Spectroscopic Studies of Metal-Ligand-Surface Interactions
1988-10-01
oo. . . .. . . . . . . . . . . 12 2. Matrix-Iso~lation Spectra of Deuterated Hydrazine......... o.... 28 3. Matrix-Isolation Spectra of MMH, UDMH ...Monon:e-;lhydrazine Survey Spectra: 3400-2700 cm- .................... 19 Monomethylhydrazine Survey Spectra: 1750-650 c- 20 UDMH Survey Spectra...3350-2650 cm- 1 . o qo .... 21 UDMH Survey Spectra: 1750-650 cm-lo.0. ...... 22 Survey Spectra of Benzene: 3150-2950 cm-1 and 23 Survey Spectra of
Determination of the optical absorption spectra of thin layers from their photoacoustic spectra
NASA Astrophysics Data System (ADS)
Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery
2018-05-01
This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.
Li, Yanchun; Li, Jie; Reeves, Hollie M; Reyes, Ramil; Maitta, Robert W
2016-11-01
The Spectra Optia is a newer apheresis system developed based on the COBE Spectra platform. COBE Spectra requires more manual control, while Spectra Optia offers greater automation. The purpose of this study was to compare the two systems during hematopoietic progenitor stem cell (HPSC) collections. A retrospective review of 41 collections performed in 26 subjects at a tertiary medical center between June 1, 2013, and December 31, 2013, was conducted, 11 with the Spectra Optia and 30 with the COBE Spectra. Six patients underwent two consecutive daily collections, first on the Spectra Optia followed by the COBE Spectra. Procedure run time with the Spectra Optia was considerably longer than with the COBE Spectra (283 ± 11 min vs. 217 ± 2 min, respectively; p < 0.01). Mean CD34+ cell yields with the Spectra Optia were comparable with those of the COBE Spectra. Products collected with the Spectra Optia had less red blood cell contamination. However, platelet (PLT) attrition was greater with the Spectra Optia. Similar results were obtained in patients who were collected on consecutive days in both systems. Collections with the Spectra Optia take longer and lead to greater PLT losses during HPSC collections. © 2016 AABB.
VizieR Online Data Catalog: KIC 8462852 GTC spectra (Deeg+, 2018)
NASA Astrophysics Data System (ADS)
Deeg, H. J.; Alonso, R.; Nespral, D.; Boyajian, T.
2018-01-01
Spectra obtained in the follow-up of KIC 8462852 (Boyajian's star) with OSIRIS at the GTC telescope. These spectra have been reduced as described in the paper and are contained in two directories, for target and comparison spectra: sp_target contains spectra of the target star (KIC 8462852) sp_compar contains spectra of the comparison star (KIC 8462763) At each pointing of the GTC, a sequence of 10-45 spectra was generated. The individual spectra are named: tpXXYY.dat for the target spectra and cpXXYY.dat for the comparison spectra, where XX is the pointing number, and YY is a sequence number. The format of each spectrum file is a two-column ascii file: Wavelength (Angstrom) | Flux (arbitrary units)) The files times_pXX.dat correspond to each of the pointings and contain the times of mid-exposure of each spectrum, in the HJD_UTC-2400000 framework. These times apply to both target and comparison spectra and are ordered by increasing sequence number. There are a total of 516 spectra of the target and 516 spectra of the comparison. (19 data files).
Zhang, Chu; Liu, Fei; He, Yong
2018-02-01
Hyperspectral imaging was used to identify and to visualize the coffee bean varieties. Spectral preprocessing of pixel-wise spectra was conducted by different methods, including moving average smoothing (MA), wavelet transform (WT) and empirical mode decomposition (EMD). Meanwhile, spatial preprocessing of the gray-scale image at each wavelength was conducted by median filter (MF). Support vector machine (SVM) models using full sample average spectra and pixel-wise spectra, and the selected optimal wavelengths by second derivative spectra all achieved classification accuracy over 80%. Primarily, the SVM models using pixel-wise spectra were used to predict the sample average spectra, and these models obtained over 80% of the classification accuracy. Secondly, the SVM models using sample average spectra were used to predict pixel-wise spectra, but achieved with lower than 50% of classification accuracy. The results indicated that WT and EMD were suitable for pixel-wise spectra preprocessing. The use of pixel-wise spectra could extend the calibration set, and resulted in the good prediction results for pixel-wise spectra and sample average spectra. The overall results indicated the effectiveness of using spectral preprocessing and the adoption of pixel-wise spectra. The results provided an alternative way of data processing for applications of hyperspectral imaging in food industry.
SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases
NASA Astrophysics Data System (ADS)
Goldenstein, Christopher S.; Miller, Victor A.; Mitchell Spearrin, R.; Strand, Christopher L.
2017-10-01
SpectraPlot is a web-based application for simulating spectra of atomic and molecular gases. At the time this manuscript was written, SpectraPlot consisted of four primary tools for calculating: (1) atomic and molecular absorption spectra, (2) atomic and molecular emission spectra, (3) transition linestrengths, and (4) blackbody emission spectra. These tools currently employ the NIST ASD, HITRAN2012, and HITEMP2010 databases to perform line-by-line simulations of spectra. SpectraPlot employs a modular, integrated architecture, enabling multiple simulations across multiple databases and/or thermodynamic conditions to be visualized in an interactive plot window. The primary objective of this paper is to describe the architecture and spectroscopic models employed by SpectraPlot in order to provide its users with the knowledge required to understand the capabilities and limitations of simulations performed using SpectraPlot. Further, this manuscript discusses the accuracy of several underlying approximations used to decrease computational time, in particular, the use of far-wing cutoff criteria.
SpectraPLOT, Visualization Package with a User-Friendly Graphical Interface
NASA Astrophysics Data System (ADS)
Sebald, James; Macfarlane, Joseph; Golovkin, Igor
2017-10-01
SPECT3D is a collisional-radiative spectral analysis package designed to compute detailed emission, absorption, or x-ray scattering spectra, filtered images, XRD signals, and other synthetic diagnostics. The spectra and images are computed for virtual detectors by post-processing the results of hydrodynamics simulations in 1D, 2D, and 3D geometries. SPECT3D can account for a variety of instrumental response effects so that direct comparisons between simulations and experimental measurements can be made. SpectraPLOT is a user-friendly graphical interface for viewing a wide variety of results from SPECT3D simulations, and applying various instrumental effects to the simulated images and spectra. We will present SpectraPLOT's ability to display a variety of data, including spectra, images, light curves, streaked spectra, space-resolved spectra, and drilldown plasma property plots, for an argon-doped capsule implosion experiment example. Future SpectraPLOT features and enhancements will also be discussed.
Monte Carlo turbulence simulation using rational approximations to von Karman spectra
NASA Technical Reports Server (NTRS)
Campbell, C. W.
1986-01-01
Turbulence simulation is computationally much simpler using rational spectra, but turbulence falls off as f exp -5/3 in frequency ranges of interest to aircraft response and as predicted by von Karman's model. Rational approximations to von Karman spectra should satisfy three requirements: (1) the rational spectra should provide a good approximation to the von Karman spectra in the frequency range of interest; (2) for stability, the resulting rational transfer function should have all its poles in the left half-plane; and (3) at high frequencies, the rational spectra must fall off as an integer power of frequency, and since the -2 power is closest to the -5/3 power, the rational approximation should roll off as the -2 power at high frequencies. Rational approximations to von Karman spectra that satisfy these three criteria are presented, along with spectra from simulated turbulence. Agreement between the spectra of the simulated turbulence and von Karman spectra is excellent.
NASA Astrophysics Data System (ADS)
Chauhan, H.; Krishna Mohan, B.
2014-11-01
The present study was undertaken with the objective to check effectiveness of spectral similarity measures to develop precise crop spectra from the collected hyperspectral field spectra. In Multispectral and Hyperspectral remote sensing, classification of pixels is obtained by statistical comparison (by means of spectral similarity) of known field or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been placed on use of various spectral similarity measures to select precise crop spectra from the set of field spectra. Conventionally crop spectra are developed after rejecting outliers based only on broad-spectrum analysis. Here a successful attempt has been made to develop precise crop spectra based on spectral similarity. As unevaluated data usage leads to uncertainty in the image classification, it is very crucial to evaluate the data. Hence, notwithstanding the conventional method, the data precision has been performed effectively to serve the purpose of the present research work. The effectiveness of developed precise field spectra was evaluated by spectral discrimination measures and found higher discrimination values compared to spectra developed conventionally. Overall classification accuracy for the image classified by field spectra selected conventionally is 51.89% and 75.47% for the image classified by field spectra selected precisely based on spectral similarity. KHAT values are 0.37, 0.62 and Z values are 2.77, 9.59 for image classified using conventional and precise field spectra respectively. Reasonable higher classification accuracy, KHAT and Z values shows the possibility of a new approach for field spectra selection based on spectral similarity measure.
Spectra library assisted de novo peptide sequencing for HCD and ETD spectra pairs.
Yan, Yan; Zhang, Kaizhong
2016-12-23
De novo peptide sequencing via tandem mass spectrometry (MS/MS) has been developed rapidly in recent years. With the use of spectra pairs from the same peptide under different fragmentation modes, performance of de novo sequencing is greatly improved. Currently, with large amount of spectra sequenced everyday, spectra libraries containing tens of thousands of annotated experimental MS/MS spectra become available. These libraries provide information of the spectra properties, thus have the potential to be used with de novo sequencing to improve its performance. In this study, an improved de novo sequencing method assisted with spectra library is proposed. It uses spectra libraries as training datasets and introduces significant scores of the features used in our previous de novo sequencing method for HCD and ETD spectra pairs. Two pairs of HCD and ETD spectral datasets were used to test the performance of the proposed method and our previous method. The results show that this proposed method achieves better sequencing accuracy with higher ranked correct sequences and less computational time. This paper proposed an advanced de novo sequencing method for HCD and ETD spectra pair and used information from spectra libraries and significant improved previous similar methods.
NASA Astrophysics Data System (ADS)
Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.
2016-05-01
The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.
Griss, Johannes; Perez-Riverol, Yasset; Lewis, Steve; Tabb, David L.; Dianes, José A.; del-Toro, Noemi; Rurik, Marc; Walzer, Mathias W.; Kohlbacher, Oliver; Hermjakob, Henning; Wang, Rui; Vizcaíno, Juan Antonio
2016-01-01
Mass spectrometry (MS) is the main technology used in proteomics approaches. However, on average 75% of spectra analysed in an MS experiment remain unidentified. We propose to use spectrum clustering at a large-scale to shed a light on these unidentified spectra. PRoteomics IDEntifications database (PRIDE) Archive is one of the largest MS proteomics public data repositories worldwide. By clustering all tandem MS spectra publicly available in PRIDE Archive, coming from hundreds of datasets, we were able to consistently characterize three distinct groups of spectra: 1) incorrectly identified spectra, 2) spectra correctly identified but below the set scoring threshold, and 3) truly unidentified spectra. Using a multitude of complementary analysis approaches, we were able to identify less than 20% of the consistently unidentified spectra. The complete spectrum clustering results are available through the new version of the PRIDE Cluster resource (http://www.ebi.ac.uk/pride/cluster). This resource is intended, among other aims, to encourage and simplify further investigation into these unidentified spectra. PMID:27493588
Griss, Johannes; Perez-Riverol, Yasset; Lewis, Steve; Tabb, David L; Dianes, José A; Del-Toro, Noemi; Rurik, Marc; Walzer, Mathias W; Kohlbacher, Oliver; Hermjakob, Henning; Wang, Rui; Vizcaíno, Juan Antonio
2016-08-01
Mass spectrometry (MS) is the main technology used in proteomics approaches. However, on average 75% of spectra analysed in an MS experiment remain unidentified. We propose to use spectrum clustering at a large-scale to shed a light on these unidentified spectra. PRoteomics IDEntifications database (PRIDE) Archive is one of the largest MS proteomics public data repositories worldwide. By clustering all tandem MS spectra publicly available in PRIDE Archive, coming from hundreds of datasets, we were able to consistently characterize three distinct groups of spectra: 1) incorrectly identified spectra, 2) spectra correctly identified but below the set scoring threshold, and 3) truly unidentified spectra. Using a multitude of complementary analysis approaches, we were able to identify less than 20% of the consistently unidentified spectra. The complete spectrum clustering results are available through the new version of the PRIDE Cluster resource (http://www.ebi.ac.uk/pride/cluster). This resource is intended, among other aims, to encourage and simplify further investigation into these unidentified spectra.
Near infrared Raman spectra of Rhizoma dioscoreae
NASA Astrophysics Data System (ADS)
Lin, Wenshuo; Chen, Rong; Chen, Guannan; Feng, Sangyuan; Li, Yongzeng; Huang, Zufang; Li, Yongsen
2008-03-01
A novel and compact near-infrared (NIR) Raman system is developed using 785-nm diode laser, volume-phase technology holographic system, and NIR intensified charge-coupled device (CCD). Raman spectra and first derivative spectra of Rhizoma Dioscoreae are obtained. Raman spectra of Rhizoma Dioscoreae showed three strong characteristic peaks at 477.4cm -1, 863.9cm -1, and 936.0cm -1. The major ingredients are protein, amino acid, starch, polysaccharides and so on, matched with the known basic biochemical composition of Rhizoma Dioscoreae. In the first derivative spectra of Rhizoma Dioscoreae, distinguishing characteristic peaks appeared at 467.674cm -1, 484.603cm -1, 870.37cm -1, 943.368cm -1. Contrasted with Rhizoma Dioscoreae Raman spectra, in 600cm -1 to 800cm -1, 1000cm -1 to 1400cm -1 regions, changes in Rhizoma Dioscoreae Raman first derivative spectra are represented more clearly than Rhizoma Dioscoreae Raman spectra. So Rhizoma Dioscoreae raman first derivative spectra can be an accurate supplementary analysis method to Rhizoma Dioscoreae Raman spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Peng; Luo, Ali; Li, Yinbi
2014-05-01
The LAMOST spectral analysis pipeline, called the 1D pipeline, aims to classify and measure the spectra observed in the LAMOST survey. Through this pipeline, the observed stellar spectra are classified into different subclasses by matching with template spectra. Consequently, the performance of the stellar classification greatly depends on the quality of the template spectra. In this paper, we construct a new LAMOST stellar spectral classification template library, which is supposed to improve the precision and credibility of the present LAMOST stellar classification. About one million spectra are selected from LAMOST Data Release One to construct the new stellar templates, andmore » they are gathered in 233 groups by two criteria: (1) pseudo g – r colors obtained by convolving the LAMOST spectra with the Sloan Digital Sky Survey ugriz filter response curve, and (2) the stellar subclass given by the LAMOST pipeline. In each group, the template spectra are constructed using three steps. (1) Outliers are excluded using the Local Outlier Probabilities algorithm, and then the principal component analysis method is applied to the remaining spectra of each group. About 5% of the one million spectra are ruled out as outliers. (2) All remaining spectra are reconstructed using the first principal components of each group. (3) The weighted average spectrum is used as the template spectrum in each group. Using the previous 3 steps, we initially obtain 216 stellar template spectra. We visually inspect all template spectra, and 29 spectra are abandoned due to low spectral quality. Furthermore, the MK classification for the remaining 187 template spectra is manually determined by comparing with 3 template libraries. Meanwhile, 10 template spectra whose subclass is difficult to determine are abandoned. Finally, we obtain a new template library containing 183 LAMOST template spectra with 61 different MK classes by combining it with the current library.« less
VizieR Online Data Catalog: Reflectance spectra of 12 Trojans and Hildas (Marsset+, 2014)
NASA Astrophysics Data System (ADS)
Marsset, M.; Vernazza, P.; Gourgeot, F.; Dumas, C.; Birlan, M.; Lamy, P.; Binzel, R. P.
2014-07-01
We present 17 reflectance spectra of 12 high albedo (pv>0.14) Trojans (8 objects) and Hildas (4 objects) obtained with the ESO/VLT Echelle spectrograph X-SHOOTER in the 0.3-2.2um spectral range (14 spectra) and with the NASA/IRTF spectrograph SpeX in the 0.8-2.5um spectral range (3 spectra). X-SHOOTER spectra were normalized to unity at 0.55um and SpeX spectra were normalized to unity at 2.2um . The spectra presented in this work were collected between April and December 2013. (18 data files).
Orbital phase dependent IUE spectra of the nova like binary II Arietis
NASA Technical Reports Server (NTRS)
Guinan, E. F.; Sion, E. M.
1981-01-01
Nine low dispersion IUE spectra of the nova like binary TT Ari over its 3h17m orbital period were obtained. Four short wave spectra and five long wave spectra exhibit marked changes in line strength and continuum shape with orbital phase. The short wave spectra show the presence in absorption of C III, Lyman alpha, SiIII, NV, SiIV, CIV, HeII, AlIII, and NIV. The CIV shows a P Cygni profile on two of the spectra. Implications of these spectra for the nature of nova like variables are discussed.
Soft X-ray properties of Seyfert galaxies. I - Spectra
NASA Technical Reports Server (NTRS)
Kruper, J. S.; Canizares, C. R.; Urry, C. M.
1990-01-01
Results are presented from a study of soft X-ray spectra of 75 Seyfert galaxies observed by the Einstein Observatory IPC. The spectra in this sample (mostly high-luminosity Seyfert type 1s) are found to be consistent with a single power-law index alpha = 81. The AGN spectra observed with the IPC are compared with those from higher energy experiments, where AGN spectra have power law indices alpha = 0.7. It is found that the IPC spectra are systematically steeper than the HEAO 1 A-2 spectra of the same Seyfert galaxies, indicating a flattening toward higher energies.
An Approach for Peptide Identification by De Novo Sequencing of Mixture Spectra.
Liu, Yi; Ma, Bin; Zhang, Kaizhong; Lajoie, Gilles
2017-01-01
Mixture spectra occur quite frequently in a typical wet-lab mass spectrometry experiment, which result from the concurrent fragmentation of multiple precursors. The ability to efficiently and confidently identify mixture spectra is essential to alleviate the existent bottleneck of low mass spectra identification rate. However, most of the traditional computational methods are not suitable for interpreting mixture spectra, because they still take the assumption that the acquired spectra come from the fragmentation of a single precursor. In this manuscript, we formulate the mixture spectra de novo sequencing problem mathematically, and propose a dynamic programming algorithm for the problem. Additionally, we use both simulated and real mixture spectra data sets to verify the merits of the proposed algorithm.
Perera, Undugodage Don Nuwan; Nishikida, Koichi; Lavine, Barry K
2018-06-01
A previously published study featuring an attenuated total reflection (ATR) simulation algorithm that mitigated distortions in ATR spectra was further investigated to evaluate its efficacy to enhance searching of infrared (IR) transmission libraries. In the present study, search prefilters were developed from transformed ATR spectra to identify the assembly plant of a vehicle from ATR spectra of the clear coat layer. A total of 456 IR transmission spectra from the Paint Data Query (PDQ) database that spanned 22 General Motors assembly plants and served as a training set cohort were transformed into ATR spectra by the simulation algorithm. These search prefilters were formulated using the fingerprint region (1500 cm -1 to 500 cm -1 ). Both the transformed ATR spectra (training set) and the experimental ATR spectra (validation set) were preprocessed for pattern recognition analysis using the discrete wavelet transform, which increased the signal-to-noise of the ATR spectra by concentrating the signal in specific wavelet coefficients. Attenuated total reflection spectra of 14 clear coat samples (validation set) measured with a Nicolet iS50 Fourier transform IR spectrometer were correctly classified as to assembly plant(s) of the automotive vehicle from which the paint sample originated using search prefilters developed from 456 simulated ATR spectra. The ATR simulation (transformation) algorithm successfully facilitated spectral library matching of ATR spectra against IR transmission spectra of automotive clear coats in the PDQ database.
Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C
NASA Astrophysics Data System (ADS)
Ay, M. R.; Shahriari, M.; Sarkar, S.; Adib, M.; Zaidi, H.
2004-11-01
The general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) was used for the simulation of x-ray spectra in diagnostic radiology and mammography. The electrons were transported until they slow down and stop in the target. Both bremsstrahlung and characteristic x-ray production were considered in this work. We focus on the simulation of various target/filter combinations to investigate the effect of tube voltage, target material and filter thickness on x-ray spectra in the diagnostic radiology and mammography energy ranges. The simulated x-ray spectra were compared with experimental measurements and spectra calculated by IPEM report number 78. In addition, the anode heel effect and off-axis x-ray spectra were assessed for different anode angles and target materials and the results were compared with EGS4-based Monte Carlo simulations and measured data. Quantitative evaluation of the differences between our Monte Carlo simulated and comparison spectra was performed using student's t-test statistical analysis. Generally, there is a good agreement between the simulated x-ray and comparison spectra, although there are systematic differences between the simulated and reference spectra especially in the K-characteristic x-rays intensity. Nevertheless, no statistically significant differences have been observed between IPEM spectra and the simulated spectra. It has been shown that the difference between MCNP simulated spectra and IPEM spectra in the low energy range is the result of the overestimation of characteristic photons following the normalization procedure. The transmission curves produced by MCNP4C have good agreement with the IPEM report especially for tube voltages of 50 kV and 80 kV. The systematic discrepancy for higher tube voltages is the result of systematic differences between the corresponding spectra.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2015-12-14
Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesian derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C-H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackie, Cameron J., E-mail: mackie@strw.leidenuniv.nl; Candian, Alessandra; Tielens, Alexander G. G. M.
2015-12-14
Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesianmore » derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C–H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.« less
NASA Technical Reports Server (NTRS)
Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.
2011-01-01
Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.
