Sample records for specificity unique roles

  1. Pharmacologic modulation of protein kinase C isozymes: the role of RACKs and subcellular localisation.

    PubMed

    Csukai, M; Mochly-Rosen, D

    1999-04-01

    Protein kinase C (PKC) isozymes are highly homologous kinases and several different isozymes can be present in a cell. Each isozyme is likely to mediate unique functions, but pharmacological tools to explore their isozyme-specific roles have not been available until recently. In this review, we describe the development and application of isozyme-selective inhibitors of PKC. The identification of these inhibitors stems from the observation that PKC isozymes are each localised to unique subcellular locations following activation. Inhibitors of this isozyme-unique localisation have been shown to act as selective inhibitors of the functions of individual isozymes. The identification of isozyme-specific inhibitors should allow the exploration of individual PKC isozyme function in a wide range of cell systems. Copyright 1999 The Italian Pharmacological Society.

  2. The Relation between Global and Specific Mindset with Reading Outcomes for Elementary School Students

    ERIC Educational Resources Information Center

    Petscher, Yaacov; Al Otaiba, Stephanie; Wanzek, Jeanne; Rivas, Brenna; Jones, Francesca

    2017-01-01

    An emerging body of research has evaluated the role of growth mindset in educational achievement, yet little work has focused on the unique role of mindset to standardized reading outcomes. Our study presents 4 key outcomes in a sample of 195 fourth-grade students. First, we evaluated the dimensionality of general and reading-specific mindset and…

  3. Media matters for boys too! The role of specific magazine types and television programs in the drive for thinness and muscularity in adolescent boys.

    PubMed

    Slater, Amy; Tiggemann, Marika

    2014-12-01

    This study examined the role of specific magazine types and television programs on drive for thinness and muscularity in adolescent boys. A sample of 182 adolescent boys with an average age of 15.2 years completed questionnaire measures of magazine and television consumption, drive for thinness and drive for muscularity. Different media genres showed varying relationships with drive for thinness and muscularity. Specifically, the consumption of men's magazines and the viewing of soap operas emerged as significant unique predictors of drive for thinness, with the consumption of men's magazines also offering unique prediction of drive for muscularity. A comprehensive approach that considers both type and genre of media is critical in increasing our understanding of the complex relationships between media exposure and disordered eating in adolescent boys.

  4. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell.

    PubMed

    Kagan, Herbert M; Li, Wande

    2003-03-01

    Lysyl oxidase (LO) plays a critical role in the formation and repair of the extracellular matrix (ECM) by oxidizing lysine residues in elastin and collagen, thereby initiating the formation of covalent crosslinkages which stabilize these fibrous proteins. Its catalytic activity depends upon both its copper cofactor and a unique carbonyl cofactor and has been shown to extend to a variety of basic globular proteins, including histone H1. Although the three-dimensional structure of LO has yet to be determined, the present treatise offers hypotheses based upon its primary sequence, which may underlie the prominent electrostatic component of its unusual substrate specificity as well as the catalysis-suppressing function of the propeptide domain of prolysyl oxidase. Recent studies have demonstrated that LO appears to function within the cell in a manner, which strongly modifies cellular activity. Newly discovered LO-like proteins also likely play unique roles in biology. Copyright 2002 Wiley-Liss, Inc.

  5. A subtype specific function for the extracellular domain of neuroligin 1 in hippocampal LTP

    PubMed Central

    Shipman, Seth L.; Nicoll, Roger A.

    2014-01-01

    Summary At neuronal excitatory synapses, two major subtypes of the synaptic adhesion molecule neuroligin are present. These subtypes, neuroligin 1 and neuroligin 3, have roles in synaptogenesis and synaptic maintenance that appear largely overlapping. In this study we combine electrophysiology with molecular deletion and replacement of these proteins to identify similarities and differences between these subtypes. In doing so, we identify a subtype specific role in LTP for neuroligin 1 in young CA1, which persists into adulthood in the dentate gyrus. As neuroligin 3 showed no requirement for LTP, we constructed chimeric proteins of the two excitatory neuroligin subtypes to identify the molecular determinants particular to the unique function of neuroligin 1. Using in vivo molecular replacement experiments, we find that these unique functions depend on a region in its extracellular domain containing the B site splice insertion previously shown to determine specificity of neurexin binding. PMID:23083734

  6. Pregnancy-specific distress: the role of maternal sense of coherence and antenatal mothering orientations.

    PubMed

    Staneva, Aleksandra; Morawska, Alina; Bogossian, Fiona; Wittkowski, Anja

    2016-10-01

    Maternal mental health during pregnancy has been identified as a key factor in the future physiological, emotional and social development of both the mother and her baby. Yet little is known about the factors that contribute to increased levels of pregnancy-specific distress. The present study investigated the role of two psychosocial and personality-based constructs, namely women's sense of coherence (SoC) and their mothering orientations, on their pregnancy-specific distress. During their second trimester of pregnancy, 293 Australian and New Zealand women participated in an online study. Hierarchical multiple regression analysis was used to determine the unique contribution of women's SoC (Sense of Coherence Scale, SoC 13) and their antenatal mothering orientation (Antenatal Mothering Orientation Measure-Revised, AMOM-R) to pregnancy-specific distress (Revised Prenatal Distress Questionnaire, NuPDQ). Low SoC was the best determinant of women's pregnancy-specific distress, accounting for over 45% of the variance (β = -0.33, p < 0.001, 95% CI [-0.43, -0.23]). A Regulator mothering orientation was correlated with distress but did not have a unique contribution in the final model. This study further highlights the importance of better understanding women's perceptions of emotional health and their mothering role while taking into consideration their wider social context.

  7. Content Area Literacy in the Mathematics Classroom

    ERIC Educational Resources Information Center

    Armstrong, Abbigail; Ming, Kavin; Helf, Shawnna

    2018-01-01

    Content area literacy has an important role in helping students understand content in specific disciplines, such as mathematics. Although the strategies are not unique to each individual content area, they are often adapted for use in a specific discipline. For example, mathematicians use mathematical language to make sense of new ideas and…

  8. The Unique Role of the Child Developmentalist in an Interdisciplinary Team.

    ERIC Educational Resources Information Center

    Cook, Nancy

    This paper deals with the role of the child developmentalist in improving interdisciplinary assessment and treatment of children with behavioral and learning problems. A specific task of Developmental Services of the Texas Research Institute of Mental Sciences was to optimize the utilization of professional staff in a development assessment…

  9. On Maximal Hard-Core Thinnings of Stationary Particle Processes

    NASA Astrophysics Data System (ADS)

    Hirsch, Christian; Last, Günter

    2018-02-01

    The present paper studies existence and distributional uniqueness of subclasses of stationary hard-core particle systems arising as thinnings of stationary particle processes. These subclasses are defined by natural maximality criteria. We investigate two specific criteria, one related to the intensity of the hard-core particle process, the other one being a local optimality criterion on the level of realizations. In fact, the criteria are equivalent under suitable moment conditions. We show that stationary hard-core thinnings satisfying such criteria exist and are frequently distributionally unique. More precisely, distributional uniqueness holds in subcritical and barely supercritical regimes of continuum percolation. Additionally, based on the analysis of a specific example, we argue that fluctuations in grain sizes can play an important role for establishing distributional uniqueness at high intensities. Finally, we provide a family of algorithmically constructible approximations whose volume fractions are arbitrarily close to the maximum.

  10. The Role of Personal Epistemology in the Self-Regulation of Internet-Based Learning

    ERIC Educational Resources Information Center

    Stromso, Helge I.; Braten, Ivar

    2010-01-01

    The predictability of Internet-specific epistemic beliefs for self-regulated learning within Internet technologies was examined in a sample of 84 physics undergraduates. Dimensions of Internet-specific epistemic beliefs were found to explain unique variance in Internet-based search, help-seeking, and self-regulatory strategies, respectively.…

  11. Teacher Quality and School Improvement: What Is the Role of Research?

    ERIC Educational Resources Information Center

    Mincu, Monica Elena

    2015-01-01

    In a rapidly changing world, students' success depends upon the schools' capacity to deal with their specific instructional needs. Thus, effective teaching plays the role of a unique protective factor that may reduce and even close the achievement gap. Two broad questions structure this study: What is the research contribution to teacher quality…

  12. Molecular and Behavioral Changes Associated with Adult Hippocampus-Specific SynGAP1 Knockout

    ERIC Educational Resources Information Center

    Muhia, Mary; Willadt, Silvia; Yee, Benjamin K.; Feldon, Joram; Paterna, Jean-Charles; Schwendener, Severin; Vogt, Kaspar; Kennedy, Mary B.; Knuesel, Irene

    2012-01-01

    The synaptic Ras/Rap-GTPase-activating protein (SynGAP1) plays a unique role in regulating specific downstream intracellular events in response to N-methyl-D-aspartate receptor (NMDAR) activation. Constitutive heterozygous loss of SynGAP1 disrupts NMDAR-mediated physiological and behavioral processes, but the disruptions might be of developmental…

  13. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  14. Caspase-2 Is Localized at the Golgi Complex and Cleaves Golgin-160 during Apoptosis

    PubMed Central

    Mancini, Marie; Machamer, Carolyn E.; Roy, Sophie; Nicholson, Donald W.; Thornberry, Nancy A.; Casciola-Rosen, Livia A.; Rosen, Antony

    2000-01-01

    Caspases are an extended family of cysteine proteases that play critical roles in apoptosis. Animals deficient in caspases-2 or -3, which share very similar tetrapeptide cleavage specificities, exhibit very different phenotypes, suggesting that the unique features of individual caspases may account for distinct regulation and specialized functions. Recent studies demonstrate that unique apoptotic stimuli are transduced by distinct proteolytic pathways, with multiple components of the proteolytic machinery clustering at distinct subcellular sites. We demonstrate here that, in addition to its nuclear distribution, caspase-2 is localized to the Golgi complex, where it cleaves golgin-160 at a unique site not susceptible to cleavage by other caspases with very similar tetrapeptide specificities. Early cleavage at this site precedes cleavage at distal sites by other caspases. Prevention of cleavage at the unique caspase-2 site delays disintegration of the Golgi complex after delivery of a pro-apoptotic signal. We propose that the Golgi complex, like mitochondria, senses and integrates unique local conditions, and transduces pro-apoptotic signals through local caspases, which regulate local effectors. PMID:10791974

  15. Mentoring of Junior Faculty.

    ERIC Educational Resources Information Center

    Campbell, William H.

    1992-01-01

    Some personal aspects of the mentoring relationship between senior and junior faculty are discussed, including the "psychological contract" between mentor and protege, the unique role played by the mentor in an organizational context, mentor characteristics, and 10 specific principles of effective mentoring. (MSE)

  16. A Profession Without Limits: The Changing Role of Reference Librarians.

    PubMed

    Sullo, Elaine; Gomes, Alexandra W

    2016-01-01

    Reference librarians, specifically those working in academic health sciences environments, have expanded their roles and taken on new and unique responsibilities. While librarians at The George Washington University's Himmelfarb Health Sciences Library continue to provide traditional reference services, they have gone beyond their comfort zone in many cases to become involved in activities that are outside of the librarian's established role. This article describes the current roles of Himmelfarb's reference librarians, as well as the way these librarians prepared for these roles and addressed the associated challenges.

  17. Segregation of anterior temporal regions critical for retrieving names of unique and nonunique entities reflects underlying long-range connectivity

    PubMed Central

    Mehta, Sonya; Inoue, Kayo; Rudrauf, David; Damasio, Hanna; Tranel, Daniel; Grabowski, Thomas

    2015-01-01

    Lesion-deficit studies support the hypothesis that the left anterior temporal lobe (ATL) plays a critical role in retrieving names of concrete entities. They further suggest that different regions of the left ATL process different conceptual categories. Here we test the specificity of these relationships and whether the anatomical segregation is related to the underlying organization of white matter connections. We reanalyzed data from a previous lesion study of naming and recognition across five categories of concrete entities. In voxelwise logistic regressions of lesion-deficit associations, we formally incorporated measures of disconnection of long-range association fiber tracts (FTs) and covaried for recognition and non-category specific naming deficits. We also performed fiber tractwise analyses to assess whether damage to specific FTs was preferentially associated with category-selective naming deficits. Damage to the basolateral ATL was associated with naming deficits for both unique (famous faces) and non-unique entities, whereas the damage to the temporal pole was associated with naming deficits for unique entities only. This segregation pattern remained after accounting for comorbid recognition deficits or naming deficits in other categories. The tractwise analyses showed that damage to the uncinate fasciculus was associated with naming impairments for unique entities, while damage to the inferior longitudinal fasciculus was associated with naming impairments for non-unique entities. Covarying for FT transection in voxelwise analyses rendered the cortical association for unique entities more focal. These results are consistent with the partial segregation of brain system support for name retrieval of unique and non-unique entities at both the level of cortical components and underlying white matter fiber bundles. Our study reconciles theoretic accounts of the functional organization of the left ATL by revealing both category-related processing and semantic hub sectors. PMID:26707082

  18. Differential Regulation of NOTCH2 and NOTCH3 Contribute to Their Unique Functions in Vascular Smooth Muscle Cells*

    PubMed Central

    Baeten, Jeremy T.; Lilly, Brenda

    2015-01-01

    Notch signaling is a key regulator of vascular smooth muscle cell (VSMC) phenotypes, including differentiation, proliferation, and cell survival. However, the exact contribution of the individual Notch receptors has not been thoroughly delineated. In this study, we identify unique roles for NOTCH2 and NOTCH3 in regulating proliferation and cell survival in cultured VSMCs. Our results indicate that NOTCH2 inhibits PDGF-B-dependent proliferation and its expression is decreased by PDGF-B. In contrast, NOTCH3 promotes proliferation and receptor expression is increased by PDGF-B. Additionally, data show that NOTCH3, but not NOTCH2 protects VSMCs from apoptosis and apoptosis mediators degrade NOTCH3 protein. We identified three pro-survival genes specifically regulated by NOTCH3 in cultured VSMCs and in mouse aortas. This regulation is mediated through MAP kinase signaling, which we demonstrate can be activated by NOTCH3, but not NOTCH2. Overall, this study highlights discrete roles for NOTCH2 and NOTCH3 in VSMCs and connects these roles to specific upstream regulators that control their expression. PMID:25957400

  19. The unique functional role of the C-HS hydrogen bond in the substrate specificity and enzyme catalysis of type 1 methionine aminopeptidase.

    PubMed

    Reddi, Ravikumar; Singarapu, Kiran Kumar; Pal, Debnath; Addlagatta, Anthony

    2016-07-19

    It is intriguing how nature attains recognition specificity between molecular interfaces where there is no apparent scope for classical hydrogen bonding or polar interactions. Methionine aminopeptidase (MetAP) is one such enzyme where this fascinating conundrum is at play. In this study, we demonstrate that a unique C-HS hydrogen bond exists between the enzyme methionine aminopeptidase (MetAP) and its N-terminal-methionine polypeptide substrate, which allows specific interaction between apparent apolar interfaces, imposing a strict substrate recognition specificity and efficient catalysis, a feature replicated in Type I MetAPs across all kingdoms of life. We evidence this evolutionarily conserved C-HS hydrogen bond through enzyme assays on wild-type and mutant MetAP proteins from Mycobacterium tuberculosis that show a drastic difference in catalytic efficiency. The X-ray crystallographic structure of the methionine bound protein revealed a conserved water bridge and short contacts involving the Met side-chain, a feature also observed in MetAPs from other organisms. Thermal shift assays showed a remarkable 3.3 °C increase in melting temperature for methionine bound protein compared to its norleucine homolog, where C-HS interaction is absent. The presence of C-HS hydrogen bonding was also corroborated by nuclear magnetic resonance spectroscopy through a change in chemical shift. Computational chemistry studies revealed the unique role of the electrostatic environment in facilitating the C-HS interaction. The significance of this atypical hydrogen bond is underscored by the fact that the function of MetAP is essential for any living cell.

  20. Segregation of anterior temporal regions critical for retrieving names of unique and non-unique entities reflects underlying long-range connectivity.

    PubMed

    Mehta, Sonya; Inoue, Kayo; Rudrauf, David; Damasio, Hanna; Tranel, Daniel; Grabowski, Thomas

    2016-02-01

    Lesion-deficit studies support the hypothesis that the left anterior temporal lobe (ATL) plays a critical role in retrieving names of concrete entities. They further suggest that different regions of the left ATL process different conceptual categories. Here we test the specificity of these relationships and whether the anatomical segregation is related to the underlying organization of white matter connections. We reanalyzed data from a previous lesion study of naming and recognition across five categories of concrete entities. In voxelwise logistic regressions of lesion-deficit associations, we formally incorporated measures of disconnection of long-range association fiber tracts (FTs) and covaried for recognition and non-category-specific naming deficits. We also performed fiber tractwise analyses to assess whether damage to specific FTs was preferentially associated with category-selective naming deficits. Damage to the basolateral ATL was associated with naming deficits for both unique (famous faces) and non-unique entities, whereas the damage to the temporal pole was associated with naming deficits for unique entities only. This segregation pattern remained after accounting for comorbid recognition deficits or naming deficits in other categories. The tractwise analyses showed that damage to the uncinate fasciculus (UNC) was associated with naming impairments for unique entities, while damage to the inferior longitudinal fasciculus (ILF) was associated with naming impairments for non-unique entities. Covarying for FT transection in voxelwise analyses rendered the cortical association for unique entities more focal. These results are consistent with the partial segregation of brain system support for name retrieval of unique and non-unique entities at both the level of cortical components and underlying white matter fiber bundles. Our study reconciles theoretic accounts of the functional organization of the left ATL by revealing both category-related processing and semantic hub sectors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle.

    PubMed

    Lo, Harriet P; Nixon, Susan J; Hall, Thomas E; Cowling, Belinda S; Ferguson, Charles; Morgan, Garry P; Schieber, Nicole L; Fernandez-Rojo, Manuel A; Bastiani, Michele; Floetenmeyer, Matthias; Martel, Nick; Laporte, Jocelyn; Pilch, Paul F; Parton, Robert G

    2015-08-31

    Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1(-/-) muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin-cavin system. © 2015 Lo et al.

  2. The caveolin–cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle

    PubMed Central

    Lo, Harriet P.; Nixon, Susan J.; Hall, Thomas E.; Cowling, Belinda S.; Ferguson, Charles; Morgan, Garry P.; Schieber, Nicole L.; Fernandez-Rojo, Manuel A.; Bastiani, Michele; Floetenmeyer, Matthias; Martel, Nick; Laporte, Jocelyn; Pilch, Paul F.

    2015-01-01

    Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1−/− muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin–cavin system. PMID:26323694

  3. Does microblogging convey firm-specific information? Evidence from China

    NASA Astrophysics Data System (ADS)

    Shen, Dehua; Li, Xiao; Xue, Mei; Zhang, Wei

    2017-09-01

    This paper investigates the impact of opening microblogging account in Sina Weibo on the diffusion of firm-specific information in Chinese stock market. With the unique sample of firms opening their official accounts, the empirical results show that this newly emerged information diffusion channel, i.e., Sina Weibo, plays an important role in conveying firm-specific information to the market. Generally speaking, these empirical findings have practical implications to securities regulators who have interest in monitoring the diffused information via social media.

  4. Differential Regulation of NOTCH2 and NOTCH3 Contribute to Their Unique Functions in Vascular Smooth Muscle Cells.

    PubMed

    Baeten, Jeremy T; Lilly, Brenda

    2015-06-26

    Notch signaling is a key regulator of vascular smooth muscle cell (VSMC) phenotypes, including differentiation, proliferation, and cell survival. However, the exact contribution of the individual Notch receptors has not been thoroughly delineated. In this study, we identify unique roles for NOTCH2 and NOTCH3 in regulating proliferation and cell survival in cultured VSMCs. Our results indicate that NOTCH2 inhibits PDGF-B-dependent proliferation and its expression is decreased by PDGF-B. In contrast, NOTCH3 promotes proliferation and receptor expression is increased by PDGF-B. Additionally, data show that NOTCH3, but not NOTCH2 protects VSMCs from apoptosis and apoptosis mediators degrade NOTCH3 protein. We identified three pro-survival genes specifically regulated by NOTCH3 in cultured VSMCs and in mouse aortas. This regulation is mediated through MAP kinase signaling, which we demonstrate can be activated by NOTCH3, but not NOTCH2. Overall, this study highlights discrete roles for NOTCH2 and NOTCH3 in VSMCs and connects these roles to specific upstream regulators that control their expression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Ligand binding by repeat proteins: natural and designed

    PubMed Central

    Grove, Tijana Z; Cortajarena, Aitziber L; Regan, Lynne

    2012-01-01

    Repeat proteins contain tandem arrays of small structural motifs. As a consequence of this architecture, they adopt non-globular, extended structures that present large, highly specific surfaces for ligand binding. Here we discuss recent advances toward understanding the functional role of this unique modular architecture. We showcase specific examples of natural repeat proteins interacting with diverse ligands and also present examples of designed repeat protein–ligand interactions. PMID:18602006

  6. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals

    PubMed Central

    KANEKO-ISHINO, Tomoko; ISHINO, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is “mammalian-specific genomic functions”, a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of “mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons”, based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes. PMID:26666304

  7. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals.

    PubMed

    Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is "mammalian-specific genomic functions", a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of "mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons", based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes.

  8. The nuclear import factor importin α4 can protect against oxidative stress.

    PubMed

    Young, Julia C; Ly-Huynh, Jennifer D; Lescesen, Helen; Miyamoto, Yoichi; Browne, Cate; Yoneda, Yoshihiro; Koopman, Peter; Loveland, Kate L; Jans, David A

    2013-10-01

    The importin (IMP) superfamily of nuclear transport proteins is essential to key developmental pathways, including in the murine testis where expression of the 6 distinct IMPα proteins is highly dynamic. Present predominantly from the spermatocyte stage onwards, IMPα4 is unique in showing a striking nuclear localization, a property we previously found to be linked to maintenance of pluripotency in embryonic stem cells and to the cellular stress response in cultured cells. Here we examine the role of IMPα4 in vivo for the first time using a novel transgenic mouse model in which we overexpress an IMPα4-EGFP fusion protein from the protamine 1 promoter to recapitulate endogenous testicular germ cell IMPα4 expression in spermatids. IMPα4 overexpression did not affect overall fertility, testis morphology/weight or spermatogenic progression under normal conditions, but conferred significantly (>30%) increased resistance to oxidative stress specifically in the spermatid subpopulation expressing the transgene. Consistent with a cell-specific role for IMPα4 in protecting against oxidative stress, haploid germ cells from IMPα4 null mice were significantly (c. 30%) less resistant to oxidative stress than wild type controls. These results from two unique and complementary mouse models demonstrate a novel protective role for IMPα4 in stress responses specifically within haploid male germline cells, with implications for male fertility and genetic integrity. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Dipeptidyl peptidase 4 – an important digestive peptidase in Tenebrio molitor larvae

    USDA-ARS?s Scientific Manuscript database

    Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae ...

  10. Anti-Transgender Prejudice: A Structural Equation Model of Associated Constructs

    ERIC Educational Resources Information Center

    Tebbe, Esther N.; Moradi, Bonnie

    2012-01-01

    This study aimed to identify theoretically relevant key correlates of anti-transgender prejudice. Specifically, structural equation modeling was used to test the unique relations of anti-lesbian, gay, and bisexual (LGB) prejudice; traditional gender role attitudes; need for closure; and social dominance orientation with anti-transgender prejudice.…

  11. Cyber Victimization and Aggression: Are They Linked with Adolescent Smoking and Drinking?

    ERIC Educational Resources Information Center

    Chan, Sherilynn F.; La Greca, Annette M.

    2016-01-01

    Background: Adolescent substance use represents a significant public health concern. Growing research has linked peer victimization with substance use among youth; however, less attention has been devoted to the role of cyber victimization specifically, while controlling for peer aggression. Objective: This study examined the unique associations…

  12. Anti-transgender prejudice: a structural equation model of associated constructs.

    PubMed

    Tebbe, Esther N; Moradi, Bonnie

    2012-04-01

    This study aimed to identify theoretically relevant key correlates of anti-transgender prejudice. Specifically, structural equation modeling was used to test the unique relations of anti-lesbian, gay, and bisexual (LGB) prejudice; traditional gender role attitudes; need for closure; and social dominance orientation with anti-transgender prejudice. Social desirability was controlled as a covariate in the model. Analyses of data from 250 undergraduate students indicated that anti-LGB prejudice, traditional gender role attitudes, and need for closure each had positive unique relations with anti-transgender prejudice beyond the negative association of social desirability with such prejudice. By contrast, social dominance orientation was not related uniquely to anti-transgender prejudice. Additional analyses indicated that women's mean level of anti-transgender prejudice was lower than that of men's, but the pattern of relations between the predictor variables and anti-transgender prejudice did not differ between women and men. A confirmatory factor analysis also supported the unidimensional structure of anti-transgender prejudice as operationalized by Nagoshi et al.'s (2008) Transphobia Scale.

  13. Extracellular and Intracellular Cyclophilin A, Native and Post-Translationally Modified, Show Diverse and Specific Pathological Roles in Diseases.

    PubMed

    Xue, Chao; Sowden, Mark P; Berk, Bradford C

    2018-05-01

    CypA (cyclophilin A) is a ubiquitous and highly conserved protein with peptidyl prolyl isomerase activity. Because of its highly abundant level in the cytoplasm, most studies have focused on the roles of CypA as an intracellular protein. However, emerging evidence suggests an important role for extracellular CypA in the pathogenesis of several diseases through receptor (CD147 or other)-mediated autocrine and paracrine signaling pathways. In this review, we will discuss the shared and unique pathological roles of extracellular and intracellular CypA in human cardiovascular diseases. In addition, the evolving role of post-translational modifications of CypA in the pathogenesis of disease is discussed. Finally, recent studies with drugs specific for extracellular CypA show its importance in disease pathogenesis in several animal models and make extracellular CypA a new therapeutic target. © 2018 American Heart Association, Inc.

  14. The UNIQUe Label: Supporting a Culture of Innovation and Quality in Higher Education

    NASA Astrophysics Data System (ADS)

    Boonen, Annemie; Bijnens, Helena

    European higher education institutions will need significant reforms, in order to guarantee their leading role in a globalized knowledge economy. These reforms can be enhanced by improving the way in which traditional universities integrate new technologies both in their educational activities and throughout their strategic and operational processes. The UNIQUe institutional accreditation scheme, analyzed and described in this chapter, intends to support this process of integrating the use of new technologies in higher education. With its specific open approach to quality in e-Learning, UNIQUe emphasizes innovation and creativity in a process that includes self-assessment and constructive dialog with peers and stakeholders involved. UNIQUe intends to use the institutional quality label as a catalyst for continuous improvement and change while setting up collaborative bench learning processes among universities for the adoption and integration of e-Learning.

  15. Role of T cell death in maintaining immune tolerance during persistent viral hepatitis.

    PubMed

    Larrubia, Juan Ramón; Lokhande, Megha Uttam; García-Garzón, Silvia; Miquel, Joaquín; Subirá, Dolores; Sanz-de-Villalobos, Eduardo

    2013-03-28

    Virus-specific T cells play an important role in the resolution of hepatic infection. However, during chronic hepatitis infection these cells lack their effector functions and fail to control the virus. Hepatitis B virus and hepatitis C virus have developed several mechanisms to generate immune tolerance. One of these strategies is the depletion of virus-specific T cells by apoptosis. The immunotolerogenic liver has unique property to retain and activate naïve T cell to avoid the over reactivation of immune response against antigens which is exploited by hepatotropic viruses to persist. The deletion of the virus-specific T cells occurs by intrinsic (passive) apoptotic mechanism. The pro-apoptotic molecule Bcl-2 interacting mediator (Bim) has attracted increasing attention as a pivotal involvement in apoptosis, as a regulator of tissue homeostasis and an enhancer for the viral persistence. Here, we reviewed our current knowledge on the evidence showing critical role of Bim in viral-specific T cell death by apoptotic pathways and helps in the immune tolerance.

  16. Physicians must honor refusal of treatment to restore competency by non-dangerous inmates on death row.

    PubMed

    Zonana, Howard

    2010-01-01

    The role of physicians in death penalty cases has provoked discussion in both the legal system as well as in professional organizations. Professional groups have responded by developing ethical guidelines advising physicians as to current ethical standards. Psychiatric dilemmas as a subspecialty with unique roles have required more specific guidelines. A clinical vignette provides a focus to explicate the conflicts. © 2010 American Society of Law, Medicine & Ethics, Inc.

  17. Unique and Common Mechanisms of Change across Cognitive and Dynamic Psychotherapies

    ERIC Educational Resources Information Center

    Gibbons, Mary Beth Connolly; Crits-Christoph, Paul; Barber, Jacques P.; Stirman, Shannon Wiltsey; Gallop, Robert; Goldstein, Lizabeth A.; Temes, Christina M.; Ring-Kurtz, Sarah

    2009-01-01

    The goal of this article was to examine theoretically important mechanisms of change in psychotherapy outcome across different types of treatment. Specifically, the role of gains in self-understanding, acquisition of compensatory skills, and improvements in views of the self were examined. A pooled study database collected at the University of…

  18. Colleges and Universities Want to Be Your Friend: Communicating via Online Social Networking

    ERIC Educational Resources Information Center

    Wandel, Tamara L.

    2008-01-01

    This article presents a compilation of data regarding the role of online social networks within campus communities, specifically for nonacademic purposes. Both qualitative and quantitative data methodologies are used to provide a unique perspective on a constantly evolving topic. Interviews of students and administrators allow for candid…

  19. Manufactured Metal Oxide Nanoparticles In Vitro Vascular Toxicity: Role of Size Profile and Cellular Specificity on Delivered Dose and Cytotoxicity

    EPA Science Inventory

    Metal oxide nanoparticles (NPs) are used in a range of products and applications due to their unique physicochemical properties. In vivo studies have demonstrated the ability of NPs to translocate to the distal organs, including the cardiovascular system, following various routes...

  20. Creating Learning Momentum through Overt Teaching Interactions during Real Acute Care Episodes

    ERIC Educational Resources Information Center

    Piquette, Dominique; Moulton, Carol-Anne; LeBlanc, Vicki R.

    2015-01-01

    Clinical supervisors fulfill a dual responsibility towards patient care and learning during clinical activities. Assuming such roles in today's clinical environments may be challenging. Acute care environments present unique learning opportunities for medical trainees, as well as specific challenges. The goal of this paper was to better understand…

  1. Preparing Home Visitors to Partner with Families of Infants and Toddlers

    ERIC Educational Resources Information Center

    Roggman, Lori A.; Peterson, Carla A.; Chazan-Cohen, Rachel; Ispa, Jean; Decker, Kallie B.; Hughes-Belding, Kere; Cook, Gina A.; Vallotton, Claire D.

    2016-01-01

    Home visitors provide individualized services to families of infants and young children in their homes. Due to their unique role, home visitors must develop a specialized set of critical competencies--specific knowledge, skills, and attitudes. They therefore require preparation that differs in distinct ways from the preparation typically available…

  2. Subtypes of Attachment Security in School-Age Children with Learning Disabilities

    ERIC Educational Resources Information Center

    Al-Yagon, Michal

    2012-01-01

    This study explored children's secure attachment with both parents versus one parent, as well as the unique role of children's patterns of close relationships with father and mother, for a deeper understanding of maladjustment problems among children with learning disabilities (LD). Specifically, this study identified subgroups of children with…

  3. Cerebellar Development and Disease

    PubMed Central

    Gleeson, Joseph G.

    2008-01-01

    Recent Advances The molecular control of cell type specification within the developing cerebellum as well as the genetic causes of the most common human developmental cerebellar disorders have long remained mysterious. Recent genetic lineage and loss-of-function data from mice have revealed unique and non-overlapping anatomical origins for GABAergic neurons from ventricular zone precursors and glutamatergic cell from rhombic lip precursors, mirroring distinct origins for these neurotransmitter-specific cell types in the cerebral cortex. Mouse studies elucidating the role of Ptf1a as a cerebellar ventricular zone GABerigic fate switch were actually preceded by the recognition that PTF1A mutations in humans cause cerebellar agenesis, a birth defect of the human cerebellum. Indeed, several genes for congenital human cerebellar malformations have recently been identified, including genes causing Joubert syndrome, Dandy-Walker malformation and Ponto-cerebellar hypoplasia. These studies have pointed to surprisingly complex roles for transcriptional regulation, mitochondrial function and neuronal cilia in patterning, homeostasis and cell proliferation during cerebellar development. Together mouse and human studies are synergistically advancing our understanding of the developmental mechanisms that generate the uniquely complex mature cerebellum. PMID:18513948

  4. Euthanasia: the role of the psychiatrist.

    PubMed

    Naudts, Kris; Ducatelle, Caroline; Kovacs, Jozsef; Laurens, Kristin; van den Eynde, Frederique; van Heeringen, Cornelis

    2006-05-01

    Belgium has become one of the few countries in the world where euthanasia is legally allowed within a specific juridical framework. Even more unique is the inclusion of grounds for requesting euthanasia on the basis of mental suffering. Further refinement of the legal, medical and psychiatric approach to the issue is required in order to clear up essential practical and ethical matters. Psychiatrists and their professional organisations need to play a greater role in this ongoing debate and contribute from a clinical, scientific and ethical point of view.

  5. A Comparison of Reinforcement Sensitivity Theory Measures: Unique Associations With Social Interaction Anxiety and Social Observation Anxiety.

    PubMed

    Kramer, Sam L; Rodriguez, Benjamin F

    2018-07-01

    Evidence suggests that the behavior inhibition system (BIS) and fight-flight-freeze system play a role in the individual differences seen in social anxiety disorder; however, findings concerning the role of the behavior approach system (BAS) have been mixed. To date, the role of revised reinforcement sensitivity theory (RST) subsystems underlying social anxiety has been measured with scales designed for the original RST. This study examined how the BIS, BAS, and fight, flight, freeze components of the fight-flight-freeze system uniquely relate to social interaction anxiety and social observation anxiety using both a measure specifically designed for the revised RST and a commonly used original RST measure. Comparison of regression analyses with the Jackson-5 and the commonly used BIS/BAS Scales revealed important differences in the relationships between RST subsystems and social anxiety depending on how RST was assessed. Limitations and future directions for revised RST measurement are discussed.

  6. A comprehensive review of cryogels and their roles in tissue engineering applications.

    PubMed

    Hixon, Katherine R; Lu, Tracy; Sell, Scott A

    2017-10-15

    The extracellular matrix is fundamental in providing an appropriate environment for cell interaction and signaling to occur. Replicating such a matrix is advantageous in the support of tissue ingrowth and regeneration through the field of tissue engineering. While scaffolds can be fabricated in many ways, cryogels have recently become a popular approach due to their macroporous structure and durability. Produced through the crosslinking of gel precursors followed by a subsequent controlled freeze/thaw cycle, the resulting cryogel provides a unique, sponge-like structure. Therefore, cryogels have proven advantageous for many tissue engineering applications including roles in bioreactor systems, cell separation, and scaffolding. Specifically, the matrix has been demonstrated to encourage the production of various molecules, such as antibodies, and has also been used for cryopreservation. Cryogels can pose as a bioreactor for the expansion of cell lines, as well as a vehicle for cell separation. Lastly, this matrix has shown excellent potential as a tissue engineered scaffold, encouraging regrowth at numerous damaged tissue sites in vivo. This review will briefly discuss the fabrication of cryogels, with an emphasis placed on their application in various facets of tissue engineering to provide an overview of this unique scaffold's past and future roles. Cryogels are unique scaffolds produced through the controlled freezing and thawing of a polymer solution. There is an ever-growing body of literature that demonstrates their applicability in the realm of tissue engineering as extracellular matrix analogue scaffolds; with extensive information having been provided regarding the fabrication, porosity, and mechanical integrity of the scaffolds. Additionally, cryogels have been reviewed with respect to their role in bioseparation and as cellular incubators. This all-inclusive view of the roles that cryogels can play is critical to advancing the technology and expanding its niche within biomaterials and tissue engineering research. To the best of the authors' knowledge, this is the first comprehensive review of cryogel applications in tissue engineering that includes specific looks at their growing roles as extracellular matrix analogues, incubators, and in bioseparation processes. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. The Role of Self-reports and Behavioral Measures of Interpretation Biases in Children with Varying Levels of Anxiety.

    PubMed

    Klein, Anke M; Flokstra, Emmelie; van Niekerk, Rianne; Klein, Steven; Rapee, Ronald M; Hudson, Jennifer L; Bögels, Susan M; Becker, Eni S; Rinck, Mike

    2018-04-21

    We investigated the role of self-reports and behavioral measures of interpretation biases and their content-specificity in children with varying levels of spider fear and/or social anxiety. In total, 141 selected children from a community sample completed an interpretation bias task with scenarios that were related to either spider threat or social threat. Specific interpretation biases were found; only spider-related interpretation bias and self-reported spider fear predicted unique variance in avoidance behavior on the Behavior Avoidance Task for spiders. Likewise, only social-threat related interpretation bias and self-reported social anxiety predicted anxiety during the Social Speech Task. These findings support the hypothesis that fearful children display cognitive biases that are specific to particular fear-relevant stimuli. Clinically, this insight might be used to improve treatments for anxious children by targeting content-specific interpretation biases related to individual disorders.

  8. Unique core genomes of the bacterial family vibrionaceae: insights into niche adaptation and speciation.

    PubMed

    Kahlke, Tim; Goesmann, Alexander; Hjerde, Erik; Willassen, Nils Peder; Haugen, Peik

    2012-05-10

    The criteria for defining bacterial species and even the concept of bacterial species itself are under debate, and the discussion is apparently intensifying as more genome sequence data is becoming available. However, it is still unclear how the new advances in genomics should be used most efficiently to address this question. In this study we identify genes that are common to any group of genomes in our dataset, to determine whether genes specific to a particular taxon exist and to investigate their potential role in adaptation of bacteria to their specific niche. These genes were named unique core genes. Additionally, we investigate the existence and importance of unique core genes that are found in isolates of phylogenetically non-coherent groups. These groups of isolates, that share a genetic feature without sharing a closest common ancestor, are termed genophyletic groups. The bacterial family Vibrionaceae was used as the model, and we compiled and compared genome sequences of 64 different isolates. Using the software orthoMCL we determined clusters of homologous genes among the investigated genome sequences. We used multilocus sequence analysis to build a host phylogeny and mapped the numbers of unique core genes of all distinct groups of isolates onto the tree. The results show that unique core genes are more likely to be found in monophyletic groups of isolates. Genophyletic groups of isolates, in contrast, are less common especially for large groups of isolate. The subsequent annotation of unique core genes that are present in genophyletic groups indicate a high degree of horizontally transferred genes. Finally, the annotation of the unique core genes of Vibrio cholerae revealed genes involved in aerotaxis and biosynthesis of the iron-chelator vibriobactin. The presented work indicates that genes specific for any taxon inside the bacterial family Vibrionaceae exist. These unique core genes encode conserved metabolic functions that can shed light on the adaptation of a species to its ecological niche. Additionally, our study suggests that unique core genes can be used to aid classification of bacteria and contribute to a bacterial species definition on a genomic level. Furthermore, these genes may be of importance in clinical diagnostics and drug development.

  9. Legal Issues for the Medical Director.

    PubMed

    Trulove, William G

    2015-09-04

    The nephrologist serving as medical director of a dialysis clinic must understand that the role of director is not simply an extension of being a good nephrologist. The two roles-nephrology practice and the leadership of a dialysis clinic-may be filled by a single person. However, each role contains unique tasks, requiring specific skill sets, and each role comes with inherent, associated legal risks. The medical director assumes a new level of responsibility and accountability defined by contractual obligations to the dialysis provider and by state and federal regulations. Hence, a medical director is accountable not only for providing standard-of-care treatment to his or her private practice patients dialyzed at the clinic but also for maintaining the safety of the dialysis clinic patient population and staff. Accordingly, a nephrologist serving in the role of medical director faces distinct legal risks beyond typical professional liability concerns. The medical director must also be mindful of regulatory compliance, unique avenues to licensure board complaints, and implications of careless communication habits. A thoughtful and prepared medical director can mitigate these risk exposures by understanding the sources of these challenges: contractual obligations, pertinent regulatory responsibilities, and the modern electronic communications environment. Copyright © 2015 by the American Society of Nephrology.

  10. Language and False Belief: Evidence for General, Not Specific, Effects in Cantonese-Speaking Preschoolers

    ERIC Educational Resources Information Center

    Tardif, Twila; So, Catherine Wing-Chee; Kaciroti, Niko

    2007-01-01

    Two studies were conducted with Cantonese-speaking preschoolers examining J. de Villiers's (1995) hypothesis that syntactic complements play a unique role in the acquisition of false belief (FB). In Study 1, the authors found a positive correlation between FB and syntactic complements in 72 four- to six-year-old Cantonese-speaking preschoolers.…

  11. Bilingual Children's Performance on Three Nonword Repetition Tasks: The Role of Language Experience and Ability

    ERIC Educational Resources Information Center

    Huls, Simone

    2017-01-01

    Nonword repetition (NWR) tasks represent one assessment tool for Specific Language Impairment (SLI). The use of such tasks has been established and verified for monolingual children. However, the diagnostic accuracy of NWR tasks for bilingual children has had variable results and must address several unique characteristics of this population. Gaps…

  12. The unique and cooperative roles of the Grainy head-like transcription factors in epidermal development reflect unexpected target gene specificity.

    PubMed

    Boglev, Yeliz; Wilanowski, Tomasz; Caddy, Jacinta; Parekh, Vishwas; Auden, Alana; Darido, Charbel; Hislop, Nikki R; Cangkrama, Michael; Ting, Stephen B; Jane, Stephen M

    2011-01-15

    The Grainy head-like 3 (Grhl3) gene encodes a transcription factor that plays essential roles in epidermal morphogenesis during embryonic development, with deficient mice exhibiting failed skin barrier formation, defective wound repair, and loss of eyelid fusion. Despite sharing significant sequence homology, overlapping expression patterns, and an identical core consensus DNA binding site, the other members of the Grhl family (Grhl1 and -2) fail to compensate for the loss of Grhl3 in these processes. Here, we have employed diverse genetic models, coupled with biochemical studies, to define the inter-relationships of the Grhl factors in epidermal development. We show that Grhl1 and Grhl3 have evolved complete functional independence, as evidenced by a lack of genetic interactions in embryos carrying combinations of targeted alleles of these genes. In contrast, compound heterozygous Grhl2/Grhl3 embryos displayed failed wound repair, and loss of a single Grhl2 allele in Grhl3-null embryos results in fully penetrant eyes open at birth. Expression of Grhl2 from the Grhl3 locus in homozygous knock-in mice corrects the wound repair defect, but these embryos still display a complete failure of skin barrier formation. This functional dissociation is due to unexpected differences in target gene specificity, as both GRHL2 and GRHL3 bind to and regulate expression of the wound repair gene Rho GEF 19, but regulation of the barrier forming gene, Transglutaminase 1 (TGase1), is unique to GRHL3. Our findings define the mechanisms underpinning the unique and cooperative roles of the Grhl genes in epidermal development. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Development and implementation of software systems for imaging spectroscopy

    USGS Publications Warehouse

    Boardman, J.W.; Clark, R.N.; Mazer, A.S.; Biehl, L.L.; Kruse, F.A.; Torson, J.; Staenz, K.

    2006-01-01

    Specialized software systems have played a crucial role throughout the twenty-five year course of the development of the new technology of imaging spectroscopy, or hyperspectral remote sensing. By their very nature, hyperspectral data place unique and demanding requirements on the computer software used to visualize, analyze, process and interpret them. Often described as a marriage of the two technologies of reflectance spectroscopy and airborne/spaceborne remote sensing, imaging spectroscopy, in fact, produces data sets with unique qualities, unlike previous remote sensing or spectrometer data. Because of these unique spatial and spectral properties hyperspectral data are not readily processed or exploited with legacy software systems inherited from either of the two parent fields of study. This paper provides brief reviews of seven important software systems developed specifically for imaging spectroscopy.

  14. Unique and atypical deletions in Prader–Willi syndrome reveal distinct phenotypes

    PubMed Central

    Kim, Soo-Jeong; Miller, Jennifer L; Kuipers, Paul J; German, Jennifer Ruth; Beaudet, Arthur L; Sahoo, Trilochan; Driscoll, Daniel J

    2012-01-01

    Prader–Willi syndrome (PWS) is a multisystem, contiguous gene disorder caused by an absence of paternally expressed genes within the 15q11.2-q13 region via one of the three main genetic mechanisms: deletion of the paternally inherited 15q11.2-q13 region, maternal uniparental disomy and imprinting defect. The deletion class is typically subdivided into Type 1 and Type 2 based on their proximal breakpoints (BP1–BP3 and BP2–BP3, respectively). Despite PWS being a well-characterized genetic disorder the role of the specific genes contributing to various aspects of the phenotype are not well understood. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) is a recently developed technique that detects copy number changes and aberrant DNA methylation. In this study, we initially applied MS-MLPA to elucidate the deletion subtypes of 88 subjects. In our cohort, 32 had a Type 1 and 49 had a Type 2 deletion. The remaining seven subjects had unique or atypical deletions that were either smaller (n=5) or larger (n=2) than typically described and were further characterized by array-based comparative genome hybridization. In two subjects both the PWS region (15q11.2) and the newly described 15q13.3 microdeletion syndrome region were deleted. The subjects with a unique or an atypical deletion revealed distinct phenotypic features. In conclusion, unique or atypical deletions were found in ∼8% of the deletion subjects with PWS in our cohort. These novel deletions provide further insight into the potential role of several of the genes within the 15q11.2 and the 15q13.3 regions. PMID:22045295

  15. Unique and atypical deletions in Prader-Willi syndrome reveal distinct phenotypes.

    PubMed

    Kim, Soo-Jeong; Miller, Jennifer L; Kuipers, Paul J; German, Jennifer Ruth; Beaudet, Arthur L; Sahoo, Trilochan; Driscoll, Daniel J

    2012-03-01

    Prader-Willi syndrome (PWS) is a multisystem, contiguous gene disorder caused by an absence of paternally expressed genes within the 15q11.2-q13 region via one of the three main genetic mechanisms: deletion of the paternally inherited 15q11.2-q13 region, maternal uniparental disomy and imprinting defect. The deletion class is typically subdivided into Type 1 and Type 2 based on their proximal breakpoints (BP1-BP3 and BP2-BP3, respectively). Despite PWS being a well-characterized genetic disorder the role of the specific genes contributing to various aspects of the phenotype are not well understood. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) is a recently developed technique that detects copy number changes and aberrant DNA methylation. In this study, we initially applied MS-MLPA to elucidate the deletion subtypes of 88 subjects. In our cohort, 32 had a Type 1 and 49 had a Type 2 deletion. The remaining seven subjects had unique or atypical deletions that were either smaller (n=5) or larger (n=2) than typically described and were further characterized by array-based comparative genome hybridization. In two subjects both the PWS region (15q11.2) and the newly described 15q13.3 microdeletion syndrome region were deleted. The subjects with a unique or an atypical deletion revealed distinct phenotypic features. In conclusion, unique or atypical deletions were found in ∼8% of the deletion subjects with PWS in our cohort. These novel deletions provide further insight into the potential role of several of the genes within the 15q11.2 and the 15q13.3 regions.

  16. miR-133b, a particular member of myomiRs, coming into playing its unique pathological role in human cancer.

    PubMed

    Li, Daojiang; Xia, Lu; Chen, Miao; Lin, Changwei; Wu, Hao; Zhang, Yi; Pan, Songqing; Li, Xiaorong

    2017-07-25

    MicroRNAs, a family of single-stranded and non-coding RNAs, play a crucial role in regulating gene expression at posttranscriptional level, by which it can mediate various types of physiological and pathological process in normal developmental progress and human disease, including cancer. The microRNA-133b originally defined as canonical muscle-specific microRNAs considering their function to the development and health of mammalian skeletal and cardiac muscles, but new findings coming from our group and others revealed that miR-133b have frequently abnormal expression in various kinds of human cancer and its complex complicated regulatory networks affects the tumorigenicity and development of malignant tumors. Very few existing reviews on miR-133b, until now, are principally about its role in homologous cluster (miR-1, -133 and -206s), however, most of constantly emerging new researches now are focused mainly on one of them, so In this article, to highlight the unique pathological role of miR-133b playing in tumor, we conduct a review to summarize the current understanding about one of the muscle-specific microRNAs, namely miR-133b, acting in human cancer. The review focused on the following four aspects: the overview of miR-133b, the target genes of miR-133b involved in human cancer, the expression of miR-133b and regulatory mechanisms leading to abnormal expression of miR-133b.

  17. Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function*

    PubMed Central

    Lowery, Jason; Kuczmarski, Edward R.; Herrmann, Harald; Goldman, Robert D.

    2015-01-01

    Intermediate filaments (IFs) are composed of one or more members of a large family of cytoskeletal proteins, whose expression is cell- and tissue type-specific. Their importance in regulating the physiological properties of cells is becoming widely recognized in functions ranging from cell motility to signal transduction. IF proteins assemble into nanoscale biopolymers with unique strain-hardening properties that are related to their roles in regulating the mechanical integrity of cells. Furthermore, mutations in the genes encoding IF proteins cause a wide range of human diseases. Due to the number of different types of IF proteins, we have limited this short review to cover structure and function topics mainly related to the simpler homopolymeric IF networks composed of vimentin, and specifically for diseases, the related muscle-specific desmin IF networks. PMID:25957409

  18. Cellular prostatic acid phosphatase, a PTEN-functional homologue in prostate epithelia, functions as a prostate-specific tumor suppressor

    PubMed Central

    Muniyan, Sakthivel; Ingersoll, Matthew A.; Batra, Surinder K.; Lin, Ming-Fong

    2014-01-01

    The inactivation of tumor suppressor genes (TSGs) plays a vital role in the progression of human cancers. Nevertheless, those ubiquitous TSGs have been shown with limited roles in various stages of diverse carcinogenesis. Investigation on identifying unique TSG, especially for early stage of carcinogenesis, is imperative. As such, the search for organ-specific TSGs has emerged as a major strategy in cancer research. Prostate cancer (PCa) has the highest incidence in solid tumors in US males. Cellular prostatic acid phosphatase (cPAcP) is a prostate-specific differentiation antigen. Despite intensive studies over the past several decades on PAcP as a PCa biomarker, the role of cPAcP as a PCa-specific tumor suppressor has only recently been emerged and validated. The mechanism underlying the pivotal role of cPAcP as a prostate-specific TSG is, in part, due to its function as a protein tyrosine phosphatase (PTP) as well as a phosphoinositide phosphatase (PIP), an apparent functional homologue to Phosphatase and tensin homolog (PTEN) in PCa cells. This review is focused on discussing the function of this authentic prostate-specific tumor suppressor and the mechanism behind the loss of cPAcP expression leading to prostate carcinogenesis. We review other phosphatases’ roles as TSGs which regulate oncogenic PI3K signaling in PCa and discuss the functional similarity between cPAcP and PTEN in prostate carcinogenesis. PMID:24747769

  19. Amygdala mu-opioid receptors mediate the motivating influence of cue-triggered reward expectations.

    PubMed

    Lichtenberg, Nina T; Wassum, Kate M

    2017-02-01

    Environmental reward-predictive stimuli can retrieve from memory a specific reward expectation that allows them to motivate action and guide choice. This process requires the basolateral amygdala (BLA), but little is known about the signaling systems necessary within this structure. Here we examined the role of the neuromodulatory opioid receptor system in the BLA in such cue-directed action using the outcome-specific Pavlovian-to-instrumental transfer (PIT) test in rats. Inactivation of BLA mu-, but not delta-opioid receptors was found to dose-dependently attenuate the ability of a reward-predictive cue to selectively invigorate the performance of actions directed at the same unique predicted reward (i.e. to express outcome-specific PIT). BLA mu-opioid receptor inactivation did not affect the ability of a reward itself to similarly motivate action (outcome-specific reinstatement), suggesting a more selective role for the BLA mu-opioid receptor in the motivating influence of currently unobservable rewarding events. These data reveal a new role for BLA mu-opioid receptor activation in the cued recall of precise reward memories and the use of this information to motivate specific action plans. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Unique Contributors to the Curriculum: From Research to Practice for Speech-Language Pathologists in Schools.

    PubMed

    Powell, Rachel K

    2018-04-05

    This lead article of the Clinical Forum focuses on the research that supports why speech-language pathologists (SLPs) are an integral part of the overarching curriculum for all students in schools. Focus on education has shifted to student performance in our global world, specifically in college and career readiness standards. This article reviews recommendations on best practice from the American Speech-Language-Hearing Association on SLPs' roles in schools, as well as data on school-based services. Implementation of these practices as it is applicable to school initiatives will be explored. Methods of interventions available in schools, from general education to special education, will be discussed based on national guidelines for a Response to Intervention and Multi-Tiered System of Support. Research regarding teacher knowledge of the linguistic principles of reading instruction will be explored, as well as correlation between teacher knowledge and student performance. The implications for how SLPs as the linguistic experts offer unique roles in curriculum and the evidence available to support this role will be explored. Implications for future research needs will be discussed. The demands of a highly rigorous curriculum allow SLPs a unique opportunity to apply their knowledge in linguistic principles to increase student performance and achievement. With the increased focus on student achievement, growth outcome measures, and value-added incentives, it is critical that SLPs become contributors to the curriculum for all students and that data to support this role are gathered through focused research initiatives.

  1. Student Perceptions of the Fairness of Grading Procedures: A Multilevel Investigation of the Role of the Academic Environment

    ERIC Educational Resources Information Center

    Burger, Roland

    2017-01-01

    The purpose of this study is to examine the effects of assessment method (essays vs. examinations) and instruction method (seminars vs. lectures) on student perceptions of the fairness of the assessment process. Department-specific combinations of these factors give a unique profile to the assessment process and to the way students interact with…

  2. Idiopathic Hand and Arm Pain: Delivering Cognitive Behavioral Therapy as Part of a Multidisciplinary Team in a Surgical Practice

    ERIC Educational Resources Information Center

    Vranceanu, Ana-Maria.; Ring, David; Kulich, Ronald; Zhao, Meijuan; Cowan, James; Safren, Steven

    2008-01-01

    Cognitive behavioral therapists may have a unique and growing role in orthopedics departments. In helping patients cope with pain, particularly where there is no specific biomedical treatment or cure, cognitive behavioral practitioners can help prevent, early on, the transition from an acute pain complaint to a costly, disabling, and interfering…

  3. Exploring the Role of Music in Secondary English and History Classrooms through Personal Practical Theory

    ERIC Educational Resources Information Center

    Goering, Christian Z.; Burenheide, Bradley J.

    2010-01-01

    This article explores the development of utilizing music as a Personal Practical Theory (PPT) in the teaching of English and history. Specifically, the authors explore the nature of PPT's, the benefits of utilizing music, and the process through which teachers begin using a new approach in their pedagogy. Unique contributions are the application…

  4. Thematic Journeys. And I'll Dance in My New Wedding Shoes

    ERIC Educational Resources Information Center

    Zingher, Gary

    2004-01-01

    Weddings are unique and dynamic--each flavored differently and each with a life of its own. They celebrate specific customs, rituals, and the importance of family and culture. Always, they stir up emotions, and, on occasion, they may spin and whirl, looping out of control. For children, they may inspire romantic dreams, and provide new roles to…

  5. Understanding Cultural Influences on Dietary Habits in Asian, Middle Eastern, and Latino Patients with Type 2 Diabetes: A Review of Current Literature and Future Directions.

    PubMed

    Mora, Natalie; Golden, Sherita Hill

    2017-10-23

    This review focuses on evaluating and identifying gaps in the current literature regarding culturally specific dietary influences for patients with type 2 diabetes. As this topic has previously been examined in African American populations, we chose to focus on four other distinct populations (Hispanic, Middle Eastern, Western Pacific, South Asian). Given the rapid increase in global rates of type 2 diabetes and high rates of diabetes among certain ethnic groups, it is important to understand how culturally adapted strategies in diabetes management have been described in different regions and populations. The specific role of nutrition in controlling diabetes is tied to cultural habits and customs. Variation in cultural practices, including diet, create unique environments in which patients with diabetes must navigate. The role of family, particularly among Hispanics, is crucial to cultural adaptations of diabetes management. Incorporating alternative medicine, namely observed in Chinese and Indian populations, also guided diabetes care strategies. Language barriers, health literacy, and acculturation were all unique factors affecting cultural approaches to diabetes management in these four populations. Understanding such cultural determinants is crucial to addressing diabetes disparities and improving outcomes.

  6. Role of auditory non-verbal working memory in sentence repetition for bilingual children with primary language impairment.

    PubMed

    Ebert, Kerry Danahy

    2014-01-01

    Sentence repetition performance is attracting increasing interest as a valuable clinical marker for primary (or specific) language impairment (LI) in both monolingual and bilingual populations. Multiple aspects of memory appear to contribute to sentence repetition performance, but non-verbal memory has not yet been considered. To explore the relationship between a measure of non-verbal auditory working memory (NVWM) and sentence repetition performance in a sample of bilingual children with LI. Forty-seven school-aged Spanish-English bilingual children with LI completed sentence repetition and non-word repetition tasks in both Spanish and English as well as an NVWM task. Hierarchical multiple linear regression was used to predict sentence repetition in each language using age, non-word repetition and NVWM. NVWM predicted unique variance in sentence repetition performance in both languages after accounting for chronological age and language-specific phonological memory, as measured by non-word repetition. Domain-general memory resources play a unique role in sentence repetition performance in children with LI. Non-verbal working memory weaknesses may contribute to the poor performance of children with LI on sentence repetition tasks. © 2014 Royal College of Speech and Language Therapists.

  7. The Role of Auditory Nonverbal Working Memory in Sentence Repetition for Bilingual Children with Primary Language Impairment

    PubMed Central

    Ebert, Kerry Danahy

    2015-01-01

    Background Sentence repetition performance is attracting increasing interest as a valuable clinical marker for Primary (or Specific) Language Impairment (LI) in both monolingual and bilingual populations. Multiple aspects of memory appear to contribute to sentence repetition performance, but nonverbal memory has not yet been considered. Aims The purpose of this study was to explore the relationship between a measure of nonverbal auditory working memory (NVWM) and sentence repetition performance in a sample of bilingual children with LI. Methods & Procedures Forty-seven school-aged Spanish-English bilingual children with LI completed sentence repetition and nonword repetition tasks in both Spanish and English as well as an NVWM task. Hierarchical multiple linear regression was used to predict sentence repetition in each language using age, nonword repetition, and NVWM. Outcomes & Results NVWM predicted unique variance in sentence repetition performance in both languages after accounting for chronological age and language-specific phonological memory, as measured by nonword repetition. Conclusions & Implications Domain-general memory resources play a unique role in sentence repetition performance in children with LI. Nonverbal working memory weaknesses may contribute to the poor performance of children with LI on sentence repetition tasks. PMID:24894308

  8. LEAFY blossoms.

    PubMed

    Moyroud, Edwige; Kusters, Elske; Monniaux, Marie; Koes, Ronald; Parcy, François

    2010-06-01

    The LEAFY (LFY) gene of Arabidopsis and its homologs in other angiosperms encode a unique plant-specific transcription factor that assigns the floral fate of meristems and plays a key role in the patterning of flowers, probably since the origin of flowering plants. LFY-like genes are also found in gymnosperms, ferns and mosses that do not produce flowers, but their role in these plants is poorly understood. Here, we review recent findings explaining how the LFY protein works and how it could have evolved throughout land plant history. We propose that LFY homologs have an ancestral role in regulating cell division and arrangement, and acquired novel functions in seed plants, such as activating reproductive gene networks.

  9. Nematogalectin, a nematocyst protein with GlyXY and galectin domains, demonstrates nematocyte-specific alternative splicing in Hydra

    PubMed Central

    Hwang, Jung Shan; Takaku, Yasuharu; Momose, Tsuyoshi; Adamczyk, Patrizia; Özbek, Suat; Ikeo, Kazuho; Khalturin, Konstantin; Hemmrich, Georg; Bosch, Thomas C. G.; Holstein, Thomas W.; David, Charles N.; Gojobori, Takashi

    2010-01-01

    Taxonomically restricted genes or lineage-specific genes contribute to morphological diversification in metazoans and provide unique functions for particular taxa in adapting to specific environments. To understand how such genes arise and participate in morphological evolution, we have investigated a gene called nematogalectin in Hydra, which has a structural role in the formation of nematocysts, stinging organelles that are unique to the phylum Cnidaria. Nematogalectin is a 28-kDa protein with an N-terminal GlyXY domain (glycine followed by two hydrophobic amino acids), which can form a collagen triple helix, followed by a galactose-binding lectin domain. Alternative splicing of the nematogalectin transcript allows the gene to encode two proteins, nematogalectin A and nematogalectin B. We demonstrate that expression of nematogalectin A and B is mutually exclusive in different nematocyst types: Desmonemes express nematogalectin B, whereas stenoteles and isorhizas express nematogalectin B early in differentiation, followed by nematogalectin A. Like Hydra, the marine hydrozoan Clytia also has two nematogalectin transcripts, which are expressed in different nematocyte types. By comparison, anthozoans have only one nematogalectin gene. Gene phylogeny indicates that tandem duplication of nematogalectin B exons gave rise to nematogalectin A before the divergence of Anthozoa and Medusozoa and that nematogalectin A was subsequently lost in Anthozoa. The emergence of nematogalectin A may have played a role in the morphological diversification of nematocysts in the medusozoan lineage. PMID:20937891

  10. The Emerging Role of Meditation in Addressing Psychiatric Illness, with a Focus on Substance Use Disorders

    PubMed Central

    Dakwar, Elias; Levin, Frances R.

    2011-01-01

    Over the past 30 years the practice of meditation has become increasingly popular in clinical settings. In addition to evidence-based medical uses, meditation may have psychiatric benefits. In this review, the literature on the role of meditation in addressing psychiatric issues, and specifically substance use disorders, is discussed. Each of the three meditation modalities that have been most widely studied—transcendental meditation, Buddhist meditation, and mindfulness-based meditation—is critically examined in terms of its background, techniques, mechanisms of action, and evidence-based clinical applications, with special attention given to its emerging role in the treatment of substance use disorders. The unique methodological difficulties that beset the study of meditation are also considered. A brief discussion then integrates the research that has been completed thus far, elucidates the specific ways that meditation may be helpful for substance use disorders, and suggests new avenues for research. PMID:19637074

  11. Vacuolar protein sorting mechanisms in plants.

    PubMed

    Xiang, Li; Etxeberria, Ed; Van den Ende, Wim

    2013-02-01

    Plant vacuoles are unique, multifunctional organelles among eukaryotes. Considerable new insights in plant vacuolar protein sorting have been obtained recently. The basic machinery of protein export from the endoplasmic reticulum to the Golgi and the classical route to the lytic vacuole and the protein storage vacuole shows many similarities to vacuolar/lysosomal sorting in other eukaryotes. However, as a result of its unique functions in plant defence and as a storage compartment, some plant-specific entities and sorting determinants appear to exist. The alternative post-Golgi route, as found in animals and yeast, probably exists in plants as well. Likely, adaptor protein complex 3 fulfils a central role in this route. A Golgi-independent route involving plant-specific endoplasmic reticulum bodies appears to provide sedentary organisms such as plants with extra flexibility to cope with changing environmental conditions. © 2012 The Authors Journal compilation © 2012 FEBS.

  12. Cis-regulatory RNA elements that regulate specialized ribosome activity.

    PubMed

    Xue, Shifeng; Barna, Maria

    2015-01-01

    Recent evidence has shown that the ribosome itself can play a highly regulatory role in the specialized translation of specific subpools of mRNAs, in particular at the level of ribosomal proteins (RP). However, the mechanism(s) by which this selection takes place has remained poorly understood. In our recent study, we discovered a combination of unique RNA elements in the 5'UTRs of mRNAs that allows for such control by the ribosome. These mRNAs contain a Translation Inhibitory Element (TIE) that inhibits general cap-dependent translation, and an Internal Ribosome Entry Site (IRES) that relies on a specific RP for activation. The unique combination of an inhibitor of general translation and an activator of specialized translation is key to ribosome-mediated control of gene expression. Here we discuss how these RNA regulatory elements provide a new level of control to protein expression and their implications for gene expression, organismal development and evolution.

  13. Mindfulness moderates the relationship between aggression and Antisocial Personality Disorder traits: Preliminary investigation with an offender sample.

    PubMed

    Velotti, Patrizia; Garofalo, Carlo; D'Aguanno, Mario; Petrocchi, Chiara; Popolo, Raffaele; Salvatore, Giampaolo; Dimaggio, Giancarlo

    2016-01-01

    Poor mentalizing has been described as a characteristic of Antisocial Personality Disorder (ASPD), along with the well-established role of aggressiveness. In the current study, we tested this hypothesis focusing on a specific aspect of mentalization (i.e., mindfulness). We explored the unique and joint contribution of aggression dimensions and mindfulness facets to ASPD traits in an offender sample (N=83). Mindfulness deficits were associated with ASPD traits, and a significant unique association emerged between difficulties in acting with awareness and ASPD traits. Likewise, physical aggression confirmed its association with ASPD traits. Moderation analyses revealed that mindfulness interacted with aggression in predicting ASPD. Specifically, at low levels of mindfulness, the association between aggression and ASPD dropped to nonsignificance. Results suggest that fostering self-mentalizing is a relevant treatment target when treating offenders with ASPD. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Legal Issues for the Medical Director

    PubMed Central

    2015-01-01

    The nephrologist serving as medical director of a dialysis clinic must understand that the role of director is not simply an extension of being a good nephrologist. The two roles—nephrology practice and the leadership of a dialysis clinic—may be filled by a single person. However, each role contains unique tasks, requiring specific skill sets, and each role comes with inherent, associated legal risks. The medical director assumes a new level of responsibility and accountability defined by contractual obligations to the dialysis provider and by state and federal regulations. Hence, a medical director is accountable not only for providing standard-of-care treatment to his or her private practice patients dialyzed at the clinic but also for maintaining the safety of the dialysis clinic patient population and staff. Accordingly, a nephrologist serving in the role of medical director faces distinct legal risks beyond typical professional liability concerns. The medical director must also be mindful of regulatory compliance, unique avenues to licensure board complaints, and implications of careless communication habits. A thoughtful and prepared medical director can mitigate these risk exposures by understanding the sources of these challenges: contractual obligations, pertinent regulatory responsibilities, and the modern electronic communications environment. PMID:25492255

  15. Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function.

    PubMed

    Lowery, Jason; Kuczmarski, Edward R; Herrmann, Harald; Goldman, Robert D

    2015-07-10

    Intermediate filaments (IFs) are composed of one or more members of a large family of cytoskeletal proteins, whose expression is cell- and tissue type-specific. Their importance in regulating the physiological properties of cells is becoming widely recognized in functions ranging from cell motility to signal transduction. IF proteins assemble into nanoscale biopolymers with unique strain-hardening properties that are related to their roles in regulating the mechanical integrity of cells. Furthermore, mutations in the genes encoding IF proteins cause a wide range of human diseases. Due to the number of different types of IF proteins, we have limited this short review to cover structure and function topics mainly related to the simpler homopolymeric IF networks composed of vimentin, and specifically for diseases, the related muscle-specific desmin IF networks. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Pain emotion and homeostasis.

