval of a decade between the Sydney University Molonglo Sky Survey (SUMSS) and our latest ASKAP observations. We find the source to be consistent with the properties of long-term variability of a quasar. No transients were detected on timescales of days and we place an upper limit ρt < 0.01 deg-2 with 95% confidence for non-detections on near-daily timescales. The future VAST-Wide survey with 36-ASKAP dishes will probe the transient phase space with similar cadence to our pilot survey, but better sensitivity, and will detect and monitor rarer brighter events.

  20. Variable-Size Bead Layer as Standard Reference for Endothelial Microscopes.

    PubMed

    Tufo, Simona; Prazzoli, Erica; Ferraro, Lorenzo; Cozza, Federica; Borghesi, Alessandro; Tavazzi, Silvia

    2017-02-01

    For morphometric analysis of the cell mosaic of corneal endothelium, checking accuracy and precision of instrumentation is a key step. In this study, a standard reference sample is proposed, developed to reproduce the cornea with its shape and the endothelium with its intrinsic variability in the cell size. A polystyrene bead layer (representing the endothelium) was deposited on a lens (representing the cornea). Bead diameters were 20, 25, and 30 μm (fractions in number 55%, 30%, and 15%, respectively). Bead density and hexagonality were simulated to obtain the expected true values and measured using a slit-lamp endothelial microscope applied to 1) a Takagi 700GL slit lamp at 40× magnification (recommended standard setup) and 2) a Takagi 2ZL slit lamp at 25× magnification. The simulation provided the expected bead density 2001 mm and hexagonality 47%. At 40×, density and hexagonality were measured to be 2009 mm (SD 93 mm) and 45% (SD 3%). At 25× on a different slit lamp, the comparison between measured and expected densities provided the factor 1.526 to resize the image and to use the current algorithms of the slit-lamp endothelial microscope for cell recognition. A variable-size polystyrene bead layer on a lens is proposed as a standard sample mimicking the real shape of the cornea and the variability of cell size and cell arrangement of corneal endothelium. The sample is suggested to evaluate accuracy and precision of cell density and hexagonality obtained by different endothelial microscopes, including a slit-lamp endothelial microscope applied to different slit lamps, also at different magnifications.

  1. Creative use of pilot points to address site and regional scale heterogeneity in a variable-density model

    USGS Publications Warehouse

    Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.

    2010-01-01

    Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a variable-density groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial density to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial density was used to represent hydraulic conductivity further from the site. Use of a lower spatial density outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial variability of hydraulic properties exists, to the regional scale where less spatial variability was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.

  2. Changes in Keratocyte Density and Visual Function Five Years after Laser in situ Keratomileusis: Femtosecond Laser vs Mechanical Microkeratome

    PubMed Central

    McLaren, Jay W.; Bourne, William M.; Maguire, Leo J.; Patel, Sanjay V.

    2015-01-01

    Purpose To determine the effects of keratocyte loss on optical properties and vision after laser in situ keratomileusis (LASIK) with the flap created with a femtosecond laser or a mechanical microkeratome. Design Randomized clinical paired-eye study. Methods Both eyes of 21 patients received LASIK for myopia or myopic astigmatism. One eye of each patient was randomized by ocular dominance to flap creation with a femtosecond laser and the other eye to flap creation with a mechanical microkeratome. Before LASIK and at 1, 3, 6 months and 1, 3, and 5 years after LASIK, keratocyte density was measured by using confocal microscopy, and high-contrast visual acuity and anterior corneal wavefront aberrations were measured by standard methods. At each visit, all variables were compared between methods of creating the flap and to the same variable before treatment by using paired tests with Bonferroni correction for multiple comparisons. Results Keratocyte density in the flap decreased by 20% during the first year after LASIK and remained low through 5 years (p<0.001). High-order wavefront aberrations increased and uncorrected visual acuity improved immediately after surgery but these variables did not change further to five years. There were no differences in any variables between treatments. Conclusions A sustained reduction in keratocyte density does not affect vision or optical properties of the cornea through 5 years after LASIK. The method of creating a LASIK flap does not influence the changes in keratocyte density in the flap. PMID:25868758

  3. Impact of tidal density variability on orbital and reentry predictions

    NASA Astrophysics Data System (ADS)

    Leonard, J. M.; Forbes, J. M.; Born, G. H.

    2012-12-01

    Since the first satellites entered Earth orbit in the late 1950's and early 1960's, the influences of solar and geomagnetic variability on the satellite drag environment have been studied, and parameterized in empirical density models with increasing sophistication. However, only within the past 5 years has the realization emerged that "troposphere weather" contributes significantly to the "space weather" of the thermosphere, especially during solar minimum conditions. Much of the attendant variability is attributable to upward-propagating solar tides excited by latent heating due to deep tropical convection, and solar radiation absorption primarily by water vapor and ozone in the stratosphere and mesosphere, respectively. We know that this tidal spectrum significantly modifies the orbital (>200 km) and reentry (60-150 km) drag environments, and that these tidal components induce longitude variability not yet emulated in empirical density models. Yet, current requirements for improvements in orbital prediction make clear that further refinements to density models are needed. In this paper, the operational consequences of longitude-dependent tides are quantitatively assessed through a series of orbital and reentry predictions. We find that in-track prediction differences incurred by tidal effects are typically of order 200 ± 100 m for satellites in 400-km circular orbits and 15 ± 10 km for satellites in 200-km circular orbits for a 24-hour prediction. For an initial 200-km circular orbit, surface impact differences of order 15° ± 15° latitude are incurred. For operational problems with similar accuracy needs, a density model that includes a climatological representation of longitude-dependent tides should significantly reduce errors due to this source.

  4. [Bone mineral density in overweight and obese adolescents].

    PubMed

    Cobayashi, Fernanda; Lopes, Luiz A; Taddei, José Augusto de A C

    2005-01-01

    To study bone density as a concomitant factor for obesity in post-pubertal adolescents, controlling for other variables that may interfere in such a relation. Study comprising 83 overweight and obese adolescents (BMI > or = P85) and 89 non obese ones (P5 < or = BMI < or = P85). Cases and controls were selected out of 1,420 students (aged 14-19) from a public school in the city of São Paulo. The bone mineral density of the lumbar spine (L2-L4 in g/cm2) was assessed by dual-energy x-ray absorptiometry (LUNARtrade mark DPX-L). The variable bone density was dichotomized using 1.194 g/cm2 as cutoff point. Bivariate analyses were conducted considering the prevalence of overweight and obesity followed by multivariate analysis (logistic regression) according to a hierarchical conceptual model. The prevalence of bone density above the median was twice more frequent among cases (69.3%) than among controls (32.1%). In the bivariate analysis such prevalence resulted in an odds ratio (OR) of 4.78. The logistic regression model showed that the association between obesity and mineral density is yet more intense with an OR of 6.65 after the control of variables related to sedentary lifestyle and intake of milk and dairy products. Obese and overweight adolescents in the final stages of sexual maturity presented higher bone mineral density in relation to their normal-weight counterparts; however, cohort studies will be necessary to evaluate the influence of such characteristic on bone resistance in adulthood and, consequently, on the incidence of osteopenia and osteoporosis at older ages.

  5. Derivation of Nationally Consistent Indices Representing Urban Intensity Within and Across Nine Metropolitan Areas of the Conterminous United States

    USGS Publications Warehouse

    Cuffney, Thomas F.; Falcone, James A.

    2009-01-01

    Two nationally consistent multimetric indices of urban intensity were developed to support studies of the effects of urbanization on streams in nine metropolitan areas of the conterminous United States: Atlanta, Georgia; Birmingham, Alabama; Boston, Massachusetts; Dallas-Fort Worth, Texas; Denver, Colorado; Milwaukee-Green Bay, Wisconsin; Portland, Oregon; Raleigh, North Carolina; and Salt Lake City, Utah. These studies were conducted as a part of the U.S. Geological Survey's National Water-Quality Assessment Program. These urban intensity indices were used to define gradients of urbanization and to interpret biological, physical, and chemical changes along these gradients. Ninety census, land-cover, and infrastructure variables obtained from nationally available databases were evaluated. Only variables that exhibited a strong and consistent linear relation with 2000 population density were considered for use in the indices. Housing-unit density (HUDEN), percentage of basin area in developed land (P_NLCD1_2), and road density (ROADDEN) were selected as the best representatives of census, land-cover, and infrastructure variables. The metropolitan area national urban intensity index (MA-NUII) was scaled to represent urban intensity within each metropolitan area and ranged from 0 (little or no urban) to 100 (maximum urban) for sites within each metropolitan area. The national urban intensity index (NUII) was scaled to represent urban intensity across all nine metropolitan areas and ranged from 0 to 100 for all sites. The rates at which HUDEN, P_NLCD1_2, and ROADDEN changed with changes in population density varied among metropolitan areas. Therefore, these variables were adjusted to obtain a more uniform rate of response across metropolitan areas in the derivation of the NUII. The NUII indicated that maximum levels of urban intensity occurred in the West and Midwest rather than in the East primarily because small inner-city streams in eastern metropolitan areas are buried and converted to storm drains or sewers and because of higher density development in the Western and Central United States. The national indices (MA-NUII, NUII) were compared to indices that were derived independently for each metropolitan area (MA-UII) based on variables that were of local interest. The MA-UIIs, which were based on 5 to 40 variables, tended to overestimate urban intensity relative to the national indices particularly when the MA-UII was composed of large numbers of variables that were not linearly related to population density as in Denver, Dallas-Fort Worth, and Milwaukee-Green Bay.

  6. Developing population models with data from marked individuals

    USGS Publications Warehouse

    Hae Yeong Ryu,; Kevin T. Shoemaker,; Eva Kneip,; Anna Pidgeon,; Patricia Heglund,; Brooke Bateman,; Thogmartin, Wayne E.; Reşit Akçakaya,

    2016-01-01

    Population viability analysis (PVA) is a powerful tool for biodiversity assessments, but its use has been limited because of the requirements for fully specified population models such as demographic structure, density-dependence, environmental stochasticity, and specification of uncertainties. Developing a fully specified population model from commonly available data sources – notably, mark–recapture studies – remains complicated due to lack of practical methods for estimating fecundity, true survival (as opposed to apparent survival), natural temporal variability in both survival and fecundity, density-dependence in the demographic parameters, and uncertainty in model parameters. We present a general method that estimates all the key parameters required to specify a stochastic, matrix-based population model, constructed using a long-term mark–recapture dataset. Unlike standard mark–recapture analyses, our approach provides estimates of true survival rates and fecundities, their respective natural temporal variabilities, and density-dependence functions, making it possible to construct a population model for long-term projection of population dynamics. Furthermore, our method includes a formal quantification of parameter uncertainty for global (multivariate) sensitivity analysis. We apply this approach to 9 bird species and demonstrate the feasibility of using data from the Monitoring Avian Productivity and Survivorship (MAPS) program. Bias-correction factors for raw estimates of survival and fecundity derived from mark–recapture data (apparent survival and juvenile:adult ratio, respectively) were non-negligible, and corrected parameters were generally more biologically reasonable than their uncorrected counterparts. Our method allows the development of fully specified stochastic population models using a single, widely available data source, substantially reducing the barriers that have until now limited the widespread application of PVA. This method is expected to greatly enhance our understanding of the processes underlying population dynamics and our ability to analyze viability and project trends for species of conservation concern.

  7. Spatial analysis of deaths from pulmonary tuberculosis in the city of São Luís, Brazil*

    PubMed Central

    Santos-Neto, Marcelino; Yamamura, Mellina; Garcia, Maria Concebida da Cunha; Popolin, Marcela Paschoal; Silveira, Tatiane Ramos dos Santos; Arcêncio, Ricardo Alexandre

    2014-01-01

    OBJECTIVE: To characterize deaths from pulmonary tuberculosis, according to sociodemographic and operational variables, in the city of São Luís, Brazil, and to describe their spatial distribution. METHODS: This was an exploratory ecological study based on secondary data from death certificates, obtained from the Brazilian Mortality Database, related to deaths from pulmonary tuberculosis. We included all deaths attributed to pulmonary tuberculosis that occurred in the urban area of São Luís between 2008 and 2012. We performed univariate and bivariate analyses of the sociodemographic and operational variables of the deaths investigated, as well as evaluating the spatial distribution of the events by kernel density estimation. RESULTS: During the study period, there were 193 deaths from pulmonary tuberculosis in São Luís. The median age of the affected individuals was 52 years. Of the 193 individuals who died, 142 (73.60%) were male, 133 (68.91%) were Mulatto, 102 (53.13%) were single, and 64 (33.16%) had completed middle school. There was a significant positive association between not having received medical care prior to death and an autopsy having been performed (p = 0.001). A thematic map by density of points showed that the spatial distribution of those deaths was heterogeneous and that the density was as high as 8.12 deaths/km2. CONCLUSIONS: The sociodemographic and operational characteristics of the deaths from pulmonary tuberculosis evaluated in this study, as well as the identification of priority areas for control and surveillance of the disease, could promote public health policies aimed at reducing health inequities, allowing the optimization of resources, as well as informing decisions regarding the selection of strategies and specific interventions targeting the most vulnerable populations. PMID:25410843

  8. Spatial analysis of deaths from pulmonary tuberculosis in the city of São Luís, Brazil.

    PubMed

    Santos-Neto, Marcelino; Yamamura, Mellina; Garcia, Maria Concebida da Cunha; Popolin, Marcela Paschoal; Silveira, Tatiane Ramos Dos Santos; Arcêncio, Ricardo Alexandre

    2014-10-01

    To characterize deaths from pulmonary tuberculosis, according to sociodemographic and operational variables, in the city of São Luís, Brazil, and to describe their spatial distribution. This was an exploratory ecological study based on secondary data from death certificates, obtained from the Brazilian Mortality Database, related to deaths from pulmonary tuberculosis. We included all deaths attributed to pulmonary tuberculosis that occurred in the urban area of São Luís between 2008 and 2012. We performed univariate and bivariate analyses of the sociodemographic and operational variables of the deaths investigated, as well as evaluating the spatial distribution of the events by kernel density estimation. During the study period, there were 193 deaths from pulmonary tuberculosis in São Luís. The median age of the affected individuals was 52 years. Of the 193 individuals who died, 142 (73.60%) were male, 133 (68.91%) were Mulatto, 102 (53.13%) were single, and 64 (33.16%) had completed middle school. There was a significant positive association between not having received medical care prior to death and an autopsy having been performed (p = 0.001). A thematic map by density of points showed that the spatial distribution of those deaths was heterogeneous and that the density was as high as 8.12 deaths/km2. The sociodemographic and operational characteristics of the deaths from pulmonary tuberculosis evaluated in this study, as well as the identification of priority areas for control and surveillance of the disease, could promote public health policies aimed at reducing health inequities, allowing the optimization of resources, as well as informing decisions regarding the selection of strategies and specific interventions targeting the most vulnerable populations.