Gao, Bo-Cai; Liu, Ming
2013-01-01
Surface reflectance spectra retrieved from remotely sensed hyperspectral imaging data using radiative transfer models often contain residual atmospheric absorption and scattering effects. The reflectance spectra may also contain minor artifacts due to errors in radiometric and spectral calibrations. We have developed a fast smoothing technique for post-processing of retrieved surface reflectance spectra. In the present spectral smoothing technique, model-derived reflectance spectra are first fit using moving filters derived with a cubic spline smoothing algorithm. A common gain curve, which contains minor artifacts in the model-derived reflectance spectra, is then derived. This gain curve is finally applied to all of the reflectance spectra in a scene to obtain the spectrally smoothed surface reflectance spectra. Results from analysis of hyperspectral imaging data collected with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data are given. Comparisons between the smoothed spectra and those derived with the empirical line method are also presented. PMID:24129022
NASA Technical Reports Server (NTRS)
Vilas, F.; Hiroi, T.; Zolensky, M. E.
1993-01-01
Spectra of primitive asteroids (defined as C, P, and D classes and associated subclasses) were compared to the limited number of spectra of CM2 carbonaceous chondrites. An absorption feature located at 0.7 microns attributed to an Fe(+2) - Fe(+3) charge transfer absorption in iron oxides in phyllosilicates is apparent in some of the CM2 carbonaceous chondrite spectra and many of the asteroid spectra. Sawyer found a correlation between the area of the 0.7 micron feature and the mean semimajor axis of the asteroids. Spectra of a larger sample of carbonaceous chondrites, including 7 CM2 chondrites, covering a spectral interval of 0.30-2.5 microns were recently obtained using the Relab instrument at Brown University. These spectra were compared with spectrophotometric asteroid observations in a separate abstract. Those spectra of CM2 chondrites were isolated into the UV, visible and near-infrared spectral regions in order to compare them with high-quality narrowband reflectance spectra.
A sensitive continuum analysis method for gamma ray spectra
NASA Technical Reports Server (NTRS)
Thakur, Alakh N.; Arnold, James R.
1993-01-01
In this work we examine ways to improve the sensitivity of the analysis procedure for gamma ray spectra with respect to small differences in the continuum (Compton) spectra. The method developed is applied to analyze gamma ray spectra obtained from planetary mapping by the Mars Observer spacecraft launched in September 1992. Calculated Mars simulation spectra and actual thick target bombardment spectra have been taken as test cases. The principle of the method rests on the extraction of continuum information from Fourier transforms of the spectra. We study how a better estimate of the spectrum from larger regions of the Mars surface will improve the analysis for smaller regions with poorer statistics. Estimation of signal within the continuum is done in the frequency domain which enables efficient and sensitive discrimination of subtle differences between two spectra. The process is compared to other methods for the extraction of information from the continuum. Finally we explore briefly the possible uses of this technique in other applications of continuum spectra.
Abe, Hitoshi; Niwa, Yasuhiro; Kimura, Masao; Murakami, Youichi; Yokoyama, Toshiharu; Hosono, Hideo
2016-04-05
A gritty surface sample holder has been invented to obtain correct XAFS spectra for concentrated samples by fluorescence yield (FY). Materials are usually mixed with boron nitride (BN) to prepare proper concentrations to measure XAFS spectra. Some materials, however, could not be mixed with BN and would be measured in too concentrated conditions to obtain correct XAFS spectra. Consequently, XAFS spectra will be incorrect typically with decreased intensities of the peaks. We have invented the gritty surface sample holders to obtain correct XAFS spectra even for concentrated materials for FY measurements. Pure Cu and CuO powders were measured mounted on the sample holders, and the same spectra were obtained as transmission spectra of properly prepared samples. This sample holder is useful to measure XAFS for any concentrated materials.
Properties of Martian Hematite at Meridiani Planum by Simultaneous Fitting of Mars Mossbauer Spectra
NASA Technical Reports Server (NTRS)
Agresti, D. G.; Fleischer, I.; Klingelhoefer, G.; Morris, R. V.
2010-01-01
Mossbauer spectrometers [1] on the two Mars Exploration Rovers (MERs) have been making measurements of surface rocks and soils since January 2004, recording spectra in 10-K-wide temperature bins ranging from 180 K to 290 K. Initial analyses focused on modeling individual spectra directly as acquired or, to increase statistical quality, as sums of single-rock or soil spectra over temperature or as sums over similar rock or soil type [2, 3]. Recently, we have begun to apply simultaneous fitting procedures [4] to Mars Mossbauer data [5-7]. During simultaneous fitting (simfitting), many spectra are modeled similarly and fit together to a single convergence criterion. A satisfactory simfit with parameter values consistent among all spectra is more likely than many single-spectrum fits of the same data because fitting parameters are shared among multiple spectra in the simfit. Consequently, the number of variable parameters, as well as the correlations among them, is greatly reduced. Here we focus on applications of simfitting to interpret the hematite signature in Moessbauer spectra acquired at Meridiani Planum, results of which were reported in [7]. The Spectra. We simfit two sets of spectra with large hematite content [7]: 1) 60 rock outcrop spectra from Eagle Crater; and 2) 46 spectra of spherule-rich lag deposits (Table 1). Spectra of 10 different targets acquired at several distinct temperatures are included in each simfit set. In the table, each Sol (martian day) represents a different target, NS is the number of spectra for a given sol, and NT is the number of spectra for a given temperature. The spectra are indexed to facilitate definition of parameter relations and constraints. An example spectrum is shown in Figure 1, together with a typical fitting model. Results. We have shown that simultaneous fitting is effective in analyzing a large set of related MER Mossbauer spectra. By using appropriate constraints, we derive target-specific quantities and the temperature dependence of certain parameters. By examining different fitting models, we demonstrate an improved fit for martian hematite modeled with two sextets rather than as a single sextet, and show that outcrop and spherule hematite are distinct. For outcrop, the weaker sextet indicates a Morin transition typical of well-crystallized and chemically pure hematite, while most of the outcrop hematite remains in a weakly ferromagnetic state at all temperatures. For spherule spectra, both sextets are consistent with weakly ferromagnetic hematite with no Morin transition. For both hematites, there is evidence for a range of particle sizes.
NASA Technical Reports Server (NTRS)
Monaldo, Frank M.; Lyzenga, David R.
1988-01-01
During October 1984, coincident Shuttle Imaging Radar-B synthetic aperture radar (SAR) imagery and wave measurements from airborne instrumentation were acquired. The two-dimensional wave spectrum was measured by both a radar ocean-wave spectrometer and a surface-contour radar aboard the aircraft. In this paper, two-dimensional SAR image intensity variance spectra are compared with these independent measures of ocean wave spectra to verify previously proposed models of the relationship between such SAR image spectra and ocean wave spectra. The results illustrate both the functional relationship between SAR image spectra and ocean wave spectra and the limitations imposed on the imaging of short-wavelength, azimuth-traveling waves.
UniNovo: a universal tool for de novo peptide sequencing.
Jeong, Kyowon; Kim, Sangtae; Pevzner, Pavel A
2013-08-15
Mass spectrometry (MS) instruments and experimental protocols are rapidly advancing, but de novo peptide sequencing algorithms to analyze tandem mass (MS/MS) spectra are lagging behind. Although existing de novo sequencing tools perform well on certain types of spectra [e.g. Collision Induced Dissociation (CID) spectra of tryptic peptides], their performance often deteriorates on other types of spectra, such as Electron Transfer Dissociation (ETD), Higher-energy Collisional Dissociation (HCD) spectra or spectra of non-tryptic digests. Thus, rather than developing a new algorithm for each type of spectra, we develop a universal de novo sequencing algorithm called UniNovo that works well for all types of spectra or even for spectral pairs (e.g. CID/ETD spectral pairs). UniNovo uses an improved scoring function that captures the dependences between different ion types, where such dependencies are learned automatically using a modified offset frequency function. The performance of UniNovo is compared with PepNovo+, PEAKS and pNovo using various types of spectra. The results show that the performance of UniNovo is superior to other tools for ETD spectra and superior or comparable with others for CID and HCD spectra. UniNovo also estimates the probability that each reported reconstruction is correct, using simple statistics that are readily obtained from a small training dataset. We demonstrate that the estimation is accurate for all tested types of spectra (including CID, HCD, ETD, CID/ETD and HCD/ETD spectra of trypsin, LysC or AspN digested peptides). UniNovo is implemented in JAVA and tested on Windows, Ubuntu and OS X machines. UniNovo is available at http://proteomics.ucsd.edu/Software/UniNovo.html along with the manual.
Double-Resonance Facilitated Decomposion of Emission Spectra
NASA Astrophysics Data System (ADS)
Kato, Ryota; Ishikawa, Haruki
2016-06-01
Emission spectra provide us with rich information about the excited-state processes such as proton-transfer, charge-transfer and so on. In the cases that more than one excited states are involved, emission spectra from different excited states sometimes overlap and a decomposition of the overlapped spectra is desired. One of the methods to perform a decomposition is a time-resolved fluorescence technique. It uses a difference in time evolutions of components involved. However, in the gas-phase, a concentration of the sample is frequently too small to carry out this method. On the other hand, double-resonance technique is a very powerful tool to discriminate or identify a common species in the spectra in the gas-phase. Thus, in the present study, we applied the double-resonance technique to resolve the overlapped emission spectra. When transient IR absorption spectra of the excited state are available, we can label the population of the certain species by the IR excitation with a proper selection of the IR wavenumbers. Thus, we can obtain the emission spectra of labeled species by subtracting the emission spectra with IR labeling from that without IR. In the present study, we chose the charge-transfer emission spectra of cyanophenyldisilane (CPDS) as a test system. One of us reported that two charge-transfer (CT) states are involved in the intramolecular charge-transfer (ICT) process of CPDS-water cluster and recorded the transient IR spectra. As expected, we have succeeded in resolving the CT emission spectra of CPDS-water cluster by the double resonance facilitated decomposion technique. In the present paper, we will report the details of the experimental scheme and the results of the decomposition of the emission spectra. H. Ishikawa, et al., Chem. Phys. Phys. Chem., 9, 117 (2007).
Extreme ultraviolet spectra of multiply charged tungsten ions
NASA Astrophysics Data System (ADS)
Mita, Momoe; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Nakamura, Nobuyuki
2017-11-01
We present extreme ultraviolet spectra of multiply charged tungsten ions observed with an electron beam ion trap. The observed spectra are compared with previous experimental results and theoretical spectra obtained with a collisional radiative model.
Generating the Infrared Spectra of Large Interstellar Molecules with Density Functional Theory
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)
1999-01-01
It is now possible to compute IR (infrared) spectra of large molecules with an accuracy of 30 per cm, or better, using density function theory. This is true for cations, anions, and neutrals. Thus it possible to generate synthetic IR spectra that can help interpret experimental spectra and fill in for missing experimental data. These synthetic spectra can be used as input into interstellar models. In addition to IR spectra, it is possible to compute energetic properties to help understand which molecules can be formed in the interstellar environment.
Energetic Proton Spectra Measured by the Van Allen Probes
NASA Astrophysics Data System (ADS)
Summers, Danny; Shi, Run; Engebretson, Mark J.; Oksavik, Kjellmar; Manweiler, Jerry W.; Mitchell, Donald G.
2017-10-01
We test the hypothesis that pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during 17-20 March 2013 and 17-20 March 2015, we measure proton energy spectra in the region 3 ≤ L ≤ 6 using the RBSPICE-B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoretical limiting spectra show reasonable agreement. We conclude that the measurements of the most intense proton spectra are consistent with self-limiting by EMIC wave scattering.
Optical image and laser slope meter intercomparisons of high-frequency waves
NASA Technical Reports Server (NTRS)
Lubard, S. C.; Krimmel, J. E.; Thebaud, L. R.; Evans, D. D.; Shemdin, O. H.
1980-01-01
Spectral analyses of optical images of the ocean surface, obtained by a digital video system, are presented and compared with wave data measured simultaneously by the JPL Waverider-mounted laser slope meter. The image analyses, which incorporate several new ideas, provide two-dimensional wave number spectra of slope, covering wavelengths from 10 cm to 10 m. These slope spectra are converted to wave height spectra by a new technique which includes the effects of sky radiance gradients. Space-time spectra are also presented for waves whose frequencies are less than 2 Hz. The JPL slope frequency spectra are compared with image wave number spectra which have been converted to frequency spectra by use of the gravity wave dispersion relation. Results of comparisons between the frequency spectra obtained from the two different measurements show reasonable agreement for frequencies less than 3 Hz.
Efficient Computation of Difference Vibrational Spectra in Isothermal-Isobaric Ensemble.
Joutsuka, Tatsuya; Morita, Akihiro
2016-11-03
Difference spectroscopy between two close systems is widely used to augment its selectivity to the different parts of the observed system, though the molecular dynamics calculation of tiny difference spectra would be computationally extraordinary demanding by subtraction of two spectra. Therefore, we have proposed an efficient computational algorithm of difference spectra without resorting to the subtraction. The present paper reports our extension of the theoretical method in the isothermal-isobaric (NPT) ensemble. The present theory expands our applications of analysis including pressure dependence of the spectra. We verified that the present theory yields accurate difference spectra in the NPT condition as well, with remarkable computational efficiency over the straightforward subtraction by several orders of magnitude. This method is further applied to vibrational spectra of liquid water with varying pressure and succeeded in reproducing tiny difference spectra by pressure change. The anomalous pressure dependence is elucidated in relation to other properties of liquid water.
NASA Technical Reports Server (NTRS)
Goldman, A.
2002-01-01
The Langley-D.U. collaboration on the analysis of high resolultion infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: 1) Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights; 2) Identification and preliminary quantification of several isotopic species, including oxygen and Sulfur isotopes; 3) Search for new species on the available spectra, including the use of selective coadding of ground-based spectra for high signal to noise; 4) Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods; 5) Study of trends and correlations of atmosphere trace constituents; and 6) Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.
Spectra from pair-equilibrium plasmas
NASA Technical Reports Server (NTRS)
Zdziarski, A. A.
1984-01-01
A numerical model of relativistic nonmagnetized plasma with uniform temperature and electron density distributions is considered, and spectra from plasma in pair equilibrium are studied. A range of dimensionless temperature (T) greater than about 0.2 is considered. The spectra from low pair density plasmas in pair equilibrium vary from un-Comptonized bremsstrahlung spectra at Thomson cross section tau(N) much less than one to Comptonized bremsstrahlung spectra with tau(N) over one. For high pair density plasmas the spectra are flat for T greater than about one, and have broad intensity peaks at energy roughly equal to 3T for T less than one. In the latter region the total luminosity is approximately twice the annihilation luminosity. All spectra are flat in the X-ray region, in contradiction to observed AGN spectra. For dimensionless luminosity greater than about 100, the cooling time becomes shorter than the Thomson time.
NASA Astrophysics Data System (ADS)
Escobar-Cerezo, J.; Penttilä, A.; Kohout, T.; Muñoz, O.; Moreno, F.; Muinonen, K.
2018-01-01
Lunar soil spectra differ from pulverized lunar rocks spectra by reddening and darkening effects, and shallower absorption bands. These effects have been described in the past as a consequence of space weathering. In this work, we focus on the effects of nanophase iron (npFe0) inclusions on the experimental reflectance spectra of lunar regolith particles. The reflectance spectra are computed using SIRIS3, a code that combines ray optics with radiative-transfer modeling to simulate light scattering by different types of scatterers. The imaginary part of the refractive index as a function of wavelength of immature lunar soil is derived by comparison with the measured spectra of the corresponding material. Furthermore, the effect of adding nanophase iron inclusions on the reflectance spectra is studied. The computed spectra qualitatively reproduce the observed effects of space weathered lunar regolith.
Thirty Years, One Million Spectra: Public Access to the SAO Spectral Archives
NASA Astrophysics Data System (ADS)
Mink, J.; Moran, S.
2015-09-01
Over the last 30 years, the SAO Telescope Data Center has reduced and archived over 1,000,000 spectra, consisting of 287,000 spectra from five high dispersion Echelle spectrographs and 717,000 spectra from four low dispersion spectrographs, across three telescopes. 151,000 spectra from six instruments are currently online and publicly available, covering many interesting objects in the northern sky, including most of the galaxies in the Updated Zwicky Catalog which are reachable through NED or Simbad. A majority of the high dispersion spectra will soon be made public, as will more data from the MMT multi-fiber spectrographs. Many objects in the archive have multiple spectra over time, which make them a valuable resource for archival time-domain studies. We are now developing a system to make all of the public spectra more easily searchable and viewable through the Virtual Observatory.
NASA Astrophysics Data System (ADS)
Resmini, Ronald G.; Graver, William R.; Kappus, Mary E.; Anderson, Mark E.
1996-11-01
Constrained energy minimization (CEM) has been applied to the mapping of the quantitative areal distribution of the mineral alunite in an approximately 1.8 km2 area of the Cuprite mining district, Nevada. CEM is a powerful technique for rapid quantitative mineral mapping which requires only the spectrum of the mineral to be mapped. A priori knowledge of background spectral signatures is not required. Our investigation applies CEM to calibrated radiance data converted to apparent reflectance (AR) and to single scattering albedo (SSA) spectra. The radiance data were acquired by the 210 channel, 0.4 micrometers to 2.5 micrometers airborne Hyperspectral Digital Imagery Collection Experiment sensor. CEM applied to AR spectra assumes linear mixing of the spectra of the materials exposed at the surface. This assumption is likely invalid as surface materials, which are often mixtures of particulates of different substances, are more properly modeled as intimate mixtures and thus spectral mixing analyses must take account of nonlinear effects. One technique for approximating nonlinear mixing requires the conversion of AR spectra to SSA spectra. The results of CEM applied to SSA spectra are compared to those of CEM applied to AR spectra. The occurrence of alunite is similar though not identical to mineral maps produced with both the SSA and AR spectra. Alunite is slightly more widespread based on processing with the SSA spectra. Further, fractional abundances derived from the SSA spectra are, in general, higher than those derived from AR spectra. Implications for the interpretation of quantitative mineral mapping with hyperspectral remote sensing data are discussed.
Yang, Xiaoyu; Neta, Pedatsur; Stein, Stephen E
2017-11-01
Tandem mass spectral library searching is finding increased use as an effective means of determining chemical identity in mass spectrometry-based omics studies. We previously reported on constructing a tandem mass spectral library that includes spectra for multiple precursor ions for each analyte. Here we report our method for expanding this library to include MS 2 spectra of fragment ions generated during the ionization process (in-source fragment ions) as well as MS 3 and MS 4 spectra. These can assist the chemical identification process. A simple density-based clustering algorithm was used to cluster all significant precursor ions from MS 1 scans for an analyte acquired during an infusion experiment. The MS 2 spectra associated with these precursor ions were grouped into the same precursor clusters. Subsequently, a new top-down hierarchical divisive clustering algorithm was developed for clustering the spectra from fragmentation of ions in each precursor cluster, including the MS 2 spectra of the original precursors and of the in-source fragments as well as the MS n spectra. This algorithm starts with all the spectra of one precursor in one cluster and then separates them into sub-clusters of similar spectra based on the fragment patterns. Herein, we describe the algorithms and spectral evaluation methods for extending the library. The new library features were demonstrated by searching the high resolution spectra of E. coli extracts against the extended library, allowing identification of compounds and their in-source fragment ions in a manner that was not possible before. Graphical Abstract ᅟ.
NASA Technical Reports Server (NTRS)
Sung, C.-M.; Singer, R. B.; Parkin, K. M.; Burns, R. G.; Osborne, M.
1977-01-01
Results are reported of Fe(++) crystal field spectral measurements for olivines and pyroxenes up to 400 C. The results are correlated with crystal structure data at elevated temperatures, and the validity of remote-sensed identifications of minerals on hot surfaces of the moon and Mercury is assessed. Two techniques were used to obtain spectra of minerals at elevated temperatures using a spectrophotometer. One employed a diamond cell assembly or a specially designed sample holder to measure polarized absorption spectra of heated single crystals. For the other technique, a sample holder was designed to attach to a diffuse reflectance accessory to produce reflectance spectra of heated powdered samples. Polarized absorption spectra of forsterite at 20-400 C are shown in a graph. Other graphs show the temperature dependence of Fe(++) crystal field bands in olivines, the diffuse reflectance spectra of olivine at 40-400 C, the polarization absorption spectra of orthopyroxene at 30-400 C, the diffuse reflectance spectra of pigeonite at 40-400 C, and unpolarized absorption spectra of lunar pyroxene from Apollo 15 rock 15058.
Reflection spectra of solids of planetary interest
NASA Technical Reports Server (NTRS)
Sill, G. T.; Carm, O.
1973-01-01
This paper reproduces the spectra of solids which might be found on the surfaces of planetary bodies or as solid condensates in the upper planetary atmosphere. Among these are spectra of various iron compounds of interest in the study of the clouds of Venus. Other spectra (some at low temperature) are included for various sulfides relevant to the planet Jupiter. Meteorite and coal spectra are also included to illustrate dark carbon compounds.
Mössbauer spectra linearity improvement by sine velocity waveform followed by linearization process
NASA Astrophysics Data System (ADS)
Kohout, Pavel; Frank, Tomas; Pechousek, Jiri; Kouril, Lukas
2018-05-01
This note reports the development of a new method for linearizing the Mössbauer spectra recorded with a sine drive velocity signal. Mössbauer spectra linearity is a critical parameter to determine Mössbauer spectrometer accuracy. Measuring spectra with a sine velocity axis and consecutive linearization increases the linearity of spectra in a wider frequency range of a drive signal, as generally harmonic movement is natural for velocity transducers. The obtained data demonstrate that linearized sine spectra have lower nonlinearity and line width parameters in comparison with those measured using a traditional triangle velocity signal.
First-principles study of the infrared spectra of the ice Ih (0001) surface
Pham, T. Anh; Huang, P.; Schwegler, E.; ...
2012-08-22
Here, we present a study of the infrared (IR) spectra of the (0001) deuterated ice surface based on first-principles molecular dynamics simulations. The computed spectra show a good agreement with available experimental IR measurements. We identified the bonding configurations associated with specific features in the spectra, allowing us to provide a detailed interpretation of IR signals. We computed the spectra of several proton ordered and disordered models of the (0001) surface of ice, and we found that IR spectra do not appear to be a sensitive probe of the microscopic arrangement of protons at ice surfaces.