    PubMed

    Panerai, Alberto E

    2011-05-01

    Pain has always been considered as part of a defensive strategy, whose specific role is to signal an immediate, active danger. This definition partially fits acute pain, but certainly not chronic pain, that is maintained also in the absence of an active noxa or danger and that nowadays is considered a disease by itself. Moreover, acute pain is not only an automatic alerting system, but its severity and characteristics can change depending on the surrounding environment. The affective, emotional components of pain have been and are the object of extensive attention and research by psychologists, philosophers, physiologists and also pharmacologists. Pain itself can be considered to share the same genesis as emotions and as a specific emotion in contributing to the maintenance of the homeostasis of each unique subject. Interestingly, this role of pain reaches its maximal development in the human; some even argue that it is specific for the human primate.

  17. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities.

    PubMed

    Sen, Dilara; Keung, Albert J

    2018-01-01

    The advent of locus-specific protein recruitment technologies has enabled a new class of studies in chromatin biology. Epigenome editors enable biochemical modifications of chromatin at almost any specific endogenous locus. Their locus specificity unlocks unique information including the functional roles of distinct modifications at specific genomic loci. Given the growing interest in using these tools for biological and translational studies, there are many specific design considerations depending on the scientific question or clinical need. Here we present and discuss important design considerations and challenges regarding the biochemical and locus specificities of epigenome editors. These include how to account for the complex biochemical diversity of chromatin; control for potential interdependency of epigenome editors and their resultant modifications; avoid sequestration effects; quantify the locus specificity of epigenome editors; and improve locus specificity by considering concentration, affinity, avidity, and sequestration effects.

  18. p53 Hypersensitivity Is the Predominant Mechanism of the Unique Responsiveness of Testicular Germ Cell Tumor (TGCT) Cells to Cisplatin

    PubMed Central

    Gutekunst, Matthias; Oren, Moshe; Weilbacher, Andrea; Dengler, Michael A.; Markwardt, Christiane; Thomale, Jürgen; Aulitzky, Walter E.; van der Kuip, Heiko

    2011-01-01

    Consistent with the excellent clinical results in testicular germ cell tumors (TGCT), most cell lines derived from this cancer show an exquisite sensitivity to Cisplatin. It is well accepted that the high susceptibility of TGCT cells to apoptosis plays a central role in this hypersensitive phenotype. The role of the tumor suppressor p53 in this response, however, remains controversial. Here we show that siRNA-mediated silencing of p53 is sufficient to completely abrogate hypersensitivity not only to Cisplatin but also to non-genotoxic inducers of p53 such as the Mdm2 antagonist Nutlin-3 and the proteasome inhibitor Bortezomib. The close relationship between p53 protein levels and induction of apoptosis is lost upon short-term differentiation, indicating that this predominant pro-apoptotic function of p53 is unique in pluripotent embryonal carcinoma (EC) cells. RNA interference experiments as well as microarray analysis demonstrated a central role of the pro-apoptotic p53 target gene NOXA in the p53-dependent apoptotic response of these cells. In conclusion, our data indicate that the hypersensitivity of TGCT cells is a result of their unique sensitivity to p53 activation. Furthermore, in the very specific cellular context of germ cell-derived pluripotent EC cells, p53 function appears to be limited to induction of apoptosis. PMID:21532991

  19. Stem cell applications in military medicine.

    PubMed

    Christopherson, Gregory T; Nesti, Leon J

    2011-10-19

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers--and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research.

  20. Craving and substance use among patients with alcohol, tobacco, cannabis or heroin addiction: a comparison of substance- and person-specific cues.

    PubMed

    Fatseas, Melina; Serre, Fuschia; Alexandre, Jean-Marc; Debrabant, Romain; Auriacombe, Marc; Swendsen, Joel

    2015-06-01

    It is well established that craving increases following exposure to substance-related 'cues', but the role of life-styles or substance use habits that are unique to each person remains poorly understood. This study examines the association of substance-specific and personal cues with craving and substance use in daily life. Ecological momentary assessment was used during a 2-week period. Data were collected in a French out-patient addiction treatment centre. A total of 132 out-patients beginning treatment for alcohol, tobacco, cannabis or opiate addiction were included. Using mobile technologies, participants were questioned four times per day relative to craving, substance use and exposure to either substance-specific cues (e.g. seeing a syringe) or personal cues unique to that individual (e.g. seeing the specific person with whom the substance is used). Craving intensity was associated with the number of concurrently assessed substance-specific cues (t = 4.418, P < 0.001) and person-specific cues (t = 4.006, P < 0.001) when analysed jointly within the same model. However, only person-specific cues were associated with increases in craving over subsequent hours of the day (t = 2.598, P < 0.05). Craving intensity, in turn, predicted increases in later substance use (t = 4.076, P < 0.001). Causal mediation analyses demonstrated that the association of cues with later substance use was mediated by craving intensity (mediated effect = 0.007, 95% confidence interval = 0.004-0.011). Unique person-specific cues appear to have a robust effect on craving addictive substances, and the duration of this association may persist longer than for more general substance-specific cues. Mobile technologies provide new opportunities for understanding these person-specific risk factors and for providing individually tailored interventions. © 2015 Society for the Study of Addiction.

  1. The Role of Diaspora in University-Industry Relationships in Globalised Knowledge Economy: The Case of Palestine

    ERIC Educational Resources Information Center

    Sharabati-Shahin, Mervat H. N.; Thiruchelvam, K.

    2013-01-01

    University-industry (U-I) linkage is not a new concept. Although there are models for such linkage that have been tested or used, they may remain unsuitable in certain countries and communities. With the unique situation of the Palestinians, the existing models may fall short of meeting the specific needs and targets of establishing such a…

  2. Marital Quality for Men and Women in Stepfamilies: Examining the Role of Economic Pressure, Common Stressors, and Stepfamily-Specific Stressors

    ERIC Educational Resources Information Center

    Schramm, David G.; Adler-Baeder, Francesca

    2012-01-01

    Although economic pressure and family stress models have been examined with samples of men and women in first marriages, previous models have neglected to focus on men and women in stepfamilies and to examine stress sources unique to stepfamilies. This study examines the effect of economic pressure on both common stressors and stepfamily-specific…

  3. Genetic Counselors in Startup Companies: Redefining the Genetic Counselor Role.

    PubMed

    Rabideau, Marina M; Wong, Kenny; Gordon, Erynn S; Ryan, Lauren

    2016-08-01

    Genetic counselors (GCs) have recently begun moving into non-clinic based roles in increasing numbers. A relatively new role for GCs is working for startup companies. Startups are newly established companies in the phase of developing and researching new scalable businesses. This article explores the experiences of four GCs working at different startup companies and aims to provide resources for GCs interested in learning more about these types of roles. The article describes startup culture, including a relatively flat organizational structure, quick product iterations, and flexibility, among other unique cultural characteristics. Financial considerations are described, including how to understand and evaluate a company's financial status, along with a brief explanation of alternate forms of compensation including stock options and equity. Specifically, the article details the uncertainties and rewards of working in a fast-paced startup environment that affords opportunities to try new roles and use the genetic counseling skill set in new ways. This article aims to aid GCs in determining whether a startup environment would be a good fit, learning how to evaluate a specific startup, and understanding how to market themselves for positions at startups.

  4. Supporting new graduate nurses making the transition to rural nursing practice: views from experienced rural nurses.

    PubMed

    Lea, Jackie; Cruickshank, Mary

    2015-10-01

    To present the findings from the experienced rural nurse participants of a larger study that explored the transitional experiences of newly graduated nurses making the role transition in rural health care facilities in Australia. There are specific and unique aspects of rural nursing practice that influence the nature and timing of support for new graduate nurses that have not been explored or acknowledged as influencing the new graduate nurses' experience of transition. Specifically, the difficulties and challenges that experienced rural nurses face in providing effective and timely support for new graduate nurses who are making the transition to rural nursing practice is yet to be explored. Using a qualitative case study framework, this study specifically aimed to investigate and describe the nature and timing of support required during the transition to nursing practice that is specific for the rural context and capacity. Individual in-depth interviews were conducted with 16 experienced rural nurses who, at the time of the study, worked with new graduate nurses in the rural practice environment. The findings from this study showed that the provision of timely on-ward support for new graduates making the transition to rural nursing practice is affected and influenced by the skill mix and staffing allocation within the rural environment. As well, there is a lack of awareness by rural nurses of how to meet the on-ward support needs of new graduate nurses. This study has identified the specific and unique aspects of the rural nurse's role and responsibilities for which the new graduate nurse requires incremental learning and intensive clinical support. The findings can be used by rural health services and experienced rural registered nurses to assist in implementing adequate and timely support for new graduate nurses. © 2015 John Wiley & Sons Ltd.

  5. Distinct cargo-specific response landscapes underpin the complex and nuanced role of galectin-glycan interactions in clathrin-independent endocytosis.

    PubMed

    Mathew, Mohit P; Donaldson, Julie G

    2018-05-11

    Clathrin-independent endocytosis (CIE) is a form of endocytosis that lacks a defined cytoplasmic machinery. Here, we asked whether glycan interactions, acting from the outside, could be a part of that endocytic machinery. We show that the perturbation of global cellular patterns of protein glycosylation by modulation of metabolic flux affects CIE. Interestingly, these changes in glycosylation had cargo-specific effects. For example, in HeLa cells, GlcNAc treatment, which increases glycan branching, increased major histocompatibility complex class I (MHCI) internalization but inhibited CIE of the glycoprotein CD59 molecule (CD59). The effects of knocking down the expression of galectin 3, a carbohydrate-binding protein and an important player in galectin-glycan interactions, were also cargo-specific and stimulated CD59 uptake. By contrast, inhibition of all galectin-glycan interactions by lactose inhibited CIE of both MHCI and CD59. None of these treatments affected clathrin-mediated endocytosis, implying that glycosylation changes specifically affect CIE. We also found that the galectin lattice tailors membrane fluidity and cell spreading. Furthermore, changes in membrane dynamics mediated by the galectin lattice affected macropinocytosis, an altered form of CIE, in HT1080 cells. Our results suggest that glycans play an important and nuanced role in CIE, with each cargo being affected uniquely by alterations in galectin and glycan profiles and their interactions. We conclude that galectin-driven effects exist on a continuum from stimulatory to inhibitory, with distinct CIE cargo proteins having unique response landscapes and with different cell types starting at different positions on these conceptual landscapes.

  6. The low density lipoprotein receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies

    PubMed Central

    Lillis, Anna P.; Van Duyn, Lauren B.; Murphy-Ullrich, Joanne E.; Strickland, Dudley K.

    2008-01-01

    The low-density lipoprotein (LDL) receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, in macrophages and in adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: first, its ability to recognize more than thirty distinct ligands; second, its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner; and third, its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases. PMID:18626063

  7. F4/80: the macrophage-specific adhesion-GPCR and its role in immunoregulation.

    PubMed

    Lin, Hsi-Hsien; Stacey, Martin; Stein-Streilein, Joan; Gordon, Siamon

    2010-01-01

    As a macrophage-restricted reagent, the generation and application of the F4/80 mAb has greatly benefited the phenotypic characterization of mouse tissue macrophages for three decades. Following the molecular identification of the F4/80 antigen as an EGF-TM7 member of the adhesion-GPCR family, great interest was ignited to understand its cell type-specific expression pattern as well as its functional role in macrophage biology. Recent studies have shown that the F4/80 gene is regulated by a novel set of transcription factors that recognized a unique promoter sequence. Gene targeting experiments have produced two F4/80 knock out animal models and showed that F4/80 is not required for normal macrophage development. Nevertheless, the F4/80 receptor was found to be necessary for the induction of efferent CD8+ regulatory T cells responsible for peripheral immune tolerance. The identification of cellular ligands for F4/80 and delineation of its signaling pathway remain elusive but are critical to understand the in vivo role of this macrophage-specific adhesion-GPCR.

  8. Task-phase-specific dynamics of basal forebrain neuronal ensembles

    PubMed Central

    Tingley, David; Alexander, Andrew S.; Kolbu, Sean; de Sa, Virginia R.; Chiba, Andrea A.; Nitz, Douglas A.

    2014-01-01

    Cortically projecting basal forebrain neurons play a critical role in learning and attention, and their degeneration accompanies age-related impairments in cognition. Despite the impressive anatomical and cell-type complexity of this system, currently available data suggest that basal forebrain neurons lack complexity in their response fields, with activity primarily reflecting only macro-level brain states such as sleep and wake, onset of relevant stimuli and/or reward obtainment. The current study examined the spiking activity of basal forebrain neuron populations across multiple phases of a selective attention task, addressing, in particular, the issue of complexity in ensemble firing patterns across time. Clustering techniques applied to the full population revealed a large number of distinct categories of task-phase-specific activity patterns. Unique population firing-rate vectors defined each task phase and most categories of task-phase-specific firing had counterparts with opposing firing patterns. An analogous set of task-phase-specific firing patterns was also observed in a population of posterior parietal cortex neurons. Thus, consistent with the known anatomical complexity, basal forebrain population dynamics are capable of differentially modulating their cortical targets according to the unique sets of environmental stimuli, motor requirements, and cognitive processes associated with different task phases. PMID:25309352

  9. Structure–Function Studies of DNA Polymerase λ

    PubMed Central

    2015-01-01

    DNA polymerase λ (pol λ) functions in DNA repair with its main roles considered to be filling short gaps during repair of double-strand breaks by nonhomologous end joining and during base excision repair. As indicated by structural and biochemical studies over the past 10 years, pol λ shares many common properties with other family X siblings (pol β, pol μ, and terminal deoxynucleotidyl transferase) but also has unique structural features that determine its specific functions. In this review, we consider how structural studies over the past decade furthered our understanding of the behavior and biological roles of pol λ. PMID:24716527

  10. The RPN5 subunit of the 26s proteasome is essential for gametogenesis, sporophyte development, and complex assembly in Arabidopsis.

    PubMed

    Book, Adam J; Smalle, Jan; Lee, Kwang-Hee; Yang, Peizhen; Walker, Joseph M; Casper, Sarah; Holmes, James H; Russo, Laura A; Buzzinotti, Zachri W; Jenik, Pablo D; Vierstra, Richard D

    2009-02-01

    The 26S proteasome is an essential multicatalytic protease complex that degrades a wide range of intracellular proteins, especially those modified with ubiquitin. Arabidopsis thaliana and other plants use pairs of genes to encode most of the core subunits, with both of the isoforms often incorporated into the mature complex. Here, we show that the gene pair encoding the regulatory particle non-ATPase subunit (RPN5) has a unique role in proteasome function and Arabidopsis development. Homozygous rpn5a rpn5b mutants could not be generated due to a defect in male gametogenesis. While single rpn5b mutants appear wild-type, single rpn5a mutants display a host of morphogenic defects, including abnormal embryogenesis, partially deetiolated development in the dark, a severely dwarfed phenotype when grown in the light, and infertility. Proteasome complexes missing RPN5a are less stable in vitro, suggesting that some of the rpn5a defects are caused by altered complex integrity. The rpn5a phenotype could be rescued by expression of either RPN5a or RPN5b, indicating functional redundancy. However, abnormal phenotypes generated by overexpression implied that paralog-specific functions also exist. Collectively, the data point to a specific role for RPN5 in the plant 26S proteasome and suggest that its two paralogous genes in Arabidopsis have both redundant and unique roles in development.

  11. Local nutrient regimes determine site-specific environmental triggers of cyanobacterial and microcystin variability in urban lakes

    NASA Astrophysics Data System (ADS)

    Sinang, S. C.; Reichwaldt, E. S.; Ghadouani, A.

    2014-10-01

    Toxic cyanobacterial blooms in urban lakes present serious health hazards to humans and animals and require effective management strategies. In the management of toxic cyanobacteria blooms, understanding the roles of environmental factors is crucial. To date, a range of environmental factors have been proposed as potential triggers for the spatiotemporal variability of cyanobacterial biomass and microcystins in freshwater systems. However, the environmental triggers of cyanobacteria and microcystin variability remain a subject of debate due to contrasting findings. This issue has raised the question if the environmental triggers are site-specific and unique between water bodies. In this study, we investigated the site-specificity of environmental triggers for cyanobacterial bloom and cyanotoxins dynamics. Our study suggests that cyanobacterial dominance and cyanobacterial microcystin content variability were significantly correlated to phosphorus and iron concentrations. However, the correlations between phosphorus and iron with cyanobacterial biomass and microcystin variability were not consistent between lakes, thus suggesting a site specificity of these environmental factors. The discrepancies in the correlations could be explained by differences in local nutrient concentration and the cyanobacterial community in the systems. The findings of this study suggest that identification of site-specific environmental factors under unique local conditions is an important strategy to enhance positive outcomes in cyanobacterial bloom control measures.

  12. A Unique Phenylalanine in the Transmembrane Domain Strengthens Homodimerization of the Syndecan-2 Transmembrane Domain and Functionally Regulates Syndecan-2*

    PubMed Central

    Kwon, Mi-Jung; Choi, Youngsil; Yun, Ji-Hye; Lee, Weontae; Han, Inn-Oc; Oh, Eok-Soo

    2015-01-01

    The syndecans are a type of cell surface adhesion receptor that initiates intracellular signaling events through receptor clustering mediated by their highly conserved transmembrane domains (TMDs). However, the exact function of the syndecan TMD is not yet fully understood. Here, we investigated the specific regulatory role of the syndecan-2 TMD. We found that syndecan-2 mutants in which the TMD had been replaced with that of syndecan-4 were defective in syndecan-2-mediated functions, suggesting that the TMD of syndecan-2 plays one or more specific roles. Interestingly, syndecan-2 has a stronger tendency to form sodium dodecyl sulfate (SDS)-resistant homodimers than syndecan-4. Our structural studies showed that a unique phenylalanine residue (Phe167) enables an additional molecular interaction between the TMDs of the syndecan-2 homodimer. The presence of Phe167 was correlated with a higher tendency toward oligomerization, and its replacement with isoleucine significantly reduced the SDS-resistant dimer formation and cellular functions of syndecan-2 (e.g. cell migration). Conversely, replacement of isoleucine with phenylalanine at this position in the syndecan-4 TMD rescued the defects observed in a mutant syndecan-2 harboring the syndecan-4 TMD. Taken together, these data suggest that Phe167 in the TMD of syndecan-2 endows the protein with specific functions. Our work offers new insights into the signaling mediated by the TMD of syndecan family members. PMID:25572401

  13. Gender role orientation and anxiety symptoms among African american adolescents.

    PubMed

    Palapattu, Anuradha G; Kingery, Julie Newman; Ginsburg, Golda S

    2006-06-01

    The present study evaluated gender role theory as an explanation for the observed gender differences in anxiety symptoms among adolescents. Specifically, the relation between gender, gender role orientation (i.e., masculinity and femininity), self-esteem, and anxiety symptoms was examined in a community sample of 114 African Americans aged 14 to 19 (mean age 15.77; 57 girls). Results revealed that masculinity was negatively associated with anxiety symptoms whereas femininity was positively associated with anxiety symptoms. Gender role orientation accounted for unique variance in anxiety scores above biological gender and self-esteem, and self-esteem moderated the relation between femininity (but not masculinity) and overall anxiety symptoms. Consistent with research on children and Caucasians, findings supported gender role theory as a partial explanation for the observed gender disparity in anxiety symptoms among African American adolescents.

  14. Phosphatidylserine colocalizes with epichromatin in interphase nuclei and mitotic chromosomes

    PubMed Central

    Prudovsky, Igor; Vary, Calvin P.H.; Markaki, Yolanda; Olins, Ada L.; Olins, Donald E.

    2012-01-01

    Cycling eukaryotic cells rapidly re-establish the nuclear envelope and internal architecture following mitosis. Studies with a specific anti-nucleosome antibody recently demonstrated that the surface (“epichromatin”) of interphase and mitotic chromatin possesses a unique and conserved conformation, suggesting a role in postmitotic nuclear reformation. Here we present evidence showing that the anionic glycerophospholipid phosphatidylserine is specifically located in epichromatin throughout the cell cycle and is associated with nucleosome core histones. This suggests that chromatin bound phosphatidylserine may function as a nucleation site for the binding of ER and re-establishment of the nuclear envelope. PMID:22555604

  15. Knockout of the Na,K-ATPase α2-isoform in cardiac myocytes delays pressure overload-induced cardiac dysfunction

    PubMed Central

    Rindler, Tara N.; Lasko, Valerie M.; Nieman, Michelle L.; Okada, Motoi; Lorenz, John N.

    2013-01-01

    The α2-isoform of the Na,K-ATPase (α2) is the minor isoform of the Na,K-ATPase expressed in the cardiovascular system and is thought to play a critical role in the regulation of cardiovascular hemodynamics. However, the organ system/cell type expressing α2 that is required for this regulation has not been fully defined. The present study uses a heart-specific knockout of α2 to further define the tissue-specific role of α2 in the regulation of cardiovascular hemodynamics. To accomplish this, we developed a mouse model using the Cre/loxP system to generate a tissue-specific knockout of α2 in the heart using β-myosin heavy chain Cre. We have achieved a 90% knockout of α2 expression in the heart of the knockout mice. Interestingly, the heart-specific knockout mice exhibit normal basal cardiac function and systolic blood pressure, and in addition, these mice develop ACTH-induced hypertension in response to ACTH treatment similar to control mice. Surprisingly, the heart-specific knockout mice display delayed onset of cardiac dysfunction compared with control mice in response to pressure overload induced by transverse aortic constriction; however, the heart-specific knockout mice deteriorated to control levels by 9 wk post-transverse aortic constriction. These results suggest that heart expression of α2 does not play a role in the regulation of basal cardiovascular function or blood pressure; however, heart expression of α2 plays a role in the hypertrophic response to pressure overload. This study further emphasizes that the tissue localization of α2 determines its unique roles in the regulation of cardiovascular function. PMID:23436327

  16. Exploring Unique Roles for Psychologists

    ERIC Educational Resources Information Center

    Ahmed, Mohiuddin; Boisvert, Charles M.

    2005-01-01

    This paper presents comments on "Psychological Treatments" by D. H. Barlow. Barlow highlighted unique roles that psychologists can play in mental health service delivery by providing psychological treatments--treatments that psychologists would be uniquely qualified to design and deliver. In support of Barlow's position, the authors draw from…

  17. Carboxyl-terminal-dependent recruitment of nonmuscle myosin II to megakaryocyte contractile ring during polyploidization

    PubMed Central

    Badirou, Idinath; Pan, Jiajia; Legrand, Céline; Wang, Aibing; Lordier, Larissa; Boukour, Siham; Roy, Anita; Vainchenker, William

    2014-01-01

    Endomitosis is a unique megakaryocyte (MK) differentiation process that is the consequence of a late cytokinesis failure associated with a contractile ring defect. Evidence from in vitro studies has revealed the distinct roles of 2 nonmuscle myosin IIs (NMIIs) on MK endomitosis: only NMII-B (MYH10), but not NMII-A (MYH9), is localized in the MK contractile ring and implicated in mitosis/endomitosis transition. Here, we studied 2 transgenic mouse models in which nonmuscle myosin heavy chain (NMHC) II-A was genetically replaced either by II-B or by a chimeric NMHCII that combined the head domain of II-A with the rod and tail domains of II-B. This study provides in vivo evidence on the specific role of NMII-B on MK polyploidization. It demonstrates that the carboxyl-terminal domain of the heavy chains determines myosin II localization to the MK contractile ring and is responsible for the specific role of NMII-B in MK polyploidization. PMID:25185263

  18. Carboxyl-terminal-dependent recruitment of nonmuscle myosin II to megakaryocyte contractile ring during polyploidization.

    PubMed

    Badirou, Idinath; Pan, Jiajia; Legrand, Céline; Wang, Aibing; Lordier, Larissa; Boukour, Siham; Roy, Anita; Vainchenker, William; Chang, Yunhua

    2014-10-16

    Endomitosis is a unique megakaryocyte (MK) differentiation process that is the consequence of a late cytokinesis failure associated with a contractile ring defect. Evidence from in vitro studies has revealed the distinct roles of 2 nonmuscle myosin IIs (NMIIs) on MK endomitosis: only NMII-B (MYH10), but not NMII-A (MYH9), is localized in the MK contractile ring and implicated in mitosis/endomitosis transition. Here, we studied 2 transgenic mouse models in which nonmuscle myosin heavy chain (NMHC) II-A was genetically replaced either by II-B or by a chimeric NMHCII that combined the head domain of II-A with the rod and tail domains of II-B. This study provides in vivo evidence on the specific role of NMII-B on MK polyploidization. It demonstrates that the carboxyl-terminal domain of the heavy chains determines myosin II localization to the MK contractile ring and is responsible for the specific role of NMII-B in MK polyploidization.

  19. Contributions of GABA to alcohol responsivity during adolescence: Insights from preclinical and clinical studies

    PubMed Central

    Silveri, Marisa M.

    2015-01-01

    There is a considerable body of literature demonstrating that adolescence is a unique age period, which includes rapid and dramatic maturation of behavioral, cognitive, hormonal and neurobiological systems. Most notably, adolescence is also a period of unique responsiveness to alcohol effects, with both hyposensitivity and hypersensitivity observed to the various effects of alcohol. Multiple neurotransmitter systems are undergoing fine-tuning during this critical period of brain development, including those that contribute to the rewarding effects of drugs of abuse. The role of developmental maturation of the γ-amino-butyric acid (GABA) system, however, has received less attention in contributing to age-specific alcohol sensitivities. This review integrates GABA findings from human magnetic resonance spectroscopy studies as they may translate to understanding adolescent-specific responsiveness to alcohol effects. Better understanding of the vulnerability of the GABA system both during adolescent development, and in psychiatric conditions that include alcohol dependence, could point to a putative mechanism, boosting brain GABA, that may have increased effectiveness for treating alcohol abuse disorders. PMID:24631274

  20. Glucose, Lactate, and Shuttling of Metabolites in Vertebrate Retinas

    PubMed Central

    Hurley, James B.; Lindsay, Kenneth J.; Du, Jianhai

    2016-01-01

    The vertebrate retina has specific functions and structures that give it a unique set of constraints on the way in which it can produce and use metabolic energy. The retina’s response to illumination influences its energy requirements, and the retina’s laminated structure influences the extent to which neurons and glia can access metabolic fuels. There are fundamental differences between energy metabolism in retina and that in brain. The retina relies on aerobic glycolysis much more than the brain does, and morphological differences between retina and brain limit the types of metabolic relationships that are possible between neurons and glia. This Mini-Review summarizes the unique metabolic features of the retina with a focus on the role of lactate shuttling. PMID:25801286

  1. Safety management of an underground-based gravitational wave telescope: KAGRA

    NASA Astrophysics Data System (ADS)

    Ohishi, Naoko; Miyoki, Shinji; Uchiyama, Takashi; Miyakawa, Osamu; Ohashi, Masatake

    2014-08-01

    KAGRA is a unique gravitational wave telescope with its location underground and use of cryogenic mirrors. Safety management plays an important role for secure development and operation of such a unique and large facility. Based on relevant law in Japan, Labor Standard Act and Industrial Safety and Health Law, various countermeasures are mandated to avoid foreseeable accidents and diseases. In addition to the usual safety management of hazardous materials, such as cranes, organic solvents, lasers, there are specific safety issues in the tunnel. Prevention of collapse, flood, and fire accidents are the most critical issues for the underground facility. Ventilation is also important for prevention of air pollution by carbon monoxide, carbon dioxide, organic solvents and radon. Oxygen deficiency should also be prevented.

  2. Future projects in asteroseismology: the unique role of Antarctica

    NASA Astrophysics Data System (ADS)

    Mosser, B.; Siamois Team

    Asteroseismology requires observables registered in stringent conditions: very high sensitivity, uninterrupted time series, long duration. These specifications then allow to study the details of the stellar interior structure. Space-borne and ground-based asteroseismic projects are presented and compared. With CoRoT as a precursor, then Kepler and maybe Plato, the roadmap in space appears to be precisely designed. In parallel, ground-based projects are necessary to provide different and unique information on bright stars with Doppler measurements. Dome C appears to be the ideal place for ground-based asteroseismic observations. The unequalled weather conditions yield a duty cycle comparable to space. Long time series (up to 3 months) will be possible, thanks to the long duration of the polar night.

  3. Unique and common elements of the role of peer support in the context of traditional mental health services.

    PubMed

    Crane, Dushka A; Lepicki, Traci; Knudsen, Kraig

    2016-09-01

    The goal of this report is to clarify the unique role of peer support providers (PSPs) and define peer support as a distinct occupation in the context of traditional mental health services. A systematic methodology was used to compare roles of PSPs with those of similarly situated case managers (CMs). Key informants including 12 incumbent CMs and 11 incumbent PSPs participated in focus groups and responded to a set of prompts based on the Discovering a Curriculum (DACUM) methodology (Norton & Moser, 2014), an innovative approach to identifying and comparing duties and tasks associated with distinct occupations. Task analyses were validated through a survey of 71 CM and 29 PSP subject matter experts, including workers, supervisors, trainers, and consumers. The results revealed a variety of duties and tasks specific to the PSP occupation, particularly within the domains of empowering consumers, promoting consumers' educational growth, and supporting personal development. The results also reveal areas of overlapping responsibility between PSPs and CMs, including aspects of each role that promote consumers' development, wellness and recovery, administrative tasks, and care coordination activities. These findings may address the role ambiguity that currently challenges efforts to establish peer support as a legitimate service in the field of behavioral health. In addition, the findings demonstrate how the roles of PSPs and CMs could be synergistic in complex organizational settings. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Six essential roles of health promotion research centres: the Atlantic Canada experience

    PubMed Central

    Langille, Lynn L.; Crowell, Sandra J.; Lyons, Renée F.

    2009-01-01

    SUMMARY Over the past 20 years, the federal government and universities across Canada have directed resources towards the development of university-based health promotion research centres. Researchers at health promotion research centres in Canada have produced peer-reviewed papers and policy documents based on their work, but no publications have emerged that focus on the specific roles of the health promotion research centres themselves. The purpose of this paper is to propose a framework, based on an in-depth examination of one centre, to help identify the unique roles of health promotion research centres and to clarify the value they add to promoting health and advancing university goals. Considering the shifting federal discourse on health promotion over time and the vulnerability of social and health sciences to changes in research funding priorities, health promotion research centres in Canada and elsewhere may need to articulate their unique roles and contributions in order to maintain a critical focus on health promotion research. The authors briefly describe the Atlantic Health Promotion Research Centre (AHPRC), propose a framework that illustrates six essential roles of health promotion research centres and describe the policy contexts and challenges of health promotion research centres. The analysis of research and knowledge translation activities over 15 years at AHPRC sheds light on the roles that health promotion research centres play in applied research. The conclusion raises questions regarding the value of university-based research centres and challenges to their sustainability. PMID:19171668

  5. Elsevier Trophoblast Research Award Lecture: Unique properties of decidual T cells and their role in immune regulation during human pregnancy.

    PubMed

    Tilburgs, T; Claas, F H J; Scherjon, S A

    2010-03-01

    Maternal lymphocytes at the fetal-maternal interface play a key role in the immune acceptance of the allogeneic fetus. Most studies focus on decidual NK cells and their interaction with fetal trophoblasts, whereas limited data are available on the mechanisms of fetus specific immune recognition and immune regulation by decidual T cells at the fetal-maternal interface. The aim of this review is to describe the phenotypic characteristics of decidual T cell subsets present at the fetal-maternal interface, their interaction with HLA-C expressed by fetal trophoblasts and their role in immune recognition and regulation at the fetal-maternal interface during human pregnancy. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain

    PubMed Central

    Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J.; Polo, Simona

    2016-01-01

    Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VIshort and myosin VIlong, which differ in the C-terminal region. Their physiological and pathological role remains unknown. Here we identified an isoform-specific regulatory helix, named α2-linker that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a novel clathrin-binding domain that is unique to myosin VIlong and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, where alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VIshort for tumor cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VIshort. Thus the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VIlong) or migratory (myosin VIshort) functional roles. PMID:26950368

  7. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain.

    PubMed

    Wollscheid, Hans-Peter; Biancospino, Matteo; He, Fahu; Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J; Polo, Simona

    2016-04-01

    Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VI(short) and myosin VI(long), which differ in the C-terminal region. Their physiological and pathological roles remain unknown. Here we identified an isoform-specific regulatory helix, named the α2-linker, that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a new clathrin-binding domain that is unique to myosin VI(long) and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, in which alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VI(short) in tumor-cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VI(short). Thus, the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VI(long)) or migratory (myosin VI(short)) functional roles.

  8. PSYCHOLOGY IN FRENCH ACADEMIC PUBLISHING IN THE LATE NINETEENTH CENTURY: ALFRED BINET, EDITORIAL DIRECTOR AT THE SCHLEICHER PUBLISHING HOUSE.

    PubMed

    Nicolas, Serge

    2015-01-01

    To date, historians of psychology have largely ignored the role of academic publishing and the editorial policies of the late nineteenth century. This paper analyzes the role played by academic publishing in the history of psychology in the specific case of France, a country that provides a very interesting and unique model. Up until the middle of the 1890s, there was no collection specifically dedicated to psychology. Alfred Binet was the first to found, in 1897, a collection of works specifically dedicated to scientific psychology. He chose to work with Reinwald-Schleicher. However, Binet was soon confronted with (1) competition from other French publishing houses, and (2) Schleicher's management and editorial problems that were to sound the death knell for Binet's emerging editorial ambitions. The intention of this paper is to encourage the efforts of the pioneers of modern psychology to have their work published and disseminated. © 2015 Wiley Periodicals, Inc.

  9. The Department of Defense Role in African Policy

    DTIC Science & Technology

    1993-03-17

    need for U.S. forces in some crises. This study examines the current African policy environment and its impact on U.S. strategic and hu~iobitarian...promote perestroika. It recognized that the Soviet policy of supporting radical Marxist states or movements had a negative impact on its efforts to...settlements to encroach upon the habitats of Africa’s unique wildlife. This encroachment, in addition to regionally specific and problematic poaching of

  10. How do messenger RNA splicing alterations drive myelodysplasia?

    PubMed Central

    2017-01-01

    Mutations in RNA splicing factors are the single most common class of genetic alterations in myelodysplastic syndrome (MDS) patients. Although much has been learned about how these mutations affect splicing at a global- and transcript-specific level, critical questions about the role of these mutations in MDS development and maintenance remain. Here we present the questions to be addressed in order to understand the unique enrichment of these mutations in MDS. PMID:28348147

  11. Nutrition and Hypertension in Blacks and Other Minorities. Proceedings of the Meharry Medical College Annual Nutrition Workshop (2nd, Nashville, Tennessee, October 26-28, 1988). Annual Nutrition Workshop Series, Volume II.

    ERIC Educational Resources Information Center

    Enwonwu, Cyril O., Ed.

    During this 3-day workshop with 138 registered participants, invited medical experts deliberated extensively on the physiological regulation of blood pressure, the unique biological characteristics and dietary patterns of Blacks and other minorities, the prevalence of hypertension in U.S. Blacks and Native Americans, the roles of specific macro-…

  12. The role of the nurse practitioner in psychiatric/mental health nursing: exploring consumer satisfaction.

    PubMed

    Wortans, J; Happell, B; Johnstone, H

    2006-02-01

    There is a substantial body of literature pertaining to the role of the nurse practitioner. Research directed towards consumer satisfaction suggests that the care provided by nurse practitioners is perceived as at least equal to that provided by a medical practitioner. However, there is a paucity of literature examining the nurse practitioner role in the psychiatric/mental health field. An evaluation of a Nurse Practitioner demonstration model has recently been undertaken in the Crisis, Assessment and Treatment Team in Victoria, Australia. This article presents the findings of a qualitative, exploratory study. Individual interviews were conducted with consumers (n = 7) who had received care and treatment provided by the nurse practitioner candidate. Data analysis revealed two main themes: the quality of the service provided, and the unique role of the nurse. The findings supported the available literature in articulating the specific aspects of the nurse practitioner role that are favourably perceived by consumers of services. This study contributes to the limited body of knowledge in the psychiatric/mental health nursing field and specifically emphasizes the importance of the relationship between nurse practitioner and consumer in facilitating the provision of effective care and treatment.

  13. Labels, Gender-Role Conflict, Stigma, and Attitudes Toward Seeking Psychological Help in Men.

    PubMed

    Wahto, Rachel; Swift, Joshua K

    2016-05-01

    Despite a comparable need, research has indicated that on average men hold more negative attitudes toward psychological help seeking than women. Several researchers have suggested that the gender gap in service use and attitudes could be addressed through efforts to better market psychological services to men; however, a limited number of studies have tested this hypothesis. This study examined whether altering the labels for mental health providers (psychologist or counselor), settings (mental health clinic or counseling center), and treatments (problem or feeling focused) could result in less perceived stigma (social and self) by men. Participants, 165 male college students, were asked to read one of eight randomly assigned vignettes that described a man who was experiencing symptoms of depression and was considering seeking help. The vignettes differed in the labels that were used to describe the help that was being considered. Participants then completed measures assessing the stigma (self and social) associated with the treatment, and their preexisting experience of gender-role conflict and attitudes toward psychological help seeking. In summary, perceived stigma did not depend on the type of label that was used; however, 59% of the variance in attitudes was predicted by self-stigma (uniquely explaining 11%), gender-role conflict (uniquely explaining 10%), and social stigma (uniquely explaining 5%). Specifically, higher levels of gender-role conflict, social stigma, and self-stigma were associated with more negative attitudes toward psychological help seeking. Based on the demographics of the sample, these findings primarily have implications for Caucasian college-educated young adult men. Further limitations with the study and recommendations for future research are discussed. © The Author(s) 2014.

  14. Pollen Aquaporins: The Solute Factor.

    PubMed

    Pérez Di Giorgio, Juliana A; Soto, Gabriela C; Muschietti, Jorge P; Amodeo, Gabriela

    2016-01-01

    In the recent years, the biophysical properties and presumed physiological role of aquaporins (AQPs) have been expanded to specialized cells where water and solute exchange are crucial traits. Complex but unique processes such as stomatal movement or pollen hydration and germination have been addressed not only by identifying the specific AQP involved but also by studying how these proteins integrate and coordinate cellular activities and functions. In this review, we referred specifically to pollen-specific AQPs and analyzed what has been assumed in terms of transport properties and what has been found in terms of their physiological role. Unlike that in many other cells, the AQP machinery in mature pollen lacks plasma membrane intrinsic proteins, which are extensively studied for their high water capacity exchange. Instead, a variety of TIPs and NIPs are expressed in pollen. These findings have altered the initial understanding of AQPs and water exchange to consider specific and diverse solutes that might be critical to sustaining pollen's success. The spatial and temporal distribution of the pollen AQPs also reflects a regulatory mechanism that allowing a properly adjusting water and solute exchange.

  15. Multiple roles of phosphoinositide-specific phospholipase C isozymes.

    PubMed

    Suh, Pann-Ghill; Park, Jae-Il; Manzoli, Lucia; Cocco, Lucio; Peak, Joanna C; Katan, Matilda; Fukami, Kiyoko; Kataoka, Tohru; Yun, Sanguk; Ryu, Sung Ho

    2008-06-30

    Phosphoinositide-specific phospholipase C is an effector molecule in the signal transduction process. It generates two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol from phosphatidylinositol 4,5-bisphosphate. Currently, thirteen mammal PLC isozymes have been identified, and they are divided into six groups: PLC-beta, -gamma, -delta, -epsilon, -zeta and -eta. Sequence analysis studies demonstrated that each isozyme has more than one alternative splicing variant. PLC isozymes contain the X and Y domains that are responsible for catalytic activity. Several other domains including the PH domain, the C2 domain and EF hand motifs are involved in various biological functions of PLC isozymes as signaling proteins. The distribution of PLC isozymes is tissue and organ specific. Recent studies on isolated cells and knockout mice depleted of PLC isozymes have revealed their distinct phenotypes. Given the specificity in distribution and cellular localization, it is clear that each PLC isozyme bears a unique function in the modulation of physiological responses. In this review, we discuss the structural organization, enzymatic properties and molecular diversity of PLC splicing variants and study functional and physiological roles of each isozyme.

  16. Developing a strategic marketing plan for hospitals.

    PubMed

    Dychtwald, K; Zitter, M

    1988-09-01

    The initial stages of developing a strategic marketing plan for hospitals are explored in this excerpt from the book, The Role of the Hospital in an Aging Society: A Blueprint for Action. The elderly have unique perceptual, cognitive, social, and psychological needs and preferences, and a marketing strategy for eldercare services must reflect these factors, as well as the financial role of third-party payers and the decision-making influence of families and physicians. Among the elements the hospital must address when developing a marketing strategy are market selection and segmentation, targeting markets with specific services, pricing, and positioning the hospital for a maximum share of the eldercare market.

  17. HOX Genes as Potential Markers of Circulating Tumour Cells.

    PubMed

    Morgan, R; El-Tanani, M

    2016-01-01

    Circulating tumour cells (CTCs) have significant diagnostic potential as they can reflect both the presence and recurrence of a wide range of cancers. However, this potential continues to be limited by the lack of robust and accessible isolation technologies. An alternative to isolation might be their direct detection amongst other peripheral blood cells, although this would require markers that allow them to be distinguished from an exceptionally high background signal. This review assesses the potential role of HOX genes, a family of homeodomain containing transcription factors with key roles in both embryonic development and oncogenesis, as unique and possibly disease specific markers of CTCs.

  18. Spatial pattern of receptor expression in the olfactory epithelium.

    PubMed Central

    Nef, P; Hermans-Borgmeyer, I; Artières-Pin, H; Beasley, L; Dionne, V E; Heinemann, S F

    1992-01-01

    A PCR-based strategy for amplifying putative receptors involved in murine olfaction was employed to isolate a member (OR3) of the seven-transmembrane-domain receptor superfamily. During development, the first cells that express OR3 appear adjacent to the wall of the telencephalic vesicle at embryonic day 10. The OR3 receptor is uniquely expressed in a subset of olfactory cells that have a characteristic bilateral symmetry in the adult olfactory epithelium. This receptor and its specific pattern of expression may serve a functional role in odor coding or, alternatively, may play a role in the development of the olfactory system. Images PMID:1384038

  19. Kinetic Contributions to Gating by Interactions Unique to N-methyl-d-aspartate (NMDA) Receptors*

    PubMed Central

    Borschel, William F.; Cummings, Kirstie A.; Tindell, LeeAnn K.; Popescu, Gabriela K.

    2015-01-01

    Among glutamate-gated channels, NMDA receptors produce currents that subside with unusually slow kinetics, and this feature is essential to the physiology of central excitatory synapses. Relative to the homologous AMPA and kainate receptors, NMDA receptors have additional intersubunit contacts in the ligand binding domain that occur at both conserved and non-conserved sites. We examined GluN1/GluN2A single-channel currents with kinetic analyses and modeling to probe these class-specific intersubunit interactions for their role in glutamate binding and receptor gating. We found that substitutions that eliminate such interactions at non-conserved sites reduced stationary gating, accelerated deactivation, and imparted sensitivity to aniracetam, an AMPA receptor-selective positive modulator. Abolishing unique contacts at conserved sites also reduced stationary gating and accelerated deactivation. These results show that contacts specific to NMDA receptors, which brace the heterodimer interface within the ligand binding domain, stabilize actively gating receptor conformations and result in longer bursts and slower deactivations. They support the view that the strength of the heterodimer interface modulates gating in both NMDA and non-NMDA receptors and that unique interactions at this interface are responsible in part for basic differences between the kinetics of NMDA and non-NMDA currents at glutamatergic synapses. PMID:26370091

  20. Molecular pathobiology of thyroid neoplasms.

    PubMed

    Tallini, Giovanni

    2002-01-01

    Tumors of thyroid follicular cells provide a very interesting model to understand the development of human cancer. It is becoming apparent that distinct molecular events are associated with specific stages in a multistep tumorigenic process with good genotype/ phenotype correlation. For instance, mutations of the gsp and thyroid-stimulating hormone receptor genes are associated with benign hyperfunctioning thyroid nodules and adenomas while alterations of other specific genes, such as oncogenic tyrosine kinase alterations (RET/PTC, TRK) in papillary carcinoma and the newly discovered PAX8/peroxisome proliferator-activated receptor gamma rearrangement, are distinctive features of cancer. Although activating RAS mutations occur at all stages of thyroid tumorigenesis, evidence is accumulating that they may also play an important role in tumor progression, a role that is well documented for p53. Environmental factors (iodine deficiency, ionizing radiations) have been shown to play a crucial role in promoting the development of thyroid cancer, influencing both its genotypic and phenotypic features. It is possible that the follicular thyroid cell has unique ways to respond to DNA damage. Similarly to leukemia or sarcomas (and unlike most epithelial cancers), numerous specific rearrangements are being discovered in thyroid cancer suggesting preferential activation of DNA repair instead of cell death programs after environmentally induced genetic alterations.

  1. PD-1 suppresses development of humoral responses that protect against Tn-bearing tumors

    PubMed Central

    Haro, Marcela A.; Littrell, Chad A.; Yin, Zhaojun; Huang, Xuefei; Haas, Karen M.

    2017-01-01

    Tn is a carbohydrate antigen uniquely exposed on tumor mucins and thus, an ideal target for immunotherapy. However, it has been difficult to elicit protective antibody responses against Tn antigen and other tumor associated carbohydrate antigens. Our study demonstrates this can be attributed to PD-1 immuno-inhibition. Our data show a major role for PD-1 in suppressing mucin- and Tn-specific B-cell activation, expansion, and antibody production important for protection against Tn-bearing tumor cells. These Tn/mucin-specific B cells belong to the innate-like B-1b cell subset typically responsible for T cell–independent antibody responses. Interestingly, PD-1–mediated regulation is B cell–intrinsic and CD4+ cells play a key role in supporting Tn/mucin-specific B cell antibody production in the context of PD-1 deficiency. Mucin-reactive antibodies produced in the absence of PD-1 inhibition largely belong to the IgM subclass and elicit potent antitumor effects via a complement-dependent mechanism. The identification of this role for PD-1 in regulating B cell–dependent antitumor immunity to Tn antigen highlights an opportunity to develop new therapeutic strategies targeting tumor associated carbohydrate antigens. PMID:27856425

  2. Expanding the role of 3-O sulfated heparan sulfate in herpes simplex virus type-1 entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, Christopher D., E-mail: codonn3@uic.ed; Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612; Kovacs, Maria, E-mail: marcsika101@yahoo.co

    2010-02-20

    Heparan sulfate (HS) proteoglycans are commonly exploited by multiple viruses for initial attachment to host cells. Herpes simplex virus-1 (HSV-1) is unique because it can use HS for both attachment and penetration, provided specific binding sites for HSV-1 envelope glycoprotein gD are present. The interaction with gD is mediated by specific HS moieties or 3-O sulfated HS (3-OS HS), which are generated by all but one of the seven isoforms of 3-O sulfotransferases (3-OSTs). Here we demonstrate that several common experimental cell lines express unique sets of 3-OST isoforms. While the isoforms 3-OST-3, -5 and -6 were most commonly expressed,more » isoforms 3-OST-2 and -4 were undetectable in the cell lines examined. Since most cell lines expressed multiple 3-OST isoforms, we addressed the significance of 3-OS HS in HSV-1 entry by down-regulating 2-O-sulfation, a prerequisite for 3-OS HS formation, by knocking down 2-OST expression by RNA interference (RNAi). 2-OST knockdown was verified by reverse-transcriptase PCR and Western blot analysis, while 3-OS HS knockdown was verified by immunofluorescence. Cells showed a significant decrease in viral entry, suggesting an important role for 3-OS HS. Implicating 3-OS HS further, cells knocked down for 2-OST expression also demonstrated decreased cell-cell fusion when cocultivated with effector cells transfected with HSV-1 glycoproteins. Our findings suggest that 3-OS HS may play an important role in HSV-1 entry into many different cell lines.« less

  3. Untangling the relative contribution of maltreatment severity and frequency to type of behavioral outcome in foster youth

    PubMed Central

    Jackson, Yo; Gabrielli, Joy; Fleming, Kandace; Makanui, P. Kalani; Tunno, Angela M.

    2014-01-01

    Within maltreatment research, type, frequency, and severity of abuse are often confounded and not always specifically documented. The result is that samples are often heterogeneous, and the role of components of maltreatment in predicting outcome is unclear. The purpose of the present study was to identify and test the potential unique role of type, frequency, and severity of maltreatment to elucidate each variable’s role in predicting outcome behavior. Data from 309 youth in foster care (ages 8–22) and their caregivers were collected using the Modified Maltreatment Classification System and the Behavioral Assessment System for Children, 2nd Edition (BASC2), to measure maltreatment exposure and behavioral outcome respectively. A measurement model of the BASC2 was completed to determine model fit within the sample data. A second confirmatory factor analysis (CFA) was completed to determine the unique contributions of frequency and severity of maltreatment across four types of abuse to externalizing, internalizing, and adaptive behavior. The result of the CFA determined good fit of the BASC2 to the sample data after a few modifications. The result of the second CFA indicated that the paths from severity to externalizing behavior and adaptive behavior (reverse loading) were significant. Paths from frequency of abuse were not predictive of behavioral outcome. Maltreatment is a complex construct and researchers are encouraged to avoid confounding components of abuse that may be differentially related to outcome behavior for youth. Untangling the multifaceted nature of abuse is important and may have implications for identifying specific outcomes for youth exposed to maltreatment. PMID:24612908

  4. Interplay between negative and positive design elements in Gα helical domains of G proteins determines interaction specificity towards RGS2.

    PubMed

    Kasom, Mohammad; Gharra, Samia; Sadiya, Isra; Avital-Shacham, Meirav; Kosloff, Mickey

    2018-06-20

    Regulators of G protein Signaling (RGS) proteins inactivate Gα subunits, thereby controling G protein-coupled signaling networks. Among all RGS proteins, RGS2 is unique in interacting only with the Gα q and not with the Gα i sub-family. Previous studies suggested that this specificity is determined by the RGS domain, and in particular by three RGS2-specific residues that lead to a unique mode of interaction with Gα q This interaction was further proposed to act through contacts with the Gα GTPase domain. Here, we combined energy calculations and GTPase activity measurements to determine which Gα residues dictate specificity toward RGS2. We identified putative specificity-determining residues in the Gα helical domain, which among G proteins is found only in Gα subunits. Replacing these helical domain residues in Gα i with their Gα q counterparts resulted in a dramatic specificity-switch towards RGS2. We further show that Gα-RGS2 specificity is set by Gα i residues that perturb interactions with RGS2, and by Gα q residues that enhance these interactions. These results show, for the first time, that the Gα helical domain is central to dictating specificity towards RGS2, suggesting this domain plays a general role in governing Gα-RGS specificity. Our insights provide new options for manipulating RGS-G protein interactions in vivo , for better understanding of their "wiring" into signaling networks, and for devising novel drugs targeting such interactions. ©2018 The Author(s).

  5. Compartmentalized PDE4A5 Signaling Impairs Hippocampal Synaptic Plasticity and Long-Term Memory.

    PubMed

    Havekes, Robbert; Park, Alan J; Tolentino, Rosa E; Bruinenberg, Vibeke M; Tudor, Jennifer C; Lee, Yool; Hansen, Rolf T; Guercio, Leonardo A; Linton, Edward; Neves-Zaph, Susana R; Meerlo, Peter; Baillie, George S; Houslay, Miles D; Abel, Ted

    2016-08-24

    Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. Neurons exhibit localized signaling processes that enable biochemical cascades to be activated selectively in specific subcellular compartments. The phosphodiesterase 4 (PDE4) family coordinates the degradation of cAMP, leading to the local attenuation of cAMP-dependent signaling pathways. Sleep deprivation leads to increased hippocampal expression of the PDE4A5 isoform. Here, we explored whether PDE4A5 overexpression mimics behavioral and synaptic plasticity phenotypes associated with sleep deprivation. Viral expression of PDE4A5 in hippocampal neurons impairs long-term potentiation and attenuates the formation of hippocampus-dependent long-term memories. Our findings suggest that PDE4A5 is a molecular constraint on cognitive processes and may contribute to the development of novel therapeutic approaches to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. Copyright © 2016 Havekes et al.

  6. Oncology Nurse Navigation: Results of the 2016 Role Delineation Study.

    PubMed

    Lubejko, Barbara G; Bellfield, Sonia; Kahn, Elisa; Lee, Carrie; Peterson, Nicole; Rose, Traudi; Murphy, Cynthia Miller; McCorkle, Michele

    2017-02-01

    In 2011, an oncology nurse navigator (ONN) role delineation survey (RDS) was conducted by the Oncology Nursing Society (ONS) when the role was relatively new to oncology. Results did not demonstrate a unique skill set for the ONN; however, since then, the role has expanded. ONS and the Oncology Nursing Certification Corporation partnered in 2016 to complete an RDS of ONNs to redefine the role and determine the need for an ONN certification examination. A structured RDS was conducted using a formal consensus-building process. A survey was developed and released to examine the specific tasks, knowledge, and skills for the ONN as well as to determine which role possesses more responsibility for the tasks. The ONN role is evolving, and more was learned about its key tasks, including differences in the responsibilities of the ONN and the clinical or staff nurse. However, the RDS did not find an adequate difference in the knowledge required by the ONN and the clinical or staff nurse to support the need for a separate ONN certification.

  7. Functional Pathways of Social Support for Mental Health in Work and Family Domains Among Chinese Scientific and Technological Professionals.

    PubMed

    Gan, Yiqun; Gan, Tingting; Chen, Zhiyan; Miao, Miao; Zhang, Kan

    2015-10-01

    This study investigated the role of social support in the complex pattern of associations among stressors, work-family interferences and depression in the domains of work and family. A questionnaire was administered to a nationwide sample of 11,419 Chinese science and technology professionals. Several structural equation models were specified to determine whether social support functioned as a predictor or a mediator. Using Mplus 5.0, we compared the moderation model, the independence model, the antecedent model and the mediation model. The results revealed that the relationship between work-family interference and social support was domain specific. The independence model fit the data best in the work domain. Both the moderation model and the antecedent model fit the family domain data equally well. The current study was conducted to answer the need for comprehensive investigations of cultural uniqueness in the antecedents of work-family interference. The domain specificity, i.e. the multiple channels of the functions of support in the family domain and not in the work domain, ensures that this study is unique and culturally specific. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Social Organization in Bars: Implications for Tobacco Control Policy

    PubMed Central

    Lee, Juliet P.; Antin, Tamar M.J.; Moore, Roland S.

    2011-01-01

    This paper considers social roles and relationships of the patrons, staff and owners of bars as critical factors determining adherence to public health policies, and specifically California’s smokefree workplace law. Specific elements of social organization in bars affecting health policy include the community within which the bar is set, the unique identity the bar creates, the bar staff and patrons who enact this identity, and their bar society. These elements were found to contribute to the development of power relations within the bar and solidarity against the outside world, resulting in either resistance to or compliance with smokefree workplace policy. PMID:22522904

  9. Making the Bend: DNA Tertiary Structure and Protein-DNA Interactions

    PubMed Central

    Harteis, Sabrina; Schneider, Sabine

    2014-01-01

    DNA structure functions as an overlapping code to the DNA sequence. Rapid progress in understanding the role of DNA structure in gene regulation, DNA damage recognition and genome stability has been made. The three dimensional structure of both proteins and DNA plays a crucial role for their specific interaction, and proteins can recognise the chemical signature of DNA sequence (“base readout”) as well as the intrinsic DNA structure (“shape recognition”). These recognition mechanisms do not exist in isolation but, depending on the individual interaction partners, are combined to various extents. Driving force for the interaction between protein and DNA remain the unique thermodynamics of each individual DNA-protein pair. In this review we focus on the structures and conformations adopted by DNA, both influenced by and influencing the specific interaction with the corresponding protein binding partner, as well as their underlying thermodynamics. PMID:25026169

  10. The Role of Civil Society Organizations in Monitoring the Global AIDS Response.

    PubMed

    Smith, Julia; Mallouris, Christoforos; Lee, Kelley; Alfvén, Tobias

    2017-07-01

    Civil society organizations (CSOs) are recognized as playing an exceptional role in the global AIDS response. However, there is little detailed research to date on how they contribute to specific governance functions. This article uses Haas' framework on global governance functions to map CSO's participation in the monitoring of global commitments to the AIDS response by institutions and states. Drawing on key informant interviews and primary documents, it focuses specifically on CSO participation in Global AIDS Response Progress Reporting and in Global Fund to Fight AIDS, Tuberculosis and Malaria processes. It argues that the AIDS response is unique within global health governance, in that CSOs fulfill both formal and informal monitoring functions, and considers the strengths and weaknesses of these contributions. It concludes that future global health governance arrangements should include provisions and resources for monitoring by CSOs because their participation creates more inclusive global health governance and contributes to strengthening commitments to human rights.

  11. Heritability of insomnia symptoms in youth and their relationship to depression and anxiety.

    PubMed

    Gehrman, Philip R; Meltzer, Lisa J; Moore, Melisa; Pack, Allan I; Perlis, Michael L; Eaves, Lindon J; Silberg, Judy L

    2011-12-01

    Insomnia is a highly prevalent sleep disorder yet little is known about the role of genetic factors in its pathophysiology. The aim of this study was to examine the relative contributions of genetic and environmental factors in explaining variability in insomnia symptoms. Traditional twin design. Academic medical center. 1412 twin pairs aged 8-16 years (48.8% MZ, 47.2% DZ, 4.0% indeterminate). None. Ratings of insomnia symptoms, depression, and overanxious disorder were made by trained interviewers based on DSM-III-R criteria. ACE models were conducted using Mx statistical software. Insomnia symptoms were prevalent in this sample based both on parental (6.6%) and youth (19.5%) reports. The overall heritability of insomnia symptoms was modest (30.7%), with the remaining variance attributed to unique environmental effects. There was no evidence of sex differences in the prevalence of insomnia symptoms or in the contribution of genetic and environmental effects. In multivariate models, there was support for insomnia-specific unique environmental effects over and above overlapping effects with depression and overanxious disorder, but no evidence for insomnia-specific genetic effects. Genetic factors play a modest role in the etiology of insomnia symptoms in 8-16 year-olds. These effects overlap with the genetics of depression and overanxious disorder. Further work is needed to determine which genes confer risk for all three disorders.

  12. RNA-Seq Reveals an Integrated Immune Response in Nucleated Erythrocytes

    PubMed Central

    Morera, Davinia; Roher, Nerea; Ribas, Laia; Balasch, Joan Carles; Doñate, Carmen; Callol, Agnes; Boltaña, Sebastian; Roberts, Steven; Goetz, Giles; Goetz, Frederick W.; MacKenzie, Simon A.

    2011-01-01

    Background Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively participate via ligand-induced transcriptional re-programming in the immune response. Methodology/Principal Findings Nucleated erythrocytes from both fish and birds express and regulate specific pattern recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP) detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA synthesis of both receptors and response factors including interferon-alpha (IFNα) that exhibit a stimulus-specific polysomal shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I∶C), polyinosinic∶polycytidylic acid)-erythrocyte response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1 interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response. Conclusions/Significance We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a previously unrecognized integrative role for the erythrocytes in other physiological systems. PMID:22046430

  13. Task-specific Aspects of Goal-directed Word Generation Identified via Simultaneous EEG-fMRI.

    PubMed

    Shapira-Lichter, Irit; Klovatch, Ilana; Nathan, Dana; Oren, Noga; Hendler, Talma

    2016-09-01

    Generating words according to a given rule relies on retrieval-related search and postretrieval control processes. Using fMRI, we recently characterized neural patterns of word generation in response to episodic, semantic, and phonemic cues by comparing free recall of wordlists, category fluency, and letter fluency [Shapira-Lichter, I., Oren, N., Jacob, Y., Gruberger, M., & Hendler, T. Portraying the unique contribution of the default mode network to internally driven mnemonic processes. Proceedings of the National Academy of Sciences, U.S.A., 110, 4950-4955, 2013]. Distinct selectivity for each condition was evident, representing discrete aspects of word generation-related memory retrieval. For example, the precuneus, implicated in processing spatiotemporal information, emerged as a key contributor to the episodic condition, which uniquely requires this information. Gamma band is known to play a central role in memory, and increased gamma power has been observed before word generation. Yet, gamma modulation in response to task demands has not been investigated. To capture the task-specific modulation of gamma power, we analyzed the EEG data recorded simultaneously with the aforementioned fMRI, focusing on the activity locked to and immediately preceding word articulation. Transient increases in gamma power were identified in a parietal electrode immediately before episodic and semantic word generation, however, within a different time frame relative to articulation. Gamma increases were followed by an alpha-theta decrease in the episodic condition, a gamma decrease in the semantic condition. This pattern indicates a task-specific modulation of the gamma signal corresponding to the specific demands of each word generation task. The gamma power and fMRI signal from the precuneus were correlated during the episodic condition, implying the existence of a common cognitive construct uniquely required for this task, possibly the reactivation or processing of spatiotemporal information.

  14. Occurrence and biosynthesis of carotenoids in phytoplankton.

    PubMed

    Huang, Jim Junhui; Lin, Shaoling; Xu, Wenwen; Cheung, Peter Chi Keung

    2017-09-01

    Naturally occurring carotenoids are important sources of antioxidants, anti-cancer compounds and anti-inflammatory agents and there is thus considerable market demand for their pharmaceutical applications. Carotenoids are widely distributed in marine and freshwater organisms including microalgae, phytoplankton, crustaceans and fish, as well as in terrestrial plants and birds. Recently, phytoplankton-derived carotenoids have received much attention due to their abundance, rapid rate of biosynthesis and unique composition. The carotenoids that accumulate in particular phytoplankton phyla are synthesized by specific enzymes and play unique physiological roles. This review focuses on studies related to the occurrence of carotenoids in different phytoplankton phyla and the molecular aspects of their biosynthesis. Recent biotechnological advances in the isolation and characterization of some representative carotenoid synthases in phytoplankton are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. 5S rRNA and ribosome.

    PubMed

    Gongadze, G M

    2011-12-01

    5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.

  16. Tick Haller's Organ, a New Paradigm for Arthropod Olfaction: How Ticks Differ from Insects.

    PubMed

    Carr, Ann L; Mitchell, Robert D; Dhammi, Anirudh; Bissinger, Brooke W; Sonenshine, Daniel E; Roe, R Michael

    2017-07-18

    Ticks are the vector of many human and animal diseases; and host detection is critical to this process. Ticks have a unique sensory structure located exclusively on the 1st pairs of legs; the fore-tarsal Haller's organ, not found in any other animals, presumed to function like the insect antennae in chemosensation but morphologically very different. The mechanism of tick chemoreception is unknown. Utilizing next-generation sequencing and comparative transcriptomics between the 1st and 4th legs (the latter without the Haller's organ), we characterized 1st leg specific and putative Haller's organ specific transcripts from adult American dog ticks, Dermacentor variabilis . The analysis suggested that the Haller's organ is involved in olfaction, not gustation. No known odorant binding proteins like those found in insects, chemosensory lipocalins or typical insect olfactory mechanisms were identified; with the transcriptomic data only supporting a possible olfactory G-protein coupled receptor (GPCR) signal cascade unique to the Haller's organ. Each component of the olfactory GPCR signal cascade was identified and characterized. The expression of GPCR, G αo and β-arrestin transcripts identified exclusively in the 1st leg transcriptome, and putatively Haller's organ specific, were examined in unfed and blood-fed adult female and male D. variabilis . Blood feeding to repletion in adult females down-regulated the expression of all three chemosensory transcripts in females but not in males; consistent with differences in post-feeding tick behavior between sexes and an expected reduced chemosensory function in females as they leave the host. Data are presented for the first time of the potential hormonal regulation of tick chemosensation; behavioral assays confirmed the role of the Haller's organ in N , N -diethyl-meta-toluamide (DEET) repellency but showed no role for the Haller's organ in host attachment. Further research is needed to understand the potential role of the GPCR cascade in olfaction.

  17. Tick Haller’s Organ, a New Paradigm for Arthropod Olfaction: How Ticks Differ from Insects

    PubMed Central

    Carr, Ann L.; Mitchell III, Robert D.; Dhammi, Anirudh; Bissinger, Brooke W.; Sonenshine, Daniel E.; Roe, R. Michael

    2017-01-01

    Ticks are the vector of many human and animal diseases; and host detection is critical to this process. Ticks have a unique sensory structure located exclusively on the 1st pairs of legs; the fore-tarsal Haller’s organ, not found in any other animals, presumed to function like the insect antennae in chemosensation but morphologically very different. The mechanism of tick chemoreception is unknown. Utilizing next-generation sequencing and comparative transcriptomics between the 1st and 4th legs (the latter without the Haller’s organ), we characterized 1st leg specific and putative Haller’s organ specific transcripts from adult American dog ticks, Dermacentor variabilis. The analysis suggested that the Haller’s organ is involved in olfaction, not gustation. No known odorant binding proteins like those found in insects, chemosensory lipocalins or typical insect olfactory mechanisms were identified; with the transcriptomic data only supporting a possible olfactory G-protein coupled receptor (GPCR) signal cascade unique to the Haller’s organ. Each component of the olfactory GPCR signal cascade was identified and characterized. The expression of GPCR, Gαo and β-arrestin transcripts identified exclusively in the 1st leg transcriptome, and putatively Haller’s organ specific, were examined in unfed and blood-fed adult female and male D. variabilis. Blood feeding to repletion in adult females down-regulated the expression of all three chemosensory transcripts in females but not in males; consistent with differences in post-feeding tick behavior between sexes and an expected reduced chemosensory function in females as they leave the host. Data are presented for the first time of the potential hormonal regulation of tick chemosensation; behavioral assays confirmed the role of the Haller’s organ in N,N-diethyl-meta-toluamide (DEET) repellency but showed no role for the Haller’s organ in host attachment. Further research is needed to understand the potential role of the GPCR cascade in olfaction. PMID:28718821

  18. Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer.

    PubMed

    Berger, Stephanie; Procko, Erik; Margineantu, Daciana; Lee, Erinna F; Shen, Betty W; Zelter, Alex; Silva, Daniel-Adriano; Chawla, Kusum; Herold, Marco J; Garnier, Jean-Marc; Johnson, Richard; MacCoss, Michael J; Lessene, Guillaume; Davis, Trisha N; Stayton, Patrick S; Stoddard, Barry L; Fairlie, W Douglas; Hockenbery, David M; Baker, David

    2016-11-02

    Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes.

  19. Glutamine synthetase in Medicago truncatula, unveiling new secrets of a very old enzyme

    PubMed Central

    Seabra, Ana R.; Carvalho, Helena G.

    2015-01-01

    Glutamine synthetase (GS) catalyzes the first step at which nitrogen is brought into cellular metabolism and is also involved in the reassimilation of ammonium released by a number of metabolic pathways. Due to its unique position in plant nitrogen metabolism, GS plays essential roles in all aspects of plant development, from germination to senescence, and is a key component of nitrogen use efficiency (NUE) and plant yield. Understanding the mechanisms regulating GS activity is therefore of utmost importance and a great effort has been dedicated to understand how GS is regulated in different plant species. The present review summarizes exciting recent developments concerning the structure and regulation of GS isoenzymes, using the model legume Medicago truncatula. These include the understanding of the structural determinants of both the cytosolic and plastid located isoenzymes, the existence of a seed-specific GS gene unique to M. truncatula and closely related species and the discovery that GS isoenzymes are regulated by nitric oxide at the post-translational level. The data is discussed and integrated with the potential roles of the distinct GS isoenzymes within the whole plant context. PMID:26284094

  20. Monocyte-derived cells of the brain and malignant gliomas: the double face of Janus.

    PubMed

    Kushchayev, Sergiy V; Kushchayeva, Yevgeniya S; Wiener, Philip C; Scheck, Adrienne C; Badie, Behnam; Preul, Mark C

    2014-12-01

    Monocyte-derived cells of the brain (MDCB) are a diverse group of functional immune cells that are also highly abundant in gliomas. There is growing evidence that MDCB play essential roles in the pathogenesis of gliomas. The aim of this review was to collate and systematize contemporary knowledge about these cells as they relate to glioma progression and antiglioblastoma therapeutic modalities with a view toward improved effectiveness of therapy. We reviewed relevant studies to construct a summary of different MDCB subpopulations in steady state and in malignant gliomas and discuss their role in the development of malignant gliomas and potential future therapies. Current studies suggest that MDCB subsets display different phenotypes and differentiation potentials depending on their milieu in the brain and exposure to tumoral influences. MDCB possess specific and unique functions, including those that are protumoral and those that are antitumoral. Elucidating the role of mononuclear-derived cells associated with gliomas is crucial in designing novel immunotherapy strategies. Much progress is needed to characterize markers to identify cell subsets and their specific regulatory roles. Investigation of MDCB can be clinically relevant. Specific MDCB populations potentially can be used for glioma therapy as a target or as cell vehicles that might deliver cytotoxic substances or processes to the glioma microenvironment. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. miR-203 modulates epithelial differentiation of human embryonic stem cells towards epidermal stratification.