  9. Density-Dependent Regulation of Brook Trout Population Dynamics along a Core-Periphery Distribution Gradient in a Central Appalachian Watershed

    PubMed Central

    Huntsman, Brock M.; Petty, J. Todd

    2014-01-01

    Spatial population models predict strong density-dependence and relatively stable population dynamics near the core of a species' distribution with increasing variance and importance of density-independent processes operating towards the population periphery. Using a 10-year data set and an information-theoretic approach, we tested a series of candidate models considering density-dependent and density-independent controls on brook trout population dynamics across a core-periphery distribution gradient within a central Appalachian watershed. We sampled seven sub-populations with study sites ranging in drainage area from 1.3–60 km2 and long-term average densities ranging from 0.335–0.006 trout/m. Modeled response variables included per capita population growth rate of young-of-the-year, adult, and total brook trout. We also quantified a stock-recruitment relationship for the headwater population and coefficients of variability in mean trout density for all sub-populations over time. Density-dependent regulation was prevalent throughout the study area regardless of stream size. However, density-independent temperature models carried substantial weight and likely reflect the effect of year-to-year variability in water temperature on trout dispersal between cold tributaries and warm main stems. Estimated adult carrying capacities decreased exponentially with increasing stream size from 0.24 trout/m in headwaters to 0.005 trout/m in the main stem. Finally, temporal variance in brook trout population size was lowest in the high-density headwater population, tended to peak in mid-sized streams and declined slightly in the largest streams with the lowest densities. Our results provide support for the hypothesis that local density-dependent processes have a strong control on brook trout dynamics across the entire distribution gradient. However, the mechanisms of regulation likely shift from competition for limited food and space in headwater streams to competition for thermal refugia in larger main stems. It also is likely that source-sink dynamics and dispersal from small headwater habitats may partially influence brook trout population dynamics in the main stem. PMID:24618602

  10. Monitoring D-Region Variability from Lightning Measurements

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Berthelier, Jean-Jacques; Pfaff, Robert; Bilitza, Dieter; Klenzing, Jeffery

    2011-01-01

    In situ measurements of ionospheric D-region characteristics are somewhat scarce and rely mostly on sounding rockets. Remote sensing techniques employing Very Low Frequency (VLF) transmitters can provide electron density estimates from subionospheric wave propagation modeling. Here we discuss how lightning waveform measurements, namely sferics and tweeks, can be used for monitoring the D-region variability and day-night transition, and for local electron density estimates. A brief comparison among D-region aeronomy models is also presented.

  11. The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Ward, Kenneth E; Pinkerton, Robert M

    1933-01-01

    An investigation of a large group of related airfoils was made in the NACA variable-density wind tunnel at a large value of the Reynolds number. The tests were made to provide data that may be directly employed for a rational choice of the most suitable airfoil section for a given application. The variation of the aerodynamic characteristics with variations in thickness and mean-line form were systematically studied. (author)

  12. Understanding Short-Term Nonmigrating Tidal Variability in the Ionospheric Dynamo Region from SABER Using Information Theory and Bayesian Statistics

    NASA Astrophysics Data System (ADS)

    Kumari, K.; Oberheide, J.

    2017-12-01

    Nonmigrating tidal diagnostics of SABER temperature observations in the ionospheric dynamo region reveal a large amount of variability on time-scales of a few days to weeks. In this paper, we discuss the physical reasons for the observed short-term tidal variability using a novel approach based on Information theory and Bayesian statistics. We diagnose short-term tidal variability as a function of season, QBO, ENSO, and solar cycle and other drivers using time dependent probability density functions, Shannon entropy and Kullback-Leibler divergence. The statistical significance of the approach and its predictive capability is exemplified using SABER tidal diagnostics with emphasis on the responses to the QBO and solar cycle. Implications for F-region plasma density will be discussed.

  13. Spatial and temporal variation in proportional stock density and relative weight of smallmouth bass in a reservoir

    USGS Publications Warehouse

    Mesa, Matthew G.; Duke, S.D.; Ward, David L.

    1990-01-01

    Population data for smallmouth bass Micropterus dolomieui in 20,235 ha John Day Reservoir on the Columbia River were used to (1) determine whether Proportional Stock Density (PSD) and Relative Weight (Wr) varied spatially and temporally in two areas of the reservoir with established smallmouth bass fisheries; (2) explore possible causes of any observed variation; and (3) discuss some management implications and recommendations. Both PSD and Wr varied spatially and monthly in all years examined. On an annual basis, PSD varied at one area but not at the other, whereas Wr showed little variation. Possible explanations for the variation in PSD and Wr are differences in growth, mortality, recruitment, and exploitation. Our data suggested that regulations established or changed on a reservoir-wide basis may have different effects on the fishery, depending on location in the reservoir. Also, pooling data from various areas within a reservoir to yield point estimates of structural indices may not represent the variation present in the population as a whole. The significant temporal variability reflects the importance of determining the proper time to sample fish to yield representative estimates of the variable of interest. In areas with valuable fisheries or markedly different population structures, we suggest that an area-specific approach be made to reservoir fishery management, and that efforts be made toward effecting consistent harvest regulations in interstate waters.

  14. Spatial Variability of Sources and Mixing State of Atmospheric Particles in a Metropolitan Area.

    PubMed

    Ye, Qing; Gu, Peishi; Li, Hugh Z; Robinson, Ellis S; Lipsky, Eric; Kaltsonoudis, Christos; Lee, Alex K Y; Apte, Joshua S; Robinson, Allen L; Sullivan, Ryan C; Presto, Albert A; Donahue, Neil M

    2018-05-30

    Characterizing intracity variations of atmospheric particulate matter has mostly relied on fixed-site monitoring and quantifying variability in terms of different bulk aerosol species. In this study, we performed ground-based mobile measurements using a single-particle mass spectrometer to study spatial patterns of source-specific particles and the evolution of particle mixing state in 21 areas in the metropolitan area of Pittsburgh, PA. We selected sampling areas based on traffic density and restaurant density with each area ranging from 0.2 to 2 km 2 . Organics dominate particle composition in all of the areas we sampled while the sources of organics differ. The contribution of particles from traffic and restaurant cooking varies greatly on the neighborhood scale. We also investigate how primary and aged components in particles mix across the urban scale. Lastly we quantify and map the particle mixing state for all areas we sampled and discuss the overall pattern of mixing state evolution and its implications. We find that in the upwind and downwind of the urban areas, particles are more internally mixed while in the city center, particle mixing state shows large spatial heterogeneity that is mostly driven by emissions. This study is to our knowledge, the first study to perform fine spatial scale mapping of particle mixing state using ground-based mobile measurement and single-particle mass spectrometry.

  15. Predicting macropores in space and time by earthworms and abiotic controls

    NASA Astrophysics Data System (ADS)

    Hohenbrink, Tobias Ludwig; Schneider, Anne-Kathrin; Zangerlé, Anne; Reck, Arne; Schröder, Boris; van Schaik, Loes

    2017-04-01

    Macropore flow increases infiltration and solute leaching. The macropore density and connectivity, and thereby the hydrological effectiveness, vary in space and time due to earthworms' burrowing activity and their ability to refill their burrows in order to survive drought periods. The aim of our study was to predict the spatiotemporal variability of macropore distributions by a set of potentially controlling abiotic variables and abundances of different earthworm species. We measured earthworm abundances and effective macropore distributions using tracer rainfall infiltration experiments in six measurement campaigns during one year at six field sites in Luxembourg. Hydrologically effective macropores were counted in three soil depths (3, 10, 30 cm) and distinguished into three diameter classes (<2, 2-6, >6 mm). Earthworms were sampled and determined to species-level. In a generalized linear modelling framework, we related macropores to potential spatial and temporal controlling factors. Earthworm species such as Lumbricus terrestris and Aporrectodea longa, local abiotic site conditions (land use, TWI, slope), temporally varying weather conditions (temperature, humidity, precipitation) and soil moisture affected the number of effective macropores. Main controlling factors and explanatory power of the models (uncertainty and model performance) varied depending on the depth and diameter class of macropores. We present spatiotemporal predictions of macropore density by daily-resolved, one year time series of macropore numbers and maps of macropore distributions at specific dates in a small-scale catchment with 5 m resolution.

  16. Zooplankton variability in the subtropical estuarine system of Paranaguá Bay, Brazil, in 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Salvador, Bianca; Bersano, José Guilherme F.

    2017-12-01

    Spatial and temporal dynamics of zooplankton assemblages were studied in the Paranaguá Estuarine System (southern Brazil), including data from the summer (rainy) and winter (dry) periods of 2012 and 2013. Zooplankton and environmental data were collected at 37 stations along the estuary and examined by multivariate methods. The results indicated significantly distinct assemblages; differences in abundance were the major source of variability, mainly over the temporal scale. The highest abundances were observed during rainy periods, especially in 2012, when the mean density reached 16378 ind.m-3. Winter assemblages showed lower densities but higher species diversity, due to the more extensive intrusion of coastal waters. Of the 14 taxonomic groups recorded, Copepoda was the most abundant and diverse (92% of total abundance and 22 species identified). The coastal copepods Acartia lilljeborgi (44%) and Oithona hebes (26%) were the most important species in both abundance and frequency, followed by the estuarine Pseudodiaptomus acutus and the neritic Temora turbinata. The results indicated strong influences of environmental parameters on the community structure, especially in response to seasonal variations. The spatial distribution of species was probably determined mainly by their preferences and tolerances for specific salinity conditions. On the other hand, the abundances were strongly related to higher water temperature and precipitation rates, which can drive nutrient inputs and consequently food supply in the system, due to intense continental drainage.

  17. The emergence of different tail exponents in the distributions of firm size variables

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atushi; Fujimoto, Shouji; Watanabe, Tsutomu; Mizuno, Takayuki

    2013-05-01

    We discuss a mechanism through which inversion symmetry (i.e., invariance of a joint probability density function under the exchange of variables) and Gibrat’s law generate power-law distributions with different tail exponents. Using a dataset of firm size variables, that is, tangible fixed assets K, the number of workers L, and sales Y, we confirm that these variables have power-law tails with different exponents, and that inversion symmetry and Gibrat’s law hold. Based on these findings, we argue that there exists a plane in the three dimensional space (logK,logL,logY), with respect to which the joint probability density function for the three variables is invariant under the exchange of variables. We provide empirical evidence suggesting that this plane fits the data well, and argue that the plane can be interpreted as the Cobb-Douglas production function, which has been extensively used in various areas of economics since it was first introduced almost a century ago.

  18. Joint-inversion of gravity data and cosmic ray muon flux to detect shallow subsurface density structure beneath volcanoes: Testing the method at a well-characterized site

    NASA Astrophysics Data System (ADS)

    Roy, M.; Lewis, M.; George, N. K.; Johnson, A.; Dichter, M.; Rowe, C. A.; Guardincerri, E.

    2016-12-01

    The joint-inversion of gravity data and cosmic ray muon flux measurements has been utilized by a number of groups to image subsurface density structure in a variety of settings, including volcanic edifices. Cosmic ray muons are variably-attenuated depending upon the density structure of the material they traverse, so measuring muon flux through a region of interest provides an independent constraint on the density structure. Previous theoretical studies have argued that the primary advantage of combining gravity and muon data is enhanced resolution in regions not sampled by crossing muon trajectories, e.g. in sensing deeper structure or structure adjacent to the region sampled by muons. We test these ideas by investigating the ability of gravity data alone and the joint-inversion of gravity and muon flux to image subsurface density structure, including voids, in a well-characterized field location. Our study area is a tunnel vault located at the Los Alamos National Laboratory within Quaternary ash-flow tuffs on the Pajarito Plateau, flanking the Jemez Volcano in New Mexico. The regional geology of the area is well-characterized (with density measurements in nearby wells) and the geometry of the tunnel and the surrounding terrain is known. Gravity measurements were made using a Lacoste and Romberg D meter and the muon detector has a conical acceptance region of 45 degrees from the vertical and track resolution of several milliradians. We obtain individual and joint resolution kernels for gravity and muon flux specific to our experimental design and plan to combine measurements of gravity and muon flux both within and above the tunnel to infer density structure. We plan to compare our inferred density structure against the expected densities from the known regional hydro-geologic framework.