VizieR Online Data Catalog: BD+46 442 optical spectra (Bollen+, 2017)
NASA Astrophysics Data System (ADS)
Bollen, D.; van Winckel, H.; Kamath, D.
2017-08-01
Reduced high-resolution (R~85000) optical spectra of BD+46 442. These 104 spectra were obtained between July 2009 and January 2016 from the HERMES spectrograph, mounted on the 1.2m Flemish Mercator telescope at La Palma, Canary Islands, Spain. The spectra cover a wavelength range from 3770 to 9000 angstrom in logscale. The flux is given in arbitrary units. The spectra are collected as FITS files. The numbering of the spectra corresponds to the numbering in Table B.1 in the article (e.g. spec_15.fits corresponds to N=15). (2 data files).
Surface-Enhanced Raman and Surface-Enhanced Hyper-Raman Scattering of Thiol-Functionalized Carotene
2016-01-01
A thiol-modified carotene, 7′-apo-7′-(4-mercaptomethylphenyl)-β-carotene, was used to obtain nonresonant surface-enhanced Raman scattering (SERS) spectra of carotene at an excitation wavelength of 1064 nm, which were compared with resonant SERS spectra at an excitation wavelength of 532 nm. These spectra and surface-enhanced hyper-Raman scattering (SEHRS) spectra of the functionalized carotene were compared with the spectra of nonmodified β-carotene. Using SERS, normal Raman, and SEHRS spectra, all obtained for the resonant case, the interaction of the carotene molecules with silver nanoparticles, as well as the influence of the resonance enhancement and the SERS enhancement on the spectra, were investigated. The interaction with the silver surface occurs for both functionalized and nonfunctionalized β-carotene, but only the stronger functionalization-induced interaction enables the acquisition of nonresonant SERS spectra of β-carotene at low concentrations. The resonant SEHRS and SERS spectra are very similar. Nevertheless, the SEHRS spectra contain additional bands of infrared-active modes of carotene. Increased contributions from bands that experience low resonance enhancement point to a strong interaction between silver nanoparticles and electronic levels of the molecules, thereby giving rise to a decrease in the resonance enhancement in SERS and SEHRS. PMID:28077983
NASA Astrophysics Data System (ADS)
Stephen, N. R.
2016-08-01
IR spectroscopy is used to infer composition of extraterrestrial bodies, comparing bulk spectra to databases of separate mineral phases. We extract spatially resolved meteorite-specific spectra from achondrites with respect to zonation and orientation.
NASA Technical Reports Server (NTRS)
Goldman, Aaron
1999-01-01
The Langley-D.U. collaboration on the analysis of high resolution infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights. Studies toward identification and quantification of isotopic species, mostly oxygen and Sulfur isotopes. Search for new species on the available spectra. Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods. Study of trends of atmosphere trace constituents. Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.
Optical and electrical properties of organic dye crystals
NASA Astrophysics Data System (ADS)
Eckhardt, C. J.
1984-02-01
Crystal spectra of three dyes were studied. The dyes are: 3,3'-diethylthiacyanine bromide, pseudoisocyanine and the squarylium dye, 2,4-bis (2-hydroxy-4-diethylaminophenyl)-1, 3-cyclobutadienediylium-1, 3-diolate (HBAPS). Polymorphs were discovered for the latter two dyes and their spectra were investigated. HBAPS showed markedly different spectra for its monoclinic and triclinic forms. The specular reflection spectra of the two crystal forms were successfully fit using molecular exciton-polariton theory employing lattice sums based on a point-charge appproximation. A three-oscillator model for a Gaussian frequency-dependent damping was successful in fitting the spectra. The thiacyanine and pseudoisocyanine dye crystals showed normal quasi-metallic reflection spectra. That of the thiacyanine was found to closely resemble the H-band (dimer) spectra of the dye aggregate in solution.
NASA Technical Reports Server (NTRS)
Goldman, A.; Murcray, F. J.; Rinsland, C. P.; Blatherwick, R. D.; Murcray, F. H.; Murcray, D. G.
1991-01-01
Recent results and ongoing studies of high resolution solar absorption spectra will be presented. The analysis of these spectra is aimed at the identification and quantification of trace constituents important in atmospheric chemistry of the stratosphere and upper troposphere. Analysis of balloon-borne and ground-based spectra obtained at 0.0025/ cm covering the 700-2200/ cm interval will be presented. Results from ground-based 0.02/ cm solar spectra, from several locations such as Denver, South Pole, M. Loa, and New Zealand will also be shown. The 0.0025/ cm spectra show many new spectroscopic features. The analysis of these spectra, along with corresponding laboratory spectra, improves the spectral line parameters, and thus the accuracy of trace constituents quantification. The combination of the recent balloon flights, with earlier flights data since 1978 at 0.02/ cm resolution, provides trends analysis of several stratospheric trace species. Results for COF2, F22, SF6, and other species will be presented. Analysis of several ground-based solar spectra provides trends for HCl, HF and other species. The retrieval methods used for total column density and altitude distribution for both ground-based and balloon-borne spectra will be presented. These are extended for the analysis of the ground-based spectra to be obtained by the high resolution interferometers of the Network for Detection of Stratospheric Change (NDSC). Progress or the University of Denver studies for the NDSC will be presented. This will include intercomparison of solar spectra and trace gases retrievals obtained from simultaneous scans by the high resolution (0.0025/ cm) interferometers of BRUKER and BOMEM.
NASA Astrophysics Data System (ADS)
Zhao, H.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Blum, L. W.; Schiller, Q. A.; Leonard, T. W.; Elkington, S. R.
2017-12-01
The electron energy spectra, as an important characteristic of radiation belt electrons, provide valuable information on the physical mechanisms affecting different electron populations. Based on the measurements of 30 keV - 10 MeV electrons from MagEIS and REPT instruments on the Van Allen Probes, case studies and statistical analysis of the radiation belt electron energy spectra characterization and evolution have been performed. Generally the radiation belt electron energy spectra can be represented by one of the three types of distributions: exponential, power law, and bump-on-tail. Statistical analysis shows that the exponential spectra are usually dominant in the outer radiation belt; as the geomagnetic storms occur, energy spectra in the outer belt soften at first due to injection of lower-energy electrons and loss of higher-energy electrons, and gradually get harder due to loss of lower-energy electrons and delayed enhancement of higher energy electron fluxes. Power law spectra generally dominate the inner belt and higher L region (L>6) during injections. Bump-on-tail spectra commonly exist inside the plasmasphere following the geomagnetic storms and/or the compression of plasmasphere, while the energy of flux maxima is usually 1.8 MeV as the bump-on-tail spectra form and gradually moves to higher energies as the spectra evolve, with the ratio of flux maxima to minima up to >10. Detailed event study indicates that the appearance of bump-on-tail spectra are mainly due to energy-dependent losses caused by the plasmaspheric hiss wave scattering, while the disappearance of these spectra can be attributed to fast flux enhancements of lower-energy electrons during storms.
Contract W911NF-12-C-0102 (Advanced Diamond Technologies, Inc.)
2013-06-24
resistivity, residual stress and Raman spectra measurement is finished. Raman spectra shows basically regular nanocrystalline diamond signature as expected...diamond films including thickness, resistivity, residual stress and Raman spectra measurement is finished. Raman spectra shows basically regular...15743 WF600B05 3000 0.02 0.03 0.0018 4 Fig. 2 Raman spectra (λ=532 nm) of (a) all diamond with different doping level and (b) diamond only with
Analysis of Forest Foliage Using a Multivariate Mixture Model
NASA Technical Reports Server (NTRS)
Hlavka, C. A.; Peterson, David L.; Johnson, L. F.; Ganapol, B.
1997-01-01
Data with wet chemical measurements and near infrared spectra of ground leaf samples were analyzed to test a multivariate regression technique for estimating component spectra which is based on a linear mixture model for absorbance. The resulting unmixed spectra for carbohydrates, lignin, and protein resemble the spectra of extracted plant starches, cellulose, lignin, and protein. The unmixed protein spectrum has prominent absorption spectra at wavelengths which have been associated with nitrogen bonds.
NASA Technical Reports Server (NTRS)
Fritts, David C.; Wang, Ding-Yi
1991-01-01
Results are presented of radar observations of horizontal and vertical velocities near the summer mesopause at Poker Flat (Alaska), showing that the observed vertical velocity spectra were influenced strongly by Doppler-shifting effects. The horizontal velocity spectra, however, were relatively insensitive to horizontal wind speed. The observed spectra are compared with predicted spectra for various models of the intrinsic motion spectrum and degrees of Doppler shifting.
Prietzel, Jörg; Harrington, Gertraud; Häusler, Werner; Heister, Katja; Werner, Florian; Klysubun, Wantana
2016-03-01
Direct speciation of soil phosphorus (P) by linear combination fitting (LCF) of P K-edge XANES spectra requires a standard set of spectra representing all major P species supposed to be present in the investigated soil. Here, available spectra of free- and cation-bound inositol hexakisphosphate (IHP), representing organic P, and of Fe, Al and Ca phosphate minerals are supplemented with spectra of adsorbed P binding forms. First, various soil constituents assumed to be potentially relevant for P sorption were compared with respect to their retention efficiency for orthophosphate and IHP at P levels typical for soils. Then, P K-edge XANES spectra for orthophosphate and IHP retained by the most relevant constituents were acquired. The spectra were compared with each other as well as with spectra of Ca, Al or Fe orthophosphate and IHP precipitates. Orthophosphate and IHP were retained particularly efficiently by ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated soil organic matter (SOM), but far less efficiently by hematite, Ca-saturated montmorillonite and Ca-saturated SOM. P retention by dolomite was negligible. Calcite retained a large portion of the applied IHP, but no orthophosphate. The respective P K-edge XANES spectra of orthophosphate and IHP adsorbed to ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated SOM differ from each other. They also are different from the spectra of amorphous FePO4, amorphous or crystalline AlPO4, Ca phosphates and free IHP. Inclusion of reference spectra of orthophosphate as well as IHP adsorbed to P-retaining soil minerals in addition to spectra of free or cation-bound IHP, AlPO4, FePO4 and Ca phosphate minerals in linear combination fitting exercises results in improved fit quality and a more realistic soil P speciation. A standard set of P K-edge XANES spectra of the most relevant adsorbed P binding forms in soils is presented.
Infrared Spectra of Polycyclic Aromatic Hydrocarbons: Nitrogen Substitution
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)
1998-01-01
The B3LYP/4-31G approach is used to compute the harmonic frequencies of substituted naphthalene, anthracene, and their cations. The substitutions include cyano (CN), aminio (NH2), imino (NH), and replacement of a CH group by a nitrogen atom. All unique sites are considered, namely 1 and 2 for naphthalene and 1, 2, and 9 for an'tracene, except for the imino, where only 2-iminonaphthalene is studied. The IR spectra of these substituted species are compared with those of the unsubstituted molecules. The addition of a CN group does not significantly affect the spectra except to add the CN stretching frequency. Replacing a CH group by N has only a small effect on the IR spectra. The addition of the NH2 group dramatically affects the neutral spectra, giving it much of the character of the cation spectra. However, the neutral 2-irrinonaphthalene spectra looks more like that of naphthalene than like the 2-aminonaphthalene spectra.
FTS Spectra from the Mayall 4-m Telescope, 1975-1995
NASA Astrophysics Data System (ADS)
Pilachowski, Catherine A.; Hinkle, Kenneth H.; Young, Michael; Dennis, Harold; Gopu, Arvind; Henschel, Robert; Hayashi, Soichi
2017-01-01
The complete archive of spectra obtained with the Fourier Transform Spectrometers in use at the Mayall 4m telescope at the Kitt Peak National Observatory from 1975 through 1995 is now available to the community. The archive is hosted at Indiana University Bloomington, and includes nearly 10,000 individual spectra of more than 800 different astronomical sources. The FTS produced spectra in the wavelength regime from roughly 0.9 to 5 microns (11,000 to 2000 cm-1), mostly at relatively high spectral resolution. The archive can be searched to identify specific spectra of interest, and the spectra can be viewed online and downloaded in FITS format for analysis. Once a spectrum of interest has been identified, all spectra taken on the same date are provided to allow users to identify appropriate hot star spectra for telluric line division.The archive can be accessed on the web at https://sparc.sca.iu.edu.
Simulation of RBS spectra with known 3D sample surface roughness
NASA Astrophysics Data System (ADS)
Malinský, Petr; Siegel, Jakub; Hnatowicz, Vladimir; Macková, Anna; Švorčík, Václav
2017-09-01
The Rutherford Backscattering Spectrometry (RBS) is a technique for elemental depth profiling with a nanometer depth resolution. Possible surface roughness of analysed samples can deteriorate the RBS spectra and makes their interpretation more difficult and ambiguous. This work describes the simulation of RBS spectra which takes into account real 3D morphology of the sample surface obtained by AFM method. The RBS spectrum is calculated as a sum of the many particular spectra obtained for randomly chosen particle trajectories over sample 3D landscape. The spectra, simulated for different ion beam incidence angles, are compared to the experimental ones measured with 2.0 MeV 4He+ ions. The main aim of this work is to obtain more definite information on how a particular surface morphology and measuring geometry affects the RBS spectra and derived elemental depth profiles. A reasonable agreement between the measured and simulated spectra was found and the results indicate that the AFM data on the sample surface can be used for the simulation of RBS spectra.
NASA Technical Reports Server (NTRS)
Wegner, Gary A.
1988-01-01
Research under NASA Grant NAG5-287 has carried out a number of projects in conjunction with the International Ultraviolet Explorer (IUE) satellite. These include: (1) studies of the UV spectra of DA white dwarfs which show quasi-molecular bands of H2 and H2(+); (2) the peculiar star HR6560; (3) the UV spectra of two magnetic white dwarfs that also show the quasi-molecular features; (4) investigations of the UV spectra of subluminous stars, primarily identified from visual wavelength spectroscopy in the Kiso survey of UV excess stars, some of which show interesting metal lines in their UV spectra; and (5) completion of studies of UV spectra of DB stars. The main result of this research has been to further knowledge of the structure and compositions of subluminous stars which helps cast light on their formation and evolution.
Ran, Yibin; Pang, Min; Shen, Wei; Li, Ming; He, Rongxing
2016-10-05
We systematically studied the vibrational-resolved electronic spectra of group IV dichlorides using the Franck-Condon approximation combined with the Duschinsky and Herzberg-Teller effects in harmonic and anharmonic frameworks (only the simulation of absorption spectra includes the anharmonicity). Calculated results showed that the band shapes of simulated spectra are in accordance with those of the corresponding experimental or theoretical ones. We found that the symmetric bend mode in progression of absorption is the most active one, whereas the main contributor in photoelectron spectra is the symmetric stretching mode. Moreover, the Duschinsky and anharmonic effects exert weak influence on the absorption spectra, except for PbCl2 molecule. The theoretical insights presented in this work are significant in understanding the photophysical properties of MCl2 (M=C, Si, Ge, Sn, Pb) and studying the Herzberg-Teller and the anharmonic effects on the absorption spectra of new dichlorides of this main group. Copyright © 2016 Elsevier B.V. All rights reserved.
Spectral Archives: Extending Spectral Libraries to Analyze both Identified and Unidentified Spectra
Frank, Ari M.; Monroe, Matthew E.; Shah, Anuj R.; Carver, Jeremy J.; Bandeira, Nuno F.; Moore, Ronald J.; Anderson, Gordon A.; Smith, Richard D.; Pevzner, Pavel A.
2011-01-01
MS/MS experiments generate multiple, nearly identical spectra of the same peptide in various laboratories, but proteomics researchers typically do not leverage the unidentified spectra produced in other labs to decode spectra generated in their own labs. We propose a spectral archives approach that clusters MS/MS datasets, representing similar spectra by a single consensus spectrum. Spectral archives extend spectral libraries by analyzing both identified and unidentified spectra in the same way and maintaining information about spectra of peptides shared across species and conditions. Thus archives offer both traditional library spectrum similarity-based search capabilities along with novel ways to analyze the data. By developing a clustering tool, MS-Cluster, we generated a spectral archive from ~1.18 billion spectra that greatly exceeds the size of existing spectral repositories. We advocate that publicly available data should be organized into spectral archives, rather than be analyzed as disparate datasets, as is mostly the case today. PMID:21572408
An RGB approach to extraordinary spectra
NASA Astrophysics Data System (ADS)
Grusche, Sascha; Theilmann, Florian
2015-09-01
After Newton had explained a series of ordinary spectra and Goethe had pointed out its complementary counterpart, Nussbaumer discovered a series of extraordinary spectra which are geometrically identical and colourwise analogous to Newton’s and Goethe’s spectra. To understand the geometry and colours of extraordinary spectra, the wavelength composition is explored with filters and spectroscopic setups. Visualized in a dispersion diagram, the wavelength composition is interpreted in terms of additive colour mixing. Finally, all spectra are simulated as the superposition of red, green, and blue images that are shifted apart. This RGB approach makes it easy to understand the complex relationship between wavelengths and colours.
NASA Astrophysics Data System (ADS)
Jamróz, Michał H.; Brzozowski, Robert; Dobrowolski, Jan Cz.
2004-01-01
Experimental and theoretical B3PW91/6-31G* spectra of diisopropylnaphthalene (DIPN) were compared. For the 1,3- and 2,6-DIPN isomers, which were isolated as pure compounds, the theoretical IR spectra were scaled down and were shown to fit the experimental spectra very well. The same scaling factor was used for comparison theoretical and experimental spectra of isomers present in unresolved mixtures of isomers, i.e. 1,4-, 1,5-, 1,6-, 1,7-, and 2,7-DIPNs. For three isomers, 1,2-, 1,8-, and 2,3-DIPN, the experimental IR spectra, unknown so far, were predicted.
Tunneling Spectra of a Quasifreestanding Graphene Monolayer
NASA Astrophysics Data System (ADS)
Li, Si-Yu; Bai, Ke-Ke; Zuo, Wei-Jie; Liu, Yi-Wen; Fu, Zhong-Qiu; Wang, Wen-Xiao; Zhang, Yu; Yin, Long-Jing; Qiao, Jia-Bin; He, Lin
2018-05-01
Considering the great success of scanning-tunneling-microscopy (STM) studies of graphene in the past ten years, it is quite surprising to notice that there is still a fundamental contradiction in the reported tunneling spectra of the quasifreestanding graphene monolayer. Many groups observed "V -shaped" spectra with linearly vanishing density of states at the Dirac point, whereas others reported spectra with a gap of ±60 meV pinned to the Fermi level in the quasifreestanding graphene monolayer. Here, we systematically study the two contradicting tunneling spectra of the quasifreestanding graphene monolayer on various substrates in the presence of different magnetic fields and demonstrate that both spectra are the "correct" spectra. However, the V -shaped spectrum exhibits only the contribution of the low-energy Dirac fermions, whereas the gapped spectrum is contributed by both the low-energy Dirac fermions and the high-energy nearly free-electron states due to the existence of the inelastic tunneling process. Our results indicate that interaction with substrates plays a vital role in affecting the spectra of graphene. We also show that it is possible to switch the tunneling spectra between the two distinct features at the nanoscale through voltage pulses applied to the STM tip.
Peptide Identification by Database Search of Mixture Tandem Mass Spectra*
Wang, Jian; Bourne, Philip E.; Bandeira, Nuno
2011-01-01
In high-throughput proteomics the development of computational methods and novel experimental strategies often rely on each other. In certain areas, mass spectrometry methods for data acquisition are ahead of computational methods to interpret the resulting tandem mass spectra. Particularly, although there are numerous situations in which a mixture tandem mass spectrum can contain fragment ions from two or more peptides, nearly all database search tools still make the assumption that each tandem mass spectrum comes from one peptide. Common examples include mixture spectra from co-eluting peptides in complex samples, spectra generated from data-independent acquisition methods, and spectra from peptides with complex post-translational modifications. We propose a new database search tool (MixDB) that is able to identify mixture tandem mass spectra from more than one peptide. We show that peptides can be reliably identified with up to 95% accuracy from mixture spectra while considering only a 0.01% of all possible peptide pairs (four orders of magnitude speedup). Comparison with current database search methods indicates that our approach has better or comparable sensitivity and precision at identifying single-peptide spectra while simultaneously being able to identify 38% more peptides from mixture spectra at significantly higher precision. PMID:21862760
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sudip; Swamy, Aravind Krishna; Daniel, Jo S.
2012-08-01
This paper presents a simple and practical approach to obtain the continuous relaxation and retardation spectra of asphalt concrete directly from the complex (dynamic) modulus test data. The spectra thus obtained are continuous functions of relaxation and retardation time. The major advantage of this method is that the continuous form is directly obtained from the master curves which are readily available from the standard characterization tests of linearly viscoelastic behavior of asphalt concrete. The continuous spectrum method offers efficient alternative to the numerical computation of discrete spectra and can be easily used for modeling viscoelastic behavior. In this research, asphalt concrete specimens have been tested for linearly viscoelastic characterization. The linearly viscoelastic test data have been used to develop storage modulus and storage compliance master curves. The continuous spectra are obtained from the fitted sigmoid function of the master curves via the inverse integral transform. The continuous spectra are shown to be the limiting case of the discrete distributions. The continuous spectra and the time-domain viscoelastic functions (relaxation modulus and creep compliance) computed from the spectra matched very well with the approximate solutions. It is observed that the shape of the spectra is dependent on the master curve parameters. The continuous spectra thus obtained can easily be implemented in material mix design process. Prony-series coefficients can be easily obtained from the continuous spectra and used in numerical analysis such as finite element analysis.
Wavelet theory applied to the study of spectra of trans-Neptunian objects
NASA Astrophysics Data System (ADS)
Souza-Feliciano, A. C.; Alvarez-Candal, A.; Jiménez-Teja, Y.