    PubMed

    Nissan, Xavier; Denis, Jérôme Alexandre; Saidani, Manoubia; Lemaitre, Gilles; Peschanski, Marc; Baldeschi, Christine

    2011-08-15

    The molecular mechanisms controlling the differentiation of human basal keratinocyte stem cells towards the epidermis are well characterized, whereas the earliest process leading to the specification of embryonic stem cells into keratinocytes is still not well understood. MicroRNAs are regulators of many cellular events, but evidence for microRNA acting on the differentiation of human embryonic stem cells into a specific lineage has been elusive. By using our recent protocol for obtaining functional keratinocytes from hESC, we attempted to analyze the role of microRNAs in the early stages of epidermal differentiation. Thus, we identified a set of 5 microRNAs, namely miR-200a, miR-200b, miR-203, miR-205 and miR-429, that are specifically overexpressed during the early stages of the differentiation process. Interestingly, our functional analyses revealed an instrumental role of miR-203, which had been previously shown to play a key role during the formation of the pluristratified epidermis by basal keratinocyte stem cells, in the early keratinocyte commitment. These results highlight the determinant and unique role of miR-203 during the entire process of epidermal development by extending its spectrum of action from the early commitment of embryonic stem cells to ultimate differentiation of the organ. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. An overview of lymphatic vessels and their emerging role in cardiovascular disease

    PubMed Central

    Jones, Dennis; Min, Wang

    2011-01-01

    Over the past decade, molecular details of lymphatic vessels (lymphatics) have been rapidly acquired due to the identification of lymphatic endothelial-specific markers. Separate from the cardiovascular system, the lymphatic system is also an elaborate network of vessels that are important in normal physiology. Lymphatic vessels have the unique task to regulate fluid homeostasis, assist in immune surveillance, and transport dietary lipids. However, dysfunctional lymphatic vessels can cause pathology, while normal lymphatics can exacerbate pathology. This review summarizes the development and growth of lymphatic vessels in addition to highlighting their critical roles in physiology and pathology. Also, we discuss recent work that suggests a connection between lymphatic dysfunction and cardiovascular disease. PMID:22022141

  3. Great expectations for the World Health Organization: a Framework Convention on Global Health to achieve universal health coverage.

    PubMed

    Ooms, G; Marten, R; Waris, A; Hammonds, R; Mulumba, M; Friedman, E A

    2014-02-01

    Establishing a reform agenda for the World Health Organization (WHO) requires understanding its role within the wider global health system and the purposes of that wider global health system. In this paper, the focus is on one particular purpose: achieving universal health coverage (UHC). The intention is to describe why achieving UHC requires something like a Framework Convention on Global Health (FCGH) that have been proposed elsewhere,(1) why WHO is in a unique position to usher in an FCGH, and what specific reforms would help enable WHO to assume this role. Copyright © 2013 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  4. Birth, coming of age and death: The intriguing life of long noncoding RNAs.

    PubMed

    Samudyata; Castelo-Branco, Gonçalo; Bonetti, Alessandro

    2018-07-01

    Mammalian genomes are pervasively transcribed, with long noncoding RNAs being the most abundant fraction. Recent studies have highlighted the central role played by these transcripts in several physiological and pathological processes. Despite several metabolic features shared between coding and noncoding transcripts, these two classes of RNAs exhibit multiple differences regarding their biogenesis and processing. Here we review such distinctions, focusing on the unique features of specific long noncoding RNAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The association between mental disorder and crime during the Byzantine Empire.

    PubMed

    Tzeferakos, George; Vlahou, Elina; Troianos, Spyros; Douzenis, Athanasios

    2011-12-01

    From a social, administrative and political point of view, the Byzantine Empire was a direct continuation of the Greco-Roman world, with the Greek-Orthodox Church playing an important role in the formation of the Byzantium's unique identity. This continuity is obvious when one studies the legislation of the Empire. This legislation had specific provisions for insane offenders with regard to their legal and social handling. In this article we review these laws and present some interesting legal, psychiatric and social issues.

  6. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis.

    PubMed

    Galyov, Edouard E; Brett, Paul J; DeShazer, David

    2010-01-01

    Burkholderia pseudomallei and Burkholderia mallei are closely related gram-negative bacteria that can cause serious diseases in humans and animals. This review summarizes the current and rapidly expanding knowledge on the specific virulence factors employed by these pathogens and their roles in the pathogenesis of melioidosis and glanders. In particular, the contributions of recently identified virulence factors are described in the context of the intracellular lifestyle of these pathogens. Throughout this review, unique and shared virulence features of B. pseudomallei and B. mallei are discussed.

  7. Facilitators and barriers experienced by federal cross-sector partners during the implementation of a healthy eating campaign.

    PubMed

    Fernandez, Melissa Anne; Desroches, Sophie; Marquis, Marie; Turcotte, Mylène; Provencher, Véronique

    2017-09-01

    To identify facilitators and barriers that Health Canada's (HC) cross-sector partners experienced while implementing the Eat Well Campaign: Food Skills (EWC; 2013-2014) and describe how these experiences might differ according to distinct partner types. A qualitative study using hour-long semi-structured telephone interviews conducted with HC partners that were transcribed verbatim. Facilitators and barriers were identified inductively and analysed according partner types. Implementation of a national mass-media health education campaign. Twenty-one of HC's cross-sector partners (food retailers, media and health organizations) engaged in the EWC. Facilitators and barriers were grouped into seven major themes: operational elements, intervention factors, resources, collaborator traits, developer traits, partnership factors and target population factors. Four of these themes had dual roles as both facilitators and barriers (intervention factors, resources, collaborator traits and developer traits). Sub-themes identified as both facilitators and barriers illustrate the extent to which a facilitator can easily become a barrier. Partnership factors were unique facilitators, while operational and target population factors were unique barriers. Time was a barrier that was common to almost all partners regardless of partnership type. There appeared to be a greater degree of uniformity among facilitators, whereas barriers were more diverse and unique to the realities of specific types of partner. Collaborative planning will help public health organizations anticipate barriers unique to the realities of specific types of organizations. It will also prevent facilitators from becoming barriers. Advanced planning will help organizations manage time constraints and integrate activities, facilitating implementation.

  8. The contribution of the left anterior ventrolateral temporal lobe to the retrieval of personal semantics.

    PubMed

    Grilli, Matthew D; Bercel, John J; Wank, Aubrey A; Rapcsak, Steven Z

    2018-06-04

    Autobiographical facts and personal trait knowledge are conceptualized as distinct types of personal semantics, but the cognitive and neural mechanisms that separate them remain underspecified. One distinction may be their level of specificity, with autobiographical facts reflecting idiosyncratic conceptual knowledge and personal traits representing basic level category knowledge about the self. Given the critical role of the left anterior ventrolateral temporal lobe (AVTL) in the storage and retrieval of semantic information about unique entities, we hypothesized that knowledge of autobiographical facts may depend on the integrity of this region to a greater extent than personal traits. To provide neuropsychological evidence relevant to this issue, we investigated personal semantics, semantic knowledge of non-personal unique entities, and episodic memory in two individuals with well-defined left (MK) versus right (DW) AVTL lesions. Relative to controls, MK demonstrated preserved personal trait knowledge but impaired "experience-far" (i.e., spatiotemporal independent) autobiographical fact knowledge, semantic memory for non-personal unique entities, and episodic memory. In contrast, both experience-far autobiographical facts and personal traits were spared in DW, whereas episodic memory and aspects of semantic memory for non-personal unique entities were impaired. These findings support the notion that autobiographical facts and personal traits have distinct cognitive features and neural mechanisms. They also suggest a common organizing principle for personal and non-personal semantics, namely the specificity of such knowledge to an entity, which is reflected in the contribution of the left AVTL to retrieval. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Important Clinical Rehabilitation Principles Unique to People with Non-traumatic Spinal Cord Dysfunction.

    PubMed

    New, Peter Wayne; Eriks-Hoogland, Inge; Scivoletto, Giorgio; Reeves, Ronald K; Townson, Andrea; Marshall, Ruth; Rathore, Farooq A

    2017-01-01

    Background: Non-traumatic spinal cord dysfunction (SCDys) is caused by a large range of heterogeneous etiologies. Although most aspects of rehabilitation for traumatic spinal cord injury and SCDys are the same, people with SCDys have some unique rehabilitation issues. Purpose: This article presents an overview of important clinical rehabilitation principles unique to SCDys. Methods: Electronic literature search conducted (January 2017) using MEDLINE and Embase (1990-2016) databases for publications regarding SCDys. The focus of the literature search was on identifying publications that present suggestions regarding the clinical rehabilitation of SCDys. Results: The electronic search of MEDLINE and Embase identified no relevant publications, and the publications included were from the authors' libraries. A number of important clinical rehabilitation principles unique to people with SCDys were identified, including classification issues, general rehabilitation issues, etiology-specific issues, and a role for the rehabilitation physician as a diagnostic clinician. The classification issues were regarding the etiology of SCDys and the International Standards for Neurological Classification of Spinal Cord Injury. The general rehabilitation issues were predicting survival, improvement, and rehabilitation outcomes; admission to spinal rehabilitation units, including selection decision issues; participation in rehabilitation; and secondary health conditions. The etiology-specific issues were for SCDys due to spinal cord degeneration, tumors, and infections. Conclusions: Although there are special considerations regarding the rehabilitation of people with SCDys, such as the potential for progression of the underlying condition, functional improvement is typically significant with adequate planning of rehabilitation programs and special attention regarding the clinical condition of patients with SCDys.

  10. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes.

    PubMed

    Mank, Judith E

    2012-01-01

    Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes.

  11. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes

    PubMed Central

    2012-01-01

    Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes. PMID:22038285

  12. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis

    PubMed Central

    Fernández-Hernando, Carlos; Yu, Jun; Suárez, Yajaira; Rahner, Christoph; Dávalos, Alberto; Lasunción, Miguel A.; Sessa, William C.

    2009-01-01

    SUMMARY The accumulation of LDL-derived cholesterol in the artery wall is the initiating event that causes atherosclerosis. However, the mechanisms that lead to the initiation of atherosclerosis are still poorly understood. Here, by using endothelial cell-specific transgenesis of the caveolin-1 (Cav-1) gene in mice, we show the critical role of Cav-1 in promoting atherogenesis. Mice were generated lacking Cav-1 and apoE but expressing endothelial-specific Cav-1 in the double knockout background. Genetic ablation of Cav-1 on an apoE knockout background inhibits the progression of atherosclerosis while re-expression of Cav-1 in the endothelium promotes lesion expansion. Mechanistically, the loss of Cav-1 reduces LDL infiltration into the artery wall, promotes nitric oxide production and reduces the expression of leukocyte adhesion molecules, effects completely reversed in transgenic mice. In summary, this unique model provides physiological evidence supporting the important role of endothelial Cav-1 expression in regulating the entry of LDL into the vessel wall and the initiation of atherosclerosis. PMID:19583953

  13. In vitro senescence of immune cells.

    PubMed

    Effros, Rita B; Dagarag, Mirabelle; Valenzuela, Hector F

    2003-01-01

    Immune cells are eminently suitable model systems in which to address the possible role of replicative senescence during in vivo aging. Since there are more than 10(8) unique antigen specificities present within the total T lymphocyte population of each individual, the immune response to any single antigen requires massive clonal expansion of the small proportion of T cells whose receptors recognize that antigen. The Hayflick Limit may, therefore, constitute a barrier to effective immune function, at least for those T cells that encounter their specific antigen more than once over the life course. Application of the fibroblast replicative senescence model to the so-called cytotoxic or CD8 T cell, the class of T cells that controls viral infection and cancer, has revealed certain features in common with other cell types as well as several characteristics that are unique to T cells. One senescence-associated change that is T cell-specific is the complete loss of expression of the activation signaling surface molecule, CD28, an alteration that enabled the documentation of high proportions of senescent T cells in vivo. The T cell model has also provided the unique opportunity to analyze telomere dynamics in a cell type that has the ability to upregulate telomerase yet nevertheless undergoes senescence. The intimate involvement of the immune system in the control of pathogens and cancer as well as in modulation of bone homeostasis suggests that more extensive analysis of the full range of characteristics of senescent T cells may help elucidate a broad spectrum of age-associated physiological changes.

  14. Down under the tunic: bacterial biodiversity hotspots and widespread ammonia-oxidizing archaea in coral reef ascidians.

    PubMed

    Erwin, Patrick M; Pineda, Mari Carmen; Webster, Nicole; Turon, Xavier; López-Legentil, Susanna

    2014-03-01

    Ascidians are ecologically important components of marine ecosystems yet the ascidian microbiota remains largely unexplored beyond a few model species. We used 16S rRNA gene tag pyrosequencing to provide a comprehensive characterization of microbial symbionts in the tunic of 42 Great Barrier Reef ascidian samples representing 25 species. Results revealed high bacterial biodiversity (3 217 unique operational taxonomic units (OTU0.03) from 19 described and 14 candidate phyla) and the widespread occurrence of ammonia-oxidizing Thaumarchaeota in coral reef ascidians (24 of 25 host species). The ascidian microbiota was clearly differentiated from seawater microbial communities and included symbiont lineages shared with other invertebrate hosts as well as unique, ascidian-specific phylotypes. Several rare seawater microbes were markedly enriched (200-700 fold) in the ascidian tunic, suggesting that the rare biosphere of seawater may act as a conduit for horizontal symbiont transfer. However, most OTUs (71%) were rare and specific to single hosts and a significant correlation between host relatedness and symbiont community similarity was detected, indicating a high degree of host-specificity and potential role of vertical transmission in structuring these communities. We hypothesize that the complex ascidian microbiota revealed herein is maintained by the dynamic microenvironments within the ascidian tunic, offering optimal conditions for different metabolic pathways such as ample chemical substrate (ammonia-rich host waste) and physical habitat (high oxygen, low irradiance) for nitrification. Thus, ascidian hosts provide unique and fertile niches for diverse microorganisms and may represent an important and previously unrecognized habitat for nitrite/nitrate regeneration in coral reef ecosystems.

  15. Ants and antlions: The impact of ecology, coevolution and learning on an insect predator-prey relationship.

    PubMed

    Hollis, Karen L

    2017-06-01

    A behavioural ecological approach to the relationship between pit-digging larval antlions and their common prey, ants, provides yet another example of how the specific ecological niche that species inhabit imposes selection pressures leading to unique behavioural adaptations. Antlions rely on multiple strategies to capture prey with a minimal expenditure of energy and extraordinary efficiency while ants employ several different strategies for avoiding capture, including rescue of trapped nestmates. Importantly, both ants and antlions rely heavily on their capacity for learning, a tool that sometimes is overlooked in predator-prey relationships, leading to the implicit assumption that behavioural adaptations are the result of fixed, hard-wired responses. Nonetheless, like hard-wired responses, learned behaviour, too, is uniquely adapted to the ecological niche, a reminder that the expression of associative learning is species-specific. Beyond the study of ants and antlions, per se, this particular predator-prey relationship reveals the important role that the capacity to learn plays in coevolutionary arms races. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Untangling the relative contribution of maltreatment severity and frequency to type of behavioral outcome in foster youth.

    PubMed

    Jackson, Yo; Gabrielli, Joy; Fleming, Kandace; Tunno, Angela M; Makanui, P Kalani

    2014-07-01

    Within maltreatment research, type, frequency, and severity of abuse are often confounded and not always specifically documented. The result is samples that are often heterogeneous in regard to maltreatment experience, and the role of the different components of maltreatment in predicting outcome is unclear. The purpose of the present study was to identify and test the potential unique role of type, frequency, and severity of maltreatment to elucidate each variable's role in predicting outcome behavior. Data from 309 youth in foster care (ages 8-22) and their caregivers were collected using the Modified Maltreatment Classification System and the Behavioral Assessment System for Children, 2nd Edition (BASC2), to measure maltreatment exposure and behavioral outcome respectively. A measurement model of the BASC2 was completed to determine model fit within the sample data. A second confirmatory factor analysis (CFA) was completed to determine the unique contributions of frequency and severity of maltreatment across four types of abuse to externalizing, internalizing, and adaptive behavior. The result of the CFA determined good fit of the BASC2 to the sample data after a few modifications. The result of the second CFA indicated that the paths from severity to externalizing behavior and adaptive behavior (reverse loading) were significant. Paths from frequency of abuse were not predictive of behavioral outcome. Maltreatment is a complex construct and researchers are encouraged to examine components of abuse that may be differentially related to outcome behavior for youth. Untangling the multifaceted nature of abuse is important and may have implications for identifying specific outcomes for youth exposed to maltreatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Coalbed methane: Clean energy for the world

    USGS Publications Warehouse

    Ahmed, A.-J.; Johnston, S.; Boyer, C.; Lambert, S.W.; Bustos, O.A.; Pashin, J.C.; Wray, A.

    2009-01-01

    Coalbed methane (CBM) has the potential to emerge as a significant clean energy resource. It also has the potential to replace other diminishing hydrocarbon reserves. The latest developments in technologies and methodologies are playing a key role in harnessing this unconventional resource. Some of these developments include adaptations of existing technologies used in conventional oil and gas generations, while others include new applications designed specifically to address coal's unique properties. Completion techniques have been developed that cause less damage to the production mechanisms of coal seams, such as those occurring during cementing operations. Stimulation fluids have also been engineered specifically to enhance CBM production. Deep coal deposits that remain inaccessible by conventional mining operations offer CBM development opportunities.

  18. Young Adults’ Attitudes and Perceptions of Obesity and Weight Management: Implications for Treatment Development

    PubMed Central

    Lanoye, Autumn; Gorin, Amy A.; LaRose, Jessica Gokee

    2017-01-01

    Young adults are underrepresented in standard behavioral weight loss trials, and evidence suggests that they differ from older adults on many weight related constructs. The aim of this review is to explore young adults’ attitudes toward obesity and weight management, with particular attention to those factors that may play a role in development of future treatment efforts. Both intrapersonal and interpersonal considerations unique to young adulthood are assessed; in addition, we examine young adults’ perceptions of specific weight-related behaviors such as dieting, physical activity, and self-weighing. Conclusions are consistent with other findings suggesting that weight management interventions should be adapted and designed specifically for this age group. PMID:26923688

  19. Subjective happiness among mothers of children with disabilities: The role of stress, attachment, guilt and social support.

    PubMed

    Findler, Liora; Klein Jacoby, Ayelet; Gabis, Lidia

    2016-08-01

    Parenting a child with disabilities might affect the happiness of the mothers. Hence we adapted Wallander, Varni, Babani, Banis, and Wilcox's (1989) disability-stress-coping model to examine the impact of risk factors (specific stressors related to the child's disability) on the mother's adaptation (happiness). Intrapersonal factors (attachment) and social-ecological factors (social support) were hypothesized to predict adaptation. Both constitute 'risk-resistant' factors, which are mediated by the mother's perceived general stress and guilt. 191 mothers of a child with a developmental disability (ages 3-7) answered questionnaires on happiness, specific and general stress, attachment, guilt and social support. Attachment avoidance was directly and negatively associated with mothers' happiness. General stress was negatively associated with happiness, and mediated the association between anxious attachment, support, and specific stress with happiness. Guilt was negatively associated with happiness, and served as a mediator between attachment anxiety and support and happiness. The findings of the current research show direct and indirect associations of risk factors with happiness and the role of general stress and feelings of guilt as mediators. This study stresses the importance of attachment and social support to happiness and sheds light on the unique role of guilt in promoting or inhibiting happiness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Thinking like a trader selectively reduces individuals' loss aversion

    PubMed Central

    Sokol-Hessner, Peter; Hsu, Ming; Curley, Nina G.; Delgado, Mauricio R.; Camerer, Colin F.; Phelps, Elizabeth A.

    2009-01-01

    Research on emotion regulation has focused upon observers' ability to regulate their emotional reaction to stimuli such as affective pictures, but many other aspects of our affective experience are also potentially amenable to intentional cognitive regulation. In the domain of decision-making, recent work has demonstrated a role for emotions in choice, although such work has generally remained agnostic about the specific role of emotion. Combining psychologically-derived cognitive strategies, physiological measurements of arousal, and an economic model of behavior, this study examined changes in choices (specifically, loss aversion) and physiological correlates of behavior as the result of an intentional cognitive regulation strategy. Participants were on average more aroused per dollar to losses relative to gains, as measured with skin conductance response, and the difference in arousal to losses versus gains correlated with behavioral loss aversion across subjects. These results suggest a specific role for arousal responses in loss aversion. Most importantly, the intentional cognitive regulation strategy, which emphasized “perspective-taking,” uniquely reduced both behavioral loss aversion and arousal to losses relative to gains, largely by influencing arousal to losses. Our results confirm previous research demonstrating loss aversion while providing new evidence characterizing individual differences and arousal correlates and illustrating the effectiveness of intentional regulation strategies in reducing loss aversion both behaviorally and physiologically. PMID:19289824

  1. Comparative Functional Genomics of Lactobacillus spp. Reveals Possible Mechanisms for Specialization of Vaginal Lactobacilli to Their Environment

    PubMed Central

    Suzuki, Haruo; Hickey, Roxana J.; Forney, Larry J.

    2014-01-01

    Lactobacilli are found in a wide variety of habitats. Four species, Lactobacillus crispatus, L. gasseri, L. iners, and L. jensenii, are common and abundant in the human vagina and absent from other habitats. These may be adapted to the vagina and possess characteristics enabling them to thrive in that environment. Furthermore, stable codominance of multiple Lactobacillus species in a single community is infrequently observed. Thus, it is possible that individual vaginal Lactobacillus species possess unique characteristics that confer to them host-specific competitive advantages. We performed comparative functional genomic analyses of representatives of 25 species of Lactobacillus, searching for habitat-specific traits in the genomes of the vaginal lactobacilli. We found that the genomes of the vaginal species were significantly smaller and had significantly lower GC content than those of the nonvaginal species. No protein families were found to be specific to the vaginal species analyzed, but some were either over- or underrepresented relative to nonvaginal species. We also found that within the vaginal species, each genome coded for species-specific protein families. Our results suggest that even though the vaginal species show no general signatures of adaptation to the vaginal environment, each species has specific and perhaps unique ways of interacting with its environment, be it the host or other microbes in the community. These findings will serve as a foundation for further exploring the role of lactobacilli in the ecological dynamics of vaginal microbial communities and their ultimate impact on host health. PMID:24488312

  2. The Potential Role of Yogurt in Weight Management and Prevention of Type 2 Diabetes.

    PubMed

    Panahi, Shirin; Tremblay, Angelo

    2016-01-01

    Yogurt is a semisolid fermented milk product that originated centuries ago and is viewed as an essential food and important source of nutrients in the diet of humans. Over the last 30 years, overweight and obesity have become characteristic of Western and developing countries, which has led to deleterious health outcomes, including cardiovascular disease, type 2 diabetes, hypertension, and other chronic conditions. Recent epidemiological and clinical evidence suggests that yogurt is involved in the control of body weight and energy homeostasis and may play a role in reducing the risk for type 2 diabetes partly via the replacement of less healthy foods in the diet, its food matrix, the effect of specific nutrients such as calcium and protein on appetite control and glycemia, and alteration in gut microbiota. This review will discuss the specific properties that make yogurt a unique food among the dairy products, epidemiological and clinical evidence supporting yogurt's role in body weight, energy balance, and type 2 diabetes, including its potential mechanisms of action and gaps that need to be explored. Key teaching points • Several epidemiological and clinical studies have suggested a beneficial effect of yogurt consumption in the control of body weight and energy homeostasis, although this remains controversial. • Yogurt possesses unique properties, including its nutritional composition; lactic acid bacteria, which may affect gut microbiota; and food matrix, which may have a potential role in appetite and glycemic control. • Potential mechanisms of action of yogurt include an increase in body fat loss, decrease in food intake and increase in satiety, decrease in glycemic and insulin response, altered gut hormone response, replacement of less healthy foods, and altered gut microbiota. • The relative energy and nutrient content and contribution of a standard portion of yogurt to the overall diet suggest that the percentage daily intake of these nutrients largely contributes to nutrient requirements and provides a strong contribution to the regulation of energy metabolism.

  3. Genetic Dissection of Midbrain Dopamine Neuron Development in vivo

    PubMed Central

    Ellisor, Debra; Rieser, Caroline; Voelcker, Bettina; Machan, Jason T.; Zervas, Mark

    2012-01-01

    Midbrain dopamine (MbDA) neurons are partitioned into medial and lateral cohorts that control complex functions. However, the genetic underpinnings of MbDA neuron heterogeneity are unclear. While it is known that Wnt1-expressing progenitors contribute to MbDA neurons, the role of Wnt1 in MbDA neuron development in vivo is unresolved. We show that mice with a spontaneous point mutation in Wnt1 have a unique phenotype characterized by the loss of medial MbDA neurons concomitant with a severe depletion of Wnt1-expressing progenitors and diminished LMX1a-expressing progenitors. Wnt1 mutant embryos also have alterations in a hierarchical gene regulatory loop suggesting multiple gene involvement in the Wnt1 mutant MbDA neuron phenotype. To investigate this possibility, we conditionally deleted Gbx2, Fgf8, and En1/2 after their early role in patterning and asked whether these genetic manipulations phenocopied the depletion of MbDA neurons in Wnt1 mutants. The conditional deletion of Gbx2 did not result in re-positioning or distribution of MbDA neurons. The temporal deletion of Fgf8 did not result in the loss of either LMX1a-expressing progenitors nor the initial population of differentiated MbDA neurons, but did result in a complete loss of MbDA neurons at later stages. The temporal deletion and species specific manipulation of En1/2 demonstrated a continued and species specific role of Engrailed genes in MbDA neuron development. Notably, our conditional deletion experiments revealed phenotypes dissimilar to Wnt1 mutants indicating the unique role of Wnt1 in MbDA neuron development. By placing Wnt1, Fgf8, and En1/2 in the context of their temporal requirement for MbDA neuron development, we further deciphered the developmental program underpinning MbDA neuron progenitors. PMID:23041116

  4. The Oklahoma bombing. Lessons learned.

    PubMed

    Anteau, C M; Williams, L A

    1997-06-01

    The Oklahoma City bombing experience in April of 1995 provided a unique opportunity to test the effectiveness of an existing disaster plan. The critical care nurses at Columbia Presbyterian Hospital learned valuable lessons about managing intense activity, equipment and supplies, staffing resources, and visitor issues. The degree to which the bombing affected the emotional state of personnel was unanticipated, and leaders learned that critical stress management interventions should be included in every emergency preparedness plan. Additionally, recommendations include using runners for communication; assigning specific roles (supplies, staffing, triage); keeping additional staff in reserve for shift relief; ensuring ample hospital staff members are available to coordinate visitors and media; and setting up record systems to preserve continuity. The unique lessons learned as a result of this terrorist attack can be used by other critical care nurses to understand and refine disaster plans.

  5. Language and false belief: evidence for general, not specific, effects in cantonese-speaking preschoolers.

    PubMed

    Tardif, Twila; So, Catherine Wing-Chee; Kaciroti, Niko

    2007-03-01

    Two studies were conducted with Cantonese-speaking preschoolers examining J. de Villiers's (1995) hypothesis that syntactic complements play a unique role in the acquisition of false belief (FB). In Study 1, the authors found a positive correlation between FB and syntactic complements in 72 four- to six-year-old Cantonese-speaking preschoolers. Study 2 followed 72 three- to five-year-old Cantonese-speaking children who initially failed an FB screening task and were then tested on general language abilities, short-term memory, inhibition, nonverbal IQ, and on FB and complement tasks. Once age and initial FB understanding were controlled for in both multiple regression and hierarchical linear modeling analyses, complements no longer uniquely predicted FB. Instead, individual differences in general language abilities and short-term memory contributed to the variation in both complements and FB.

  6. Proteomics and metabolomics analyses reveal the cucurbit sieve tube system as a complex metabolic space.

    PubMed

    Hu, Chaoyang; Ham, Byung-Kook; El-Shabrawi, Hattem M; Alexander, Danny; Zhang, Dabing; Ryals, John; Lucas, William J

    2016-09-01

    The plant vascular system, and specifically the phloem, plays a pivotal role in allocation of fixed carbon to developing sink organs. Although the processes involved in loading and unloading of sugars and amino acids are well characterized, little information is available regarding the nature of other metabolites in the sieve tube system (STS) at specific sites along the pathway. Here, we elucidate spatial features of metabolite composition mapped with phloem enzymes along the cucurbit STS. Phloem sap (PS) was collected from the loading (source), unloading (apical sink region) and shoot-root junction regions of cucumber, watermelon and pumpkin. Our PS analyses revealed significant differences in the metabolic and proteomic profiles both along the source-sink pathway and between the STSs of these three cucurbits. In addition, metabolite profiles established for PS and vascular tissue indicated the presence of distinct compositions, consistent with the operation of the STS as a unique symplasmic domain. In this regard, at various locations along the STS we could map metabolites and their related enzymes to specific metabolic pathways. These findings are discussed with regard to the function of the STS as a unique and highly complex metabolic space within the plant vascular system. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  7. Post-translationally modified muscle-specific ubiquitin ligases as circulating biomarkers in experimental cancer cachexia

    PubMed Central

    Mota, Roberto; Rodríguez, Jessica E; Bonetto, Andrea; O’Connell, Thomas M; Asher, Scott A; Parry, Traci L; Lockyer, Pamela; McCudden, Christopher R; Couch, Marion E; Willis, Monte S

    2017-01-01

    Cancer cachexia is a severe wasting syndrome characterized by the progressive loss of lean body mass and systemic inflammation. Up to 80% of cancer patients experience cachexia, with 20-30% of cancer-related deaths directly linked to cachexia. Despite efforts to identify early cachexia and cancer relapse, clinically useful markers are lacking. Recently, we identified the role of muscle-specific ubiquitin ligases Atrogin-1 (MAFbx, FBXO32) and Muscle Ring Finger-1 in the pathogenesis of cardiac atrophy and hypertrophy. We hypothesized that during cachexia, the Atrogin-1 and MuRF1 ubiquitin ligases are released from muscle and migrate to the circulation where they could be detected and serve as a cachexia biomarker. To test this, we induced cachexia in mice using the C26 adenocarcinoma cells or vehicle (control). Body weight, tumor volume, and food consumption were measured from inoculation until ~day 14 to document cachexia. Western blot analysis of serum identified the presence of Atrogin-1 and MuRF1 with unique post-translational modifications consistent with mono- and poly- ubiquitination of Atrogin-1 and MuRF1 found only in cachectic serum. These findings suggest that both increased Atrogin-1 and the presence of unique post-translational modifications may serve as a surrogate marker specific for cachexia. PMID:28979816

  8. Structures of the Bacillus subtilis Glutamine Synthetase Dodecamer Reveal Large Intersubunit Catalytic Conformational Changes Linked to a Unique Feedback Inhibition Mechanism*

    PubMed Central

    Murray, David S.; Chinnam, Nagababu; Tonthat, Nam Ky; Whitfill, Travis; Wray, Lewis V.; Fisher, Susan H.; Schumacher, Maria A.

    2013-01-01

    Glutamine synthetase (GS), which catalyzes the production of glutamine, plays essential roles in nitrogen metabolism. There are two main bacterial GS isoenzymes, GSI-α and GSI-β. GSI-α enzymes, which have not been structurally characterized, are uniquely feedback-inhibited by Gln. To gain insight into GSI-α function, we performed biochemical and cellular studies and obtained structures for all GSI-α catalytic and regulatory states. GSI-α forms a massive 600-kDa dodecameric machine. Unlike other characterized GS, the Bacillus subtilis enzyme undergoes dramatic intersubunit conformational alterations during formation of the transition state. Remarkably, these changes are required for active site construction. Feedback inhibition arises from a hydrogen bond network between Gln, the catalytic glutamate, and the GSI-α-specific residue, Arg62, from an adjacent subunit. Notably, Arg62 must be ejected for proper active site reorganization. Consistent with these findings, an R62A mutation abrogates Gln feedback inhibition but does not affect catalysis. Thus, these data reveal a heretofore unseen restructuring of an enzyme active site that is coupled with an isoenzyme-specific regulatory mechanism. This GSI-α-specific regulatory network could be exploited for inhibitor design against Gram-positive pathogens. PMID:24158439

  9. Mice with Deficiency of G Protein γ3 Are Lean and Have Seizures

    PubMed Central

    Schwindinger, William F.; Giger, Kathryn E.; Betz, Kelly S.; Stauffer, Anna M.; Sunderlin, Elaine M.; Sim-Selley, Laura J.; Selley, Dana E.; Bronson, Sarah K.; Robishaw, Janet D.

    2004-01-01

    Emerging evidence suggests that the γ subunit composition of an individual G protein contributes to the specificity of the hundreds of known receptor signaling pathways. Among the twelve γ subtypes, γ3 is abundantly and widely expressed in the brain. To identify specific functions and associations for γ3, a gene-targeting approach was used to produce mice lacking the Gng3 gene (Gng3−/−). Confirming the efficacy and specificity of gene targeting, Gng3−/− mice show no detectable expression of the Gng3 gene, but expression of the divergently transcribed Bscl2 gene is not affected. Suggesting unique roles for γ3 in the brain, Gng3−/− mice display increased susceptibility to seizures, reduced body weights, and decreased adiposity compared to their wild-type littermates. Predicting possible associations for γ3, these phenotypic changes are associated with significant reductions in β2 and αi3 subunit levels in certain regions of the brain. The finding that the Gng3−/− mice and the previously reported Gng7−/− mice display distinct phenotypes and different αβγ subunit associations supports the notion that even closely related γ subtypes, such as γ3 and γ7, perform unique functions in the context of the organism. PMID:15314181

  10. Parent management of the school reintegration needs of children and youth following moderate or severe traumatic brain injury.

    PubMed

    Roscigno, Cecelia I; Fleig, Denise K; Knafl, Kathleen A

    2015-01-01

    School reintegration following children's traumatic brain injury (TBI) is still poorly understood from families' perspectives. We aimed to understand how both unique and common experiences during children's school reintegration were explained by parents to influence the family. Data came from an investigation using descriptive phenomenology (2005-2007) to understand parents' experiences in the first five years following children's moderate to severe TBI. Parents (N = 42 from 37 families in the United States) participated in two 90-min interviews (first M = 15 months; second M = 27 months). Two investigators independently coded parents' discussions of school reintegration using content analysis to understand the unique and common factors that parents perceived affected the family. Parents' school negotiation themes included the following: (1) legal versus moral basis for helping the child; (2) inappropriate state and local services that did not consider needs specific to TBI; and (3) involvement in planning, implementing and evaluating the child's education plan. Parents perceived that coordinated and collaboration leadership with school personnel lessened families' workload. Families who home-schooled had unique challenges. School reintegration can add to family workload by changing roles and relationships and by adding to parents' perceived stress in managing of the child's condition. Moderate to severe traumatic brain injury is assumed to be the primary cause of children's morbidities post-injury. Despite laws in the United States meant to facilitate children's school reintegration needs, parents often perceived that policies and practices differed from the intentions of laws and added to the family workload and stress. The school environment of the child (physical, cultural or psychological setting) plays an important long-term role in shaping family roles, relationships and management of the child's condition.

  11. Considerations for setting the specifications of vaccines.

    PubMed

    Minor, Philip

    2012-05-01

    The specifications of vaccines are determined by the particular product and its method of manufacture, which raise issues unique to the vaccine in question. However, the general principles are shared, including the need to have sufficient active material to immunize a very high proportion of recipients, an acceptable level of safety, which may require specific testing or may come from the production process, and an acceptable low level of contamination with unwanted materials, which may include infectious agents or materials used in production. These principles apply to the earliest smallpox vaccines and the most recent recombinant vaccines, such as those against HPV. Manufacturing development includes more precise definitions of the product through improved tests and tighter control of the process parameters. Good manufacturing practice plays a major role, which is likely to increase in importance in assuring product quality almost independent of end-product specifications.

  12. Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer

    PubMed Central

    Berger, Stephanie; Procko, Erik; Margineantu, Daciana; Lee, Erinna F; Shen, Betty W; Zelter, Alex; Silva, Daniel-Adriano; Chawla, Kusum; Herold, Marco J; Garnier, Jean-Marc; Johnson, Richard; MacCoss, Michael J; Lessene, Guillaume; Davis, Trisha N; Stayton, Patrick S; Stoddard, Barry L; Fairlie, W Douglas; Hockenbery, David M; Baker, David

    2016-01-01

    Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes. DOI: http://dx.doi.org/10.7554/eLife.20352.001 PMID:27805565

  13. Closed-Loop Optogenetic Intervention in Mice

    PubMed Central

    Oijala, Mikko; Soltesz, Ivan

    2014-01-01

    Optogenetic interventions offer novel ways of probing, in a temporally specific manner, the roles of specific cell types in neuronal network functions of awake, behaving animals. Despite the unique potential for temporally specific optogenetic interventions in disease states, a major hurdle in its broad application to unpredictable brain states in a laboratory setting is constructing a real-time responsive system. We recently created a closed-loop system for stopping spontaneous seizures in chronically epileptic mice using optogenetic intervention. This system performs with very high sensitivity and specificity, and the strategy is relevant not only to epilepsy, but can also be used to react in real time, with optogenetic or other interventions, to diverse brain states. The protocol presented here is highly modular and requires variable time to perform. We describe the basic construction of a complete system, and include our downloadable custom closed-loop detection software which can be employed for this purpose. PMID:23845961

  14. Roles, skills, and competencies of middle managers in occupational therapy.

    PubMed

    Guo, Kristina L; Calderon, Ana

    2007-01-01

    This article describes the most essential roles, skills, and competencies needed by middle managers in occupational therapy organizations. Middle-level managers are responsible for a specific segment of the organization. They are uniquely positioned to foster changes in the department. Because of the challenges in the health care environment, it is important to discuss the roles that middle managers need to bring out the viability and growth of their departments and organization. These roles include planner, strategic planner, coordinator, leader, problem solver, and negotiator. To conduct these roles, skills and competencies that are closely linked to the effective performance of those roles are also described. Skills include human relations, marketing, and conceptual skills. Competencies include being able to manage attention, meaning, trust, and self, as well as being competent when conducting utilization reviews, program evaluations, documentation of services for quality and reimbursement purposes, and fiscal management. With these outlined roles, skills, and competencies, middle managers should be able to promote the mission of their organizations, support their employees, and navigate successfully in the competitive and ever-changing health care environment.

  15. Four and a half LIM domain protein signaling and cardiomyopathy.

    PubMed

    Liang, Yan; Bradford, William H; Zhang, Jing; Sheikh, Farah

    2018-06-20

    Four and a half LIM domain (FHL) protein family members, FHL1 and FHL2, are multifunctional proteins that are enriched in cardiac muscle. Although they both localize within the cardiomyocyte sarcomere (titin N2B), they have been shown to have important yet unique functions within the context of cardiac hypertrophy and disease. Studies in FHL1-deficient mice have primarily uncovered mitogen-activated protein kinase (MAPK) scaffolding functions for FHL1 as part of a novel biomechanical stretch sensor within the cardiomyocyte sarcomere, which acts as a positive regulator of pressure overload-mediated cardiac hypertrophy. New data have highlighted a novel role for the serine/threonine protein phosphatase (PP5) as a deactivator of the FHL1-based biomechanical stretch sensor, which has implications in not only cardiac hypertrophy but also heart failure. In contrast, studies in FHL2-deficient mice have primarily uncovered an opposing role for FHL2 as a negative regulator of adrenergic-mediated signaling and cardiac hypertrophy, further suggesting unique functions targeted by FHL proteins in the "stressed" cardiomyocyte. In this review, we provide current knowledge of the role of FHL1 and FHL2 in cardiac muscle as it relates to their actions in cardiac hypertrophy and cardiomyopathy. A specific focus will be to dissect the pathways and protein-protein interactions that underlie FHLs' signaling role in cardiac hypertrophy as well as provide a comprehensive list of FHL mutations linked to cardiac disease, using evidence gained from genetic mouse models and human genetic studies.

  16. Physiological role of ghrelin as revealed by the ghrelin and GOAT knockout mice.

    PubMed

    Kang, Kihwa; Zmuda, Erik; Sleeman, Mark W

    2011-11-01

    Ghrelin is a gastric hormone that has been shown to regulate food intake and energy metabolism. One unique feature of ghrelin is that its activity is regulated post transcriptionally by ghrelin O-acyltransferase (GOAT) through the addition of fatty acid to the serine residue in the N terminal region. Despite much biochemical characterization, to date no other proteins have been shown to be specifically octonylated by GOAT, suggesting a unique matching of the acyl transferase for a single ligand, ghrelin. If this is indeed correct, then genetic deletion of ghrelin or GOAT should produce near identical phenotypes and there should be extensive overlap in expression patterns. This review summarizes the similarities and differences in the phenotypes with the genetic deletion of ghrelin and GOAT in the various knockout mouse lines reported to date. While there is considerable overlap in expression pattern between ghrelin and GOAT, the latter does exhibit some unique tissue expression that could suggest that additional peptides may be acylated and await discovery and characterization. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Systematic CpT (ApG) depletion and CpG excess are unique genomic signatures of large DNA viruses infecting invertebrates.

    PubMed

    Upadhyay, Mohita; Sharma, Neha; Vivekanandan, Perumal

    2014-01-01

    Differences in the relative abundance of dinucleotides, if any may provide important clues on host-driven evolution of viruses. We studied dinucleotide frequencies of large DNA viruses infecting vertebrates (n = 105; viruses infecting mammals = 99; viruses infecting aves = 6; viruses infecting reptiles = 1) and invertebrates (n = 88; viruses infecting insects = 84; viruses infecting crustaceans = 4). We have identified systematic depletion of CpT(ApG) dinucleotides and over-representation of CpG dinucleotides as the unique genomic signature of large DNA viruses infecting invertebrates. Detailed investigation of this unique genomic signature suggests the existence of invertebrate host-induced pressures specifically targeting CpT(ApG) and CpG dinucleotides. The depletion of CpT dinucleotides among large DNA viruses infecting invertebrates is at least in part, explained by non-canonical DNA methylation by the infected host. Our findings highlight the role of invertebrate host-related factors in shaping virus evolution and they also provide the necessary framework for future studies on evolution, epigenetics and molecular biology of viruses infecting this group of hosts.

  18. Environmental factors prevail over dispersal constraints in determining the distribution and assembly of Trichoptera species in mountain lakes.

    PubMed

    de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi

    2015-07-01

    Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran's eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For boreal lakes, with similar environmental conditions, a strong role of dispersal capacity has been suggested. Further investigation should address the role of spatial scaling, namely absolute geographical distances constraining dispersal and steepness of environmental gradients at short distances.

  19. Environmental factors prevail over dispersal constraints in determining the distribution and assembly of Trichoptera species in mountain lakes

    PubMed Central

    de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi

    2015-01-01

    Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran’s eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For boreal lakes, with similar environmental conditions, a strong role of dispersal capacity has been suggested. Further investigation should address the role of spatial scaling, namely absolute geographical distances constraining dispersal and steepness of environmental gradients at short distances. PMID:26257867

  20. Proceedings: Workshop on the Need for Lightning Observations from Space

    NASA Technical Reports Server (NTRS)

    Christensen, L. S. (Editor); Frost, W. (Editor); Vaughan, W. W. (Editor)

    1979-01-01

    The results of the Workshop on the Need for Lightning Observations from Space held February 13-15, 1979, at the University of Tennessee Space Institute, Tullahoma, Tennessee are presented. The interest and active involvement by the engineering, operational, and scientific participants in the workshop demonstrated that lightning observations from space is a goal well worth pursuing. The unique contributions, measurement requirements, and supportive research investigations were defined for a number of important applications. Lightning has a significant role in atmospheric processes and needs to be systematically investigated. Satellite instrumentation specifically designed for indicating the characteristics of lightning are of value in severe storms research, in engineering and operational problem areas, and in providing information on atmospheric electricity and its role in meteorological processes.

  1. The role of NASA's Water Resources applications area in improving access to water quality-related information and water resources management

    NASA Astrophysics Data System (ADS)

    Lee, C. M.

    2016-02-01

    The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.

  2. The role of NASA's Water Resources applications area in improving access to water quality-related information and water resources management

    NASA Astrophysics Data System (ADS)

    Lee, C. M.

    2016-12-01

    The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.

  3. Guidance, Navigation, and Control Considerations for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics.

  4. Isotope labeling for studying RNA by solid-state NMR spectroscopy.

    PubMed

    Marchanka, Alexander; Kreutz, Christoph; Carlomagno, Teresa

    2018-04-12

    Nucleic acids play key roles in most biological processes, either in isolation or in complex with proteins. Often they are difficult targets for structural studies, due to their dynamic behavior and high molecular weight. Solid-state nuclear magnetic resonance spectroscopy (ssNMR) provides a unique opportunity to study large biomolecules in a non-crystalline state at atomic resolution. Application of ssNMR to RNA, however, is still at an early stage of development and presents considerable challenges due to broad resonances and poor dispersion. Isotope labeling, either as nucleotide-specific, atom-specific or segmental labeling, can resolve resonance overlaps and reduce the line width, thus allowing ssNMR studies of RNA domains as part of large biomolecules or complexes. In this review we discuss the methods for RNA production and purification as well as numerous approaches for isotope labeling of RNA. Furthermore, we give a few examples that emphasize the instrumental role of isotope labeling and ssNMR for studying RNA as part of large ribonucleoprotein complexes.

  5. The crosstalk between hematopoietic stem cells and their niches.

    PubMed

    Durand, Charles; Charbord, Pierre; Jaffredo, Thierry

    2018-07-01

    Hematopoietic stem cells (HSCs) reside in specific microenvironments also called niches that regulate HSC functions. Understanding the molecular and cellular mechanisms involved in the crosstalk between HSCs and niche cells is a major issue in stem cell biology and regenerative medicine. The purpose of this review is to discuss recent advances in this field with particular emphasis on the transcriptional landscape of HSC niche cells and the roles of extracellular vesicles (EVs) in the dialog between HSCs and their microenvironments. The development of high-throughput technologies combined with computational methods has considerably improved our knowledge on the molecular identity of HSC niche cells. Accumulating evidence strongly suggest that the dialog between HSCs and their niches is bidirectional and that EVs play an important role in this process. These advances bring a unique conceptual and methodological framework for understanding the molecular complexity of the HSC niche and identifying novel HSC regulators. They are also promising for exploring the reciprocal influence of HSCs on niche cells and delivering specific molecules to HSCs in regenerative medicine.

  6. Rap G protein signal in normal and disordered lymphohematopoiesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minato, Nagahiro, E-mail: minato@imm.med.kyoto-u.ac.jp

    2013-09-10

    Rap proteins (Rap1, Rap2a, b, c) are small molecular weight GTPases of the Ras family. Rap G proteins mediate diverse cellular events such as cell adhesion, proliferation, and gene activation through various signaling pathways. Activation of Rap signal is regulated tightly by several specific regulatory proteins including guanine nucleotide exchange factors and GTPase-activating proteins. Beyond cell biological studies, increasing attempts have been made in the past decade to define the roles of Rap signal in specific functions of normal tissue systems as well as in cancer. In the immune and hematopoietic systems, Rap signal plays crucial roles in the developmentmore » and function of essentially all lineages of lymphocytes and hematopoietic cells, and importantly, deregulated Rap signal may lead to unique pathological conditions depending on the affected cell types, including various types of leukemia and autoimmunity. The phenotypical studies have unveiled novel, even unexpected functional aspects of Rap signal in cells from a variety of tissues, providing potentially important clues for controlling human diseases, including malignancy.« less

  7. Dysregulated fibroblast growth factor (FGF) signaling in neurological and psychiatric disorders.

    PubMed

    Turner, Cortney A; Eren-Koçak, Emine; Inui, Edny G; Watson, Stanley J; Akil, Huda

    2016-05-01

    The role of the fibroblast growth factor (FGF) system in brain-related disorders has received considerable attention in recent years. To understand the role of this system in neurological and psychiatric disorders, it is important to identify the specific members of the FGF family that are implicated, their location and the various mechanisms they can be modulated. Each disorder appears to impact specific molecular players in unique anatomical locations, and all of these could conceivably become targets for treatment. In the last several years, the issue of how to target this system directly has become an area of increasing interest. To date, the most promising therapeutics are small molecule inhibitors and antibodies that modulate FGF receptor (FGFR) function. Beyond attempting to modify the primary players affected by a given brain disorder, it may prove useful to target molecules, such as membrane-bound or extracellular proteins that interact with FGF ligands or FGFRs to modulate signaling. Published by Elsevier Ltd.

  8. Conservation of small RNA pathways in platypus

    PubMed Central

    Murchison, Elizabeth P.; Kheradpour, Pouya; Sachidanandam, Ravi; Smith, Carly; Hodges, Emily; Xuan, Zhenyu; Kellis, Manolis; Grützner, Frank; Stark, Alexander; Hannon, Gregory J.

    2008-01-01

    Small RNA pathways play evolutionarily conserved roles in gene regulation and defense from parasitic nucleic acids. The character and expression patterns of small RNAs show conservation throughout animal lineages, but specific animal clades also show variations on these recurring themes, including species-specific small RNAs. The monotremes, with only platypus and four species of echidna as extant members, represent the basal branch of the mammalian lineage. Here, we examine the small RNA pathways of monotremes by deep sequencing of six platypus and echidna tissues. We find that highly conserved microRNA species display their signature tissue-specific expression patterns. In addition, we find a large rapidly evolving cluster of microRNAs on platypus chromosome X1, which is unique to monotremes. Platypus and echidna testes contain a robust Piwi-interacting (piRNA) system, which appears to be participating in ongoing transposon defense. PMID:18463306

  9. Unique processing during a period of high excitation/inhibition balance in adult-born neurons.

    PubMed

    Marín-Burgin, Antonia; Mongiat, Lucas A; Pardi, M Belén; Schinder, Alejandro F

    2012-03-09

    The adult dentate gyrus generates new granule cells (GCs) that develop over several weeks and integrate into the preexisting network. Although adult hippocampal neurogenesis has been implicated in learning and memory, the specific role of new GCs remains unclear. We examined whether immature adult-born neurons contribute to information encoding. By combining calcium imaging and electrophysiology in acute slices, we found that weak afferent activity recruits few mature GCs while activating a substantial proportion of the immature neurons. These different activation thresholds are dictated by an enhanced excitation/inhibition balance transiently expressed in immature GCs. Immature GCs exhibit low input specificity that switches with time toward a highly specific responsiveness. Therefore, activity patterns entering the dentate gyrus can undergo differential decoding by a heterogeneous population of GCs originated at different times.

  10. Conservation of small RNA pathways in platypus.

    PubMed

    Murchison, Elizabeth P; Kheradpour, Pouya; Sachidanandam, Ravi; Smith, Carly; Hodges, Emily; Xuan, Zhenyu; Kellis, Manolis; Grützner, Frank; Stark, Alexander; Hannon, Gregory J

    2008-06-01

    Small RNA pathways play evolutionarily conserved roles in gene regulation and defense from parasitic nucleic acids. The character and expression patterns of small RNAs show conservation throughout animal lineages, but specific animal clades also show variations on these recurring themes, including species-specific small RNAs. The monotremes, with only platypus and four species of echidna as extant members, represent the basal branch of the mammalian lineage. Here, we examine the small RNA pathways of monotremes by deep sequencing of six platypus and echidna tissues. We find that highly conserved microRNA species display their signature tissue-specific expression patterns. In addition, we find a large rapidly evolving cluster of microRNAs on platypus chromosome X1, which is unique to monotremes. Platypus and echidna testes contain a robust Piwi-interacting (piRNA) system, which appears to be participating in ongoing transposon defense.

  11. An examination of the relationship between childhood emotional abuse and borderline personality disorder features: the role of difficulties with emotion regulation.

    PubMed

    Kuo, Janice R; Khoury, Jennifer E; Metcalfe, Rebecca; Fitzpatrick, Skye; Goodwill, Alasdair

    2015-01-01

    Childhood abuse has been consistently linked with borderline personality disorder (BPD) and recent studies suggest that some forms of childhood abuse might be uniquely related to both BPD and BPD features. In addition, difficulties with emotion regulation have been found to be associated with childhood abuse, BPD, as well as BPD features. The present study examined (1) whether frequency of childhood emotional abuse is uniquely associated with BPD feature severity when controlling for other forms of childhood abuse and (2) whether difficulties with emotion regulation accounts for the relationship between childhood emotional abuse and BPD feature severity. A sample of undergraduates (n=243) completed the Childhood Trauma Questionnaire - Short Form, Difficulties in Emotion Regulation Scale, and Borderline Symptom List-23. Multiple regression analyses and Structural Equation Modeling were conducted. Results indicated that frequency of childhood emotional abuse (and not sexual or physical abuse) was uniquely associated with BPD feature severity. In addition, while there was no direct path between childhood emotional abuse, childhood physical abuse, or childhood sexual abuse and BPD features, there was an indirect relationship between childhood emotional abuse and BPD features through difficulties with emotion regulation. These findings suggest that, of the different forms of childhood abuse, emotional abuse specifically, may have a developmental role in BPD pathology. Prevention and treatment of BPD pathology might benefit from the provision of emotion regulation strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. MicroRNA profiling of human kidney cancer subtypes.

    PubMed

    Petillo, David; Kort, Eric J; Anema, John; Furge, Kyle A; Yang, Ximing J; Teh, Bin Tean

    2009-07-01

    Although the functions of most of the identified microRNAs (miRNAs) have yet to be determined, their use as potential biomarkers has been considered in several human diseases and cancers. In order to understand their role in renal tumorigenesis, we screened the expression levels of miRNAs in four subtypes of human renal neoplasms: clear cell, papillary, and chromophobe renal cell carcinomas (RCC) as well as benign renal oncocytomas. We found a unique miRNA signature for each subtype of renal tumor. Furthermore, we identified unique patterns of miRNA expression distinguishing clear cell RCC cases with favorable vs. unfavorable outcome. Specifically, we documented the overexpression of miRs 424 and 203 in clear cell RCC relative to papillary RCC, as well as the inversion of expression of miR-203 in the benign oncocytomas (where it is underexpressed relative to normal kidney) as compared to the malignant chromophobe RCC (where it is overexpressed relative to normal kidney). Our results further suggest that overexpression of S-has-miR-32 is associated with poor outcome. While previous studies have identified unique miRNA expression pattern distinguishing tumors from different anatomical locations, here we extend this principle to demonstrate the utility of miRNA expression profiling to identify a signature unique to various tumor subtypes at a single anatomic locus.

  13. Massive gene acquisitions in Mycobacterium indicus pranii provide a perspective on mycobacterial evolution

    PubMed Central

    Saini, Vikram; Raghuvanshi, Saurabh; Khurana, Jitendra P.; Ahmed, Niyaz; Hasnain, Seyed E.; Tyagi, Akhilesh K.; Tyagi, Anil K.

    2012-01-01

    Understanding the evolutionary and genomic mechanisms responsible for turning the soil-derived saprophytic mycobacteria into lethal intracellular pathogens is a critical step towards the development of strategies for the control of mycobacterial diseases. In this context, Mycobacterium indicus pranii (MIP) is of specific interest because of its unique immunological and evolutionary significance. Evolutionarily, it is the progenitor of opportunistic pathogens belonging to M. avium complex and is endowed with features that place it between saprophytic and pathogenic species. Herein, we have sequenced the complete MIP genome to understand its unique life style, basis of immunomodulation and habitat diversification in mycobacteria. As a case of massive gene acquisitions, 50.5% of MIP open reading frames (ORFs) are laterally acquired. We show, for the first time for Mycobacterium, that MIP genome has mosaic architecture. These gene acquisitions have led to the enrichment of selected gene families critical to MIP physiology. Comparative genomic analysis indicates a higher antigenic potential of MIP imparting it a unique ability for immunomodulation. Besides, it also suggests an important role of genomic fluidity in habitat diversification within mycobacteria and provides a unique view of evolutionary divergence and putative bottlenecks that might have eventually led to intracellular survival and pathogenic attributes in mycobacteria. PMID:22965120

  14. Putative and unique gene sequence utilization for the design of species specific probes as modeled by Lactobacillus plantarum

    USDA-ARS?s Scientific Manuscript database

    The concept of utilizing putative and unique gene sequences for the design of species specific probes was tested. The abundance profile of assigned functions within the Lactobacillus plantarum genome was used for the identification of the putative and unique gene sequence, csh. The targeted gene (cs...

  15. A new buckwheat dihydroflavonol 4-reductase (DFR), with a unique substrate binding structure, has altered substrate specificity.

    PubMed

    Katsu, Kenjiro; Suzuki, Rintaro; Tsuchiya, Wataru; Inagaki, Noritoshi; Yamazaki, Toshimasa; Hisano, Tomomi; Yasui, Yasuo; Komori, Toshiyuki; Koshio, Motoyuki; Kubota, Seiji; Walker, Amanda R; Furukawa, Kiyoshi; Matsui, Katsuhiro

    2017-12-11

    Dihydroflavonol 4-reductase (DFR) is the key enzyme committed to anthocyanin and proanthocyanidin biosynthesis in the flavonoid biosynthetic pathway. DFR proteins can catalyse mainly the three substrates (dihydrokaempferol, dihydroquercetin, and dihydromyricetin), and show different substrate preferences. Although relationships between the substrate preference and amino acids in the region responsible for substrate specificity have been investigated in several plant species, the molecular basis of the substrate preference of DFR is not yet fully understood. By using degenerate primers in a PCR, we isolated two cDNA clones that encoded DFR in buckwheat (Fagopyrum esculentum). Based on sequence similarity, one cDNA clone (FeDFR1a) was identical to the FeDFR in DNA databases (DDBJ/Gen Bank/EMBL). The other cDNA clone, FeDFR2, had a similar sequence to FeDFR1a, but a different exon-intron structure. Linkage analysis in an F 2 segregating population showed that the two loci were linked. Unlike common DFR proteins in other plant species, FeDFR2 contained a valine instead of the typical asparagine at the third position and an extra glycine between sites 6 and 7 in the region that determines substrate specificity, and showed less activity against dihydrokaempferol than did FeDFR1a with an asparagine at the third position. Our 3D model suggested that the third residue and its neighbouring residues contribute to substrate specificity. FeDFR1a was expressed in all organs that we investigated, whereas FeDFR2 was preferentially expressed in roots and seeds. We isolated two buckwheat cDNA clones of DFR genes. FeDFR2 has unique structural and functional features that differ from those of previously reported DFRs in other plants. The 3D model suggested that not only the amino acid at the third position but also its neighbouring residues that are involved in the formation of the substrate-binding pocket play important roles in determining substrate preferences. The unique characteristics of FeDFR2 would provide a useful tool for future studies on the substrate specificity and organ-specific expression of DFRs.

  16. Temporal and spatial expression patterns of Hedgehog receptors in the developing inner and middle ear.

    PubMed

    Shin, Jeong-Oh; Ankamreddy, Harinarayana; Jakka, Naga Mahesh; Lee, Seokwon; Kim, Un-Kyung; Bok, Jinwoong

    2017-01-01

    The mammalian inner ear is a complex organ responsible for balance and hearing. Sonic hedgehog (Shh), a member of the Hedgehog (Hh) family of secreted proteins, has been shown to play important roles in several aspects of inner ear development, including dorsoventral axial specification, cochlear elongation, tonotopic patterning, and hair cell differentiation. Hh proteins initiate a downstream signaling cascade by binding to the Patched 1 (Ptch1) receptor. Recent studies have revealed that other types of co-receptors can also mediate Hh signaling, including growth arrest-specific 1 (Gas1), cell-adhesion molecules-related/down-regulated by oncogenes (Cdon), and biregional Cdon binding protein (Boc). However, little is known about the role of these Hh co-receptors in inner ear development. In this study, we examined the expression patterns of Gas1, Cdon, and Boc, as well as that of Ptch1, in the developing mouse inner ear from otocyst (embryonic day (E) 9.5) until birth and in the developing middle ear at E15.5. Ptch1, a readout of Hh signaling, was expressed in a graded pattern in response to Shh signaling throughout development. Expression patterns of Gas1, Cdon, and Boc differed from that of Ptch1, and each Hh co-receptor was expressed in specific cells and domains in the developing inner and middle ear. These unique and differential expression patterns of Hh co-receptors suggest their roles in mediating various time- and space-specific functions of Shh during ear development.

  17. PubMed

    Gueguen, Marie; Vallin, Benjamin; Glorian, Martine; Blaise, Régis; Limon, Isabelle

    2016-01-01

    In response to various types of vascular stress, the smooth muscle cells of the vessel wall (VSMCs) change phenotype and acquire the capacity to react to abnormal signals. This phenomenon favors the involvement of these cells in the development of major vascular diseases, such as atherosclerosis, and some complications of angioplasty, such as restenosis. The cyclic adenosine monophosphate (cAMP) pathway plays a key role in the integration of stimuli from the immediate environment and in the development of cellular responses. The temporal and spatial subcellular compartmentalization of cAMP ensures that the signals transmitted are specific. This compartmentalization is dependent on the diversity of (1) proteins directly or indirectly regulating the synthesis, degradation or release of cAMP; (2) intracellular effectors of cAMP; (3) isoforms of all these proteins with unique biochemical properties and unique patterns of regulation and (4) the scaffolding proteins on which the macromolecular complexes are built. This review illustrates the ways in which changes in the profile of adenylyl cyclases (ACs) may play critical roles in signal integration, the response of muscle cells and pathological vascular remodeling. It also illustrates the relevance of the renewed consideration of ACs as potentially interesting treatment targets. © Société de Biologie, 2016.

  18. Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dautel, Sydney E.; Kyle, Jennifer E.; Clair, Geremy

    Lung immaturity is a major cause of morbidity and mortality in premature infants. Understanding the molecular mechanisms driving normal lung development could provide insights on how to ameliorate disrupted development. While transcriptomic and proteomic analyses of normal lung development have been previously reported, characterization of changes in the lipidome is lacking. Lipids play significant roles in the lung, such as dipalmitoylcholine in pulmonary surfactant; however, many of the roles of specific lipid species in normal lung development, as well as in disease states, are not well defined. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the murinemore » lipidome during normal postnatal lung development. Lipidomics analysis of lungs from post-natal day 7, day 14 and 6-8 week mice (adult) identified 928 unique lipids across 21 lipid subclasses, with dramatic alterations in the lipidome across developmental stages. Our data confirmed previously recognized aspects of post-natal lung development and revealed several insights, including in sphingolipid-mediated apoptosis, inflammation and energy storage/usage. Complementary proteomics, metabolomics and chemical imaging corroborated these observations. Finally, this multi-omic view provides a unique resource and deeper insight into normal pulmonary development.« less

  19. Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung

    DOE PAGES

    Dautel, Sydney E.; Kyle, Jennifer E.; Clair, Geremy; ...

    2017-02-01

    Lung immaturity is a major cause of morbidity and mortality in premature infants. Understanding the molecular mechanisms driving normal lung development could provide insights on how to ameliorate disrupted development. While transcriptomic and proteomic analyses of normal lung development have been previously reported, characterization of changes in the lipidome is lacking. Lipids play significant roles in the lung, such as dipalmitoylcholine in pulmonary surfactant; however, many of the roles of specific lipid species in normal lung development, as well as in disease states, are not well defined. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the murinemore » lipidome during normal postnatal lung development. Lipidomics analysis of lungs from post-natal day 7, day 14 and 6-8 week mice (adult) identified 928 unique lipids across 21 lipid subclasses, with dramatic alterations in the lipidome across developmental stages. Our data confirmed previously recognized aspects of post-natal lung development and revealed several insights, including in sphingolipid-mediated apoptosis, inflammation and energy storage/usage. Complementary proteomics, metabolomics and chemical imaging corroborated these observations. Finally, this multi-omic view provides a unique resource and deeper insight into normal pulmonary development.« less

  20. CXCR4 in breast cancer: oncogenic role and therapeutic targeting

    PubMed Central

    Xu, Chao; Zhao, Hong; Chen, Haitao; Yao, Qinghua

    2015-01-01

    Chemokines are 8–12 kDa peptides that function as chemoattractant cytokines and are involved in cell activation, differentiation, and trafficking. Chemokines bind to specific G-protein-coupled seven-span transmembrane receptors. Chemokines play a fundamental role in the regulation of a variety of cellular, physiological, and developmental processes. Their aberrant expression can lead to a variety of human diseases including cancer. C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1 also called CXCL12). CXCR4 belongs to the superfamily of the seven transmembrane domain heterotrimeric G protein-coupled receptors and is functionally expressed on the cell surface of various types of cancer cells. CXCR4 also plays a role in the cell proliferation and migration of these cells. Recently, CXCR4 has been reported to play an important role in cell survival, proliferation, migration, as well as metastasis of several cancers including breast cancer. This review is mainly focused on the current knowledge of the oncogenic role and potential drugs that target CXCR4 in breast cancer. Additionally, CXCR4 proangiogenic molecular mechanisms will be reviewed. Strict biunivocal binding affinity and activation of CXCR4/CXCL12 complex make CXCR4 a unique molecular target for prevention and treatment of breast cancer. PMID:26356032

  1. The Role of the EGF Receptor and Vitamins A and D in Development and Progression of Breast Cancer to More Malignant Hormones Independent Phenotypes

    DTIC Science & Technology

    1999-09-01

    parathyroid hormone (46) and rat bone sialoprotein (47) genes are perhaps the most frequently cited examples of negative transcriptional regulation...specific to BT549 cells. A similar mechanism has been postulated to explain the vitamin D mediated suppression of the rat bone sialoprotein gene through a...Yamauchi M, Freedman LP, Sodek J 1996 Identification of a vitamin D3-response element that overlaps a unique inverted TATA box in the rat bone sialoprotein

  2. Prediction of Hyper-X Stage Separation Aerodynamics Using CFD

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Wong, Tin-Chee; Dilley, Arthur D.; Pao, Jenn L.

    2000-01-01

    The NASA X-43 "Hyper-X" hypersonic research vehicle will be boosted to a Mach 7 flight test condition mounted on the nose of an Orbital Sciences Pegasus launch vehicle. The separation of the research vehicle from the Pegasus presents some unique aerodynamic problems, for which computational fluid dynamics has played a role in the analysis. This paper describes the use of several CFD methods for investigating the aerodynamics of the research and launch vehicles in close proximity. Specifically addressed are unsteady effects, aerodynamic database extrapolation, and differences between wind tunnel and flight environments.