  19. Cryomagmatism in the outer solar system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kargel, J.S.

    1990-01-01

    Assemblages of cryovolcanic, tectonic, and impact structures form varied landscapes quite alien in their collective expression. Many variables can affect the cryovolcanic style of a satellite but none more so than cryolava composition. The compositional variable is examined in considerable detail. Existing knowledge of phase equilibria and physical properties of cosmochemically relevant unary, binary, and multi-component chemical systems are summarized. Where published knowledge was found lacking, measurements of the physical chemistry of volatile mixtures are presented. Cryovolcanic landscapes are briefly toured, and knowledge of the physical chemistry of volatile mixtures is applied to problems of cryovolcanological interest. Aqueous cryolavas maymore » range in composition from salt-water brines to cryogenic ammonia-water-rich multi-components solutions possibly involving methanol, ammonium sulfide, alkali chlorides, and many other potential components. Cryomagmatic distillation can greatly accentuate the importance of trace and minor constituents of icy satellites. The viscosities, densities, and other physical properties of these liquids vary considerably and depend sensitively on their exact compositions. These properties affect everything from cryovolcanic eruptive styles and landforms, to the way cryovolcanic crusts respond to tectonic stress. It is believed that the compositional variable is directly or indirectly implicated in a wide varity of geomorphic aspects of contrast among the icy satellites. Thus, even though as yet any specific morphology can be attributed to a specific composition, there appears to be a powerful link between composition of the ices originally accreted by a satellite and its subsequent interior evolution and exterior geomorphic appearance.« less

  20. Osteoporosis prediction from the mandible using cone-beam computed tomography

    PubMed Central

    Al Haffar, Iyad; Khattab, Razan

    2014-01-01

    Purpose This study aimed to evaluate the use of dental cone-beam computed tomography (CBCT) in the diagnosis of osteoporosis among menopausal and postmenopausal women by using only a CBCT viewer program. Materials and Methods Thirty-eight menopausal and postmenopausal women who underwent dual-energy X-ray absorptiometry (DXA) examination for hip and lumbar vertebrae were scanned using CBCT (field of view: 13 cm×15 cm; voxel size: 0.25 mm). Slices from the body of the mandible as well as the ramus were selected and some CBCT-derived variables, such as radiographic density (RD) as gray values, were calculated as gray values. Pearson's correlation, one-way analysis of variance (ANOVA), and accuracy (sensitivity and specificity) evaluation based on linear and logistic regression were performed to choose the variable that best correlated with the lumbar and femoral neck T-scores. Results RD of the whole bone area of the mandible was the variable that best correlated with and predicted both the femoral neck and the lumbar vertebrae T-scores; further, Pearson's correlation coefficients were 0.5/0.6 (p value=0.037/0.009). The sensitivity, specificity, and accuracy based on the logistic regression were 50%, 88.9%, and 78.4%, respectively, for the femoral neck, and 46.2%, 91.3%, and 75%, respectively, for the lumbar vertebrae. Conclusion Lumbar vertebrae and femoral neck osteoporosis can be predicted with high accuracy from the RD value of the body of the mandible by using a CBCT viewer program. PMID:25473633

  1. Identifying the impact of social determinants of health on disease rates using correlation analysis of area-based summary information.

    PubMed

    Song, Ruiguang; Hall, H Irene; Harrison, Kathleen McDavid; Sharpe, Tanya Telfair; Lin, Lillian S; Dean, Hazel D

    2011-01-01

    We developed a statistical tool that brings together standard, accessible, and well-understood analytic approaches and uses area-based information and other publicly available data to identify social determinants of health (SDH) that significantly affect the morbidity of a specific disease. We specified AIDS as the disease of interest and used data from the American Community Survey and the National HIV Surveillance System. Morbidity and socioeconomic variables in the two data systems were linked through geographic areas that can be identified in both systems. Correlation and partial correlation coefficients were used to measure the impact of socioeconomic factors on AIDS diagnosis rates in certain geographic areas. We developed an easily explained approach that can be used by a data analyst with access to publicly available datasets and standard statistical software to identify the impact of SDH. We found that the AIDS diagnosis rate was highly correlated with the distribution of race/ethnicity, population density, and marital status in an area. The impact of poverty, education level, and unemployment depended on other SDH variables. Area-based measures of socioeconomic variables can be used to identify risk factors associated with a disease of interest. When correlation analysis is used to identify risk factors, potential confounding from other variables must be taken into account.

  2. Measurement of breast density with digital breast tomosynthesis—a systematic review

    PubMed Central

    McEntee, M F

    2014-01-01

    Digital breast tomosynthesis (DBT) has gained acceptance as an adjunct to digital mammography in screening. Now that breast density reporting is mandated in several states in the USA, it is increasingly important that the methods of breast density measurement be robust, reliable and consistent. Breast density assessment with DBT needs some consideration since quantitative methods are modelled for two-dimensional (2D) mammography. A review of methods used for breast density assessment with DBT was performed. Existing evidence shows Cumulus has better reproducibility than that of the breast imaging reporting and data system (BI-RADS®) but still suffers from subjective variability; MedDensity is limited by image noise, whilst Volpara and Quantra are robust and consistent. The reported BI-RADs inter-reader breast density agreement (k) ranged from 0.65 to 0.91, with inter-reader correlation (r) ranging from 0.70 to 0.93. The correlation (r) between BI-RADS and Cumulus ranged from 0.54–0.94, whilst that of BI-RADs and MedDensity ranged from 0.48–0.78. The reported agreement (k) between BI-RADs and Volpara is 0.953. Breast density correlation between DBT and 2D mammography ranged from 0.73 to 0.97, with agreement (k) ranging from 0.56 to 0.96. To avoid variability and provide more reliable breast density information for clinicians, automated volumetric methods are preferred. PMID:25146640

  3. Synthetic seismograms from vibracores: A case study in correlating the late quaternary seismic stratigraphy of the New Jersey inner continental shelf

    USGS Publications Warehouse

    Esker, D.; Sheridan, R.E.; Ashley, G.M.; Waldner, J.S.; Hall, D.W.

    1996-01-01

    A new technique, using empirical relationships between median grain size and density and velocity to calculate proxy values for density and velocity, avoids many of the problems associated with the use of well logs and shipboard measurements to construct synthetic seismograms. This method was used to groundtruth and correlate across both analog and digital shallow high-resolution seismic data on the New Jersey shelf. Sampling dry vibracores to determine median grain size eliminates the detrimental effects that coring disturbances and preservation variables have on the sediment and water content of the core. The link between seismic response to lithology and bed spacing is more exact. The exact frequency of the field seismic data can be realistically simulated by a 10-20 cm sampling interval of the vibracores. The estimate of the percentage error inherent in this technique, 12% for acoustic impedance and 24% for reflection amplitude, is calculated to one standard deviation and is within a reasonable limit for such a procedure. The synthetic seismograms of two cores, 4-6 m long, were used to correlate specific sedimentary deposits to specific seismic reflection responses. Because this technique is applicable to unconsolidated sediments, it is ideal for upper Pleistocene and Holocene strata. Copyright ?? 1996, SEPM (Society for Sedimentary Geology).

  4. Analysis strategies for longitudinal attachment loss data.

    PubMed

    Beck, J D; Elter, J R

    2000-02-01

    The purpose of this invited review is to describe and discuss methods currently in use to quantify the progression of attachment loss in epidemiological studies of periodontal disease, and to make recommendations for specific analytic methods based upon the particular design of the study and structure of the data. The review concentrates on the definition of incident attachment loss (ALOSS) and its component parts; measurement issues including thresholds and regression to the mean; methods of accounting for longitudinal change, including changes in means, changes in proportions of affected sites, incidence density, the effect of tooth loss and reversals, and repeated events; statistical models of longitudinal change, including the incorporation of the time element, use of linear, logistic or Poisson regression or survival analysis, and statistical tests; site vs person level of analysis, including statistical adjustment for correlated data; the strengths and limitations of ALOSS data. Examples from the Piedmont 65+ Dental Study are used to illustrate specific concepts. We conclude that incidence density is the preferred methodology to use for periodontal studies with more than one period of follow-up and that the use of studies not employing methods for dealing with complex samples, correlated data, and repeated measures does not take advantage of our current understanding of the site- and person-level variables important in periodontal disease and may generate biased results.

  5. Single-molecule analysis of the major glycopolymers of pathogenic and non-pathogenic yeast cells

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Alsteens, David; Sarazin, Aurore; Jouault, Thierry; Dufrêne, Yves F.

    2013-05-01

    Most microbes are coated with carbohydrates that show remarkable structural variability and play a crucial role in mediating microbial-host interactions. Understanding the functions of cell wall glycoconjugates requires detailed knowledge of their molecular organization, diversity and heterogeneity. Here we use atomic force microscopy (AFM) with tips bearing specific probes (lectins, antibodies) to analyze the major glycopolymers of pathogenic and non-pathogenic yeast cells at molecular resolution. We show that non-ubiquitous β-1,2-mannans are largely exposed on the surface of native cells from pathogenic Candida albicans and C. glabrata, the former species displaying the highest glycopolymer density and extensions. We also find that chitin, a major component of the inner layer of the yeast cell wall, is much more abundant in C. albicans. These differences in molecular properties, further supported by flow cytometry measurements, may play an important role in strengthening cell wall mechanics and immune interactions. This study demonstrates that single-molecule AFM, combined with immunological and fluorescence methods, is a powerful platform in fungal glycobiology for probing the density, distribution and extension of specific cell wall glycoconjugates. In nanomedicine, we anticipate that this new form of AFM-based nanoglycobiology will contribute to the development of sugar-based drugs, immunotherapeutics, vaccines and diagnostics.

  6. WASP: A flexible FORTRAN 4 computer code for calculating water and steam properties

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Peller, I. C.; Baron, A. K.

    1973-01-01

    A FORTRAN 4 subprogram, WASP, was developed to calculate the thermodynamic and transport properties of water and steam. The temperature range is from the triple point to 1750 K, and the pressure range is from 0.1 to 100 MN/m2 (1 to 1000 bars) for the thermodynamic properties and to 50 MN/m2 (500 bars) for thermal conductivity and to 80 MN/m2 (800 bars) for viscosity. WASP accepts any two of pressure, temperature, and density as input conditions. In addition, pressure and either entropy or enthalpy are also allowable input variables. This flexibility is especially useful in cycle analysis. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, surface tension, and the Laplace constant. The subroutine structure is modular so that the user can choose only those subroutines necessary to his calculations. Metastable calculations can also be made by using WASP.

  7. Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaya Shankar Tumuluru

    2011-08-01

    Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley straw Jaya Shankar Tumuluru*, L. G. Tabil, Y. Song, K. L. Iroba and V. Meda Biomass is a renewable energy source and environmentally friendly substitute for fossil fuels such as coal and petroleum products. Major limitation of biomass for successful energy application is its low bulk density, which makes it very difficult and costly to transport and handle. To overcome this limitation, biomass has to be densified. The commonly used technologies for densification of biomass are pelletization and briquetting. Briquetting offers many advantages atmore » it can densify larger particles sizes of biomass at higher moisture contents. Briquetting is influenced by a number of feedstock and process variables such as moisture content, particle size distribution, and some operating variables such as temperature and densification pressure. In the present study, experiments were designed and conducted based on Box-Behnken design to produce briquettes using barley, wheat, canola and barley straws. A laboratory scale hydraulic briquette press was used for the present study. The experimental process variables and their levels used in the present study were pressure levels (7.5, 10, 12.5 MPa), three levels of temperature (90, 110, 130 C), at three moisture content levels (9, 12, 15% w.b.), and three levels of particle size (19.1, 25.04, 31.75 mm). The quality variables studied includes moisture content, initial density and final briquette density after two weeks of storage, size distribution index and durability. The raw biomass was initially chopped and size reduced using a hammer mill. The ground biomass was conditioned at different moisture contents and was further densified using laboratory hydraulic press. For each treatment combination, ten briquettes were manufactured at a residence time of about 30 s after compression pressure setpoint was achieved. After compression, the initial dimensions and the final dimensions after 2 weeks of storage in controlled environment of all the samples were measured. Durability, dimensional stability, and moisture content tests were conducted after two weeks of storage of the briquettes produced. Initial results indicated that moisture content played a significant role on briquettes durability, stability, and density. Low moisture content of the straws (7-12%) gave more durable briquettes. Briquette density increased with increasing pressure depending on the moisture content value. The axial expansion was more significant than the lateral expansion, which in some cases tended to be nil depending on the material and operating variables. Further data analysis is in progress in order to understand the significance of the process variables based on ANOVA. Regression models were developed to predict the changes in quality of briquettes with respect of the process variables under study. Keywords: Herbaceous biomass, densification, briquettes, density, durability, dimensional stability, ANOVA and regression equations« less

  8. Accuracy of Screening Mammography Interpretation by Characteristics of Radiologists

    PubMed Central

    Barlow, William E.; Chi, Chen; Carney, Patricia A.; Taplin, Stephen H.; D’Orsi, Carl; Cutter, Gary; Hendrick, R. Edward; Elmore, Joann G.

    2011-01-01

    Background Radiologists differ in their ability to interpret screening mammograms accurately. We investigated the relationship of radiologist characteristics to actual performance from 1996 to 2001. Methods Screening mammograms (n = 469 512) interpreted by 124 radiologists were linked to cancer outcome data. The radiologists completed a survey that included questions on demographics, malpractice concerns, years of experience interpreting mammograms, and the number of mammograms read annually. We used receiver operating characteristics (ROC) analysis to analyze variables associated with sensitivity, specificity, and the combination of the two, adjusting for patient variables that affect performance. All P values are two-sided. Results Within 1 year of the mammogram, 2402 breast cancers were identified. Relative to low annual interpretive volume (≤1000 mammograms), greater interpretive volume was associated with higher sensitivity (P = .001; odds ratio [OR] for moderate volume [1001–2000] = 1.68, 95% CI = 1.18 to 2.39; OR for high volume [>2000] = 1.89, 95% CI = 1.36 to 2.63). Specificity decreased with volume (OR for 1001–2000 = 0.65, 95% CI = 0.52 to 0.83; OR for more than 2000 = 0.76, 95% CI = 0.60 to 0.96), compared with 1000 or less (P = .002). Greater number of years of experience interpreting mammograms was associated with lower sensitivity (P = .001), but higher specificity (P = .003). ROC analysis using the ordinal BI-RADS interpretation showed an association between accuracy and both previous mammographic history (P = .012) and breast density (P<.001). No association was observed between accuracy and years interpreting mammograms (P = .34) or mammography volume (P = .94), after adjusting for variables that affect the threshold for calling a mammogram positive. Conclusions We found no evidence that greater volume or experience at interpreting mammograms is associated with better performance. However, they may affect sensitivity and specificity, possibly by determining the threshold for calling a mammogram positive. Increasing volume requirements is unlikely to improve overall mammography performance. PMID:15601640

  9. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Burns, Lee; Merry, Carl; Harrington, Brian

    2008-01-01

    NASA's Space Shuttle utilizes atmospheric thermodynamic properties to evaluate structural dynamics and vehicle flight performance impacts by the atmosphere during ascent. Statistical characteristics of atmospheric thermodynamic properties at Kennedy Space Center (KSC) used in Space. Shuttle Vehicle assessments are contained in the Cape Canaveral Air Force Station (CCAFS) Range Reference Atmosphere (RRA) Database. Database contains tabulations for monthly and annual means (mu), standard deviations (sigma) and skewness of wind and thermodynamic variables. Wind, Thermodynamic, Humidity and Hydrostatic parameters 1 km resolution interval from 0-30 km 2 km resolution interval 30-70 km Multiple revisions of the CCAFS RRA database have been developed since initial RRA published in 1963. 1971, 1983, 2006 Space Shuttle program utilized 1983 version for use in deriving "hot" and "cold" atmospheres, atmospheric density dispersions for use in vehicle certification analyses and selection of atmospheric thermodynamic profiles for use in vehicle ascent design and certification analyses. During STS-114 launch preparations in July 2005 atmospheric density observations between 50-80 kft exceeded density limits used for aerodynamic ascent heating constraints in vehicle certification analyses. Mission specific analyses were conducted and concluded that the density bias resulted in small changes to heating rates and integrated heat loading on the vehicle. In 2001, the Air Force Combat Climatology Center began developing an updated RRA for CCAFS.