2018-06-01
Context. Reflection spectroscopy in the near-infrared (NIR) is used to investigate the surface composition of trans-Neptunian objects (TNOs). In general, these spectra are difficult to interpret due to the low apparent brightness of the TNOs, causing low signal-to-noise ratio even in spectra obtained with the largest telescopes available on Earth, making it necessary to use filtering techniques to analyze and interpret them. Aims: The purpose of this paper is to present a methodology to analyze the spectra of TNOs. Specifically, our aim was to filter these spectra in the best possible way: maximizing noise removal, while minimizing the loss of signal. Methods: We used wavelets to filter the spectra. Wavelets are a mathematical tool that decompose the signal into its constituent parts, allowing us to analyze the data in different areas of frequencies with the resolution of each component tied to its scale. To check the reliability of our method, we compared the filtered spectra with the spectra of water and methanol ices to identify some common structures between them. Results: Of the 50 TNOs in our sample, we identify traces of water ices and methanol in the spectra of several of them, some with previous reports, while for other objects there were no previous reports. Conclusions: We conclude that the wavelet technique is successful in filtering spectra of TNOs.
MIR and NIR group spectra of n-alkanes and 1-chloroalkanes.
Kwaśniewicz, Michał; Czarnecki, Mirosław A
2015-05-15
Numerous attempts were undertaken to resolve the absorption originating from different parts of alkanes. The separation of the contributions from the terminal and midchain methylene units was observed only in the spectra of solid alkanes at low temperatures. On the other hand, for liquid alkanes this effect was not reported as yet. In this study, ATR-IR, Raman and NIR spectra of eight n-alkanes and seven 1-chloroalkanes in the liquid phase were measured from 1000 to 12,000cm(-1). The spectra were analyzed by using two-dimensional (2D) correlation approach and chemometrics methods. It was shown that in 2D asynchronous contour plots, constructed from the spectra of n-alkanes and 1-chloroalkanes, the methylene band was resolved into two components. These two components were assigned to the terminal and midchain methylene groups. For the first time, the contributions from these two molecular fragments were resolved in the spectra of liquid n-alkanes and 1-chloroalkanes. MCR-ALS resolved these spectra into two components that were assigned to the ethyl and midchain methylene groups. These components represent the group spectra that can be used for assignment, spectral analysis and prediction of unknown spectra. The spectral prediction based on the group spectra provides very good results for n-alkanes, especially in the first and second overtone regions. Copyright © 2015 Elsevier B.V. All rights reserved.
An unbalanced spectra classification method based on entropy
NASA Astrophysics Data System (ADS)
Liu, Zhong-bao; Zhao, Wen-juan
2017-05-01
How to solve the problem of distinguishing the minority spectra from the majority of the spectra is quite important in astronomy. In view of this, an unbalanced spectra classification method based on entropy (USCM) is proposed in this paper to deal with the unbalanced spectra classification problem. USCM greatly improves the performances of the traditional classifiers on distinguishing the minority spectra as it takes the data distribution into consideration in the process of classification. However, its time complexity is exponential with the training size, and therefore, it can only deal with the problem of small- and medium-scale classification. How to solve the large-scale classification problem is quite important to USCM. It can be easily obtained by mathematical computation that the dual form of USCM is equivalent to the minimum enclosing ball (MEB), and core vector machine (CVM) is introduced, USCM based on CVM is proposed to deal with the large-scale classification problem. Several comparative experiments on the 4 subclasses of K-type spectra, 3 subclasses of F-type spectra and 3 subclasses of G-type spectra from Sloan Digital Sky Survey (SDSS) verify USCM and USCM based on CVM perform better than kNN (k nearest neighbor) and SVM (support vector machine) in dealing with the problem of rare spectra mining respectively on the small- and medium-scale datasets and the large-scale datasets.
Swift UVOT Grism Observations of Nearby Type Ia Supernovae - I. Observations and Data Reduction
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Foley, R. J.; Filippenko, A. V.; Kuin, N. P. M.
2018-05-01
Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) are useful tools for understanding progenitor systems and explosion physics. In particular, UV spectra of SNe Ia, which probe the outermost layers, are strongly affected by the progenitor metallicity. In this work, we present 120 Neil Gehrels Swift Observatory UV spectra of 39 nearby SNe Ia. This sample is the largest UV (λ < 2900 Å) spectroscopic sample of SNe Ia to date, doubling the number of UV spectra and tripling the number of SNe with UV spectra. The sample spans nearly the full range of SN Ia light-curve shapes (Δm15(B) ≈ 0.6-1.8 mag). The fast turnaround of Swift allows us to obtain UV spectra at very early times, with 13 out of 39 SNe having their first spectra observed ≳ 1 week before peak brightness and the earliest epoch being 16.5 days before peak brightness. The slitless design of the Swift UV grism complicates the data reduction, which requires separating SN light from underlying host-galaxy light and occasional overlapping stellar light. We present a new data-reduction procedure to mitigate these issues, producing spectra that are significantly improved over those of standard methods. For a subset of the spectra we have nearly simultaneous Hubble Space Telescope UV spectra; the Swift spectra are consistent with these comparison data.
Hernandez, Andrew M; Boone, John M
2014-04-01
Monte Carlo methods were used to generate lightly filtered high resolution x-ray spectra spanning from 20 kV to 640 kV. X-ray spectra were simulated for a conventional tungsten anode. The Monte Carlo N-Particle eXtended radiation transport code (MCNPX 2.6.0) was used to produce 35 spectra over the tube potential range from 20 kV to 640 kV, and cubic spline interpolation procedures were used to create piecewise polynomials characterizing the photon fluence per energy bin as a function of x-ray tube potential. Using these basis spectra and the cubic spline interpolation, 621 spectra were generated at 1 kV intervals from 20 to 640 kV. The tungsten anode spectral model using interpolating cubic splines (TASMICS) produces minimally filtered (0.8 mm Be) x-ray spectra with 1 keV energy resolution. The TASMICS spectra were compared mathematically with other, previously reported spectra. Using pairedt-test analyses, no statistically significant difference (i.e., p > 0.05) was observed between compared spectra over energy bins above 1% of peak bremsstrahlung fluence. For all energy bins, the correlation of determination (R(2)) demonstrated good correlation for all spectral comparisons. The mean overall difference (MOD) and mean absolute difference (MAD) were computed over energy bins (above 1% of peak bremsstrahlung fluence) and over all the kV permutations compared. MOD and MAD comparisons with previously reported spectra were 2.7% and 9.7%, respectively (TASMIP), 0.1% and 12.0%, respectively [R. Birch and M. Marshall, "Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector," Phys. Med. Biol. 24, 505-517 (1979)], 0.4% and 8.1%, respectively (Poludniowski), and 0.4% and 8.1%, respectively (AAPM TG 195). The effective energy of TASMICS spectra with 2.5 mm of added Al filtration ranged from 17 keV (at 20 kV) to 138 keV (at 640 kV); with 0.2 mm of added Cu filtration the effective energy was 9 keV at 20 kV and 169 keV at 640 kV. Ranging from 20 kV to 640 kV, 621 x-ray spectra were produced and are available at 1 kV tube potential intervals. The spectra are tabulated at 1 keV intervals. TASMICS spectra were shown to be largely equivalent to published spectral models and are available in spreadsheet format for interested users by emailing the corresponding author (JMB). © 2014 American Association of Physicists in Medicine.
Hernandez, Andrew M.; Boone, John M.
2014-01-01
Purpose: Monte Carlo methods were used to generate lightly filtered high resolution x-ray spectra spanning from 20 kV to 640 kV. Methods: X-ray spectra were simulated for a conventional tungsten anode. The Monte Carlo N-Particle eXtended radiation transport code (MCNPX 2.6.0) was used to produce 35 spectra over the tube potential range from 20 kV to 640 kV, and cubic spline interpolation procedures were used to create piecewise polynomials characterizing the photon fluence per energy bin as a function of x-ray tube potential. Using these basis spectra and the cubic spline interpolation, 621 spectra were generated at 1 kV intervals from 20 to 640 kV. The tungsten anode spectral model using interpolating cubic splines (TASMICS) produces minimally filtered (0.8 mm Be) x-ray spectra with 1 keV energy resolution. The TASMICS spectra were compared mathematically with other, previously reported spectra. Results: Using paired t-test analyses, no statistically significant difference (i.e., p > 0.05) was observed between compared spectra over energy bins above 1% of peak bremsstrahlung fluence. For all energy bins, the correlation of determination (R2) demonstrated good correlation for all spectral comparisons. The mean overall difference (MOD) and mean absolute difference (MAD) were computed over energy bins (above 1% of peak bremsstrahlung fluence) and over all the kV permutations compared. MOD and MAD comparisons with previously reported spectra were 2.7% and 9.7%, respectively (TASMIP), 0.1% and 12.0%, respectively [R. Birch and M. Marshall, “Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector,” Phys. Med. Biol. 24, 505–517 (1979)], 0.4% and 8.1%, respectively (Poludniowski), and 0.4% and 8.1%, respectively (AAPM TG 195). The effective energy of TASMICS spectra with 2.5 mm of added Al filtration ranged from 17 keV (at 20 kV) to 138 keV (at 640 kV); with 0.2 mm of added Cu filtration the effective energy was 9 keV at 20 kV and 169 keV at 640 kV. Conclusions: Ranging from 20 kV to 640 kV, 621 x-ray spectra were produced and are available at 1 kV tube potential intervals. The spectra are tabulated at 1 keV intervals. TASMICS spectra were shown to be largely equivalent to published spectral models and are available in spreadsheet format for interested users by emailing the corresponding author (JMB). PMID:24694149
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, Andrew M.; Boone, John M., E-mail: john.boone@ucdmc.ucdavis.edu
Purpose: Monte Carlo methods were used to generate lightly filtered high resolution x-ray spectra spanning from 20 kV to 640 kV. Methods: X-ray spectra were simulated for a conventional tungsten anode. The Monte Carlo N-Particle eXtended radiation transport code (MCNPX 2.6.0) was used to produce 35 spectra over the tube potential range from 20 kV to 640 kV, and cubic spline interpolation procedures were used to create piecewise polynomials characterizing the photon fluence per energy bin as a function of x-ray tube potential. Using these basis spectra and the cubic spline interpolation, 621 spectra were generated at 1 kV intervalsmore » from 20 to 640 kV. The tungsten anode spectral model using interpolating cubic splines (TASMICS) produces minimally filtered (0.8 mm Be) x-ray spectra with 1 keV energy resolution. The TASMICS spectra were compared mathematically with other, previously reported spectra. Results: Using pairedt-test analyses, no statistically significant difference (i.e., p > 0.05) was observed between compared spectra over energy bins above 1% of peak bremsstrahlung fluence. For all energy bins, the correlation of determination (R{sup 2}) demonstrated good correlation for all spectral comparisons. The mean overall difference (MOD) and mean absolute difference (MAD) were computed over energy bins (above 1% of peak bremsstrahlung fluence) and over all the kV permutations compared. MOD and MAD comparisons with previously reported spectra were 2.7% and 9.7%, respectively (TASMIP), 0.1% and 12.0%, respectively [R. Birch and M. Marshall, “Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector,” Phys. Med. Biol. 24, 505–517 (1979)], 0.4% and 8.1%, respectively (Poludniowski), and 0.4% and 8.1%, respectively (AAPM TG 195). The effective energy of TASMICS spectra with 2.5 mm of added Al filtration ranged from 17 keV (at 20 kV) to 138 keV (at 640 kV); with 0.2 mm of added Cu filtration the effective energy was 9 keV at 20 kV and 169 keV at 640 kV. Conclusions: Ranging from 20 kV to 640 kV, 621 x-ray spectra were produced and are available at 1 kV tube potential intervals. The spectra are tabulated at 1 keV intervals. TASMICS spectra were shown to be largely equivalent to published spectral models and are available in spreadsheet format for interested users by emailing the corresponding author (JMB)« less
Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil
2016-01-01
Using picosecond excitation at 1064 nm, surface-enhanced hyper-Raman scattering (SEHRS) spectra of the nucleobases adenine, guanine, cytosine, thymine, and uracil with two different types of silver nanoparticles were obtained. Comparing the SEHRS spectra with SERS data from the identical samples excited at 532 nm and with known infrared spectra, the major bands in the spectra are assigned. Due to the different selection rules for the one- and two-photon excited Raman scattering, we observe strong variation in relative signal strengths of many molecular vibrations obtained in SEHRS and SERS spectra. The two-photon excited spectra of the nucleobases are found to be very sensitive with respect to molecule–nanoparticle interactions. Using both the SEHRS and SERS data, a comprehensive vibrational characterization of the interaction of nucleobases with silver nanostructures can be achieved. PMID:28077982
Jessen, Wilko; Wilbert, Stefan; Gueymard, Christian A.; ...
2018-04-10
Reference solar irradiance spectra are needed to specify key parameters of solar technologies such as photovoltaic cell efficiency, in a comparable way. The IEC 60904-3 and ASTM G173 standards present such spectra for Direct Normal Irradiance (DNI) and Global Tilted Irradiance (GTI) on a 37 degrees tilted sun-facing surface for one set of clear-sky conditions with an air mass of 1.5 and low aerosol content. The IEC/G173 standard spectra are the widely accepted references for these purposes. Hence, the authors support the future replacement of the outdated ISO 9845 spectra with the IEC spectra within the ongoing update of thismore » ISO standard. The use of a single reference spectrum per component of irradiance is important for clarity when comparing and rating solar devices such as PV cells. However, at some locations the average spectra can differ strongly from those defined in the IEC/G173 standards due to widely different atmospheric conditions and collector tilt angles. Therefore, additional subordinate standard spectra for other atmospheric conditions and tilt angles are of interest for a rough comparison of product performance under representative field conditions, in addition to using the main standard spectrum for product certification under standard test conditions. This simplifies the product selection for solar power systems when a fully-detailed performance analysis is not feasible (e.g. small installations). Also, the effort for a detailed yield analyses can be reduced by decreasing the number of initial product options. After appropriate testing, this contribution suggests a number of additional spectra related to eight sets of atmospheric conditions and tilt angles that are currently considered within ASTM and ISO working groups. The additional spectra, called subordinate standard spectra, are motivated by significant spectral mismatches compared to the IEC/G173 spectra (up to 6.5%, for PV at 37 degrees tilt and 10-15% for CPV). These mismatches correspond to potential accuracy improvements for a quick estimation of the average efficiency by applying the appropriate subordinate standard spectrum instead of the IEC/G173 spectra. The applicability of these spectra for PV performance analyses is confirmed at five test sites, for which subordinate spectra could be intuitively selected based on the average atmospheric aerosol optical depth (AOD) and precipitable water vapor at those locations. The development of subordinate standard spectra for DNI and concentrating solar power (CSP) and concentrating PV (CPV) is also considered. However, it is found that many more sets of atmospheric conditions would be required to allow the intuitive selection of DNI spectra for the five test sites, due in particular to the stronger effect of AOD on DNI compared to GTI. The matrix of subordinate GTI spectra described in this paper are recommended to appear as an option in the annex of future standards, in addition to the obligatory use of the main spectrum from the ASTM G173 and IEC 60904 standards.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessen, Wilko; Wilbert, Stefan; Gueymard, Christian A.
Reference solar irradiance spectra are needed to specify key parameters of solar technologies such as photovoltaic cell efficiency, in a comparable way. The IEC 60904-3 and ASTM G173 standards present such spectra for Direct Normal Irradiance (DNI) and Global Tilted Irradiance (GTI) on a 37 degrees tilted sun-facing surface for one set of clear-sky conditions with an air mass of 1.5 and low aerosol content. The IEC/G173 standard spectra are the widely accepted references for these purposes. Hence, the authors support the future replacement of the outdated ISO 9845 spectra with the IEC spectra within the ongoing update of thismore » ISO standard. The use of a single reference spectrum per component of irradiance is important for clarity when comparing and rating solar devices such as PV cells. However, at some locations the average spectra can differ strongly from those defined in the IEC/G173 standards due to widely different atmospheric conditions and collector tilt angles. Therefore, additional subordinate standard spectra for other atmospheric conditions and tilt angles are of interest for a rough comparison of product performance under representative field conditions, in addition to using the main standard spectrum for product certification under standard test conditions. This simplifies the product selection for solar power systems when a fully-detailed performance analysis is not feasible (e.g. small installations). Also, the effort for a detailed yield analyses can be reduced by decreasing the number of initial product options. After appropriate testing, this contribution suggests a number of additional spectra related to eight sets of atmospheric conditions and tilt angles that are currently considered within ASTM and ISO working groups. The additional spectra, called subordinate standard spectra, are motivated by significant spectral mismatches compared to the IEC/G173 spectra (up to 6.5%, for PV at 37 degrees tilt and 10-15% for CPV). These mismatches correspond to potential accuracy improvements for a quick estimation of the average efficiency by applying the appropriate subordinate standard spectrum instead of the IEC/G173 spectra. The applicability of these spectra for PV performance analyses is confirmed at five test sites, for which subordinate spectra could be intuitively selected based on the average atmospheric aerosol optical depth (AOD) and precipitable water vapor at those locations. The development of subordinate standard spectra for DNI and concentrating solar power (CSP) and concentrating PV (CPV) is also considered. However, it is found that many more sets of atmospheric conditions would be required to allow the intuitive selection of DNI spectra for the five test sites, due in particular to the stronger effect of AOD on DNI compared to GTI. The matrix of subordinate GTI spectra described in this paper are recommended to appear as an option in the annex of future standards, in addition to the obligatory use of the main spectrum from the ASTM G173 and IEC 60904 standards.« less
Component spectra extraction from terahertz measurements of unknown mixtures.
Li, Xian; Hou, D B; Huang, P J; Cai, J H; Zhang, G X
2015-10-20
The aim of this work is to extract component spectra from unknown mixtures in the terahertz region. To that end, a method, hard modeling factor analysis (HMFA), was applied to resolve terahertz spectral matrices collected from the unknown mixtures. This method does not require any expertise of the user and allows the consideration of nonlinear effects such as peak variations or peak shifts. It describes the spectra using a peak-based nonlinear mathematic model and builds the component spectra automatically by recombination of the resolved peaks through correlation analysis. Meanwhile, modifications on the method were made to take the features of terahertz spectra into account and to deal with the artificial baseline problem that troubles the extraction process of some terahertz spectra. In order to validate the proposed method, simulated wideband terahertz spectra of binary and ternary systems and experimental terahertz absorption spectra of amino acids mixtures were tested. In each test, not only the number of pure components could be correctly predicted but also the identified pure spectra had a good similarity with the true spectra. Moreover, the proposed method associated the molecular motions with the component extraction, making the identification process more physically meaningful and interpretable compared to other methods. The results indicate that the HMFA method with the modifications can be a practical tool for identifying component terahertz spectra in completely unknown mixtures. This work reports the solution to this kind of problem in the terahertz region for the first time, to the best of the authors' knowledge, and represents a significant advance toward exploring physical or chemical mechanisms of unknown complex systems by terahertz spectroscopy.
Direct measurement of clinical mammographic x-ray spectra using a CdTe spectrometer.
Santos, Josilene C; Tomal, Alessandra; Furquim, Tânia A; Fausto, Agnes M F; Nogueira, Maria S; Costa, Paulo R
2017-07-01
To introduce and evaluate a method developed for the direct measurement of mammographic x-ray spectra using a CdTe spectrometer. The assembly of a positioning system and the design of a simple and customized alignment device for this application is described. A positioning system was developed to easily and accurately locate the CdTe detector in the x-ray beam. Additionally, an alignment device to line up the detector with the central axis of the radiation beam was designed. Direct x-ray spectra measurements were performed in two different clinical mammography units and the measured x-ray spectra were compared with computer-generated spectra. In addition, the spectrometer misalignment effect was evaluated by comparing the measured spectra when this device is aligned relatively to when it is misaligned. The positioning and alignment of the spectrometer have allowed the measurements of direct mammographic x-ray spectra in agreement with computer-generated spectra. The most accurate x-ray spectral shape, related with the minimal HVL value, and high photon fluence for measured spectra was found with the spectrometer aligned according to the proposed method. The HVL values derived from both simulated and measured x-ray spectra differ at most 1.3 and 4.5% for two mammography devices evaluated in this study. The experimental method developed in this work allows simple positioning and alignment of a spectrometer for x-ray spectra measurements given the geometrical constraints and maintenance of the original configurations of mammography machines. © 2017 American Association of Physicists in Medicine.
High-resolution 18 CM spectra of OH/IR stars
NASA Astrophysics Data System (ADS)
Fix, John D.
1987-02-01
High-velocity-resolution, high-signal-to-noise spectra have been obtained for the 18 cm maser emission lines from a number of optically visible OH/IR stars. The spectra have been interpreted in terms of a recent model by Alcock and Ross (1986), in which OH/IR stars lose mass in discrete elements rather than by a continuous wind. Comparison of the observed spectra with synthetic spectra shows that the lines are the composite emission from thousands or tens of thousands of individual elements.
Thermal-infrared spectral observations of geologic materials in emission
NASA Technical Reports Server (NTRS)
Christensen, Philip R.; Luth, Sharon J.
1987-01-01
The thermal-infrared spectra of geologic materials in emission were studied using the prototype Thermal Emission Spectrometer (TES). A variety of of processes and surface modifications that may influence or alter the spectra of primary rock materials were studied. It was confirmed that thermal emission spectra contain the same absorption features as those observed in transmission and reflection spectra. It was confirmed that the TES instrument can be used to obtain relevant spectra for analysis of rock and mineral composition.
Investigation of Skin Cancers Using MicroRaman Spectroscopy
NASA Astrophysics Data System (ADS)
Short, M. A.; Chen, X. K.; Zeng, H.; Ajlan, A. A.; McLean, D. I.; Hui, H.