  3. AHSP: a novel hemoglobin helper

    PubMed Central

    Bank, Arthur

    2007-01-01

    Recently, the small protein α hemoglobin–stabilizing protein (AHSP) was identified and found to specifically bind α-globin, stabilize its structure, and limit the toxic effects of excess α-globin, which are manifest in the inherited blood disorder β thalassemia. In this issue of the JCI, Yu, Weiss, and colleagues show that AHSP is also critical to the formation and stabilization of normal amounts of hemoglobin, even when α-globin is deficient, indicating unique and previously unidentified roles for this molecule (see the related article beginning on page 1856). PMID:17607349

  4. Working with the Hmong Population in a Genetics Setting: an Interpreter Perspective.

    PubMed

    Krieger, Meghan; Agather, Aime; Douglass, Kathryn; Reiser, Catherine A; Petty, Elizabeth M

    2018-06-01

    The aim of this pilot qualitative study was to describe the experiences and beliefs of medical interpreters when working with genetic counselors and other genetic providers caring for Hmong patients who are not native English speakers. Specific goals were to identify interpreters' thoughts and perceptions on (a) their roles during sessions, (b) unique challenges in a genetics session, (c) knowledge genetics providers need when working with Hmong patients and interpreters, and (d) supports and training needed to effectively interpret in a genetics setting. Hmong medical interpreters from Wisconsin and Minnesota were invited by email to participate in the study. Six were interviewed by telephone. Participants had worked with a variety of providers including geneticists, genetic counselors, primary care physicians, and oncologists. Factors identified by Hmong interpreters that made interpretation of content difficult in clinical genetics sessions included: time constraints, technical terms, and unique cultural perspectives of Hmong patients. While all respondents felt their primary role was to interpret session content as close to verbatim as possible, there was notable variation in the description of their interpretation style and other perceived roles in the genetic counseling session. Cultural issues genetics providers could consider when working with Hmong patients and different style issues when working with Hmong interpreters are discussed. Ideas for future studies and suggestions to improve communication with Hmong patients are explored.

  5. Unique roles of estrogen-dependent Pten control in epithelial cell homeostasis of mouse vagina.

    PubMed

    Miyagawa, S; Sato, M; Sudo, T; Yamada, G; Iguchi, T

    2015-02-19

    Numerous studies support a role of phosphatase and tensin homolog deleted from chromosome 10 (Pten) as a tumor suppressor gene that controls epithelial cell homeostasis to prevent tumor formation. Mouse vaginal epithelium cyclically exhibits cell proliferation and differentiation in response to estrogen and provides a unique model for analyzing homeostasis of stratified squamous epithelia. We analyzed vaginal epithelium-specific Pten conditional knockout (CKO) mice to provide new insights into Pten/phosphoinositide-3-kinase (PI3K)/Akt function. The vaginal epithelium of ovariectomized (OVX) mice (control) was composed of 1-2 layers of cuboidal cells, whereas OVX CKO mice exhibited epithelial hyperplasia in the suprabasal cells with increased cell mass and mucin production. This is possibly due to misactivation of mammalian target of rapamycin and mitogen-activated protein kinase. Intriguingly, estrogen administration to OVX Pten CKO mice induced stratification and keratinized differentiation in the vaginal epithelium, as in estrogen-treated controls. We found that Pten is exclusively expressed in the suprabasal cells in the absence of estrogens, whereas estrogen administration induced Pten expression in the basal cells. This suggests that Pten acts to prevent excessive cell proliferation as in the case of other squamous tissues. Thus, Pten exhibits a dual role on the control of vaginal homeostasis, depending on whether estrogens are present or absent. Our results provide new insights into how Pten functions in tissue homeostasis.

  6. Chromatin-associated HMG-17 is a major regulator of homeodomain transcription factor activity modulated by Wnt/β-catenin signaling

    PubMed Central

    Amen, Melanie; Espinoza, Herbert M.; Cox, Carol; Liang, Xiaowen; Wang, Jianbo; Link, Todd M. E.; Brennan, Richard G.; Martin, James F.; Amendt, Brad A.

    2008-01-01

    Homeodomain (HD) transcriptional activities are tightly regulated during embryogenesis and require protein interactions for their spatial and temporal activation. The chromatin-associated high mobility group protein (HMG-17) is associated with transcriptionally active chromatin, however its role in regulating gene expression is unclear. This report reveals a unique strategy in which, HMG-17 acts as a molecular switch regulating HD transcriptional activity. The switch utilizes the Wnt/β-catenin signaling pathway and adds to the diverse functions of β-catenin. A high-affinity HMG-17 interaction with the PITX2 HD protein inhibits PITX2 DNA-binding activity. The HMG-17/PITX2 inactive complex is concentrated to specific nuclear regions primed for active transcription. β-Catenin forms a ternary complex with PITX2/HMG-17 to switch it from a repressor to an activator complex. Without β-catenin, HMG-17 can physically remove PITX2 from DNA to inhibit its transcriptional activity. The PITX2/HMG-17 regulatory complex acts independently of promoter targets and is a general mechanism for the control of HD transcriptional activity. HMG-17 is developmentally regulated and its unique role during embryogenesis is revealed by the early embryonic lethality of HMG-17 homozygous mice. This mechanism provides a new role for canonical Wnt/β-catenin signaling in regulating HD transcriptional activity during development using HMG-17 as a molecular switch. PMID:18045789

  7. Improving Executive Function and its Neurobiological Mechanisms through a Mindfulness-Based Intervention: Advances within the Field of Developmental Neuroscience.

    PubMed

    Tang, Yi-Yuan; Yang, Lizhu; Leve, Leslie D; Harold, Gordon T

    2012-12-01

    Poor executive function (EF) has been associated with a host of short- and long-term problems across the lifespan, including elevated rates of attention deficit hyperactivity disorder, depression, drug abuse, and antisocial behavior. Mindfulness-based interventions that focus on increasing awareness of one's thoughts, emotions, and actions have been shown to improve specific aspects of EF, including attention, cognitive control, and emotion regulation. In this article, we apply a developmental neuroscience perspective to review research relevant to one specific mindfulness-based intervention, Integrative Body-Mind Training (IBMT). Randomized controlled trials of IBMT indicate improvements in specific EF components, and uniquely highlight the role of neural circuitry specific to the anterior cingulate cortex (ACC) and the autonomic nervous system (ANS) as two brain-based mechanisms that underlie IBMT-related improvements. The relevance of improving specific dimensions of EF through short-term IBMT to prevent a cascade of risk behaviors for children and adolescents is described and future research directions are proposed.

  8. The role of STATs in lung carcinogenesis: an emerging target for novel therapeutics.

    PubMed

    Karamouzis, Michalis V; Konstantinopoulos, Panagiotis A; Papavassiliou, Athanasios G

    2007-05-01

    The signal transducer and activator of transcription (STAT) proteins are a family of latent cytoplasmic transcription factors, which form dimers when activated by cytokine receptors, tyrosine kinase growth factor receptors as well as non-receptor tyrosine kinases. Dimeric STATs translocate to the nucleus, where they bind to specific DNA-response elements in the promoters of target genes, thereby inducing unique gene expression programs often in association with other transcription regulatory proteins. The functional consequence of different STAT proteins activation varies, as their target genes play diverse roles in normal cellular/tissue functions, including growth, apoptosis, differentiation and angiogenesis. Certain activated STATs have been implicated in human carcinogenesis, albeit only few studies have focused into their role in lung tumours. Converging evidence unravels their molecular interplays and complex multipartite regulation, rendering some of them appealing targets for lung cancer treatment with new developing strategies.

  9. Eating on the fly: function and regulation of autophagy during cell growth, survival and death in Drosophila.

    PubMed

    Neufeld, Thomas P; Baehrecke, Eric H

    2008-07-01

    Significant progress has been made over recent years in defining the normal progression and regulation of autophagy, particularly in cultured mammalian cells and yeast model systems. However, apart from a few notable exceptions, our understanding of the physiological roles of autophagy has lagged behind these advances, and identification of components and features of autophagy unique to higher eukaryotes also remains a challenge. In this review we describe recent insights into the roles and control mechanisms of autophagy gained from in vivo studies in Drosophila. We focus on potential roles of autophagy in controlling cell growth and death, and describe how the regulation of autophagy has evolved to include metazoan-specific signaling pathways. We discuss genetic screening approaches that are being used to identify novel regulators and effectors of autophagy, and speculate about areas of research in this system likely to bear fruit in future studies.

  10. Diabetes reversal by inhibition of the low molecular weight tyrosine phosphatase

    PubMed Central

    Stanford, Stephanie M; Aleshin, Alexander E; Zhang, Vida; Ardecky, Robert J; Hedrick, Michael P; Zou, Jiwen; Ganji, Santhi R.; Bliss, Matthew R; Yamamoto, Fusayo; Bobkov, Andrey A.; Kiselar, Janna; Liu, Yingge; Cadwell, Gregory W; Khare, Shilpi; Yu, Jinghua; Barquilla, Antonio; Chung, Thomas DY; Mustelin, Tomas; Schenk, Simon; Bankston, Laurie A; Liddington, Robert C; Pinkerton, Anthony B; Bottini, Nunzio

    2017-01-01

    Obesity-associated insulin resistance plays a central role in type 2 diabetes. As such, tyrosine phosphatases that dephosphorylate the insulin receptor (IR) are potential therapeutic targets. The low molecular weight protein tyrosine phosphatase (LMPTP) is a proposed IR phosphatase, yet its role in insulin signaling in vivo has not been defined. Here we show that global and liver-specific LMPTP deletion protects mice from high-fat diet-induced diabetes without affecting body weight. To examine the role of the catalytic activity of LMPTP, we developed a small-molecule inhibitor with a novel uncompetitive mechanism, a unique binding site at the opening of the catalytic pocket, and exquisite selectivity over other phosphatases. This inhibitor is orally bioavailable, increases liver IR phosphorylation in vivo, and reverses high-fat diet induced diabetes. Our findings suggest that LMPTP is a key promoter of insulin resistance and that LMPTP inhibitors would be beneficial for treating type 2 diabetes. PMID:28346406

  11. Diabetes reversal by inhibition of the low-molecular-weight tyrosine phosphatase.

    PubMed

    Stanford, Stephanie M; Aleshin, Alexander E; Zhang, Vida; Ardecky, Robert J; Hedrick, Michael P; Zou, Jiwen; Ganji, Santhi R; Bliss, Matthew R; Yamamoto, Fusayo; Bobkov, Andrey A; Kiselar, Janna; Liu, Yingge; Cadwell, Gregory W; Khare, Shilpi; Yu, Jinghua; Barquilla, Antonio; Chung, Thomas D Y; Mustelin, Tomas; Schenk, Simon; Bankston, Laurie A; Liddington, Robert C; Pinkerton, Anthony B; Bottini, Nunzio

    2017-06-01

    Obesity-associated insulin resistance plays a central role in type 2 diabetes. As such, tyrosine phosphatases that dephosphorylate the insulin receptor (IR) are potential therapeutic targets. The low-molecular-weight protein tyrosine phosphatase (LMPTP) is a proposed IR phosphatase, yet its role in insulin signaling in vivo has not been defined. Here we show that global and liver-specific LMPTP deletion protects mice from high-fat diet-induced diabetes without affecting body weight. To examine the role of the catalytic activity of LMPTP, we developed a small-molecule inhibitor with a novel uncompetitive mechanism, a unique binding site at the opening of the catalytic pocket, and an exquisite selectivity over other phosphatases. This inhibitor is orally bioavailable, and it increases liver IR phosphorylation in vivo and reverses high-fat diet-induced diabetes. Our findings suggest that LMPTP is a key promoter of insulin resistance and that LMPTP inhibitors would be beneficial for treating type 2 diabetes.

  12. IFN-λ: A New Inducer of Local Immunity against Cancer and Infections.

    PubMed

    Lasfar, Ahmed; Zloza, Andrew; de la Torre, Andrew; Cohen-Solal, Karine A

    2016-01-01

    IFN-λ is the newly established type III IFN with unique immunomodulatory functions. In contrast to the IFN-α/β family and to some extent IFN-γ, IFN-λ is apparently acting in specific areas of the body to activate resident immune cells and induces a local immunity, instrumental in preventing particular infections and also keeping transformed cells under control. Mucosal areas of lung and gastrointestinal tracts are now under scrutiny to elucidate the immune mechanisms triggered by IFN-λ and leading to viral protection. New evidence also indicates the crucial role of IFN-λ in promoting innate immunity in solid cancer models. Based on its unique biological activities among the IFN system, new immunotherapeutic approaches are now emerging for the treatment of cancer, infection, and autoimmune diseases. In the present review, we highlight the recent advances of IFN-λ immunomodulatory functions. We also discuss the perspectives of IFN-λ as a therapeutic agent.

  13. Relations Between Anxiety Sensitivity, Distress Tolerance, and Fear Reactivity to Bodily Sensations to Coping and Conformity Marijuana Use Motives Among Young Adult Marijuana Users

    PubMed Central

    Zvolensky, Michael J.; Marshall, Erin C.; Johnson, Kirsten; Hogan, Julianna; Bernstein, Amit; Bonn-Miller, Marcel O.

    2011-01-01

    The present investigation examines anxiety sensitivity, distress tolerance, and fear reactivity to bodily sensations in relation to Coping and Conformity marijuana use motives among a sample of young adult marijuana users (n = 135; 46.7% women; Mage = 20.45, SD = 5.0). After controlling for current marijuana use frequency (past 30 days), daily cigarette smoking rate, average volume of alcohol used over the past year, negative affectivity, and other marijuana use motives, anxiety sensitivity was significantly and uniquely associated with Coping and Conformity motives for marijuana use. Distress tolerance evidenced significant and unique incremental relations to Coping motives, whereas fear reactivity to bodily sensations was unrelated to any marijuana use motive. These results provide novel information related to the role of emotional sensitivity and tolerance factors as they pertain to specific types of motives for marijuana use among young adults. PMID:19186932

  14. Dementia in the Oldest Old

    PubMed Central

    Bullain, Szófia S.; Corrada, María M.

    2013-01-01

    Purpose of Review: This article discusses some of the unique features of dementia in the oldest old, including some of the most common diagnostic challenges, and potential strategies to overcome them. Recent Findings: Advances include new insight into the role of common risk factors and the effects of multiple underlying neuropathologic features for dementia in the oldest old. In addition, this article contains the latest age-specific normative data for commonly used neuropsychological tests for the oldest old. Summary: The oldest old—people aged 90 years and older—are the fastest-growing segment of society and have the highest rates of dementia in the population. The risk factors, diagnostic challenges, and underlying neuropathologic features of dementia are strikingly different in the 90-years-and-older population compared to younger elderly. Special consideration of these unique features of dementia is necessary when evaluating oldest-old subjects with cognitive impairment. PMID:23558489

  15. Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry.

    PubMed

    Swaney, Danielle L; Wenger, Craig D; Thomson, James A; Coon, Joshua J

    2009-01-27

    Protein phosphorylation is central to the understanding of cellular signaling, and cellular signaling is suggested to play a major role in the regulation of human embryonic stem (ES) cell pluripotency. Here, we describe the use of conventional tandem mass spectrometry-based sequencing technology--collision-activated dissociation (CAD)--and the more recently developed method electron transfer dissociation (ETD) to characterize the human ES cell phosphoproteome. In total, these experiments resulted in the identification of 11,995 unique phosphopeptides, corresponding to 10,844 nonredundant phosphorylation sites, at a 1% false discovery rate (FDR). Among these phosphorylation sites are 5 localized to 2 pluripotency critical transcription factors--OCT4 and SOX2. From these experiments, we conclude that ETD identifies a larger number of unique phosphopeptides than CAD (8,087 to 3,868), more frequently localizes the phosphorylation site to a specific residue (49.8% compared with 29.6%), and sequences whole classes of phosphopeptides previously unobserved.

  16. Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics.

    PubMed

    Shah, Dhaval K

    2015-10-01

    Increasingly sophisticated protein engineering efforts have been undertaken lately to generate protein therapeutics with desired properties. This has resulted in the discovery of the next generation of protein therapeutics, which include: engineered antibodies, immunoconjugates, bi/multi-specific proteins, antibody mimetic novel scaffolds, and engineered ligands/receptors. These novel protein therapeutics possess unique physicochemical properties and act via a unique mechanism-of-action, which collectively makes their pharmacokinetics (PK) and pharmacodynamics (PD) different than other established biological molecules. Consequently, in order to support the discovery and development of these next generation molecules, it becomes important to understand the determinants controlling their PK/PD. This review discusses the determinants that a PK/PD scientist should consider during the design and development of next generation protein therapeutics. In addition, the role of systems PK/PD models in enabling rational development of the next generation protein therapeutics is emphasized.

  17. Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics

    PubMed Central

    Shah, Dhaval K.

    2015-01-01

    Increasingly sophisticated protein engineering efforts have been undertaken lately to generate protein therapeutics with desired properties. This has resulted in the discovery of the next generation of protein therapeutics, which include: engineered antibodies, immunoconjugates, bi/multi-specific proteins, antibody mimetic novel scaffolds, and engineered ligands/receptors. These novel protein therapeutics possess unique physicochemical properties and act via a unique mechanism-of-action, which collectively makes their pharmacokinetics (PK) and pharmacodynamics (PD) different than other established biological molecules. Consequently, in order to support the discovery and development of these next generation molecules, it becomes important to understand the determinants controlling their PK/PD. This review discusses the determinants that a PK/PD scientist should consider during the design and development of next generation protein therapeutics. In addition, the role of systems PK/PD models in enabling rational development of the next generation protein therapeutics is emphasized. PMID:26373957

  18. Resin-assisted Enrichment of N-terminal Peptides for Characterizing Proteolytic Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jong Seo; Dai, Ziyu; Aryal, Uma K.

    2013-06-17

    Proteolytic processing is a ubiquitous, irreversible posttranslational modification that plays an important role in cellular regulation in all living organisms. Herein we report a resin-assisted positive selection method for specifically enriching protein N-terminal peptides to facilitate the characterization of proteolytic processing events by liquid chromatography-tandem mass spectrometry. In this approach, proteins are initially reduced and alkylated and their lysine residues are converted to homoarginines. Then, protein N-termini are selectively converted to reactive thiol groups. We demonstrate that these sequential reactions were achieved with nearly quantitative efficiencies. Thiol-containing N-terminal peptides are then captured (>98% efficiency) by a thiol-affinity resin, a significantmore » improvement over the traditional avidin/biotin enrichment. Application to cell lysates of Aspergillus niger, a filamentous fungus of interest for biomass degradation, enabled the identification of 1672 unique protein N-termini and proteolytic cleavage sites from 690 unique proteins.« less

  19. Virocell Metabolism: Metabolic Innovations During Host-Virus Interactions in the Ocean.

    PubMed

    Rosenwasser, Shilo; Ziv, Carmit; Creveld, Shiri Graff van; Vardi, Assaf

    2016-10-01

    Marine viruses are considered to be major ecological, evolutionary, and biogeochemical drivers of the marine environment, responsible for nutrient recycling and determining species composition. Viruses can re-shape their host's metabolic network during infection, generating the virocell-a unique metabolic state that supports their specific requirement. Here we discuss the concept of 'virocell metabolism' and its formation by rewiring of host-encoded metabolic networks, or by introducing virus-encoded auxiliary metabolic genes which provide the virocell with novel metabolic capabilities. The ecological role of marine viruses is commonly assessed by their relative abundance and phylogenetic diversity, lacking the ability to assess the dynamics of active viral infection. The new ability to define a unique metabolic state of the virocell will expand the current virion-centric approaches in order to quantify the impact of marine viruses on microbial food webs. Copyright © 2016. Published by Elsevier Ltd.

  20. Investigation of the Role of Sialomucin Complex (SCMC)/Muc4, a Unique Intramembranous HER-2/ErbB-2 Ligand, as a Suppressor of Apoptosis

    DTIC Science & Technology

    2005-04-01

    Complex (SCMC)/ Muc4 , a Unique Intramembranous HER-2/ErbB-2 Ligand, as a Suppressor of Apoptosis PRINCIPAL INVESTIGATOR: George Theodore...1 Apr 2002 – 31 Mar 2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Investigation of the Role of Sialomucin Complex (SCMC)/ Muc4 , a Unique...Seminar and Journal Club course in the Department of Cell Biology and Anatomy RESEARCH ACCOMPLISHMENTS Introduction Muc4 /sialomucin complex (SMC) is

  1. HES factors regulate specific aspects of chondrogenesis and chondrocyte hypertrophy during cartilage development

    PubMed Central

    Rutkowski, Timothy P.; Kohn, Anat; Sharma, Deepika; Ren, Yinshi; Mirando, Anthony J.

    2016-01-01

    ABSTRACT RBPjκ-dependent Notch signaling regulates multiple processes during cartilage development, including chondrogenesis, chondrocyte hypertrophy and cartilage matrix catabolism. Select members of the HES- and HEY-families of transcription factors are recognized Notch signaling targets that mediate specific aspects of Notch function during development. However, whether particular HES and HEY factors play any role(s) in the processes during cartilage development is unknown. Here, for the first time, we have developed unique in vivo genetic models and in vitro approaches demonstrating that the RBPjκ-dependent Notch targets HES1 and HES5 suppress chondrogenesis and promote the onset of chondrocyte hypertrophy. HES1 and HES5 might have some overlapping function in these processes, although only HES5 directly regulates Sox9 transcription to coordinate cartilage development. HEY1 and HEYL play no discernable role in regulating chondrogenesis or chondrocyte hypertrophy, whereas none of the HES or HEY factors appear to mediate Notch regulation of cartilage matrix catabolism. This work identifies important candidates that might function as downstream mediators of Notch signaling both during normal skeletal development and in Notch-related skeletal disorders. PMID:27160681

  2. Epithelial and ectomesenchymal role of the type I TGF-β receptor ALK5 during facial morphogenesis and palatal fusion

    PubMed Central

    Dudas, Marek; Kim, Jieun; Li, Wai-Yee; Nagy, Andre; Larsson, Jonas; Karlsson, Stefan; Chai, Yang; Kaartinen, Vesa

    2006-01-01

    Transforming growth factor beta (TGF-β) proteins play important roles in morphogenesis of many craniofacial tissues; however, detailed biological mechanisms of TGF-β action, particularly in vivo, are still poorly understood. Here, we deleted the TGF-β type I receptor gene Alk5 specifically in the embryonic ectodermal and neural crest cell lineages. Failure in signaling via this receptor, either in the epithelium or in the mesenchyme, caused severe craniofacial defects including cleft palate. Moreover, the facial phenotypes of neural crest-specific Alk5 mutants included devastating facial cleft and appeared significantly more severe than the defects seen in corresponding mutants lacking the TGF-β type II receptor (TGFβRII), a prototypical binding partner of ALK5. Our data indicate that ALK5 plays unique, non-redundant cell-autonomous roles during facial development. Remarkable divergence between Tgfbr2 and Alk5 phenotypes, together with our biochemical in vitro data, imply that (1) ALK5 mediates signaling of a diverse set of ligands not limited to the three isoforms of TGF-β, and (2) ALK5 acts also in conjunction with type II receptors other than TGFβRII. PMID:16806156

  3. Structural And Biochemical Studies of Botulinum Neurotoxin Serotype C1 Light Chain Protease: Implications for Dual Substrate Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, R.; Sikorra, S.; Stegmann, C.M.

    2009-06-01

    Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognitionmore » and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote a-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the a-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.« less

  4. 45 CFR 162.610 - Implementation specifications for covered entities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Implementation specifications for covered entities... Implementation specifications for covered entities. (a) The standard unique employer identifier of an employer of... Statement, from the employer. (b) A covered entity must use the standard unique employer identifier (EIN) of...

  5. 45 CFR 162.610 - Implementation specifications for covered entities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Implementation specifications for covered entities... Implementation specifications for covered entities. (a) The standard unique employer identifier of an employer of... Statement, from the employer. (b) A covered entity must use the standard unique employer identifier (EIN) of...

  6. Specific interaction of postsynaptic densities with membrane rafts isolated from synaptic plasma membranes.

    PubMed

    Liu, Qian; Yao, Wei-Dong; Suzuki, Tatsuo

    2013-06-01

    Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. We recently demonstrated the presence, at the electron microscopic level, of complexes consisting of membrane rafts and postsynaptic densities (PSDs) in detergent-resistant membranes (DRMs) prepared from synaptic plasma membranes (SPMs) ( Suzuki et al., 2011 , J Neurochem, 119, 64-77). To further explore these complexes, here we investigated the nature of the binding between purified SPM-DRMs and PSDs in vitro. In binding experiments, we used SPM-DRMs prepared after treating SPMs with n-octyl-β-d-glucoside, because at concentrations of 1.0% or higher it completely separates SPM-DRMs and PSDs, providing substantially PSD-free unique SPM-DRMs as well as DRM-free PSDs. PSD binding to PSD-free DRMs was identified by mass spectrometry, Western blotting, and electron microscopy. PSD proteins were not incorporated into SPMs, and significantly less PSD proteins were incorporated into DRMs prepared from liver membranes, providing in vitro evidence that binding of PSDs to DRMs is specific and suggestion of the presence of specific interacting molecules. These specific interactions may have important roles in synaptic development, function, and plasticity in vivo. In addition, the binding system we developed may be a good tool to search for binding molecules and binding mechanisms between PSDs and rafts.

  7. New fronts emerge in the influenza cytokine storm.

    PubMed

    Guo, Xi-Zhi J; Thomas, Paul G

    2017-07-01

    Influenza virus is a significant pathogen in humans and animals with the ability to cause extensive morbidity and mortality. Exuberant immune responses induced following infection have been described as a "cytokine storm," associated with excessive levels of proinflammatory cytokines and widespread tissue damage. Recent studies have painted a more complex picture of cytokine networks and their contributions to clinical outcomes. While many cytokines clearly inflict immunopathology, others have non-pathological delimited roles in sending alarm signals, facilitating viral clearance, and promoting tissue repair, such as the IL-33-amphiregulin axis, which plays a key role in resolving some types of lung damage. Recent literature suggests that type 2 cytokines, traditionally thought of as not involved in anti-influenza immunity, may play an important regulatory role. Here, we discuss the diverse roles played by cytokines after influenza infection and highlight new, serene features of the cytokine storm, while highlighting the specific functions of relevant cytokines that perform unique immune functions and may have applications for influenza therapy.

  8. Wnt/β-Catenin Signaling in Liver Development, Homeostasis, and Pathobiology

    PubMed Central

    Russell, Jacquelyn O.; Monga, Satdarshan P.

    2018-01-01

    The liver is an organ that performs a multitude of functions, and its health is pertinent and indispensable to survival. Thus, the cellular and molecular machinery driving hepatic functions is of utmost relevance. The Wnt signaling pathway is one such signaling cascade that enables hepatic homeostasis and contributes to unique hepatic attributes such as metabolic zonation and regeneration. The Wnt/β-catenin pathway plays a role in almost every facet of liver biology. Furthermore, its aberrant activation is also a hallmark of various hepatic pathologies. In addition to its signaling function, β-catenin also plays a role at adherens junctions. Wnt/β-catenin signaling also influences the function of many different cell types. Due to this myriad of functions, Wnt/β-catenin signaling is complex, context-dependent, and highly regulated. In this review, we discuss the Wnt/β-catenin signaling pathway, its role in cell-cell adhesion and liver function, and the cell type–specific roles of Wnt/β-catenin signaling as it relates to liver physiology and pathobiology. PMID:29125798

  9. Comparison of administrators' and school nurses' perception of the school nurse role.

    PubMed

    Green, Rebecca; Reffel, Jim

    2009-02-01

    The current tenuous status of public education funding requires that school nurses be proactive in advocacy efforts on behalf of their school nursing programs. Advocating for nursing practice within an educational setting presents unique challenges. Lack of state or national consensus for support of school nurse services creates an opportunity for school nurse advocates to develop quantitative tools to evaluate their school nurse program. Identifying commonalities and differences between school administrators' and school nurses' perceptions of the school nurse role will provide information that can be used to strengthen programs and facilitate the understanding of school personnel about what school nurses do. This study compared school administrator and school nurse perceptions of the role of the school nurse using a tool based on the National Association of School Nurses' "Advocacy Talking Points." Analysis of responses identified specific areas in which schools could improve their school nurse program and enhance school administrators' understanding of the school nurse role.

  10. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate

    PubMed Central

    Bokulich, Nicholas A.; Thorngate, John H.; Richardson, Paul M.; Mills, David A.

    2014-01-01

    Wine grapes present a unique biogeography model, wherein microbial biodiversity patterns across viticultural zones not only answer questions of dispersal and community maintenance, they are also an inherent component of the quality, consumer acceptance, and economic appreciation of a culturally important food product. On their journey from the vineyard to the wine bottle, grapes are transformed to wine through microbial activity, with indisputable consequences for wine quality parameters. Wine grapes harbor a wide range of microbes originating from the surrounding environment, many of which are recognized for their role in grapevine health and wine quality. However, determinants of regional wine characteristics have not been identified, but are frequently assumed to stem from viticultural or geological factors alone. This study used a high-throughput, short-amplicon sequencing approach to demonstrate that regional, site-specific, and grape-variety factors shape the fungal and bacterial consortia inhabiting wine-grape surfaces. Furthermore, these microbial assemblages are correlated to specific climatic features, suggesting a link between vineyard environmental conditions and microbial inhabitation patterns. Taken together, these factors shape the unique microbial inputs to regional wine fermentations, posing the existence of nonrandom “microbial terroir” as a determining factor in regional variation among wine grapes. PMID:24277822

  11. Immunolocalization of a Unique Form of Maize Kernel Glutamine Synthetase Using a Monoclonal Antibody.

    PubMed Central

    Muhitch, M. J.; Felker, F. C.; Taliercio, E. W.; Chourey, P. S.

    1995-01-01

    The pedicel (basal maternal tissue) of maize (Zea mays L.) kernels contains a physically and kinetically unique form of glutamine synthetase (GSp1) that is involved in the conversion of transport forms of nitrogen into glutamine for uptake by the developing endosperm (M.J. Muhitch [1989] Plant Physiol 91: 868-875). A monoclonal antibody has been raised against this kernel-specific GS that does not cross-react either with a second GS isozyme found in the pedicel or with the GS isozymes from the embryo, roots, or leaves. When used as a probe for tissue printing, the antibody labeled the pedicel tissue uniformly and also labeled some of the pericarp surrounding the lower endosperm. Silver-enhanced immunogold staining of whole-kernel paraffin sections revealed the presence of GSp1 in both the vascular tissue that terminates in the pedicel and the pedicel parenchyma cells, which are located between the vascular tissue and the basal endosperm transfer cells. Light staining of the subaleurone was also noted. The tissue-specific localization of GSp1 within the pedicel is consistent with its role in the metabolism of nitrogenous transport compounds as they are unloaded from the phloem. PMID:12228400

  12. Discovery of a Xylooligosaccharide Oxidase from Myceliophthora thermophila C1.

    PubMed

    Ferrari, Alessandro R; Rozeboom, Henriëtte J; Dobruchowska, Justyna M; van Leeuwen, Sander S; Vugts, Aniek S C; Koetsier, Martijn J; Visser, Jaap; Fraaije, Marco W

    2016-11-04

    By inspection of the predicted proteome of the fungus Myceliophthora thermophila C1 for vanillyl-alcohol oxidase (VAO)-type flavoprotein oxidases, a putative oligosaccharide oxidase was identified. By homologous expression and subsequent purification, the respective protein could be obtained. The protein was found to contain a bicovalently bound FAD cofactor. By screening a large number of carbohydrates, several mono- and oligosaccharides could be identified as substrates. The enzyme exhibits a strong substrate preference toward xylooligosaccharides; hence it is named xylooligosaccharide oxidase (XylO). Chemical analyses of the product formed upon oxidation of xylobiose revealed that the oxidation occurs at C1, yielding xylobionate as product. By elucidation of several XylO crystal structures (in complex with a substrate mimic, xylose, and xylobiose), the residues that tune the unique substrate specificity and regioselectivity could be identified. The discovery of this novel oligosaccharide oxidase reveals that the VAO-type flavoprotein family harbors oxidases tuned for specific oligosaccharides. The unique substrate profile of XylO hints at a role in the degradation of xylan-derived oligosaccharides by the fungus M. thermophila C1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate.

    PubMed

    Bokulich, Nicholas A; Thorngate, John H; Richardson, Paul M; Mills, David A

    2014-01-07

    Wine grapes present a unique biogeography model, wherein microbial biodiversity patterns across viticultural zones not only answer questions of dispersal and community maintenance, they are also an inherent component of the quality, consumer acceptance, and economic appreciation of a culturally important food product. On their journey from the vineyard to the wine bottle, grapes are transformed to wine through microbial activity, with indisputable consequences for wine quality parameters. Wine grapes harbor a wide range of microbes originating from the surrounding environment, many of which are recognized for their role in grapevine health and wine quality. However, determinants of regional wine characteristics have not been identified, but are frequently assumed to stem from viticultural or geological factors alone. This study used a high-throughput, short-amplicon sequencing approach to demonstrate that regional, site-specific, and grape-variety factors shape the fungal and bacterial consortia inhabiting wine-grape surfaces. Furthermore, these microbial assemblages are correlated to specific climatic features, suggesting a link between vineyard environmental conditions and microbial inhabitation patterns. Taken together, these factors shape the unique microbial inputs to regional wine fermentations, posing the existence of nonrandom "microbial terroir" as a determining factor in regional variation among wine grapes.

  14. The Nkx5/HMX homeodomain protein MLS-2 is required for proper tube cell shape in the C.elegans excretory system

    PubMed Central

    Abdus-Saboor, Ishmail; Stone, Craig E.; Murray, John I.; Sundaram, Meera V.

    2012-01-01

    Cells perform wide varieties of functions that are facilitated, in part, by adopting unique shapes. Many of the genes and pathways that promote cell fate specification have been elucidated. However, relatively few transcription factors have been identified that promote shape acquisition after fate specification. Here we show that the Nkx5/HMX homeodomain protein MLS-2 is required for cellular elongation and shape maintenance of two tubular epithelial cells in the C.elegans excretory system, the duct and pore cells. The Nkx5/HMX family is highly conserved from sea urchins to humans, with known roles in neuronal and glial development. MLS-2 is expressed in the duct and pore, and defects in mls-2 mutants first arise when the duct and pore normally adopt unique shapes. MLS-2 cooperates with the EGF-Ras-ERK pathway to turn on the LIN-48/Ovo transcription factor in the duct cell during morphogenesis. These results reveal a novel interaction between the Nkx5/HMX family and the EGF-Ras pathway and implicate a transcription factor, MLS-2, as a regulator of cell shape. PMID:22537498

  15. The Nkx5/HMX homeodomain protein MLS-2 is required for proper tube cell shape in the C. elegans excretory system.

    PubMed

    Abdus-Saboor, Ishmail; Stone, Craig E; Murray, John I; Sundaram, Meera V

    2012-06-15

    Cells perform wide varieties of functions that are facilitated, in part, by adopting unique shapes. Many of the genes and pathways that promote cell fate specification have been elucidated. However, relatively few transcription factors have been identified that promote shape acquisition after fate specification. Here we show that the Nkx5/HMX homeodomain protein MLS-2 is required for cellular elongation and shape maintenance of two tubular epithelial cells in the C. elegans excretory system, the duct and pore cells. The Nkx5/HMX family is highly conserved from sea urchins to humans, with known roles in neuronal and glial development. MLS-2 is expressed in the duct and pore, and defects in mls-2 mutants first arise when the duct and pore normally adopt unique shapes. MLS-2 cooperates with the EGF-Ras-ERK pathway to turn on the LIN-48/Ovo transcription factor in the duct cell during morphogenesis. These results reveal a novel interaction between the Nkx5/HMX family and the EGF-Ras pathway and implicate a transcription factor, MLS-2, as a regulator of cell shape. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Role of novel type I interferon epsilon in viral infection and mucosal immunity

    PubMed Central

    Xi, Yang; Day, Stephanie L; Jackson, Ronald J; Ranasinghe, Charani

    2012-01-01

    Intranasal infection with vaccinia virus co-expressing interferon epsilon (VV-HIV-IFN-ɛ) was used to evaluate the role of IFN-ɛ in mucosal immunity. VV-HIV- IFN-ɛ infection induced a rapid VV clearance in lung that correlated with (i) an elevated lung VV-specific CD8+CD107a+IFN-γ+ population expressing activation markers CD69/CD103, (ii) enhanced lymphocyte recruitment to lung alveoli with reduced inflammation, and (iii) an heightened functional/cytotoxic CD8+CD4+ T-cell subset (CD3hiCCR7hiCD62Llo) in lung lymph nodes. These responses were different to that observed with intranasal VV-HA-IFN-α4 or VV-HA-IFN-β infections. When IFN-ɛ was used in an intranasal/intramuscular heterologous HIV prime-boost immunization, elevated HIV-specific effector, but not memory CD8+T cells responses, were observed in spleen, genito-rectal nodes, and Peyer's patch. Homing marker α4β7 and CCR9 analysis indicated that unlike other type I IFNs, IFN-ɛ could promote migration of antigen-specific CD8+T cells to the gut. Our results indicate that IFN-ɛ has a unique role in the mucosae and most likely can be used to control local lung and/or gut infections (i.e., microbicide) such as tuberculosis, HIV-1, or sexually transmitted diseases. PMID:22617838

  17. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification

    PubMed Central

    Liu, Ling; Liu, Xu; Ren, Xudong; Tian, Yue; Chen, Zhenyu; Xu, Xiangjie; Du, Yanhua; Jiang, Cizhong; Fang, Yujiang; Liu, Zhongliang; Fan, Beibei; Zhang, Quanbin; Jin, Guohua; Yang, Xiao; Zhang, Xiaoqing

    2016-01-01

    The transforming growth factor beta (TGFβ) related signaling is one of the most important signaling pathways regulating early developmental events. Smad2 and Smad3 are structurally similar and it is mostly considered that they are equally important in mediating TGFβ signals. Here, we show that Smad3 is an insensitive TGFβ transducer as compared with Smad2. Smad3 preferentially localizes within the nucleus and is thus sequestered from membrane signaling. The ability of Smad3 in oligomerization with Smad4 upon agonist stimulation is also impaired given its unique linker region. Smad2 mediated TGFβ signaling plays a crucial role in epiblast development and patterning of three germ layers. However, signaling unrelated nuclear localized Smad3 is dispensable for TGFβ signaling-mediated epiblast specification, but important for early neural development, an event blocked by TGFβ/Smad2 signaling. Both Smad2 and Smad3 bind to the conserved Smads binding element (SBE), but they show nonoverlapped target gene binding specificity and differential transcriptional activity. We conclude that Smad2 and Smad3 possess differential sensitivities in relaying TGFβ signaling and have distinct roles in regulating early developmental events. PMID:26905010

  18. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification.

    PubMed

    Liu, Ling; Liu, Xu; Ren, Xudong; Tian, Yue; Chen, Zhenyu; Xu, Xiangjie; Du, Yanhua; Jiang, Cizhong; Fang, Yujiang; Liu, Zhongliang; Fan, Beibei; Zhang, Quanbin; Jin, Guohua; Yang, Xiao; Zhang, Xiaoqing

    2016-02-24

    The transforming growth factor beta (TGFβ) related signaling is one of the most important signaling pathways regulating early developmental events. Smad2 and Smad3 are structurally similar and it is mostly considered that they are equally important in mediating TGFβ signals. Here, we show that Smad3 is an insensitive TGFβ transducer as compared with Smad2. Smad3 preferentially localizes within the nucleus and is thus sequestered from membrane signaling. The ability of Smad3 in oligomerization with Smad4 upon agonist stimulation is also impaired given its unique linker region. Smad2 mediated TGFβ signaling plays a crucial role in epiblast development and patterning of three germ layers. However, signaling unrelated nuclear localized Smad3 is dispensable for TGFβ signaling-mediated epiblast specification, but important for early neural development, an event blocked by TGFβ/Smad2 signaling. Both Smad2 and Smad3 bind to the conserved Smads binding element (SBE), but they show nonoverlapped target gene binding specificity and differential transcriptional activity. We conclude that Smad2 and Smad3 possess differential sensitivities in relaying TGFβ signaling and have distinct roles in regulating early developmental events.

  19. Role of stem cell derived exosomes in tumor biology.

    PubMed

    Sharma, Aman

    2018-03-15

    Exosomes are nano-scale messengers loaded with bio-molecular cargo of RNA, DNA, and Proteins. As a master regulator of cellular signaling, stem cell (both normal, and cancer stem cells) secreted exosome orchestrate various autocrine and paracrine functions which alter tumor micro-environment, growth and progression. Exosomes secreted by one of the two important stem cell phenotypes in cancers a) Mesenchymal stem cells, and b) Cancer stem cells not only promote cancerous growth but also impart therapy resistance in cancer cells. In tumors, normal or mesenchymal stem cell (MSCs) derived exosomes (MSC-exo) modulate tumor hallmarks by delivering unique miRNA species to neighboring cells and help in tumor progression. Apart from regulating tumor cell fate, MSC-exo are also capable of inducing physiological processes, for example, angiogenesis, metastasis and so forth. Similarly, cancer stem cells (CSCs) derived exosomes (CSC-exo) contain stemness-specific proteins, self-renewal promoting regulatory miRNAs, and survival factors. CSC-exo specific cargo maintains tumor heterogeneity and alters tumor progression. In this review we critically discuss the importance of stem cell specific exosomes in tumor cell signaling pathways with their role in tumor biology. © 2017 UICC.

  20. Toward a Comprehensive System of Personnel Development in Deafblind Education

    ERIC Educational Resources Information Center

    Parker, Amy T.; Nelson, Catherine

    2016-01-01

    Students who are deafblind are a unique population with unique needs for learning, communication, and environmental access. Two roles have been identified as important to their education: teacher of the deafblind and intervener. However, these roles are not officially recognized in most states. Because of this lack of recognition and the low…

  1. Fibrinogen-Related Proteins in Tissue Repair: How a Unique Domain with a Common Structure Controls Diverse Aspects of Wound Healing.

    PubMed

    Zuliani-Alvarez, Lorena; Midwood, Kim S

    2015-05-01

    Significance: Fibrinogen-related proteins (FRePs) comprise an intriguing collection of extracellular molecules, each containing a conserved fibrinogen-like globe (FBG). This group includes the eponymous fibrinogen as well as the tenascin, angiopoietin, and ficolin families. Many of these proteins are upregulated during tissue repair and exhibit diverse roles during wound healing. Recent Advances: An increasing body of evidence highlights the specific expression of a number of FRePs following tissue injury and infection. Upon induction, each FReP uses its FBG domain to mediate quite distinct effects that contribute to different stages of tissue repair, such as driving coagulation, pathogen detection, inflammation, angiogenesis, and tissue remodeling. Critical Issues: Despite a high degree of homology among FRePs, each contains unique sequences that enable their diversification of function. Comparative analysis of the structure and function of FRePs and precise mapping of regions that interact with a variety of ligands has started to reveal the underlying molecular mechanisms by which these proteins play very different roles using their common domain. Future Directions: Fibrinogen has long been used in the clinic as a synthetic matrix serving as a scaffold or a delivery system to aid tissue repair. Novel therapeutic strategies are now emerging that harness the use of other FRePs to improve wound healing outcomes. As we learn more about the underlying mechanisms by which each FReP contributes to the repair response, specific blockade, or indeed potentiation, of their function offers real potential to enable regulation of distinct processes during pathological wound healing.

  2. Mars exploration: bridging our past and future (Invited)

    NASA Astrophysics Data System (ADS)

    Bibring, J.

    2009-12-01

    If life ever arose beyond the Earth, it is likely to have occurred on Mars: this was the belief long before any diagnostic measurements could be made. When the Viking, then Voyager missions were launched, pioneering the scientific search for extraterrestrial life, the “Plurality of Worlds” remained the dominating mindset: the possibility that the Earth is not unique and that life is generic was embraced. The lack of evidence for habitable conditions on Mars, and then Titan, dramatically changed our view. More generally, decades of space exploration have consolidated a dialectical contrast between the large commonality in the origin of the planets and the huge diversity of their present conditions. What drives planetary evolution? Mars plays a unique role in deciphering the involved processes. It has undergone many stages of planetary evolution, and has preserved a record of even the most ancient ones. The ongoing space mission, in which NASA and ESA have joined their skills and expertises, are providing a fundamentally new insight into the History of Mars and specifically into the role water has played through time. In particular, if life ever started, we now know where to search for its evidence. We’ve moved beyond just image interpretation into the realm where specific hydrated minerals such as phyllosilicates - the fingerprints of habitability - can be definitively detected, located and their context characterized. We will present recent results from Mars, and scientific clues paving the quest for ancient perennial water and potential bio-relics. We will discuss reasons why global conditions might have caused the evolutionary pathways of Mars and Earth to diverge.

  3. The Drosophila T-box transcription factor Midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc.

    PubMed

    Das, Sudeshna; Chen, Q Brent; Saucier, Joseph D; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M

    2013-01-01

    We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Analysis of 14-3-3 Family Member Function in Xenopus Embryos by Microinjection of Antisense Morpholino Oligos

    NASA Astrophysics Data System (ADS)

    Lau, Jeffrey M. C.; Muslin, Anthony J.

    The 14-3-3 intracellular phosphoserine/threonine-binding proteins are adapter molecules that regulate signal transduction, cell cycle, nutrient sensing, apoptotic, and cytoskeletal pathways. There are seven 14-3-3 family members, encoded by separate genes, in vertebrate organisms. To evaluate the role of individual 14-3-3 proteins in vertebrate embryonic development, we utilized an antisense morpholino oligo microinjection technique in Xenopus laevis embryos. By use of this method, we showed that embryos lacking specific 14-3-3 proteins displayed unique phenotypic abnormalities. Specifically, embryos lacking 14-3-3 τ exhibited gastrulation and axial patterning defects, but embryos lacking 14-3-3 γ exhibited eye defects without other abnormalities, and embryos lacking 14-3-3 ζ appeared completely normal. These and other results demonstrate the power and specificity of the morpholino antisense oligo microinjection technique.

  5. Specific Preschool Executive Functions Predict Unique Aspects of Mathematics Development: A 3-Year Longitudinal Study.

    PubMed

    Simanowski, Stefanie; Krajewski, Kristin

    2017-08-10

    This study assessed the extent to which executive functions (EF), according to their factor structure in 5-year-olds (N = 244), influenced early quantity-number competencies, arithmetic fluency, and mathematics school achievement throughout first and second grades. A confirmatory factor analysis resulted in updating as a first, and inhibition and shifting as a combined second factor. In the structural equation model, updating significantly affected knowledge of the number word sequence, suggesting a facilitatory effect on basic encoding processes in numerical materials that can be learnt purely by rote. Shifting and inhibition significantly influenced quantity to number word linkages, indicating that these processes promote developing a profound understanding of numbers. These results show the supportive role of specific EF for specific aspects of a numerical foundation. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  6. Genomic Inventory and Transcriptional Analysis of Medicago truncatula Transporters1[W][OA

    PubMed Central

    Benedito, Vagner A.; Li, Haiquan; Dai, Xinbin; Wandrey, Maren; He, Ji; Kaundal, Rakesh; Torres-Jerez, Ivone; Gomez, S. Karen; Harrison, Maria J.; Tang, Yuhong; Zhao, Patrick X.; Udvardi, Michael K.

    2010-01-01

    Transporters move hydrophilic substrates across hydrophobic biological membranes and play key roles in plant nutrition, metabolism, and signaling and, consequently, in plant growth, development, and responses to the environment. To initiate and support systematic characterization of transporters in the model legume Medicago truncatula, we identified 3,830 transporters and classified 2,673 of these into 113 families and 146 subfamilies. Analysis of gene expression data for 2,611 of these transporters identified 129 that are expressed in an organ-specific manner, including 50 that are nodule specific and 36 specific to mycorrhizal roots. Further analysis uncovered 196 transporters that are induced at least 5-fold during nodule development and 44 in roots during arbuscular mycorrhizal symbiosis. Among the nodule- and mycorrhiza-induced transporter genes are many candidates for known transport activities in these beneficial symbioses. The data presented here are a unique resource for the selection and functional characterization of legume transporters. PMID:20023147

  7. Laminar fMRI and computational theories of brain function.

    PubMed

    Stephan, K E; Petzschner, F H; Kasper, L; Bayer, J; Wellstein, K V; Stefanics, G; Pruessmann, K P; Heinzle, J

    2017-11-02

    Recently developed methods for functional MRI at the resolution of cortical layers (laminar fMRI) offer a novel window into neurophysiological mechanisms of cortical activity. Beyond physiology, laminar fMRI also offers an unprecedented opportunity to test influential theories of brain function. Specifically, hierarchical Bayesian theories of brain function, such as predictive coding, assign specific computational roles to different cortical layers. Combined with computational models, laminar fMRI offers a unique opportunity to test these proposals noninvasively in humans. This review provides a brief overview of predictive coding and related hierarchical Bayesian theories, summarises their predictions with regard to layered cortical computations, examines how these predictions could be tested by laminar fMRI, and considers methodological challenges. We conclude by discussing the potential of laminar fMRI for clinically useful computational assays of layer-specific information processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix.

    PubMed

    Arakane, Y; Muthukrishnan, S; Kramer, K J; Specht, C A; Tomoyasu, Y; Lorenzen, M D; Kanost, M; Beeman, R W

    2005-10-01

    Functional analysis of the two chitin synthase genes, TcCHS1 and TcCHS2, in the red flour beetle, Tribolium castaneum, revealed unique and complementary roles for each gene. TcCHS1-specific RNA interference (RNAi) disrupted all three types of moult (larval-larval, larval-pupal and pupal-adult) and greatly reduced whole-body chitin content. Exon-specific RNAi showed that splice variant 8a of TcCHS1 was required for both the larval-pupal and pupal-adult moults, whereas splice variant 8b was required only for the latter. TcCHS2-specific RNAi had no effect on metamorphosis or on total body chitin content. However, RNAi-mediated down-regulation of TcCHS2, but not TcCHS1, led to cessation of feeding, a dramatic shrinkage in larval size and reduced chitin content in the midgut.

  9. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death

    PubMed Central

    Kagan, Valerian E.; Bayir, Hülya A.; Belikova, Natalia A.; Kapralov, Olexandr; Tyurina, Yulia Y.; Tyurin, Vladimir A.; Jiang, Jianfei; Stoyanovsky, Detcho A.; Wipf, Peter; Kochanek, Patrick M.; Greenberger, Joel S.; Pitt, Bruce; Shvedova, Anna A.; Borisenko, Grigory

    2009-01-01

    Recently, phospholipid peroxidation products gained a reputation as key regulatory molecules and participants in oxidative signaling pathways. During apoptosis, a mitochondria-specific phospholipid, cardiolipin (CL), interacts with cytochrome c (cyt c) to form a peroxidase complex that catalyzes CL oxidation; this process plays a pivotal role in the mitochondrial stage of the execution of the cell death program. This review is focused on redox mechanisms and essential structural features of cyt c's conversion into a CL-specific peroxidase that represent an interesting and maybe still unique example of a functionally significant ligand change in hemoproteins. Furthermore, specific characteristics of CL in mitochondria – its asymmetric trans-membrane distribution and mechanisms of collapse, regulation of its synthesis, remodeling and fatty acid composition – are given significant consideration. Finally, new concepts in drug discovery based on the design of mitochondria-targeted inhibitors of cyt c/CL peroxidase and CL peroxidation with anti-apoptotic effects are presented. PMID:19285551

  10. Religion in families 1999 to 2009: A relational spirituality framework

    PubMed Central

    Mahoney, Annette

    2011-01-01

    This review examines the role of religion, for better and worse, in marital and parent-child relationships according to peer reviewed studies from 1999–2009. A conceptual framework labeled “relational spirituality” is used to: (a) organize the breadth of findings into the three stages of the formation, maintenance, and transformation of family relationships, and (b) illustrate three in-depth sets of mechanisms to delve into unique ways religion may shape family bonds. Topics include union formation, fertility, spousal roles, marital satisfaction and conflict, divorce, domestic violence, infidelity, pregnancy, parenting children, parenting adolescents, and coping with family distress. Conclusions emphasize moving beyond markers of general religiousness and identifying specific spiritual beliefs and practices that could prevent or intensify problems in traditional and nontraditional families. PMID:22102761

  11. Roles of STATs signaling in cardiovascular diseases.

    PubMed

    Kishore, Raj; Verma, Suresh K

    2012-04-01

    In cardiac and many other systems, chronic stress activates avfamily of structurally and functionally conserved receptors and their downstream signaling molecules that entail tyrosine, serine or threonine phosphorylation to transfer the messages to the genetic machinery. However, the activation of the Janus kinases (JAKs) and their downstream signal transducer and activator of transcription (STATs) proteins is both characteristic of and unique to cytokine and growth factor signaling which plays a central role in heart physiology. Dysregulation of JAK-STAT signaling is associated with various cardiovascular diseases. The molecular signaling and specificity of the JAK-STAT pathway are modulated at many levels by distinct regulatory proteins. Here, we review recent studies on the regulation of the STAT signaling pathway that will enhance our ability to design rational therapeutic strategies for stress-induced heart failure.

  12. Shaping a career trajectory in academic administration: leadership development for the deanship.

    PubMed

    Green, Alexia; Ridenour, Nancy

    2004-11-01

    The nursing profession continues to face many challenges, one of which is an insufficient number of aspiring leaders. The role of an academic leader, specifically that of dean, brings with it unique challenges and opportunities. Shaping a career in academic administration requires careful consideration of the leadership skills necessary to perform in this complex and challenging role. However, it is critical to the future of nursing as a profession that ample numbers of aspiring leaders can successfully make this transition. One can be better prepared to take on this exciting and rewarding leadership opportunity when one understands the challenges deans face, asks questions such as "Do I really want a deanship?," identifies the required leadership skills, defines a career trajectory and pathway, and develops the leadership skills necessary for deans.

  13. New Perspectives on the Role of Vitiligo in Immune Responses to Melanoma

    PubMed Central

    Byrne, Katelyn T.; Turk, Mary Jo

    2011-01-01

    Melanoma-associated vitiligo is the best-studied example of the linkage between tumor immunity and autoimmunity. Although vitiligo is an independent positive prognostic factor for melanoma patients, the autoimmune destruction of melanocytes was long thought to be merely a side effect of robust anti-tumor immunity. However, new data reveal a key role for vitiligo in supporting T cell responses to melanoma. This research perspective reviews the history of melanoma-associated vitiligo in patients, the experimental studies that form the basis for understanding this relationship, and the unique characteristics of melanoma-specific CD8 T cells found in hosts with vitiligo. We also discuss the implications of our recent findings for the interpretation of patient responses, and the design of next-generation cancer immunotherapies. PMID:21911918

  14. Human-specific features of spatial gene expression and regulation in eight brain regions.

    PubMed

    Xu, Chuan; Li, Qian; Efimova, Olga; He, Liu; Tatsumoto, Shoji; Stepanova, Vita; Oishi, Takao; Udono, Toshifumi; Yamaguchi, Katsushi; Shigenobu, Shuji; Kakita, Akiyoshi; Nawa, Hiroyuki; Khaitovich, Philipp; Go, Yasuhiro

    2018-06-13

    Molecular maps of the human brain alone do not inform us of the features unique to humans. Yet, the identification of these features is important for understanding both the evolution and nature of human cognition. Here, we approached this question by analyzing gene expression and H3K27ac chromatin modification data collected in eight brain regions of humans, chimpanzees, gorillas, a gibbon and macaques. An analysis of spatial transcriptome trajectories across eight brain regions in four primate species revealed 1,851 genes showing human-specific transcriptome differences in one or multiple brain regions, in contrast to 240 chimpanzee-specific ones. More than half of these human-specific differences represented elevated expression of genes enriched in neuronal and astrocytic markers in the human hippocampus, while the rest were enriched in microglial markers and displayed human-specific expression in several frontal cortical regions and the cerebellum. An analysis of the predicted regulatory interactions driving these differences revealed the role of transcription factors in species-specific transcriptome changes, while epigenetic modifications were linked to spatial expression differences conserved across species. Published by Cold Spring Harbor Laboratory Press.

  15. Fathers' Role in Play: Enhancing Early Language and Literacy of Children with Developmental Delays

    ERIC Educational Resources Information Center

    Stockall, Nancy; Dennis, Lindsay

    2013-01-01

    Fathers and paternal role models make a unique contribution to children's development. There is some research to suggest that the types of play males engage in with children is typically more active and thus offers unique possibilities for embedding activities for language and literacy development. In this article, we offer suggestions for how…

  16. The Emergence of Hybrid Role Conflict in Conflicting Settings: A Unique Challenge for School Leaders

    ERIC Educational Resources Information Center

    Nir, Adam E.

    2011-01-01

    To what extent do divided cities characterized by geopolitical conflicts and a variety of contradictory expectations create a distinctive context and a unique professional conflict for individuals holding boundary-spanning roles? Data collected in a set of in-depth interviews conducted with school principals leading Arab schools located in East…

  17. Attitude Certainty and Attitudinal Advocacy: The Unique Roles of Clarity and Correctness.

    PubMed

    Cheatham, Lauren; Tormala, Zakary L

    2015-11-01

    When and why do people advocate on behalf of their attitudes? Past research suggests that attitude certainty is one important determinant. The current research seeks to provide more nuanced insight into this relationship by (a) exploring the unique roles of attitude clarity and attitude correctness, and (b) mapping clarity and correctness onto different forms of advocacy (sharing intentions and persuasion intentions). Across four studies, we find that correctness but not clarity plays an important role in promoting persuasion intentions, whereas both correctness and clarity help shape sharing intentions. Thus, this research unpacks the certainty-advocacy relation and helps identify experimental manipulations that uniquely drive persuasion and sharing intentions. © 2015 by the Society for Personality and Social Psychology, Inc.

  18. Non-site-specific allosteric effect of oxygen on human hemoglobin under high oxygen partial pressure.

    PubMed

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2014-04-08

    Protein allostery is essential for vital activities. Allosteric regulation of human hemoglobin (HbA) with two quaternary states T and R has been a paradigm of allosteric structural regulation of proteins. It is widely accepted that oxygen molecules (O2) act as a "site-specific" homotropic effector, or the successive O2 binding to the heme brings about the quaternary regulation. However, here we show that the site-specific allosteric effect is not necessarily only a unique mechanism of O2 allostery. Our simulation results revealed that the solution environment of high O2 partial pressure enhances the quaternary change from T to R without binding to the heme, suggesting an additional "non-site-specific" allosteric effect of O2. The latter effect should play a complementary role in the quaternary change by affecting the intersubunit contacts. This analysis must become a milestone in comprehensive understanding of the allosteric regulation of HbA from the molecular point of view.

  19. Engineering Biomaterial Properties for Central Nervous System Applications

    NASA Astrophysics Data System (ADS)

    Rivet, Christopher John

    Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.

  20. Systematic CpT (ApG) Depletion and CpG Excess Are Unique Genomic Signatures of Large DNA Viruses Infecting Invertebrates

    PubMed Central

    Upadhyay, Mohita; Sharma, Neha; Vivekanandan, Perumal

    2014-01-01

    Differences in the relative abundance of dinucleotides, if any may provide important clues on host-driven evolution of viruses. We studied dinucleotide frequencies of large DNA viruses infecting vertebrates (n = 105; viruses infecting mammals = 99; viruses infecting aves = 6; viruses infecting reptiles = 1) and invertebrates (n = 88; viruses infecting insects = 84; viruses infecting crustaceans = 4). We have identified systematic depletion of CpT(ApG) dinucleotides and over-representation of CpG dinucleotides as the unique genomic signature of large DNA viruses infecting invertebrates. Detailed investigation of this unique genomic signature suggests the existence of invertebrate host-induced pressures specifically targeting CpT(ApG) and CpG dinucleotides. The depletion of CpT dinucleotides among large DNA viruses infecting invertebrates is at least in part, explained by non-canonical DNA methylation by the infected host. Our findings highlight the role of invertebrate host-related factors in shaping virus evolution and they also provide the necessary framework for future studies on evolution, epigenetics and molecular biology of viruses infecting this group of hosts. PMID:25369195

  1. Contributions of identifiable neurons and neuron classes to lamprey vertebrate neurobiology.

    PubMed

    Buchanan, J T

    2001-03-01

    Among the advantages offered by the lamprey brainstem and spinal cord for studies of the structure and function of the nervous system is the unique identifiability of several pairs of reticulospinal neurons in the brainstem. These neurons have been exploited in investigations of the patterns of sensory input to these cells and the patterns of their outputs to spinal neurons, but no doubt these cells could be used much more effectively in exploring their roles in descending control of the spinal cord. The variability of cell positions of neurons in the spinal cord has precluded the recognition of unique spinal neurons. However, classes of nerve cells can be readily defined and characterized within the lamprey spinal cord and this has led to progress in understanding the cellular and synaptic mechanisms of locomotor activity. In addition, both the identifiable reticulospinal cells and the various spinal nerve cell classes and their known synaptic interactions have been used to demonstrate the degree and specificity of regeneration within the lamprey nervous system. The lack of uniquely identifiable cells within the lamprey spinal cord has hampered progress in these areas, especially in gaining a full understanding of the locomotor network and how neuromodulation of the network is accomplished.

  2. Notch Decoys that Selectively Block Dll/Notch or Jagged/Notch Disrupt Angiogenesis by Unique Mechanisms to Inhibit Tumor Growth

    PubMed Central

    Kangsamaksin, Thaned; Murtomaki, Aino; Kofler, Natalie M.; Cuervo, Henar; Chaudhri, Reyhaan A.; Tattersall, Ian W.; Rosenstiel, Paul E.; Shawber, Carrie J.; Kitajewski, Jan

    2015-01-01

    A pro-angiogenic role for Jagged-dependent activation of Notch signaling in the endothelium has yet to be described. Using proteins that encoded different NOTCH1 EGF-like repeats, we identified unique regions of DLL-class and JAG-class ligand/receptor interactions, and developed Notch decoys that function as ligand-specific Notch inhibitors. N110-24 decoy blocked JAG1/JAG2-mediated NOTCH1 signaling, angiogenic sprouting in vitro and retinal angiogenesis, demonstrating JAG-dependent Notch signal activation promotes angiogenesis. In tumors, N110-24 decoy reduced angiogenic sprouting, vessel perfusion, pericyte coverage, and tumor growth. JAG/NOTCH signaling uniquely inhibited expression of anti-angiogenic sVEFGFR-1/sFlt-1. N11-13 decoy interfered with DLL1/DLL4-mediated NOTCH1 signaling and caused endothelial hypersprouting in vitro, in retinal angiogenesis and in tumors. Thus, blockade of JAG- or DLL-mediated Notch signaling inhibits angiogenesis by distinct mechanisms. JAG/Notch signaling positively regulates angiogenesis by suppressing sVEGFR-1/sFlt-1 and promoting mural/endothelial cell interactions. Blockade of JAG-class ligands represents a novel, viable therapeutic approach to block tumor angiogenesis and growth. PMID:25387766

  3. Chronic and Episodic Interpersonal Stress as Statistically Unique Predictors of Depression in Two Samples of Emerging Adults

    PubMed Central

    Vrshek-Schallhorn, Suzanne; Stroud, Catherine B.; Mineka, Susan; Hammen, Constance; Zinbarg, Richard; Wolitzky-Taylor, Kate; Craske, Michelle G.

    2016-01-01

    Few studies comprehensively evaluate which types of life stress are most strongly associated with depressive episode onsets, over and above other forms of stress, and comparisons between acute and chronic stress are particularly lacking. Past research implicates major (moderate to severe) stressful life events (SLEs), and to a lesser extent, interpersonal forms of stress; research conflicts on whether dependent or independent SLEs are more potent, but theory favors dependent SLEs. The present study used five years of annual diagnostic and life stress interviews of chronic stress and SLEs from two separate samples (Sample 1 N = 432; Sample 2 N = 146) transitioning into emerging adulthood; one sample also collected early adversity interviews. Multivariate analyses simultaneously examined multiple forms of life stress to test hypotheses that all major SLEs, then particularly interpersonal forms of stress, and then dependent SLEs would contribute unique variance to major depressive episode (MDE) onsets. Person-month survival analysis consistently implicated chronic interpersonal stress and major interpersonal SLEs as statistically unique predictors of risk for MDE onset. In addition, follow-up analyses demonstrated temporal precedence for chronic stress; tested differences by gender; showed that recent chronic stress mediates the relationship between adolescent adversity and later MDE onsets; and revealed interactions of several forms of stress with socioeconomic status (SES). Specifically, as SES declined, there was an increasing role for non-interpersonal chronic stress and non-interpersonal major SLEs, coupled with a decreasing role for interpersonal chronic stress. Implications for future etiological research were discussed. PMID:26301973

  4. Genetic and Environmental Influences on Smoking Behavior across Adolescence and Young Adulthood in the Virginia Twin Study of Adolescent Behavioral Development and the Transitions to Substance Abuse Follow-Up

    PubMed Central

    Do, Elizabeth K.; Prom-Wormley, Elizabeth C.; Eaves, Lindon J.; Silberg, Judy L.; Miles, Donna R.; Maes, Hermine H.

    2016-01-01

    Little is known regarding the underlying relationship between smoking initiation and current quantity smoked during adolescence into young adulthood. It is possible that the influences of genetic and environmental factors on this relationship vary across sex and age. To investigate this further, the current study applied a common causal contingency model to data from a Virginia-based twin study to determine: (1) if the same genetic and environmental factors are contributing to smoking initiation and current quantity smoked; (2) whether the magnitude of genetic and environmental factor contributions are the same across adolescence and young adulthood; and (3) if qualitative and quantitative differences in the sources of variance between males and females exist. Study results found no qualitative or quantitative sex differences in the relationship between smoking initiation and current quantity smoked, though relative contributions of genetic and environmental factors changed across adolescence and young adulthood. More specifically, smoking initiation and current quantity smoked remain separate constructs until young adulthood, when liabilities are correlated. Smoking initiation is explained by genetic, shared, and unique environmental factors in early adolescence and by genetic and unique environmental factors in young adulthood; while current quantity smoked is explained by shared environmental and unique environmental factors until young adulthood, when genetic and unique environmental factors play a larger role. PMID:25662421

  5. Genetic and Environmental Influences on Smoking Behavior across Adolescence and Young Adulthood in the Virginia Twin Study of Adolescent Behavioral Development and the Transitions to Substance Abuse Follow-Up.

    PubMed

    Do, Elizabeth K; Prom-Wormley, Elizabeth C; Eaves, Lindon J; Silberg, Judy L; Miles, Donna R; Maes, Hermine H

    2015-02-01

    Little is known regarding the underlying relationship between smoking initiation and current quantity smoked during adolescence into young adulthood. It is possible that the influences of genetic and environmental factors on this relationship vary across sex and age. To investigate this further, the current study applied a common causal contingency model to data from a Virginia-based twin study to determine: (1) if the same genetic and environmental factors are contributing to smoking initiation and current quantity smoked; (2) whether the magnitude of genetic and environmental factor contributions are the same across adolescence and young adulthood; and (3) if qualitative and quantitative differences in the sources of variance between males and females exist. Study results found no qualitative or quantitative sex differences in the relationship between smoking initiation and current quantity smoked, though relative contributions of genetic and environmental factors changed across adolescence and young adulthood. More specifically, smoking initiation and current quantity smoked remain separate constructs until young adulthood, when liabilities are correlated. Smoking initiation is explained by genetic, shared, and unique environmental factors in early adolescence and by genetic and unique environmental factors in young adulthood; while current quantity smoked is explained by shared environmental and unique environmental factors until young adulthood, when genetic and unique environmental factors play a larger role.

  6. The sRNAome mining revealed existence of unique signature small RNAs derived from 5.8SrRNA from Piper nigrum and other plant lineages.