  10. Numerical simulation of freshwater/seawater interaction in a dual-permeability karst system with conduits: the development of discrete-continuum VDFST-CFP model

    NASA Astrophysics Data System (ADS)

    Xu, Zexuan; Hu, Bill

    2016-04-01

    Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow condition but discrete-continuum models provide more accurate results. Parameters sensitivities analysis indicates that conduit diameter and friction factor, matrix hydraulic conductivity and porosity are important parameters that significantly affect variable-density flow and solute transport simulation. The pros and cons of model assumptions, conceptual simplifications and numerical techniques in VDFST-CFP are discussed. In general, the development of VDFST-CFP model is an innovation in numerical modeling methodology and could be applied to quantitatively evaluate the seawater/freshwater interaction in coastal karst aquifers. Keywords: Discrete-continuum numerical model; Variable density flow and transport; Coastal karst aquifer; Non-laminar flow

  11. Feature extraction of performance variables in elite half-pipe snowboarding using body mounted inertial sensors

    NASA Astrophysics Data System (ADS)

    Harding, J. W.; Small, J. W.; James, D. A.

    2007-12-01

    Recent analysis of elite-level half-pipe snowboard competition has revealed a number of sport specific key performance variables (KPV's) that correlate well to score. Information on these variables is difficult to acquire and analyse, relying on collection and labour intensive manual post processing of video data. This paper presents the use of inertial sensors as a user-friendly alternative and subsequently implements signal processing routines to ultimately provide automated, sport specific feedback to coaches and athletes. The author has recently shown that the key performance variables (KPV's) of total air-time (TAT) and average degree of rotation (ADR) achieved during elite half-pipe snowboarding competition show strong correlation with an athlete's subjectively judged score. Utilising Micro-Electrochemical System (MEMS) sensors (tri-axial accelerometers) this paper demonstrates that air-time (AT) achieved during half-pipe snowboarding can be detected and calculated accurately using basic signal processing techniques. Characterisation of the variations in aerial acrobatic manoeuvres and the associated calculation of exact degree of rotation (DR) achieved is a likely extension of this research. The technique developed used a two-pass method to detect locations of half-pipe snowboard runs using power density in the frequency domain and subsequently utilises a threshold based search algorithm in the time domain to calculate air-times associated with individual aerial acrobatic manoeuvres. This technique correctly identified the air-times of 100 percent of aerial acrobatic manoeuvres within each half-pipe snowboarding run (n = 92 aerial acrobatic manoeuvres from 4 subjects) and displayed a very strong correlation with a video based reference standard for air-time calculation (r = 0.78 +/- 0.08; p value < 0.0001; SEE = 0.08 ×/÷ 1.16; mean bias = -0.03 +/- 0.02s) (value +/- or ×/÷ 95% CL).

  12. Do changes in grazing pressure and the degree of shrub encroachment alter the effects of individual shrubs on understorey plant communities and soil function?

    PubMed

    Soliveres, Santiago; Eldridge, David J

    2014-04-01

    Shrub canopies in semi-arid environments often produce positive effects on soil fertility, and on the richness and biomass of understorey plant communities. However, both positive and negative effects of shrub encroachment on plant and soil attributes have been reported at the landscape-level. The contrasting results between patch- and landscape-level effects in shrublands could be caused by differences in the degree of shrub encroachment or grazing pressure, both of which are likely to reduce the ability of individual shrubs to ameliorate their understorey environment.We examined how grazing and shrub encroachment (measured as landscape-level shrub cover) influence patch-level effects of shrubs on plant density, biomass and similarity in species composition between shrub understories and open areas, and on soil stability, nutrient cycling, and infiltration in two semi-arid Australian woodlands.Individual shrubs had consistently positive effects on all plant and soil variables (average increase of 23% for all variables). These positive patch-level effects persisted with increasing shrub cover up to our maximum of 50% cover. Heavy grazing negatively affected most of the variables studied (average decline of 11%). It also altered, for some variables, how individual shrubs affected their sub-canopy environment with increasing shrub cover. Thus for species density, biomass and soil infiltration, the positive effect of individual shrubs with increasing shrub cover diminished under heavy grazing. Our study refines predictions of the effects of woody encroachment on ecosystem structure and functioning by showing that heavy grazing, rather than differences in shrub cover, explains the contrasting effects on ecosystem structure and function between individual shrubs and those in dense aggregations. We also discuss how species-specific traits of the encroaching species, such as their height or its ability to fix N, might influence the relationship between their patch-level effects and their cover within the landscape.

  13. Do changes in grazing pressure and the degree of shrub encroachment alter the effects of individual shrubs on understorey plant communities and soil function?

    PubMed Central

    Soliveres, Santiago; Eldridge, David J.

    2015-01-01

    Summary Shrub canopies in semi-arid environments often produce positive effects on soil fertility, and on the richness and biomass of understorey plant communities. However, both positive and negative effects of shrub encroachment on plant and soil attributes have been reported at the landscape-level. The contrasting results between patch- and landscape-level effects in shrublands could be caused by differences in the degree of shrub encroachment or grazing pressure, both of which are likely to reduce the ability of individual shrubs to ameliorate their understorey environment. We examined how grazing and shrub encroachment (measured as landscape-level shrub cover) influence patch-level effects of shrubs on plant density, biomass and similarity in species composition between shrub understories and open areas, and on soil stability, nutrient cycling, and infiltration in two semi-arid Australian woodlands. Individual shrubs had consistently positive effects on all plant and soil variables (average increase of 23% for all variables). These positive patch-level effects persisted with increasing shrub cover up to our maximum of 50% cover. Heavy grazing negatively affected most of the variables studied (average decline of 11%). It also altered, for some variables, how individual shrubs affected their sub-canopy environment with increasing shrub cover. Thus for species density, biomass and soil infiltration, the positive effect of individual shrubs with increasing shrub cover diminished under heavy grazing. Synthesis Our study refines predictions of the effects of woody encroachment on ecosystem structure and functioning by showing that heavy grazing, rather than differences in shrub cover, explains the contrasting effects on ecosystem structure and function between individual shrubs and those in dense aggregations. We also discuss how species-specific traits of the encroaching species, such as their height or its ability to fix N, might influence the relationship between their patch-level effects and their cover within the landscape. PMID:25914435

  14. Future materials requirements for the high-energy-intensity production of aluminum

    NASA Astrophysics Data System (ADS)

    Welch, B. J.; Hyland, M. M.; James, B. J.

    2001-02-01

    Like all metallurgical industries, aluminum smelting has been under pressure from two fronts—to give maximum return on investment to the shareholders and to comply with environmental regulations by reducing greenhouse emissions. The smelting process has advanced by improving efficiency and productivity while continuing to seek new ways to extend the cell life. Materials selection (particularly the use of more graphitized cathodic electrodes) has enabled lower energy consumption, while optimization of the process and controlling in a narrow band has enabled increases in productivity and operations at higher current densities. These changes have, in turn, severely stressed the materials used for cell construction, and new problems are emerging that are resulting in a reduction of cell life. The target for aluminum electro-winning has been to develop an oxygen-evolving electrode, rather than one that evolves substantial amounts of carbon dioxide. Such an electrode, when combined with suitable wettable cathode material developments, would reduce operating costs by eliminating the need for frequent electrode change and would enable more productive cell designs and reduce plant size. The materials specifications for developing these are, however, an extreme challenge. Those specifications include minimized corrosion rate of any electrode into the electrolyte, maintaining an electronically conducting oxidized surface that is of low electrical resistance, meeting the metal purity targets, and enabling variable operating current densities. Although the materials specifications can readily be written, the processing and production of the materials is the challenge.

  15. High spatiotemporal variability in meiofaunal assemblages in Blanes Canyon (NW Mediterranean) subject to anthropogenic and natural disturbances

    NASA Astrophysics Data System (ADS)

    Román, Sara; Vanreusel, Ann; Romano, Chiara; Ingels, Jeroen; Puig, Pere; Company, Joan B.; Martin, Daniel

    2016-11-01

    We investigated the natural and anthropogenic drivers controlling the spatiotemporal distribution of the meiofauna in the submarine Blanes Canyon, and its adjacent western slope (NW Mediterranean margin of the Iberian Peninsula). We analyzed the relationships between the main sedimentary environmental variables (i.e. grain size, Chl-a, Chl-a: phaeopigments, CPE, organic carbon and total nitrogen) and the density and structure of the meiofaunal assemblages along a bathymetric gradient (from 500 to 2000 m depth) in spring and autumn of 2012 and 2013. Twenty-one and 16 major taxa were identified for respectively the canyon and slope, where the assemblages were always dominated by nematodes. The gradual decreasing meiofaunal densities with increasing depth at the slope showed little variability among stations and corresponded with a uniform pattern of food availability. The canyon was environmentally much more variable and sediments contained greater amounts of food resources (Chl-a and CPE) throughout, leading not only to increased meiofaunal densities compared to the slope, but also different assemblages in terms of composition and structure. This variability in the canyon is only partly explained by seasonal food inputs. The high densities found at 900 m and 1200 m depth coincided with significant increases in food availability compared to shallower and deeper stations in the canyon. Our results suggest that the disruption in expected bathymetric decrease in densities at 900-1200 m water depth coincided with noticeable changes in the environmental variables typical for disturbance and deposition events (e.g., higher sand content and CPE), evoking the hypothesis of an anthropogenic effect at these depths in the canyon. The increased downward particle fluxes at 900-1200 m depth caused by bottom trawling along canyon flanks, as reported in previous studies, support our hypothesis and allude to a substantial anthropogenic factor influencing benthic assemblages at these depths. The possible relationships of the observed patterns and some major natural environmental (e.g., surface productivity or dense shelf water cascading) and anthropogenic (e.g. the lateral advection and downward transport of food-enriched sediments resuspended by the daily canyon-flank trawling activities) drivers are discussed.

  16. Density-ratio effects on buoyancy-driven variable-density turbulent mixing

    NASA Astrophysics Data System (ADS)

    Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam

    2017-11-01

    Density-ratio effects on the turbulent mixing of two incompressible, miscible fluids with different densities subject to constant acceleration are studied by means of high-resolution Direct Numerical Simulations. In a triply periodic domain, turbulence is generated by stirring in response to the differential buoyancy forces within the flow. Later, as the fluids become molecularly mixed, dissipation starts to overcome turbulence generation by bouyancy. Thus, the flow evolution includes both turbulence growth and decay, and it displays features present in the core region of the mixing layer of the Rayleigh-Taylor as well as Richtmyer-Meshkov instabilities. We extend the previous studies by investigating a broad range of density-ratio, from 1-14.4:1, corresponding to Atwood numbers of 0.05-0.87. Here, we focus on the Atwood number dependence of mixing-efficiency, that is defined based on the energy-conversion ratios from potential energy to total and turbulent kinetic energies, the decay characteristics of buoyancy-assisted variable-density homogeneous turbulence, and the effects of high density-ratios on the turbulence structure and mixing process. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  17. International comparisons of the associations between objective measures of the built environment and transport-related walking and cycling: IPEN Adult Study.

    PubMed

    Christiansen, Lars B; Cerin, Ester; Badland, Hannah; Kerr, Jacqueline; Davey, Rachel; Troelsen, Jens; van Dyck, Delfien; Mitáš, Josef; Schofield, Grant; Sugiyama, Takemi; Salvo, Deborah; Sarmiento, Olga L; Reis, Rodrigo; Adams, Marc; Frank, Larry; Sallis, James F

    2016-12-01

    Mounting evidence documents the importance of urban form for active travel, but international studies could strengthen the evidence. The aim of the study was to document the strength, shape, and generalizability of relations of objectively measured built environment variables with transport-related walking and cycling. This cross-sectional study maximized variation of environments and demographics by including multiple countries and by selecting adult participants living in neighborhoods based on higher and lower classifications of objectively measured walkability and socioeconomic status. Analyses were conducted on 12,181 adults aged 18-66 years, drawn from 14 cities across 10 countries worldwide. Frequency of transport-related walking and cycling over the last seven days was assessed by questionnaire and four objectively measured built environment variables were calculated. Associations of built environment variables with transport-related walking and cycling variables were estimated using generalized additive mixed models, and were tested for curvilinearity and study site moderation. We found positive associations of walking for transport with all the environmental attributes, but also found that the relationships was only linear for land use mix, but not for residential density, intersection density, and the number of parks. Our findings suggest that there may be optimum values in these attributes, beyond which higher densities or number of parks could have minor or even negative impact. Cycling for transport was associated linearly with residential density, intersection density (only for any cycling), and land use mix, but not with the number of parks. Across 14 diverse cities and countries, living in more densely populated areas, having a well-connected street network, more diverse land uses, and having more parks were positively associated with transport-related walking and/or cycling. Except for land-use-mix, all built environment variables had curvilinear relationships with walking, with a plateau in the relationship at higher levels of the scales.