2004-03-01
We have measured the Raman spectra of skin cancers, including melanoma and basal cell carcinoma, using a confocal microRaman spectrograph. In an attempt to identify the origin of the observed Raman modes, we investigated the spectra obtained from different locations of the samples, compared the observed spectra with those measured from normal human skin and pig skin, and studied the polarization dependence of the spectra. In addition, we will discuss the effects of fluorescence in the measurement of Raman spectra of skin samples.
NASA Astrophysics Data System (ADS)
Houston, Heidi; Kanamori, Hiroo
1990-08-01
A comparison of strong-motion spectra and teleseismic spectra was made for three Mw 7.8 to 8.0 earthquakes: the 1985 Michoacan (Mexico) earthquake, the 1985 Valparaiso (Chile) earthquake, and the 1983 Akita-Oki (Japan) earthquake. The decay of spectral amplitude with the distance from the station was determined, considering different measures of distance from a finite fault, and it was found to be different for these three events. The results can be used to establish empirical relations between the observed spectra and the half-space responses depending on the distance and the site condition, making it possible to estimate strong motions from source spectra determined from teleseismic records.
NASA Astrophysics Data System (ADS)
Choi, Seong-Ho; Park, Hyun Gyu
2005-04-01
PVP-protected silver colloids were prepared by γ-irradiation and chemical reduction method. Surface-enhanced Raman scattering (SERS) spectra of sodium benzoate and 4-picoline in Ag colloids prepared by γ-irradiation were recorded. The SERS spectra of sodium benzoate were successfully recorded in Ag colloids, whereas the Raman spectra did not appear without Ag colloids. The Raman spectra of 4-picoline were not detected without Ag colloids, while the SERS spectra of 4-picoline were increased by adding Ag colloids. The carboxylate group of sodium benzoate and N donor of 4-picoline were adsorbed on the surface of Ag nanoparticles.
NASA Astrophysics Data System (ADS)
Pawar, Shashikant S.; Arakeri, Jaywant H.
2016-06-01
Kinetic energy and scalar spectra from the measurements in high Rayleigh number axially homogeneous buoyancy driven turbulent flow are presented. Kinetic energy and concentration (scalar) spectra are obtained from the experiments wherein density difference is created using brine and fresh water and temperature spectra are obtained from the experiments in which heat is used. Scaling of the frequency spectra of lateral and longitudinal velocity near the tube axis is closer to the Kolmogorov-Obukhov scaling, while the scalar spectra show some evidence of dual scaling, Bolgiano-Obukhov scaling followed by Obukhov-Corrsin scaling. These scalings are also observed in the corresponding second order spatial structure functions of velocity and concentration fluctuations.
NASA Astrophysics Data System (ADS)
Lotfalizadeh, F.; Faghihi, R.; Bahadorzadeh, B.; Sina, S.
2017-07-01
Neutron spectrometry using a single-sphere containing dosimeters has been developed recently, as an effective replacement for Bonner sphere spectrometry. The aim of this study is unfolding the neutron energy spectra using GRNN artificial neural network, from the response of thermoluminescence dosimeters, TLDs, located inside a polyethylene sphere. The spectrometer was simulated using MCNP5. TLD-600 and TLD-700 dosimeters were simulated at different positions in all directions. Then the GRNN was used for neutron spectra prediction, using the TLDs' readings. Comparison of spectra predicted by the network with the real spectra, show that the single-sphere dosimeter is an effective instrument in unfolding neutron spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, D. R.; Emery, K. E.; Gueymard, C.
2002-05-01
This conference paper describes the American Society for Testing and Materials (ASTM), the International Electrotechnical Commission (IEC), and the International Standards Organization (ISO) standard solar terrestrial spectra (ASTM G-159, IEC-904-3, ISO 9845-1) provide standard spectra for photovoltaic performance applications. Modern terrestrial spectral radiation models and knowledge of atmospheric physics are applied to develop suggested revisions to update the reference spectra. We use a moderately complex radiative transfer model (SMARTS2) to produce the revised spectra. SMARTS2 has been validated against the complex MODTRAN radiative transfer code and spectral measurements. The model is proposed as an adjunct standard to reproduce the referencemore » spectra. The proposed spectra represent typical clear sky spectral conditions associated with sites representing reasonable photovoltaic energy production and weathering and durability climates. The proposed spectra are under consideration by ASTM.« less
NASA Astrophysics Data System (ADS)
Kajimoto, T.; Shigyo, N.; Sanami, T.; Iwamoto, Y.; Hagiwara, M.; Lee, H. S.; Soha, A.; Ramberg, E.; Coleman, R.; Jensen, D.; Leveling, A.; Mokhov, N. V.; Boehnlein, D.; Vaziri, K.; Sakamoto, Y.; Ishibashi, K.; Nakashima, H.
2014-10-01
The energy spectra of neutrons were measured by a time-of-flight method for 120 GeV protons on thick graphite, aluminum, copper, and tungsten targets with an NE213 scintillator at the Fermilab Test Beam Facility. Neutron energy spectra were obtained between 25 and 3000 MeV at emission angles of 30°, 45°, 120°, and 150°. The spectra were parameterized as neutron emissions from three moving sources and then compared with theoretical spectra calculated by PHITS and FLUKA codes. The yields of the theoretical spectra were substantially underestimated compared with the yields of measured spectra. The integrated neutron yields from 25 to 3000 MeV calculated with PHITS code were 16-36% of the experimental yields and those calculated with FLUKA code were 26-57% of the experimental yields for all targets and emission angles.
Infrared reflectance spectra (4-12 micron) of lunar samples
NASA Technical Reports Server (NTRS)
Nash, Douglas B.
1991-01-01
Presented here are infrared reflectance spectra of a typical set of Apollo samples to illustrate spectral character in the mid-infrared (4 to 12 microns) of lunar materials and how the spectra varies among three main forms: soil, breccia, and igneous rocks. Reflectance data, to a close approximation, are the inverse of emission spectra; thus, for a given material the spectral reflectance (R) at any given wavelength is related to emission (E) by 1 - R equals E. Therefore, one can use reflectance spectra of lunar samples to predict how emission spectra of material on the lunar surface will appear to spectrometers on orbiting spacecraft or earthbound telescopes. Spectra were measured in the lab in dry air using a Fourier Transform Infrared spectrometer. Shown here is only the key portion (4 to 12 microns) of each spectrum relating to the principal spectral emission region for sunlit lunar materials and to where the most diagnostic spectral features occur.
Martin, Gary E; Hilton, Bruce D; Blinov, Kirill A; Williams, Antony J
2008-02-01
Several groups of authors have reported studies in the areas of indirect and unsymmetrical indirect covariance NMR processing methods. Efforts have recently focused on the use of unsymmetrical indirect covariance processing methods to combine various discrete two-dimensional NMR spectra to afford the equivalent of the much less sensitive hyphenated 2D NMR experiments, for example indirect covariance (icv)-heteronuclear single quantum coherence (HSQC)-COSY and icv-HSQC-nuclear Overhauser effect spectroscopy (NOESY). Alternatively, unsymmetrical indirect covariance processing methods can be used to combine multiple heteronuclear 2D spectra to afford icv-13C-15N HSQC-HMBC correlation spectra. We now report the use of responses contained in indirect covariance processed HSQC spectra as a means for the identification of artifacts in both indirect covariance and unsymmetrical indirect covariance processed 2D NMR spectra. Copyright (c) 2007 John Wiley & Sons, Ltd.
Blough, M M; Waggener, R G; Payne, W H; Terry, J A
1998-09-01
A model for calculating mammographic spectra independent of measured data and fitting parameters is presented. This model is based on first principles. Spectra were calculated using various target and filter combinations such as molybdenum/molybdenum, molybdenum/rhodium, rhodium/rhodium, and tungsten/aluminum. Once the spectra were calculated, attenuation curves were calculated and compared to measured attenuation curves. The attenuation curves were calculated and measured using aluminum alloy 1100 or high purity aluminum filtration. Percent differences were computed between the measured and calculated attenuation curves resulting in an average of 5.21% difference for tungsten/aluminum, 2.26% for molybdenum/molybdenum, 3.35% for rhodium/rhodium, and 3.18% for molybdenum/rhodium. Calculated spectra were also compared to measured spectra from the Food and Drug Administration [Fewell and Shuping, Handbook of Mammographic X-ray Spectra (U.S. Government Printing Office, Washington, D.C., 1979)] and a comparison will also be presented.
A comparison of the far-infrared and low-frequency Raman spectra of glass-forming liquids
NASA Astrophysics Data System (ADS)
Perova, T. S.; Vij, J. K.; Christensen, D. H.; Nielsen, O. F.
1999-04-01
Far-infrared and low-frequency Raman spectra in the wavenumber range from 15 to 500 cm -1 were recorded for glycerol, triacetin (glycerol triacetate) and o-terphenyl at temperatures from 253 to 355 K. The far-infrared spectra of glycerol appear complex compared with the spectra of triacetin owing to the presence of hydrogen bonding in glycerol. The experimental results obtained for o-terphenyl are in good agreement with normal mode analyses carried out for crystalline o-terphenyl (A. Criado, F.J. Bermejo, A. de Andres, Mol. Phys. 82 (1994) 787). The far-infrared results are compared with the low-frequency Raman spectra of these three glass-forming liquids. The difference in temperature dependences found from these spectra is explained on the basis of different temperature contributions of the relaxational and vibrational processes to the low-frequency vibrational spectra.
Spectral classification with the International Ultraviolet Explorer: An atlas of B-type spectra
NASA Technical Reports Server (NTRS)
Rountree, Janet; Sonneborn, George
1993-01-01
New criteria for the spectral classification of B stars in the ultraviolet show that photospheric absorption lines in the 1200-1900A wavelength region can be used to classify the spectra of B-type dwarfs, subgiants, and giants on a 2-D system consistent with the optical MK system. This atlas illustrates a large number of such spectra at the scale used for classification. These spectra provide a dense matrix of standard stars, and also show the effects of rapid stellar rotation and stellar winds on the spectra and their classification. The observational material consists of high-dispersion spectra from the International Ultraviolet Explorer archives, resampled to a resolution of 0.25 A, uniformly normalized, and plotted at 10 A/cm. The atlas should be useful for the classification of other IUE high-dispersion spectra, especially for stars that have not been observed in the optical.
PHOTON SPECTRA IN NPL STANDARD RADIONUCLIDE NEUTRON FIELDS.
Roberts, N J
2017-09-23
A HPGe detector has been used to measure the photon spectra from the majority of radionuclide neutron sources in use at NPL (252Cf, 241Am-Be, 241Am-Li, 241Am-B). The HPGe was characterised then modelled to produce a response matrix. The measured pulse height spectra were then unfolded to produce photon fluence spectra. Changes in the photon spectrum with time from a 252Cf source are evident. Spectra from a 2-year-old and 42-year-old 252Cf source are presented showing the change from a continuum to peaks from long-lived isotopes of Cf. Other radionuclide neutron source spectra are also presented and discussed. The new spectra were used to improve the photon to neutron dose equivalent ratios from some earlier work at NPL with GM tubes and EPDs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Polavarapu, Prasad L; Covington, Cody L
2014-09-01
For three different chiroptical spectroscopic methods, namely, vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and Raman optical activity (ROA), the measures of similarity of the experimental spectra to the corresponding spectra predicted using quantum chemical theories are summarized. In determining the absolute configuration and/or predominant conformations of chiral molecules, these similarity measures provide numerical estimates of agreement between experimental observations and theoretical predictions. Selected applications illustrating the similarity measures for absorption, circular dichroism, and corresponding dissymmetry factor (DF) spectra, in the case of VCD and ECD, and for Raman, ROA, and circular intensity differential (CID) spectra in the case of ROA, are presented. The analysis of similarity in DF or CID spectra is considered to be much more discerning and accurate than that in absorption (or Raman) and circular dichroism (or ROA) spectra, undertaken individually. © 2014 Wiley Periodicals, Inc.
Singh, Gurpreet; Mohanty, B P; Saini, G S S
2016-02-15
Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide. Copyright © 2015 Elsevier B.V. All rights reserved.
Normal Auger spectra of iodine in gas phase alkali iodide molecules
NASA Astrophysics Data System (ADS)
Hu, Zhengfa; Caló, Antonio; Kukk, Edwin; Aksela, Helena; Aksela, Seppo
2005-06-01
Molecular normal Auger electron spectra following the iodine 4d ionization in gas-phase alkali iodides were investigated both experimentally and theoretically. The Auger electron spectra for LiI, NaI and KI were recorded using electron impact, and for RbI by using photo-excitation. These Auger spectra were analyzed in detail and compared to the referenced normal Auger spectra of HI [L. Karlsson, S. Svensson, P. Baltzer, M. Carlsson-Göthe, M.P. Keane, A. Naves de Brito, N. Correia, B. Wannberg, J. Phys. B 22 (1989) 3001]. An energy shift toward higher kinetic energy and a narrowing in linewidth are observed in the Auger spectra series revealing the effect of the changing environment from covalently bonded HI to ionic alkali iodide compounds. The experimental results are also compared with the theoretical ab initio calculations and with the Auger spectra of I -, computed with the multiconfiguration Hartree-Fock (MCHF) method.
Single Molecule Raman Spectroscopy Under High Pressure
NASA Astrophysics Data System (ADS)
Fu, Yuanxi; Dlott, Dana
2014-06-01
Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.
2009-02-01
EEM spectra of Micrococcus lysodeikticus vegetative cells, dry............................... 24 Figure 18. EEM spectra of Micrococcus lysodeikticus...tryptophan, B. subtilis (vegetative cells) ATCC 6633, Pseudomonas fluorescens, Micrococcus lysodeikticus, Staphylococcus aureus, and Clostridium...present the EEM spectra of Pseudomonas fluorescens (dry), Yersinia pestis (dry and in water), Micrococcus lysodeikticus (dry and in water
Proposal and Evaluation of Subordinate Standard Solar Irradiance Spectra: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Wilbert, Stefan; Jessen, Wilko
This paper introduces a concept for global tilted irradiance (GTI) subordinate standard spectra to supplement the current standard spectra used in solar photovoltaic applications as defined in ASTM G173 and IEC60904. The proposed subordinate standard spectra correspond to atmospheric conditions and tilt angles that depart significantly from the main standard spectrum, and they can be used to more accurately represent various local conditions. For the definition of subordinate standard spectra cases with an elevation 1.5 km above sea level, the question arises whether the air mass should be calculated including a pressure correction or not. This study focuses on themore » impact of air mass used in standard spectra, and it uses data from 29 locations to examine which air mass is most appropriate for GTI and direct normal irradiance (DNI) spectra. Overall, it is found that the pressure-corrected air mass of 1.5 is most appropriate for DNI spectra. For GTI, a non-pressure-corrected air mass of 1.5 was found to be more appropriate.« less
Use of mutation spectra analysis software.
Rogozin, I; Kondrashov, F; Glazko, G
2001-02-01
The study and comparison of mutation(al) spectra is an important problem in molecular biology, because these spectra often reflect on important features of mutations and their fixation. Such features include the interaction of DNA with various mutagens, the function of repair/replication enzymes, and properties of target proteins. It is known that mutability varies significantly along nucleotide sequences, such that mutations often concentrate at certain positions, called "hotspots," in a sequence. In this paper, we discuss in detail two approaches for mutation spectra analysis: the comparison of mutation spectra with a HG-PUBL program, (FTP: sunsite.unc.edu/pub/academic/biology/dna-mutations/hyperg) and hotspot prediction with the CLUSTERM program (www.itba.mi.cnr.it/webmutation; ftp.bionet.nsc.ru/pub/biology/dbms/clusterm.zip). Several other approaches for mutational spectra analysis, such as the analysis of a target protein structure, hotspot context revealing, multiple spectra comparisons, as well as a number of mutation databases are briefly described. Mutation spectra in the lacI gene of E. coli and the human p53 gene are used for illustration of various difficulties of such analysis. Copyright 2001 Wiley-Liss, Inc.
De novo peptide sequencing using CID and HCD spectra pairs.
Yan, Yan; Kusalik, Anthony J; Wu, Fang-Xiang
2016-10-01
In tandem mass spectrometry (MS/MS), there are several different fragmentation techniques possible, including, collision-induced dissociation (CID) higher energy collisional dissociation (HCD), electron-capture dissociation (ECD), and electron transfer dissociation (ETD). When using pairs of spectra for de novo peptide sequencing, the most popular methods are designed for CID (or HCD) and ECD (or ETD) spectra because of the complementarity between them. Less attention has been paid to the use of CID and HCD spectra pairs. In this study, a new de novo peptide sequencing method is proposed for these spectra pairs. This method includes a CID and HCD spectra merging criterion and a parent mass correction step, along with improvements to our previously proposed algorithm for sequencing merged spectra. Three pairs of spectral datasets were used to investigate and compare the performance of the proposed method with other existing methods designed for single spectrum (HCD or CID) sequencing. Experimental results showed that full-length peptide sequencing accuracy was increased significantly by using spectra pairs in the proposed method, with the highest accuracy reaching 81.31%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Do, Thanh Nhut; Gelin, Maxim F; Tan, Howe-Siang
2017-10-14
We derive general expressions that incorporate finite pulse envelope effects into a coherent two-dimensional optical spectroscopy (2DOS) technique. These expressions are simpler and less computationally intensive than the conventional triple integral calculations needed to simulate 2DOS spectra. The simplified expressions involving multiplications of arbitrary pulse spectra with 2D spectral response function are shown to be exactly equal to the conventional triple integral calculations of 2DOS spectra if the 2D spectral response functions do not vary with population time. With minor modifications, they are also accurate for 2D spectral response functions with quantum beats and exponential decay during population time. These conditions cover a broad range of experimental 2DOS spectra. For certain analytically defined pulse spectra, we also derived expressions of 2D spectra for arbitrary population time dependent 2DOS spectral response functions. Having simpler and more efficient methods to calculate experimentally relevant 2DOS spectra with finite pulse effect considered will be important in the simulation and understanding of the complex systems routinely being studied by using 2DOS.
Near-infrared reflectance spectra of mixtures of kaolin-group minerals: Use in clay mineral studies
Crowley, James K.; Vergo, Norma
1988-01-01
Near-infrared (NIR) reflectance spectra for mixtures of ordered kaolinite and ordered dickite have been found to simulate the spectral response of disordered kaolinite. The amount of octahedral vacancy disorder in nine disordered kaolinite samples was estimated by comparing the sample spectra to the spectra of reference mixtures. The resulting estimates are consistent with previously published estimates of vacancy disorder for similar kaolin minerals that were modeled from calculated X-ray diffraction patterns. The ordered kaolinite and dickite samples used in the reference mixtures were carefully selected to avoid undesirable particle size effects that could bias the spectral results.NIR spectra were also recorded for laboratory mixtures of ordered kaolinite and halloysite to assess whether the spectra could be potentially useful for determining mineral proportions in natural physical mixtures of these two clays. Although the kaolinite-halloysite proportions could only be roughly estimated from the mixture spectra, the halloysite component was evident even when halloysite was present in only minor amounts. A similar approach using NIR spectra for laboratory mixtures may have applications in other studies of natural clay mixtures.
A robust automatic phase correction method for signal dense spectra
NASA Astrophysics Data System (ADS)
Bao, Qingjia; Feng, Jiwen; Chen, Li; Chen, Fang; Liu, Zao; Jiang, Bin; Liu, Chaoyang
2013-09-01
A robust automatic phase correction method for Nuclear Magnetic Resonance (NMR) spectra is presented. In this work, a new strategy combining ‘coarse tuning' with ‘fine tuning' is introduced to correct various spectra accurately. In the ‘coarse tuning' procedure, a new robust baseline recognition method is proposed for determining the positions of the tail ends of the peaks, and then the preliminary phased spectra are obtained by minimizing the objective function based on the height difference of these tail ends. After the ‘coarse tuning', the peaks in the preliminary corrected spectra can be categorized into three classes: positive, negative, and distorted. Based on the classification result, a new custom negative penalty function used in the step of ‘fine tuning' is constructed to avoid the negative peak points in the spectra excluded in the negative peaks and distorted peaks. Finally, the fine phased spectra can be obtained by minimizing the custom negative penalty function. This method is proven to be very robust for it is tolerant to low signal-to-noise ratio, large baseline distortion and independent of the starting search points of phasing parameters. The experimental results on both 1D metabonomics spectra with over-crowded peaks and 2D spectra demonstrate the high efficiency of this automatic method.
NASA Astrophysics Data System (ADS)
Silveira, Landulfo; Silveira, Fabrício Luiz; Bodanese, Benito; Zângaro, Renato Amaro; Pacheco, Marcos Tadeu T.
2012-07-01
Raman spectroscopy has been employed to identify differences in the biochemical constitution of malignant [basal cell carcinoma (BCC) and melanoma (MEL)] cells compared to normal skin tissues, with the goal of skin cancer diagnosis. We collected Raman spectra from compounds such as proteins, lipids, and nucleic acids, which are expected to be represented in human skin spectra, and developed a linear least-squares fitting model to estimate the contributions of these compounds to the tissue spectra. We used a set of 145 spectra from biopsy fragments of normal (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues, collected using a near-infrared Raman spectrometer (830 nm, 50 to 200 mW, and 20 s exposure time) coupled to a Raman probe. We applied the best-fitting model to the spectra of biochemicals and tissues, hypothesizing that the relative spectral contribution of each compound to the tissue Raman spectrum changes according to the disease. We verified that actin, collagen, elastin, and triolein were the most important biochemicals representing the spectral features of skin tissues. A classification model applied to the relative contribution of collagen III, elastin, and melanin using Euclidean distance as a discriminator could differentiate normal from BCC and MEL.