    PubMed

    Asha, Srinivasan; Soniya, E V

    2017-02-01

    Small RNAs derived from ribosomal RNAs (srRNAs) are rarely explored in the high-throughput data of plant systems. Here, we analyzed srRNAs from the deep-sequenced small RNA libraries of Piper nigrum, a unique magnoliid plant. The 5' end of the putative long form of 5.8S rRNA (5.8S L rRNA) was identified as the site for biogenesis of highly abundant srRNAs that are unique among the Piperaceae family of plants. A subsequent comparative analysis of the ninety-seven sRNAomes of diverse plants successfully uncovered the abundant existence and precise cleavage of unique rRF signature small RNAs upstream of a novel 5' consensus sequence of the 5.8S rRNA. The major cleavage process mapped identically among the different tissues of the same plant. The differential expression and cleavage of 5'5.8S srRNAs in Phytophthora capsici infected P. nigrum tissues indicated the critical biological functions of these srRNAs during stress response. The non-canonical short hairpin precursor structure, the association with Argonaute proteins, and the potential targets of 5'5.8S srRNAs reinforced their regulatory role in the RNAi pathway in plants. In addition, this novel lineage specific small RNAs may have tremendous biological potential in the taxonomic profiling of plants.

  7. The sRNAome mining revealed existence of unique signature small RNAs derived from 5.8SrRNA from Piper nigrum and other plant lineages

    PubMed Central

    Asha, Srinivasan; Soniya, E. V.

    2017-01-01

    Small RNAs derived from ribosomal RNAs (srRNAs) are rarely explored in the high-throughput data of plant systems. Here, we analyzed srRNAs from the deep-sequenced small RNA libraries of Piper nigrum, a unique magnoliid plant. The 5′ end of the putative long form of 5.8S rRNA (5.8SLrRNA) was identified as the site for biogenesis of highly abundant srRNAs that are unique among the Piperaceae family of plants. A subsequent comparative analysis of the ninety-seven sRNAomes of diverse plants successfully uncovered the abundant existence and precise cleavage of unique rRF signature small RNAs upstream of a novel 5′ consensus sequence of the 5.8S rRNA. The major cleavage process mapped identically among the different tissues of the same plant. The differential expression and cleavage of 5′5.8S srRNAs in Phytophthora capsici infected P. nigrum tissues indicated the critical biological functions of these srRNAs during stress response. The non-canonical short hairpin precursor structure, the association with Argonaute proteins, and the potential targets of 5′5.8S srRNAs reinforced their regulatory role in the RNAi pathway in plants. In addition, this novel lineage specific small RNAs may have tremendous biological potential in the taxonomic profiling of plants. PMID:28145468

  8. Smoking and diabetes. Epigenetics involvement in osseointegration.

    PubMed

    Razzouk, Sleiman; Sarkis, Rami

    2013-03-01

    Bone quality is a poorly defined parameter for successful implant placement, which largely depends upon many environmental and genetic factors unique to every individual. Smoking and diabetes are among the environmental factors that most impact osseointegration. However, there is an inter-individual variability of bone response in smokers and diabetic patients. Recent data on gene-environment interactions highlight the major role of epigenetic changes to induce a specific phenotype. Histone acetylation and DNA methylation are the main events that occur and modulate the gene expression. In this paper, we emphasize the impact of epigenetics on diabetes and smoking and describe their significance in bone healing. Also, we underscore the importance of adopting a new approach in clinical management for implant placement by customizing the treatment according to the patient's specific characteristics.

  9. Integrating the child into home and community following the completion of cancer treatment.

    PubMed

    Labay, Larissa E; Mayans, Sherri; Harris, Michael B

    2004-01-01

    The present article examines the period of time immediately following the completion of treatment for childhood cancer. The unique concerns experienced by families at this stage of the cancer treatment are examined, and the specific challenges that children face as they renegotiate roles and relationships that are necessary for successful reintegration into family, school, and community settings are discussed. Obstacles to successful reintegration that are frequently encountered by patients and families are reviewed, as well as variables that may promote optimal adjustment during this transitional period. The need for continued research in this area is highlighted, and specific research questions are identified. An emphasis is placed on applying a socioecological framework to research and clinical work with pediatric oncology patients at this stage of the cancer experience.

  10. Construction of an annotated corpus to support biomedical information extraction

    PubMed Central

    Thompson, Paul; Iqbal, Syed A; McNaught, John; Ananiadou, Sophia

    2009-01-01

    Background Information Extraction (IE) is a component of text mining that facilitates knowledge discovery by automatically locating instances of interesting biomedical events from huge document collections. As events are usually centred on verbs and nominalised verbs, understanding the syntactic and semantic behaviour of these words is highly important. Corpora annotated with information concerning this behaviour can constitute a valuable resource in the training of IE components and resources. Results We have defined a new scheme for annotating sentence-bound gene regulation events, centred on both verbs and nominalised verbs. For each event instance, all participants (arguments) in the same sentence are identified and assigned a semantic role from a rich set of 13 roles tailored to biomedical research articles, together with a biological concept type linked to the Gene Regulation Ontology. To our knowledge, our scheme is unique within the biomedical field in terms of the range of event arguments identified. Using the scheme, we have created the Gene Regulation Event Corpus (GREC), consisting of 240 MEDLINE abstracts, in which events relating to gene regulation and expression have been annotated by biologists. A novel method of evaluating various different facets of the annotation task showed that average inter-annotator agreement rates fall within the range of 66% - 90%. Conclusion The GREC is a unique resource within the biomedical field, in that it annotates not only core relationships between entities, but also a range of other important details about these relationships, e.g., location, temporal, manner and environmental conditions. As such, it is specifically designed to support bio-specific tool and resource development. It has already been used to acquire semantic frames for inclusion within the BioLexicon (a lexical, terminological resource to aid biomedical text mining). Initial experiments have also shown that the corpus may viably be used to train IE components, such as semantic role labellers. The corpus and annotation guidelines are freely available for academic purposes. PMID:19852798

  11. Molecular Evidence and Functional Expression of a Novel Drug Efflux pump (ABCC2) in Human Corneal Epithelium and Rabbit Cornea and its role in Ocular drug efflux

    PubMed Central

    Karla, Pradeep K.; Pal, Dhananjay; Quinn, Tim; Mitra, Ashim K.

    2007-01-01

    Cornea is considered as a major barrier for ocular drug delivery. Low ocular bioavailability of drugs has been attributed primarily to low permeability across corneal epithelium thus leading to sub-therapeutic concentrations of drug in the eye and treatment failure. The role of drug efflux proteins, particularly the Pglycoprotein in ocular drug bioavailability has been reported. The objective of this research was to determine whether human corneal epithelium expresses multi drug resistance associated proteins contributing to drug efflux by employing both cultured corneal cells and freshly excised rabbit cornea. SV40 HCEC and rPCEC were selected for in-vitro testing. SV40-HCEC and freshly excised rabbit corneas were utilized for transport studies. [3H]-cyclosporine-A and [14C]-erythromycin which are known substrates for ABCC2 and MK-571, a specific inhibitor for MRP were applied in this study. RT-PCR indicated a unique and distinct band at ∼272 bp corresponding to ABCC2 in HCEC, SV40-HCEC, rabbit cornea, rPCEC and MDCKII-MRP2 cells. Also RT-PCR indicated a unique band ∼181 bp for HCEC and SV40-HCEC. Immunoprecipitation followed by Western Blot analysis revealed a specific band at ∼190-kDa in membrane fraction of SV40-HCEC, MDCKII-MRP2 and no band with isotype control. Uptake of [3H]-cyclosporine-A and [14C]-erythromycin in the presence of MK-571 was significantly enhanced than control in both SV40 HCEC and rPCEC. Similarly a significant elevation in (A→B) permeability of [3H]-cyclosporine-A and [14C]-erythromycin was observed in the presence of MK-571 in SV40-HCEC. A→B transport of [3H]-cyclosporine-A was elevated in the presence of MK-571 in freshly excised rabbit cornea indicating potential role of this efflux transporter and high clinical significance of this finding. PMID:17156953

  12. A Synergistic Transcriptional Regulation of Olfactory Genes Drives Blood-Feeding Associated Complex Behavioral Responses in the Mosquito Anopheles culicifacies.

    PubMed

    Das De, Tanwee; Thomas, Tina; Verma, Sonia; Singla, Deepak; Chauhan, Charu; Srivastava, Vartika; Sharma, Punita; Kumari, Seena; Tevatiya, Sanjay; Rani, Jyoti; Hasija, Yasha; Pandey, Kailash C; Dixit, Rajnikant

    2018-01-01

    Decoding the molecular basis of host seeking and blood feeding behavioral evolution/adaptation in the adult female mosquitoes may provide an opportunity to design new molecular strategy to disrupt human-mosquito interactions. Although there is a great progress in the field of mosquito olfaction and chemo-detection, little is known about the sex-specific evolution of the specialized olfactory system of adult female mosquitoes that enables them to drive and manage the complex blood-feeding associated behavioral responses. A comprehensive RNA-Seq analysis of prior and post blood meal olfactory system of An. culicifacies mosquito revealed a minor but unique change in the nature and regulation of key olfactory genes that may play a pivotal role in managing diverse behavioral responses. Based on age-dependent transcriptional profiling, we further demonstrated that adult female mosquito's chemosensory system gradually learned and matured to drive the host-seeking and blood feeding behavior at the age of 5-6 days. A time scale expression analysis of Odorant Binding Proteins (OBPs) unravels unique association with a late evening to midnight peak biting time. Blood meal-induced switching of unique sets of OBP genes and Odorant Receptors (Ors) expression coincides with the change in the innate physiological status of the mosquitoes. Blood meal follows up experiments further provide enough evidence that how a synergistic and concurrent action of OBPs-Ors may drive "prior and post blood meal" associated complex behavioral events. A dominant expression of two sensory appendages proteins (SAP-1 & SAP2) in the legs of An. culicifacies suggests that this mosquito species may draw an extra advantage of having more sensitive appendages than An. stephensi , an urban malarial vector in the Indian subcontinents. Finally, our molecular modeling analysis predicts crucial amino acid residues for future functional characterization of the sensory appendages proteins which may play a central role in regulating multiple behaviors of An. culicifacies mosquito. SIGNIFICANCE   Evolution and adaptation of blood feeding behavior not only favored the reproductive success of adult female mosquitoes but also make them important disease-transmitting vectors. An environmental exposure after emergence may favor the broadly tuned olfactory system of mosquitoes to drive complex behavioral responses. But, how these olfactory derived genetic factors manage female specific "pre and post" blood meal associated complex behavioral responses are not well known. Our findings suggest that a synergistic action of olfactory factors may govern an innate to prime learning strategy to facilitate rapid blood meal acquisition and downstream behavioral activities. A species-specific transcriptional profiling and an in-silico analysis predict that "sensory appendages protein" may be a unique target to design disorientation strategy against the mosquito Anopheles culicifacies .

  13. Role of medial prefrontal cortex serotonin 2A receptors in the control of retrieval of recognition memory in rats.

    PubMed

    Bekinschtein, Pedro; Renner, Maria Constanza; Gonzalez, Maria Carolina; Weisstaub, Noelia

    2013-10-02

    Often, retrieval cues are not uniquely related to one specific memory, which could lead to memory interference. Controlling interference is particularly important during episodic memory retrieval or when remembering specific events in a spatiotemporal context. Despite a clear involvement of prefrontal cortex (PFC) in episodic memory in human studies, information regarding the mechanisms and neurotransmitter systems in PFC involved in memory is scarce. Although the serotoninergic system has been linked to PFC functionality and modulation, its role in memory processing is poorly understood. We hypothesized that the serotoninergic system in PFC, in particular the 5-HT2A receptor (5-HT2AR) could have a role in the control of memory retrieval. In this work we used different versions of the object recognition task in rats to study the role of the serotoninergic modulation in the medial PFC (mPFC) in memory retrieval. We found that blockade of 5-HT2AR in mPFC affects retrieval of an object in context memory in a spontaneous novelty preference task, while sparing single-item recognition memory. We also determined that 5-HT2ARs in mPFC are required for hippocampal-mPFC interaction during retrieval of this type of memory, suggesting that the mPFC controls the expression of memory traces stored in the hippocampus biasing retrieval to the most relevant one.

  14. The integrity of the plant Golgi apparatus depends on cell growth-controlled activity of GNL1.

    PubMed

    Du, Wenyan; Tamura, Kentaro; Stefano, Giovanni; Brandizzi, Federica

    2013-05-01

    Membrane traffic and organelle integrity in the plant secretory pathway depend on ARF-GTPases, which are activated by guanine-nucleotide exchange factors (ARF-GEFs). While maintenance of conserved roles, evolution of unique functions as well as tissue-specific roles have been shown for a handful of plant ARF-GEFs, a fundamental yet unanswered question concerns the extent to which their function overlaps during cell growth. To address this, we have characterized pao, a novel allele of GNOM-like 1 (GNL1), a brefeldin A (BFA)-insensitive ARF-GEF, isolated through a confocal microscopy-based forward genetics screen of the Golgi in Arabidopsis thaliana. Specifically, we have analyzed the dependence of the integrity of trafficking routes and secretory organelles on GNL1 availability during expansion stages of cotyledon epidermal cells, an exquisite model system for vegetative cell growth analyses in intact tissues. We show that Golgi traffic is influenced largely by GNL1 availability at early stages of cotyledon cell expansion but by BFA-sensitive GEFs when cell growth terminates. These data reveal an unanticipated level of complexity in the biology of GNL1 by showing that its cellular roles are correlated with cell growth. These results also indicate that the cell growth stage is an important element weighting into functional analyses of the cellular roles of ARF-GEFs.

  15. Identification of Single- and Multiple-Class Specific Signature Genes from Gene Expression Profiles by Group Marker Index

    PubMed Central

    Tsai, Yu-Shuen; Aguan, Kripamoy; Pal, Nikhil R.; Chung, I-Fang

    2011-01-01

    Informative genes from microarray data can be used to construct prediction model and investigate biological mechanisms. Differentially expressed genes, the main targets of most gene selection methods, can be classified as single- and multiple-class specific signature genes. Here, we present a novel gene selection algorithm based on a Group Marker Index (GMI), which is intuitive, of low-computational complexity, and efficient in identification of both types of genes. Most gene selection methods identify only single-class specific signature genes and cannot identify multiple-class specific signature genes easily. Our algorithm can detect de novo certain conditions of multiple-class specificity of a gene and makes use of a novel non-parametric indicator to assess the discrimination ability between classes. Our method is effective even when the sample size is small as well as when the class sizes are significantly different. To compare the effectiveness and robustness we formulate an intuitive template-based method and use four well-known datasets. We demonstrate that our algorithm outperforms the template-based method in difficult cases with unbalanced distribution. Moreover, the multiple-class specific genes are good biomarkers and play important roles in biological pathways. Our literature survey supports that the proposed method identifies unique multiple-class specific marker genes (not reported earlier to be related to cancer) in the Central Nervous System data. It also discovers unique biomarkers indicating the intrinsic difference between subtypes of lung cancer. We also associate the pathway information with the multiple-class specific signature genes and cross-reference to published studies. We find that the identified genes participate in the pathways directly involved in cancer development in leukemia data. Our method gives a promising way to find genes that can involve in pathways of multiple diseases and hence opens up the possibility of using an existing drug on other diseases as well as designing a single drug for multiple diseases. PMID:21909426

  16. What do unicellular organisms teach us about DNA methylation?

    PubMed

    Harony, Hala; Ankri, Serge

    2008-05-01

    DNA methylation is an epigenetic hallmark that has been studied intensively in mammals and plants. However, knowledge of this phenomenon in unicellular organisms is scanty. Examining epigenetic regulation, and more specifically DNA methylation, in these organisms represents a unique opportunity to better understand their biology. The determination of their methylation status is often complicated by the presence of several differentiation stages in their life cycle. This article focuses on some recent advances that have revealed the unexpected nature of the epigenetic determinants present in protozoa. The role of the enigmatic DNA methyltransferase Dnmt2 in unicellular organisms is discussed.

  17. Identification of Two Candidate Tumor Suppressor Genes on Chromosome 17p13.3: Assessment of Their Roles in Breast and Ovarian Carcinogenesis

    DTIC Science & Technology

    1997-07-01

    minimum region of allelic loss on chromosome 17p 13.3, between polymorphic markers D17S5 and D17S28, in genomic DNA from breast and ovarian tumors (Figure 1...encode proteins of 443 and 227 amino acids, with no known functional motifs. Comparison of genomic and cDNA sequences showed that the genes overlap...is tissue specific (Figure 4). When zoo blots comprised of EcoRI fragments of genomic DNA from various species were probed with the unique exon 1 of

  18. Nanoparticle based tailoring of adjuvant function: the role in vaccine development.

    PubMed

    Prashant, Chandravilas Keshvan; Kumar, Manoj; Dinda, Amit Kumar

    2014-09-01

    Vaccination is one of the most powerful therapeutic tools for prevention and management of various infective and non-infective diseases including malignancy. Mass vaccination is a great strategy for eradicating major infectious diseases throughout the world like small pox. Application of nanotechnology for antigen delivery is a unique area of research and development which can change the vaccination strategy and policy in future. Nanocarriers can enhance antigen presentation including modulation of antigen processing pathways according to the specific need. The current review explores the pros and cons of application of different nanomaterials for antigen presentation and vaccine development.

  19. Virus-based nanoparticles as platform technologies for modern vaccines

    PubMed Central

    Lee, Karin L.; Twyman, Richard M.; Fiering, Steven

    2017-01-01

    Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic through multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. PMID:26782096

  20. Recent Progress in Some Amorphous Materials for Supercapacitors.

    PubMed

    Li, Qing; Xu, Yuxia; Zheng, Shasha; Guo, Xiaotian; Xue, Huaiguo; Pang, Huan

    2018-05-14

    A breakthrough in technologies having "green" and sustainable energy storage conversion is urgent, and supercapacitors play a crucial role in this area of research. Owing to their unique porous structure, amorphous materials are considered one of the best active materials for high-performance supercapacitors due to their high specific capacity, excellent cycling stability, and fast charging rate. This Review summarizes the synthesis of amorphous materials (transition metal oxides, carbon-based materials, transition metal sulfides, phosphates, hydroxides, and their complexes) to highlight their electrochemical performance in supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Does proactive interference play a significant role in visual working memory tasks?

    PubMed

    Makovski, Tal

    2016-10-01

    Visual working memory (VWM) is an online memory buffer that is typically assumed to be immune to source memory confusions. Accordingly, the few studies that have investigated the role of proactive interference (PI) in VWM tasks found only a modest PI effect at best. In contrast, a recent study has found a substantial PI effect in that performance in a VWM task was markedly improved when all memory items were unique compared to the more standard condition in which only a limited set of objects was used. The goal of the present study was to reconcile this discrepancy between the findings, and to scrutinize the extent to which PI is involved in VWM tasks. Experiments 1-2 showed that the robust advantage in using unique memory items can also be found in a within-subject design and is largely independent of set size, encoding duration, or intertrial interval. Importantly, however, PI was found mainly when all items were presented at the same location, and the effect was greatly diminished when the items were presented, either simultaneously (Experiment 3) or sequentially (Experiments 4-5), at distinct locations. These results indicate that PI is spatially specific and that without the assistance of spatial information VWM is not protected from PI. Thus, these findings imply that spatial information plays a key role in VWM, and underscore the notion that VWM is more vulnerable to interference than is typically assumed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Response of the rare biosphere to environmental stressors in a highly diverse ecosystem (Zodletone spring, OK, USA).

    PubMed

    Coveley, Suzanne; Elshahed, Mostafa S; Youssef, Noha H

    2015-01-01

    Within highly diverse ecosystems, the majority of bacterial taxa are present in low abundance as members of the rare biosphere. The rationale for the occurrence and maintenance of the rare biosphere, and the putative ecological role(s) and dynamics of its members within a specific ecosystem is currently debated. We hypothesized that in highly diverse ecosystems, a fraction of the rare biosphere acts as a backup system that readily responds to environmental disturbances. We tested this hypothesis by subjecting sediments from Zodletone spring, a sulfide- and sulfur-rich spring in Southwestern OK, to incremental levels of salinity (1, 2, 3, 4, and 10% NaCl), or temperature (28°, 30°, 32°, and 70 °C), and traced the trajectories of rare members of the community in response to these manipulations using 16S rRNA gene analysis. Our results indicate that multiple rare bacterial taxa are promoted from rare to abundant members of the community following such manipulations and that, in general, the magnitude of such recruitment is directly proportional to the severity of the applied manipulation. Rare members that are phylogenetically distinct from abundant taxa in the original sample (unique rare biosphere) played a more important role in the microbial community response to environmental disturbances, compared to rare members that are phylogenetically similar to abundant taxa in the original sample (non-unique rare biosphere). The results emphasize the dynamic nature of the rare biosphere, and highlight its complexity and non-monolithic nature.

  3. Segmental duplications: evolution and impact among the current Lepidoptera genomes.

    PubMed

    Zhao, Qian; Ma, Dongna; Vasseur, Liette; You, Minsheng

    2017-07-06

    Structural variation among genomes is now viewed to be as important as single nucleoid polymorphisms in influencing the phenotype and evolution of a species. Segmental duplication (SD) is defined as segments of DNA with homologous sequence. Here, we performed a systematic analysis of segmental duplications (SDs) among five lepidopteran reference genomes (Plutella xylostella, Danaus plexippus, Bombyx mori, Manduca sexta and Heliconius melpomene) to understand their potential impact on the evolution of these species. We find that the SDs content differed substantially among species, ranging from 1.2% of the genome in B. mori to 15.2% in H. melpomene. Most SDs formed very high identity (similarity higher than 90%) blocks but had very few large blocks. Comparative analysis showed that most of the SDs arose after the divergence of each linage and we found that P. xylostella and H. melpomene showed more duplications than other species, suggesting they might be able to tolerate extensive levels of variation in their genomes. Conserved ancestral and species specific SD events were assessed, revealing multiple examples of the gain, loss or maintenance of SDs over time. SDs content analysis showed that most of the genes embedded in SDs regions belonged to species-specific SDs ("Unique" SDs). Functional analysis of these genes suggested their potential roles in the lineage-specific evolution. SDs and flanking regions often contained transposable elements (TEs) and this association suggested some involvement in SDs formation. Further studies on comparison of gene expression level between SDs and non-SDs showed that the expression level of genes embedded in SDs was significantly lower, suggesting that structure changes in the genomes are involved in gene expression differences in species. The results showed that most of the SDs were "unique SDs", which originated after species formation. Functional analysis suggested that SDs might play different roles in different species. Our results provide a valuable resource beyond the genetic mutation to explore the genome structure for future Lepidoptera research.

  4. Drebrin and Spermatogenesis

    PubMed Central

    Chen, Haiqi; Li, Michelle W.M.

    2018-01-01

    Drebrin is a family of actin-binding proteins with two known members called drebrin A and E. Apart from the ability to stabilize F-actin microfilaments via their actin-binding domains near the N-terminus, drebrin also regulates multiple cellular functions due to its unique ability to recruit multiple binding partners to a specific cellular domain, such as the seminiferous epithelium during the epithelial cycle of spermatogenesis. Recent studies have illustrated the role of drebrin E in the testis during spermatogenesis in particular via its ability to recruit branched actin polymerization protein known as actin-related protein 3 (Arp3), illustrating its involvement in modifying the organization of actin microfilaments at the ectoplasmic specialization (ES) which includes the testis-specific anchoring junction at the Sertoli-spermatid (apical ES) interface and at the Sertoli cell-cell (basal ES) interface. These data are carefully evaluated in light of other recent findings herein regarding the role of drebrin in actin filament organization at the ES. We also provide the hypothetical model regarding its involvement in germ cell transport during the epithelial cycle in the seminiferous epithelium to support spermatogenesis. PMID:28865027

  5. Alternative ground states enable pathway switching in biological electron transfer

    DOE PAGES

    Abriata, Luciano A.; Alvarez-Paggi, Damian; Ledesma, Gabirela N.; ...

    2012-10-10

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronicmore » wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. In conclusion, these findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction.« less

  6. [Quality assurance in geriatric rehabilitation--approaches and methods].

    PubMed

    Deckenbach, B; Borchelt, M; Steinhagen-Thiessen, E

    1997-08-01

    It did not take the provisions of the 5th Book of the Social Code for quality assurance issues to gain significance in the field of geriatric rehabilitation as well. While in the surgical specialties, experience in particular with external quality assurance have already been gathered over several years now, suitable concepts and methods for the new Geriatric Rehabilitation specialty are still in the initial stages of development. Proven methods from the industrial and service sectors, such as auditing, monitoring and quality circles, can in principle be drawn on for devising geriatric rehabilitation quality assurance schemes; these in particular need to take into account the multiple factors influencing the course and outcome of rehabilitation entailed by multimorbidity and multi-drug use; the eminent role of the social environment; therapeutic interventions by a multidisciplinary team; as well as the multi-dimensional nature of rehabilitation outcomes. Moreover, the specific conditions of geriatric rehabilitation require development not only of quality standards unique to this domain but also of quality assurance procedures specific to geriatrics. Along with a number of other methods, standardized geriatric assessment will play a crucial role in this respect.

  7. Alpha oscillations and their impairment in affective and post-traumatic stress disorders.

    PubMed

    Eidelman-Rothman, Moranne; Levy, Jonathan; Feldman, Ruth

    2016-09-01

    Affective and anxiety disorders are debilitating conditions characterized by impairments in cognitive and social functioning. Elucidating their neural underpinnings may assist in improving diagnosis and developing targeted interventions. Neural oscillations are fundamental for brain functioning. Specifically, oscillations in the alpha frequency range (alpha rhythms) are prevalent in the awake, conscious brain and play an important role in supporting perceptual, cognitive, and social processes. We review studies utilizing various alpha power measurements to assess abnormalities in brain functioning in affective and anxiety disorders as well as obsessive compulsive and post-traumatic stress disorders. Despite some inconsistencies, studies demonstrate associations between aberrant alpha patterns and these disorders both in response to specific cognitive and emotional tasks and during a resting state. We conclude by discussing methodological considerations and future directions, and underscore the need for much further research on the role of alpha functionality in social contexts. As social dysfunction accompanies most psychiatric conditions, research on alpha's involvement in social processes may provide a unique window into the neural mechanisms underlying these disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Notch Signaling in Vascular Smooth Muscle Cells

    PubMed Central

    Baeten, J.T.; Lilly, B.

    2018-01-01

    The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease. PMID:28212801

  9. Redefining C and D in the petunia ABC.

    PubMed

    Heijmans, Klaas; Ament, Kai; Rijpkema, Anneke S; Zethof, Jan; Wolters-Arts, Mieke; Gerats, Tom; Vandenbussche, Michiel

    2012-06-01

    According to the ABC(DE) model for flower development, C-genes are required for stamen and carpel development and floral determinacy, and D-genes were proposed to play a unique role in ovule development. Both C- and D-genes belong to the AGAMOUS (AG) subfamily of MADS box transcription factors. We show that the petunia (Petunia hybrida) C-clade genes PETUNIA MADS BOX GENE3 and FLORAL BINDING PROTEIN6 (FBP6) largely overlap in function, both in floral organ identity specification and floral determinacy, unlike the pronounced subfunctionalization observed in Arabidopsis thaliana and snapdragon (Antirrhinum majus). Some specialization has also evolved, since FBP6 plays a unique role in the development of the style and stigma. Furthermore, we show that the D-genes FBP7 and FBP11 are not essential to confer ovule identity. Instead, this function is redundantly shared among all AG members. In turn, the D-genes also participate in floral determinacy. Gain-of-function analyses suggest the presence of a posttranscriptional C-repression mechanism in petunia, most likely not existing in Arabidopsis. Finally, we show that expression maintenance of the paleoAPETALA3-type B-gene TOMATO MADS BOX GENE6 depends on the activity of C-genes. Taken together, this demonstrates considerable variation in the molecular control of floral development between eudicot species.

  10. Redefining C and D in the Petunia ABC[W

    PubMed Central

    Heijmans, Klaas; Ament, Kai; Rijpkema, Anneke S.; Zethof, Jan; Wolters-Arts, Mieke; Gerats, Tom; Vandenbussche, Michiel

    2012-01-01

    According to the ABC(DE) model for flower development, C-genes are required for stamen and carpel development and floral determinacy, and D-genes were proposed to play a unique role in ovule development. Both C- and D-genes belong to the AGAMOUS (AG) subfamily of MADS box transcription factors. We show that the petunia (Petunia hybrida) C-clade genes PETUNIA MADS BOX GENE3 and FLORAL BINDING PROTEIN6 (FBP6) largely overlap in function, both in floral organ identity specification and floral determinacy, unlike the pronounced subfunctionalization observed in Arabidopsis thaliana and snapdragon (Antirrhinum majus). Some specialization has also evolved, since FBP6 plays a unique role in the development of the style and stigma. Furthermore, we show that the D-genes FBP7 and FBP11 are not essential to confer ovule identity. Instead, this function is redundantly shared among all AG members. In turn, the D-genes also participate in floral determinacy. Gain-of-function analyses suggest the presence of a posttranscriptional C-repression mechanism in petunia, most likely not existing in Arabidopsis. Finally, we show that expression maintenance of the paleoAPETALA3-type B-gene TOMATO MADS BOX GENE6 depends on the activity of C-genes. Taken together, this demonstrates considerable variation in the molecular control of floral development between eudicot species. PMID:22706285

  11. Probing the Unique Role of Gallium in Amorphous Oxide Semiconductors through Structure-Property Relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffitt, Stephanie L.; Zhu, Qimin; Ma, Qing

    This study explores the unique role of Ga in amorphous (a-) In[BOND]Ga[BOND]O oxide semiconductors through combined theory and experiment. It reveals substitutional effects that have not previously been attributed to Ga, and that are investigated by examining how Ga influences structure–property relationships in a series of pulsed laser deposited a-In[BOND]Ga[BOND]O thin films. Element-specific structural studies (X-ray absorption and anomalous scattering) show good agreement with the results of ab initio molecular dynamics simulations. This structural knowledge is used to understand the results of air-annealing and Hall effect electrical measurements. The crystallization temperature of a-IO is shown to increase by as muchmore » as 325 °C on substituting Ga for In. This increased thermal stability is understood on the basis of the large changes in local structure that Ga undergoes, as compared to In, during crystallization. Hall measurements reveal an initial sharp drop in both carrier concentration and mobility with increasing Ga incorporation, which moderates at >20 at% Ga content. This decline in both the carrier concentration and mobility with increasing Ga is attributed to dilution of the charge-carrying In[BOND]O matrix and to increased structural disorder. The latter effect saturates at high at% Ga.« less

  12. Apathy is associated with lower mental and physical quality of life in persons infected with HIV.

    PubMed

    Kamat, Rujvi; Woods, Steven Paul; Cameron, Marizela V; Iudicello, Jennifer E

    2016-10-01

    HIV infection is associated with lower health-related quality of life (HRQoL), which is influenced by immunovirological factors, negative affect, neurocognitive impairment, and functional dependence. Although apathy is a common neuropsychiatric sequela of HIV infection, emerging findings regarding its unique role in lower HRQoL have been mixed. The present study was guided by Wilson and Cleary's (1995), model in examining the association between apathy and physical and mental HRQoL in 80 HIV+ individuals who completed a neuromedical examination, neuropsychological assessment, structured psychiatric interview, and a series of questionnaires including the SF-36. Apathy was measured using a composite of the apathy subscale of the Frontal Systems Behavioral Scale and the vigor-activation subscale of the Profile of Mood States. Independent of major depressive disorder, neurocognitive impairment, functional status, and current CD4 count, apathy was strongly associated with HRQoL. Specifically, apathy and CD4 count were significant predictors of physical HRQoL, whereas apathy and depression were the only predictors of mental HRQoL. All told, these findings suggest that apathy plays a unique role in HRQoL and support the importance of assessing and managing apathy in an effort to maximize health outcomes among individuals with HIV disease.

  13. HCMV Reprogramming of Infected Monocyte Survival and Differentiation: A Goldilocks Phenomenon

    PubMed Central

    Stevenson, Emily V.; Collins-McMillen, Donna; Kim, Jung Heon; Cieply, Stephen J.; Bentz, Gretchen L.; Yurochko, Andrew D.

    2014-01-01

    The wide range of disease pathologies seen in multiple organ sites associated with human cytomegalovirus (HCMV) infection results from the systemic hematogenous dissemination of the virus, which is mediated predominately by infected monocytes. In addition to their role in viral spread, infected monocytes are also known to play a key role in viral latency and life-long persistence. However, in order to utilize infected monocytes for viral spread and persistence, HCMV must overcome a number of monocyte biological hurdles, including their naturally short lifespan and their inability to support viral gene expression and replication. Our laboratory has shown that HCMV is able to manipulate the biology of infected monocytes in order to overcome these biological hurdles by inducing the survival and differentiation of infected monocytes into long-lived macrophages capable of supporting viral gene expression and replication. In this current review, we describe the unique aspects of how HCMV promotes monocyte survival and differentiation by inducing a “finely-tuned” macrophage cell type following infection. Specifically, we describe the induction of a uniquely polarized macrophage subset from infected monocytes, which we argue is the ideal cellular environment for the initiation of viral gene expression and replication and, ultimately, viral spread and persistence within the infected host. PMID:24531335

  14. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites

    PubMed Central

    Gordon, Jennifer L; Sibley, L David

    2005-01-01

    Background The phylum Apicomplexa is an early-branching eukaryotic lineage that contains a number of important human and animal pathogens. Their complex life cycles and unique cytoskeletal features distinguish them from other model eukaryotes. Apicomplexans rely on actin-based motility for cell invasion, yet the regulation of this system remains largely unknown. Consequently, we focused our efforts on identifying actin-related proteins in the recently completed genomes of Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., and Theileria spp. Results Comparative genomic and phylogenetic studies of apicomplexan genomes reveals that most contain only a single conventional actin and yet they each have 8–10 additional actin-related proteins. Among these are a highly conserved Arp1 protein (likely part of a conserved dynactin complex), and Arp4 and Arp6 homologues (subunits of the chromatin-remodeling machinery). In contrast, apicomplexans lack canonical Arp2 or Arp3 proteins, suggesting they lost the Arp2/3 actin polymerization complex on their evolutionary path towards intracellular parasitism. Seven of these actin-like proteins (ALPs) are novel to apicomplexans. They show no phylogenetic associations to the known Arp groups and likely serve functions specific to this important group of intracellular parasites. Conclusion The large diversity of actin-like proteins in apicomplexans suggests that the actin protein family has diverged to fulfill various roles in the unique biology of intracellular parasites. Conserved Arps likely participate in vesicular transport and gene expression, while apicomplexan-specific ALPs may control unique biological traits such as actin-based gliding motility. PMID:16343347

  15. Distinguishing the Clinical Nurse Specialist From Other Graduate Nursing Roles.

    PubMed

    Mohr, Lynn D; Coke, Lola A

    Today's healthcare environment poses diverse and complex patient care challenges and requires a highly qualified and experienced nursing workforce. To mitigate these challenges are graduate nursing roles, each with a different set of competencies and expertise. With the availability of many different graduate nursing roles, both patients and healthcare professionals can be confused in understanding the benefit of each role. To gain the maximum benefit from each role, it is important that healthcare providers and administrators are able to distinguish the uniqueness of each role to best use the role and develop strategies for effective collaboration and interprofessional interaction. The purpose of this article was to define the role, educational preparation, role differences, and practice competencies for the clinical nurse specialist (CNS), nurse practitioner, clinical nurse leader, and nurse educator/staff development educator roles. A second purpose was to provide role clarity and demonstrate the unique value the CNS brings to the healthcare environment. Using evidence and reviewing role competencies established by varying organizations, each role is presented with similarities and differences among the roles discussed. In addition, collaboration among the identified roles was reviewed, and recommendations were provided for the new and practicing CNSs. Although there are some similarities among the graduate nursing roles such as in educational, licensing, and certification requirements, each role must be understood to gain the full role scope and benefit and glean the anticipated outcomes. Healthcare providers must be aware of the differences in graduate nursing roles, especially in comparing the CNS with other roles to avoid confusion that may lead to roles being underused with a limited job scope. The CNS provides a unique set of services at all system outcome levels and is an essential part of the healthcare team especially in the acute care setting.

  16. A Cell-Line-Specific Atlas of PARP-Mediated Protein Asp/Glu-ADP-Ribosylation in Breast Cancer.

    PubMed

    Zhen, Yuanli; Zhang, Yajie; Yu, Yonghao

    2017-11-21

    PARP1 plays a critical role in regulating many biological processes linked to cellular stress responses. Although DNA strand breaks are potent stimuli of PARP1 enzymatic activity, the context-dependent mechanism regulating PARP1 activation and signaling is poorly understood. We performed global characterization of the PARP1-dependent, Asp/Glu-ADP-ribosylated proteome in a panel of cell lines originating from benign breast epithelial cells, as well as common subtypes of breast cancer. From these analyses, we identified 503 specific ADP-ribosylation sites on 322 proteins. Despite similar expression levels, PARP1 is differentially activated in these cell lines under genotoxic conditions, which generates signaling outputs with substantial heterogeneity. By comparing protein abundances and ADP-ribosylation levels, we could dissect cell-specific PARP1 targets that are driven by unique expression patterns versus cell-specific regulatory mechanisms of PARylation. Intriguingly, PARP1 modifies many proteins in a cell-specific manner, including those involved in transcriptional regulation, mRNA metabolism, and protein translation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. β-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure

    PubMed Central

    McLaren, James E.; Dolton, Garry; Matthews, Katherine K.; Gostick, Emma; Kronenberg-Versteeg, Deborah; Eichmann, Martin; Knight, Robin R.; Heck, Susanne; Powrie, Jake; Bingley, Polly J.; Dayan, Colin M.; Miles, John J.; Sewell, Andrew K.

    2015-01-01

    Autoreactive CD8 T cells play a central role in the destruction of pancreatic islet β-cells that leads to type 1 diabetes, yet the key features of this immune-mediated process remain poorly defined. In this study, we combined high definition polychromatic flow cytometry with ultrasensitive peptide-human leukocyte antigen class I (pHLAI) tetramer staining to quantify and characterize β-cell-specific CD8 T cell populations in patients with recent onset type 1 diabetes and healthy controls. Remarkably, we found that β-cell-specific CD8 T cell frequencies in peripheral blood were similar between subject groups. In contrast to healthy controls, however, patients with newly diagnosed type 1 diabetes displayed hallmarks of antigen-driven expansion uniquely within the β-cell-specific CD8 T cell compartment. Molecular analysis of selected β-cell-specific CD8 T cell populations further revealed highly skewed oligoclonal T cell receptor (TCR) repertoires comprising exclusively private clonotypes. Collectively, these data identify novel and distinctive features of disease-relevant CD8 T cells that inform the immunopathogenesis of type 1 diabetes. PMID:25249579

  18. Private channels in plant-pollinator mutualisms

    PubMed Central

    Chen, Chun; Hossaert-McKey, Martine

    2010-01-01

    Volatile compounds often mediate plant-pollinator interactions, and may promote specialization in plant-pollinator relationships, notably through private channels of unusual compounds. Nevertheless, the existence of private channels, i.e., the potential for exclusive communication via unique signals and receptors, is still debated in the literature. Interactions between figs and their pollinating wasps offer opportunities for exploring this concept. Several experiments have demonstrated that chemical mediation is crucial in ensuring the encounter between figs and their species-specific pollinators. Indeed, chemical messages emitted by figs are notably species- and developmental stage-specific, making them reliable cues for the pollinator. In most cases, the species-specificity of wasp attraction is unlikely to result from the presence of a single specific compound. Nevertheless, a recent paper on the role of scents in the interaction between Ficus semicordata and its pollinating wasp Ceratosolen gravelyi showed that a single compound, 4-methylanisole, is the main signal compound in the floral scent, and is sufficient by itself to attract the obligate pollinator. Mainly focusing on these results, we propose here that a floral scent can act as a private channel, attracting only the highly specific pollinator. PMID:20484975

  19. Resilience and Function in Adults With Physical Disabilities: An Observational Study.

    PubMed

    Battalio, Samuel L; Silverman, Arielle M; Ehde, Dawn M; Amtmann, Dagmar; Edwards, Karlyn A; Jensen, Mark P

    2017-06-01

    To determine if resilience is uniquely associated with functional outcomes (satisfaction with social roles, physical functioning, and quality of life) in individuals with physical disabilities, after controlling for measures of psychological health (depression and anxiety) and symptom severity (pain, fatigue, and sleep disturbance); and to examine the potential moderating effect of sex, age, and diagnosis on the hypothesized associations between resilience and function. Cross-sectional survey study. Surveys were mailed (81% response rate) to a community sample of 1949 individuals with multiple sclerosis, muscular dystrophy, postpoliomyelitis syndrome, or spinal cord injury. Participants were recruited through the Internet or print advertisement (28%), a registry of previous research participants who indicated interest in future studies (21%), a departmental registry of individuals interested in research (19%), disability-specific registries (18%), word of mouth (10%), or other sources (3%). Convenience sample of community-dwelling adults aging with physical disabilities (N=1574), with a mean Connor-Davidson Resilience Scale (10 items) score of 29. Not applicable. Patient-Reported Outcomes Measurement Information System measures of Satisfaction with Social Roles and Activities and Physical Functioning, the World Health Organization's brief Older People's Quality of Life Questionnaire, and the Connor-Davidson Resilience Scale (10 items). After controlling for age, age squared, sex, diagnosis, psychological health, and symptom severity, resilience was significantly and positively associated with satisfaction with social roles (β=.17, P<.001) and quality of life (β=.39, P<.001), but not physical function (β=.04, P>.05). For every 1-point increase in scores of resilience, there was an increase of .50 in the quality of life score and .20 in the satisfaction with social roles score. Sex also moderated the association between resilience and satisfaction with social roles (F 1,1453 =4.09, P=.043). The findings extend past research, providing further evidence indicating that resilience plays a unique role in nonphysical functional outcomes among individuals with physical disabilities. Copyright © 2016 American Congress of Rehabilitation Medicine. All rights reserved.

  20. On the Non-Uniqueness of Sediment Yield

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ivanov, V. Y.; Fatichi, S.

    2014-12-01

    There has been ample experimental evidence that soil erosion does not necessarily occur at the same rate, given the same amount of rainfall or runoff. Such a non-unique phenomenon has been often referred to in literature as due to 'natural variability'. Our recent study hypothesized that uncertainties in the distribution and properties of a sediment layer can be a potential clue to one of the reasons of the non-unique sediment yield. Specifically, numerical experimentation with a sophisticated two-dimensional model showed that a deposited layer plays two conflicting roles: it can both increase and decrease soil erosion, given the same magnitude of runoff. The difference in erodibilities of the "original, intact soil layer" and the "deposited, loose soil layer" and the composition of soil particles in the underlying layers give rise to the non-uniqueness of the amount of eroded materials. In continuing efforts, we attempt to investigate this phenomenon using a comprehensive the Universal Soil Loss Erosion (USLE) database, that contains data on paired hillslopes that show a high degree of non-uniqueness in the response, even though the hillslopes exhibit the same topography, soil type, rainfall and meteorological forcings, and landuse. An underlying hypothesis of this study is that uncertainties in the distribution of soil substrate prior to a rainfall event lead to low predictability skill, i.e., a stochastically-varying outcome. A large number of simulation cases demonstrating the proposed hypothesis are conducted using a coupled numerical model, tRIBS-VEGGIE-FEaST (Triangulated irregular network - based Real time Integrated Basin Simulator- VEGetation Generator for Interactive Evolution -Flow Erosion and Sediment Transport).

  1. Addressing Unison and Uniqueness of Reliability and Safety for Better Integration

    NASA Technical Reports Server (NTRS)

    Huang, Zhaofeng; Safie, Fayssal

    2015-01-01

    For a long time, both in theory and in practice, safety and reliability have not been clearly differentiated, which leads to confusion, inefficiency, and sometime counter-productive practices in executing each of these two disciplines. It is imperative to address the uniqueness and the unison of these two disciplines to help both disciplines become more effective and to promote a better integration of the two for enhancing safety and reliability in our products as an overall objective. There are two purposes of this paper. First, it will investigate the uniqueness and unison of each discipline and discuss the interrelationship between the two for awareness and clarification. Second, after clearly understanding the unique roles and interrelationship between the two in a product design and development life cycle, we offer suggestions to enhance the disciplines with distinguished and focused roles, to better integrate the two, and to improve unique sets of skills and tools of reliability and safety processes. From the uniqueness aspect, the paper identifies and discusses the respective uniqueness of reliability and safety from their roles, accountability, nature of requirements, technical scopes, detailed technical approaches, and analysis boundaries. It is misleading to equate unreliable to unsafe, since a safety hazard may or may not be related to the component, sub-system, or system functions, which are primarily what reliability addresses. Similarly, failing-to-function may or may not lead to hazard events. Examples will be given in the paper from aerospace, defense, and consumer products to illustrate the uniqueness and differences between reliability and safety. From the unison aspect, the paper discusses what the commonalities between reliability and safety are, and how these two disciplines are linked, integrated, and supplemented with each other to accomplish the customer requirements and product goals. In addition to understanding the uniqueness in reliability and safety, a better understanding of unison and commonalities will further help in understanding the interaction between reliability and safety. This paper discusses the unison and uniqueness of reliability and safety. It presents some suggestions for better integration of the two disciplines in terms of technical approaches, tools, techniques, and skills to enhance the role of reliability and safety in supporting a product design and development life cycle. The paper also discusses eliminating the redundant effort and minimizing the overlap of reliability and safety analyses for an efficient implementation of the two disciplines.

  2. Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma.

    PubMed

    Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H C; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P

    2016-05-31

    The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma.

  3. Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma

    PubMed Central

    Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N.; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H.C.; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P.

    2016-01-01

    The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma. PMID:27049916

  4. The psychologist's role in transgender-specific care with U.S. veterans.

    PubMed

    Johnson, Laura; Shipherd, Jillian; Walton, Heather M

    2016-02-01

    Psychologists are integral to the care of transgender individuals. This article details the many roles for psychologists in transgender-specific care, including diagnosing and treating gender dysphoria; providing treatment for comorbid conditions; referring to medical services such as gender confirmation surgeries, voice modification, and cross-sex hormone therapies; serving as consultants within health care systems; and advocating for addressing barriers in systems in which transgender individuals live and work. Transgender veterans have unique experiences and vulnerabilities related to their military service that are detailed from a review of the literature, and we make the case that Veterans Health Administration (VHA) and community psychologists are well-positioned to provide care to transgender veterans (trans-vets). In this article, the authors describe the experiences that many trans-vets have faced, identify the importance of treatment for gender dysphoria (and draw the distinction between gender identity disorder and gender dysphoria) as well as psychologists' roles, and clarify which transgender-related services are available to eligible veterans though VHA per policy and how VHA providers have access to training to provide that care. In addition, we describe how veterans can connect to the VHA, even if they have (and want to continue working with) non-VHA psychologists or other community providers. (c) 2016 APA, all rights reserved).

  5. Influence of specific amino acid side-chains on the antimicrobial activity and structure of bovine lactoferrampin.

    PubMed

    Haney, Evan F; Nazmi, Kamran; Bolscher, Jan G M; Vogel, Hans J

    2012-06-01

    Lactoferrin is an 80 kDa iron binding protein found in the secretory fluids of mammals and it plays a major role in host defence. An antimicrobial peptide, lactoferrampin, was identified through sequence analysis of bovine lactoferrin and its antimicrobial activity against a wide range of bacteria and yeast species is well documented. In the present work, the contribution of specific amino acid residues of lactoferrampin was examined to evaluate the role that they play in membrane binding and bilayer disruption. The structures of all the bovine lactoferrampin derivatives were examined with circular dichroism and nuclear magnetic resonance spectroscopy, and their interactions with phospholipids were evaluated with differential scanning calorimetry and isothermal titration calorimetry techniques. From our results it is apparent that the amphipathic N-terminal helix anchors the peptide to membranes with Trp 268 and Phe 278 playing important roles in determining the strength of the interaction and for inducing peptide folding. In addition, the N-terminal helix capping residues (DLI) increase the affinity for negatively charged vesicles and they mediate the depth of membrane insertion. Finally, the unique flexibility in the cationic C-terminal region of bovine lactoferrampin does not appear to be essential for the antimicrobial activity of the peptide.

  6. Role of Principal Ionotropic and Metabotropic Receptors in Visceral Pain

    PubMed Central

    Kannampalli, Pradeep; Sengupta, Jyoti N

    2015-01-01

    Visceral pain is the most common form of pain caused by varied diseases and a major reason for patients to seek medical consultation. It also leads to a significant economic burden due to workdays lost and reduced productivity. Further, long-term use of non-specific medications is also associated with side effects affecting the quality of life. Despite years of extensive research and the availability of several therapeutic options, management of patients with chronic visceral pain is often inadequate, resulting in frustration for both patients and physicians. This is, most likely, because the mechanisms associated with chronic visceral pain are different from those of acute pain. Accumulating evidence from years of research implicates several receptors and ion channels in the induction and maintenance of central and peripheral sensitization during chronic pain states. Understanding the specific role of these receptors will facilitate to capitalize on their unique properties to augment the therapeutic efficacy while at the same time minimizing unwanted side effects. The aim of this review is to provide a concise review of the recent literature that reports on the role of principal ionotropic receptors and metabotropic receptors in the modulation visceral pain. We also include an overview of the possibility of these receptors as potential new targets for the treatment of chronic visceral pain conditions. PMID:25843070

  7. Friendship Factors and Suicidality: Common and Unique Patterns in Mexican- and European-American Youth

    PubMed Central

    Winterrowd, Erin; Canetto, Silvia Sara; Chavez, Ernest L.

    2010-01-01

    Research suggests a link between friendships and suicidality among U.S. youth but this link has not been confirmed across ethnicities. This study examined the relationship between friendships and suicidality among Mexican- and European-American adolescents. Specifically, the role of friendship problems (i.e., social isolation, poor quality friendships) and problematic friends (i.e., friends who were disconnected from school, delinquent friends) was explored. Participants were 648 community youth. Friends’ school disconnection was related to Mexican-American girls’ suicidal ideation while friends’ delinquency was associated with European-American youth suicidal behavior. Friendship factors were no longer associated with suicidality after controlling for suicidality correlates such as depression. These findings indicate that the relationship between friendships and suicidality varies by gender and ethnicity. They also suggest a dominant role of depression. PMID:21309824

  8. Defining the unique role of the specialist district nurse practitioner.

    PubMed

    Barrett, Anne; Latham, Dinah; Levermore, Joy

    2007-10-01

    Due to the reorganization of primary care trusts across the country, certain trusts proposed a reduction in the specialist district nurse practitioner numbers in favour of less qualified community nurses and health care assistants. Such proposals in one PCT were blocked, partly in response to documentation compiled by practitioners at the sharp end of nursing practice. With the new agenda of practice based commissioning, it is imperative that commissioners and management alike are aware of the scope of specialist district nurse practitioners. This is the first of a series of articles looking at specific case histories where the role of the district nurse is highlighted. It is the intention to stress the importance of the clinical expertise and confidence required by the district nurse to care for patients with complex needs in the community.

  9. A Critical Role for the TLR4/TRIF Pathway in Allogeneic Hematopoietic Cell Rejection by Innate Immune Cells

    PubMed Central

    Xu, Hong; Yan, Jun; Zhu, Ziqiang; Hussain, Lala-Rukh; Huang, Yiming; Ding, Chuanlin; Bozulic, Larry D.; Wen, Yujie; Ildstad, Suzanne T.

    2013-01-01

    We show for the first time that signaling through the TLR4/TRIF pathway plays a critical role in allogeneic bone marrow cell (BMC) rejection. This appears to be unique to BMC as organ allografts are rejected mainly via MyD88 signaling. Using T or T/B cell-deficient mice, we found that BMC allorejection occurred early before T cell activation and was T and B cell-independent, suggesting an effector role for innate immune cells in BMC rejection. We further demonstrated the innate immune signaling in BMC allorejection by showing superior engraftment in mice deficient in TRIF or TLR4 but not MyD88 or TLR3. The restored cytotoxicity in TRIF deficient recipients transferred with wildtype F4/80+ or NK1.1+ cells suggests TRIF signaling dependence on macrophages or NK cells in early BMC rejection. Production of the proinflammatory cytokine IL-6 and TRIF relevant chemokine MCP-1 was significantly increased early after bone marrow transplantation. In vivo specific depletion of macrophages or NK innate immune cells in combination with anti-CD154/rapamycin resulted in additive-enhanced allogeneic engraftment. The requirement for irradiation was completely eliminated when both macrophages and NK cells were depleted in combination with anti-CD154/rapamycin to target T and B cells, supporting the hypothesis that two barriers involving innate and adaptive immunity exist in mediating rejection of allogeneic BMC. In summary, our results clearly demonstrate a previously unappreciated role for innate immunity in BMC allorejection via signaling through a unique MyD88-independent TLR4/TRIF mechanism. These findings may have direct clinical impact on strategies for conditioning recipients for stem cell transplantation. PMID:23146386

  10. The role of gender in housing for individuals with severe mental illness: a qualitative study of the Canadian service context

    PubMed Central

    Kidd, Sean A; Virdee, Gursharan; Krupa, Terry; Burnham, Darrell; Hemingway, Dawn; Margolin, Indrani; Patterson, Michelle; Zabkiewicz, Denise

    2013-01-01

    Objective This study was undertaken to examine the role of gender as it relates to access to housing among individuals with severe mental illness (SMI) in Canada. Design An exploratory, qualitative approach was used to assess the perspectives of Canadian housing experts. The focus of inquiry was on the role of gender and associated intersections (eg, ethnicity) in pathways to housing access and housing needs for individuals with SMI. Setting A purposeful sampling strategy was undertaken to access respondents across all Canadian geographic regions, with diversity across settings (urban and rural) and service sectors (hospital based and community based). Participants –29 individuals (6 men and 23 women) considered to be experts in a housing service context as it pertains to SMI were recruited. On average, participants had worked for 15 years in services that specialised in the support and delivery of housing services to people with SMI. Measures Semistructured interviews with participants focused on the role gender plays in access to housing in their specific context. Barriers and facilitators were examined as were intersections with other relevant factors, such as ethnicity, poverty and parenthood. Quantitative ratings of housing accessibility as a function of gender were also collected. Results Participants across geographic contexts described a lack of shelter facilities for women, leading to a reliance on exploitative circumstances. Other findings included a compounding of discrimination for ethnic minority women, the unique resource problems faced in rural contexts, and the difficulties that attend access to shelter and housing for parents with SMI. Conclusions These findings suggest that, along with a generally poor availability of housing stock for individuals with SMI, access problems are compounded by a lack of attention to the unique needs and illness trajectories that attend gender. PMID:23794544

  11. Identity-specific motivation: How distinct identities direct self-regulation across distinct situations.

    PubMed

    Browman, Alexander S; Destin, Mesmin; Molden, Daniel C

    2017-12-01

    Research on self-regulation has traditionally emphasized that people's thoughts and actions are guided by either (a) domain-general motivations that emerge from a cumulative history of life experiences, or (b) situation-specific motivations that emerge in immediate response to the incentives present in a particular context. However, more recent studies have illustrated the importance of understanding the interplay between such domain-general and situation-specific motivations across the types of contexts people regularly encounter. The present research, therefore, expands existing perspectives on self-regulation by investigating how people's identities -the internalized roles, relationships, and social group memberships that define who they are-systemically guide when and how different domain-general motivations are activated within specific types of situations. Using the motivational framework described by regulatory focus theory (Higgins, 1997), Studies 1 and 2 demonstrate that people indeed have distinct, identity-specific motivations that uniquely influence their current self-regulation when such identities are active. Studies 3-5 then begin to explore how identity-specific motivations are situated within people's larger self-concept. Studies 3a and 3b demonstrate that the less compatible people's specific identities, the more distinct are the motivations connected to those identities. Studies 4-5 then provide some initial, suggestive evidence that identity-specific motivations are not a separate, superordinate feature of people's identities that then alter how they pursue any subordinate, identity-relevant traits, but instead that such motivations emerge from the cumulative motivational significance of the subordinate traits to which the identities themselves become attached. Implications for understanding the role of the self-concept in self-regulation are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles

    PubMed Central

    Abdal Dayem, Ahmed; Hossain, Mohammed Kawser; Lee, Soo Bin; Kim, Kyeongseok; Saha, Subbroto Kumar; Yang, Gwang-Mo; Choi, Hye Yeon; Cho, Ssang-Goo

    2017-01-01

    Nanoparticles (NPs) possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS). The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices. PMID:28075405

  13. Emerging Roles for Extracellular Vesicles in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Lamichhane, Tek N.; Sokic, Sonja; Schardt, John S.; Raiker, Rahul S.; Lin, Jennifer W.

    2015-01-01

    Extracellular vesicles (EVs)—comprising a heterogeneous population of cell-derived lipid vesicles including exosomes, microvesicles, and others—have recently emerged as both mediators of intercellular information transfer in numerous biological systems and vehicles for drug delivery. In both roles, EVs have immense potential to impact tissue engineering and regenerative medicine applications. For example, the therapeutic effects of several progenitor and stem cell-based therapies have been attributed primarily to EVs secreted by these cells, and EVs have been recently reported to play direct roles in injury-induced tissue regeneration processes in multiple physiological systems. In addition, EVs have been utilized for targeted drug delivery in regenerative applications and possess unique potential to be harnessed as patient-derived drug delivery vehicles for personalized medicine. This review discusses EVs in the context of tissue repair and regeneration, including their utilization as drug carriers and their crucial role in cell-based therapies. Furthermore, the article highlights the growing need for bioengineers to understand, consider, and ultimately design and specifically control the activity of EVs to maximize the efficacy of tissue engineering and regenerative therapies. PMID:24957510

  14. Delineation of the function of a major gamma delta T cell subset during infection.

    PubMed

    Andrew, Elizabeth M; Newton, Darren J; Dalton, Jane E; Egan, Charlotte E; Goodwin, Stewart J; Tramonti, Daniela; Scott, Philip; Carding, Simon R

    2005-08-01

    Gammadelta T cells play important but poorly defined roles in pathogen-induced immune responses and in preventing chronic inflammation and pathology. A major obstacle to defining their function is establishing the degree of functional redundancy and heterogeneity among gammadelta T cells. Using mice deficient in Vgamma1+ T cells which are a major component of the gammadelta T cell response to microbial infection, a specific immunoregulatory role for Vgamma1+ T cells in macrophage and gammadelta T cell homeostasis during infection has been established. By contrast, Vgamma1+ T cells play no significant role in pathogen containment or eradication and cannot protect mice from immune-mediated pathology. Pathogen-elicited Vgamma1+ T cells also display different functional characteristics at different stages of the host response to infection that involves unique and different populations of Vgamma1+ T cells. These findings, therefore, identify distinct and nonoverlapping roles for gammadelta T cell subsets in infection and establish the complexity and adaptability of a single population of gammadelta T cells in the host response to infection that is not predetermined, but is, instead, shaped by environmental factors.

  15. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease

    PubMed Central

    Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H.; Pitot, Henry C.; Lambert, Paul F.

    2016-01-01

    Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans. PMID:27244228

  16. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease.

    PubMed

    Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H; Pitot, Henry C; Lambert, Paul F

    2016-05-01

    Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans.

  17. The Macular Carotenoids Lutein and Zeaxanthin Are Related to Increased Bone Density in Young Healthy Adults

    PubMed Central

    Bovier, Emily R.; Hammond, Billy R.

    2017-01-01

    Lutein (L) and zeaxanthin (Z) status can be quantified by measuring their concentrations both in serum and, non-invasively, in retinal tissue. This has resulted in a unique ability to assess their role in a number of tissues ranging from cardiovascular to central nervous system tissue. Recent reports using animal models have suggested yet another role, a developmental increase in bone mass. To test this, we assessed L and Z status in 63 young healthy adults. LZ status was determined by measuring LZ in serum (using HPLC) and retina tissue (measuring macular pigment optical density, MPOD, using customized heterochromatic flicker photometry). Bone density was measured using dual-energy X-ray absorptiometry (DXA). Although serum LZ was generally not related to bone mass, MPOD was significantly related to bone density in the proximal femur and lumbar spine. In general, our results are consistent with carotenoids, specifically LZ, playing a role in optimal bone health. PMID:28880221

  18. Immunonutrition in Critical Illness: What Is the Role?

    PubMed

    McCarthy, Mary S; Martindale, Robert G

    2018-06-01

    Acute illness-associated malnutrition leads to muscle wasting, delayed wound healing, failure to wean from ventilator support, and possibly higher rates of infection and longer hospital stays unless appropriate metabolic support is provided in the form of nutrition therapy. Agreement is still lacking about the value of individual immune-modulating substrates for specific patient populations. However, it has long been agreed that there are 3 primary targets for these substrates: 1) mucosal barrier function, 2) cellular defense function, and 3) local and systemic inflammation. These targets guide the multitude of interventions necessary to stabilize and treat the hypercatabolic intensive care unit patient, including specialized nutrition therapy. The paradigm shift that occurred 30 years ago created a unique role for nutrition as an agent to support host defense mechanisms and prevent infectious complications in the critically ill patient. This overview of immunonutrition will discuss the evidence for its role in critical illness today. © 2018 American Society for Parenteral and Enteral Nutrition.

  19. Marriage Matters But How Much? Marital Centrality Among Young Adults.

    PubMed

    Willoughby, Brian J; Hall, Scott S; Goff, Saige

    2015-01-01

    Marriage, once a gateway to adulthood, is no longer as widely considered a requirement for achieving adult status. With declining marriage rates and delayed marital transitions, some have wondered whether current young adults have rejected the traditional notion of marriage. Utilizing a sample of 571 young adults, the present study explored how marital centrality (the expected importance to be placed on the marital role relative to other adult roles) functioned as a unique and previously unexplored marital belief among young adults. Results suggested that marriage remains an important role for many young adults. On average, young adults expected that marriage would be more important to their life than parenting, careers, or leisure activities. Marital centrality profiles were found to significantly differ based on both gender and religiosity. Marital centrality was also associated with various outcomes including binge-drinking and sexual activity. Specifically, the more central marriage was expected to be, the less young adults engaged in risk-taking or sexual behaviors.

  20. Unique, polyfucosylated glycan-receptor interactions are essential for regeneration of Hydra magnipapillata.

    PubMed

    Sahadevan, Sonu; Antonopoulos, Aristotelis; Haslam, Stuart M; Dell, Anne; Ramaswamy, Subramanian; Babu, Ponnusamy

    2014-01-17

    Cell-cell communications, cell-matrix interactions, and cell migrations play a major role in regeneration. However, little is known about the molecular players involved in these critical events, especially cell surface molecules. Here, we demonstrate the role of specific glycan-receptor interactions in the regenerative process using Hydra magnipapillata as a model system. Global characterization of the N- and O-glycans expressed by H. magnipapillata using ultrasensitive mass spectrometry revealed mainly polyfucosylated LacdiNAc antennary structures. Affinity purification showed that a putative C-type lectin (accession number Q6SIX6) is a likely endogenous receptor for the novel polyfucosylated glycans. Disruption of glycan-receptor interactions led to complete shutdown of the regeneration machinery in live Hydra. A time-dependent, lack-of-regeneration phenotype observed upon incubation with exogenous fuco-lectins suggests the involvement of a polyfucose receptor-mediated signaling mechanism during regeneration. Thus, for the first time, the results presented here provide direct evidence for the role of polyfucosylated glycan-receptor interactions in the regeneration of H. magnipapillata.

  1. Molecular Genetic Analysis of Orf Virus: A Poxvirus That Has Adapted to Skin

    PubMed Central

    Fleming, Stephen B.; Wise, Lyn M.; Mercer, Andrew A.

    2015-01-01

    Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been “captured” from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF)-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors. A homologue of an anaphase-promoting complex subunit that is believed to manipulate the cell cycle and enhance viral DNA synthesis appears to be a specific adaptation for viral-replication in keratinocytes. The review focuses on the unique genes of orf virus, discusses their evolutionary origins and their role in allowing viral-replication in the skin epidermis. PMID:25807056

  2. The Structural Basis of Substrate Recognition in an exo-b-d-glucosaminidase Involved in Chitosan Hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Bueren, A.; Ghinet, M; Gregg, K

    2009-01-01

    Family 2 of the glycoside hydrolase classification is one of the largest families. Structurally characterized members of this family include enzymes with ?-galactosidase activity (Escherichia coli LacZ), ?-glucuronidase activity (Homo sapiens GusB), and ?-mannosidase activity (Bacteroides thetaiotaomicron BtMan2A). Here, we describe the structure of a family 2 glycoside hydrolase, CsxA, from Amycolatopsis orientalis that has exo-?-d-glucosaminidase (exo-chitosanase) activity. Analysis of a product complex (1.85 A resolution) reveals a unique negatively charged pocket that specifically accommodates the nitrogen of nonreducing end glucosamine residues, allowing this enzyme to discriminate between glucose and glucosamine. This also provides structural evidence for the role ofmore » E541 as the catalytic nucleophile and D469 as the catalytic acid/base. The structures of an E541A mutant in complex with a natural ?-1,4-d-glucosamine tetrasaccharide substrate and both E541A and D469A mutants in complex with a pNP-?-d-glucosaminide synthetic substrate provide insight into interactions in the + 1 subsite of this enzyme. Overall, a comparison with the active sites of other GH2 enzymes highlights the unique architecture of the CsxA active site, which imparts specificity for its cationic substrate.« less

  3. The Structural Basis of Substrate Recognition in an exo-beta-d-Glucosaminidase Involved in Chitosan Hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammerts van Bueren, A.; Ghinet, M; Gregg, K

    2009-01-01

    Family 2 of the glycoside hydrolase classification is one of the largest families. Structurally characterized members of this family include enzymes with beta-galactosidase activity (Escherichia coli LacZ), beta-glucuronidase activity (Homo sapiens GusB), and beta-mannosidase activity (Bacteroides thetaiotaomicron BtMan2A). Here, we describe the structure of a family 2 glycoside hydrolase, CsxA, from Amycolatopsis orientalis that has exo-beta-D-glucosaminidase (exo-chitosanase) activity. Analysis of a product complex (1.85 A resolution) reveals a unique negatively charged pocket that specifically accommodates the nitrogen of nonreducing end glucosamine residues, allowing this enzyme to discriminate between glucose and glucosamine. This also provides structural evidence for the role ofmore » E541 as the catalytic nucleophile and D469 as the catalytic acid/base. The structures of an E541A mutant in complex with a natural beta-1,4-D-glucosamine tetrasaccharide substrate and both E541A and D469A mutants in complex with a pNP-beta-D-glucosaminide synthetic substrate provide insight into interactions in the +1 subsite of this enzyme. Overall, a comparison with the active sites of other GH2 enzymes highlights the unique architecture of the CsxA active site, which imparts specificity for its cationic substrate.« less

  4. Chloride channels in cancer: Focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets.

    PubMed

    Peretti, Marta; Angelini, Marina; Savalli, Nicoletta; Florio, Tullio; Yuspa, Stuart H; Mazzanti, Michele

    2015-10-01

    In recent decades, growing scientific evidence supports the role of ion channels in the development of different cancers. Both potassium selective pores and chloride permeabilities are considered the most active channels during tumorigenesis. High rate of proliferation, active migration, and invasiveness into non-neoplastic tissues are specific properties of neoplastic transformation. All these actions require partial or total involvement of chloride channel activity. In this context, this class of membrane proteins could represent valuable therapeutic targets for the treatment of resistant tumors. However, this encouraging premise has not so far produced any valid new channel-targeted antitumoral molecule for cancer treatment. Problematic for drug design targeting ion channels is their vital role in normal cells for essential physiological functions. By targeting these membrane proteins involved in pathological conditions, it is inevitable to cause relevant side effects in healthy organs. In light of this, a new protein family, the chloride intracellular channels (CLICs), could be a promising class of therapeutic targets for its intrinsic individualities: CLIC1 and CLIC4, in particular, not only are overexpressed in specific tumor types or their corresponding stroma but also change localization and function from hydrophilic cytosolic to integral transmembrane proteins as active ionic channels or signal transducers during cell cycle progression in certain cases. These changes in intracellular localization, tissue compartments, and channel function, uniquely associated with malignant transformation, may offer a unique target for cancer therapy, likely able to spare normal cells. This article is part of a special issue itled "Membrane Channels and Transporters in Cancers." Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Heritability of Insomnia Symptoms in Youth and Their Relationship to Depression and Anxiety

    PubMed Central

    Gehrman, Philip R.; Meltzer, Lisa J.; Moore, Melisa; Pack, Allan I.; Perlis, Michael L.; Eaves, Lindon J.; Silberg, Judy L.