  18. A VLA (Very Large Array) Search for 5 GHz Radio Transients and Variables at Low Galactic Latitudes

    NASA Technical Reports Server (NTRS)

    Ofek, E. O.; Frail, D. A.; Breslauer, B.; Kulkarni, S. R.; Chandra, P.; Gal-Yam, A.; Kasliwal, M. M.; Gehrels, N.

    2012-01-01

    We present the results of a 5GHz survey with the Very Large Array (VLA) and the expanded VLA, designed to search for short-lived (approx < 1 day) transients and to characterize the variability of radio sources at milli-Jansky levels. A total sky area of 2.66 sq. deg, spread over 141 fields at low Galactic latitudes (b approx equals 6 - 8 deg) was observed 16 times with a cadence that was chosen to sample timescales of days, months and years. Most of the data were reduced, analyzed and searched for transients in near real time. Interesting candidates were followed up using visible light telescopes (typical delays of 1 - 2 hr) and the X-Ray Telescope on board the Swift satellite. The final processing of the data revealed a single possible transient with a flux density of f(sub v) approx equals 2.4mJy. This implies a transients sky surface density of kappa(f(sub v) > 1.8mJy) = 0.039(exp +0.13,+0.18) (sub .0.032,.0.038) / sq. deg (1, 2 sigma confidence errors). This areal density is consistent with the sky surface density of transients from the Bower et al. survey extrapolated to 1.8mJy. Our observed transient areal density is consistent with a Neutron Stars (NSs) origin for these events. Furthermore, we use the data to measure the sources variability on days to years time scales, and we present the variability structure function of 5GHz sources. The mean structure function shows a fast increase on approximately 1 day time scale, followed by a slower increase on time scales of up to 10 days. On time scales between 10 - 60 days the structure function is roughly constant. We find that approx > 30% of the unresolved sources brighter than 1.8mJy are variable at the > 4-sigma confidence level, presumably due mainly to refractive scintillation.

  19. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    PubMed

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P < 0.003). No significant difference was observed in relation to other features (P = 0.11). An average of 21% decrease in scan time was achieved using the proposed method. Wave-encoded variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.

  20. International comparisons of the associations between objective measures of the built environment and transport-related walking and cycling: IPEN Adult Study

    PubMed Central

    Christiansen, Lars B.; Cerin, Ester; Badland, Hannah; Kerr, Jacqueline; Davey, Rachel; Troelsen, Jens; van Dyck, Delfien; Mitáš, Josef; Schofield, Grant; Sugiyama, Takemi; Salvo, Deborah; Sarmiento, Olga L.; Reis, Rodrigo; Adams, Marc; Frank, Larry; Sallis, James F.

    2016-01-01

    Introduction Mounting evidence documents the importance of urban form for active travel, but international studies could strengthen the evidence. The aim of the study was to document the strength, shape, and generalizability of relations of objectively measured built environment variables with transport-related walking and cycling. Methods This cross-sectional study maximized variation of environments and demographics by including multiple countries and by selecting adult participants living in neighborhoods based on higher and lower classifications of objectively measured walkability and socioeconomic status. Analyses were conducted on 12,181 adults aged 18–66 years, drawn from 14 cities across 10 countries worldwide. Frequency of transport-related walking and cycling over the last seven days was assessed by questionnaire and four objectively measured built environment variables were calculated. Associations of built environment variables with transport-related walking and cycling variables were estimated using generalized additive mixed models, and were tested for curvilinearity and study site moderation. Results We found positive associations of walking for transport with all the environmental attributes, but also found that the relationships was only linear for land use mix, but not for residential density, intersection density, and the number of parks. Our findings suggest that there may be optimum values in these attributes, beyond which higher densities or number of parks could have minor or even negative impact. Cycling for transport was associated linearly with residential density, intersection density (only for any cycling), and land use mix, but not with the number of parks. Conclusion Across 14 diverse cities and countries, living in more densely populated areas, having a well-connected street network, more diverse land uses, and having more parks were positively associated with transport-related walking and/or cycling. Except for land-use-mix, all built environment variables had curvilinear relationships with walking, with a plateau in the relationship at higher levels of the scales. PMID:28111613

  1. Using multi-spectral imagery to detect and map stress induced by Russian wheat aphid

    NASA Astrophysics Data System (ADS)

    Backoulou, Georges Ferdinand

    Scope and Method of Study. The rationale of this study was to assess the stress in wheat field induced by the Russian wheat aphid using multispectral imagery. The study was conducted to (a) determine the relationship between RWA and edaphic and topographic factors; (b) identify and quantify the spatial pattern of RWA infestation within wheat fields; (c) differentiate the stress induced by RWA from other stress causing factors. Data used for the analysis included RWA population density from the wheat field in, Texas, Colorado, Wyoming, and Nebraska, Digital Elevation Model from the Unites States Geological Survey (USGS), soil data from the Soil Survey Geographic database (SSURGO), and multispectral imagery acquired in the panhandle of Oklahoma. Findings and Conclusions. The study revealed that the population density of the Russian wheat aphid was related to topographic and edaphic factors. Slope and sand were predictor variables that were positively related to the density of RWA at the field level. The study has also demonstrated that stress induced by the RWA has a specific spatial pattern that can be distinguished from other stress causing factors using a combination of landscape metrics and topographic and edaphic characteristics of wheat fields. Further field-based studies using multispectral imagery and spatial pattern analysis are suggested. The suggestions require acquiring biweekly multispectral imagery and collecting RWA, topographic and edaphic data at the sampling points during the phonological growth development of wheat plants. This is an approach that may pretend to have great potential for site specific technique for the integrated pest management.

  2. Variability of bulk density of distillers dried grains with solubles (DDGS) during gravity-driven discharge.

    PubMed

    Clementson, C L; Ileleji, K E

    2010-07-01

    Loading railcars with consistent tonnage has immense cost implications for the shipping of distillers' dried grains with soluble (DDGS) product. Therefore, this study was designed to investigate the bulk density variability of DDGS during filling of railcar hoppers. An apparatus was developed similar to a spinning riffler sampler in order to simulate the filling of railcars at an ethanol plant. There was significant difference (P<0.05) between the initial and final measures of bulk density and particle size as the hoppers were emptied in both mass and funnel flow patterns. Particle segregation that takes place during filling of hoppers contributed to the bulk density variation and was explained by particle size variation. This phenomenon is most likely the same throughout the industry and an appropriate sampling procedure should be adopted for measuring the bulk density of DDGS stored silos or transported in railcar hoppers. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Children with Heavy Prenatal Alcohol Exposure have Different Frequency Domain Signal Characteristics when Producing Isometric Force

    PubMed Central

    Nguyen, Tanya T.; Ashrafi, Ashkan; Thomas, Jennifer D.; Riley, Edward P.; Simmons, Roger W.

    2013-01-01

    To extend our current understanding of the teratogenic effects of prenatal alcohol exposure on the control of isometric force, the present study investigated the signal characteristics of power spectral density functions resulting from sustained control of isometric force by children with and without heavy prenatal exposure to alcohol. It was predicted that the functions associated with the force signals would be fundamentally different for the two groups. Twenty-five children aged between 7 and 17 years with heavy prenatal alcohol exposure and 21 non-alcohol exposed control children attempted to duplicate a visually represented target force by pressing on a load cell. The level of target force (5 and 20% of maximum voluntary contraction) and the time interval between visual feedback (20ms, 320ms and 740ms) were manipulated. A multivariate spectral estimation method with sinusoidal windows was applied to individual isometric force-time signals. Analysis of the resulting power spectral density functions revealed that the alcohol-exposed children had a lower mean frequency, less spectral variability, greater peak power and a lower frequency at which peak power occurred. Furthermore, mean frequency and spectral variability produced by the alcohol-exposed group remained constant across target load and visual feedback interval, suggesting that these children were limited to making long-time scale corrections to the force signal. In contrast, the control group produced decreased mean frequency and spectral variability as target force and the interval between visual feedback increased, indicating that when feedback was frequently presented these children used the information to make short-time scale adjustments to the ongoing force signal. Knowledge of these differences could facilitate the design of motor rehabilitation exercises that specifically target isometric force control deficits in alcohol-exposed children. PMID:23238099

  4. Depth-Variable Settlement Patterns and Predation Influence on Newly Settled Reef Fishes (Haemulon spp., Haemulidae)

    PubMed Central

    Jordan, Lance K. B.; Lindeman, Kenyon C.; Spieler, Richard E.

    2012-01-01

    During early demersal ontogeny, many marine fishes display complex habitat-use patterns. Grunts of the speciose genus Haemulon are among the most abundant fishes on western North Atlantic coral reefs, with most species settling to shallow habitats (≤12 m). To gain understanding into cross-shelf distributional patterns exhibited by newly settled stages of grunts (<2 cm total length), we examined: 1) depth-specific distributions of congeners at settlement among sites at 8 m, 12 m, and 21 m, and 2) depth-variable predation pressure on newly settled individuals (species pooled). Of the six species identified from collections of newly settled specimens (n = 2125), Haemulon aurolineatum (tomtate), H. flavolineatum (French grunt), and H. striatum (striped grunt) comprised 98% of the total abundance; with the first two species present at all sites. Prevalence of H. aurolineatum and H. flavolineatum decreased substantially from the 8-m site to the two deeper sites. In contrast, H. striatum was absent from the 8-m site and exhibited its highest frequency at the 21-m site. Comparison of newly settled grunt delta density for all species on caged (predator exclusion) and control artificial reefs at the shallowest site (8-m) revealed no difference, while the 12-m and 21-m sites exhibited significantly greater delta densities on the caged treatment. This result, along with significantly higher abundances of co-occurring piscivorous fishes at the deeper sites, indicated lower predation pressure at the 8-m site. This study suggests habitat-use patterns of newly settled stages of some coral reef fishes that undergo ontogenetic shifts are a function of depth-variable predation pressure while, for at least one deeper-water species, proximity to adult habitat appears to be an important factor affecting settlement distribution. PMID:23272077

  5. Spatial climate patterns explain negligible variation in strength of compensatory density feedbacks in birds and mammals.

    PubMed

    Herrando-Pérez, Salvador; Delean, Steven; Brook, Barry W; Cassey, Phillip; Bradshaw, Corey J A

    2014-01-01

    The use of long-term population data to separate the demographic role of climate from density-modified demographic processes has become a major topic of ecological investigation over the last two decades. Although the ecological and evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation, disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series length) and phylogenetic non-independence. Climatic factors explained < 1% of the remaining variation in density-feedback strength across species, with the highest non-control, model-averaged effect sizes related to extreme precipitation variables. We could not link our results directly to other published studies, because ecologists use contrasting responses, predictors and statistical approaches to correlate density feedback and climate--at the expense of comparability in a macroecological context. Censuses of multiple populations within a given species, and a priori knowledge of the spatial scales at which density feedbacks interact with climate, seem to be necessary to determine cross-taxa variation in this phenomenon. Despite the availability of robust modelling tools, the appropriate data have not yet been gathered for most species, meaning that we cannot yet make any robust generalisations about how demographic feedbacks interact with climate.

  6. Spatial Climate Patterns Explain Negligible Variation in Strength of Compensatory Density Feedbacks in Birds and Mammals

    PubMed Central

    Herrando-Pérez, Salvador; Delean, Steven; Brook, Barry W.; Cassey, Phillip; Bradshaw, Corey J. A.

    2014-01-01

    The use of long-term population data to separate the demographic role of climate from density-modified demographic processes has become a major topic of ecological investigation over the last two decades. Although the ecological and evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation, disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series length) and phylogenetic non-independence. Climatic factors explained < 1% of the remaining variation in density-feedback strength across species, with the highest non-control, model-averaged effect sizes related to extreme precipitation variables. We could not link our results directly to other published studies, because ecologists use contrasting responses, predictors and statistical approaches to correlate density feedback and climate – at the expense of comparability in a macroecological context. Censuses of multiple populations within a given species, and a priori knowledge of the spatial scales at which density feedbacks interact with climate, seem to be necessary to determine cross-taxa variation in this phenomenon. Despite the availability of robust modelling tools, the appropriate data have not yet been gathered for most species, meaning that we cannot yet make any robust generalisations about how demographic feedbacks interact with climate. PMID:24618822

  7. Low density lipoprotein fraction assay for cardiac disease risk

    DOEpatents

    Krauss, Ronald M.; Blanche, Patricia J.; Orr, Joseph

    1999-01-01

    A variable rate density gradient electrophoric gel is described which separate LDL subfractions with the precision of ultracentrifugation techniques. Also, an innovative bottom inlet mixing chamber particularly useful for producing these gels is described.

  8. Feedstock and Conversion Supply System Design and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, J.; Mohammad, R.; Cafferty, K.

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption frommore » incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.« less

  9. Study of gravity waves propagation in the thermosphere of Mars based on MAVEN/NGIMS density measurements

    NASA Astrophysics Data System (ADS)

    Vals, M.

    2017-09-01

    We use MAVEN/NGIMS CO2 density measurements to analyse gravity waves in the thermosphere of Mars. In particular the seasonal/latitudinal variability of their amplitude is studied and interpreted. Key background parameters controlling the activity of gravity waves are analysed with the help of the Mars Climate Database (MCD). Gravity waves activity presents a good anti-correlation to the temperature variability retrieved from the MCD. An analysis at pressure levels is ongoing.