Li, Zhigang; Wang, Qiaoyun; Lv, Jiangtao; Ma, Zhenhe; Yang, Linjuan
2015-06-01
Spectroscopy is often applied when a rapid quantitative analysis is required, but one challenge is the translation of raw spectra into a final analysis. Derivative spectra are often used as a preliminary preprocessing step to resolve overlapping signals, enhance signal properties, and suppress unwanted spectral features that arise due to non-ideal instrument and sample properties. In this study, to improve quantitative analysis of near-infrared spectra, derivatives of noisy raw spectral data need to be estimated with high accuracy. A new spectral estimator based on singular perturbation technique, called the singular perturbation spectra estimator (SPSE), is presented, and the stability analysis of the estimator is given. Theoretical analysis and simulation experimental results confirm that the derivatives can be estimated with high accuracy using this estimator. Furthermore, the effectiveness of the estimator for processing noisy infrared spectra is evaluated using the analysis of beer spectra. The derivative spectra of the beer and the marzipan are used to build the calibration model using partial least squares (PLS) modeling. The results show that the PLS based on the new estimator can achieve better performance compared with the Savitzky-Golay algorithm and can serve as an alternative choice for quantitative analytical applications.
Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.
Rieder, Vera; Schork, Karin U; Kerschke, Laura; Blank-Landeshammer, Bernhard; Sickmann, Albert; Rahnenführer, Jörg
2017-11-03
In proteomics, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established for identifying peptides and proteins. Duplicated spectra, that is, multiple spectra of the same peptide, occur both in single MS/MS runs and in large spectral libraries. Clustering tandem mass spectra is used to find consensus spectra, with manifold applications. First, it speeds up database searches, as performed for instance by Mascot. Second, it helps to identify novel peptides across species. Third, it is used for quality control to detect wrongly annotated spectra. We compare different clustering algorithms based on the cosine distance between spectra. CAST, MS-Cluster, and PRIDE Cluster are popular algorithms to cluster tandem mass spectra. We add well-known algorithms for large data sets, hierarchical clustering, DBSCAN, and connected components of a graph, as well as the new method N-Cluster. All algorithms are evaluated on real data with varied parameter settings. Cluster results are compared with each other and with peptide annotations based on validation measures such as purity. Quality control, regarding the detection of wrongly (un)annotated spectra, is discussed for exemplary resulting clusters. N-Cluster proves to be highly competitive. All clustering results benefit from the so-called DISMS2 filter that integrates additional information, for example, on precursor mass.
Airborne gamma-ray spectra processing: Extracting photopeaks.
Druker, Eugene
2018-07-01
The acquisition of information from the airborne gamma-ray spectra is based on the ability to evaluate photopeak areas in regular spectra from natural and other sources. In airborne gamma-ray spectrometry, extraction of photopeaks of radionuclides from regular one-second spectra is a complex problem. In the region of higher energies, difficulties are associated with low signal level, i.e. low count rates, whereas at lower energies difficulties are associated with high noises due to a high signal level. In this article, a new procedure is proposed for processing the measured spectra up to and including the extraction of evident photopeaks. The procedure consists of reducing the noise in the energy channels along the flight lines, transforming the spectra into the spectra of equal resolution, removing the background from each spectrum, sharpening the details, and transforming the spectra back to the original energy scale. The resulting spectra are better suited for examining and using the photopeaks. No assumptions are required regarding the number, locations, and magnitudes of photopeaks. The procedure does not generate negative photopeaks. The resolution of the spectrometer is used for the purpose. The proposed methodology, apparently, will contribute also to study environmental problems, soil characterization, and other near-surface geophysical methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Spectroscopic identification of individual fluorophores using photoluminescence excitation spectra.
Czerski, J; Colomb, W; Cannataro, F; Sarkar, S K
2018-01-25
The identity of a fluorophore can be ambiguous if other fluorophores or nonspecific fluorescent impurities have overlapping emission spectra. The presence of overlapping spectra makes it difficult to differentiate fluorescent species using discrete detection channels and unmixing of spectra. The unique absorption and emission signatures of fluorophores provide an opportunity for spectroscopic identification. However, absorption spectroscopy may be affected by scattering, whereas fluorescence emission spectroscopy suffers from signal loss by gratings or other dispersive optics. Photoluminescence excitation spectra, where excitation is varied and emission is detected at a fixed wavelength, allows hyperspectral imaging with a single emission filter for high signal-to-background ratio without any moving optics on the emission side. We report a high throughput method for measuring the photoluminescence excitation spectra of individual fluorophores using a tunable supercontinuum laser and prism-type total internal reflection fluorescence microscope. We used the system to measure and sort the photoluminescence excitation spectra of individual Alexa dyes, fluorescent nanodiamonds (FNDs), and fluorescent polystyrene beads. We used a Gaussian mixture model with maximum likelihood estimation to objectively separate the spectra. Finally, we spectroscopically identified different species of fluorescent nanodiamonds with overlapping spectra and characterized the heterogeneity of fluorescent nanodiamonds of varying size. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Extending the McDonald Observatory Serendipitous Survey of UV/Blue Asteroid Spectra
NASA Technical Reports Server (NTRS)
Vilas, Faith; Cochran, A. L.
1999-01-01
Moderate resolution asteroid spectra in the 350 - 650 nm spectral range acquired randomly over many years (Cochran and Vilas, Icarus v 127, 121, 1997) identified absorption features in spectra of some of the asteroids. A feature centered at 430 nm was identified in the spectra of some low-albedo asteroids (C class and subclass), similar to the feature identified by Vilas et al. (Icarus, v. 102, 225,1993) in other low-albedo asteroid spectra and attributed to a ferric iron spin-forbidden transition in iron alteration minerals such as jarosite. Features at 505 nm and 430 nm were identified in the spectrum of 4 Vesta. The 505-nm feature is highly diagnostic of the amount and form of calcium in pyroxenes. This suggested further research on the sharpness and spectral placement of this feature in the spectra of Vesta and Vestoids (e.g., Cochran and Vilas, Icarus v. 134, 207, 1998). In 1997 and 1998, additional UV/blue spectra were obtained at the 2.7-m Harlan J. Smith telescope with a facility cassegrain spectrograph. These included spectra of low-albedo asteroids, the R-class asteroid 349 Dembowska, and the M-class asteroid 135 Hertha. These spectra will be presented and identified features will be discussed.
Yang, Jian; Du, Lin; Sun, Jia; Zhang, Zhenbing; Chen, Biwu; Shi, Shuo; Gong, Wei; Song, Shalei
2016-08-22
Paddy rice is one of the most important crops in China, and leaf nitrogen content (LNC) serves as a significant indictor for monitoring crop status. A reliable method is needed for precise and fast quantification of LNC. Laser-induced fluorescence (LIF) technology and reflectance spectra of crops are widely used to monitor leaf biochemical content. However, comparison between the fluorescence and reflectance spectra has been rarely investigated in the monitoring of LNC. In this study, the performance of the fluorescence and reflectance spectra for LNC estimation was discussed based on principal component analysis (PCA) and back-propagation neural network (BPNN). The combination of fluorescence and reflectance spectra was also proposed to monitor paddy rice LNC. The fluorescence and reflectance spectra exhibited a high degree of multi-collinearity. About 95.38%, and 97.76% of the total variance included in the spectra were efficiently extracted by using the first three PCs in PCA. The BPNN was implemented for LNC prediction based on new variables calculated using PCA. The experimental results demonstrated that the fluorescence spectra (R2 = 0.810, 0.804 for 2014 and 2015, respectively) are superior to the reflectance spectra (R2 = 0.721, 0.671 for 2014 and 2015, respectively) for estimating LNC based on the PCA-BPNN model. The proposed combination of fluorescence and reflectance spectra can greatly improve the accuracy of LNC estimation (R2 = 0.912, 0.890 for 2014 and 2015, respectively).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Gregory M.; Patel, Shrayesh N.; Pemmaraju, C. D.
The electronic structure and molecular orientation of semiconducting polymers in thin films determine their ability to transport charge. Methods based on near-edge X-ray absorption fine structure (NEXAFS) spectroscopy can be used to probe both the electronic structure and microstructure of semiconducting polymers in both crystalline and amorphous films. However, it can be challenging to interpret NEXAFS spectra on the basis of experimental data alone, and accurate, predictive calculations are needed to complement experiments. Here, we show that first-principles density functional theory (DFT) can be used to model NEXAFS spectra of semiconducting polymers and to identify the nature of transitions inmore » complicated NEXAFS spectra. Core-level X-ray absorption spectra of a set of semiconducting polymers were calculated using the excited electron and core-hole (XCH) approach based on constrained-occupancy DFT. A comparison of calculations on model oligomers and periodic structures with experimental data revealed the requirements for accurate prediction of NEXAFS spectra of both conjugated homopolymers and donor–acceptor polymers. The NEXAFS spectra predicted by the XCH approach were applied to study molecular orientation in donor–acceptor polymers using experimental spectra and revealed the complexity of using carbon edge spectra in systems with large monomeric units. The XCH approach has sufficient accuracy in predicting experimental NEXAFS spectra of polymers that it should be considered for design and analysis of measurements using soft X-ray techniques, such as resonant soft X-ray scattering and scanning transmission X-ray microscopy.« less
Statistical properties of Fermi GBM GRBs' spectra
NASA Astrophysics Data System (ADS)
Rácz, István I.; Balázs, Lajos G.; Horvath, Istvan; Tóth, L. Viktor; Bagoly, Zsolt
2018-03-01
Statistical studies of gamma-ray burst (GRB) spectra may result in important information on the physics of GRBs. The Fermi GBM catalogue contains GRB parameters (peak energy, spectral indices, and intensity) estimated fitting the gamma-ray spectral energy distribution of the total emission (fluence, flnc), and during the time of the peak flux (pflx). Using contingency tables, we studied the relationship of the models best-fitting pflx and flnc time intervals. Our analysis revealed an ordering of the spectra into a power law - Comptonized - smoothly broken power law - Band series. This result was further supported by a correspondence analysis of the pflx and flnc spectra categorical variables. We performed a linear discriminant analysis (LDA) to find a relationship between categorical (spectral) and model independent physical data. LDA resulted in highly significant physical differences among the spectral types, that is more pronounced in the case of the pflx spectra, than for the flnc spectra. We interpreted this difference as caused by the temporal variation of the spectrum during the outburst. This spectral variability is confirmed by the differences in the low-energy spectral index and peak energy, between the pflx and flnc spectra. We found that the synchrotron radiation is significant in GBM spectra. The mean low-energy spectral index is close to the canonical value of α = -2/3 during the peak flux. However, α is ˜ -0.9 for the spectra of the fluences. We interpret this difference as showing that the effect of cooling is important only for the fluence spectra.
NASA Astrophysics Data System (ADS)
Idehara, H.; Carbon, D. F.
2004-12-01
We present two new, publicly available tools to support the examination and interpretation of spectra. SCAMP is a specialized graphical user interface for MATLAB. It allows researchers to rapidly intercompare sets of observational, theoretical, and/or laboratory spectra. Users have extensive control over the colors and placement of individual spectra, and over spectrum normalization from one spectral region to another. Spectra can be interactively assigned to user-defined groups and the groupings recalled at a later time. The user can measure/record positions and intensities of spectral features, interactively spline-fit spectra, and normalize spectra by fitted splines. User-defined wavelengths can be automatically highlighted in SCAMP plots. The user can save/print annotated graphical output suitable for a scientific notebook depicting the work at any point. The ASP is a WWW portal that provides interactive access to two spectrum data sets: a library of synthetic stellar spectra and a library of laboratory PAH spectra. The synthetic stellar spectra in the ASP are appropriate to the giant branch with an assortment of compositions. Each spectrum spans the full range from 2 to 600 microns at a variety of resolutions. The ASP is designed to allow users to quickly identify individual features at any resolution that arise from any of the included isotopic species. The user may also retrieve the depth of formation of individual features at any resolution. PAH spectra accessible through the ASP are drawn from the extensive library of spectra measured by the NASA Ames Astrochemistry Laboratory. The user may interactively choose any subset of PAHs in the data set, combine them with user-defined weights and temperatures, and view/download the resultant spectrum at any user-defined resolution. This work was funded by the NASA Advanced Supercomputing Division, NASA Ames Research Center.
NASA Astrophysics Data System (ADS)
Cunha, Diego M.; Tomal, Alessandra; Poletti, Martin E.
2013-04-01
In this work, the Monte Carlo (MC) code PENELOPE was employed for simulation of x-ray spectra in mammography and contrast-enhanced digital mammography (CEDM). Spectra for Mo, Rh and W anodes were obtained for tube potentials between 24-36 kV, for mammography, and between 45-49 kV, for CEDM. The spectra obtained from the simulations were analytically filtered to correspond to the anode/filter combinations usually employed in each technique (Mo/Mo, Rh/Rh and W/Rh for mammography and Mo/Cu, Rh/Cu and W/Cu for CEDM). For the Mo/Mo combination, the simulated spectra were compared with those obtained experimentally, and for spectra for the W anode, with experimental data from the literature, through comparison of distribution shape, average energies, half-value layers (HVL) and transmission curves. For all combinations evaluated, the simulated spectra were also compared with those provided by different models from the literature. Results showed that the code PENELOPE provides mammographic x-ray spectra in good agreement with those experimentally measured and those from the literature. The differences in the values of HVL ranged between 2-7%, for anode/filter combinations and tube potentials employed in mammography, and they were less than 5% for those employed in CEDM. The transmission curves for the spectra obtained also showed good agreement compared to those computed from reference spectra, with average relative differences less than 12% for mammography and CEDM. These results show that the code PENELOPE can be a useful tool to generate x-ray spectra for studies in mammography and CEDM, and also for evaluation of new x-ray tube designs and new anode materials.
Zhang, Da; Li, Xinhua; Liu, Bob
2012-06-01
This paper presents new spectral measurements of a tungsten-target digital breast tomosynthesis (DBT) system, including spectra of 43-49 kVp. Raw x-ray spectra of 20-49 kVp were directly measured from the tube port of a Selenia Dimensions DBT system using a CdTe based spectrometer. Two configurations of collimation were employed: one with two tungsten pinholes of 25 μm and 200 μm diameters, and the other with a single pinhole of 25 μm diameter, for acquiring spectra from the focal spot and from the focal spot as well as its vicinity. Stripping correction was applied to the measured spectra to compensate distortions due to escape events. The measured spectra were compared with the existing mammographic spectra of the TASMIP model in terms of photon fluence per exposure, spectral components, and half-value layer (HVL). HVLs were calculated from the spectra with a numerical filtration of 0.7 mm aluminum and were compared against actual measurements on the DBT system using W/Al (target-filter) combination, without paddle in the beam. The spectra from the double-pinhole configuration, in which the acceptance aperture pointed right at the focal spot, were harder than the single-pinhole spectra which include both primary and off-focus radiation. HVL calculated from the single-pinhole setup agreed with the measured HVL within 0.04 mm aluminum, while the HVL values from the double-pinhole setup were larger than the single-pinhole HVL by at most 0.1 mm aluminum. The spectra from single-pinhole setup agreed well with the TASMIP mammographic spectra, and are more relevant for clinical purpose. The spectra data would be useful for future research on DBT system with tungsten targets. © 2012 American Association of Physicists in Medicine.
Canopy reflectance related to marsh dieback onset and progression in Coastal Louisiana
Ramsey, Elijah W.; Rangoonwala, A.
2006-01-01
In this study, we extended previous work linking leaf spectral changes, dieback onset, and progression of Spartina alterniflora marshes to changes in site-specific canopy reflectance spectra. First, we obtained canopy reflectance spectra (approximately 20 m ground resolution) from the marsh sites occupied during the leaf spectral analyses and from additional sites exhibiting visual signs of dieback. Subsequently, the canopy spectra were analyzed at two spectral scales: the first scale corresponded to whole-spectra sensors, such as the NASA Earth Observing-1 (EO-1) Hyperion, and the second scale corresponded to broadband spectral sensors, such as the EO-1 Advanced Land Imager and the Landsat Enhanced Thematic Mapper. In the whole-spectra analysis, spectral indicators were generated from the whole canopy spectra (about 400 nm to 1,000 nm) by extracting typical dead and healthy marsh spectra, and subsequently using them to determine the percent composition of all canopy reflectance spectra. Percent compositions were then used to classify canopy spectra at each field site into groups exhibiting similar levels of dieback progression ranging from relatively healthy to completely dead. In the broadband reflectance analysis, blue, green, red, red-edge, and near infrared (NIR) spectral bands and NIR/green and NIR/red transforms were extracted from the canopy spectra. Spectral band and band transform indicators of marsh dieback and progression were generated by relating them to marsh status indicators derived from classifications of the 35 mm slides collected at the same time as the canopy reflectance recordings. The whole spectra and broadband spectral indicators were both able to distinguish (a) healthy marsh, (b) live marsh impacted by dieback, and (c) dead marsh, and they both provided some discrimination of dieback progression. Whole-spectra resolution sensors like the EO-1 Hyperion, however, offered an enhanced ability to categorize dieback progression. ?? 2006 American Society for Photogrammetry and Remote Sensing.
NASA Astrophysics Data System (ADS)
Kamae, Tuneyoshi; Lee, Shiu-Hang; Makishima, Kazuo; Shibata, Shinpei; Shigeyama, Toshikazu
2018-03-01
Recent observations found that electrons are accelerated to ˜10 GeV and emit synchrotron hard X-rays in two magnetic white dwarfs (WDs), also known as cataclysmic variables (CVs). In nova outbursts of WDs, multi-GeV gamma-rays were detected, implying that protons are accelerated to 100 GeV or higher. In recent optical surveys, the WD density is found to be higher near the Sun than in the Galactic disk by a factor ˜2.5. The cosmic rays (CRs) produced by local CVs and novae will accumulate in the local bubble for 106-107 yr. On these findings, we search for CRs from historic CVs and novae in the observed CR spectra. We model the CR spectra at the heliopause as sums of Galactic and local components based on observational data as much as possible. The initial Galactic CR electron and proton spectra are deduced from the gamma-ray emissivity, the local electron spectrum from the hard X-ray spectra at the CVs, and the local proton spectrum from gamma-ray spectra at novae. These spectral shapes are then expressed in a simple set of polynomial functions of CR energy and regressively fitted until the high-energy (>100 GeV) CR spectra near Earth and the Voyager-1 spectra at the heliopause are reproduced. We then extend the modeling to nuclear CR spectra and find that one spectral shape fits all local nuclear CRs, and that the apparent hardening of the nuclear CR spectra is caused by the roll-down of local nuclear spectra around 100-200 GeV. All local CR spectra populate a limited energy band below 100-200 GeV and enhance gamma-ray emissivity below ˜10 GeV. Such an enhancement is observed in the inner Galaxy, suggesting the CR fluxes from CVs and novae are substantially higher there.
The AMBRE project: Parameterisation of FGK-type stars from the ESO:HARPS archived spectra
NASA Astrophysics Data System (ADS)
De Pascale, M.; Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.
2014-10-01
Context. The AMBRE project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA). It has been established to determine the stellar atmospheric parameters of the archived spectra of four ESO spectrographs. Aims: The analysis of the ESO:HARPS archived spectra for the determination of their atmospheric parameters (effective temperature, surface gravity, global metallicities, and abundance of α-elements over iron) is presented. The sample being analysed (AMBRE:HARPS) covers the period from 2003 to 2010 and is comprised of 126 688 scientific spectra corresponding to ~17 218 different stars. Methods: For the analysis of the AMBRE:HARPS spectral sample, the automated pipeline developed for the analysis of the AMBRE:FEROS archived spectra has been adapted to the characteristics of the HARPS spectra. Within the pipeline, the stellar parameters are determined by the MATISSE algorithm, which has been developed at OCA for the analysis of large samples of stellar spectra in the framework of galactic archaeology. In the present application, MATISSE uses the AMBRE grid of synthetic spectra, which covers FGKM-type stars for a range of gravities and metallicities. Results: We first determined the radial velocity and its associated error for the ~15% of the AMBRE:HARPS spectra, for which this velocity had not been derived by the ESO:HARPS reduction pipeline. The stellar atmospheric parameters and the associated chemical index [α/Fe] with their associated errors have then been estimated for all the spectra of the AMBRE:HARPS archived sample. Based on key quality criteria, we accepted and delivered the parameterisation of 93 116 (74% of the total sample) spectra to ESO. These spectra correspond to ~10 706 stars; each are observed between one and several hundred times. This automatic parameterisation of the AMBRE:HARPS spectra shows that the large majority of these stars are cool main-sequence dwarfs with metallicities greater than -0.5 dex (as expected, given that HARPS has been extensively used for planet searches around GK-stars).
EMPCA and Cluster Analysis of Quasar Spectra: Construction and Application to Simulated Spectra
NASA Astrophysics Data System (ADS)
Marrs, Adam; Leighly, Karen; Wagner, Cassidy; Macinnis, Francis
2017-01-01
Quasars have complex spectra with emission lines influenced by many factors. Therefore, to fully describe the spectrum requires specification of a large number of parameters, such as line equivalent width, blueshift, and ratios. Principal Component Analysis (PCA) aims to construct eigenvectors-or principal components-from the data with the goal of finding a few key parameters that can be used to predict the rest of the spectrum fairly well. Analysis of simulated quasar spectra was used to verify and justify our modified application of PCA.We used a variant of PCA called Weighted Expectation Maximization PCA (EMPCA; Bailey 2012) along with k-means cluster analysis to analyze simulated quasar spectra. Our approach combines both analytical methods to address two known problems with classical PCA. EMPCA uses weights to account for uncertainty and missing points in the spectra. K-means groups similar spectra together to address the nonlinearity of quasar spectra, specifically variance in blueshifts and widths of the emission lines.In producing and analyzing simulations, we first tested the effects of varying equivalent widths and blueshifts on the derived principal components, and explored the differences between standard PCA and EMPCA. We also tested the effects of varying signal-to-noise ratio. Next we used the results of fits to composite quasar spectra (see accompanying poster by Wagner et al.) to construct a set of realistic simulated spectra, and subjected those spectra to the EMPCA /k-means analysis. We concluded that our approach was validated when we found that the mean spectra from our k-means clusters derived from PCA projection coefficients reproduced the trends observed in the composite spectra.Furthermore, our method needed only two eigenvectors to identify both sets of correlations used to construct the simulations, as well as indicating the linear and nonlinear segments. Comparing this to regular PCA, which can require a dozen or more components, or to direct spectral analysis that may need measurement of 20 fit parameters, shows why the dual application of these two techniques is such a powerful tool.