    2011-01-01

    Study Objectives: Insomnia is a highly prevalent sleep disorder yet little is known about the role of genetic factors in its pathophysiology. The aim of this study was to examine the relative contributions of genetic and environmental factors in explaining variability in insomnia symptoms. Design: Traditional twin design. Setting: Academic medical center. Participants: 1412 twin pairs aged 8-16 years (48.8% MZ, 47.2% DZ, 4.0% indeterminate). Interventions: None. Measurements and Results: Ratings of insomnia symptoms, depression, and overanxious disorder were made by trained interviewers based on DSM-III-R criteria. ACE models were conducted using Mx statistical software. Insomnia symptoms were prevalent in this sample based both on parental (6.6%) and youth (19.5%) reports. The overall heritability of insomnia symptoms was modest (30.7%), with the remaining variance attributed to unique environmental effects. There was no evidence of sex differences in the prevalence of insomnia symptoms or in the contribution of genetic and environmental effects. In multivariate models, there was support for insomnia-specific unique environmental effects over and above overlapping effects with depression and overanxious disorder, but no evidence for insomnia-specific genetic effects. Conclusions: Genetic factors play a modest role in the etiology of insomnia symptoms in 8-16 year-olds. These effects overlap with the genetics of depression and overanxious disorder. Further work is needed to determine which genes confer risk for all three disorders. Citation: Gehrman PR; Meltzer LJ; Moore M; Pack AI; Perlis ML; Eaves LJ; Silberg JL. Heritability of insomnia symptoms in youth and their relationship to depression and anxiety. SLEEP 2011;34(12):1641-1646. PMID:22131600

  6. Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice

    PubMed Central

    Ye, Xiangcang; Han, Sang Jun; Tsai, Sophia Y.; DeMayo, Francesco J.; Xu, Jianming; Tsai, Ming-Jer; O'Malley, Bert W.

    2005-01-01

    Genetic disruption of the steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)2/SRC-2 in mouse resulted in distinctive mutant phenotypes. To quantify their roles in the function of androgen receptor (AR) transcriptional activity in vivo, we generated a unique transgenic AR-reporter mouse and analyzed the cell-specific contributions of SRC-1 and TIF2 to the activity of AR in mouse testis. Transgenic AR-luciferase and transgenic AR-lacZ mice harbor a recombinant mouse AR gene, ARGAL4DBD, which is functionally coupled with a upstream activation sequence-mediated reporter gene (AR activity indicator). After characterization of these mice in terms of AR function, we further derived bigenic mice by crossing AR activity indicator mice with the SRC-1-/- or TIF2+/- mutant mice. Analyses of the resultant bigenic mice by in vivo imaging and luciferase assays showed that testicular AR activity was decreased significantly in those with the TIF2+/- mutation but not in the SRC-1+/- background, suggesting that TIF2 serves as the preferential coactivator for AR in testis. Immunohistological analysis confirmed that AR and TIF2 coexist in mouse testicular Sertoli cell nuclei under normal conditions. Although SRC-1 concentrates in Sertoli cell nuclei in the absence of TIF2, nuclear SRC-1 is not able to rescue AR activity in the TIF2 mutant background. Interestingly, SRC-1 appears to negatively influence AR activity, thereby counterbalancing the TIF2-stimulated AR activity. Our results provide unique in vivo insights to the multidimensional cell-type-specific interactions between AR and coregulators. PMID:15983373

  7. Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice.

    PubMed

    Ye, Xiangcang; Han, Sang Jun; Tsai, Sophia Y; DeMayo, Francesco J; Xu, Jianming; Tsai, Ming-Jer; O'Malley, Bert W

    2005-07-05

    Genetic disruption of the steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)2/SRC-2 in mouse resulted in distinctive mutant phenotypes. To quantify their roles in the function of androgen receptor (AR) transcriptional activity in vivo, we generated a unique transgenic AR-reporter mouse and analyzed the cell-specific contributions of SRC-1 and TIF2 to the activity of AR in mouse testis. Transgenic AR-luciferase and transgenic AR-lacZ mice harbor a recombinant mouse AR gene, AR(GAL4DBD), which is functionally coupled with a upstream activation sequence-mediated reporter gene (AR activity indicator). After characterization of these mice in terms of AR function, we further derived bigenic mice by crossing AR activity indicator mice with the SRC-1-/- or TIF2+/- mutant mice. Analyses of the resultant bigenic mice by in vivo imaging and luciferase assays showed that testicular AR activity was decreased significantly in those with the TIF2+/- mutation but not in the SRC-1+/- background, suggesting that TIF2 serves as the preferential coactivator for AR in testis. Immunohistological analysis confirmed that AR and TIF2 coexist in mouse testicular Sertoli cell nuclei under normal conditions. Although SRC-1 concentrates in Sertoli cell nuclei in the absence of TIF2, nuclear SRC-1 is not able to rescue AR activity in the TIF2 mutant background. Interestingly, SRC-1 appears to negatively influence AR activity, thereby counterbalancing the TIF2-stimulated AR activity. Our results provide unique in vivo insights to the multidimensional cell-type-specific interactions between AR and coregulators.

  8. Genomic insights into the evolution and ecology of botulinum neurotoxins.

    PubMed

    Mansfield, Michael J; Doxey, Andrew C

    2018-06-01

    Clostridial neurotoxins, which include botulinum neurotoxins (BoNTs) and tetanus neurotoxins, have evolved a remarkably sophisticated structure and molecular mechanism fine-tuned for the targeting and cleavage of vertebrate neuron substrates leading to muscular paralysis. How and why did this toxin evolve? From which ancestral proteins are BoNTs derived? And what is, or was, the primary ecological role of BoNTs in the environment? In this article, we examine these questions in light of recent studies identifying homologs of BoNTs in the genomes of non-clostridial bacteria, including Weissella, Enterococcus and Chryseobacterium. Genomic and phylogenetic analysis of these more distantly related toxins suggests that they are derived from ancient toxin lineages that predate the evolution of BoNTs and are not limited to the Clostridium genus. We propose that BoNTs have therefore evolved from a precursor family of BoNT-like toxins, and ultimately from non-neurospecific toxins that cleaved different substrates (possibly non-neuronal SNAREs). Comparison of BoNTs with these related toxins reveals several unique molecular features that underlie the evolution of BoNT's unique function, including functional shifts involving all four domains, and gain of the BoNT gene cluster associated proteins. BoNTs then diversified to produce the existing serotypes, including TeNT, and underwent repeated substrate shifts from ancestral VAMP2 specificity to SNAP25 specificity at least three times in their history. Finally, similar to previous proposals, we suggest that one ecological role of BoNTs could be to create a paralytic phase in vertebrate decomposition, which provides a competitive advantage for necrophagous scavengers that in turn facilitate the spread of Clostridium botulinum and its toxin.

  9. Experiences of registered nurses who supervise international nursing students in the clinical and classroom setting: an integrative literature review.

    PubMed

    Newton, Louise; Pront, Leeanne; Giles, Tracey M

    2016-06-01

    To examine the literature reporting the experiences and perceptions of registered nurses who supervise international nursing students in the clinical and classroom setting. Nursing education relies on clinical experts to supervise students during classroom and clinical education, and the quality of that supervision has a significant impact on student development and learning. Global migration and internationalisation of nursing education have led to increasing numbers of registered nurses supervising international nursing students. However, a paucity of relevant literature limits our understanding of these experiences. An integrative literature review. Comprehensive database searches of CINAHL, Informit, PubMed, Journals@Ovid, Findit@flinders and Medline were undertaken. Screening of 179 articles resulted in 10 included for review. Appraisal and analysis using Whittemore and Knafl's (Journal of Advanced Nursing, 52, 2005, 546) five stage integrative review recommendations was undertaken. This review highlighted some unique challenges for registered nurses supervising international nursing students. Identified issues were, a heightened sense of responsibility, additional pastoral care challenges, considerable time investments, communication challenges and cultural differences between teaching and learning styles. It is possible that these unique challenges could be minimised by implementing role preparation programmes specific to international nursing student supervision. Further research is needed to provide an in-depth exploration of current levels of preparation and support to make recommendations for future practice, education and policy development. An awareness of the specific cultural learning needs of international nursing students is an important first step to the provision of culturally competent supervision for this cohort of students. There is an urgent need for education and role preparation for all registered nurses supervising international nursing students, along with adequate recognition of the additional time required to effectively supervise these students. © 2016 John Wiley & Sons Ltd.

  10. Basic Mechanics of DNA Methylation and the Unique Landscape of the DNA Methylome in Metal-Induced Carcinogenesis

    PubMed Central

    Brocato, Jason; Costa, Max

    2013-01-01

    DNA methylation plays an intricate role in the regulation of gene expression and events that compromise the integrity of the methylome may potentially contribute to disease development. DNA methylation is a reversible and regulatory modification that elicits a cascade of events leading to chromatin condensation and gene silencing. In general, normal cells are characterized by gene-specific hypomethylation and global hypermethylation, while cancer cells portray a reverse profile to this norm. The unique methylome displayed in cancer cells is induced after exposure to carcinogenic metals such as nickel, arsenic, cadmium, and chromium (VI). These metals alter the DNA methylation profile by provoking both hyper- and hypomethylation events. The metal-stimulated deviations to the methylome are possible mechanisms for metal-induced carcinogenesis and may provide potential biomarkers for cancer detection. Development of therapies based on the cancer methylome requires further research including human studies that supply results with larger impact and higher human relevance. PMID:23844698

  11. IFN-λ: A New Inducer of Local Immunity against Cancer and Infections

    PubMed Central

    Lasfar, Ahmed; Zloza, Andrew; de la Torre, Andrew; Cohen-Solal, Karine A.

    2016-01-01

    IFN-λ is the newly established type III IFN with unique immunomodulatory functions. In contrast to the IFN-α/β family and to some extent IFN-γ, IFN-λ is apparently acting in specific areas of the body to activate resident immune cells and induces a local immunity, instrumental in preventing particular infections and also keeping transformed cells under control. Mucosal areas of lung and gastrointestinal tracts are now under scrutiny to elucidate the immune mechanisms triggered by IFN-λ and leading to viral protection. New evidence also indicates the crucial role of IFN-λ in promoting innate immunity in solid cancer models. Based on its unique biological activities among the IFN system, new immunotherapeutic approaches are now emerging for the treatment of cancer, infection, and autoimmune diseases. In the present review, we highlight the recent advances of IFN-λ immunomodulatory functions. We also discuss the perspectives of IFN-λ as a therapeutic agent. PMID:28018361

  12. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    DOE PAGES

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; ...

    2017-07-13

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the a CTD may play a role in Mtb transcription regulation. Here, our results reveal the structure of an Actinobacteria-unique insert ofmore » the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σ A, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.« less

  13. Basic mechanics of DNA methylation and the unique landscape of the DNA methylome in metal-induced carcinogenesis.

    PubMed

    Brocato, Jason; Costa, Max

    2013-07-01

    DNA methylation plays an intricate role in the regulation of gene expression and events that compromise the integrity of the methylome may potentially contribute to disease development. DNA methylation is a reversible and regulatory modification that elicits a cascade of events leading to chromatin condensation and gene silencing. In general, normal cells are characterized by gene-specific hypomethylation and global hypermethylation, while cancer cells portray a reverse profile to this norm. The unique methylome displayed in cancer cells is induced after exposure to carcinogenic metals such as nickel, arsenic, cadmium, and chromium (VI). These metals alter the DNA methylation profile by provoking both hyper- and hypo-methylation events. The metal-stimulated deviations to the methylome are possible mechanisms for metal-induced carcinogenesis and may provide potential biomarkers for cancer detection. Development of therapies based on the cancer methylome requires further research including human studies that supply results with larger impact and higher human relevance.

  14. Mapping Multiplex Hubs in Human Functional Brain Networks

    PubMed Central

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  15. The use of social media for campus safety.

    PubMed

    Haupt, Brittany; Kapucu, Naim; Morgan, Jeffrey

    As public safety communication evolved, each disaster or emergency presented unique challenges for emergency managers and others response to disasters. Yet, a foundational focus is the timely dissemination of accurate information to keep communities informed and able to prepare, mitigate, respond, and recover. For the campus community, the increase in bomb threats, active shooter incidents, and geographic-based natural disasters call for the discovery of reliable and cost-effective solutions for emergency information management. Social media is becoming a critical asset in this endeavor. This article examines the evolution of public safety communication, the unique setting of the campus community, and social media's role in campus disaster resilience. In addition, an exploratory study was done to better understand the perception of social media use for public safety within the campus community. The findings provide practical recommendations for campus emergency management professions; however, future research is needed to provide specific, actionable ways to achieve these goals as well as understand how diverse universities utilize a variety of platforms.

  16. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAPmore » β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.« less

  17. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the a CTD may play a role in Mtb transcription regulation. Here, our results reveal the structure of an Actinobacteria-unique insert ofmore » the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σ A, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.« less

  18. Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry

    PubMed Central

    Swaney, Danielle L.; Wenger, Craig D.; Thomson, James A.; Coon, Joshua J.

    2009-01-01

    Protein phosphorylation is central to the understanding of cellular signaling, and cellular signaling is suggested to play a major role in the regulation of human embryonic stem (ES) cell pluripotency. Here, we describe the use of conventional tandem mass spectrometry-based sequencing technology—collision-activated dissociation (CAD)—and the more recently developed method electron transfer dissociation (ETD) to characterize the human ES cell phosphoproteome. In total, these experiments resulted in the identification of 11,995 unique phosphopeptides, corresponding to 10,844 nonredundant phosphorylation sites, at a 1% false discovery rate (FDR). Among these phosphorylation sites are 5 localized to 2 pluripotency critical transcription factors—OCT4 and SOX2. From these experiments, we conclude that ETD identifies a larger number of unique phosphopeptides than CAD (8,087 to 3,868), more frequently localizes the phosphorylation site to a specific residue (49.8% compared with 29.6%), and sequences whole classes of phosphopeptides previously unobserved. PMID:19144917

  19. The Maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID Gene Family: Phylogeny, Synteny, and Unique Root-Type and Tissue-Specific Expression Patterns during Development

    PubMed Central

    Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank

    2013-01-01

    The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues. PMID:24223858

  20. Sport-related achievement motivation and alcohol outcomes: an athlete-specific risk factor among intercollegiate athletes.

    PubMed

    Weaver, Cameron C; Martens, Matthew P; Cadigan, Jennifer M; Takamatsu, Stephanie K; Treloar, Hayley R; Pedersen, Eric R

    2013-12-01

    Intercollegiate athletes report greater alcohol consumption and more alcohol-related problems than their non-athlete peers. Although college athletes share many of the same problems faced by non-athletes, there are some consequences that are unique to athletes. Studies have demonstrated that alcohol negatively affects athletic performance including increased dehydration, impeded muscle recovery, and increased risk for injury. Beyond risk factors for alcohol misuse that may affect college students in general, research has begun to examine risk factors that are unique to collegiate athletes. For example, research has found that off-season status, the leadership role, and athlete-specific drinking motives are associated with increased alcohol use. Given these findings, it is possible that other athlete-specific variables influence alcohol misuse. One such variable may be sport achievement orientation. The purpose of the current study was to examine the relationship between sport achievement orientation and alcohol outcomes. Given previous research regarding seasonal status and gender, these variables were examined as moderators. Varsity athletes (n=263) completed the Sport Orientation Questionnaire, which assesses sport-related achievement orientation on three scales (Competitiveness, Win Orientation, and Goal Orientation). In addition, participants completed measures of alcohol use and alcohol-related problems. Results indicated that Competitiveness, Win Orientation, and Goal Orientation were all significantly associated with alcohol use, but not alcohol-related problems. Moreover, these relationships were moderated by seasonal status and gender. These interactions, clinical implications, and limitations are discussed. © 2013.

  1. Sport-Related Achievement Motivation and Alcohol Outcomes: An Athlete-Specific Risk Factor among Intercollegiate Athletes

    PubMed Central

    Weaver, Cameron C.; Martens, Matthew P.; Cadigan, Jennifer M.; Takamatsu, Stephanie K.; Treloar, Hayley R.; Pedersen, Eric R.

    2014-01-01

    Intercollegiate athletes report greater alcohol consumption and more alcohol-related problems than their non-athlete peers. Although college athletes share many of the same problems faced by non-athletes, there are some consequences that are unique to athletes. Studies have demonstrated that alcohol negatively affects athletic performance including increased dehydration, impeded muscle recovery, and increased risk for injury. Beyond risk factors for alcohol misuse that may affect college students in general, research has begun to examine risk factors that are unique to collegiate athletes. For example, research has found that off-season status, the leadership role, and athlete-specific drinking motives are associated with increased alcohol use. Given these findings, it is possible that other athlete-specific variables influence alcohol misuse. One such variable may be sport achievement orientation. The purpose of the current study was to examine the relationship between sport achievement orientation and alcohol outcomes. Given previous research regarding seasonal status and gender, these variables were examined as moderators. Varsity athletes (n = 263) completed the Sport Orientation Questionnaire, which assesses sport-related achievement orientation on three scales (Competitiveness, Win Orientation, and Goal Orientation). In addition, participants completed measures of alcohol use and alcohol-related problems. Results indicated that Competitiveness, Win Orientation, and Goal Orientation were all significantly associated with alcohol use, but not alcohol-related problems. Moreover, these relationships were moderated by seasonal status and gender. These interactions, clinical implications, and limitations are discussed. PMID:24064192

  2. Switching of the core structures of glycosphingolipids from globo- and lacto- to ganglio-series upon human embryonic stem cell differentiation.

    PubMed

    Liang, Yuh-Jin; Kuo, Huan-Hsien; Lin, Chi-Hung; Chen, Yen-Ying; Yang, Bei-Chia; Cheng, Yuan-Yuan; Yu, Alice L; Khoo, Kay-Hooi; Yu, John

    2010-12-28

    A systematic survey of expression profiles of glycosphingolipids (GSLs) in two hESC lines and their differentiated embryoid body (EB) outgrowth with three germ layers was carried out using immunofluorescence, flow cytometry, and MALDI-MS and MS/MS analyses. In addition to the well-known hESC-specific markers stage-specific embryonic antigen 3 (SSEA-3) and SSEA-4, we identified several globosides and lacto-series GSLs, previously unrevealed in hESCs, including Gb(4)Cer, Lc(4)Cer, fucosyl Lc(4)Cer, Globo H, and disialyl Gb(5)Cer. During hESC differentiation into EBs, MS analysis revealed a clear-cut switch in the core structures of GSLs from globo- and lacto- to ganglio-series, which was not as evident by immunostaining with antibodies against SSEA-3 and SSEA-4, owing to their cross-reactivities with various glycosphingolipids. Such a switch was attributable to altered expression of key glycosyltransferases (GTs) in the biosynthetic pathways by the up-regulation of ganglio-series-related GTs with simultaneous down-regulation of globo- and lacto-series-related GTs. Thus, these results provide insights into the unique stage-specific transition and mechanism for alterations of GSL core structures during hESC differentiation. In addition, unique glycan structures uncovered by MS analyses may serve as surface markers for further delineation of hESCs and help identify of their functional roles not only in hESCs but also in cancers.

  3. A Genome-Wide Screen Indicates Correlation between Differentiation and Expression of Metabolism Related Genes

    PubMed Central

    Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation. PMID:23717462

  4. The maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID gene family: phylogeny, synteny, and unique root-type and tissue-specific expression patterns during development.

    PubMed

    Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank

    2013-01-01

    The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues.

  5. A decade and a half of protein intrinsic disorder: Biology still waits for physics

    PubMed Central

    Uversky, Vladimir N

    2013-01-01

    The abundant existence of proteins and regions that possess specific functions without being uniquely folded into unique 3D structures has become accepted by a significant number of protein scientists. Sequences of these intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are characterized by a number of specific features, such as low overall hydrophobicity and high net charge which makes these proteins predictable. IDPs/IDPRs possess large hydrodynamic volumes, low contents of ordered secondary structure, and are characterized by high structural heterogeneity. They are very flexible, but some may undergo disorder to order transitions in the presence of natural ligands. The degree of these structural rearrangements varies over a very wide range. IDPs/IDPRs are tightly controlled under the normal conditions and have numerous specific functions that complement functions of ordered proteins and domains. When lacking proper control, they have multiple roles in pathogenesis of various human diseases. Gaining structural and functional information about these proteins is a challenge, since they do not typically “freeze” while their “pictures are taken.” However, despite or perhaps because of the experimental challenges, these fuzzy objects with fuzzy structures and fuzzy functions are among the most interesting targets for modern protein research. This review briefly summarizes some of the recent advances in this exciting field and considers some of the basic lessons learned from the analysis of physics, chemistry, and biology of IDPs. PMID:23553817

  6. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes.

    PubMed

    Roy, Priti; Kumar, Brijesh; Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.

  7. Creativity and technical innovation: spatial ability's unique role.

    PubMed

    Kell, Harrison J; Lubinski, David; Benbow, Camilla P; Steiger, James H

    2013-09-01

    In the late 1970s, 563 intellectually talented 13-year-olds (identified by the SAT as in the top 0.5% of ability) were assessed on spatial ability. More than 30 years later, the present study evaluated whether spatial ability provided incremental validity (beyond the SAT's mathematical and verbal reasoning subtests) for differentially predicting which of these individuals had patents and three classes of refereed publications. A two-step discriminant-function analysis revealed that the SAT subtests jointly accounted for 10.8% of the variance among these outcomes (p < .01); when spatial ability was added, an additional 7.6% was accounted for--a statistically significant increase (p < .01). The findings indicate that spatial ability has a unique role in the development of creativity, beyond the roles played by the abilities traditionally measured in educational selection, counseling, and industrial-organizational psychology. Spatial ability plays a key and unique role in structuring many important psychological phenomena and should be examined more broadly across the applied and basic psychological sciences.

  8. Construct validity evidence for the Male Role Norms Inventory-Short Form: A structural equation modeling approach using the bifactor model.

    PubMed

    Levant, Ronald F; Hall, Rosalie J; Weigold, Ingrid K; McCurdy, Eric R

    2016-10-01

    The construct validity of the Male Role Norms Inventory-Short Form (MRNI-SF) was assessed using a latent variable approach implemented with structural equation modeling (SEM). The MRNI-SF was specified as having a bifactor structure, and validation scales were also specified as latent variables. The latent variable approach had the advantages of separating effects of general and specific factors and controlling for some sources of measurement error. Data (N = 484) were from a diverse sample (38.8% men of color, 22.3% men of diverse sexualities) of community-dwelling and college men who responded to an online survey. The construct validity of the MRNI-SF General Traditional Masculinity Ideology factor was supported for all 4 of the proposed latent correlations with: (a) Male Role Attitudes Scale; (b) general factor of Conformity to Masculine Norms Inventory-46; (c) higher-order factor of Gender Role Conflict Scale; and (d) Personal Attributes Questionnaire-Masculinity Scale. Significant correlations with relevant other latent factors provided concurrent validity evidence for the MRNI-SF specific factors of Negativity toward Sexual Minorities, Importance of Sex, Restrictive Emotionality, and Toughness, with all 8 of the hypothesized relationships supported. However, 3 relationships concerning Dominance were not supported. (The construct validity of the remaining 2 MRNI-SF specific factors-Avoidance of Femininity and Self-Reliance through Mechanical Skills was not assessed.) Comparisons were made, and meaningful differences noted, between the latent correlations emphasized in this study and their raw variable counterparts. Results are discussed in terms of the advantages of an SEM approach and the unique characteristics of the bifactor model. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Role of self-monitoring of blood glucose in glycemic control.

    PubMed

    Karter, Andrew J

    2006-01-01

    To examine the role of self-monitoring of blood glucose (SMBG) in the management of diabetes mellitus. Current trends and published evidence are reviewed. Despite the widespread evidence that lowering glycemic levels reduces the risks of complications in patients with diabetes, little improvement in glycemic control has been noted among patients in the United States and Europe in recent years. Although SMBG has been widely used, considerable controversy surrounds its role in achieving glycemic control. The high cost of test strips has made considerations regarding appropriate recommendations for SMBG a priority, especially in light of the current climate of health-care cost-containment. Existing clinical recommendations lack specific guidance to patients and clinicians regarding SMBG practice intensity and frequency, particularly for those patients not treated with insulin. Previous studies of the association between SMBG and glycemic control often found weak and conflicting results. A reexamination of the role of SMBG is needed, with special attention to the unique needs of patients using different diabetes treatments, within special clinical subpopulations, and during initiation of SMBG versus its ongoing use. Further understanding of the intensity and frequency of SMBG needed to reflect the variability in glycemic patterns would facilitate more specific guideline development. Educational programs that focus on teaching patients the recommended SMBG practice, specific glycemic targets, and appropriate responses to various blood glucose readings would be beneficial. Continuing medical education programs for health-care providers should suggest ways to analyze patient SMBG records to tailor medication regimens. For transfer or communication of SMBG reports to the clinical staff, a standardized format that extracts key data elements and allows quick review by health-care providers would be useful. Because the practice of SMBG is expensive, the cost-effectiveness of SMBG needs to be carefully assessed.

  10. A novel highly divergent protein family identified from a viviparous insect by RNA-seq analysis: a potential target for tsetse fly-specific abortifacients.

    PubMed

    Benoit, Joshua B; Attardo, Geoffrey M; Michalkova, Veronika; Krause, Tyler B; Bohova, Jana; Zhang, Qirui; Baumann, Aaron A; Mireji, Paul O; Takáč, Peter; Denlinger, David L; Ribeiro, Jose M; Aksoy, Serap

    2014-04-01

    In tsetse flies, nutrients for intrauterine larval development are synthesized by the modified accessory gland (milk gland) and provided in mother's milk during lactation. Interference with at least two milk proteins has been shown to extend larval development and reduce fecundity. The goal of this study was to perform a comprehensive characterization of tsetse milk proteins using lactation-specific transcriptome/milk proteome analyses and to define functional role(s) for the milk proteins during lactation. Differential analysis of RNA-seq data from lactating and dry (non-lactating) females revealed enrichment of transcripts coding for protein synthesis machinery, lipid metabolism and secretory proteins during lactation. Among the genes induced during lactation were those encoding the previously identified milk proteins (milk gland proteins 1-3, transferrin and acid sphingomyelinase 1) and seven new genes (mgp4-10). The genes encoding mgp2-10 are organized on a 40 kb syntenic block in the tsetse genome, have similar exon-intron arrangements, and share regions of amino acid sequence similarity. Expression of mgp2-10 is female-specific and high during milk secretion. While knockdown of a single mgp failed to reduce fecundity, simultaneous knockdown of multiple variants reduced milk protein levels and lowered fecundity. The genomic localization, gene structure similarities, and functional redundancy of MGP2-10 suggest that they constitute a novel highly divergent protein family. Our data indicates that MGP2-10 function both as the primary amino acid resource for the developing larva and in the maintenance of milk homeostasis, similar to the function of the mammalian casein family of milk proteins. This study underscores the dynamic nature of the lactation cycle and identifies a novel family of lactation-specific proteins, unique to Glossina sp., that are essential to larval development. The specificity of MGP2-10 to tsetse and their critical role during lactation suggests that these proteins may be an excellent target for tsetse-specific population control approaches.

  11. Carbon nanotube-mediated siRNA delivery for gene silencing in cancer cells

    NASA Astrophysics Data System (ADS)

    Hong, Tu; Guo, Honglian; Xu, Yaqiong

    2011-10-01

    Small interfering RNA (siRNA) is potentially a promising tool in influencing gene expression with a high degree of target specificity. However, its poor intracellular uptake, instability in vivo, and non-specific immune stimulations impeded its effect in clinical applications. In this study, carbon nanotubes (CNTs) functionalized with two types of phospholipid-polyethylene glycol (PEG) have shown capabilities to stabilize siRNA in cell culture medium during the transfection and efficiently deliver siRNA into neuroblastoma and breast cancer cells. Moreover, the intrinsic optical properties of CNTs have been investigated through absorption and fluorescence measurements. We have found that the directly-functionalized groups play an important role on the fluorescence imaging of functionalized CNTs. The unique fluorescence imaging and high delivery efficiency make CNTs a promising material to deliver drugs and evaluate the treatment effect simultaneously.

  12. Glimpse into Hox and tale regulation of cell differentiation and reprogramming.

    PubMed

    Cerdá-Esteban, Nuria; Spagnoli, Francesca M

    2014-01-01

    During embryonic development, cells become gradually restricted in their developmental potential and start elaborating lineage-specific transcriptional networks to ultimately acquire a unique differentiated state. Hox genes play a central role in specifying regional identities, thereby providing the cell with critical information on positional value along its differentiation path. The exquisite DNA-binding specificity of the Hox proteins is frequently dependent upon their interaction with members of the TALE family of homeodomain proteins. In addition to their function as Hox-cofactors, TALE homeoproteins control multiple crucial developmental processes through Hox-independent mechanisms. Here, we will review recent findings on the function of both Hox and TALE proteins in cell differentiation, referring mostly to vertebrate species. In addition, we will discuss the direct implications of this knowledge on cell plasticity and cell reprogramming. Copyright © 2013 Wiley Periodicals, Inc.

  13. Development and use of fluorescent 16S rRNA-targeted probes for the specific detection of Methylophaga species by in situ hybridization in marine sediments.

    PubMed

    Janvier, Monique; Regnault, Béatrice; Grimont, Patrick

    2003-09-01

    Methylotrophic bacteria are widespread in nature. They may play an important role in the cycling of carbon and in the metabolism of dimethylsulfide in a marine environment. Bacteria belonging to the genus Methylophaga are a unique group of aerobic, halophilic, non-methane-utilizing methylotrophs. Two 16S rRNA-targeted oligonucleotide probes were developed for the specific detection of Methylophaga species, marine methylobacteria, by fluorescence in situ hybridization. Probe MPH-730 was highly specific for all members of the genus Methylophaga while probe MPHm-994 targeted exclusively M. marina. The application of these probes were demonstrated by the detection of Methylophaga species in enrichment cultures from various marine sediments. All isolates recovered were visualized by using the genus specific probe MPH-730. The results were confirmed by 16S rDNA sequencing which demonstrated that all selected isolates belong to Methylophaga. Five isolates could be detected by the M. marina-specific probe MPHm-994 and were confirmed by rRNA gene restriction pattern (ribotyping). With the development of these specific probes, fluorescence in situ hybridization shows that the genus Methylophaga is widespread in marine samples.

  14. Identification of unique cis-element pattern on simulated microgravity treated Arabidopsis by in silico and gene expression

    NASA Astrophysics Data System (ADS)

    Soh, Hyuncheol; Choi, Yongsang; Lee, Taek-Kyun; Yeo, Up-Dong; Han, Kyeongsik; Auh, Chungkyun; Lee, Sukchan

    2012-08-01

    Arabidopsis gene expression microarray (44 K) was used to detect genes highly induced under simulated microgravity stress (SMS). Ten SMS-inducible genes were selected from the microarray data and these 10 genes were found to be abundantly expressed in 3-week-old plants. Nine out of the 10 SMS-inducible genes were also expressed in response to the three abiotic stresses of drought, touch, and wounding in 3-week-old Arabidopsis plants respectively. However, WRKY46 was elevated only in response to SMS. Six other WRKY genes did not respond to SMS. To clarify the characteristics of the genes expressed at high levels in response to SMS, 20 cis-elements in the promoters of the 40 selected genes including the 10 SMS-inducible genes, the 6 WRKY genes, and abiotic stress-inducible genes were analyzed and their spatial positions on each promoter were determined. Four cis-elements (M/T-G-T-P from MYB1AT or TATABOX5, GT1CONSENSUS, TATABOX5, and POLASIG1) showed a unique spatial arrangement in most SMS-inducible genes including WRKY46. Therefore the M/T-G-T-P cis-element patterns identified in the promoter of WRKY46 may play important roles in regulating gene expression in response to SMS. The presences of the cis-element patterns suggest that the order or spatial positioning of certain groups of cis-elements is more important than the existence or numbers of specific cis-elements. Taken together, our data indicate that WRKY46 is a novel SMS inducible transcription factor and the unique spatial arrangement of cis-elements shown in WRKY46 promoter may play an important role for its response to SMS.

  15. Variations in Nuclear Localization Strategies Among Pol X Family Enzymes.

    PubMed

    Kirby, Thomas W; Pedersen, Lars C; Gabel, Scott A; Gassman, Natalie R; London, Robert E

    2018-06-22

    Despite the essential roles of pol X family enzymes in DNA repair, information about the structural basis of their nuclear import is limited. Recent studies revealed the unexpected presence of a functional NLS in DNA polymerase β, indicating the importance of active nuclear targeting, even for enzymes likely to leak into and out of the nucleus. The current studies further explore the active nuclear transport of these enzymes by identifying and structurally characterizing the functional NLS sequences in the three remaining human pol X enzymes: terminal deoxynucleotidyl transferase (TdT), DNA polymerase μ (pol μ), and DNA polymerase λ (pol λ). NLS identifications are based on Importin α (Impα) binding affinity determined by fluorescence polarization of fluorescein-labeled NLS peptides, X-ray crystallographic analysis of the Impα∆IBB•NLS complexes, and fluorescence-based subcellular localization studies. All three polymerases use NLS sequences located near their N-terminus; TdT and pol μ utilize monopartite NLS sequences, while pol λ utilizes a bipartite sequence, unique among the pol X family members. The pol μ NLS has relatively weak measured affinity for Impα, due in part to its proximity to the N-terminus that limits non-specific interactions of flanking residues preceding the NLS. However, this effect is partially mitigated by an N-terminal sequence unsupportive of Met1 removal by methionine aminopeptidase, leading to a 3-fold increase in affinity when the N-terminal methionine is present. Nuclear targeting is unique to each pol X family enzyme with variations dependent on the structure and unique functional role of each polymerase. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Supermarket revolution in Asia and emerging development strategies to include small farmers.

    PubMed

    Reardon, Thomas; Timmer, C Peter; Minten, Bart

    2012-07-31

    A "supermarket revolution" has occurred in developing countries in the past 2 decades. We focus on three specific issues that reflect the impact of this revolution, particularly in Asia: continuity in transformation, innovation in transformation, and unique development strategies. First, the record shows that the rapid growth observed in the early 2000s in China, Indonesia, Malaysia, and Thailand has continued, and the "newcomers"--India and Vietnam--have grown even faster. Although foreign direct investment has been important, the roles of domestic conglomerates and even state investment have been significant and unique. Second, Asia's supermarket revolution has exhibited unique pathways of retail diffusion and procurement system change. There has been "precocious" penetration of rural towns by rural supermarkets and rural business hubs, emergence of penetration of fresh produce retail that took much longer to initiate in other regions, and emergence of Asian retail developing-country multinational chains. In procurement, a symbiosis between modern retail and the emerging and consolidating modern food processing and logistics sectors has arisen. Third, several approaches are being tried to link small farmers to supermarkets. Some are unique to Asia, for example assembling into a "hub" or "platform" or "park" the various companies and services that link farmers to modern markets. Other approaches relatively new to Asia are found elsewhere, especially in Latin America, including "bringing modern markets to farmers" by establishing collection centers and multipronged collection cum service provision arrangements, and forming market cooperatives and farmer companies to help small farmers access supermarkets.

  17. Complete genome sequence of Brachyspira intermedia reveals unique genomic features in Brachyspira species and phage-mediated horizontal gene transfer

    PubMed Central

    2011-01-01

    Background Brachyspira spp. colonize the intestines of some mammalian and avian species and show different degrees of enteropathogenicity. Brachyspira intermedia can cause production losses in chickens and strain PWS/AT now becomes the fourth genome to be completed in the genus Brachyspira. Results 15 classes of unique and shared genes were analyzed in B. intermedia, B. murdochii, B. hyodysenteriae and B. pilosicoli. The largest number of unique genes was found in B. intermedia and B. murdochii. This indicates the presence of larger pan-genomes. In general, hypothetical protein annotations are overrepresented among the unique genes. A 3.2 kb plasmid was found in B. intermedia strain PWS/AT. The plasmid was also present in the B. murdochii strain but not in nine other Brachyspira isolates. Within the Brachyspira genomes, genes had been translocated and also frequently switched between leading and lagging strands, a process that can be followed by different AT-skews in the third positions of synonymous codons. We also found evidence that bacteriophages were being remodeled and genes incorporated into them. Conclusions The accessory gene pool shapes species-specific traits. It is also influenced by reductive genome evolution and horizontal gene transfer. Gene-transfer events can cross both species and genus boundaries and bacteriophages appear to play an important role in this process. A mechanism for horizontal gene transfer appears to be gene translocations leading to remodeling of bacteriophages in combination with broad tropism. PMID:21816042

  18. Resolvent approach for two-dimensional scattering problems. Application to the nonstationary Schrödinger problem and the KPI equation

    NASA Astrophysics Data System (ADS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Polivanov, M. C.

    1992-11-01

    The resolvent operator of the linear problem is determined as the full Green function continued in the complex domain in two variables. An analog of the known Hilbert identity is derived. We demonstrate the role of this identity in the study of two-dimensional scattering. Considering the nonstationary Schrödinger equation as an example, we show that all types of solutions of the linear problems, as well as spectral data known in the literature, are given as specific values of this unique function — the resolvent function. A new form of the inverse problem is formulated.

  19. Animal Models of Substance Abuse and Addiction: Implications for Science, Animal Welfare, and Society

    PubMed Central

    Lynch, Wendy J; Nicholson, Katherine L; Dance, Mario E; Morgan, Richard W; Foley, Patricia L

    2010-01-01

    Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial areas of biology, pathophysiology, clinical treatments, and drug screening for abuse liability; and discusses some of the unique veterinary, husbandry, and IACUC challenges associated with these models. PMID:20579432

  20. Animal models of substance abuse and addiction: implications for science, animal welfare, and society.

    PubMed

    Lynch, Wendy J; Nicholson, Katherine L; Dance, Mario E; Morgan, Richard W; Foley, Patricia L

    2010-06-01

    Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial areas of biology, pathophysiology, clinical treatments, and drug screening for abuse liability; and discusses some of the unique veterinary, husbandry, and IACUC challenges associated with these models.

  1. Utility of the Life Course Perspective in Research With Mexican American Caregivers of Older Adults

    PubMed Central

    Evans, Bronwynne C.; Crogan, Neva; FNGNA; Belyea, Michael; Coon, David

    2013-01-01

    Research on caregiving of elders in Mexican American families is urgently needed. We know little about family caregivers, family transitions in relation to the caregiving role, reciprocal impact of caregivers and care recipients on one another, adaptive strategies, positive benefits of caregiving (caregiver gain), specific caregiving burdens, or supportive interventions for family caregiving. Theory derivation using the concepts and structure of life course perspective provides a way to fill the knowledge gaps concerning Mexican American caregiving families, taking into account their ethnic status as an important Hispanic subgroup and the unique cultural and contextual factors that mark their caregiving experiences. PMID:18845694

  2. The Role of Visual Working Memory in Attentive Tracking of Unique Objects

    ERIC Educational Resources Information Center

    Makovski, Tal; Jiang, Yuhong V.

    2009-01-01

    When tracking moving objects in space humans usually attend to the objects' spatial locations and update this information over time. To what extent do surface features assist attentive tracking? In this study we asked participants to track identical or uniquely colored objects. Tracking was enhanced when objects were unique in color. The benefit…

  3. Differential 3’ processing of specific transcripts expands regulatory and protein diversity across neuronal cell types

    PubMed Central

    Jereb, Saša; Hwang, Hun-Way; Van Otterloo, Eric; Govek, Eve-Ellen; Fak, John J; Yuan, Yuan; Hatten, Mary E

    2018-01-01

    Alternative polyadenylation (APA) regulates mRNA translation, stability, and protein localization. However, it is unclear to what extent APA regulates these processes uniquely in specific cell types. Using a new technique, cTag-PAPERCLIP, we discovered significant differences in APA between the principal types of mouse cerebellar neurons, the Purkinje and granule cells, as well as between proliferating and differentiated granule cells. Transcripts that differed in APA in these comparisons were enriched in key neuronal functions and many differed in coding sequence in addition to 3’UTR length. We characterize Memo1, a transcript that shifted from expressing a short 3’UTR isoform to a longer one during granule cell differentiation. We show that Memo1 regulates granule cell precursor proliferation and that its long 3’UTR isoform is targeted by miR-124, contributing to its downregulation during development. Our findings provide insight into roles for APA in specific cell types and establish a platform for further functional studies. PMID:29578408

  4. Nano-vectors for efficient liver specific gene transfer

    PubMed Central

    Pathak, Atul; Vyas, Suresh P; Gupta, Kailash C

    2008-01-01

    Recent progress in nanotechnology has triggered the site specific drug/gene delivery research and gained wide acknowledgment in contemporary DNA therapeutics. Amongst various organs, liver plays a crucial role in various body functions and in addition, the site is a primary location of metastatic tumor growth. In past few years, a plethora of nano-vectors have been developed and investigated to target liver associated cells through receptor mediated endocytosis. This emerging paradigm in cellular drug/gene delivery provides promising approach to eradicate genetic as well as acquired diseases affecting the liver. The present review provides a comprehensive overview of potential of various delivery systems, viz., lipoplexes, liposomes, polyplexes, nanoparticles and so forth to selectively relocate foreign therapeutic DNA into liver specific cell type via the receptor mediated endocytosis. Various receptors like asialoglycoprotein receptors (ASGP-R) provide unique opportunity to target liver parenchymal cells. The results obtained so far reveal tremendous promise and offer enormous options to develop novel DNA-based pharmaceuticals for liver disorders in near future. PMID:18488414

  5. Specific RNA self-cleavage in coconut cadang cadang viroid: potential for a role in rolling circle replication.

    PubMed Central

    Liu, Y H; Symons, R H

    1998-01-01

    The rolling circle replication of the small, single-stranded viroid RNAs requires a specific processing reaction to produce monomeric RNAs that are ligated into the final circular form. For avocado sunblotch viroid, peach latent mosaic viroid, and chrysanthemum chlorotic mottle viroid, the hammerhead self-cleavage reaction is considered to provide this processing reaction. We have searched for a similar type of reaction in the 246-nt coconut cadang cadang viroid, the smallest viroid of the 24-member potato spindle tuber viroid (PSTV) group. RNA transcripts prepared from the cloned central or C domain of this viroid self-cleaved specifically after denaturation with methylmercuric hydroxide followed by incubation in the presence of spermidine but in the absence of added magnesium ions. The unique cleavage site was located in the bottom strand of the C domain within a potential hairpin structure that is conserved within members of all three subgroups of the PSTV group of viroids. PMID:9630248

  6. Undifferentiated Gender Role Orientation, Drinking Motives, and Increased Alcohol Use in Men and Women.

    PubMed

    Fugitt, Jessica L; Ham, Lindsay S; Bridges, Ana J

    2017-05-12

    Alcohol misuse has historically affected men more than women. However, the differences in drinking behaviors across sex have steadily decreased over time and accumulating research suggests that gender role orientation, or culturally scripted gender-specific characteristics, and negative reinforcement drinking motives may better explain risk for alcohol use and related problems than sex. The current study tested a mediational model of the undifferentiated orientation (low masculinity and low femininity), an oft neglected orientation despite evidence that it could carry much weight in drinking behaviors, versus the other three gender role orientations, coping and conformity drinking motives, and hazardous alcohol use. Participants were 426 current drinkers over age 21 (41% men; 77.8% Caucasian; M age = 34.5, range = 21-73) residing across the United States who completed an online survey. Structural equation modeling analyses suggested that individuals with an undifferentiated orientation (n = 99), compared to masculine (high masculinity, low femininity; n = 102), feminine (high femininity, low masculinity; n = 113), or androgynous (high masculinity, high femininity; n = 112) orientations, reported higher coping drinking motives, which were positively associated with levels of hazardous alcohol use. Although analyses suggested that undifferentiated individuals reported drinking for conformity motives more often than masculine and androgynous individuals, conformity motives were not associated with increased use. Conclusions/Importance: An undifferentiated gender role orientation may contribute a unique risk for alcohol use and related problems by increasing frequency of drinking to cope, a motive specifically associated with hazardous use trajectories.

  7. Negative reinforcement eating expectancies, emotion dysregulation, and symptoms of bulimia nervosa.

    PubMed

    Hayaki, Jumi

    2009-09-01

    Research suggests that emotion dysregulation or difficulties in the modulation of emotional experience constitute risk for eating disorders. Recent work has also highlighted the role of certain eating-related cognitions, specifically expectations of negative emotional reinforcement from eating, in the development of disturbed eating patterns. However, it is unclear whether these expectancies are merely a dimension of a general inability to regulate emotions effectively or rather a unique cognitive-affective risk factor for the development of an eating disorder. This study examines the unique contribution of eating expectancies to symptoms of bulimia nervosa (BN) after controlling for two dimensions of emotion dysregulation (alexithymia and experiential avoidance) previously implicated in the phenomenology of eating disorders. Participants were 115 undergraduate women who self-reported demographics, alexithymia, experiential avoidance, eating expectancies, and symptoms of BN. Eating expectancies uniquely contributed 12.4% of the variance in symptoms of BN, F(2, 108) = 11.74, p < .001. The final model was statistically significant, F(6, 108) = 13.62, p < .001, and accounted for 40.0% of the variance in symptoms of BN. These results suggest that individuals who expect eating to provide emotional relief may be especially susceptible to disordered eating. Findings are discussed in terms of emotional risk models and clinical interventions for BN.

  8. Impact of protein domains on PE_PGRS30 polar localization in Mycobacteria.

    PubMed

    De Maio, Flavio; Maulucci, Giuseppe; Minerva, Mariachiara; Anoosheh, Saber; Palucci, Ivana; Iantomasi, Raffaella; Palmieri, Valentina; Camassa, Serena; Sali, Michela; Sanguinetti, Maurizio; Bitter, Wilbert; Manganelli, Riccardo; De Spirito, Marco; Delogu, Giovanni

    2014-01-01

    PE_PGRS proteins are unique to the Mycobacterium tuberculosis complex and a number of other pathogenic mycobacteria. PE_PGRS30, which is required for the full virulence of M. tuberculosis (Mtb), has three main domains, i.e. an N-terminal PE domain, repetitive PGRS domain and the unique C-terminal domain. To investigate the role of these domains, we expressed a GFP-tagged PE_PGRS30 protein and a series of its functional deletion mutants in different mycobacterial species (Mtb, Mycobacterium bovis BCG and Mycobacterium smegmatis) and analysed protein localization by confocal microscopy. We show that PE_PGRS30 localizes at the mycobacterial cell poles in Mtb and M. bovis BCG but not in M. smegmatis and that the PGRS domain of the protein strongly contributes to protein cellular localization in Mtb. Immunofluorescence studies further showed that the unique C-terminal domain of PE_PGRS30 is not available on the surface, except when the PGRS domain is missing. Immunoblot demonstrated that the PGRS domain is required to maintain the protein strongly associated with the non-soluble cellular fraction. These results suggest that the repetitive GGA-GGN repeats of the PGRS domain contain specific sequences that contribute to protein cellular localization and that polar localization might be a key step in the PE_PGRS30-dependent virulence mechanism.

  9. Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens

    PubMed Central

    Bushley, Kathryn E.; Ohm, Robin A.; Otillar, Robert; Martin, Joel; Schackwitz, Wendy; Grimwood, Jane; MohdZainudin, NurAinIzzati; Xue, Chunsheng; Wang, Rui; Manning, Viola A.; Dhillon, Braham; Tu, Zheng Jin; Steffenson, Brian J.; Salamov, Asaf; Sun, Hui; Lowry, Steve; LaButti, Kurt; Han, James; Copeland, Alex; Lindquist, Erika; Barry, Kerrie; Schmutz, Jeremy; Baker, Scott E.; Ciuffetti, Lynda M.; Grigoriev, Igor V.; Zhong, Shaobin; Turgeon, B. Gillian

    2013-01-01

    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP–encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence. PMID:23357949

  10. Parent Management of the School Reintegration Needs of Children and Youth Following Moderate or Severe Traumatic Brain Injury

    PubMed Central

    Roscigno, Cecelia I.; Fleig, Denise K.; Knafl, Kathleen A.

    2014-01-01

    Purpose School reintegration following children’s traumatic brain injury (TBI) is still poorly understood from families’ perspectives. We aimed to understand how both unique and common experiences during children’s school reintegration were explained by parents to influence the family. Methods Data came from an investigation using descriptive phenomenology (2005–2007) to understand parents’ experiences in the first 5 years following children’s moderate to severe TBI. Parents (N = 42 from 37 families in the United States) participated in two 90-minute interviews (first M = 15 months; second M = 27 months). Two investigators independently coded parents’ discussions of school reintegration using content analysis to understand the unique and common factors that parents perceived affected the family. Results Parents’ school negotiation themes included: 1) legal versus moral basis for helping the child; 2) inappropriate state and local services that did not consider needs specific to TBI; and, 3) involvement in planning, implementing, and evaluating the child’s education plan. Parents perceived that coordinated and collaboration leadership with school personnel lessened families’ workload. Families who home-schooled had unique challenges. Conclusions School reintegration can add to family workload by changing roles and relationships, and by adding to parents’ perceived stress in managing of the child’s condition. PMID:24969697

  11. Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Condon, Bradford J.; Leng, Yueqiang; Wu, Dongliang

    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five of each genome differs between strains of the same species,more » while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25 higher than those between inbred lines and 50 lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.« less

  12. Acculturation Needs of Pediatric International Medical Graduates: A Qualitative Study.

    PubMed

    Osta, Amanda D; Barnes, Michelle M; Pessagno, Regina; Schwartz, Alan; Hirshfield, Laura E

    2017-01-01

    Phenomenon: International medical graduates (IMGs) play a key role in host countries' health systems but face unique challenges, which makes effective, tailored support for IMGs essential. Prior literature describing the acculturation needs of IMGs focused primarily on communication content and style. We conducted a qualitative study to explore acculturation that might be specific to IMG residents who care for children. In a study conducted from November 2011 to April 2012, we performed four 90-minute semistructured focus groups with 26 pediatric IMG residents from 12 countries. The focus group transcripts were analyzed using open and focused coding methodology. The focus groups and subsequent analysis demonstrated that pediatric IMG residents' socialization to their home culture impacts their transition to practice in the United States; they must adjust not only to a U.S. culture, different from their own, but also to the culture of medicine in the United States. We identified the following new acculturation themes: understanding the education system and family structure, social determinants of health, communication with African American parents, contraception, physician handoffs, physicians' role in prevention, adolescent health, and physicians' role in child advocacy. We further highlight the acculturation challenges faced by pediatric IMG residents and offer brief recommendations for the creation of a deliberate acculturation curriculum for pediatric IMG residents. Insight: Residency training is a unique period in physicians' personal and professional development and can be particularly challenging for IMGs. There is a significant gap in the identified acculturation needs and the current curricula available to IMG residents who care for children.

  13. Response of the rare biosphere to environmental stressors in a highly diverse ecosystem (Zodletone spring, OK, USA)

    PubMed Central

    Coveley, Suzanne; Elshahed, Mostafa S.

    2015-01-01

    Within highly diverse ecosystems, the majority of bacterial taxa are present in low abundance as members of the rare biosphere. The rationale for the occurrence and maintenance of the rare biosphere, and the putative ecological role(s) and dynamics of its members within a specific ecosystem is currently debated. We hypothesized that in highly diverse ecosystems, a fraction of the rare biosphere acts as a backup system that readily responds to environmental disturbances. We tested this hypothesis by subjecting sediments from Zodletone spring, a sulfide- and sulfur-rich spring in Southwestern OK, to incremental levels of salinity (1, 2, 3, 4, and 10% NaCl), or temperature (28°, 30°, 32°, and 70 °C), and traced the trajectories of rare members of the community in response to these manipulations using 16S rRNA gene analysis. Our results indicate that multiple rare bacterial taxa are promoted from rare to abundant members of the community following such manipulations and that, in general, the magnitude of such recruitment is directly proportional to the severity of the applied manipulation. Rare members that are phylogenetically distinct from abundant taxa in the original sample (unique rare biosphere) played a more important role in the microbial community response to environmental disturbances, compared to rare members that are phylogenetically similar to abundant taxa in the original sample (non-unique rare biosphere). The results emphasize the dynamic nature of the rare biosphere, and highlight its complexity and non-monolithic nature. PMID:26312178

  14. Diverse roles of integrin receptors in articular cartilage.

    PubMed

    Shakibaei, M; Csaki, C; Mobasheri, A

    2008-01-01

    Integrins are heterodimeric integral membrane proteins made up of alpha and beta subunits. At least eighteen alpha and eight beta subunit genes have been described in mammals. Integrin family members are plasma membrane receptors involved in cell adhesion and active as intra- and extracellular signalling molecules in a variety of processes including embryogenesis, hemostasis, tissue repair, immune response and metastatic spread of tumour cells. Integrin beta 1 (beta1-integrin), the protein encoded by the ITGB1 gene (also known as CD29 and VLAB), is a multi-functional protein involved in cell-matrix adhesion, cell signalling, cellular defense, cell adhesion, protein binding, protein heterodimerisation and receptor-mediated activity. It is highly expressed in the human body (17.4 times higher than the average gene in the last updated revision of the human genome). The extracellular matrix (ECM) of articular cartilage is a unique environment. Interactions between chondrocytes and the ECM regulate many biological processes important to homeostasis and repair of articular cartilage, including cell attachment, growth, differentiation and survival. The beta1-integrin family of cell surface receptors appears to play a major role in mediating cell-matrix interactions that are important in regulating these fundamental processes. Chondrocyte mechanoreceptors have been proposed to incorporate beta1-integrins and mechanosensitive ion channels which link with key ECM, cytoskeletal and signalling proteins to maintain the chondrocyte phenotype, prevent chondrocyte apoptosis and regulate chondrocyte-specific gene expression. This review focuses on the expression and function of beta1-integrins in articular chondrocytes, its role in the unique biology of these cells and its distribution in cartilage.

  15. Molecular basis of ubiquitin recognition by the autophagy receptor CALCOCO2

    PubMed Central

    Xie, Xingqiao; Li, Faxiang; Wang, Yuanyuan; Wang, Yingli; Lin, Zhijie; Cheng, Xiaofang; Liu, Jianping; Chen, Changbin; Pan, Lifeng

    2015-01-01

    The autophagy receptor CALCOCO2/NDP52 functions as a bridging adaptor and plays an essential role in the selective autophagic degradation of invading pathogens by specifically recognizing ubiquitin-coated intracellular pathogens and subsequently targeting them to the autophagic machinery; thereby it is required for innate immune defense against a range of infectious pathogens in mammals. However, the mechanistic basis underlying CALCOCO2-mediated specific recognition of ubiqutinated pathogens is still unknown. Here, using biochemical and structural analyses, we demonstrated that the cargo-binding region of CALCOCO2 contains a dynamic unconventional zinc finger as well as a C2H2-type zinc-finger, and only the C2H2-type zinc finger specifically recognizes mono-ubiquitin or poly-ubiquitin chains. In addition to elucidating the specific ubiquitin recognition mechanism of CALCOCO2, the structure of the CALCOCO2 C2H2-type zinc finger in complex with mono-ubiquitin also uncovers a unique zinc finger-binding mode for ubiquitin. Our findings provide mechanistic insight into how CALCOCO2 targets ubiquitin-decorated pathogens for autophagic degradations. PMID:26506893

  16. Generation and characterization of a unique reagent that recognizes a panel of recombinant human monoclonal antibody therapeutics in the presence of endogenous human IgG.

    PubMed

    Wang, Xiangdan; Quarmby, Valerie; Ng, Carl; Chuntharapai, Anan; Shek, Theresa; Eigenbrot, Charles; Kelley, Robert F; Shia, Steven; McCutcheon, Krista; Lowe, John; Leddy, Cecilia; Coachman, Kyle; Cain, Gary; Chu, Felix; Hotzel, Isidro; Maia, Mauricio; Wakshull, Eric; Yang, Jihong

    2013-01-01

    Pharmacokinetic (PK) and immunohistochemistry (IHC) assays are essential to the evaluation of the safety and efficacy of therapeutic monoclonal antibodies (mAb) during drug development. These methods require reagents with a high degree of specificity because low concentrations of therapeutic antibody need to be detected in samples containing high concentrations of endogenous human immunoglobulins. Current assay reagent generation practices are labor-intensive and time-consuming. Moreover, these practices are molecule-specific and so only support one assay for one program at a time. Here, we describe a strategy to generate a unique assay reagent, 10C4, that preferentially recognizes a panel of recombinant human mAbs over endogenous human immunoglobulins. This "panel-specific" feature enables the reagent to be used in PK and IHC assays for multiple structurally-related therapeutic mAbs. Characterization revealed that the 10C4 epitope is conformational, extensive and mainly composed of non-CDR residues. Most key contact residues were conserved among structurally-related therapeutic mAbs, but the combination of these residues exists at low prevalence in endogenous human immunoglobulins. Interestingly, an indirect contact residue on the heavy chain of the therapeutic appears to play a critical role in determining whether or not it can bind to 10C4, but has no affect on target binding. This may allow us to improve the binding of therapeutic mAbs to 10C4 for assay development in the future. Here, for the first time, we present a strategy to develop a panel-specific reagent that can expedite the development of multiple clinical assays for structurally-related therapeutic mAbs.

  17. Stable isotope tracers and exercise physiology: past, present and future.

    PubMed

    Wilkinson, Daniel J; Brook, Matthew S; Smith, Kenneth; Atherton, Philip J

    2017-05-01

    Stable isotope tracers have been invaluable assets in physiological research for over 80 years. The application of substrate-specific stable isotope tracers has permitted exquisite insight into amino acid, fatty-acid and carbohydrate metabolic regulation (i.e. incorporation, flux, and oxidation, in a tissue-specific and whole-body fashion) in health, disease and response to acute and chronic exercise. Yet, despite many breakthroughs, there are limitations to 'substrate-specific' stable isotope tracers, which limit physiological insight, e.g. the need for intravenous infusions and restriction to short-term studies (hours) in controlled laboratory settings. In recent years significant interest has developed in alternative stable isotope tracer techniques that overcome these limitations, in particular deuterium oxide (D 2 O or heavy water). The unique properties of this tracer mean that through oral administration, the turnover and flux through a number of different substrates (muscle proteins, lipids, glucose, DNA (satellite cells)) can be monitored simultaneously and flexibly (hours/weeks/months) without the need for restrictive experimental control. This makes it uniquely suited for the study of 'real world' human exercise physiology (amongst many other applications). Moreover, using D 2 O permits evaluation of turnover of plasma and muscle proteins (e.g. dynamic proteomics) in addition to metabolomics (e.g. fluxomics) to seek molecular underpinnings, e.g. of exercise adaptation. Here, we provide insight into the role of stable isotope tracers, from substrate-specific to novel D 2 O approaches, in facilitating our understanding of metabolism. Further novel potential applications of stable isotope tracers are also discussed in the context of integration with the snowballing field of 'omic' technologies. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  18. Schools and Natural Disaster Recovery: The Unique and Vital Role That Teachers and Education Professionals Play in Ensuring the Mental Health of Students Following Natural Disasters

    ERIC Educational Resources Information Center

    Le Brocque, Robyne; De Young, Alexandra; Montague, Gillian; Pocock, Steven; March, Sonja; Triggell, Nikki; Rabaa, Claire; Kenardy, Justin

    2017-01-01

    There is growing evidence that children are vulnerable to poor psychological outcomes following exposure to a range of potentially traumatic events. Teachers are in a unique and well-placed position to provide vital support to children following potentially traumatic events and to also provide a vital role in helping to identify children who may…

  19. A job with a view: perspectives from the corporate side of the hospital*

    PubMed Central

    Donaldson Doyle, Jacqueline

    2003-01-01

    A change in job responsibilities from library manager to hospital administrator provides this year's Doe lecturer the opportunity to reflect on the values of the library profession from a fresh perspective. Librarians play a unique role and remain vital to the health care enterprise but are frequently misunderstood. Their role can be viewed from three angles: service, technology, and a unique sort of professionalism. Librarians must focus their service priorities on the needs of the institution, while remaining true to their own unique professional values. They must be advocates for the appropriate use of technology in support of those service roles. The passion that many librarians bring to their jobs makes librarianship a vocation as much as a profession. The mission and vision developed by the American Society of Health-System Pharmacists in 2001 provides a useful model for defining a personal professional mission and vision. PMID:12568154

  20. A job with a view: perspectives from the corporate side of the hospital.

    PubMed

    Doyle, Jacqueline Donaldson

    2003-01-01

    A change in job responsibilities from library manager to hospital administrator provides this year's Doe lecturer the opportunity to reflect on the values of the library profession from a fresh perspective. Librarians play a unique role and remain vital to the health care enterprise but are frequently misunderstood. Their role can be viewed from three angles: service, technology, and a unique sort of professionalism. Librarians must focus their service priorities on the needs of the institution, while remaining true to their own unique professional values. They must be advocates for the appropriate use of technology in support of those service roles. The passion that many librarians bring to their jobs makes librarianship a vocation as much as a profession. The mission and vision developed by the American Society of Health-System Pharmacists in 2001 provides a useful model for defining a personal professional mission and vision.

  1. Unique Diagnostic and Therapeutic Roles of Porphyrins and Phthalocyanines in Photodynamic Therapy, Imaging and Theranostics

    PubMed Central

    Josefsen, Leanne B.; Boyle, Ross W.

    2012-01-01

    Porphyrinic molecules have a unique theranostic role in disease therapy; they have been used to image, detect and treat different forms of diseased tissue including age-related macular degeneration and a number of different cancer types. Current focus is on the clinical imaging of tumour tissue; targeted delivery of photosensitisers and the potential of photosensitisers in multimodal biomedical theranostic nanoplatforms. The roles of porphyrinic molecules in imaging and pdt, along with research into improving their selective uptake in diseased tissue and their utility in theranostic applications are highlighted in this Review. PMID:23082103

  2. The relative contributions of parents and siblings to child and adolescent development.

    PubMed

    Tucker, Corinna Jenkins; Updegraff, Kimberly

    2009-01-01

    Guided by an ecological framework, we explore how siblings' and parents' roles, relationships, and activities are intertwined in everyday life, providing unique and combined contributions to development. In a departure from past research that emphasized the separate contributions of siblings and parents to individual development, we find that examining the conjoint or interactive effects of sibling and parent influences promises to extend our understanding of the role of family in children's and adolescents' social, emotional, and cognitive development. Understood within the context of family and sociocultural characteristics, siblings' unique roles as agents of socialization are illuminated.

  3. High-throughput tool to discriminate effects of NMs (Cu-NPs, Cu-nanowires, CuNO3, and Cu salt aged): transcriptomics in Enchytraeus crypticus.

    PubMed

    Gomes, Susana I L; Roca, Carlos P; Pegoraro, Natália; Trindade, Tito; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2018-05-01

    The current testing of nanomaterials (NMs) via standard toxicity tests does not cover many of the NMs specificities. One of the recommendations lays on understanding the mechanisms of action, as these can help predicting long-term effects and safe-by-design production. In the present study, we used the high-throughput gene expression tool, developed for Enchytraeus crypticus (4 × 44k Agilent microarray), to study the effects of exposure to several copper (Cu) forms. The Cu treatments included two NMs (spherical and wires) and two copper-salt treatments (CuNO 3 spiked and Cu salt field historical contamination). To relate gene expression with higher effect level, testing was done with reproduction effect concentrations (EC 20 , EC 50 ), using 3 and 7 days as exposure periods. Results showed that time plays a major role in the transcriptomic response, most of it occurring after 3 days. Analysis of gene expression profiles showed that Cu-salt-aged and Cu-nanowires (Nwires) differed from CuNO 3 and Cu-nanoparticles (NPs). Functional analysis revealed specific mechanisms: Cu-NPs uniquely affected senescence and cuticle pattern formation, which can result from the contact of the NPs with the worms' tegument. Cu-Nwires affected reproduction via male gamete generation and hermaphrodite genitalia development. CuNO 3 affected neurotransmission and locomotory behavior, both of which can be related with avoidance response. Cu salt-aged uniquely affected phagocytosis and reproductive system development (via different mechanisms than Cu-Nwires). For the first time for Cu (nano)materials, the adverse outcome pathways (AOPs) drafted here provide an overview for common and unique effects per material and linkage with apical effects.

  4. Who sells what? Country specific differences in substance availability on the Agora cryptomarket.

    PubMed

    Van Buskirk, Joe; Naicker, Sundresan; Roxburgh, Amanda; Bruno, Raimondo; Burns, Lucinda

    2016-09-01

    To date monitoring of cryptomarkets operating on the dark net has largely focused on market size and substance availability. Less is known of country specific differences in these indicators and how they may corroborate population prevalence estimates for substance use in different countries. All substance listings from the cryptomarket Agora were recorded over seven time points throughout February and March 2015. Agora was chosen due to its size as the second largest cryptomarket operating and the level of detail of information provided in individual substance listings. Data were collated and the number of unique sellers selling each substance by country of origin was analysed. An average of 14,456.7 substance listings were identified across sampled days from 868.7 unique sellers. The top five countries by number of listings were the USA, United Kingdom, Australia, China and the Netherlands, collectively accounting for 61.8% of all identified listings and 68% of all unique sellers. Australia was over represented in terms of sellers per capita, while China was over represented in new psychoactive substance (NPS) listings. When examined by number of listings per seller, the Netherlands and China stood out as particularly large, likely due to these countries' role in the local production of various illicit and new psychoactive substances. Numbers of sellers by country of origin appear to be influenced by several factors. Australia's overrepresentation in sellers per capita may indicate its relative geographical isolation and the potential for profit margins from selling online, while China's overrepresentation in NPS listings may reflect domestic production of these substances. Continued monitoring will provide enhanced understanding of the increasingly complex and globalised nature of illicit drug markets. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Identification of a unique loss-of-function mutation in IGF1R and a crosstalk between IGF1R and Wnt/β-catenin signaling pathways.

    PubMed

    Jamwal, Gayatri; Singh, Gurjinder; Dar, Mohd Saleem; Singh, Paramjeet; Bano, Nasima; Syed, Sajad Hussain; Sandhu, Padmani; Akhter, Yusuf; Monga, Satdarshan P; Dar, Mohd Jamal

    2018-06-01

    IGF1R is a ubiquitous receptor tyrosine kinase that plays critical roles in cell proliferation, growth and survival. Clinical studies have demonstrated upregulation of IGF1R mediated signaling in a number of malignancies including colon, breast, and lung cancers. Overexpression of the IGF1R in these malignancies is associated with a poor prognosis and overall survival. IGF1R specific kinase inhibitors have failed in multiple clinical trials partly because of the complex nature of IGF1R signaling. Thus identifying new binding partners and allosteric sites on IGF1R are emerging areas of research. More recently, IGF1R has been shown to translocate into the nucleus and perform many functions. In this study, we generated a library of IGF1R deletion and point mutants to examine IGF1R subcellular localization and activation of downstream signaling pathways. We show that the nuclear localization of IGF1R is primarily defined by its cytoplasmic domain. We identified a cross-talk between IGF1R and Wnt/β-catenin signaling pathways and showed, for the first time, that IGF1R is associated with upregulation of TCF-mediated β-catenin transcriptional activity. Using loss-of-function mutants, deletion analysis and IGF1R specific inhibitor(s), we show that cytoplasmic and nuclear activities are two independent functions of IGF1R. Furthermore, we identified a unique loss-of-function mutation in IGF1R. This unique loss-of-function mutant retains only nuclear functions and sits in a pocket, outside ATP and substrate binding region, that is suited for designing allosteric inhibitors of IGF1R. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Personal semantic memory: insights from neuropsychological research on amnesia.