  10. SU-C-213-02: Characterizing 3D Printing in the Fabrication of Variable Density Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madamesila, J; McGeachy, P; Villarreal-Barajas, J

    Purpose: In this work, we present characterization, process flow, quality control and application of 3D fabricated low density phantoms for radiotherapy quality assurance. Methods: A Rostock delta 3D printer using polystyrene filament of diameter 1.75 mm was used to print geometric volumes of 2×2×1 cm{sup 3} of varying densities. The variable densities of 0.1 to 0.75 g/cm {sup 3} were created by modulating the infill. A computed tomography (CT) scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. The time required to print thesemore » volumes was also recorded. Using the calibration, two low density cones (0.19, 0.52 g/cm{sup 3}) were printed and benchmarked against commercially available phantoms. The dosimetric validation of the low density scaling of Anisotropic Analytical Algorithm (AAA) was performed by using a 0.5 g/cm{sup 3} slab of 10×10×2.4 cm{sup 3} with EBT3 GafChromic film. The gamma analysis at 3%/3mm criteria were compared for the measured and computed dose planes. Results: Analysis of the volume of air pockets in the infill resulted in a reasonable uniformity for densities 0.4 to 0.75 g/cm{sup 3}. Printed phantoms with densities below 0.4 g/cm{sup 3} exhibited a higher ratio of air to polystyrene resulting in large non-uniformity. Compared to the commercial inserts, good agreement was observed only for the printed 0.52 g/cm{sup 3} cone. Dosimetric comparison for a printed low density volume placed in-between layers of solid water resulted in >95% gamma agreement between AAA calculated dose planes and measured EBT3 films for a 6MV 5×5 cm{sup 2} clinical beam. The comparison showed disagreement in the penumbra region. Conclusion: In conclusion, 3D printing technology opens the door to desktop fabrication of variable density phantoms at economical prices in an efficient manner for the quality assurance needs of a small clinic.« less

  11. BLM Density Management and Riparian Buffer Study: Establishment Report and Study Plan

    USGS Publications Warehouse

    Cissel, John H.; Anderson, P.D.; Olson, Deanna H.; Puettmann, Klaus; Berryman, Shanti; Chan, Samuel; Thompson, Charley

    2006-01-01

    The Bureau of Land Management (BLM), Pacific Northwest Research Station (PNW), U.S. Geological Survey (USGS), and Oregon State University (OSU) established the BLM Density Management and Riparian Buffer Study (DMS) in 1994 to demonstrate and test options for young stand management to meet Northwest Forest Plan objectives in western Oregon. The primary objectives of the DMS are to evaluate the effects of alternative forest density management treatments in young stands on the development of important late-successional forest habitat attributes and to assess the combined effects of density management and alternative riparian buffer widths on aquatic and riparian ecosystems. The DMS consists of three integrated studies: initial thinning, rethinning, and riparian buffer widths. The initial thinning study was installed in 50- to 80-year-old stands that had never been commercially thinned. Four stand treatments of 30-60 acres each were established at each of seven study sites: (1) unthinned control, (2) high density retention [120 trees per acre (TPA)], (3) moderate density retention (80 TPA), and (4) variable density retention (40-120 TPA). Small (1/4 to 1 acre in size) leave islands were included in all treatments except the control, and small patch cuts (1/4 to 1 acre in size) were included in the moderate and variable density treatments. An eighth site, Callahan Creek, contains a partial implementation of the study design. The rethinning study was installed in four 70- to 90-year-old stands that previously had been commercially thinned. Each study stand was split into two parts: one part as an untreated control and the other part as a rethinning (30-60 TPA). The riparian buffer study was nested within the moderate density retention treatment at each of the eight initial thinning study sites and two rethinning sites. Alternative riparian buffer widths included: (1) streamside retention (one tree canopy width, or 20-25 feet), (2) variable width (follows topographic and vegetative breaks, 50 feet slope distance minimum), (3) one full site-potential tree height (approximately 220 feet), and (4) two full tree heights (approximately 440 feet). A second round of density management manipulations are now being planned for implementation beginning in 2009. Stem density will be reduced in the high, moderate, and variable density treatments and most existing riparian buffers, leave islands, and patch cuts will remain in place. Remeasurement, data management, and analysis are ongoing for three long-term, core components of the DMS: vegetation, microclimate, and aquatic vertebrates. In addition, several short-term collaborative studies have been completed on these sites, including leave island effectiveness as refugia, treatment response of terrestrial and aquatic arthropods, and smaller-scale studies of fungal, lichen, and bryophyte community response. Additional collaborative studies are encouraged on DMS sites.

  12. Interleukins 6 and 8 and abdominal fat depots are distinct correlates of lipid moieties in healthy pre- and postmenopausal women.

    PubMed

    Veldhuis, Johannes D; Dyer, Roy B; Trushin, Sergey A; Bondar, Olga P; Singh, Ravinder J; Klee, George G

    2016-12-01

    Available data associate lipids concentrations in men with body mass index, anabolic steroids, age, and certain cytokines. Data were less clear in women, especially across the full adult lifespan, and when segmented by premenopausal and postmenopausal status. 120 healthy women (60 premenopausal and 60 postmenopausal) in Olmsted County, MN, USA, a stable well studied clinical population. Dependent variables: measurements of 10 h fasting high-density lipoprotein cholesterol, total cholesterol, low-density lipoprotein cholesterol, and triglycerides. testosterone, estrone, estradiol, 5-alpha-dihydrotestosterone, and sex-hormone binding globulin (by mass spectrometry); insulin, glucose, and albumin; abdominal visceral, subcutaneous, and total abdominal fat [abdominal visceral fat, subcutaneous fat, total abdominal fat by computerized tomography scan]; and a panel of cytokines (by enzyme-linked immunosorbent assay). Multivariate forward-selection linear-regression analysis was applied constrained to P < 0.01. Lifetime data: High-density lipoprotein cholesterol was correlated jointly with age (P < 0.0001, positively), abdominal visceral fat (P < 0.0001, negatively), and interleukin-6 (0.0063, negatively), together explaining 28.1 % of its variance (P = 2.3 × 10 -8 ). Total cholesterol was associated positively with multivariate age only (P = 6.9 × 10 -4 , 9.3 % of variance). Triglycerides correlated weakly with sex-hormone binding globulin (P = 0.0115), and strongly with abdominal visceral fat (P < 0.0001), and interleukin-6 (P = 0.0016) all positively (P = 1.6 × 10 -12 , 38.9 % of variance). Non high-density lipoprotein cholesterol and low-density lipoprotein cholesterol correlated positively with both total abdominal fat and interleukin-8 (P = 2.0 × 10 -5 , 16.9 % of variance; and P = 0.0031, 9.4 % of variance, respectively). Premenopausal vs. postmenopausal comparisons identified specific relationships that were stronger in premenopausal than postmenopausal individuals, and vice versa. Age was a stronger correlate of low-density lipoprotein cholesterol; interleukin-6 of triglycerides and high-density lipoprotein; and both sex-hormone binding globulin and total abdominal fat of non high-density lipoprotein cholesterol in premenopausal than postmenopausal women. Conversely, sex-hormone binding globulin, abdominal visceral fat, interleukin-8, adiponectin were stronger correlates of triglycerides; abdominal visceral fat, and testosterone of high-density lipoprotein cholesterol; and age of both non high-density lipoprotein and low-density lipoprotein in postmenopausal than premenopausal women. Our data delineate correlations of total abdominal fat and interleukin-8 (both positively) with non high-density lipoprotein cholesterol and low-density lipoprotein cholesterol in healthy women across the full age range of 21-79 years along with even more specific associations in premenopausal and postmenopausal individuals. Whether some of these outcomes reflect causal relationships would require longitudinal and interventional or genetic studies.

  13. Random dopant fluctuations and statistical variability in n-channel junctionless FETs

    NASA Astrophysics Data System (ADS)

    Akhavan, N. D.; Umana-Membreno, G. A.; Gu, R.; Antoszewski, J.; Faraone, L.

    2018-01-01

    The influence of random dopant fluctuations on the statistical variability of the electrical characteristics of n-channel silicon junctionless nanowire transistor (JNT) has been studied using three dimensional quantum simulations based on the non-equilibrium Green’s function (NEGF) formalism. Average randomly distributed body doping densities of 2 × 1019, 6 × 1019 and 1 × 1020 cm-3 have been considered employing an atomistic model for JNTs with gate lengths of 5, 10 and 15 nm. We demonstrate that by properly adjusting the doping density in the JNT, a near ideal statistical variability and electrical performance can be achieved, which can pave the way for the continuation of scaling in silicon CMOS technology.

  14. Slow recovery in desert perennial vegetation following prolonged human disturbance

    USGS Publications Warehouse

    Guo, Q.

    2004-01-01

    Questions: How long may it take for desert perennial vegetation to recover from prolonged human disturbance and how do different plant community variables (i.e. diversity, density and cover) change during the recovery process? Location: Sonoran Desert, Arizona, USA. Methods: Since protection from grazing from 1907 onwards, plant diversity, density and cover of perennial species were monitored intermittently on ten 10 m x 10 m permanent plots on Tumamoc Hill, Tucson, Arizona, USA. Results: The study shows an exceptionally slow recovery of perennial vegetation from prolonged heavy grazing and other human impacts. Since protection, overall species richness and habitat heterogeneity at the study site continued to increase until the 1960s when diversity, density and cover had been stabilized. During the same period, overall plant density and cover also increased. Species turnover increased gradually with time but no significant relation between any of the three community variables and precipitation or Palmer Drought Severity Index (PDSI) was detected. Conclusions: It took more than 50 yr for the perennial vegetation to recover from prolonged human disturbance. The increases in plant species richness, density, and cover of the perennial vegetation were mostly due to the increase of herbaceous species, especially palatable species. The lack of a clear relationship between environment (e.g. precipitation) and community variables suggests that site history and plant life history must be taken into account in examining the nature of vegetation recovery processes after disturbance.

  15. Seabirds as indicators of marine food supplies: Cairns revisited

    USGS Publications Warehouse

    Piatt, John F.; Harding, Ann M.A.; Shultz, Michael T.; Speckman, Suzann G.; van Pelt, Thomas I.; Drew, Gary S.; Kettle, Arthur B.

    2007-01-01

    In his seminal paper about using seabirds as indicators of marine food supplies, Cairns (1987, Biol Oceanogr 5:261–271) predicted that (1) parameters of seabird biology and behavior would vary in curvilinear fashion with changes in food supply, (2) the threshold of prey density over which birds responded would be different for each parameter, and (3) different seabird species would respond differently to variation in food availability depending on foraging behavior and ability to adjust time budgets. We tested these predictions using data collected at colonies of common murre Uria aalge and black-legged kittiwake Rissa tridactyla in Cook Inlet, Alaska. (1) Of 22 seabird responses fitted with linear and non-linear functions, 16 responses exhibited significant curvilinear shapes, and Akaike’s information criterion (AIC) analysis indicated that curvilinear functions provided the best-fitting model for 12 of those. (2) However, there were few differences among parameters in their threshold to prey density, presumably because most responses ultimately depend upon a single threshold for prey acquisition at sea. (3) There were similarities and some differences in how species responded to variability in prey density. Both murres and kittiwakes minimized variability (CV < 15%) in their own body condition and growth of chicks in the face of high annual variability (CV = 69%) in local prey density. Whereas kittiwake breeding success (CV = 63%, r2 = 0.89) reflected prey variability, murre breeding success did not (CV = 29%, r2< 0.00). It appears that murres were able to buffer breeding success by reallocating discretionary ‘loafing’ time to foraging effort in response (r2 = 0.64) to declining prey density. Kittiwakes had little or no discretionary time, so fledging success was a more direct function of local prey density. Implications of these results for using ‘seabirds as indicators’ are discussed.

  16. Small scale variability of snow properties on Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Wever, Nander; Leonard, Katherine; Paul, Stephan; Jacobi, Hans-Werner; Proksch, Martin; Lehning, Michael

    2016-04-01

    Snow on sea ice plays an important role in air-ice-sea interactions, as snow accumulation may for example increase the albedo. Snow is also able to smooth the ice surface, thereby reducing the surface roughness, while at the same time it may generate new roughness elements by interactions with the wind. Snow density is a key property in many processes, for example by influencing the thermal conductivity of the snow layer, radiative transfer inside the snow as well as the effects of aerodynamic forcing on the snowpack. By comparing snow density and grain size from snow pits and snow micro penetrometer (SMP) measurements, highly resolved density and grain size profiles were acquired during two subsequent cruises of the RV Polarstern in the Weddell Sea, Antarctica, between June and October 2013. During the first cruise, SMP measurements were done along two approximately 40 m transects with a horizontal resolution of approximately 30 cm. During the second cruise, one transect was made with approximately 7.5 m resolution over a distance of 500 m. Average snow densities are about 300 kg/m3, but the analysis also reveals a high spatial variability in snow density on sea ice in both horizontal and vertical direction, ranging from roughly 180 to 360 kg/m3. This variability is expressed by coherent snow structures over several meters. On the first cruise, the measurements were accompanied by terrestrial laser scanning (TLS) on an area of 50x50 m2. The comparison with the TLS data indicates that the spatial variability is exhibiting similar spatial patterns as deviations in surface topology. This suggests a strong influence from surface processes, for example wind, on the temporal development of density or grain size profiles. The fundamental relationship between variations in snow properties, surface roughness and changes therein as investigated in this study is interpreted with respect to large-scale ice movement and the mass balance.

  17. Why prostate tumour delineation based on apparent diffusion coefficient is challenging: an exploration of the tissue microanatomy.