Genkawa, Takuma; Shinzawa, Hideyuki; Kato, Hideaki; Ishikawa, Daitaro; Murayama, Kodai; Komiyama, Makoto; Ozaki, Yukihiro
2015-12-01
An alternative baseline correction method for diffuse reflection near-infrared (NIR) spectra, searching region standard normal variate (SRSNV), was proposed. Standard normal variate (SNV) is an effective pretreatment method for baseline correction of diffuse reflection NIR spectra of powder and granular samples; however, its baseline correction performance depends on the NIR region used for SNV calculation. To search for an optimal NIR region for baseline correction using SNV, SRSNV employs moving window partial least squares regression (MWPLSR), and an optimal NIR region is identified based on the root mean square error (RMSE) of cross-validation of the partial least squares regression (PLSR) models with the first latent variable (LV). The performance of SRSNV was evaluated using diffuse reflection NIR spectra of mixture samples consisting of wheat flour and granular glucose (0-100% glucose at 5% intervals). From the obtained NIR spectra of the mixture in the 10 000-4000 cm(-1) region at 4 cm intervals (1501 spectral channels), a series of spectral windows consisting of 80 spectral channels was constructed, and then SNV spectra were calculated for each spectral window. Using these SNV spectra, a series of PLSR models with the first LV for glucose concentration was built. A plot of RMSE versus the spectral window position obtained using the PLSR models revealed that the 8680–8364 cm(-1) region was optimal for baseline correction using SNV. In the SNV spectra calculated using the 8680–8364 cm(-1) region (SRSNV spectra), a remarkable relative intensity change between a band due to wheat flour at 8500 cm(-1) and that due to glucose at 8364 cm(-1) was observed owing to successful baseline correction using SNV. A PLSR model with the first LV based on the SRSNV spectra yielded a determination coefficient (R2) of 0.999 and an RMSE of 0.70%, while a PLSR model with three LVs based on SNV spectra calculated in the full spectral region gave an R2 of 0.995 and an RMSE of 2.29%. Additional evaluation of SRSNV was carried out using diffuse reflection NIR spectra of marzipan and corn samples, and PLSR models based on SRSNV spectra showed good prediction results. These evaluation results indicate that SRSNV is effective in baseline correction of diffuse reflection NIR spectra and provides regression models with good prediction accuracy.
The AMBRE Project: Stellar parameterisation of the ESO:FEROS archived spectra
NASA Astrophysics Data System (ADS)
Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.; Ordenovic, C.
2012-06-01
Context. The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA) that has been established in order to carry out the determination of stellar atmospheric parameters for the archived spectra of four ESO spectrographs. Aims: The analysis of the FEROS archived spectra for their stellar parameters (effective temperatures, surface gravities, global metallicities, alpha element to iron ratios and radial velocities) has been completed in the first phase of the AMBRE Project. From the complete ESO:FEROS archive dataset that was received, a total of 21 551 scientific spectra have been identified, covering the period 2005 to 2010. These spectra correspond to 6285 stars. Methods: The determination of the stellar parameters was carried out using the stellar parameterisation algorithm, MATISSE (MATrix Inversion for Spectral SynthEsis), which has been developed at OCA to be used in the analysis of large scale spectroscopic studies in galactic archaeology. An analysis pipeline has been constructed that integrates spectral normalisation, cleaning and radial velocity correction procedures in order that the FEROS spectra could be analysed automatically with MATISSE to obtain the stellar parameters. The synthetic grid against which the MATISSE analysis is carried out is currently constrained to parameters of FGKM stars only. Results: Stellar atmospheric parameters, effective temperature, surface gravity, metallicity and alpha element abundances, were determined for 6508 (30.2%) of the FEROS archived spectra (~3087 stars). Radial velocities were determined for 11 963 (56%) of the archived spectra. 2370 (11%) spectra could not be analysed within the pipeline due to very low signal-to-noise ratios or missing spectral orders. 12 673 spectra (58.8%) were analysed in the pipeline but their parameters were discarded based on quality criteria and error analysis determined within the automated process. The majority of these rejected spectra were found to have broad spectral features, as probed both by the direct measurement of the features and cross-correlation function breadths, indicating that they may be hot and/or fast rotating stars, which are not considered within the adopted reference synthetic spectra grid. The current configuration of the synthetic spectra grid is devoted to slow-rotating FGKM stars. Hence non-standard spectra (binaries, chemically peculiar stars etc.) that could not be identified may pollute the analysis.
Reflection spectra, 2.5-7 microns, of some solids of planetary interest
NASA Technical Reports Server (NTRS)
Fink, U.; Burk, S. D.
1973-01-01
Reflection spectra of 42 compounds of possible planetary interest were run from 2.5 to 7 microns. They were supplemented by some transmission spectra extending the wavelength coverage to 15 microns. The spectra were organized according to their constituent radicals and an attempt was made at the identification of the absorption features.
Unfolding the prompt gamma ray spectra measured in a Lanthanum Bromide detector using GRAVEL method
NASA Astrophysics Data System (ADS)
De, S.; Thomas, R. G.; Rout, P. C.; Suryanarayana, S. V.; Nayak, B. K.; Saxena, A.
2018-02-01
Prompt fission Upsilon -ray energy spectra in spontaneous fission of 252Cf has been measured using a 6'' LaBr3(Ce) detector. Unfolding of the measured Upsilon -ray energy spectra has been carried out using GRAVEL method. The response matrix of the detector has been simulated using GEANT4 and the unfolding of Upsilon -ray energy spectra for 60Co and 137Cs sources have been validated. This unfolding technique has then been applied to the prompt gamma spectra obtained from the spontaneous fission of 252Cf.
Cross sections and differential spectra for reactions of 2-20 MeV neutrons of /sup 27/Al
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blann, M.; Komoto, T.T.
1988-01-01
This report summarizes product yields, secondary n,p and ..cap alpha.. spectra, and ..gamma..-ray spectra calculated for incident neutrons of 2-20 MeV on /sup 27/Al targets. Results are all from the code ALICE, using the version ALISO which does weighting of results for targets which are a mix of isotopes. Where natural isotopic targets are involved, yields and n,p,..cap alpha.. spectra will be reported weighted over isotopic yields. Gamma-ray spectra, however, will be reported for the most abundant isotope.
Expert System for Analysis of Spectra in Nuclear Metrology
NASA Astrophysics Data System (ADS)
Petrović, Ivan; Petrović, V.; Krstić, D.; Nikezić, D.; Bočvarski, V.
In this paper is described an expert system (ES) developed in order to enable the analysis of emission spectra, which are obtained by measurements of activities of radioactive elements, i.e., isotopes, actually cesium. In the structure of those spectra exists two parts: first on lower energies, which originates from the Compton effect, and second on higher energies, which contains the photopeak. The aforementioned ES is made to perform analysis of spectra in whole range of energies. Analysis of those spectra is very interesting because of the problem of environmental contamination by radio nuclides.
Problems in abundance determination from UV spectra of hot supergiants
NASA Astrophysics Data System (ADS)
Deković, M. Sarta; Kotnik-Karuza, D.; Jurkić, T.; Dominis Prester, D.
2010-03-01
We present measurements of equivalent widths of the UV, presumably photospheric lines: C III 1247 Å, N III 1748 Å, N III 1752 Å, N IV 1718 Å and He II 1640 Å in high-resolution IUE spectra of 24 galactic OB supergiants. Equivalent widths measured from the observed spectra have been compared with their counterparts in the Tlusty NLTE synthetic spectra. We discuss possibilities of static plan-parallel model to reproduce observed UV spectra of hot massive stars and possible reasons why observations differ from the model so much.
NASA Astrophysics Data System (ADS)
Fornasier, S.; Clark, B. E.; Migliorini, A.; Ockert-Bell, M.
2011-08-01
This data set contains reduced composite visual and near-infrared spectra of thirty M-type asteroids, observed over the years 2004-2008 and presented in Fornasier et al. (2010). The spectra were taken with the Dolores and NICS instruments at the Telescopio Nationale Galileo (TNG) in La Palma, with the EMMI and SOFI instruments at the ESO New Technology Telescope (NTT) in Chile, and with the SPeX instrument at the Infrared Telescope Facility (IRTF) in Hawaii. The individual spectra from the various instruments used to produce the composite spectra are also included.
NASA Technical Reports Server (NTRS)
Goldman, A.; Murcray, F. J.; Rinsland, C. P.; Blatherwick, R. D.; Murcray, F. H.; Murcray, D. G.
1991-01-01
Results of ongoing studies of high-resolution solar absorption spectra aimed at the identification and quantification of trace constituents of importance in the chemistry of the stratosphere and upper troposphere are presented. An analysis of balloon-borne and ground-based spectra obtained at 0.0025/cm covering the 700-2200/cm interval is presented. The 0.0025/cm spectra, along with corresponding laboratory spectra, improves the spectral line parameters, and thus the accuracy of quantifying trace constituents. Results for COF2, F22, SF6, and other species are presented. The retrieval methods used for total column density and altitude distribution for both ground-based and balloon-borne spectra are also discussed.
The first observation of Carbon-13 spin noise spectra
Schlagnitweit, Judith; Müller, Norbert
2012-01-01
We demonstrate the first 13C NMR spin noise spectra obtained without any pulse excitation by direct detection of the randomly fluctuating noise from samples in a cryogenically cooled probe. Noise power spectra were obtained from 13C enriched methanol and glycerol samples at 176 MHz without and with 1H decoupling, which increases the sensitivity without introducing radio frequency interference with the weak spin noise. The multiplet amplitude ratios in 1H coupled spectra indicate that, although pure spin noise prevails in these spectra, the influence of absorbed circuit noise is still significant at the high concentrations used. In accordance with the theory heteronuclear Overhauser enhancements are absent from the 1H-decoupled 13C spin noise spectra. PMID:23041799
Observations of silicate reststrahlen bands in lunar infrared spectra
NASA Technical Reports Server (NTRS)
Potter, A. E., Jr.; Morgan, T. H.
1982-01-01
Thermal emission spectra of three lunar sites (Apollo 11, Descartes Formation, and Tycho central peak) are measured in the 8-14 micron spectral range. Transmission and instrument effects are accounted for by forming ratios of the Descartes and Tycho spectra to the Apollo 11 spectrum. The ratio spectra are compared with ratios of published laboratory spectra of returned lunar samples and also with ratio spectra calculated using the Aronson-Emslie (1975) model. The comparisons show pyroxene bands in the Descartes ratio spectrum and plagioclase bands in the Tycho ratio spectrum. The Tycho spectrum is found to be consistent with the existence of fine plagioclase dust (approximately 1 micron) at the rock surface and a higher-than-usual sodium content of the plagioclase.
CALCULATION OF GAMMA SPECTRA IN A PLASTIC SCINTILLATOR FOR ENERGY CALIBRATIONAND DOSE COMPUTATION.
Kim, Chankyu; Yoo, Hyunjun; Kim, Yewon; Moon, Myungkook; Kim, Jong Yul; Kang, Dong Uk; Lee, Daehee; Kim, Myung Soo; Cho, Minsik; Lee, Eunjoong; Cho, Gyuseong
2016-09-01
Plastic scintillation detectors have practical advantages in the field of dosimetry. Energy calibration of measured gamma spectra is important for dose computation, but it is not simple in the plastic scintillators because of their different characteristics and a finite resolution. In this study, the gamma spectra in a polystyrene scintillator were calculated for the energy calibration and dose computation. Based on the relationship between the energy resolution and estimated energy broadening effect in the calculated spectra, the gamma spectra were simply calculated without many iterations. The calculated spectra were in agreement with the calculation by an existing method and measurements. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Automated generation and ensemble-learned matching of X-ray absorption spectra
NASA Astrophysics Data System (ADS)
Zheng, Chen; Mathew, Kiran; Chen, Chi; Chen, Yiming; Tang, Hanmei; Dozier, Alan; Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Piper, Louis F. J.; Persson, Kristin A.; Ong, Shyue Ping
2018-12-01
X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique to determine oxidation states, coordination environment, and other local atomic structure information. Analysis of XAS relies on comparison of measured spectra to reliable reference spectra. However, existing databases of XAS spectra are highly limited both in terms of the number of reference spectra available as well as the breadth of chemistry coverage. In this work, we report the development of XASdb, a large database of computed reference XAS, and an Ensemble-Learned Spectra IdEntification (ELSIE) algorithm for the matching of spectra. XASdb currently hosts more than 800,000 K-edge X-ray absorption near-edge spectra (XANES) for over 40,000 materials from the open-science Materials Project database. We discuss a high-throughput automation framework for FEFF calculations, built on robust, rigorously benchmarked parameters. FEFF is a computer program uses a real-space Green's function approach to calculate X-ray absorption spectra. We will demonstrate that the ELSIE algorithm, which combines 33 weak "learners" comprising a set of preprocessing steps and a similarity metric, can achieve up to 84.2% accuracy in identifying the correct oxidation state and coordination environment of a test set of 19 K-edge XANES spectra encompassing a diverse range of chemistries and crystal structures. The XASdb with the ELSIE algorithm has been integrated into a web application in the Materials Project, providing an important new public resource for the analysis of XAS to all materials researchers. Finally, the ELSIE algorithm itself has been made available as part of veidt, an open source machine-learning library for materials science.
Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum
NASA Technical Reports Server (NTRS)
Lee, Seungwon
2012-01-01
This software processes the flyby spectra of the Chirp Transform Spectrometer (CTS) of the Microwave Instrument for Rosetta Orbiter (MIRO). The tool corrects the effect of Doppler shift and local-oscillator (LO) frequency shift during the flyby mode of MIRO operations. The frequency correction for CTS flyby spectra is performed and is integrated with multiple spectra into a high signal-to-noise averaged spectrum at the rest-frame RF frequency. This innovation also generates the 8 molecular line spectra by dividing continuous 4,096-channel CTS spectra. The 8 line spectra can then be readily used for scientific investigations. A spectral line that is at its rest frequency in the frame of the Earth or an asteroid will be observed with a time-varying Doppler shift as seen by MIRO. The frequency shift is toward the higher RF frequencies on approach, and toward lower RF frequencies on departure. The magnitude of the shift depends on the flyby velocity. The result of time-varying Doppler shift is that of an observed spectral line will be seen to move from channel to channel in the CTS spectrometer. The direction (higher or lower frequency) in the spectrometer depends on the spectral line frequency under consideration. In order to analyze the flyby spectra, two steps are required. First, individual spectra must be corrected for the Doppler shift so that individual spectra can be superimposed at the same rest frequency for integration purposes. Second, a correction needs to be applied to the CTS spectra to account for the LO frequency shifts that are applied to asteroid mode.
Liu, Fei; Wang, Yuan-zhong; Deng, Xing-yan; Jin, Hang; Yang, Chun-yan
2014-06-01
The infrared spectral of stems of 165 trees of 23 Dendrobium varieties were obtained by means of Fourier transform infrared spectroscopy technique. The spectra show that the spectra of all the samples were similar, and the main components of stem of Dendrobium is cellulose. By the spectral professional software Omnic8.0, three spectral databases were constructed. Lib01 includes of the average spectral of the first four trees of every variety, while Lib02 and Lib03 are constructed from the first-derivative spectra and the second-derivative spectra of average spectra, separately. The correlation search, the square difference retrieval and the square differential difference retrieval of the spectra are performed with the spectral database Lib01 in the specified range of 1 800-500 cm(-1), and the yield correct rate of 92.7%, 74.5% and 92.7%, respectively. The square differential difference retrieval of the first-derivative spectra and the second-derivative spectra is carried out with Lib02 and Lib03 in the same specified range 1 800-500 cm(-1), and shows correct rate of 93.9% for the former and 90.3% for the later. The results show that the first-derivative spectral retrieval of square differential difference algorithm is more suitabe for discerning Dendrobium varieties, and FTIR combining with the spectral retrieval method can identify different varieties of Dendrobium, and the correlation retrieval, the square differential retrieval, the first-derivative spectra and second-derivative spectra retrieval in the specified spectral range are effective and simple way of distinguishing different varieties of Dendrobium.
VizieR Online Data Catalog: Massive LMC stars AAOmega spectroscopy (Evans+, 2015)
NASA Astrophysics Data System (ADS)
Evans, C. J.; van Loon, J. T.; Hainich, R.; Bailey, M.
2015-08-01
This catalogue comprises ascii versions of the optical spectra of 263 massive stars in the Large Magellanic Cloud, obtained with the AAOmega spectrograph on the Anglo Australian Telescope. Spectra from the first night (2006 Feb 22) were obtained with a 1700B grating at two wavelength settings. The spectra published here were obtained by median combining the two exposures at both settings, and then median combining them in the overlap region (spanning ~4375-4400Å). Spectra from the second night (2006 Feb 23) were obtained with a 1500V grating at one central wavelength setting (4375Å). The spectra The published spectra have been normalised/rectified using an automated script, which uses pre-defined regions (selected to avoid known absorption lines in early-type stars) to create a polynomial fit to the notional continuum in each spectrum. The published spectra have been divided by those fits to rectify them to unity. As such, we caution the user that quantitative analysis of these data would benefit from tailored rectification of the spectra. In particular, at the ends of the spectral range, and across broad emission features (such as that around HeII 4686 in luminous O-type supergiants). Also note that there were a number of 'hot' columns in the AAOmega CCDs, leading to small breaks (at multiple wavelengths) in the large majority of the spectra. (5 data files).
Accuracy of Td-DFT in the Ultraviolet and Circular Dichroism Spectra of Deoxyguanosine and Uridine.
Miyahara, Tomoo; Nakatsuji, Hiroshi
2018-01-11
Accuracy of the time-dependent density functional theory (Td-DFT) was examined for the ultraviolet (UV) and circular dichroism (CD) spectra of deoxyguanosine (dG) and uridine, using 11 different DFT functionals and two different basis sets. The Td-DFT results of the UV and CD spectra were strongly dependent on the functionals used. The basis-set dependence was observed only for the CD spectral calculations. For the UV spectra, the B3LYP and PBE0 functionals gave relatively good results. For the CD spectra, the B3LYP and PBE0 with 6-311G(d,p) basis gave relatively permissible result only for dG. The results of other functionals were difficult to be used for the studies of the UV and CD spectra, though the symmetry adapted cluster-configuration interaction (SAC-CI) method reproduced well the experimental spectra of these molecules. To obtain valuable information from the theoretical calculations of the UV and CD spectra, the theoretical tool must be able to reproduce correctly both of the intensities and peak positions of the UV and CD spectra. Then, we can analyze the reasons of the changes of the intensity and/or the peak position to clarify the chemistry involved. It is difficult to recommend Td-DFT as such tools of science, at least from the examinations using dG and uridine.
Analysis of aircraft spectrometer data with logarithmic residuals
NASA Technical Reports Server (NTRS)
Green, A. A.; Craig, M. D.
1985-01-01
Spectra from airborne systems must be analyzed in terms of their mineral-related absorption features. Methods for removing backgrounds and extracting these features one at a time from reflectance spectra are discussed. Methods for converting radiance spectra into a form similar to reflectance spectra so that the feature extraction procedures can be implemented on aircraft spectrometer data are also discussed.
Schulze, H Georg; Turner, Robin F B
2013-04-01
Raman spectra often contain undesirable, randomly positioned, intense, narrow-bandwidth, positive, unidirectional spectral features generated when cosmic rays strike charge-coupled device cameras. These must be removed prior to analysis, but doing so manually is not feasible for large data sets. We developed a quick, simple, effective, semi-automated procedure to remove cosmic ray spikes from spectral data sets that contain large numbers of relatively homogenous spectra. Although some inhomogeneous spectral data sets can be accommodated--it requires replacing excessively modified spectra with the originals and removing their spikes with a median filter instead--caution is advised when processing such data sets. In addition, the technique is suitable for interpolating missing spectra or replacing aberrant spectra with good spectral estimates. The method is applied to baseline-flattened spectra and relies on fitting a third-order (or higher) polynomial through all the spectra at every wavenumber. Pixel intensities in excess of a threshold of 3× the noise standard deviation above the fit are reduced to the threshold level. Because only two parameters (with readily specified default values) might require further adjustment, the method is easily implemented for semi-automated processing of large spectral sets.
The Tc Trend In The Zetta Reticuli System: N Spectra - N Trends.
NASA Astrophysics Data System (ADS)
Adibekyan, V.; Figueira, P.; Delgado Mena, E.; Sousa, S. G.; Santos, N. C.; González Hernández; , I.; Israelian, G.
2017-10-01
It is suggested that the chemical abundance trend with the condensation temperature, Tc , can be a signature of rocky planet formation or accretion. Recently, a strong Tc trend was reported in the Zetta Reticuli binary system (Saffe et al., 2016), where ζ2 Ret Ret shows a deficit of refractory elements relative to its companion (ζ1 Ret). This depletion was explained by the presence of a debris disk around ζ2 Ret. Later, Adibekyan et al. (2016b) confirmed the significance of the trend, however, casted doubts on the interpretation proposed. Using three individual highest quality spectra for each star, they found that the Tc trends depend on the individual spectra (three spectra of each star were used) used in the analaysis. In the current work we re-evaluated the presence and variability of the Tc trend in this system using a larger number of individual spectra. In total, 62 spectra of ζ2 Ret and 31 spectra of ζ1 Ret was used. Our results confirm the word of caution issued by Adibekyan et al. (2016b) that nonphysical factors can be at the root of the T c trends for the cases of individual spectra.
Survey of elemental specificity in positron annihilation peak shapes
NASA Astrophysics Data System (ADS)
Myler, U.; Simpson, P. J.