    PubMed

    Grilli, Matthew D; Verfaellie, Mieke

    2014-08-01

    This paper provides insight into the cognitive and neural mechanisms of personal semantic memory, knowledge that is specific and unique to individuals, by reviewing neuropsychological research on stable amnesia secondary to medial temporal lobe damage. The results reveal that personal semantic memory does not depend on a unitary set of cognitive and neural mechanisms. Findings show that autobiographical fact knowledge reflects an experience-near type of personal semantic memory that relies on the medial temporal lobe for retrieval, albeit less so than personal episodic memory. Additional evidence demonstrates that new autobiographical fact learning likely relies on the medial temporal lobe, but the extent to which remains unclear. Other findings show that retrieval of personal traits/roles and new learning of personal traits/roles and thoughts/beliefs are independent of the medial temporal lobe and thus may represent highly conceptual types of personal semantic memory that are stored in the neocortex. Published by Elsevier Ltd.

  7. Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy

    PubMed Central

    Clayton, Kevin A.; Van Enoo, Alicia A.; Ikezu, Tsuneya

    2017-01-01

    Brain aging is central to late-onset Alzheimer's disease (LOAD), although the mechanisms by which it occurs at protein or cellular levels are not fully understood. Alzheimer's disease is the most common proteopathy and is characterized by two unique pathologies: senile plaques and neurofibrillary tangles, the former accumulating earlier than the latter. Aging alters the proteostasis of amyloid-β peptides and microtubule-associated protein tau, which are regulated in both autonomous and non-autonomous manners. Microglia, the resident phagocytes of the central nervous system, play a major role in the non-autonomous clearance of protein aggregates. Their function is significantly altered by aging and neurodegeneration. This is genetically supported by the association of microglia-specific genes, TREM2 and CD33, and late onset Alzheimer's disease. Here, we propose that the functional characterization of microglia, and their contribution to proteopathy, will lead to a new therapeutic direction in Alzheimer's disease research. PMID:29311768

  8. Capitalizing on Military Nurse Skills for Second-Career Leadership and Staff Development Roles.

    PubMed

    Lake, Donna M; Allen, Patricia E; Armstrong, Myrna L

    2016-11-01

    Nursing continues to face professional workforce and diversity shortage problems. This article advocates for examining an untapped resource-the consideration of applicants for nursing leadership and educational positions in civilian health care organizations. This untapped resource is highly qualified, already retired (or going to be separated) military nurse officers (MNOs) who possess extensive health care knowledge, as well as distinctive ethnicity and gender composition. Clinical educators, as part of the organizational leadership, can play an important role in assisting the MNO civilian position assimilation because they come from a structured and unique cultural environment. Several innovative preparatory strategies are proposed to highlight the organization's support and commitment regarding preselection, recruiting, hiring, and mentoring, including the use of a specific navigational mentor to achieve the necessary acquired cultural assimilation for the MNO's success, satisfaction, and retention. J Contin Educ Nurs. 2016;47(11):503-510. Copyright 2016, SLACK Incorporated.

  9. Double-stranded telomeric DNA binding proteins: Diversity matters.

    PubMed

    Červenák, Filip; Juríková, Katarína; Sepšiová, Regina; Neboháčová, Martina; Nosek, Jozef; Tomáška, L'ubomír

    2017-01-01

    Telomeric sequences constitute only a small fraction of the whole genome yet they are crucial for ensuring genomic stability. This function is in large part mediated by protein complexes recruited to telomeric sequences by specific telomere-binding proteins (TBPs). Although the principal tasks of nuclear telomeres are the same in all eukaryotes, TBPs in various taxa exhibit a surprising diversity indicating their distinct evolutionary origin. This diversity is especially pronounced in ascomycetous yeasts where they must have co-evolved with rapidly diversifying sequences of telomeric repeats. In this article we (i) provide a historical overview of the discoveries leading to the current list of TBPs binding to double-stranded (ds) regions of telomeres, (ii) describe examples of dsTBPs highlighting their diversity in even closely related species, and (iii) speculate about possible evolutionary trajectories leading to a long list of various dsTBPs fulfilling the same general role(s) in their own unique ways.

  10. Friendship factors and suicidality: common and unique patterns in Mexican American and European American youth.

    PubMed

    Winterrowd, Erin; Canetto, Silvia Sara; Chavez, Ernest L

    2011-02-01

    Research suggests a link between friendships and suicidality among U.S. youth, but this link has not been confirmed across ethnicities. The relationship between friendships and suicidality among Mexican American and European American adolescents was examined in this study. Specifically, the role of friendship problems (i.e., social isolation, poor quality friendships) and problematic friends (i.e., friends who were disconnected from school, delinquent friends) was explored. Participants were 648 community youth. Friends' school disconnection was related to Mexican American girls' suicidal ideation, while friends' delinquency was associated with European American youth suicidal behavior. Friendship factors were no longer associated with suicidality after controlling for suicidality correlates such as depression. These findings indicate that the relationship between friendships and suicidality varies by gender and ethnicity. They also suggest a dominant role of depression. © 2011 The American Association of Suicidology.

  11. Can microRNAs act as biomarkers of aging?

    PubMed Central

    Kashyap, Luv

    2011-01-01

    Aging can be defined as a progressive decline in physiological efficiency regulated by an extremely complex multifactorial process. The genetic makeup of an individual appears to dictate this rate of aging in a species specific manner. For decades now, scientists have tried to look for tiny signatures or signs which might help us predict this rate of aging. MicroRNAs (miRNAs) are a unique class of short, non-coding RNAs that mediate the post-transcriptional regulation of gene expression ranging from developmental processes to disease induction or amelioration. Recently, they have also been implicated to have a role in aging in C.elegans. Based on the fact that there is a considerable similarity between aging in C.elegans and humans, these recent findings might suggest a possible role of miRNAs as bio-markers of aging. This mini-review brushes through the possibilities towards this direction. PMID:21383908

  12. Can microRNAs act as biomarkers of aging?

    PubMed

    Kashyap, Luv

    2011-02-07

    Aging can be defined as a progressive decline in physiological efficiency regulated by an extremely complex multifactorial process. The genetic makeup of an individual appears to dictate this rate of aging in a species specific manner. For decades now, scientists have tried to look for tiny signatures or signs which might help us predict this rate of aging. MicroRNAs (miRNAs) are a unique class of short, non-coding RNAs that mediate the post-transcriptional regulation of gene expression ranging from developmental processes to disease induction or amelioration. Recently, they have also been implicated to have a role in aging in C.elegans. Based on the fact that there is a considerable similarity between aging in C.elegans and humans, these recent findings might suggest a possible role of miRNAs as bio-markers of aging. This mini-review brushes through the possibilities towards this direction.

  13. Shame and the motivation to change the self.

    PubMed

    Lickel, Brian; Kushlev, Kostadin; Savalei, Victoria; Matta, Shashi; Schmader, Toni

    2014-12-01

    A central question of human psychology is whether and when people change for the better. Although it has long been assumed that emotion plays a central role in self-regulation, the role of specific emotions in motivating a desire for self-change has been largely ignored. We report 2 studies examining people's lived experiences of self-conscious emotions, particularly shame, in motivating a desire for self-change. Study 1 revealed that when participants recalled experiences of shame, guilt, or embarrassment, shame-and, to some degree, guilt-predicted a motivation for self-change. Study 2 compared shame, guilt, and regret for events and found that although shame experiences often involved high levels of both regret and guilt, it was feelings of shame that uniquely predicted a desire for self-change, whereas regret predicted an interest in mentally undoing the past and repairing harm done. Implications for motivating behavior change are discussed.

  14. Unconventional repertoire profile is imprinted during acute chikungunya infection for natural killer cells polarization toward cytotoxicity.

    PubMed

    Petitdemange, Caroline; Becquart, Pierre; Wauquier, Nadia; Béziat, Vivien; Debré, Patrice; Leroy, Eric M; Vieillard, Vincent

    2011-09-01

    Chikungunya virus (CHIKV) is a worldwide emerging pathogen. In humans it causes a syndrome characterized by high fever, polyarthritis, and in some cases lethal encephalitis. Growing evidence indicates that the innate immune response plays a role in controlling CHIKV infection. We show here that CHIKV induces major but transient modifications in NK-cell phenotype and function soon after the onset of acute infection. We report a transient clonal expansion of NK cells that coexpress CD94/NKG2C and inhibitory receptors for HLA-C1 alleles and are correlated with the viral load. Functional tests reveal cytolytic capacity driven by NK cells in the absence of exogenous signals and severely impaired IFN-γ production. Collectively these data provide insight into the role of this unique subset of NK cells in controlling CHIKV infection by subset-specific expansion in response to acute infection, followed by a contraction phase after viral clearance.

  15. Harnessing glycomics technologies: integrating structure with function for glycan characterization

    PubMed Central

    Robinson, Luke N.; Artpradit, Charlermchai; Raman, Rahul; Shriver, Zachary H.; Ruchirawat, Mathuros; Sasisekharan, Ram

    2013-01-01

    Glycans, or complex carbohydrates, are a ubiquitous class of biological molecules which impinge on a variety of physiological processes ranging from signal transduction to tissue development and microbial pathogenesis. In comparison to DNA and proteins, glycans present unique challenges to the study of their structure and function owing to their complex and heterogeneous structures and the dominant role played by multivalency in their sequence-specific biological interactions. Arising from these challenges, there is a need to integrate information from multiple complementary methods to decode structure-function relationships. Focusing on acidic glycans, we describe here key glycomics technologies for characterizing their structural attributes, including linkage, modifications, and topology, as well as for elucidating their role in biological processes. Two cases studies, one involving sialylated branched glycans and the other sulfated glycosaminoglycans, are used to highlight how integration of orthogonal information from diverse datasets enables rapid convergence of glycan characterization for development of robust structure-function relationships. PMID:22522536

  16. The Otolaryngologist's Role in Providing Gender-Affirming Care: An Opportunity for Improved Education and Training.

    PubMed

    Chaiet, Scott R; Yoshikawa, Noriko; Sturm, Angela; Flanary, Valerie; Ishman, Stacey; Streed, Carl G

    2018-06-01

    Currently, there are limited resources and training available for otolaryngologists and otolaryngology practice personnel to provide gender-affirming care for transgender or gender nonconforming patients. This unique patient population may present to our offices for gender-specific care or with complaints of the ear, nose, and throat unrelated to gender identity. Our current practice has unintentional but direct consequences on our patients care, as transgender patients often report negative experiences in the healthcare setting related to their gender identity. The absence of resources and training is also seen in other specialties. Physicians who create an environment where patients of all gender identities feel welcome can better meet their patients' health care needs. In addition, otolaryngologists can play a role in easing the gender dysphoria experienced by transgender patients. We suggest educational content should be created for and made available to otolaryngologists and office staff to provide gender-affirming care.

  17. Zinc activates damage-sensing TRPA1 ion channels.

    PubMed

    Hu, Hongzhen; Bandell, Michael; Petrus, Matt J; Zhu, Michael X; Patapoutian, Ardem

    2009-03-01

    Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and it is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine modification. Zinc activates TRPA1 through a unique mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as an important target for the sensory effects of zinc and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission.

  18. Variability in Immunohistochemical Detection of Programmed Death Ligand 1 (PD-L1) in Cancer Tissue Types

    PubMed Central

    Scognamiglio, Giosuè; De Chiara, Anna; Di Bonito, Maurizio; Tatangelo, Fabiana; Losito, Nunzia Simona; Anniciello, Annamaria; De Cecio, Rossella; D’Alterio, Crescenzo; Scala, Stefania; Cantile, Monica; Botti, Gerardo

    2016-01-01

    In normal cell physiology, programmed death 1 (PD-1) and its ligand, PD-L1, play an immunoregulatory role in T-cell activation, tolerance, and immune-mediated tissue damage. The PD-1/PD-L1 pathway also plays a critical role in immune escape of tumor cells and has been demonstrated to correlate with a poor prognosis of patients with several types of cancer. However, recent reports have revealed that the immunohistochemical (IHC) expression of the PD-L1 in tumor cells is not uniform for the use of different antibodies clones, with variable specificity, often doubtful topographical localization, and with a score not uniquely defined. The purpose of this study was to analyze the IHC expression of PD-L1 on a large series of several human tumors to correctly define its staining in different tumor tissues. PMID:27213372

  19. Role of dendritic cells in the regulation of maternal immune responses to the fetus during mammalian gestation.

    PubMed

    Kammerer, Ulrike; Kruse, Andrea; Barrientos, Gabriela; Arck, Petra C; Blois, Sandra M

    2008-01-01

    Successful mammalian pregnancy relies on the action of sophisticated regulatory mechanisms that allow the fetus (a semi-allograft) to grow and develop in the uterus in spite of being recognized by maternal immune cells. Among several immunocompetent cells present at the maternal fetal interface, dendritic cells (DC) seem to be of particular relevance for pregnancy maintenance given their unique ability to induce both antigen-specific immunity and tolerance. Thus, these cells would be potentially suitable candidates for the regulation of local immune responses within the uterus necessary to meet the difficult task of protecting the mother from infection without compromising fetal survival. Current evidence on decidual DC phenotype and function, and their role in the regulation of the maternal immune system during mouse and human pregnancy are discussed and reviewed herein; highlighting novel DC functions that seem to be of great importance for a successful pregnancy outcome.

  20. Adapter molecule Grb2-associated binder 1 is specifically expressed in marginal zone B cells and negatively regulates thymus-independent antigen-2 responses.

    PubMed

    Itoh, Shousaku; Itoh, Motoyuki; Nishida, Keigo; Yamasaki, Satoru; Yoshida, Yuichi; Narimatsu, Masahiro; Park, Sung Joo; Hibi, Masahiko; Ishihara, Katsuhiko; Hirano, Toshio

    2002-05-15

    Grb2-associated binder 1 (Gab1) is a member of the Gab/daughter of sevenless family of adapter molecules involved in the signal transduction pathways of a variety of growth factors, cytokines, and Ag receptors. To know the role for Gab1 in hematopoiesis and immune responses in vivo, we analyzed radiation chimeras reconstituted with fetal liver (FL) cells of Gab1(-/-) mice, because Gab1(-/-) mice are lethal to embryos. Transfer of Gab1(-/-) FL cells of 14.5 days post-coitum rescued lethally irradiated mice, indicating that Gab1 is not essential for hematopoiesis. Although mature T and B cell subsets developed normally in the peripheral lymphoid organs, reduction of pre-B cells and increase of myeloid cells in the Gab1(-/-) FL chimeras suggested the regulatory roles for Gab1 in hematopoiesis. The chimera showed augmented IgM and IgG1 production to thymus-independent (TI)-2 Ag, although they showed normal responses for thymus-dependent and TI-1 Ags, indicating its negative role specific to TI-2 response. Gab1(-/-) splenic B cells stimulated with anti-delta-dextran plus IL-4 plus IL-5 showed augmented IgM and IgG1 production in vitro that was corrected by the retrovirus-mediated transfection of the wild-type Gab1 gene, clearly demonstrating the cell-autonomous, negative role of Gab1. Furthermore, we showed that the negative role of Gab1 required its Src homology 2-containing tyrosine phosphatase-2 binding sites. Cell fractionation analysis revealed that nonfollicular B cells were responsible for the augmented Ab production in vitro. Consistent with these results, the Gab1 gene was expressed in marginal zone B cells but not follicular B cells. These results indicated that Gab1 is a unique negative regulator specific for TI-2 responses.

  1. Cognitive Errors, Anxiety Sensitivity, and Anxiety Control Beliefs: Their Unique and Specific Associations with Childhood Anxiety Symptoms

    ERIC Educational Resources Information Center

    Weems, Carl F.; Costa, Natalie M.; Watts, Sarah E.; Taylor, Leslie K.; Cannon, Melinda F.

    2007-01-01

    This study examined the interrelations among negative cognitive errors, anxiety sensitivity, and anxiety control beliefs and explored their unique and specific associations with anxiety symptoms in a community sample of youth. Existing research has suggested that these constructs are related to childhood anxiety disorder symptoms; however,…

  2. The Faculty of Language: What's Special about It?

    ERIC Educational Resources Information Center

    Pinker, S.; Jackendoff, R.

    2005-01-01

    We examine the question of which aspects of language are uniquely human and uniquely linguistic in light of recent suggestions by Hauser, Chomsky, and Fitch that the only such aspect is syntactic recursion, the rest of language being either specific to humans but not to language (e.g. words and concepts) or not specific to humans (e.g. speech…

  3. Afro-American Patterns of Cognition: A Review of Research.

    ERIC Educational Resources Information Center

    Shade, Barbara J.

    Specific and unique information processing patterns have been developed by Black Americans as a result of coping with and adapting to a color-conscious society. A review of the literature shows that the major variation in the processing of information which seems to be uniquely Black American occurs in their patterns of perception. Specifically,…

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Yoko; Department of Pediatrics, School of Medicine, Keio University, Tokyo 160-8582; Sou, Yu-Shin

    Highlights: • Knockdown of LC3 or GABARAP families did not affect the basal autophagy. • LC3B has a higher affinity for the autophagy-specific substrate, p62, than GABARAPs. • siRNA-mediated knockdown of LC3B, but not that of GABARAPs, resulted in significant accumulation of p62. - Abstract: Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based onmore » its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs.« less

  5. Male Role Norms Inventory-Short Form (MRNI-SF): development, confirmatory factor analytic investigation of structure, and measurement invariance across gender.

    PubMed

    Levant, Ronald F; Hall, Rosalie J; Rankin, Thomas J

    2013-04-01

    The current study reports the development from the Male Role Norms Inventory-Revised (MRNI-R; Levant, Rankin, Williams, Hasan, & Smalley, 2010) of the 21-item MRNI-Short Form (MRNI-SF). Confirmatory factor analysis of MRNI-SF responses from a sample of 1,017 undergraduate participants (549 men, 468 women) indicated that the best fitting "bifactor" model incorporated the hypothesized 7-factor structure while explicitly modeling an additional, general traditional masculinity ideology factor. Specifically, each item-level indicator loaded on 2 factors: a general traditional masculinity ideology factor and a specific factor corresponding to 1 of the 7 hypothesized traditional masculinity ideology norms. The bifactor model was assessed for measurement invariance across gender groups, with findings of full configural invariance and partial metric invariance, such that factor loadings were equivalent across the gender groups for the 7 specific factors but not for the general traditional masculinity ideology factor. Theoretical explanations for this latter result include the potential that men's sense of self or identity may be engaged when responding to questions asking to what extent they agree or disagree with normative statements about their behavior, a possibility that could be investigated in future research by examining the associations of the general and specific factors with measures of masculine identity. Additional exploratory invariance analyses demonstrated latent mean differences between men and women on 4 of the 8 factors, and equivocal results for invariance of item intercepts, item uniquenesses, and factor variances-covariances.

  6. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels.

    PubMed

    Sartiani, Laura; Mannaioni, Guido; Masi, Alessio; Novella Romanelli, Maria; Cerbai, Elisabetta

    2017-10-01

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Nitric oxide in the stress axis.

    PubMed

    López-Figueroa, M O; Day, H E; Akil, H; Watson, S J

    1998-10-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbic-hypothalamic-pituitary-adrenal (LHPA) or stress axis, activation of which is one of the defining features of a stress response. Evidence suggests that NO may modulate the release of the stress hormones ACTH and corticosterone, and NOS activity and transcription is increased in the LHPA axis following various stressful stimuli. Furthermore, following activation of the stress axis, glucocorticoids are thought to down-regulate the transcription and activity of NOS via a feedback mechanism. Taken together, current data indicate a role for NO in the regulation of the LHPA axis, although at present this role is not well defined. It has been suggested that NO may act as a cellular communicator in plasticity and development, to facilitate the activation or the release of other neurotransmitters, to mediate immune responses, and/or as a vasodilator in the regulation of blood flow. In the following review we summarize some of the latest insights into the function of NO, with special attention to its relationship with the LHPA axis.

  8. A cycle of violence? Examining family-of-origin violence, attitudes, and intimate partner violence perpetration.

    PubMed

    Eriksson, Li; Mazerolle, Paul

    2015-03-01

    Exposure to violence in the family-of-origin has consistently been linked to intimate partner violence (IPV) perpetration in adulthood. However, whether the transmission of violence across generations is role- and gender-specific still remains unclear. The current study examined the effects of experiencing child abuse and observing parental violence on IPV perpetration among a sample of male arrestees (N = 303). The differential effects of observing violence perpetrated by same-sex (father to mother), opposite-sex (mother to father), and both parents on subsequent IPV perpetration were examined. Logistic regression analyses showed that while observing father-only violence and bidirectional interparental violence was predictive of IPV perpetration, observing mother-only violence and direct experiences of child abuse was not. These findings suggest that the transmission of violence across generations is both role- and gender-specific and highlight the importance of examining unique dimensions of partner violence to assess influences on children. The study further examined whether attitudes justifying wife beating mediate the effect of exposure to violence and subsequent IPV perpetration. Results showed that although attitudes were predictive of perpetration, these attitudes did not mediate the relationship. © The Author(s) 2014.

  9. Interspecific variation of warning calls in piranhas: a comparative analysis.

    PubMed

    Mélotte, Geoffrey; Vigouroux, Régis; Michel, Christian; Parmentier, Eric

    2016-10-26

    Fish sounds are known to be species-specific, possessing unique temporal and spectral features. We have recorded and compared sounds in eight piranha species to evaluate the potential role of acoustic communication as a driving force in clade diversification. All piranha species showed the same kind of sound-producing mechanism: sonic muscles originate on vertebrae and attach to a tendon surrounding the bladder ventrally. Contractions of the sound-producing muscles force swimbladder vibration and dictate the fundamental frequency. It results the calling features of the eight piranha species logically share many common characteristics. In all the species, the calls are harmonic sounds composed of multiple continuous cycles. However, the sounds of Serrasalmus elongatus (higher number of cycles and high fundamental frequency) and S. manueli (long cycle periods and low fundamental frequency) are clearly distinguishable from the other species. The sonic mechanism being largely conserved throughout piranha evolution, acoustic communication can hardly be considered as the main driving force in the diversification process. However, sounds of some species are clearly distinguishable despite the short space for variations supporting the need for specific communication. Behavioural studies are needed to clearly understand the eventual role of the calls during spawning events.

  10. Episome-generated N-myc antisense RNA restricts the differentiation potential of primitive neuroectodermal cell lines.

    PubMed Central

    Whitesell, L; Rosolen, A; Neckers, L M

    1991-01-01

    Neuroectodermal tumors of childhood provide a unique opportunity to examine the role of genes potentially regulating neuronal growth and differentiation because many cell lines derived from these tumors are composed of at least two distinct morphologic cell types. These types display variant phenotypic characteristics and spontaneously interconvert, or transdifferentiate, in vitro. The factors that regulate transdifferentiation are unknown. Application of antisense approaches to the transdifferentiation process has allowed us to explore the precise role that N-myc may play in regulating developing systems. We now report construction of an episomally replicating expression vector designed to generate RNA antisense to part of the human N-myc gene. Such a vector is able to specifically inhibit N-myc expression in cell lines carrying both normal and amplified N-myc alleles. Inhibition of N-myc expression blocks transdifferentiation in these lines, with accumulation of cells of an intermediate phenotype. A concomitant decrease in growth rate but not loss of tumorigenicity was observed in the N-myc nonamplified cell line CHP-100. Vector-generated antisense RNA should allow identification of genes specifically regulated by the proto-oncogene N-myc. Images PMID:1996098

  11. De novo self-assembling collagen heterotrimers using explicit positive and negative design.

    PubMed

    Xu, Fei; Zhang, Lei; Koder, Ronald L; Nanda, Vikas

    2010-03-23

    We sought to computationally design model collagen peptides that specifically associate as heterotrimers. Computational design has been successfully applied to the creation of new protein folds and functions. Despite the high abundance of collagen and its key role in numerous biological processes, fibrous proteins have received little attention as computational design targets. Collagens are composed of three polypeptide chains that wind into triple helices. We developed a discrete computational model to design heterotrimer-forming collagen-like peptides. Stability and specificity of oligomerization were concurrently targeted using a combined positive and negative design approach. The sequences of three 30-residue peptides, A, B, and C, were optimized to favor charge-pair interactions in an ABC heterotrimer, while disfavoring the 26 competing oligomers (i.e., AAA, ABB, BCA). Peptides were synthesized and characterized for thermal stability and triple-helical structure by circular dichroism and NMR. A unique A:B:C-type species was not achieved. Negative design was partially successful, with only A + B and B + C competing mixtures formed. Analysis of computed versus experimental stabilities helps to clarify the role of electrostatics and secondary-structure propensities determining collagen stability and to provide important insight into how subsequent designs can be improved.

  12. Interspecific variation of warning calls in piranhas: a comparative analysis

    PubMed Central

    Mélotte, Geoffrey; Vigouroux, Régis; Michel, Christian; Parmentier, Eric

    2016-01-01

    Fish sounds are known to be species-specific, possessing unique temporal and spectral features. We have recorded and compared sounds in eight piranha species to evaluate the potential role of acoustic communication as a driving force in clade diversification. All piranha species showed the same kind of sound-producing mechanism: sonic muscles originate on vertebrae and attach to a tendon surrounding the bladder ventrally. Contractions of the sound-producing muscles force swimbladder vibration and dictate the fundamental frequency. It results the calling features of the eight piranha species logically share many common characteristics. In all the species, the calls are harmonic sounds composed of multiple continuous cycles. However, the sounds of Serrasalmus elongatus (higher number of cycles and high fundamental frequency) and S. manueli (long cycle periods and low fundamental frequency) are clearly distinguishable from the other species. The sonic mechanism being largely conserved throughout piranha evolution, acoustic communication can hardly be considered as the main driving force in the diversification process. However, sounds of some species are clearly distinguishable despite the short space for variations supporting the need for specific communication. Behavioural studies are needed to clearly understand the eventual role of the calls during spawning events. PMID:27782184

  13. Explaining lexical-semantic deficits in specific language impairment: the role of phonological similarity, phonological working memory, and lexical competition.

    PubMed

    Mainela-Arnold, Elina; Evans, Julia L; Coady, Jeffry A

    2010-12-01

    In this study, the authors investigated potential explanations for sparse lexical-semantic representations in children with specific language impairment (SLI) and typically developing peers. The role of auditory perception, phonological working memory, and lexical competition were investigated. Participants included 32 children (ages 8;5-12;3 [years;months]): Sixteen children with SLI and 16 typically developing age- and nonverbal IQ-matched peers (CA). Children's word definitions were investigated. The words to be defined were manipulated for phonological neighborhood density. Nonword repetition and two lexical competition measures were tested as predictors of word definition abilities. Children with SLI gave word definitions with fewer content details than children in the CA group. Compared with the CA group, the definitions of children in the SLI group were not disproportionately impacted by phonological neighborhood density. Lexical competition was a significant unique predictor of children's word definitions, but nonword repetition was not. Individual differences in richness of lexical semantic representations as well as differences between children with SLI and typically developing peers may-at least, in part-be explained by processes of competition. However, difficulty with auditory perception or phonological working memory does not fully explain difficulties in lexical semantics.

  14. Concepts and their dynamics: a quantum-theoretic modeling of human thought.

    PubMed

    Aerts, Diederik; Gabora, Liane; Sozzo, Sandro

    2013-10-01

    We analyze different aspects of our quantum modeling approach of human concepts and, more specifically, focus on the quantum effects of contextuality, interference, entanglement, and emergence, illustrating how each of them makes its appearance in specific situations of the dynamics of human concepts and their combinations. We point out the relation of our approach, which is based on an ontology of a concept as an entity in a state changing under influence of a context, with the main traditional concept theories, that is, prototype theory, exemplar theory, and theory theory. We ponder about the question why quantum theory performs so well in its modeling of human concepts, and we shed light on this question by analyzing the role of complex amplitudes, showing how they allow to describe interference in the statistics of measurement outcomes, while in the traditional theories statistics of outcomes originates in classical probability weights, without the possibility of interference. The relevance of complex numbers, the appearance of entanglement, and the role of Fock space in explaining contextual emergence, all as unique features of the quantum modeling, are explicitly revealed in this article by analyzing human concepts and their dynamics. © 2013 Cognitive Science Society, Inc.

  15. Assessing host-specificity of Escherichia coli using a supervised learning logic-regression-based analysis of single nucleotide polymorphisms in intergenic regions.

    PubMed

    Zhi, Shuai; Li, Qiaozhi; Yasui, Yutaka; Edge, Thomas; Topp, Edward; Neumann, Norman F

    2015-11-01

    Host specificity in E. coli is widely debated. Herein, we used supervised learning logic-regression-based analysis of intergenic DNA sequence variability in E. coli in an attempt to identify single nucleotide polymorphism (SNP) biomarkers of E. coli that are associated with natural selection and evolution toward host specificity. Seven-hundred and eighty strains of E. coli were isolated from 15 different animal hosts. We utilized logic regression for analyzing DNA sequence data of three intergenic regions (flanked by the genes uspC-flhDC, csgBAC-csgDEFG, and asnS-ompF) to identify genetic biomarkers that could potentially discriminate E. coli based on host sources. Across 15 different animal hosts, logic regression successfully discriminated E. coli based on animal host source with relatively high specificity (i.e., among the samples of the non-target animal host, the proportion that correctly did not have the host-specific marker pattern) and sensitivity (i.e., among the samples from a given animal host, the proportion that correctly had the host-specific marker pattern), even after fivefold cross validation. Permutation tests confirmed that for most animals, host specific intergenic biomarkers identified by logic regression in E. coli were significantly associated with animal host source. The highest level of biomarker sensitivity was observed in deer isolates, with 82% of all deer E. coli isolates displaying a unique SNP pattern that was 98% specific to deer. Fifty-three percent of human isolates displayed a unique biomarker pattern that was 98% specific to humans. Twenty-nine percent of cattle isolates displayed a unique biomarker that was 97% specific to cattle. Interestingly, even within a related host group (i.e., Family: Canidae [domestic dogs and coyotes]), highly specific SNP biomarkers (98% and 99% specificity for dog and coyotes, respectively) were observed, with 21% of dog E. coli isolates displaying a unique dog biomarker and 61% of coyote isolates displaying a unique coyote biomarker. Application of a supervised learning method, such as logic regression, to DNA sequence analysis at certain intergenic regions demonstrates that some E. coli strains may evolve to become host-specific. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Three-dimensional Structure of Saccharomyces Invertase

    PubMed Central

    Sainz-Polo, M. Angela; Ramírez-Escudero, Mercedes; Lafraya, Alvaro; González, Beatriz; Marín-Navarro, Julia; Polaina, Julio; Sanz-Aparicio, Julia

    2013-01-01

    Invertase is an enzyme that is widely distributed among plants and microorganisms and that catalyzes the hydrolysis of the disaccharide sucrose into glucose and fructose. Despite the important physiological role of Saccharomyces invertase (SInv) and the historical relevance of this enzyme as a model in early biochemical studies, its structure had not yet been solved. We report here the crystal structure of recombinant SInv at 3.3 Å resolution showing that the enzyme folds into the catalytic β-propeller and β-sandwich domains characteristic of GH32 enzymes. However, SInv displays an unusual quaternary structure. Monomers associate in two different kinds of dimers, which are in turn assembled into an octamer, best described as a tetramer of dimers. Dimerization plays a determinant role in substrate specificity because this assembly sets steric constraints that limit the access to the active site of oligosaccharides of more than four units. Comparative analysis of GH32 enzymes showed that formation of the SInv octamer occurs through a β-sheet extension that seems unique to this enzyme. Interaction between dimers is determined by a short amino acid sequence at the beginning of the β-sandwich domain. Our results highlight the role of the non-catalytic domain in fine-tuning substrate specificity and thus supplement our knowledge of the activity of this important family of enzymes. In turn, this gives a deeper insight into the structural features that rule modularity and protein-carbohydrate recognition. PMID:23430743

  17. Graphene Oxides Used as a New "Dual Role" Binder for Stabilizing Silicon Nanoparticles in Lithium-Ion Battery.

    PubMed

    Shan, Changsheng; Wu, Kaifeng; Yen, Hung-Ju; Narvaez Villarrubia, Claudia; Nakotte, Tom; Bo, Xiangjie; Zhou, Ming; Wu, Gang; Wang, Hsing-Lin

    2018-05-09

    For the first time, we report that graphene oxide (GO) can be used as a new "dual-role" binder for Si nanoparticles (SiNPs)-based lithium-ion batteries (LIBs). GO not only provides a graphene-like porous 3D framework for accommodating the volume changes of SiNPs during charging/discharging cycles, but also acts as a polymer-like binder that forms strong chemical bonds with SiNPs through its Si-OH functional groups to trap and stabilize SiNPs inside the electrode. Leveraging this unique dual-role of GO binder, we fabricated GO/SiNPs electrodes with remarkably improved performances as compared to using the conventional polyvinylidene fluoride (PVDF) binder. Specifically, the GO/SiNPs electrode showed a specific capacity of 2400 mA h g -1 at the 50th cycle and 2000 mA h g -1 at the 100th cycle, whereas the SiNPs/PVDF electrode only showed 456 mAh g -1 at the 50th cycle and 100 mAh g -1 at 100th cycle. Moreover, the GO/SiNPs film maintained its structural integrity and formed a stable solid-electrolyte interphase (SEI) film after 100 cycles. These results, combined with the well-established facile synthesis of GO, indicate that GO can be an excellent binder for developing high performance Si-based LIBs.

  18. Subcellular proteome profiles of different latex fractions revealed washed solutions from rubber particles contain crucial enzymes for natural rubber biosynthesis.

    PubMed

    Wang, Dan; Sun, Yong; Chang, Lili; Tong, Zheng; Xie, Quanliang; Jin, Xiang; Zhu, Liping; He, Peng; Li, Hongbin; Wang, Xuchu

    2018-06-30

    Rubber particle (RP) is a specific organelle for natural rubber biosynthesis (NRB) and storage in rubber tree Hevea brasiliensis. NRB is processed by RP membrane-localized proteins, which were traditionally purified by repeated washing. However, we noticed many proteins in the discarded washing solutions (WS) from RP. Here, we compared the proteome profiles of WS, C-serum (CS) and RP by 2-DE, and identified 233 abundant proteins from WS by mass spectrometry. Many spots on 2-DE gels were identified as different protein species. We further performed shotgun analysis of CS, WS and RP and identified 1837, 1799 and 1020 unique proteins, respectively. Together with 2-DE, we finally identified 1825 proteins from WS, 246 were WS-specific. These WS-specific proteins were annotated in Gene Ontology, indicating most abundant pathways are organic substance metabolic process, protein degradation, primary metabolic process, and energy metabolism. Protein-protein interaction analysis revealed these WS-specific proteins are mainly involved in ribosomal metabolism, proteasome system, vacuolar protein sorting and endocytosis. Label free and Western blotting revealed many WS-specific proteins and protein complexes are crucial for NRB initiation. These findings not only deepen our understanding of WS proteome, but also provide new evidences on the roles of RP membrane proteins in NRB. Natural rubber is stored in rubber particle from the rubber tree. Rubber particles were traditionally purified by repeated washing, but many proteins were identified from the washing solutions (WS). We obtained the first visualization proteome profiles with 1825 proteins from WS, including 246 WS-specific ones. These WS proteins contain almost all enzymes for polyisoprene initiation and may play important roles in rubber biosynthesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. CHD2 variants are a risk factor for photosensitivity in epilepsy

    PubMed Central

    Myers, Candace T.; Leu, Costin; de Kovel, Carolien G. F.; Afrikanova, Tatiana; Cordero-Maldonado, Maria Lorena; Martins, Teresa G.; Jacmin, Maxime; Drury, Suzanne; Krishna Chinthapalli, V.; Muhle, Hiltrud; Pendziwiat, Manuela; Sander, Thomas; Ruppert, Ann-Kathrin; Møller, Rikke S.; Thiele, Holger; Krause, Roland; Schubert, Julian; Lehesjoki, Anna-Elina; Nürnberg, Peter; Lerche, Holger; Palotie, Aarno; Coppola, Antonietta; Striano, Salvatore; Gaudio, Luigi Del; Boustred, Christopher; Schneider, Amy L.; Lench, Nicholas; Jocic-Jakubi, Bosanka; Covanis, Athanasios; Capovilla, Giuseppe; Veggiotti, Pierangelo; Piccioli, Marta; Parisi, Pasquale; Cantonetti, Laura; Sadleir, Lynette G.; Mullen, Saul A.; Berkovic, Samuel F.; Stephani, Ulrich; Helbig, Ingo; Crawford, Alexander D.; Esguerra, Camila V.; Kasteleijn-Nolst Trenité, Dorothee G. A.

    2015-01-01

    Photosensitivity is a heritable abnormal cortical response to flickering light, manifesting as particular electroencephalographic changes, with or without seizures. Photosensitivity is prominent in a very rare epileptic encephalopathy due to de novo CHD2 mutations, but is also seen in epileptic encephalopathies due to other gene mutations. We determined whether CHD2 variation underlies photosensitivity in common epilepsies, specific photosensitive epilepsies and individuals with photosensitivity without seizures. We studied 580 individuals with epilepsy and either photosensitive seizures or abnormal photoparoxysmal response on electroencephalography, or both, and 55 individuals with photoparoxysmal response but no seizures. We compared CHD2 sequence data to publicly available data from 34 427 individuals, not enriched for epilepsy. We investigated the role of unique variants seen only once in the entire data set. We sought CHD2 variants in 238 exomes from familial genetic generalized epilepsies, and in other public exome data sets. We identified 11 unique variants in the 580 individuals with photosensitive epilepsies and 128 unique variants in the 34 427 controls: unique CHD2 variation is over-represented in cases overall (P = 2·17 × 10−5). Among epilepsy syndromes, there was over-representation of unique CHD2 variants (3/36 cases) in the archetypal photosensitive epilepsy syndrome, eyelid myoclonia with absences (P = 3·50 × 10−4). CHD2 variation was not over-represented in photoparoxysmal response without seizures. Zebrafish larvae with chd2 knockdown were tested for photosensitivity. Chd2 knockdown markedly enhanced mild innate zebrafish larval photosensitivity. CHD2 mutation is the first identified cause of the archetypal generalized photosensitive epilepsy syndrome, eyelid myoclonia with absences. Unique CHD2 variants are also associated with photosensitivity in common epilepsies. CHD2 does not encode an ion channel, opening new avenues for research into human cortical excitability. PMID:25783594

  20. Mind over matter: cognitive - behavioral determinants of emotional distress in multiple sclerosis patients.

    PubMed

    Chalk, Holly McCartney

    2007-10-01

    Given the high incidence and unique symptomatology of depression in multiple sclerosis (MS) patients, the current study examined the role of cognitive and behavioral variables in predicting psychosocial adjustment in this population, in order to suggest psychotherapeutic interventions tailored specifically to MS patients. Data from 329 MS patients indicated that problem solving coping, acceptance coping, and challenge appraisals were associated with positive psychological adjustment (i.e., high life satisfaction, low depression and anxiety), whereas variables measuring disease severity (i.e., illness duration, subjective health status, and self-reported disability) were not associated with adjustment. These findings suggest that MS patients' psychological outcomes are more related to controllable cognitive and behavioral factors than to the physical effects of the disease. Consequently, it is expected that interventions that target these specific coping strategies and cognitive appraisals will be effective in treating the emotional effects of MS.

  1. Putting the “You” in “Thank You”

    PubMed Central

    Kurtz, Laura E.; Hilaire, Nicole M.

    2016-01-01

    Although positive emotions as a class can build interpersonal resources, recent evidence suggests a unique and direct role for gratitude. In the current research, we shine the spotlight on what happens between a grateful person and the benefactor to illuminate what can build a bridge between them. Specifically, we draw on work calling gratitude an “other-praising” emotion. In an original study and a conceptual replication that included two independent samples, couples had video-recorded conversations in which one member expressed gratitude to the other (n = 370). Expresser’s other-praising behavior was robustly positively associated with the benefactor’s postinteraction perception of expresser responsiveness, personal good feelings in general, and felt loving in particular. Several practical and theoretical alternative explanations are ruled out. By clarifying the specific behavioral and subjective psychological mechanisms through which expressed gratitude promotes relationships, this work advances affective and relationship science, two domains that cut across disciplines within psychology. PMID:27570582

  2. The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity.

    PubMed

    Zhao, Jian; Barkla, Bronwyn J; Marshall, Joy; Pittman, Jon K; Hirschi, Kendal D

    2008-02-01

    Perturbing CAX1, an Arabidopsis vacuolar H+/Ca2+ antiporter, and the related vacuolar transporter CAX3, has been previously shown to cause severe growth defects; however, the specific function of CAX3 has remained elusive. Here, we describe plant phenotypes that are shared among cax1 and cax3 including an increased sensitivity to both abscisic acid (ABA) and sugar during germination, and an increased tolerance to ethylene during early seedling development. We have also identified phenotypes unique to cax3, namely salt, lithium and low pH sensitivity. We used biochemical measurements to ascribe these cax3 sensitivities to a reduction in vacuolar H+/Ca2+ transport during salt stress and decreased plasma membrane H+-ATPase activity. These findings catalog an array of CAX phenotypes and assign a specific role for CAX3 in response to salt tolerance.

  3. Concept document of the repository-based software engineering program: A constructive appraisal

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A constructive appraisal of the Concept Document of the Repository-Based Software Engineering Program is provided. The Concept Document is designed to provide an overview of the Repository-Based Software Engineering (RBSE) Program. The Document should be brief and provide the context for reading subsequent requirements and product specifications. That is, all requirements to be developed should be traceable to the Concept Document. Applied Expertise's analysis of the Document was directed toward assuring that: (1) the Executive Summary provides a clear, concise, and comprehensive overview of the Concept (rewrite as necessary); (2) the sections of the Document make best use of the NASA 'Data Item Description' for concept documents; (3) the information contained in the Document provides a foundation for subsequent requirements; and (4) the document adequately: identifies the problem being addressed; articulates RBSE's specific role; specifies the unique aspects of the program; and identifies the nature and extent of the program's users.

  4. Crystal structure of a designed, thermostable, heterotrimeric coiled coil.

    PubMed Central

    Nautiyal, S.; Alber, T.

    1999-01-01

    Electrostatic interactions are often critical for determining the specificity of protein-protein complexes. To study the role of electrostatic interactions for assembly of helical bundles, we previously designed a thermostable, heterotrimeric coiled coil, ABC, in which charged residues were employed to drive preferential association of three distinct, 34-residue helices. To investigate the basis for heterotrimer specificity, we have used multiwavelength anomalous diffraction (MAD) analysis to determine the 1.8 A resolution crystal structure of ABC. The structure shows that ABC forms a heterotrimeric coiled coil with the intended arrangement of parallel chains. Over half of the ion pairs engineered to restrict helix associations were apparent in the experimental electron density map. As seen in other trimeric coiled coils, ABC displays acute knobs-into-holes packing and a buried anion coordinated by core polar amino acids. These interactions validate the design strategy and illustrate how packing and polar contacts determine structural uniqueness. PMID:10210186

  5. Tissue-Resident Macrophages in Fungal Infections.

    PubMed

    Xu, Shengjie; Shinohara, Mari L

    2017-01-01

    Invasive fungal infections result in high morbidity and mortality. Host organs targeted by fungal pathogens vary depending on the route of infection and fungal species encountered. Cryptococcus neoformans infects the respiratory tract and disseminates throughout the central nervous system. Candida albicans infects mucosal tissues and the skin, and systemic Candida infection in rodents has a tropism to the kidney. Aspergillus fumigatus reaches distal areas of the lung once inhaled by the host. Across different tissues in naïve hosts, tissue-resident macrophages (TRMs) are one of the most populous cells of the innate immune system. Although they function to maintain homeostasis in a tissue-specific manner during steady state, TRMs may function as the first line of defense against invading pathogens and may regulate host immune responses. Thus, in any organs, TRMs are uniquely positioned and specifically programmed to function. This article reviews the current understanding of the roles of TRMs during major fungal infections.

  6. Mediodorsal thalamus is required for discrete phases of goal-directed behavior in macaques.

    PubMed

    Wicker, Evan; Turchi, Janita; Malkova, Ludise; Forcelli, Patrick Alexander

    2018-05-31

    Reward contingencies are dynamic: outcomes that were valued at one point may subsequently lose value. Action selection in the face of dynamic reward associations requires several cognitive processes: registering a change in value of the primary reinforcer, adjusting the value of secondary reinforcers to reflect the new value of the primary reinforcer, and guiding action selection to optimal choices. Flexible responding has been evaluated extensively using reinforcer devaluation tasks. Performance on this task relies upon amygdala, Areas 11 and 13 of orbitofrontal cortex (OFC), and mediodorsal thalamus (MD). Differential contributions of amygdala and Areas 11 and 13 of OFC to specific sub-processes have been established, but the role of MD in these sub-processes is unknown. Pharmacological inactivation of the macaque MD during specific phases of this task revealed that MD is required for reward valuation and action selection. This profile is unique, differing from both amygdala and subregions of the OFC.

  7. Temporal and Rate Coding for Discrete Event Sequences in the Hippocampus.

    PubMed

    Terada, Satoshi; Sakurai, Yoshio; Nakahara, Hiroyuki; Fujisawa, Shigeyoshi

    2017-06-21

    Although the hippocampus is critical to episodic memory, neuronal representations supporting this role, especially relating to nonspatial information, remain elusive. Here, we investigated rate and temporal coding of hippocampal CA1 neurons in rats performing a cue-combination task that requires the integration of sequentially provided sound and odor cues. The majority of CA1 neurons displayed sensory cue-, combination-, or choice-specific (simply, "event"-specific) elevated discharge activities, which were sustained throughout the event period. These event cells underwent transient theta phase precession at event onset, followed by sustained phase locking to the early theta phases. As a result of this unique single neuron behavior, the theta sequences of CA1 cell assemblies of the event sequences had discrete representations. These results help to update the conceptual framework for space encoding toward a more general model of episodic event representations in the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Cycling with BRCA2 from DNA repair to mitosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyunsook, E-mail: HL212@snu.ac.kr

    Genetic integrity in proliferating cells is guaranteed by the harmony of DNA replication, appropriate DNA repair, and segregation of the duplicated genome. Breast cancer susceptibility gene BRCA2 is a unique tumor suppressor that is involved in all three processes. Hence, it is critical in genome maintenance. The functions of BRCA2 in DNA repair and homology-directed recombination (HDR) have been reviewed numerous times. Here, I will briefly go through the functions of BRCA2 in HDR and focus on the emerging roles of BRCA2 in telomere homeostasis and mitosis, then discuss how BRCA2 exerts distinct functions in a cell-cycle specific manner inmore » the maintenance of genomic integrity. - Highlights: • BRCA2 is a multifaceted tumor suppressor and is crucial in genetic integrity. • BRCA2 exerts distinct functions in cell cycle-specific manner. • Mitotic kinases regulate diverse functions of BRCA2 in mitosis and cytokinesis.« less

  9. NgBR is essential for endothelial cell glycosylation and vascular development.

    PubMed

    Park, Eon Joo; Grabińska, Kariona A; Guan, Ziqiang; Sessa, William C

    2016-02-01

    NgBR is a transmembrane protein identified as a Nogo-B-interacting protein and recently has been shown to be a subunit required for cis-prenyltransferase (cisPTase) activity. To investigate the integrated role of NgBR in vascular development, we have characterized endothelial-specific NgBR knockout embryos. Here, we show that endothelial-specific NgBR knockout results in embryonic lethality due to vascular development defects in yolk sac and embryo proper. Loss of NgBR in endothelial cells reduces proliferation and promotes apoptosis of the cells largely through defects in the glycosylation of key endothelial proteins including VEGFR2, VE-cadherin, and CD31, and defective glycosylation can be rescued by treatment with the end product of cisPTase activity, dolichol phosphate. Moreover, NgBR functions in endothelial cells during embryogenesis are Nogo-B independent. These data uniquely show the importance of NgBR and protein glycosylation during vascular development. © 2016 The Authors.

  10. The KNOXI Transcription Factor SHOOT MERISTEMLESS Regulates Floral Fate in Arabidopsis.

    PubMed

    Roth, Ohad; Alvarez, John; Levy, Matan; Bowman, John L; Ori, Naomi; Shani, Eilon

    2018-05-09

    Plants have evolved a unique and conserved developmental program that enables the conversion of leaves into floral organs. Elegant genetic and molecular work has identified key regulators of flower meristem identity. However, further understanding of flower meristem specification has been hampered by redundancy and by pleiotropic effects. The KNOXI transcription factor SHOOT MERISTEMLESS (STM) is a well-characterized regulator of shoot apical meristem maintenance. Arabidopsis thaliana stm loss-of-function mutants arrest shortly after germination, and therefore the knowledge on later roles of STM in later processes, including flower development, is limited. Here, we uncover a role for STM in the specification of flower meristem identity. Silencing STM in the APETALA1 (AP1) expression domain in the ap1-4 mutant background resulted in a leafy-flower phenotype, and an intermediate stm-2 allele enhanced the flower meristem identity phenotype of ap1-4. Transcriptional profiling of STM perturbation suggested that STM activity affects multiple floral fate genes, among them the F-Box protein-encoding gene UNUSUAL FLORAL ORGANS (UFO). In agreement with this notion, stm-2 enhanced the ufo-2 floral fate phenotype, and ectopic UFO expression rescued the leafy flowers in genetic backgrounds with compromised AP1 and STM activities. This work suggests a genetic mechanism that underlies the activity of STM in the specification of flower meristem identity. © 2018 American Society of Plant Biologists. All rights reserved.

  11. Chemoprofile and functional diversity of fungal and bacterial endophytes and role of ecofactors - A review.

    PubMed

    Shah, Aiyatullah; Hassan, Qazi Parvaiz; Mushtaq, Saleem; Shah, Aabid Manzoor; Hussain, Aehtesham

    2017-10-01

    Endophytes represent a hidden world within plants. Almost all plants that are studied harbor one or more endophytes, which help their host to survive against pathogens and changing adverse environmental conditions. Fungal and bacterial endophytes with distinct ecological niches show important biological activities and ecological functions. Their unique physiological and biochemical characteristics lead to the production of niche specific secondary metabolites that may have pharmacological potential. Identification of specific secondary metabolites in adverse environment can also help us in understanding mechanisms of host tolerance against stress condition such as biological invasions, salt, drought, temperature. These metabolites include micro as well as macromolecules, which they produce through least studied yet surprising mechanisms like xenohormesis, toxin-antitoxin system, quorum sensing. Therefore, future studies should focus on unfolding all the underlying molecular mechanisms as well as the impact of physical and biochemical environment of a specific host over endophytic function and metabolite elicitation. Need of the hour is to reshape the focus of research over endophytes and scientifically drive their ecological role toward prospective pharmacological as well as eco-friendly biological applications. This may help to manage these endophytes especially from untapped ecoregions as a useful undying biological tool to meet the present challenges as well as lay a strong and logical basis for any impending challenges. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Combining reverse genetics and nuclear magnetic resonance-based metabolomics unravels trypanosome-specific metabolic pathways.

    PubMed

    Bringaud, Frédéric; Biran, Marc; Millerioux, Yoann; Wargnies, Marion; Allmann, Stefan; Mazet, Muriel

    2015-06-01

    Numerous eukaryotes have developed specific metabolic traits that are not present in extensively studied model organisms. For instance, the procyclic insect form of Trypanosoma brucei, a parasite responsible for sleeping sickness in its mammalian-specific bloodstream form, metabolizes glucose into excreted succinate and acetate through pathways with unique features. Succinate is primarily produced from glucose-derived phosphoenolpyruvate in peroxisome-like organelles, also known as glycosomes, by a soluble NADH-dependent fumarate reductase only described in trypanosomes so far. Acetate is produced in the mitochondrion of the parasite from acetyl-CoA by a CoA-transferase, which forms an ATP-producing cycle with succinyl-CoA synthetase. The role of this cycle in ATP production was recently demonstrated in procyclic trypanosomes and has only been proposed so far for anaerobic organisms, in addition to trypanosomatids. We review how nuclear magnetic resonance spectrometry can be used to analyze the metabolic network perturbed by deletion (knockout) or downregulation (RNAi) of the candidate genes involved in these two particular metabolic pathways of procyclic trypanosomes. The role of succinate and acetate production in trypanosomes is discussed, as well as the connections between the succinate and acetate branches, which increase the metabolic flexibility probably required by the parasite to deal with environmental changes such as oxidative stress. © 2015 John Wiley & Sons Ltd.

  13. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    NASA Astrophysics Data System (ADS)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  14. Local Environment and Interactions of Liquid and Solid Interfaces Revealed by Spectral Line Shape of Surface Selective Nonlinear Vibrational Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shun-Li; Fu, Li; Chase, Zizwe A.

    Vibrational spectral lineshape contains important detailed information of molecular vibration and reports its specific interactions and couplings to its local environment. In this work, recently developed sub-1 cm-1 high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) was used to measure the -C≡N stretch vibration in the 4-n-octyl-4’-cyanobiphenyl (8CB) Langmuir or Langmuir-Blodgett (LB) monolayer as a unique vibrational probe, and the spectral lineshape analysis revealed the local environment and interactions at the air/water, air/glass, air/calcium fluoride and air/-quartz interfaces for the first time. The 8CB Langmuir or LB film is uniform and the vibrational spectral lineshape of its -C≡N group hasmore » been well characterized, making it a good choice as the surface vibrational probe. Lineshape analysis of the 8CB -C≡N stretch SFG vibrational spectra suggests the coherent vibrational dynamics and the structural and dynamic inhomogeneity of the -C≡N group at each interface are uniquely different. In addition, it is also found that there are significantly different roles for water molecules in the LB films on different substrate surfaces. These results demonstrated the novel capabilities of the surface nonlinear spectroscopy in characterization and in understanding the specific structures and chemical interactions at the liquid and solid interfaces in general.« less

  15. Unique relations between counterfactual thinking and DSM-5 PTSD symptom clusters.

    PubMed

    Mitchell, Melissa A; Contractor, Ateka A; Dranger, Paula; Shea, M Tracie

    2016-05-01

    Cognitive models of posttraumatic stress disorder (PTSD) propose that rumination about a trauma may increase particular symptom clusters. One type of rumination, termed counterfactual thinking (CFT), refers to thinking of alternative outcomes for an event. CFT centered on a trauma is thought to increase intrusions, negative alterations in mood and cognitions (NAMC), and marked alterations in arousal and reactivity (AAR). The theorized relations between CFT and specific symptom clusters have not been thoroughly investigated. Also, past work has not evaluated whether the relation is confounded by depressive symptoms, age, gender, or number of traumatic events experienced. The current study examined the unique associations between CFT and PTSD symptom clusters according to the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013) in 51 trauma-exposed treatment-seeking individuals. As predicted, CFT was associated with all PTSD symptom clusters. After controlling for common predictors of PTSD symptom severity (i.e., age, depressive symptoms, and number of traumatic life events endorsed), we found CFT to be significantly associated with the intrusion and avoidance symptom clusters but not the AAR or NAMC symptom clusters. Results from the present study provide further support for the role of rumination in specific PTSD symptom clusters above and beyond symptoms of depression, age, and number of traumatic life events endorsed. Future work may consider investigating interventions to reduce rumination in PTSD. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Parallel Comparison of N-Linked Glycopeptide Enrichment Techniques Reveals Extensive Glycoproteomic Analysis of Plasma Enabled by SAX-ERLIC.

    PubMed

    Totten, Sarah M; Feasley, Christa L; Bermudez, Abel; Pitteri, Sharon J

    2017-03-03

    Protein glycosylation is of increasing interest due to its important roles in protein function and aberrant expression with disease. Characterizing protein glycosylation remains analytically challenging due to its low abundance, ion suppression issues, and microheterogeneity at glycosylation sites, especially in complex samples such as human plasma. In this study, the utility of three common N-linked glycopeptide enrichment techniques is compared using human plasma. By analysis on an LTQ-Orbitrap Elite mass spectrometer, electrostatic repulsion hydrophilic interaction liquid chromatography using strong anion exchange solid-phase extraction (SAX-ERLIC) provided the most extensive N-linked glycopeptide enrichment when compared with multilectin affinity chromatography (M-LAC) and Sepharose-HILIC enrichments. SAX-ERLIC enrichment yielded 191 unique glycoforms across 72 glycosylation sites from 48 glycoproteins, which is more than double that detected using other enrichment techniques. The greatest glycoform diversity was observed in SAX-ERLIC enrichment, with no apparent bias toward specific glycan types. SAX-ERLIC enrichments were additionally analyzed by an Orbitrap Fusion Lumos mass spectrometer to maximize glycopeptide identifications for a more comprehensive assessment of protein glycosylation. In these experiments, 829 unique glycoforms were identified across 208 glycosylation sites from 95 plasma glycoproteins, a significant improvement from the initial method comparison and one of the most extensive site-specific glycosylation analysis in immunodepleted human plasma to date. Data are available via ProteomeXchange with identifier PXD005655.

  17. Summer Synthesis Institutes: A Novel Approach for Transformative Research and Student Career Development

    NASA Astrophysics Data System (ADS)

    Wilson, J.; Hermans, C. M.

    2010-12-01

    It is believed that breakthroughs tend to occur when small groups of highly motivated scientists are driven by challenges encountered in real problem-solving situations and given the freedom to experiment with new ideas. Summer synthesis institutes provide a mechanism to facilitiate these breakthroughs and by which graduate students may engage in interdisciplinary research in a way that is not often available in their normal course of study. In this presentation we examine two complementary models of summer synthesis institutes in hydrology, how these intensive programs facilitate scientific outcomes and the impact of synthesis and the summer institute model on student perceptions of academic roles, collaboration opportunities and team science. Five summer synthesis institutes were held over three years, sharing similar duration and structure but different degrees of participant interdisciplinarity and focus questions. Through informal assessments, this presentation will demonstrate how these programs offered a unique opportunity for the development of student-student and student-mentor relationships and facilitated deeper understanding of a student’s own research as well as new techniques, perspective and disciplines. Additionally, though the summer synthesis institute model offers a unique ability to leverage limited funding (on the order of a single graduate student) to advance earth sciences, the model also presents specific challenges for research follow-through and may require specific content and interpersonal dynamics for optimum success.

  18. The role of stabilizing and communicating symptoms given overlapping communities in psychopathology networks.

    PubMed

    Blanken, Tessa F; Deserno, Marie K; Dalege, Jonas; Borsboom, Denny; Blanken, Peter; Kerkhof, Gerard A; Cramer, Angélique O J

    2018-04-11

    Network theory, as a theoretical and methodological framework, is energizing many research fields, among which clinical psychology and psychiatry. Fundamental to the network theory of psychopathology is the role of specific symptoms and their interactions. Current statistical tools, however, fail to fully capture this constitutional property. We propose community detection tools as a means to evaluate the complex network structure of psychopathology, free from its original boundaries of distinct disorders. Unique to this approach is that symptoms can belong to multiple communities. Using a large community sample and spanning a broad range of symptoms (Symptom Checklist-90-Revised), we identified 18 communities of interconnected symptoms. The differential role of symptoms within and between communities offers a framework to study the clinical concepts of comorbidity, heterogeneity and hallmark symptoms. Symptoms with many and strong connections within a community, defined as stabilizing symptoms, could be thought of as the core of a community, whereas symptoms that belong to multiple communities, defined as communicating symptoms, facilitate the communication between problem areas. We propose that defining symptoms on their stabilizing and/or communicating role within and across communities accelerates our understanding of these clinical phenomena, central to research and treatment of psychopathology.

  19. The Unique Role and Mission of Historically Black Colleges and Universities. Hearing before the Subcommittee on Postsecondary Education of the Committee on Education and Labor. House of Representatives, One Hundredth Congress, Second Session (Durham, North Carolina).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Education and Labor.

    The Committee on Education and Labor oversight hearing on historically black colleges and universities focused on their unique role and mission in the United States. Colleges created to serve black Americans have existed for over 135 years, and during this time, they have demonstrated their ability to meet the special needs of black students.…

  20. Hot on the Trail of Genes that Shape Our Fingerprints.

    PubMed

    Walsh, Susan; Pośpiech, Ewelina; Branicki, Wojciech

    2016-04-01

    Fingerprint patterns have been associated with their ability to identify an individual uniquely, but can uniqueness be understood genetically? Ho et al. point out some key variants that may be responsible for some of the concentric patterns that are observed in digital skin. Furthermore, they propose that one highly associated gene, ADAMTS9-AS2, has a role in epigenetic regulation, a role that may be important in early-stage digit development. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Differential Roles for Inner Membrane Complex Proteins across Toxoplasma gondii and Sarcocystis neurona Development

    PubMed Central

    Dubey, Rashmi; Harrison, Brooke; Dangoudoubiyam, Sriveny; Bandini, Giulia; Cheng, Katherine; Kosber, Aziz; Agop-Nersesian, Carolina; Howe, Daniel K.; Samuelson, John; Ferguson, David J. P.

    2017-01-01

    ABSTRACT The inner membrane complex (IMC) of apicomplexan parasites contains a network of intermediate filament-like proteins. The 14 alveolin domain-containing IMC proteins in Toxoplasma gondii fall into different groups defined by their distinct spatiotemporal dynamics during the internal budding process of tachyzoites. Here, we analyzed representatives of different IMC protein groups across all stages of the Toxoplasma life cycle and during Sarcocystis neurona asexual development. We found that across asexually dividing Toxoplasma stages, IMC7 is present exclusively in the mother’s cytoskeleton, whereas IMC1 and IMC3 are both present in mother and daughter cytoskeletons (IMC3 is strongly enriched in daughter buds). In developing macro- and microgametocytes, IMC1 and -3 are absent, whereas IMC7 is lost in early microgametocytes but retained in macrogametocytes until late in their development. We found no roles for IMC proteins during meiosis and sporoblast formation. However, we observed that IMC1 and IMC3, but not IMC7, are present in sporozoites. Although the spatiotemporal pattern of IMC15 and IMC3 suggests orthologous functions in Sarcocystis, IMC7 may have functionally diverged in Sarcocystis merozoites. To functionally characterize IMC proteins, we knocked out IMC7, -12, -14, and -15 in Toxoplasma. IMC14 and -15 appear to be involved in switching between endodyogeny and endopolygeny. In addition, IMC7, -12, and -14, which are all recruited to the cytoskeleton outside cytokinesis, are critical for the structural integrity of extracellular tachyzoites. Altogether, stage- and development-specific roles for IMC proteins can be discerned, suggesting different niches for each IMC protein across the entire life cycle. IMPORTANCE The inner membrane complex (IMC) is a defining feature of apicomplexan parasites key to both their motility and unique cell division. To provide further insights into the IMC, we analyzed the dynamics and functions of representative alveolin domain-containing IMC proteins across developmental stages. Our work shows universal but distinct roles for IMC1, -3, and -7 during Toxoplasma asexual division but more specialized functions for these proteins during gametogenesis. In addition, we find that IMC15 is involved in daughter formation in both Toxoplasma and Sarcocystis. IMC14 and IMC15 function in limiting the number of Toxoplasma offspring per division. Furthermore, IMC7, -12, and -14, which are recruited in the G1 cell cycle stage, are required for stress resistance of extracellular tachyzoites. Thus, although the roles of the different IMC proteins appear to overlap, stage- and development-specific behaviors indicate that their functions are uniquely tailored to each life stage requirement. PMID:29062899

  2. Differential Roles for Inner Membrane Complex Proteins across Toxoplasma gondii and Sarcocystis neurona Development.

    PubMed

    Dubey, Rashmi; Harrison, Brooke; Dangoudoubiyam, Sriveny; Bandini, Giulia; Cheng, Katherine; Kosber, Aziz; Agop-Nersesian, Carolina; Howe, Daniel K; Samuelson, John; Ferguson, David J P; Gubbels, Marc-Jan

    2017-01-01

    The inner membrane complex (IMC) of apicomplexan parasites contains a network of intermediate filament-like proteins. The 14 alveolin domain-containing IMC proteins in Toxoplasma gondii fall into different groups defined by their distinct spatiotemporal dynamics during the internal budding process of tachyzoites. Here, we analyzed representatives of different IMC protein groups across all stages of the Toxoplasma life cycle and during Sarcocystis neurona asexual development. We found that across asexually dividing Toxoplasma stages, IMC7 is present exclusively in the mother's cytoskeleton, whereas IMC1 and IMC3 are both present in mother and daughter cytoskeletons (IMC3 is strongly enriched in daughter buds). In developing macro- and microgametocytes, IMC1 and -3 are absent, whereas IMC7 is lost in early microgametocytes but retained in macrogametocytes until late in their development. We found no roles for IMC proteins during meiosis and sporoblast formation. However, we observed that IMC1 and IMC3, but not IMC7, are present in sporozoites. Although the spatiotemporal pattern of IMC15 and IMC3 suggests orthologous functions in Sarcocystis , IMC7 may have functionally diverged in Sarcocystis merozoites. To functionally characterize IMC proteins, we knocked out IMC7, -12, -14, and -15 in Toxoplasma . IMC14 and -15 appear to be involved in switching between endodyogeny and endopolygeny. In addition, IMC7, -12, and -14, which are all recruited to the cytoskeleton outside cytokinesis, are critical for the structural integrity of extracellular tachyzoites. Altogether, stage- and development-specific roles for IMC proteins can be discerned, suggesting different niches for each IMC protein across the entire life cycle. IMPORTANCE The inner membrane complex (IMC) is a defining feature of apicomplexan parasites key to both their motility and unique cell division. To provide further insights into the IMC, we analyzed the dynamics and functions of representative alveolin domain-containing IMC proteins across developmental stages. Our work shows universal but distinct roles for IMC1, -3, and -7 during Toxoplasma asexual division but more specialized functions for these proteins during gametogenesis. In addition, we find that IMC15 is involved in daughter formation in both Toxoplasma and Sarcocystis . IMC14 and IMC15 function in limiting the number of Toxoplasma offspring per division. Furthermore, IMC7, -12, and -14, which are recruited in the G 1 cell cycle stage, are required for stress resistance of extracellular tachyzoites. Thus, although the roles of the different IMC proteins appear to overlap, stage- and development-specific behaviors indicate that their functions are uniquely tailored to each life stage requirement.