    PubMed

    Borren, Alie; Moman, Maaike R; Groenendaal, Greetje; Boeken Kruger, Arto E; van Diest, Paul J; van der Groep, Petra; van der Heide, Uulke A; van Vulpen, Marco; Philippens, Marielle E P

    2013-11-01

    Focal boosting of prostate tumours to improve outcome, requires accurate tumour delineation. For this, the apparent diffusion coefficient (ADC) derived from diffusion-weighted MR imaging (DWI) seems a useful tool. On voxel level, the relationship between ADC and histological presence of tumour is, however, ambiguous. Therefore, in this study the relationship between ADC and histological variables was investigated on voxel level to understand the strengths and limitations of DWI for prostate tumour delineation. Twelve radical prostatectomy patients underwent a pre-operative 3.0T DWI exam and the ADC was calculated. From whole-mount histological sections cell density and glandular area were retrieved for every voxel. The distribution of all variables was described for tumour, peripheral zone (PZ) and central gland (CG) on regional and voxel level. Correlations between variables and differences between regions were calculated. Large heterogeneity of ADC on voxel level was observed within tumours, between tumours and between patients. This heterogeneity was reflected by the distribution of cell density and glandular area. On regional level, tumour was different from PZ having higher cell density (p = 0.007), less glandular area (p = 0.017) and lower ADCs (p = 0.017). ADC was correlated with glandular area (r = 0.402) and tumour volume (r = -0.608), but not with Gleason score. ADC tended to decrease with increasing cell density (r = -0.327, p = 0.073). On voxel level, correlations between ADC and histological variables varied among patients, for cell density ranging from r = -0.439 to r = 0.261 and for glandular area from r = 0.593 to r = 0.207. The variation in ADC can to a certain extent be explained by the variation in cell density and glandular area. The ADC is highly heterogeneous, which reflects the heterogeneity of malignant and benign prostate tissue. This heterogeneity might however obscure small tumours or parts of tumours. Therefore, DWI has to be used in the context of multiparametric MRI.

  18. Population ecology of polar bears in Davis Strait, Canada and Greenland

    USGS Publications Warehouse

    Peacock, Elizabeth; Taylor, Mitchell K.; Laake, Jeffrey L.; Stirling, Ian

    2013-01-01

    Until recently, the sea ice habitat of polar bears was understood to be variable, but environmental variability was considered to be cyclic or random, rather than progressive. Harvested populations were believed to be at levels where density effects were considered not significant. However, because we now understand that polar bear demography can also be influenced by progressive change in the environment, and some populations have increased to greater densities than historically lower numbers, a broader suite of factors should be considered in demographic studies and management. We analyzed 35 years of capture and harvest data from the polar bear (Ursus maritimus) subpopulation in Davis Strait, including data from a new study (2005–2007), to quantify its current demography. We estimated the population size in 2007 to be 2,158 ± 180 (SE), a likely increase from the 1970s. We detected variation in survival, reproductive rates, and age-structure of polar bears from geographic sub-regions. Survival and reproduction of bears in southern Davis Strait was greater than in the north and tied to a concurrent dramatic increase in breeding harp seals (Pagophilus groenlandicus) in Labrador. The most supported survival models contained geographic and temporal variables. Harp seal abundance was significantly related to polar bear survival. Our estimates of declining harvest recovery rate, and increasing total survival, suggest that the rate of harvest declined over time. Low recruitment rates, average adult survival rates, and high population density, in an environment of high prey density, but deteriorating and variable ice conditions, currently characterize the Davis Strait polar bears. Low reproductive rates may reflect negative effects of greater densities or worsening ice conditions.

  19. Distribution patterns of the crab Ucides cordatus (Brachyura, Ucididae) at different spatial scales in subtropical mangroves of Paranaguá Bay (southern Brazil)

    NASA Astrophysics Data System (ADS)

    Sandrini-Neto, L.; Lana, P. C.

    2012-06-01

    Heterogeneity in the distribution of organisms occurs at a range of spatial scales, which may vary from few centimeters to hundreds of kilometers. The exclusion of small-scale variability from routine sampling designs may confound comparisons at larger scales and lead to inconsistent interpretation of data. Despite its ecological and social-economic importance, little is known about the spatial structure of the mangrove crab Ucides cordatus in the southwest Atlantic. Previous studies have commonly compared densities at relatively broad scales, relying on alleged distribution patterns (e.g., mangroves of distinct composition and structure). We have assessed variability patterns of U. cordatus in mangroves of Paranaguá Bay at four levels of spatial hierarchy (10 s km, km, 10 s m and m) using a nested ANOVA and variance components measures. The potential role of sediment parameters, pneumatophore density, and organic matter content in regulating observed patterns was assessed by multiple regression models. Densities of total and non-commercial size crabs varied mostly at 10 s m to km scales. Densities of commercial size crabs differed at the scales of 10 s m and 10 s km. Variance components indicated that small-scale variation was the most important, contributing up to 70% of the crab density variability. Multiple regression models could not explain the observed variations. Processes driving differences in crab abundance were not related to the measured variables. Small-scale patchy distribution has direct implications to current management practices of U. cordatus. Future studies should consider processes operating at smaller scales, which are responsible for a complex mosaic of patches within previously described patterns.

  20. Demographic models reveal the shape of density dependence for a specialist insect herbivore on variable host plants.

    PubMed

    Miller, Tom E X

    2007-07-01

    1. It is widely accepted that density-dependent processes play an important role in most natural populations. However, persistent challenges in our understanding of density-dependent population dynamics include evaluating the shape of the relationship between density and demographic rates (linear, concave, convex), and identifying extrinsic factors that can mediate this relationship. 2. I studied the population dynamics of the cactus bug Narnia pallidicornis on host plants (Opuntia imbricata) that varied naturally in relative reproductive effort (RRE, the proportion of meristems allocated to reproduction), an important plant quality trait. I manipulated per-plant cactus bug densities, quantified subsequent dynamics, and fit stage-structured models to the experimental data to ask if and how density influences demographic parameters. 3. In the field experiment, I found that populations with variable starting densities quickly converged upon similar growth trajectories. In the model-fitting analyses, the data strongly supported a model that defined the juvenile cactus bug retention parameter (joint probability of surviving and not dispersing) as a nonlinear decreasing function of density. The estimated shape of this relationship shifted from concave to convex with increasing host-plant RRE. 4. The results demonstrate that host-plant traits are critical sources of variation in the strength and shape of density dependence in insects, and highlight the utility of integrated experimental-theoretical approaches for identifying processes underlying patterns of change in natural populations.

  1. Research on ionospheric tomography based on variable pixel height

    NASA Astrophysics Data System (ADS)

    Zheng, Dunyong; Li, Peiqing; He, Jie; Hu, Wusheng; Li, Chaokui

    2016-05-01

    A novel ionospheric tomography technique based on variable pixel height was developed for the tomographic reconstruction of the ionospheric electron density distribution. The method considers the height of each pixel as an unknown variable, which is retrieved during the inversion process together with the electron density values. In contrast to conventional computerized ionospheric tomography (CIT), which parameterizes the model with a fixed pixel height, the variable-pixel-height computerized ionospheric tomography (VHCIT) model applies a disturbance to the height of each pixel. In comparison with conventional CIT models, the VHCIT technique achieved superior results in a numerical simulation. A careful validation of the reliability and superiority of VHCIT was performed. According to the results of the statistical analysis of the average root mean square errors, the proposed model offers an improvement by 15% compared with conventional CIT models.

  2. The Subaru/XMM-Newton Deep Survey (SXDS). V. Optically Faint Variable Object Survey

    NASA Astrophysics Data System (ADS)

    Morokuma, Tomoki; Doi, Mamoru; Yasuda, Naoki; Akiyama, Masayuki; Sekiguchi, Kazuhiro; Furusawa, Hisanori; Ueda, Yoshihiro; Totani, Tomonori; Oda, Takeshi; Nagao, Tohru; Kashikawa, Nobunari; Murayama, Takashi; Ouchi, Masami; Watson, Mike G.; Richmond, Michael W.; Lidman, Christopher; Perlmutter, Saul; Spadafora, Anthony L.; Aldering, Greg; Wang, Lifan; Hook, Isobel M.; Knop, Rob A.

    2008-03-01

    We present our survey for optically faint variable objects using multiepoch (8-10 epochs over 2-4 years) i'-band imaging data obtained with Subaru Suprime-Cam over 0.918 deg2 in the Subaru/XMM-Newton Deep Field (SXDF). We found 1040 optically variable objects by image subtraction for all the combinations of images at different epochs. This is the first statistical sample of variable objects at depths achieved with 8-10 m class telescopes or the Hubble Space Telescope. The detection limit for variable components is i'vari ~ 25.5 mag. These variable objects were classified into variable stars, supernovae (SNe), and active galactic nuclei (AGNs), based on the optical morphologies, magnitudes, colors, and optical-mid-infrared colors of the host objects, spatial offsets of variable components from the host objects, and light curves. Detection completeness was examined by simulating light curves for periodic and irregular variability. We detected optical variability for 36% +/- 2% (51% +/- 3% for a bright sample with i' < 24.4 mag) of X-ray sources in the field. Number densities of variable objects as functions of time intervals Δ t and variable component magnitudes i'vari are obtained. Number densities of variable stars, SNe, and AGNs are 120, 489, and 579 objects deg-2, respectively. Bimodal distributions of variable stars in the color-magnitude diagrams indicate that the variable star sample consists of bright (V ~ 22 mag) blue variable stars of the halo population and faint (V ~ 23.5 mag) red variable stars of the disk population. There are a few candidates of RR Lyrae providing a possible number density of ~10-2 kpc-3 at a distance of >150 kpc from the Galactic center. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations (program GN-2002B-Q-30) obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Particle Physics and Astronomy Research Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  3. Benzophenone-3 ultrasound degradation in a multifrequency reactor: Response surface methodology approach.

    PubMed

    Vega-Garzon, Lina Patricia; Gomez-Miranda, Ingry Natalia; Peñuela, Gustavo A

    2018-05-01

    Response Surface Methodology was used for optimizing operating variables for a multi-frequency ultrasound reactor using BP-3 as a model compound. The response variable was the Triclosan degradation percent after 10 sonication min. Frequency at levels from 574, 856 and 1134 kHz were used. Power density, pulse time (PT), silent time (ST) and PT/ST ratio effects were also analyzed. 2 2 and 2 3 experimental designs were used for screening purposes and a central composite design was used for optimization. An optimum value of 79.2% was obtained for a frequency of 574 kHz, a power density of 200 W/L, and a PT/ST ratio of 10. Significant variables were frequency and power level, the first having an optimum value after which degradation decreases while power density level had a strong positive effect on the whole operational range. PT, ST, and PT/ST ratio were not significant variables although it was shown that pulsed mode ultrasound has better degradation rates than continuous mode ultrasound; the effect less significant at higher power levels. Copyright © 2017. Published by Elsevier B.V.

  4. Text Density and Learner-Control as Design Variables with CBI and Print Media.

    ERIC Educational Resources Information Center

    Ross, Steven M.; And Others

    This study investigated the effects of computer and print text density on learning, and the nature and effects of learner preference for different density levels in both print and computer presentation modes. Subjects were 48 undergraduate teacher education majors, who were assigned at random to six treatment groups in which a statistics lesson…

  5. Low density lipoprotein fraction assay for cardiac disease risk

    DOEpatents

    Krauss, R.M.; Blanche, P.J.; Orr, J.

    1999-07-20

    A variable rate density gradient electrophoric gel is described which separates LDL subfractions with the precision of ultracentrifugation techniques. Also, an innovative bottom inlet mixing chamber particularly useful for producing these gels is described. 8 figs.

  6. Investigation of Thermospheric and Ionospheric Changes during Ionospheric Storms with Satellite and Ground-Based Data and Modeling

    NASA Technical Reports Server (NTRS)

    Richards, Philip G.

    2001-01-01

    The purpose of this proposed research is to improve our basic understanding of the causes of ionospheric storm behavior in the midlatitude F region ionosphere. This objective will be achieved by detailed comparisons between ground based measurements of the peak electron density (N(sub m)F(sub 2)), Atmosphere Explorer satellite measurements of ion and neutral composition, and output from the Field Line Interhemispheric Plasma (FLIP) model. The primary result will be a better understanding of changes in the neutral densities and ion chemistry during magnetic storms that will improve our capability to model the weather of the ionosphere which will be needed as a basis for ionospheric prediction. Specifically, this study seeks to answer the following questions: (1) To what extent are negative ionospheric storm phases caused by changes in the atomic to molecular ratio? (2) Are the changes in neutral density ratio due to increased N2, or decreased O, or both? (3) Are there other chemical processes (e.g., excited N2) that increase O+ loss rates during negative storms? (4) Do neutral density altitude distributions differed from hydrostatic equilibrium? (5) Why do near normal nighttime densities often follow daytime depletions of electron density; and (6) Can changes in h(sub m)F2 fully account for positive storm phases? To answer these questions, we plan to combine ground-based and space-based measurements with the aid of our ionospheric model which is ideally suited to this purpose. These proposed studies will lead to a better capability to predict long term ionospheric variability, leading to better predictions of ionospheric weather.

  7. Gravitational lensing effects in a time-variable cosmological 'constant' cosmology

    NASA Technical Reports Server (NTRS)

    Ratra, Bharat; Quillen, Alice

    1992-01-01

    A scalar field phi with a potential V(phi) varies as phi exp -alpha(alpha is greater than 0) has an energy density, behaving like that of a time-variable cosmological 'constant', that redshifts less rapidly than the energy densities of radiation and matter, and so might contribute significantly to the present energy density. We compute, in this spatially flat cosmology, the gravitational lensing optical depth, and the expected lens redshift distribution for fixed source redshift. We find, for the values of alpha of about 4 and baryonic density parameter Omega of about 0.2 consistent with the classical cosmological tests, that the optical depth is significantly smaller than that in a constant-Lambda model with the same Omega. We also find that the redshift of the maximum of the lens distribution falls between that in the constant-Lambda model and that in the Einstein-de Sitter model.

  8. Steady-State Density Functional Theory for Finite Bias Conductances.

    PubMed

    Stefanucci, G; Kurth, S

    2015-12-09

    In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.

  9. Petrophysical Properties (Density and Magnetization) of Rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad Geophysical Profile in Mongolia and Their Implications

    PubMed Central

    Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan

    2013-01-01

    Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data. PMID:24324382

  10. Petrophysical properties (density and magnetization) of rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia and their implications.

    PubMed

    Yang, Tao; Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan

    2013-01-01

    Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data.