  3. The role and potential contribution of clinical research nurses to clinical trials.

    PubMed

    Spilsbury, Karen; Petherick, Emily; Cullum, Nicky; Nelson, Andrea; Nixon, Jane; Mason, Su

    2008-02-01

    This study explores the scope and potential contribution of the Clinical Research Nurse (CRN) role to clinical trials of a nursing-specific topic. Over the past two decades, there have been increases in the numbers of nurses working as CRNs because of the increasing global demand for clinical trials. CRNs can influence the quality of clinical trials but the scope and contribution of the role to clinical trials is not known. Qualitative focus group study. A focus group interview was carried out with CRNs (n = 9) employed on a large, multi-centre (six NHS Trusts) randomized controlled trial of pressure area care. The focus group interview was recorded, alongside field notes of participant interactions and behaviours, and transcribed verbatim. Data were analysed for thematic content and process. CRNs described their transition to a clinical research role. They reported a lack of confidence, role conflict as researcher and nurse, the challenges of gaining cooperation of clinical nursing staff to comply with trial protocols and difficulties maintaining their own motivation. CRNs provided their perceptions and observations of pressure area care and prevention. They identified areas of inadequate treatment, management and care, influenced by organizational and clinical aspects of care delivery. The study reveals challenges associated with training and management of CRNs. CRNs are usually associated with trial recruitment and data collection. This study highlights the additional contributions of CRNs for the study of topics specific to nursing as the result of their unique placement in the research centres as informal 'participant observers.' Such observations enhance understanding of the contexts being studied. These findings are relevant to the design and conduct of research studies of nursing care and practice and present ways for investigators to optimize the skills and knowledge of nurses working as CRNs.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuli; Zhang, Pengju; Wang, Yunshan

    The ErbB3 receptor–binding protein EBP1 encodes two alternatively spliced isoforms P48 and P42. While there is evidence of differential roles for these isoforms in tumorigenesis, little is known about their underlying mechanisms. In this paper, we demonstrate that EBP1 isoforms interact with the SCF-type ubiquitin ligase FBXW7 in distinct ways to exert opposing roles in tumorigenesis. EBP1 P48 bound to the WD domain of FBXW7 as an oncogenic substrate of FBXW7. EBP1 P48 binding sequestered FBXW7α to the cytosol, modulating its role in protein degradation and attenuating its tumor suppressor function. In contrast, EBP1 P42 bound to both the F-boxmore » domain of FBXW7 as well as FBXW7 substrates. This adapter function of EBP1 P42 stabilized the interaction of FBXW7 with its substrates and promoted FBXW7-mediated degradation of oncogenic targets, enhancing its overall tumor-suppressing function. Finally and overall, our results establish distinct physical and functional interactions between FBXW7 and EBP1 isoforms, which yield their mechanistically unique isoform-specific functions of EBP1 in cancer.« less

  5. Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import

    PubMed Central

    Paila, Yamuna D; Richardson, Lynn GL; Inoue, Hitoshi; Parks, Elizabeth S; McMahon, James; Inoue, Kentaro; Schnell, Danny J

    2016-01-01

    Toc75 plays a central role in chloroplast biogenesis in plants as the membrane channel of the protein import translocon at the outer envelope of chloroplasts (TOC). Toc75 is a member of the Omp85 family of bacterial and organellar membrane insertases, characterized by N-terminal POTRA (polypeptide-transport associated) domains and C-terminal membrane-integrated β-barrels. We demonstrate that the Toc75 POTRA domains are essential for protein import and contribute to interactions with TOC receptors, thereby coupling preprotein recognition at the chloroplast surface with membrane translocation. The POTRA domains also interact with preproteins and mediate the recruitment of molecular chaperones in the intermembrane space to facilitate membrane transport. Our studies are consistent with the multi-functional roles of POTRA domains observed in other Omp85 family members and demonstrate that the domains of Toc75 have evolved unique properties specific to the acquisition of protein import during endosymbiotic evolution of the TOC system in plastids. DOI: http://dx.doi.org/10.7554/eLife.12631.001 PMID:26999824

  6. Components of Adenovirus Genome Packaging

    PubMed Central

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  7. The roles of identity formation and moral identity in college student mental health, health-risk behaviors, and psychological well-being.

    PubMed

    Hardy, Sam A; Francis, Stephen W; Zamboanga, Byron L; Kim, Su Yeong; Anderson, Spencer G; Forthun, Larry F

    2013-04-01

    This study examined the roles of identity formation and moral identity in predicting college student mental health (anxiety and depressive symptoms), health-risk behaviors (hazardous alcohol use and sexual risk taking), and psychological well-being (self-esteem and meaning). The sample comprised 9,500 college students (aged 18-25 years, mean = 19.78, standard deviation = 1.61; 73% female; 62% European American), from 31 different universities, who completed an online self-report survey. Structural equation models found that identity maturity (commitment making and identity synthesis) predicted 5 of the health outcomes (except sexual risk taking), and moral identity predicted all of the health outcomes. In most cases identity maturity and moral identity also interacted in predicting mental health and psychological well-being, but not health-risk behaviors. The maturity and specific contents of identity may both play unique and often interactive roles in predicting college student health. Thus, college student health might be bolstered by helping them establish appropriate identity commitments. © 2012 Wiley Periodicals, Inc.

  8. Septins - active GTPases or just GTP-binding proteins?

    PubMed

    Abbey, Megha; Gaestel, Matthias; Menon, Manoj B

    2018-05-10

    Septins are conserved cytoskeletal proteins with unique filament forming capabilities and roles in cytokinesis and cell morphogenesis. Septins undergo hetero-oligomerization and assemble into higher order structures including filaments, rings and cages. Hetero- and homotypic interactions of septin isoforms involve alternating GTPase (G)-domain interfaces and those mediated by N- and C-terminal extensions. While most septins bind GTP, display weak GTP-hydrolysis activity and incorporate guanine nucleotides in their interaction interfaces, studies using GTPase-inactivating mutations have failed to conclusively establish a crucial role for GTPase activity in mediating septin functions. In this mini-review, we will critically assess the role of GTP-binding and -hydrolysis on septin assembly and function. The relevance of G-domain activity will also be discussed in the context of human septin mutations as well as the development of specific small-molecules targeting septin polymerization. As structural determinants of septin oligomer interfaces, G-domains are attractive targets for ligand-based inhibition of septin assembly. Whether such an intervention can predictably alter septin function is a major question for future research. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  9. The parathyroid hormone-regulated transcriptome in osteocytes: parallel actions with 1,25-dihydroxyvitamin D3 to oppose gene expression changes during differentiation and to promote mature cell function.

    PubMed

    St John, Hillary C; Meyer, Mark B; Benkusky, Nancy A; Carlson, Alex H; Prideaux, Mathew; Bonewald, Lynda F; Pike, J Wesley

    2015-03-01

    Although localized to the mineralized matrix of bone, osteocytes are able to respond to systemic factors such as the calciotropic hormones 1,25(OH)2D3 and PTH. In the present studies, we examined the transcriptomic response to PTH in an osteocyte cell model and found that this hormone regulated an extensive panel of genes. Surprisingly, PTH uniquely modulated two cohorts of genes, one that was expressed and associated with the osteoblast to osteocyte transition and the other a cohort that was expressed only in the mature osteocyte. Interestingly, PTH's effects were largely to oppose the expression of differentiation-related genes in the former cohort, while potentiating the expression of osteocyte-specific genes in the latter cohort. A comparison of the transcriptional effects of PTH with those obtained previously with 1,25(OH)2D3 revealed a subset of genes that was strongly overlapping. While 1,25(OH)2D3 potentiated the expression of osteocyte-specific genes similar to that seen with PTH, the overlap between the two hormones was more limited. Additional experiments identified the PKA-activated phospho-CREB (pCREB) cistrome, revealing that while many of the differentiation-related PTH regulated genes were apparent targets of a PKA-mediated signaling pathway, a reduction in pCREB binding at sites associated with osteocyte-specific PTH targets appeared to involve alternative PTH activation pathways. That pCREB binding activities positioned near important hormone-regulated gene cohorts were localized to control regions of genes was reinforced by the presence of epigenetic enhancer signatures exemplified by unique modifications at histones H3 and H4. These studies suggest that both PTH and 1,25(OH)2D3 may play important and perhaps cooperative roles in limiting osteocyte differentiation from its precursors while simultaneously exerting distinct roles in regulating mature osteocyte function. Our results provide new insight into transcription factor-associated mechanisms through which PTH and 1,25(OH)2D3 regulate a plethora of genes important to the osteoblast/osteocyte lineage. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Estrogen receptor alpha phosphorylation and its functional impact in human breast cancer.

    PubMed

    Anbalagan, Muralidharan; Rowan, Brian G

    2015-12-15

    Estrogen receptor α (ERα) is a member of the nuclear receptor superfamily of transcription factors that regulates cell proliferation, differentiation and homeostasis in various tissues. Sustained exposure to estrogen/estradiol (E2) increases the risk of breast, endometrial and ovarian cancers. ERα function is also regulated by phosphorylation through various kinase signaling pathways that will impact various ERα functions including chromatin interaction, coregulator recruitment and gene expression, as well impact breast tumor growth/morphology and breast cancer patient response to endocrine therapy. However, many of the previously characterized ERα phosphorylation sites do not fully explain the impact of receptor phosphorylation on ERα function. This review discusses work from our laboratory toward understanding a role of ERα site-specific phosphorylation in ERα function and breast cancer. The key findings discussed in this review are: (1) the effect of site specific ERα phosphorylation on temporal recruitment of ERα and unique coactivator complexes to specific genes; (2) the impact of stable disruption of ERα S118 and S167 phosphorylation in breast cancer cells on eliciting unique gene expression profiles that culminate in significant effects on breast cancer growth/morphology/migration/invasion; (3) the Src kinase signaling pathway that impacts ERα phosphorylation to alter ERα function; and (4) circadian disruption by light exposure at night leading to elevated ERK1/2 and Src kinase and phosphorylation of ERα, concomitant with tamoxifen resistance in breast tumor models. Results from these studies demonstrate that even changes to single ERα phosphorylation sites can have a profound impact on ERα function in breast cancer. Future work will extend beyond single site phosphorylation analysis toward identification of specific patterns/profiles of ERα phosphorylation under different physiological/pharmacological conditions to understand how common phosphorylation profiles in breast cancer program specific physiological endpoints such as growth, apoptosis, migration/invasion, and endocrine therapy response. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Supermarket revolution in Asia and emerging development strategies to include small farmers

    PubMed Central

    Reardon, Thomas; Timmer, C. Peter; Minten, Bart

    2012-01-01

    A “supermarket revolution” has occurred in developing countries in the past 2 decades. We focus on three specific issues that reflect the impact of this revolution, particularly in Asia: continuity in transformation, innovation in transformation, and unique development strategies. First, the record shows that the rapid growth observed in the early 2000s in China, Indonesia, Malaysia, and Thailand has continued, and the “newcomers”—India and Vietnam—have grown even faster. Although foreign direct investment has been important, the roles of domestic conglomerates and even state investment have been significant and unique. Second, Asia's supermarket revolution has exhibited unique pathways of retail diffusion and procurement system change. There has been “precocious” penetration of rural towns by rural supermarkets and rural business hubs, emergence of penetration of fresh produce retail that took much longer to initiate in other regions, and emergence of Asian retail developing-country multinational chains. In procurement, a symbiosis between modern retail and the emerging and consolidating modern food processing and logistics sectors has arisen. Third, several approaches are being tried to link small farmers to supermarkets. Some are unique to Asia, for example assembling into a “hub” or “platform” or “park” the various companies and services that link farmers to modern markets. Other approaches relatively new to Asia are found elsewhere, especially in Latin America, including “bringing modern markets to farmers” by establishing collection centers and multipronged collection cum service provision arrangements, and forming market cooperatives and farmer companies to help small farmers access supermarkets. PMID:21135250

  12. Molecular Characterization of Macrophage-Biomaterial Interactions

    PubMed Central

    Moore, Laura Beth; Kyriakides, Themis R.

    2015-01-01

    Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes. PMID:26306446

  13. Molecular Characterization of Macrophage-Biomaterial Interactions.

    PubMed

    Moore, Laura Beth; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes.

  14. Life sciences and environmental sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment,more » applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.« less

  15. Characterization, Preparation, and Purification of Marine Bioactive Peptides

    PubMed Central

    Wang, Xueqin; Yu, Huahua; Xing, Ronge

    2017-01-01

    Marine bioactive peptides, as a source of unique bioactive compounds, are the focus of current research. They exert various biological roles, some of the most crucial of which are antioxidant activity, antimicrobial activity, anticancer activity, antihypertensive activity, anti-inflammatory activity, and so forth, and specific characteristics of the bioactivities are described. This review also describes various manufacturing techniques for marine bioactive peptides using organic synthesis, microwave assisted extraction, chemical hydrolysis, and enzymes hydrolysis. Finally, purification of marine bioactive peptides is described, including gel or size exclusion chromatography, ion-exchange column chromatography, and reversed-phase high-performance liquid chromatography, which are aimed at finding a fast, simple, and effective method to obtain the target peptides. PMID:28761878

  16. Diverted Total Synthesis of Promysalin Analogs Demonstrates That an Iron-Binding Motif Is Responsible for Its Narrow-Spectrum Antibacterial Activity.

    PubMed

    Steele, Andrew D; Keohane, Colleen E; Knouse, Kyle W; Rossiter, Sean E; Williams, Sierra J; Wuest, William M

    2016-05-11

    Promysalin is a species-specific Pseudomonad metabolite with unique bioactivity. To better understand the mode of action of this natural product, we synthesized 16 analogs utilizing diverted total synthesis (DTS). Our analog studies revealed that the bioactivity of promysalin is sensitive to changes within its hydrogen bond network whereby alteration has drastic biological consequences. The DTS library not only yielded three analogs that retained potency but also provided insights that resulted in the identification of a previously unknown ability of promysalin to bind iron. These findings coupled with previous observations hint at a complex multifaceted role of the natural product within the rhizosphere.

  17. Diverted Total Synthesis of Promysalin Analogs Demonstrates That an Iron-Binding Motif Is Responsible for Its Narrow-Spectrum Antibacterial Activity

    PubMed Central

    Steele, Andrew D.; Keohane, Colleen E.; Knouse, Kyle W.; Rossiter, Sean E.; Williams, Sierra J.; Wuest, William M.

    2016-01-01

    Promysalin is a species-specific Pseudomonad metabolite with unique bioactivity. To better understand the mode of action of this natural product, we synthesized 16 analogs utilizing diverted total synthesis (DTS). Our analog studies revealed that the bioactivity of promysalin is sensitive to changes within its hydrogen bond network whereby alteration has drastic biological consequences. The DTS library not only yielded three analogs that retained potency but also provided insights that resulted in the identification of a previously unknown ability of promysalin to bind iron. These findings coupled with previous observations hint at a complex multifaceted role of the natural product within the rhizosphere. PMID:27096543

  18. Stirring images: fear, not happiness or arousal, makes art more sublime.

    PubMed

    Eskine, Kendall J; Kacinik, Natalie A; Prinz, Jesse J

    2012-10-01

    Which emotions underlie our positive experiences of art? Although recent evidence from neuroscience suggests that emotions play a critical role in art perception, no research to date has explored the extent to which specific emotional states affect aesthetic experiences or whether general physiological arousal is sufficient. Participants were assigned to one of five conditions-sitting normally, engaging in 15 or 30 jumping jacks, or viewing a happy or scary video-prior to rating abstract works of art. Only the fear condition resulted in significantly more positive judgments about the art. These striking findings provide the first evidence that fear uniquely inspires positively valenced aesthetic judgments. The results are discussed in the context of embodied cognition.

  19. Some Biochemical Properties of an Acido-Thermophilic Archae-Bacterium Sulfolobus Acidocaldarius

    NASA Astrophysics Data System (ADS)

    Oshima, Tairo; Ohba, Masayuki; Wagaki, Takayoshi

    1984-12-01

    To elucidate the phylogenic status of archaebacteria, some basic cellular components of an acido-thermophilic archaebacterium,Sulfolobus acidocaldarius, were studied. Poly(A) containing RNA was present in the cells, and performed the role of mRNA in a cell-free extract of reticulocyte or the archaebacteria. Poly(A) containing RNA was also found in other archaebacterial cells. The absence of cap structure was suggested in these RNAs. The cell-free protein synthesis using the archaebacterial extract was inhibited by anisomycin, a specific inhibitor for eukaryotic ribosomes. Two unique membrane-bound ATPases were detected. Based on resistance to H+-ATPase inhibitors, these enzymes seemed not to be F0F1-ATPase.

  20. Obesity and heart failure with preserved ejection fraction: A growing problem.

    PubMed

    Prenner, Stuart B; Mather, Paul J

    2017-12-14

    Heart Failure with Preserved Ejection Fraction (HFpEF) is increasing in prevalence due to the aging of the United States population as well as the current obesity epidemic. While obesity is very common in patients with HFpEF, obesity may represent a specific phenotype of HFpEF characterized by unique hemodynamics and structural abnormalities. Obesity induces a systemic inflammatory response that may contribute to myocardial fibrosis and endothelial dysfunction. The most obese patients continue to be excluded from HFpEF clinical trials, and thus ongoing research is needed to determine the role of pharmacologic and interventional approaches in this growing population. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Dopaminergic Neurotransmission in the Human Brain: New Lessons from Perturbation and Imaging

    PubMed Central

    Ko, Ji Hyun; Strafella, Antonio P.

    2012-01-01

    Dopamine plays an important role in several brain functions and is involved in the pathogenesis of several psychiatric and neurological disorders. Neuroimaging techniques such as positron emission tomography allow us to quantify dopaminergic activity in the living human brain. Combining these with brain stimulation techniques offers us the unique opportunity to tackle questions regarding region-specific neurochemical activity. Such studies may aid clinicians and scientists to disentangle neural circuitries within the human brain and thereby help them to understand the underlying mechanisms of a given function in relation to brain diseases. Furthermore, it may also aid the development of alternative treatment approaches for various neurological and psychiatric conditions. PMID:21536838

  2. Unique magnetism and structural transformation in rare earth dialumindes

    NASA Astrophysics Data System (ADS)

    Pathak, Arjun; Mudryk, Yaroslav; Paudyal, Durga; Pecharsky, Vitalij

    Rare earth metallic alloys play a critical yet often obscure role in numerous technological applications, including but not limited to sensors, actuators, permanent magnets, and rechargeable batteries; therefore, understanding their fundamental properties is of utmost importance. We study structural behavior, specific heat, and magnetism of various binary and pseudobinary rare earth dialumindes by means of temperature-dependent x-ray powder diffraction, heat capacity and magnetization measurements, and first principles calculations. Here, we focus on our recent understanding of low temperature magnetism, and crystal structure of DyAl2, TbAl2, PrAl2, ErAl2, and discuss magnetic and structural instabilities in the pseudobinary PrAl2 - ErAl2 system. Unique among other mixed heavy lanthanide dialumindes, the substitution of Er in Pr1-xErxAl2 results in unusual ferrimagnetic behavior, and the ferrimagnetic interactions become strongest around x = 0.25. The Ames Laboratory is operated for the U. S. DOE by Iowa State University of Science and Technology under contract No. DE-AC02-07CH11358. This work was supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences Division.

  3. Essential Role of Lymph Nodes in Contact Hypersensitivity Revealed in Lymphotoxin-α–Deficient Mice

    PubMed Central

    Rennert, Paul D.; Hochman, Paula S.; Flavell, Richard A.; Chaplin, David D.; Jayaraman, Sundararajan; Browning, Jeffrey L.; Fu, Yang-Xin

    2001-01-01

    Lymph nodes (LNs) are important sentinal organs, populated by circulating lymphocytes and antigen-bearing cells exiting the tissue beds. Although cellular and humoral immune responses are induced in LNs by antigenic challenge, it is not known if LNs are essential for acquired immunity. We examined immune responses in mice that lack LNs due to genetic deletion of lymphotoxin ligands or in utero blockade of membrane lymphotoxin. We report that LNs are absolutely required for generating contact hypersensitivity, a T cell–dependent cellular immune response induced by epicutaneous hapten. We show that the homing of epidermal Langerhans cells in response to hapten application is specifically directed to LNs, providing a cellular basis for this unique LN function. In contrast, the spleen cannot mediate contact hypersensitivity because antigen-bearing epidermal Langerhans cells do not access splenic white pulp. Finally, we formally demonstrate that LNs provide a unique environment essential for generating this acquired immune response by reversing the LN defect in lymphotoxin-α−/− mice, thereby restoring the capacity for contact hypersensitivity. PMID:11390430

  4. An invisible student population: Accommodating and serving college students with lupus.

    PubMed

    Agarwal, Neelam; Kumar, Vinod

    2017-01-01

    Systemic Lupus Erythematosus (SLE), or lupus, is a chronic autoimmune disorder. Individuals with lupus face unique psychosocial and emotional challenges such as living with the unpredictability of the disease, symptoms such as fatigue, pain and depression, anxiety, cognitive problems, and coping with stress. This article attempts to shed light on the role that lupus plays in the lives of college students in their academics and other unique psychosocial needs. The author uses a single case study method based on the lived experience of a student with lupus. The method adopted is used as a means to provide anecdotal information about specific areas to consider when providing services to students living with this condition. Findings from this one case study identified some of the accommodations available to help students in higher education that may even vary for two students with same diagnosis of lupus. The paper presents some of the innovative strategies that can be used by practitioners while working with these students in higher education. These strategies can provide helpful support for students with lupus with the recommended academic accommodations.

  5. Severely Impaired Control of Bacterial Infections in a Patient With Cystic Fibrosis Defective in Mucosal-Associated Invariant T Cells.

    PubMed

    Pincikova, Terezia; Paquin-Proulx, Dominic; Moll, Markus; Flodström-Tullberg, Malin; Hjelte, Lena; Sandberg, Johan K

    2018-05-01

    Here we report a unique case of a patient with cystic fibrosis characterized by severely impaired control of bacterial respiratory infections. This patient's susceptibility to such infections was much worse than expected from a cystic fibrosis clinical perspective, and he died at age 22 years despite extensive efforts and massive use of antibiotics. We found that this severe condition was associated with a near-complete deficiency in circulating mucosal-associated invariant T (MAIT) cells as measured at several time points. MAIT cells are a large, recently described subset of T cells that recognize microbial riboflavin metabolites presented by the highly evolutionarily conserved MR1 molecules. The MAIT cell deficiency was specific; other T-cell subsets were intact. Even though this is only one unique case, the findings lend significant support to the emerging role of MAIT cells in mucosal immune defense and suggest that MAIT cells may significantly modify the clinical phenotype of respiratory diseases. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  6. A single R36Q mutation in the matrix protein of pigeon paramyxovirus type 1 reduces virus replication and shedding in pigeons.

    PubMed

    Xu, Haixu; Song, Qingqing; Zhu, Jie; Liu, Jiajia; Cheng, Xin; Hu, Shunlin; Wu, Shuang; Wang, Xiaoquan; Liu, Xiaowen; Liu, Xiufan

    2016-07-01

    Pigeon paramyxovirus type 1 (PPMV-1) is considered an antigenic and variant of avian paramyxovirus type 1 (APMV-1) that has adapted to pigeons as hosts. However, how this host-specific adaption of PPMV-1 is related to its biological characteristics is unknown. In this study, seven unique amino acids in PPMV-1 that are not present in other APMV-1 strains (n = 39 versus n = 106) were identified. R36 of the M protein was found to be not only a unique amino acid but also a positive-selection site. To investigate the role of R36 in host adaptation, a recombinant PPMV-1 with R36Q mutation was constructed. Our results indicated that the an R36Q mutation significantly attenuates pathogenicity in chickens, viral growth in both chicken embryo fibroblasts (CEFs) and pigeon embryo fibroblasts (PEFs), and virus replication and shedding in pigeons in comparison with the wild-type virus, suggesting that R36 is a key residue that evolved during the adaptation of PPMV-1 in pigeons.

  7. The Phe105 loop of Alix Bro1 domain plays a key role in HIV-1 release

    PubMed Central

    Sette, Paola; Mu, Ruiling; Dussupt, Vincent; Jiang, Jiansheng; Snyder, Greg; Smith, Patrick; Xiao, Tsan. Sam; Bouamr, Fadila

    2011-01-01

    Summary Alix and cellular paralogs HD-PTP and Brox contain N-terminal Bro1 domains that bind ESCRT-III CHMP4. In contrast to HD-PTP and Brox, expression of the Bro1 domain of Alix alleviates HIV-1 release defects due to interrupted access to ESCRT. In an attempt to elucidate this functional discrepancy, we solved the crystal structures of the Bro1 domains of HD-PTP and Brox. They revealed typical “boomerang” folds they share with the Bro1 Alix domain. However, they each contain unique structural features that may be relevant to their specific function(s). In particular, phenylalanine residue in position 105 (Phe105) of Alix belongs to a long loop that is unique to its Bro1 domain. Concurrently mutation of Phe105 and surrounding residues at the tip of the loop compromises the function of Alix in HIV-1 budding without affecting its interactions with Gag or CHMP4. These studies identify a new functional determinant in the Bro1 domain of Alix. PMID:21889351

  8. Mutation in a primate-conserved retrotransposon reveals a noncoding RNA as a mediator of infantile encephalopathy

    PubMed Central

    Cartault, François; Munier, Patrick; Benko, Edgar; Desguerre, Isabelle; Hanein, Sylvain; Boddaert, Nathalie; Bandiera, Simonetta; Vellayoudom, Jeanine; Krejbich-Trotot, Pascale; Bintner, Marc; Hoarau, Jean-Jacques; Girard, Muriel; Génin, Emmanuelle; de Lonlay, Pascale; Fourmaintraux, Alain; Naville, Magali; Rodriguez, Diana; Feingold, Josué; Renouil, Michel; Munnich, Arnold; Westhof, Eric; Fähling, Michael; Lyonnet, Stanislas; Henrion-Caude, Alexandra

    2012-01-01

    The human genome is densely populated with transposons and transposon-like repetitive elements. Although the impact of these transposons and elements on human genome evolution is recognized, the significance of subtle variations in their sequence remains mostly unexplored. Here we report homozygosity mapping of an infantile neurodegenerative disease locus in a genetic isolate. Complete DNA sequencing of the 400-kb linkage locus revealed a point mutation in a primate-specific retrotransposon that was transcribed as part of a unique noncoding RNA, which was expressed in the brain. In vitro knockdown of this RNA increased neuronal apoptosis, consistent with the inappropriate dosage of this RNA in vivo and with the phenotype. Moreover, structural analysis of the sequence revealed a small RNA-like hairpin that was consistent with the putative gain of a functional site when mutated. We show here that a mutation in a unique transposable element-containing RNA is associated with lethal encephalopathy, and we suggest that RNAs that harbor evolutionarily recent repetitive elements may play important roles in human brain development. PMID:22411793

  9. Unique pathway of expression of an opal suppressor phosphoserine tRNA.

    PubMed Central

    Lee, B J; de la Peña, P; Tobian, J A; Zasloff, M; Hatfield, D

    1987-01-01

    An opal suppressor phosphoserine tRNA gene is present in single copy in the genomes of higher vertebrates. We have shown that the product of this gene functions as a suppressor in an in vitro assay, and we have proposed that it may donate a modified amino acid directly to protein in response to specific UGA codons. In this report, we show through in vitro and in vivo studies that the human and Xenopus opal suppressor phosphoserine tRNAs are synthesized by a pathway that is, to the best of our knowledge, unlike that of any known eukaryotic tRNA. The primary transcript of this gene does not contain a 5'-leader sequence; and, therefore, transcription of this suppressor is initiated at the first nucleotide within the coding sequence. The 5'-terminal triphosphate, present on the primary transcript, remains intact through 3'-terminal maturation and through subsequent transport of the tRNA to the cytoplasm. The unique biosynthetic pathway of this opal suppressor may underlie its distinctive role in eukaryotic cells. Images PMID:3114749

  10. Whole-genome sequences of 89 Chinese sheep suggest role of RXFP2 in the development of unique horn phenotype as response to semi-feralization.

    PubMed

    Pan, Zhangyuan; Li, Shengdi; Liu, Qiuyue; Wang, Zhen; Zhou, Zhengkui; Di, Ran; Miao, Benpeng; Hu, Wenping; Wang, Xiangyu; Hu, Xiaoxiang; Xu, Ze; Wei, Dongkai; He, Xiaoyun; Yuan, Liyun; Guo, Xiaofei; Liang, Benmeng; Wang, Ruichao; Li, Xiaoyu; Cao, Xiaohan; Dong, Xinlong; Xia, Qing; Shi, Hongcai; Hao, Geng; Yang, Jean; Luosang, Cuicheng; Zhao, Yiqiang; Jin, Mei; Zhang, Yingjie; Lv, Shenjin; Li, Fukuan; Ding, Guohui; Chu, Mingxing; Li, Yixue

    2018-04-01

    Animal domestication has been extensively studied, but the process of feralization remains poorly understood. Here, we performed whole-genome sequencing of 99 sheep and identified a primary genetic divergence between 2 heterogeneous populations in the Tibetan Plateau, including 1 semi-feral lineage. Selective sweep and candidate gene analysis revealed local adaptations of these sheep associated with sensory perception, muscle strength, eating habit, mating process, and aggressive behavior. In particular, a horn-related gene, RXFP2, showed signs of rapid evolution specifically in the semi-feral breeds. A unique haplotype and repressed horn-related tissue expression of RXFP2 were correlated with higher horn length, as well as spiral and horizontally extended horn shape. Semi-feralization has an extensive impact on diverse phenotypic traits of sheep. By acquiring features like those of their wild ancestors, semi-feral sheep were able to regain fitness while in frequent contact with wild surroundings and rare human interventions. This study provides a new insight into the evolution of domestic animals when human interventions are no longer dominant.

  11. Recent progress in the research about Propionibacterium acnes strain diversity and acne: pathogen or bystander?

    PubMed

    Kwon, Hyuck Hoon; Suh, Dae Hun

    2016-11-01

    Recent progress has steadily reported the existence of the diverse strains of Propionibacterium acnes, and these studies have contributed to the elucidation of their contradictory roles between normal commensals and pathogens. In this review, the authors aimed to provide an update on the recent understanding of research about P. acnes strain diversity and acne, analyzing the potential implications for clinical applications. Before the era of genomic research, P. acnes was known to be distinguished based on serological agglutination tests, cell wall sugar analysis, or fermentation traits. Since the complete genome sequence of P. acnes was first deciphered, genetic studies based on sequence data have expanded with the introduction of more refined and precise DNA-based typing methods, including multilocus sequence typing and metagenomics. These sophisticated techniques have revealed that P. acnes consists of phylogenetically distinct cluster groups with various pathogenic traits, including elicitation of inflammation, protein secretome profile, and unique distribution patterns in various skin loci. In following large-scale studies from patients' acne samples have revealed that specific sequence types are included within the phylogenetic divisions and further suggested that particular P. acnes strains play an etiologic role in acne while others are associated with health, providing a firm platform for evidential-based research into the exact role of this organism in acne. We strongly believe that future research would provide fruitful results in not only clarifying the apparent controversy with respect to roles of P. acnes but also developing therapeutic drugs by pinpointing specific targets of the pathogenic strain only. © 2016 The International Society of Dermatology.

  12. Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis

    PubMed Central

    Barnett, Chris; Yazgan, Oya; Kuo, Hui-Ching; Malakar, Sreepurna; Thomas, Trevor; Fitzgerald, Amanda; Harbour, Billy; Henry, Jonathan J.; Krebs, Jocelyn E.

    2012-01-01

    Williams Syndrome Transcription Factor (WSTF) is one of ~25 haplodeficient genes in patients with the complex developmental disorder Williams Syndrome (WS). WS results in visual/spatial processing defects, cognitive impairment, unique behavioral phenotypes, characteristic “elfin” facial features, low muscle tone and heart defects. WSTF exists in several chromatin remodeling complexes and has roles in transcription, replication, and repair. Chromatin remodeling is essential during embryogenesis, but WSTF’s role in vertebrate development is poorly characterized. To investigate the developmental role of WSTF, we knocked down WSTF in Xenopus laevis embryos using a morpholino that targets WSTF mRNA. BMP4 shows markedly increased and spatially aberrant expression in WSTF-deficient embryos, while SHH, MRF4, PAX2, EPHA4 and SOX2 expression are severely reduced, coupled with defects in a number of developing embryonic structures and organs. WSTF-deficient embryos display defects in anterior neural development. Induction of the neural crest, measured by expression of the neural crest-specific genes SNAIL and SLUG, is unaffected by WSTF depletion. However, at subsequent stages WSTF knockdown results in a severe defect in neural crest migration and/or maintenance. Consistent with a maintenance defect, WSTF knockdowns display a specific pattern of increased apoptosis at the tailbud stage in regions corresponding to the path of cranial neural crest migration. Our work is the first to describe a role for WSTF in proper neural crest function, and suggests that neural crest defects resulting from WSTF haploinsufficiency may be a major contributor to the pathoembryology of WS. PMID:22691402

  13. Business-life balance and wellbeing: Exploring the lived experiences of women in a low-to-middle income country.

    PubMed

    Ugwu, Dorothy I; Orjiakor, Charles T; Enwereuzor, Ibeawuchi K; Onyedibe, Christiana C; Ugwu, Leonard I

    2016-01-01

    With most studies on work-life balance focused on employees, this study sets out to explore the everyday living of business women who trade on petty goods and earn very little in a low-to-middle income country (LMIC). We explore their conceptions of balance, how they manage intersecting roles, and how they cope with daily hassles and stress to maintain wellbeing. With the proportion of self-employed to employed people in Sub-Saharan LMICs being an inverse of the situation in Euro-American countries, there is a need to explore what balance could mean for the people in LMICs. Most studies in the work-life literature have explored how employees pursue balance and the various strategies that work for a specific group of people. Perhaps because work-life balance literature has largely sprung from advanced economies, little focus has been placed on how other societies, especially people in LMICs, navigate balance, given their unique milieu. Adopting the reflective life-world approach, we inquire into the daily lives of women in very small businesses. Twenty women who trade on a range of items and earn very little (gross daily sales of $0.41 to $62.98) were interviewed using a semi-structured guideline. Analysis was conducted using interpretative phenomenology. Conceptions of balance for the women incorporated the notions of satisfactory progress across roles, proper time apportionment to roles, conditional balance as well as harmony and/or synchrony across roles-a slight difference from the popular understandings. Their conception of business life roles was deemed much more integral. Negative physical and psychological experiences impacting health and wellbeing, identified as culminating as a result of both roles, were commonplace but were typically considered a normal part of living. Engagements in extra-social roles appeared to have a double-edged effect. Placing the family first, time management, and prioritizing were some of the important measures of ensuring balance and wellbeing. Financial gains and personal satisfaction were top motivational reasons that kept the women committed to pursuing simultaneous roles. There is a strong overlap between what balance means for petty trading women and employees. However, the unique social platform offers a more communal perspective of issues in pursuing balance.

  14. Representations of numerical and non-numerical magnitude both contribute to mathematical competence in children.

    PubMed

    Lourenco, Stella F; Bonny, Justin W

    2017-07-01

    A growing body of evidence suggests that non-symbolic representations of number, which humans share with nonhuman animals, are functionally related to uniquely human mathematical thought. Other research suggesting that numerical and non-numerical magnitudes not only share analog format but also form part of a general magnitude system raises questions about whether the non-symbolic basis of mathematical thinking is unique to numerical magnitude. Here we examined this issue in 5- and 6-year-old children using comparison tasks of non-symbolic number arrays and cumulative area as well as standardized tests of math competence. One set of findings revealed that scores on both magnitude comparison tasks were modulated by ratio, consistent with shared analog format. Moreover, scores on these tasks were moderately correlated, suggesting overlap in the precision of numerical and non-numerical magnitudes, as expected under a general magnitude system. Another set of findings revealed that the precision of both types of magnitude contributed shared and unique variance to the same math measures (e.g. calculation and geometry), after accounting for age and verbal competence. These findings argue against an exclusive role for non-symbolic number in supporting early mathematical understanding. Moreover, they suggest that mathematical understanding may be rooted in a general system of magnitude representation that is not specific to numerical magnitude but that also encompasses non-numerical magnitude. © 2016 John Wiley & Sons Ltd.

  15. The Unique Biosynthetic Route from Lupinus β-Conglutin Gene to Blad

    PubMed Central

    Monteiro, Sara; Freitas, Regina; Rajasekhar, Baru T.; Teixeira, Artur R.; Ferreira, Ricardo B.

    2010-01-01

    Background During seed germination, β-conglutin undergoes a major cycle of limited proteolysis in which many of its constituent subunits are processed into a 20 kDa polypeptide termed blad. Blad is the main component of a glycooligomer, accumulating exclusively in the cotyledons of Lupinus species, between days 4 and 12 after the onset of germination. Principal Findings The sequence of the gene encoding β-conglutin precursor (1791 nucleotides) is reported. This gene, which shares 44 to 57% similarity and 20 to 37% identity with other vicilin-like protein genes, includes several features in common with these globulins, but also specific hallmarks. Most notable is the presence of an ubiquitin interacting motif (UIM), which possibly links the unique catabolic route of β-conglutin to the ubiquitin/proteasome proteolytic pathway. Significance Blad forms through a unique route from and is a stable intermediary product of its precursor, β-conglutin, the major Lupinus seed storage protein. It is composed of 173 amino acid residues, is encoded by an intron-containing, internal fragment of the gene that codes for β-conglutin precursor (nucleotides 394 to 913) and exhibits an isoelectric point of 9.6 and a molecular mass of 20,404.85 Da. Consistent with its role as a storage protein, blad contains an extremely high proportion of the nitrogen-rich amino acids. PMID:20066045

  16. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs)more » and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.« less

  17. Unique Metabolic Adaptations Dictate Distal Organ-Specific Metastatic Colonization

    PubMed Central

    Schild, Tanya; Low, Vivien; Blenis, John; Gomes, Ana P.

    2018-01-01

    Summary Metastases arising from tumors have the proclivity to colonize specific organs, suggesting that they must rewire their biology to meet the demands of the organ colonized, thus altering their primary properties. Each metastatic site presents distinct metabolic challenges to a colonizing cancer cell, ranging from fuel and oxygen availability to oxidative stress. Here, we discuss the organ-specific metabolic adaptations cancer cells must undergo, which provide the ability to overcome the unique barriers to colonization in foreign tissues and establish the metastatic tissue tropism phenotype. PMID:29533780

  18. The Vulnerabilities of Orphaned Children Participating in Research: A Critical Review and Factors for Consideration for Participation in Biomedical and Behavioral Research

    PubMed Central

    Thompson, Rachel T.; Meslin, Eric M.; Braitstein, Paula K. A.; Nyandiko, Winstone M.; Ayaya, Samuel O.; Vreeman, Rachel C.

    2013-01-01

    Orphans are a subpopulation with a unique set of additional vulnerabilities. Increasing focus on children’s rights, pediatric global health, and pediatric research makes it imperative to recognize and address unique vulnerabilities of orphaned children. This paper describes the unique vulnerabilities of the orphaned pediatric population and offers a structured set of factors that require consideration when including orphans in biomedical research. Pediatric orphans are particularly vulnerable due to decreased economic resources, psychosocial instability, increased risk of abuse, and delayed/decreased access to healthcare. These vulnerabilities are significant. By carefully considering each issue in a population in a culturally specific and study-specific manner, researchers can make valuable contributions to the overall health and well-being of this uniquely vulnerable population. PMID:23086048

  19. NIDO, AMOP and vWD domains of MUC4 play synergic role in MUC4 mediated signaling

    PubMed Central

    Liu, Xian; Xie, Kun-Ling; Tang, Jie; Jiang, Kui-Rong; Gao, Wen-Tao; Tian, Lei; Zhang, Kai; Xu, Ze-Kuan; Miao, Yi

    2017-01-01

    MUC4 mucin is well known as an important potential target to overcome pancreatic cancer. Three unique domains (NIDO, AMOP, and vWD) with unclear roles only present in MUC4 but are not found in other membrane-bound mucins. Our previous studies first reported that its splice variant, MUC4/Y can be a model of MUC4 (MUC4 gene fragment is more than 30KB, too huge to clone and eukaryotic express) in pancreatic cancer. More importantly, based on MUC4/Y with the appropriate length of gene sequence, it is easy to construct the unique domain-lacking models of MUC4/Y (MUC4) for research. The present study focuses on investigation of the respective role of the unique NIDO, AMOP, and vWD domain or their synergistic effect on MUC4(MUC4/Y)-mediated functions and mechanisms by series of in vitro assays, sequence-based transcriptome analysis, validation of qRT-PCR & Western blot, and systematic comparative analysis. Our results demonstrate: 1) NIDO, AMOP, and vWD domain or their synergy play significant roles on MUC4/Y-mediated malignant function of pancreatic cancer, downstream of molecule mechanisms, particularly MUC4/Y-triggered malignancy-related positive feedback loops, respectively. 2) The synergistic roles of three unique domains on MUC4/Y-mediated functions and mechanisms are more prominent than the respective domain because the synergy of three domain plays the more remarkable effects on MUC4/Y-mediated signaling hub. Thus, to improve reversed effects of domain-lacking and break the synergism of domains will contribute to block MUC4/Y(MUC4) triggering various oncogenic signaling pathways. PMID:28060749

  20. NIDO, AMOP and vWD domains of MUC4 play synergic role in MUC4 mediated signaling.

    PubMed

    Zhu, Yi; Zhang, Jing-Jing; Peng, Yun-Peng; Liu, Xian; Xie, Kun-Ling; Tang, Jie; Jiang, Kui-Rong; Gao, Wen-Tao; Tian, Lei; Zhang, Kai; Xu, Ze-Kuan; Miao, Yi

    2017-02-07

    MUC4 mucin is well known as an important potential target to overcome pancreatic cancer. Three unique domains (NIDO, AMOP, and vWD) with unclear roles only present in MUC4 but are not found in other membrane-bound mucins. Our previous studies first reported that its splice variant, MUC4/Y can be a model of MUC4 (MUC4 gene fragment is more than 30KB, too huge to clone and eukaryotic express) in pancreatic cancer. More importantly, based on MUC4/Y with the appropriate length of gene sequence, it is easy to construct the unique domain-lacking models of MUC4/Y (MUC4) for research. The present study focuses on investigation of the respective role of the unique NIDO, AMOP, and vWD domain or their synergistic effect on MUC4(MUC4/Y)-mediated functions and mechanisms by series of in vitro assays, sequence-based transcriptome analysis, validation of qRT-PCR & Western blot, and systematic comparative analysis. Our results demonstrate: 1) NIDO, AMOP, and vWD domain or their synergy play significant roles on MUC4/Y-mediated malignant function of pancreatic cancer, downstream of molecule mechanisms, particularly MUC4/Y-triggered malignancy-related positive feedback loops, respectively. 2) The synergistic roles of three unique domains on MUC4/Y-mediated functions and mechanisms are more prominent than the respective domain because the synergy of three domain plays the more remarkable effects on MUC4/Y-mediated signaling hub. Thus, to improve reversed effects of domain-lacking and break the synergism of domains will contribute to block MUC4/Y(MUC4) triggering various oncogenic signaling pathways.

  1. A Novel Highly Divergent Protein Family Identified from a Viviparous Insect by RNA-seq Analysis: A Potential Target for Tsetse Fly-Specific Abortifacients

    PubMed Central

    Benoit, Joshua B.; Attardo, Geoffrey M.; Michalkova, Veronika; Krause, Tyler B.; Bohova, Jana; Zhang, Qirui; Baumann, Aaron A.; Mireji, Paul O.; Takáč, Peter; Denlinger, David L.; Ribeiro, Jose M.; Aksoy, Serap

    2014-01-01

    In tsetse flies, nutrients for intrauterine larval development are synthesized by the modified accessory gland (milk gland) and provided in mother's milk during lactation. Interference with at least two milk proteins has been shown to extend larval development and reduce fecundity. The goal of this study was to perform a comprehensive characterization of tsetse milk proteins using lactation-specific transcriptome/milk proteome analyses and to define functional role(s) for the milk proteins during lactation. Differential analysis of RNA-seq data from lactating and dry (non-lactating) females revealed enrichment of transcripts coding for protein synthesis machinery, lipid metabolism and secretory proteins during lactation. Among the genes induced during lactation were those encoding the previously identified milk proteins (milk gland proteins 1–3, transferrin and acid sphingomyelinase 1) and seven new genes (mgp4–10). The genes encoding mgp2–10 are organized on a 40 kb syntenic block in the tsetse genome, have similar exon-intron arrangements, and share regions of amino acid sequence similarity. Expression of mgp2–10 is female-specific and high during milk secretion. While knockdown of a single mgp failed to reduce fecundity, simultaneous knockdown of multiple variants reduced milk protein levels and lowered fecundity. The genomic localization, gene structure similarities, and functional redundancy of MGP2–10 suggest that they constitute a novel highly divergent protein family. Our data indicates that MGP2–10 function both as the primary amino acid resource for the developing larva and in the maintenance of milk homeostasis, similar to the function of the mammalian casein family of milk proteins. This study underscores the dynamic nature of the lactation cycle and identifies a novel family of lactation-specific proteins, unique to Glossina sp., that are essential to larval development. The specificity of MGP2–10 to tsetse and their critical role during lactation suggests that these proteins may be an excellent target for tsetse-specific population control approaches. PMID:24763277

  2. CHRFAM7A, a human-specific and partially duplicated α7-nicotinic acetylcholine receptor gene with the potential to specify a human-specific inflammatory response to injury

    PubMed Central

    Costantini, Todd W.; Dang, Xitong; Coimbra, Raul; Eliceiri, Brian P.; Baird, Andrew

    2015-01-01

    Conventional wisdom presumes that the α7nAChR product of CHRNA7 expression mediates the ability of the vagus nerve to regulate the inflammatory response to injury and infection. Yet, 15 years ago, a 2nd structurally distinct and human-specific α7nAChR gene was discovered that has largely escaped attention of the inflammation research community. The gene, originally called dupα7nAChR but now known as CHRFAM7A, has been studied exhaustively in psychiatric research because of its association with mental illness. However, dupα7nAChR/CHRFAM7A expression is relatively low in human brain but elevated in human leukocytes. Furthermore, α7nAChR research in human tissues has been confounded by cross-reacting antibodies and nonspecific oligonucleotide primers that crossreact in immunoblotting, immunohistochemistry, and RT-PCR. Yet, 3 independent reports show the human-specific CHRFAM7A changes cell responsiveness to the canonical α7nAChR/CHRNA7 ion-gated channel. Because of its potential for the injury research community, its possible significance to human leukocyte biology, and its relevance to human inflammation, we review the discovery and structure of the dupα7nAChR/CHRFAM7A gene, the distribution of its mRNA, and its biologic activities and then discuss its possible role(s) in specifying human inflammation and injury. In light of emerging concepts that point to a role for human-specific genes in complex human disease, the existence of a human-specific α7nAChR regulating inflammatory responses in injury underscores the need for caution in extrapolating findings in the α7nAChR literature to man. To this end, we discuss the translational implications of a uniquely human α7nAChR-like gene on new drug target discovery and therapeutics development for injury, infection, and inflammation. PMID:25473097

  3. Traumatic stress and cellular senescence: The role of war-captivity and homecoming stressors in later life telomere length.

    PubMed

    Stein, Jacob Y; Levin, Yafit; Uziel, Orit; Abumock, Heba; Solomon, Zahava

    2018-05-30

    Telomere length (TL) serves as a biomarker of cellular senescence and is a robust predictor of mortality. The association between traumatic stress and TL erosion is rapidly realized, as are the complexities of this relation that include links to posttraumatic stress disorder (PTSD), depression, and psychosocial factors. Nevertheless, the relation between specific stressors in early adulthood and TL in later life, specifically among populations that have undergone extreme stress in early adulthood are largely uninvestigated. Examining 99 Israeli former prisoners of war (ex-POWs) 18 and 42 years after repatriation, the current study investigated the role that specific stressors during captivity (i.e., physical abuse, nourishment deprivation and solitary confinement) and homecoming (i.e., received social-support, loss of place in the family, loneliness and sense of being accused) play in predicting TL 42 years post-repatriation. Intercorrelations analysis and a hierarchical linear regression were utilized. Variables that have been empirically associated with TL: age, BMI, physical activity, smoking, substance abuse, negative life events since repatriation, depression and PTSD symptoms were controlled for in the regression. Solitary confinement during captivity, and loss of place in the family, loneliness and being accused at homecoming predicted shorter telomeres in later life. The remaining stressors did not significantly predict TL. These findings suggest that an adequate understanding of TL after trauma must consider the unique contributions of specific types of stressors across the lifespan, and particularly account for interpersonal deficits. The findings may inform preventive interventions aimed at improving ex-POWs' longevity and well-being. Copyright © 2018. Published by Elsevier B.V.

  4. Inhibition of botulinum neurotoxins interchain disulfide bond reduction prevents the peripheral neuroparalysis of botulism.

    PubMed

    Zanetti, Giulia; Azarnia Tehran, Domenico; Pirazzini, Marcon; Binz, Thomas; Shone, Clifford C; Fillo, Silvia; Lista, Florigio; Rossetto, Ornella; Montecucco, Cesare

    2015-12-01

    Botulinum neurotoxins (BoNTs) form a growing family of metalloproteases with a unique specificity either for VAMP, SNAP25 or syntaxin. The BoNTs are grouped in seven different serotypes indicated by letters from A to G. These neurotoxins enter the cytosol of nerve terminals via a 100 kDa chain which binds to the presynaptic membrane and assists the translocation of a 50 kDa metalloprotease chain. These two chains are linked by a single disulfide bridge which plays an essential role during the entry of the metalloprotease chain in the cytosol, but thereafter it has to be reduced to free the proteolytic activity. Its reduction is mediated by thioredoxin which is continuously regenerated by its reductase. Here we show that inhibitors of thioredoxin reductase or of thioredoxin prevent the specific proteolysis of VAMP by the four VAMP-specific BoNTs: type B, D, F and G. These compounds are effective not only in primary cultures of neurons, but also in preventing the in vivo mouse limb neuroparalysis. In addition, one of these inhibitors, Ebselen, largely protects mice from the death caused by a systemic injection. Together with recent results obtained with BoNTs specific for SNAP25 and syntaxin, the present data demonstrate the essential role of the thioredoxin-thioredoxin reductase system in reducing the interchain disulfide during the nerve intoxication mechanism of all serotypes. Therefore its inhibitors should be considered for a possible use to prevent botulism and for treating infant botulism. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A Feminist Redefinition of Leadership.

    ERIC Educational Resources Information Center

    Tully, Katee

    Women bring to the leadership process not only distinct needs, but also a unique perspective that should be incorporated in all facets of leadership definition. A woman who occupies a position of leadership is enacting both a sex role and an organizational role. Because of this dual role, women are vulnerable to role conflict. One kind of role…

  6. Combined Chromatin and Expression Analysis Reveals Specific Regulatory Mechanisms within Cytokine Genes in the Macrophage Early Immune Response

    PubMed Central

    Emanuelsson, Olof; Sennblad, Bengt; Pirmoradian Najafabadi, Mohammad; Folkersen, Lasse; Mälarstig, Anders; Lagergren, Jens; Eriksson, Per; Hamsten, Anders; Odeberg, Jacob

    2012-01-01

    Macrophages play a critical role in innate immunity, and the expression of early response genes orchestrate much of the initial response of the immune system. Macrophages undergo extensive transcriptional reprogramming in response to inflammatory stimuli such as Lipopolysaccharide (LPS). To identify gene transcription regulation patterns involved in early innate immune responses, we used two genome-wide approaches - gene expression profiling and chromatin immunoprecipitation-sequencing (ChIP-seq) analysis. We examined the effect of 2 hrs LPS stimulation on early gene expression and its relation to chromatin remodeling (H3 acetylation; H3Ac) and promoter binding of Sp1 and RNA polymerase II phosphorylated at serine 5 (S5P RNAPII), which is a marker for transcriptional initiation. Our results indicate novel and alternative gene regulatory mechanisms for certain proinflammatory genes. We identified two groups of up-regulated inflammatory genes with respect to chromatin modification and promoter features. One group, including highly up-regulated genes such as tumor necrosis factor (TNF), was characterized by H3Ac, high CpG content and lack of TATA boxes. The second group, containing inflammatory mediators (interleukins and CCL chemokines), was up-regulated upon LPS stimulation despite lacking H3Ac in their annotated promoters, which were low in CpG content but did contain TATA boxes. Genome-wide analysis showed that few H3Ac peaks were unique to either +/−LPS condition. However, within these, an unpacking/expansion of already existing H3Ac peaks was observed upon LPS stimulation. In contrast, a significant proportion of S5P RNAPII peaks (approx 40%) was unique to either condition. Furthermore, data indicated a large portion of previously unannotated TSSs, particularly in LPS-stimulated macrophages, where only 28% of unique S5P RNAPII peaks overlap annotated promoters. The regulation of the inflammatory response appears to occur in a very specific manner at the chromatin level for specific genes and this study highlights the level of fine-tuning that occurs in the immune response. PMID:22384210

  7. Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans.

    PubMed

    Noborn, Fredrik; Gomez Toledo, Alejandro; Green, Anders; Nasir, Waqas; Sihlbom, Carina; Nilsson, Jonas; Larson, Göran

    2016-10-03

    Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans.

  8. Mammalian Protein Arginine Methyltransferase 7 (PRMT7) Specifically Targets RXR Sites in Lysine- and Arginine-rich Regions*

    PubMed Central

    Feng, You; Maity, Ranjan; Whitelegge, Julian P.; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T.; Bedford, Mark T.; Masson, Jean-Yves; Clarke, Steven G.

    2013-01-01

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7. PMID:24247247

  9. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions.

    PubMed

    Feng, You; Maity, Ranjan; Whitelegge, Julian P; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T; Bedford, Mark T; Masson, Jean-Yves; Clarke, Steven G

    2013-12-27

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7.

  10. The impact of trisomy 21 on foetal haematopoiesis.

    PubMed

    Roberts, Irene; O'Connor, David; Roy, Anindita; Cowan, Gillian; Vyas, Paresh

    2013-12-01

    The high frequency of a unique neonatal preleukaemic syndrome, transient abnormal myelopoiesis (TAM), and subsequent acute myeloid leukaemia in early childhood in patients with trisomy 21 (Down syndrome) points to a specific role for trisomy 21 in transforming foetal haematopoietic cells. N-terminal truncating mutations in the key haematopoietic transcription factor GATA1 are acquired during foetal life in virtually every case. These mutations are not leukaemogenic in the absence of trisomy 21. In mouse models, deregulated expression of chromosome 21-encoded genes is implicated in leukaemic transformation, but does not recapitulate the effects of trisomy 21 in a human context. Recent work using primary human foetal liver and bone marrow cells, human embryonic stem cells and iPS cells shows that prior to acquisition of GATA1 mutations, trisomy 21 itself alters human foetal haematopoietic stem cell and progenitor cell biology causing multiple abnormalities in myelopoiesis and B-lymphopoiesis. The molecular basis by which trisomy 21 exerts these effects is likely to be extremely complex, to be tissue-specific and lineage-specific and to be dependent on ontogeny-related characteristics of the foetal microenvironment. © 2013.

  11. Lectin-functionalized poly(glycidyl methacrylate)-block-poly(vinyldimethyl azlactone) surface supports for high avidity microbial capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Ryan R; Hinestrosa Salazar, Juan P; Shubert, Katherine R

    2013-01-01

    Microbial exopolysaccharides (EPS) play a critical and dynamic role in shaping the interactions between microbial community members and their local environment. The capture of targeted microbes using surface immobilized lectins that recognize specific extracellular oligosaccharide moieties offers a non-destructive method for functional characterization based on EPS content. In this report, we evaluate the use of the block co-polymer, poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA), as a surface support for lectin-specific microbial capture. Arrays of circular polymer supports ten micron in diameter were generated on silicon substrates to provide discrete, covalent coupling sites for Triticum vulgare and Lens culinaris lectins. These supports promoted microbemore » adhesion and colony formation in a lectin-specific manner. Silicon posts with similar topography containing only physisorbed lectins showed significantly less activity. These results demonstrate that micropatterned PGMA-b-PVDMA supports provide a unique platform for microbial capture and screening based on EPS content by combining high avidity lectin surfaces with three-dimensional topography.« less

  12. Targeting Super-Enhancers for Disease Treatment and Diagnosis.

    PubMed

    Shin, Ha Youn

    2018-05-10

    The transcriptional regulation of genes determines the fate of animal cell differentiation and subsequent organ development. With the recent progress in genome-wide technologies, the genomic landscapes of enhancers have been broadly explored in mammalian genomes, which led to the discovery of novel specific subsets of enhancers, termed superenhancers. Super-enhancers are large clusters of enhancers covering the long region of regulatory DNA and are densely occupied by transcription factors, active histone marks, and co-activators. Accumulating evidence points to the critical role that super-enhancers play in cell type-specific development and differentiation, as well as in the development of various diseases. Here, I provide a comprehensive description of the optimal approach for identifying functional units of superenhancers and their unique chromatin features in normal development and in diseases, including cancers. I also review the recent updated knowledge on novel approaches of targeting super-enhancers for the treatment of specific diseases, such as small-molecule inhibitors and potential gene therapy. This review will provide perspectives on using superenhancers as biomarkers to develop novel disease diagnostic tools and establish new directions in clinical therapeutic strategies.

  13. Mof-associated complexes have overlapping and unique roles in regulating pluripotency in embryonic stem cells and during differentiation

    PubMed Central

    Ravens, Sarina; Fournier, Marjorie; Ye, Tao; Stierle, Matthieu; Dembele, Doulaye; Chavant, Virginie; Tora, Làszlò

    2014-01-01

    The histone acetyltransferase (HAT) Mof is essential for mouse embryonic stem cell (mESC) pluripotency and early development. Mof is the enzymatic subunit of two different HAT complexes, MSL and NSL. The individual contribution of MSL and NSL to transcription regulation in mESCs is not well understood. Our genome-wide analysis show that i) MSL and NSL bind to specific and common sets of expressed genes, ii) NSL binds exclusively at promoters, iii) while MSL binds in gene bodies. Nsl1 regulates proliferation and cellular homeostasis of mESCs. MSL is the main HAT acetylating H4K16 in mESCs, is enriched at many mESC-specific and bivalent genes. MSL is important to keep a subset of bivalent genes silent in mESCs, while developmental genes require MSL for expression during differentiation. Thus, NSL and MSL HAT complexes differentially regulate specific sets of expressed genes in mESCs and during differentiation. DOI: http://dx.doi.org/10.7554/eLife.02104.001 PMID:24898753

  14. The Possible Role of Resource Requirements and Academic Career-Choice Risk on Gender Differences in Publication Rate and Impact

    PubMed Central

    Sales-Pardo, Marta; Radicchi, Filippo; Otis, Shayna; Woodruff, Teresa K.; Nunes Amaral, Luís A.

    2012-01-01

    Many studies demonstrate that there is still a significant gender bias, especially at higher career levels, in many areas including science, technology, engineering, and mathematics (STEM). We investigated field-dependent, gender-specific effects of the selective pressures individuals experience as they pursue a career in academia within seven STEM disciplines. We built a unique database that comprises 437,787 publications authored by 4,292 faculty members at top United States research universities. Our analyses reveal that gender differences in publication rate and impact are discipline-specific. Our results also support two hypotheses. First, the widely-reported lower publication rates of female faculty are correlated with the amount of research resources typically needed in the discipline considered, and thus may be explained by the lower level of institutional support historically received by females. Second, in disciplines where pursuing an academic position incurs greater career risk, female faculty tend to have a greater fraction of higher impact publications than males. Our findings have significant, field-specific, policy implications for achieving diversity at the faculty level within the STEM disciplines. PMID:23251502

  15. Appreciative Leadership: Supporting Education Innovation

    ERIC Educational Resources Information Center

    Orr, Tracy; Cleveland-Innes, Marti

    2015-01-01

    Appreciative Leadership is unique among leadership theories both past and present. This uniqueness includes its strength-based practice, search for the positive in people and organizations, and the role this plays in organizational innovation and transformation. What follows is a summary of Appreciative Inquiry and the five main principles on…

  16. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.

    PubMed

    Barton, Larry L; Fauque, Guy D

    2009-01-01

    Chemolithotrophic bacteria that use sulfate as terminal electron acceptor (sulfate-reducing bacteria) constitute a unique physiological group of microorganisms that couple anaerobic electron transport to ATP synthesis. These bacteria (220 species of 60 genera) can use a large variety of compounds as electron donors and to mediate electron flow they have a vast array of proteins with redox active metal groups. This chapter deals with the distribution in the environment and the major physiological and metabolic characteristics of sulfate-reducing bacteria (SRB). This chapter presents our current knowledge of soluble electron transfer proteins and transmembrane redox complexes that are playing an essential role in the dissimilatory sulfate reduction pathway of SRB of the genus Desulfovibrio. Environmentally important activities displayed by SRB are a consequence of the unique electron transport components or the production of high levels of H(2)S. The capability of SRB to utilize hydrocarbons in pure cultures and consortia has resulted in using these bacteria for bioremediation of BTEX (benzene, toluene, ethylbenzene and xylene) compounds in contaminated soils. Specific strains of SRB are capable of reducing 3-chlorobenzoate, chloroethenes, or nitroaromatic compounds and this has resulted in proposals to use SRB for bioremediation of environments containing trinitrotoluene and polychloroethenes. Since SRB have displayed dissimilatory reduction of U(VI) and Cr(VI), several biotechnology procedures have been proposed for using SRB in bioremediation of toxic metals. Additional non-specific metal reductase activity has resulted in using SRB for recovery of precious metals (e.g. platinum, palladium and gold) from waste streams. Since bacterially produced sulfide contributes to the souring of oil fields, corrosion of concrete, and discoloration of stonework is a serious problem, there is considerable interest in controlling the sulfidogenic activity of the SRB. The production of biosulfide by SRB has led to immobilization of toxic metals and reduction of textile dyes, although the process remains unresolved, SRB play a role in anaerobic methane oxidation which not only contributes to carbon cycle activities but also depletes an important industrial energy reserve.

  17. Reduced Plasmodium Parasite Burden Associates with CD38+ CD4+ T Cells Displaying Cytolytic Potential and Impaired IFN-γ Production

    PubMed Central

    Burel, Julie G.; Apte, Simon H.; Groves, Penny L.; Klein, Kerenaftali; McCarthy, James S.; Doolan, Denise L.

    2016-01-01

    Using a unique resource of samples from a controlled human malaria infection (CHMI) study, we identified a novel population of CD4+ T cells whose frequency in the peripheral blood was inversely correlated with parasite burden following P. falciparum infection. These CD4+ T cells expressed the multifunctional ectoenzyme CD38 and had unique features that distinguished them from other CD4+ T cells. Specifically, their phenotype was associated with proliferation, activation and cytotoxic potential as well as significantly impaired production of IFN-γ and other cytokines and reduced basal levels of activated STAT1. A CD38+ CD4+ T cell population with similar features was identified in healthy uninfected individuals, at lower frequency. CD38+ CD4+ T cells could be generated in vitro from CD38- CD4+ T cells after antigenic or mitogenic stimulation. This is the first report of a population of CD38+ CD4+ T cells with a cytotoxic phenotype and markedly impaired IFN-γ capacity in humans. The expansion of this CD38+ CD4+ T population following infection and its significant association with reduced blood-stage parasite burden is consistent with an important functional role for these cells in protective immunity to malaria in humans. Their ubiquitous presence in humans suggests that they may have a broad role in host-pathogen defense. Trial Registration ClinicalTrials.gov clinical trial numbers ACTRN12612000814875, ACTRN12613000565741 and ACTRN12613001040752 PMID:27662621

  18. Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue

    PubMed Central

    Rojas, Julio C.; Bruchey, Aleksandra K.; Gonzalez-Lima, F.

    2011-01-01

    This paper provides the first review of the memory-enhancing and neuroprotective metabolic mechanisms of action of methylene blue in vivo. These mechanisms have important implications as a new neurobiological approach to improve normal memory and to treat memory impairment and neurodegeneration associated with mitochondrial dysfunction. Methylene blue’s action is unique because its neurobiological effects are not determined by regular drug-receptor interactions or drug-response paradigms. Methylene blue shows a hormetic dose-response, with opposite effects at low and high doses. At low doses, methylene blue is an electron cycler in the mitochondrial electron transport chain, with unparalleled antioxidant and cell respiration-enhancing properties that affect the function of the nervous system in a versatile manner. A major role of the respiratory enzyme cytochrome oxidase on the memory-enhancing effects of methylene blue is supported by available data. The memory-enhancing effects have been associated with improvement of memory consolidation in a network-specific and use-dependent fashion. In addition, low doses of methylene blue have also been used for neuroprotection against mitochondrial dysfunction in humans and experimental models of disease. The unique auto-oxidizing property of methylene blue and its pleiotropic effects on a number of tissue oxidases explain its potent neuroprotective effects at low doses. The evidence reviewed supports a mechanistic role of low-dose methylene blue as a promising and safe intervention for improving memory and for the treatment of acute and chronic conditions characterized by increased oxidative stress, neurodegeneration and memory impairment. PMID:22067440

  19. Discovery of Platelet-Type 12-Human Lipoxygenase Selective Inhibitors by High-Throughput Screening of Structurally Diverse Libraries

    PubMed Central

    Deschamps, Joshua D.; Gautschi, Jeffrey T.; Whitman, Stephanie; Johnson, Tyler A.; Gassner, Nadine C.; Crews, Phillip; Holman, Theodore R.

    2007-01-01

    Human lipoxygenases (hLO) have been implicated in a variety of diseases and cancers and each hLO isozyme appears to have distinct roles in cellular biology. This fact emphasizes the need for discovering selective hLO inhibitors for both understanding the role of specific lipoxygenases in the cell and developing pharmaceutical therapeutics. To this end, we have modified a known lipoxygenase assay for high-throughput (HTP) screening of both the National Cancer Institute (NCI) and the UC Santa Cruz marine extract library (UCSC-MEL) in search of platelet-type 12-hLO (12-hLO) selective inhibitors. The HTP screen led to the characterization of five novel 12-hLO inhibitors from the NCI repository. One is the potent but non-selective michellamine B, a natural product, antiviral agent. The other four compounds were selective inhibitors against 12-hLO, with three being synthetic compounds and one being α-mangostin, a natural product, caspase-3 pathway inhibitor. In addition, a selective inhibitor was isolated from the UCSC-MEL (neodysidenin), which has a unique chemical scaffold for an hLO inhibitor. Due to the unique structure of neodysidenin, steady-state inhibition kinetics were performed and its mode of inhibition against 12-hLO was determined to be competitive (Ki = 17 µM) and selective over reticulocyte 15-hLO-1 (Ki 15-hLO-1/12-hLO > 30). PMID:17826100

  20. A unique role of RGS9-2 in the striatum as a positive or negative regulator of opiate analgesia.

    PubMed

    Psifogeorgou, Kassi; Psigfogeorgou, Kassi; Terzi, Dimitra; Papachatzaki, Maria Martha; Varidaki, Artemis; Ferguson, Deveroux; Gold, Stephen J; Zachariou, Venetia

    2011-04-13

    The signaling molecule RGS9-2 is a potent modulator of G-protein-coupled receptor function in striatum. Our earlier work revealed a critical role for RGS9-2 in the actions of the μ-opioid receptor (MOR) agonist morphine. In this study, we demonstrate that RGS9-2 may act as a positive or negative modulator of MOR-mediated behavioral responses in mice depending on the agonist administered. Paralleling these findings we use coimmunoprecipitation assays to show that the signaling complexes formed between RGS9-2 and Gα subunits in striatum are determined by the MOR agonist, and we identify RGS9-2 containing complexes associated with analgesic tolerance. In striatum, MOR activation promotes the formation of complexes between RGS9-2 and several Gα subunits, but morphine uniquely promotes an association between RGS9-2 and Gαi3. In contrast, RGS9-2/Gαq complexes assemble after acute application of several MOR agonists but not after morphine application. Repeated morphine administration leads to the formation of distinct complexes, which contain RGS9-2, Gβ5, and Gαq. Finally, we use simple pharmacological manipulations to disrupt RGS9-2 complexes formed during repeated MOR activation to delay the development of analgesic tolerance to morphine. Our data provide a better understanding of the brain-region-specific signaling events associated with opiate analgesia and tolerance and point to pharmacological approaches that can be readily tested for improving chronic analgesic responsiveness.

Top