  11. Individual Colorimetric Observer Model

    PubMed Central

    Asano, Yuta; Fairchild, Mark D.; Blondé, Laurent

    2016-01-01

    This study proposes a vision model for individual colorimetric observers. The proposed model can be beneficial in many color-critical applications such as color grading and soft proofing to assess ranges of color matches instead of a single average match. We extended the CIE 2006 physiological observer by adding eight additional physiological parameters to model individual color-normal observers. These eight parameters control lens pigment density, macular pigment density, optical densities of L-, M-, and S-cone photopigments, and λmax shifts of L-, M-, and S-cone photopigments. By identifying the variability of each physiological parameter, the model can simulate color matching functions among color-normal populations using Monte Carlo simulation. The variabilities of the eight parameters were identified through two steps. In the first step, extensive reviews of past studies were performed for each of the eight physiological parameters. In the second step, the obtained variabilities were scaled to fit a color matching dataset. The model was validated using three different datasets: traditional color matching, applied color matching, and Rayleigh matches. PMID:26862905

  12. A mass-conserving mixed Fourier-Galerkin B-Spline-collocation method for Direct Numerical Simulation of the variable-density Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Reuter, Bryan; Oliver, Todd; Lee, M. K.; Moser, Robert

    2017-11-01

    We present an algorithm for a Direct Numerical Simulation of the variable-density Navier-Stokes equations based on the velocity-vorticity approach introduced by Kim, Moin, and Moser (1987). In the current work, a Helmholtz decomposition of the momentum is performed. Evolution equations for the curl and the Laplacian of the divergence-free portion are formulated by manipulation of the momentum equations and the curl-free portion is reconstructed by enforcing continuity. The solution is expanded in Fourier bases in the homogeneous directions and B-Spline bases in the inhomogeneous directions. Discrete equations are obtained through a mixed Fourier-Galerkin and collocation weighted residual method. The scheme is designed such that the numerical solution conserves mass locally and globally by ensuring the discrete divergence projection is exact through the use of higher order splines in the inhomogeneous directions. The formulation is tested on multiple variable-density flow problems.

  13. Density-Dependent Effects on Group Size Are Sex-Specific in a Gregarious Ungulate

    PubMed Central

    Vander Wal, Eric; van Beest, Floris M.; Brook, Ryan K.

    2013-01-01

    Density dependence can have marked effects on social behaviors such as group size. We tested whether changes in population density of a large herbivore (elk, Cervus canadensis) affected sex-specific group size and whether the response was density- or frequency-dependent. We quantified the probability and strength of changes in group sizes and dispersion as population density changed for each sex. We used group size data from a population of elk in Manitoba, Canada, that was experimentally reduced from 1.20 to 0.67 elk/km2 between 2002 and 2009. Our results indicated that functional responses of group size to population density are sex-specific. Females showed a positive density-dependent response in group size at population densities ≥0.70 elk/km2 and we found evidence for a minimum group size at population density ≤0.70 elk/km2. Changes in male group size were also density-dependent; however, the strength of the relationship was lower than for females. Density dependence in male group size was predominantly a result of fusion of solitary males into larger groups, rather than fusion among existing groups. Our study revealed that density affects group size of a large herbivore differently between males and females, which has important implications for the benefits e.g., alleviating predation risk, and costs of social behaviors e.g., competition for resources and mates, and intra-specific pathogen transmission. PMID:23326502

  14. Density variations and their influence on carbon stocks: case-study on two Biosphere Reserves in the Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    De Ridder, Maaike; De Haulleville, Thalès; Kearsley, Elizabeth; Van den Bulcke, Jan; Van Acker, Joris; Beeckman, Hans

    2014-05-01

    It is commonly acknowledged that allometric equations for aboveground biomass and carbon stock estimates are improved significantly if density is included as a variable. However, not much attention is given to this variable in terms of exact, measured values and density profiles from pith to bark. Most published case-studies obtain density values from literature sources or databases, this way using large ranges of density values and possible causing significant errors in carbon stock estimates. The use of one single fixed value for density is also not recommended if carbon stock increments are estimated. Therefore, our objective is to measure and analyze a large number of tree species occurring in two Biosphere Reserves (Luki and Yangambi). Nevertheless, the diversity of tree species in these tropical forests is too high to perform this kind of detailed analysis on all tree species (> 200/ha). Therefore, we focus on the most frequently encountered tree species with high abundance (trees/ha) and dominance (basal area/ha) for this study. Increment cores were scanned with a helical X-ray protocol to obtain density profiles from pith to bark. This way, we aim at dividing the tree species with a distinct type of density profile into separate groups. If, e.g., slopes in density values from pith to bark remain stable over larger samples of one tree species, this slope could also be used to correct for errors in carbon (increment) estimates, caused by density values from simplified density measurements or density values from literature. In summary, this is most likely the first study in the Congo Basin that focuses on density patterns in order to check their influence on carbon stocks and differences in carbon stocking based on species composition (density profiles ~ temperament of tree species).

  15. Exploring the full natural variability of eruption sizes within probabilistic hazard assessment of tephra dispersal

    NASA Astrophysics Data System (ADS)

    Selva, Jacopo; Sandri, Laura; Costa, Antonio; Tonini, Roberto; Folch, Arnau; Macedonio, Giovanni

    2014-05-01

    The intrinsic uncertainty and variability associated to the size of next eruption strongly affects short to long-term tephra hazard assessment. Often, emergency plans are established accounting for the effects of one or a few representative scenarios (meant as a specific combination of eruptive size and vent position), selected with subjective criteria. On the other hand, probabilistic hazard assessments (PHA) consistently explore the natural variability of such scenarios. PHA for tephra dispersal needs the definition of eruptive scenarios (usually by grouping possible eruption sizes and vent positions in classes) with associated probabilities, a meteorological dataset covering a representative time period, and a tephra dispersal model. PHA results from combining simulations considering different volcanological and meteorological conditions through a weight given by their specific probability of occurrence. However, volcanological parameters, such as erupted mass, eruption column height and duration, bulk granulometry, fraction of aggregates, typically encompass a wide range of values. Because of such a variability, single representative scenarios or size classes cannot be adequately defined using single values for the volcanological inputs. Here we propose a method that accounts for this within-size-class variability in the framework of Event Trees. The variability of each parameter is modeled with specific Probability Density Functions, and meteorological and volcanological inputs are chosen by using a stratified sampling method. This procedure allows avoiding the bias introduced by selecting single representative scenarios and thus neglecting most of the intrinsic eruptive variability. When considering within-size-class variability, attention must be paid to appropriately weight events falling within the same size class. While a uniform weight to all the events belonging to a size class is the most straightforward idea, this implies a strong dependence on the thresholds dividing classes: under this choice, the largest event of a size class has a much larger weight than the smallest event of the subsequent size class. In order to overcome this problem, in this study, we propose an innovative solution able to smoothly link the weight variability within each size class to the variability among the size classes through a common power law, and, simultaneously, respect the probability of different size classes conditional to the occurrence of an eruption. Embedding this procedure into the Bayesian Event Tree scheme enables for tephra fall PHA, quantified through hazard curves and maps representing readable results applicable in planning risk mitigation actions, and for the quantification of its epistemic uncertainties. As examples, we analyze long-term tephra fall PHA at Vesuvius and Campi Flegrei. We integrate two tephra dispersal models (the analytical HAZMAP and the numerical FALL3D) into BET_VH. The ECMWF reanalysis dataset are used for exploring different meteorological conditions. The results obtained clearly show that PHA accounting for the whole natural variability significantly differs from that based on a representative scenarios, as in volcanic hazard common practice.

  16. Large-scale forcing of the European Slope Current and associated inflows to the North Sea

    NASA Astrophysics Data System (ADS)

    Marsh, Robert; Haigh, Ivan; Cunningham, Stuart; Inall, Mark; Porter, Marie; Moat, Ben

    2017-04-01

    Drifters drogued at 50 m in the European Slope Current at the Hebridean shelf break follow a wide range of pathways, indicating highly variable Atlantic inflow to the North Sea. Slope Current pathways, timescales and transports over 1988-2007 are further quantified in an eddy-resolving ocean model hindcast. Particle trajectories calculated with model currents indicate that Slope Current water is largely "recruited" from the eastern subpolar North Atlantic. Observations of absolute dynamic topography and climatological density support theoretical expectations that Slope Current transport is to first order associated with meridional density gradients in the eastern subpolar gyre, which support a geostrophic inflow towards the slope. In the model hindcast, Slope Current transport variability is dominated by abrupt 25-50% reductions of these density gradients over 1996-1998. Concurrent changes in wind forcing, expressed in terms of density gradients, act in the same sense to reduce Slope Current transport. This indicates that coordinated regional changes of buoyancy and wind forcing acted together to reduce Slope Current transport during the 1990s. Particle trajectories further show that 10-40% of Slope Current water is destined for the northern North Sea within 6 months of passing to the west of Scotland, with a clear decline in this Atlantic inflow over 1988-2007. The influence of variable Slope Current transport on the northern North Sea is also expressed in salinity variations. A proxy for Atlantic inflow may be found in sea level records. Variability of Slope Current transport is implicit in mean sea level differences between Lerwick (Shetland) and Torshavn (Faeroes), in both tide gauge records and a longer model hindcast spanning 1958-2013. Potential impacts of this variability on North Sea biogeochemistry and ecosystems, via associated changes in temperature and seasonal stratification, are discussed.

  17. Avian predator buffers against variability in marine habitats with flexible foraging behavior

    USGS Publications Warehouse

    Schoen, Sarah K.; Piatt, John F.; Arimitsu, Mayumi L.; Heflin, Brielle; Madison, Erica N.; Drew, Gary S.; Renner, Martin; Rojek, Nora A.; Douglas, David C.; DeGange, Anthony R.

    2018-01-01

    How well seabirds compensate for variability in prey abundance and composition near their breeding colonies influences their distribution and reproductive success. We used tufted puffins (Fratercula cirrhata) as forage fish samplers to study marine food webs from the western Aleutian Islands (53°N, 173°E) to Kodiak Island (57°N, 153°W), Alaska, during August 2012–2014. Around each colony we obtained data on: environmental characteristics (sea surface temperature and salinity, seafloor depth and slope, tidal range, and chlorophyll-a), relative forage fish biomass (hydroacoustic backscatter), and seabird community composition and density at-sea. On colonies, we collected puffin chick-meals to characterize forage communities and determine meal energy density, and measured chicks to obtain a body condition index. There were distinct environmental gradients from west to east, and environmental variables differed by ecoregions: the (1) Western-Central Aleutians, (2) Eastern Aleutians, and, (3) Alaska Peninsula. Forage fish biomass, species richness, and community composition all differed markedly between ecoregions. Forage biomass was strongly correlated with environmental gradients, and environmental gradients and forage biomass accounted for ~ 50% of the variability in at-sea density of tufted puffins and all seabird taxa combined. Despite the local and regional variability in marine environments and forage, the mean biomass of prey delivered to puffin chicks did not differ significantly between ecoregions, nor did chick condition or puffin density at-sea. We conclude that puffins can adjust their foraging behavior to produce healthy chicks across a wide range of environmental conditions. This extraordinary flexibility enables their overall success and wide distribution across the North Pacific Ocean.

  18. Hip fracture in the elderly: a re-analysis of the EPIDOS study with causal Bayesian networks.

    PubMed

    Caillet, Pascal; Klemm, Sarah; Ducher, Michel; Aussem, Alexandre; Schott, Anne-Marie

    2015-01-01

    Hip fractures commonly result in permanent disability, institutionalization or death in elderly. Existing hip-fracture predicting tools are underused in clinical practice, partly due to their lack of intuitive interpretation. By use of a graphical layer, Bayesian network models could increase the attractiveness of fracture prediction tools. Our aim was to study the potential contribution of a causal Bayesian network in this clinical setting. A logistic regression was performed as a standard control approach to check the robustness of the causal Bayesian network approach. EPIDOS is a multicenter study, conducted in an ambulatory care setting in five French cities between 1992 and 1996 and updated in 2010. The study included 7598 women aged 75 years or older, in which fractures were assessed quarterly during 4 years. A causal Bayesian network and a logistic regression were performed on EPIDOS data to describe major variables involved in hip fractures occurrences. Both models had similar association estimations and predictive performances. They detected gait speed and mineral bone density as variables the most involved in the fracture process. The causal Bayesian network showed that gait speed and bone mineral density were directly connected to fracture and seem to mediate the influence of all the other variables included in our model. The logistic regression approach detected multiple interactions involving psychotropic drug use, age and bone mineral density. Both approaches retrieved similar variables as predictors of hip fractures. However, Bayesian network highlighted the whole web of relation between the variables involved in the analysis, suggesting a possible mechanism leading to hip fracture. According to the latter results, intervention focusing concomitantly on gait speed and bone mineral density may be necessary for an optimal prevention of hip fracture occurrence in elderly people.

  19. Uncertainty propagation for SPECT/CT-based renal dosimetry in 177Lu peptide receptor radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Sjögreen Gleisner, Katarina

    2015-11-01

    A computer model of a patient-specific clinical 177Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of 177Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity.

  20. Variable electrical properties in composites: Application to vanadium dioxide pigments in a polyethylene host

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfred-Duplan, C.; Musso, J.; Gavarri, J.R.

    1994-05-01

    Composite pellets were prepared from low-density polyethylene (LDPE) and vanadium dioxide powders. The VO[sub 2] pigments are used for their insulating-to-metallic transition at 341 K in order to obtain electrically variable composite materials. The volume fractions of VO[sub 2] powders vary from [phi] = 0 to [phi] = 0.55. The composite samples are characterized by X-ray diffraction and scanning electron microscopy. Complex impedance analysis in the frequency range 10[sup [minus]1] to 10[sup 6]. Hz is carried out at room temperature and at T = 363 K, to observe the insulator-metal transition of VO[sub 2] pigments dispersed in the polymer host.more » The variation of the complex impedance modulus [vert bar]Z[vert bar] with frequency and with VO[sub 2] volume fraction ([phi]) is discussed. A specific (R, C) impedance model permits interpretation of the experimental results in terms of percolation; the observed variations can be accounted for.« less

Top