1997-12-01
Recently the detailed interpretation of positron-annihilation γ-ray peak shapes has proven to be of interest with respect to their chemical specificity. In this contribution, we show highly resolved spectra for a number of different elements. To this purpose, annihilation spectra with strongly reduced background intensities were recorded in the two detector geometry, using a variable-energy positron beam. Division of the subsequently normalized spectra by a standard spectrum (in our case the spectrum of pure silicon) yields quotient spectra, which display features characteristic of the sample material. First we ascertain that the specific spectrum of an element is conserved in different chemical compounds, demonstrated here by identical oxygen spectra obtained from both SiO2/Si and MgO/Mg. Second, we show highly resolved spectra for a number of different elements (Fe...Zn, Ag, Ir...Au). We show that the characteristic features in these spectra vary in a systematic fashion with the atomic number of the element and can be tentatively identified with particular orbitals. Finally, for 26 different elements we compare the maximum intensity in the quotient spectra with the relative atomic density in the corresponding element. To our knowledge, this is the most comprehensive survey of such data made to date.
Chen, Ping; Harrington, Peter B
2008-02-01
A new method coupling multivariate self-modeling mixture analysis and pattern recognition has been developed to identify toxic industrial chemicals using fused positive and negative ion mobility spectra (dual scan spectra). A Smiths lightweight chemical detector (LCD), which can measure positive and negative ion mobility spectra simultaneously, was used to acquire the data. Simple-to-use interactive self-modeling mixture analysis (SIMPLISMA) was used to separate the analytical peaks in the ion mobility spectra from the background reactant ion peaks (RIP). The SIMPLSIMA analytical components of the positive and negative ion peaks were combined together in a butterfly representation (i.e., negative spectra are reported with negative drift times and reflected with respect to the ordinate and juxtaposed with the positive ion mobility spectra). Temperature constrained cascade-correlation neural network (TCCCN) models were built to classify the toxic industrial chemicals. Seven common toxic industrial chemicals were used in this project to evaluate the performance of the algorithm. Ten bootstrapped Latin partitions demonstrated that the classification of neural networks using the SIMPLISMA components was statistically better than neural network models trained with fused ion mobility spectra (IMS).
Prediction of ethanol in bottled Chinese rice wine by NIR spectroscopy
NASA Astrophysics Data System (ADS)
Ying, Yibin; Yu, Haiyan; Pan, Xingxiang; Lin, Tao
2006-10-01
To evaluate the applicability of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining ethanol concentration of Chinese rice wine in square brown glass bottle, transmission spectra of 100 bottled Chinese rice wine samples were collected in the spectral range of 350-1200 nm. Statistical equations were established between the reference data and VIS-NIR spectra by partial least squares (PLS) regression method. Performance of three kinds of mathematical treatment of spectra (original spectra, first derivative spectra and second derivative spectra) were also discussed. The PLS models of original spectra turned out better results, with higher correlation coefficient in calibration (R cal) of 0.89, lower root mean standard error of calibration (RMSEC) of 0.165, and lower root mean standard error of cross validation (RMSECV) of 0.179. Using original spectra, PLS models for ethanol concentration prediction were developed. The R cal and the correlation coefficient in validation (R val) were 0.928 and 0.875, respectively; and the RMSEC and the root mean standard error of validation (RMSEP) were 0.135 (%, v v -1) and 0.177 (%, v v -1), respectively. The results demonstrated that VIS-NIR spectroscopy could be used to predict ethanol concentration in bottled Chinese rice wine.
VizieR Online Data Catalog: Abundances in the local region. II. F, G, and K dwarfs (Luck+, 2017)
NASA Astrophysics Data System (ADS)
Luck, R. E.
2017-06-01
The McDonald Observatory 2.1m Telescope and Sandiford Cassegrain Echelle Spectrograph provided much of the observational data for this study. High-resolution spectra were obtained during numerous observing runs, from 1996 to 2010. The spectra cover a continuous wavelength range from about 484 to 700nm, with a resolving power of about 60000. The wavelength range used demands two separate observations--one centered at about 520nm, and the other at about 630nm. Typical S/N values per pixel for the spectra are more than 150. Spectra of 57 dwarfs were obtained using the Hobby-Eberly telescope and High-Resolution Spectrograph. The spectra have a resolution of 30000, spanning the wavelength range of 400 to 785nm. They also have very high signal-to-noise ratios, >300 per resolution element in numerous cases. The last set of spectra were obtained from the ELODIE Archive (Moultaka et al. 2004PASP..116..693M). These spectra are fully processed, including order co-addition, and have a continuous wavelength span of 400 to 680nm and a resolution of 42000. The ELODIE spectra utilized here all have S/N>75 per pixel. (6 data files).
MaRaCluster: A Fragment Rarity Metric for Clustering Fragment Spectra in Shotgun Proteomics.
The, Matthew; Käll, Lukas
2016-03-04
Shotgun proteomics experiments generate large amounts of fragment spectra as primary data, normally with high redundancy between and within experiments. Here, we have devised a clustering technique to identify fragment spectra stemming from the same species of peptide. This is a powerful alternative method to traditional search engines for analyzing spectra, specifically useful for larger scale mass spectrometry studies. As an aid in this process, we propose a distance calculation relying on the rarity of experimental fragment peaks, following the intuition that peaks shared by only a few spectra offer more evidence than peaks shared by a large number of spectra. We used this distance calculation and a complete-linkage scheme to cluster data from a recent large-scale mass spectrometry-based study. The clusterings produced by our method have up to 40% more identified peptides for their consensus spectra compared to those produced by the previous state-of-the-art method. We see that our method would advance the construction of spectral libraries as well as serve as a tool for mining large sets of fragment spectra. The source code and Ubuntu binary packages are available at https://github.com/statisticalbiotechnology/maracluster (under an Apache 2.0 license).
ATMOS: Simulating molecular spectra towards the remote detection of biosignature gases
NASA Astrophysics Data System (ADS)
Sousa-Silva, Clara; Petkowski, Janusz; Seager, Sara
2018-01-01
The ability to identify molecules within spectral data is of importance for a variety of academic and industrial uses, in particular for the spectroscopic detection of life. A comprehensive analysis of any observational spectra requires information about the spectrum of each of its molecular components. However, knowledge of molecular spectra currently only exists for a few hundred molecules and, other than a handful of exceptions (e.g. water, NH3), most of their spectra are incomplete. Given the relatively low level of accuracy that observations often require, there is value in creating approximate models for the spectra of molecules, particularly for those about which we know very little or nothing at all. ATMOS (Approximate Theoretical MOlecular Spectra) can quickly provide spectral information for any given molecule, using a combination of experimental measurements, organic chemistry and quantum mechanics. ATMOS 1.0, presented here, can identify volatile molecules with significant spectral features in any given wavelength window within the infrared region and provide approximate spectra for thousands of gases.
NASA Astrophysics Data System (ADS)
Short, Michael A.; Lui, Harvey; McLean, David I.; Zeng, Haishan; Alajlan, Abdulmajeed; Chen, Michael X.
2005-04-01
A less invasive method of reliably detecting skin cancers is required. Raman spectroscopy is just one of several spectroscopic methods that look promising, but are not yet sufficiently reliable. More information is needed on how and why the Raman spectra of cancerous skin tissue is different from its normal counterpart. We have used confocal micro-Raman spectroscopy with a spatial resolution of about a micron to obtain spectra of unstained thin sections of human skin. We found that there were clear differences in the Raman spectra between cancerous and non-cancerous tissue both in cells and in the connective tissue. The DNA contribution to the spectra was generally stronger in malignant cells than normal ones. In regions of the dermis far away from the tumor one obtains the usual collagen spectra of normal skin, but adjacent to the tumor the spectra no longer appeared to be those of native collagen.
[A correction method of baseline drift of discrete spectrum of NIR].
Hu, Ai-Qin; Yuan, Hong-Fu; Song, Chun-Feng; Li, Xiao-Yu
2014-10-01
In the present paper, a new correction method of baseline drift of discrete spectrum is proposed by combination of cubic spline interpolation and first order derivative. A fitting spectrum is constructed by cubic spline interpolation, using the datum in discrete spectrum as interpolation nodes. The fitting spectrum is differentiable. First order derivative is applied to the fitting spectrum to calculate derivative spectrum. The spectral wavelengths which are the same as the original discrete spectrum were taken out from the derivative spectrum to constitute the first derivative spectra of the discrete spectra, thereby to correct the baseline drift of the discrete spectra. The effects of the new method were demonstrated by comparison of the performances of multivariate models built using original spectra, direct differential spectra and the spectra pretreated by the new method. The results show that negative effects on the performance of multivariate model caused by baseline drift of discrete spectra can be effectively eliminated by the new method.
A study on the electronic spectra of some 2-azidobenzothiazoles, TD-DFT treatment.
Abu-Eittah, Rafie H; El-Taher, Sabry; Hassan, Walid; Noamaan, Mahmoud
2015-12-05
The electronic absorption spectra of some 2-azidobenzothiazoles were measured in different solvents. The effects of solvent and substitution on the spectra were investigated. Substitution by a bromine atom and by a nitro group have significant effects on both band maxima and band intensity. Correlation between the spectra of the studied compounds and the corresponding hydrocarbons proved to be weak, whereas the correlation between the observed spectra and those calculated is adequate. Theoretical treatment of the ultraviolet spectra of the studied compounds was carried out by using the TD-DFT procedures, at the B3LYP level and the 6-311+G(∗∗) basis sets, the results compared well with the experimental values. The computed molecular orbitals of the ground state indicate that some orbitals are "localized-π" or "localized σ" molecular orbitals while the others are delocalized orbitals. The calculated functions of the excited states lead to an accurate assignment of the bands observed in the spectra. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, Neal B.; Blake, Thomas A.; Gassman, Paul L.
2006-07-01
Multivariate curve resolution (MCR) is a powerful technique for extracting chemical information from measured spectra on complex mixtures. The difficulty with applying MCR to soil reflectance measurements is that light scattering artifacts can contribute much more variance to the measurements than the analyte(s) of interest. Two methods were integrated into a MCR decomposition to account for light scattering effects. Firstly, an extended mixture model using pure analyte spectra augmented with scattering ‘spectra’ was used for the measured spectra. And secondly, second derivative preprocessed spectra, which have higher selectivity than the unprocessed spectra, were included in a second block as amore » part of the decomposition. The conventional alternating least squares (ALS) algorithm was modified to simultaneously decompose the measured and second derivative spectra in a two-block decomposition. Equality constraints were also included to incorporate information about sampling conditions. The result was an MCR decomposition that provided interpretable spectra from soil reflectance measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R. Scott; Kay, Bruce D.
The desorption kinetics for benzene and cyclohexane from a graphene covered Pt(111) surface were investigated using temperature programmed desorption (TPD). The benzene desorption spectra show well-resolved monolayer and multilayer desorption peaks. The benzene monolayer TPD spectra have the same desorption peak temperature and have line shapes which are consistent with first-order desorption kinetics. For benzene coverages greater than 1 ML, the TPD spectra align on a common leading edge which is consistent with zero-order desorption. An inversion analysis of the monolayer benzene TPD spectra yielded a desorption activation energy of 54 ± 3 kJ/mol with a prefactor of 1017 ±more » 1 s-1. The TPD spectra for cyclohexane also have well-resolved monolayer and multilayer desorption features. The desorption leading edges for the monolayer and the multilayer TPD spectra are aligned indicating zero-order desorption kinetics in both cases. An Arrhenius analysis of the monolayer cyclohexane TPD spectra yielded a desorption activation energy of 53.5 ± 2 kJ/mol with a prefactor of 1016 ± 1 ML s-1.« less
Compton, L A; Johnson, W C
1986-05-15
Inverse circular dichroism (CD) spectra are presented for each of the five major secondary structures of proteins: alpha-helix, antiparallel and parallel beta-sheet, beta-turn, and other (random) structures. The fraction of the each secondary structure in a protein is predicted by forming the dot product of the corresponding inverse CD spectrum, expressed as a vector, with the CD spectrum of the protein digitized in the same way. We show how this method is based on the construction of the generalized inverse from the singular value decomposition of a set of CD spectra corresponding to proteins whose secondary structures are known from X-ray crystallography. These inverse spectra compute secondary structure directly from protein CD spectra without resorting to least-squares fitting and standard matrix inversion techniques. In addition, spectra corresponding to the individual secondary structures, analogous to the CD spectra of synthetic polypeptides, are generated from the five most significant CD eigenvectors.
Audible thunder characteristic and the relation between peak frequency and lightning parameters
NASA Astrophysics Data System (ADS)
Yuhua, Ouyang; Ping, Yuan
2012-02-01
In recent summers, some natural lightning optical spectra and audible thunder signals were observed. Twelve events on 15 August 2008 are selected as samples since some synchronizing information about them are obtained, such as lightning optical spectra, surface E-field changes, etc. By using digital filter and Fourier transform, thunder frequency spectra in observation location have been calculated. Then the two main propagation effects, finite amplitude propagation and attenuation by air, are calculated. Upon that we take the test thunder frequency spectra and work backward to recalculate the original frequency spectra near generation location. Thunder frequency spectra and the frequency distribution varying with distance are researched. According to the theories on plasma, the channel temperature and electron density are further calculated by transition parameters of lines in lightning optical spectra. Pressure and the average ionization degree of each discharge channel are obtained by using Saha equations, charge conservation equations and particle conservation equations. Moreover, the relationship between the peak frequency of each thunder and channel parameters of the lightning is studied.
Kolmogorov and scalar spectral regimes in numerical turbulence
NASA Technical Reports Server (NTRS)
Kerr, R. M.
1985-01-01
Velocity and passive-scalar spectra for turbulent fields generated by a forced three-dimensional simulation and Taylormicroscale Reynolds numbers up to 83 are shown to have distinct spectral regimes, including a Kolmogorov inertial subrange. Both one- and three-dimensional spectra are shown for comparison with experiment and theory, respectively. When normalized by the Kolmogorov dissipation scales velocity spectra collapse to a single curve and a high-wavenumber bulge is seen. The bulge leads to an artificially high Kolmogorov constant, but is consistent with recent measurements of the velocity spectrum in the dissipation regime and the velocity-derivative skewness. Scalar spectra, when normalized by the Oboukov-Corrsin scales, collapse to curves which depend only on Prandtl number and show a universal inertial-convective subrange, independent of Prandtl number. When normalized by the Batchelor scales, the scalar spectra show a universal dissipation regime which is independent of Prandtl numbers from 0.1 to 1.0. The time development of velocity spectra is illustrated by energy-transfer spectra in which distinct pulses propagate to high wavenumbers.
Analytical functions to predict cosmic-ray neutron spectra in the atmosphere.
Sato, Tatsuhiko; Niita, Koji
2006-09-01
Estimation of cosmic-ray neutron spectra in the atmosphere has been an essential issue in the evaluation of the aircrew doses and the soft-error rates of semiconductor devices. We therefore performed Monte Carlo simulations for estimating neutron spectra using the PHITS code in adopting the nuclear data library JENDL-High-Energy file. Excellent agreements were observed between the calculated and measured spectra for a wide altitude range even at the ground level. Based on a comprehensive analysis of the simulation results, we propose analytical functions that can predict the cosmic-ray neutron spectra for any location in the atmosphere at altitudes below 20 km, considering the influences of local geometries such as ground and aircraft on the spectra. The accuracy of the analytical functions was well verified by various experimental data.
BinMag: Widget for comparing stellar observed with theoretical spectra
NASA Astrophysics Data System (ADS)
Kochukhov, O.
2018-05-01
BinMag examines theoretical stellar spectra computed with Synth/SynthMag/Synmast/Synth3/SME spectrum synthesis codes and compare them to observations. An IDL widget program, BinMag applies radial velocity shift and broadening to the theoretical spectra to account for the effects of stellar rotation, radial-tangential macroturbulence, instrumental smearing. The code can also simulate spectra of spectroscopic binary stars by appropriate coaddition of two synthetic spectra. Additionally, BinMag can be used to measure equivalent width, fit line profile shapes with analytical functions, and to automatically determine radial velocity and broadening parameters. BinMag interfaces with the Synth3 (ascl:1212.010) and SME (ascl:1202.013) codes, allowing the user to determine chemical abundances and stellar atmospheric parameters from the observed spectra.
Moment-Tensor Spectra of Source Physics Experiments (SPE) Explosions in Granite
NASA Astrophysics Data System (ADS)
Yang, X.; Cleveland, M.
2016-12-01
We perform frequency-domain moment tensor inversions of Source Physics Experiments (SPE) explosions conducted in granite during Phase I of the experiment. We test the sensitivity of source moment-tensor spectra to factors such as the velocity model, selected dataset and smoothing and damping parameters used in the inversion to constrain the error bound of inverted source spectra. Using source moments and corner frequencies measured from inverted source spectra of these explosions, we develop a new explosion P-wave source model that better describes observed source spectra of these small and over-buried chemical explosions detonated in granite than classical explosion source models derived mainly from nuclear-explosion data. In addition to source moment and corner frequency, we analyze other features in the source spectra to investigate their physical causes.
NASA Astrophysics Data System (ADS)
Li, Ye; Wang, Bei; Ai, Xi-Cheng; Zhang, Xing-Kang; Zhao, Jing-Quan; Jiang, Li-Jin
2004-06-01
In this work, we employ cyanobacteria, Spirulina platensis, and separate their photosynthetic apparatus, phycobilisome (PBS), thylakoid membrane and phycobilisome-thylakoid membrane complex. The steady state absorption spectra, fluorescence spectra and corresponding deconvoluted spectra and picosecond time-resolved spectra are used to investigate the energy transfer process in phycobilisome-thylakoid membrane complex. The results on steady state spectra show chlorophylls of the photosystem II are able to transfer excitation energy to phycobilisome with Chl a molecules selectively excited. The decomposition of the steady state spectra further suggest the uphill energy transfer originate from chlorophylls of photosystem II to cores of phycobilisome, while rods and cores of phycobilisome cannot receive energy from the chlorophylls of photosystem I. The time constant for the back energy transfer process is 18 ps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, W. M., III; Gordon, B. M.; Lawrence, B. M.
1989-02-01
Matrix isolation Fourier transform infrared spectra (MI/FT-IR), massspectra (MS), carbon-13 Nuclear Magnetic Resonance (/sup 13/C-NMR) spectra,condensed-phase infrared spectra, and vapor-phase infrared (IR)spectra are presented for a series of terpene compounds. Subtle differencesin positional and configurational isomers commonly found withterpenes could be easily detected by the MI/FT-IR spectra. The resultsare comparable in some aspects to those obtainable from /sup 13/C-NMR andthin-film IR; however, most importantly, they are acquired at the lownanogram level for MI/FT-IR, as compared to the milligram level forthe other techniques. These results represent an advance in the technologyavailable for the analysis of complex mixtures such as essential oilscontainingmore » terpene-like molecules.« less
Bayesian reconstruction of projection reconstruction NMR (PR-NMR).
Yoon, Ji Won
2014-11-01
Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thermal and suprathermal protons and alpha particles in the earth's plasma sheet
NASA Technical Reports Server (NTRS)
Ipavich, F. M.; Scholer, M.
1983-01-01
Detailed proton energy spectra in the quasi-stable distant plasma sheet over the energy range from approximately 13 keV to approximately 130 keV are presented. These spectra are compared with spectra of simultaneously measured alpha particles in the energy range from approximately 30 keV/Q to approximately 130 keV/Q. The proton spectra are then extended into the higher energy range up to approximately 1 MeV, thereby supplementing the study of Sarris et al. (1981). The temporal behavior of the spectra in the higher energy range is discussed. It is found that below about 16 keV the proton spectra can be represented by a Maxwellian distribution; above this level, a suprathermal tail is found that cannot be represented by a single power law.
NASA Technical Reports Server (NTRS)
Smillie, D. G.; Pickering, J. C.; Blackwell-Whitehead, R. J.; Smith, Peter L.; Nave, G.
2006-01-01
We report new measurements of doubly ionized iron group element spectra, important in the analysis of B-type (hot) stars whose spectra they dominate. These measurements include Co III and Cr III taken with the Imperial College VUV Fourier transform (FT) spectrometer and measurements of Co III taken with the normal incidence vacuum spectrograph at NIST, below 135 nm. We report new Fe III grating spectra measurements to complement our FT spectra. Work towards transition wavelengths, energy levels and branching ratios (which, combined with lifetimes, produce oscillator strengths) for these ions is underway.
X-ray spectra of supernova remnants
NASA Technical Reports Server (NTRS)
Szymkowiak, A. E.
1985-01-01
X-ray spectra were obtained from fields in three supernova remnants with the solid state spectrometer of the HEAO 2 satellite. These spectra, which contain lines from K-shell transitions of several abundant elements with atomic numbers between 10 and 22, were compared with various models, including some of spectra that would be produced by adiabatic phase remnants when the time-dependence of the ionization is considered.
Analysis of the Alkali Metal Diatomic Spectra; Using molecular beams and ultracold molecules
NASA Astrophysics Data System (ADS)
Kim, Jin-Tae
2014-12-01
This ebook illustrates the complementarity of molecular beam (MB) spectra and ultracold molecule (UM) spectra in unraveling the complex electronic spectra of diatomic alkali metal molecules, using KRb as a prime example. Researchers interested in molecular spectroscopy, whether physicist, chemist, or engineer, may find this ebook helpful and may be able to apply similar ideas to their molecules of interest.
Laurence R. Schimleck; Justin A. Tyson; David Jones; Gary F. Peter; Richard F. Daniels; Alexander III Clark
2007-01-01
Near infrared (NIR) spectroscopy provides a rapid, non-destructive method for the estimation of several wood properties of increment cores. MR spectra are collected from adjacent sections of the same core; however, not all spectra are required for calibration purposes as spectra from the same core are autocorrelated. Previously, we showed that wood property...
NASA Technical Reports Server (NTRS)
Bishop, Janice L.; Pieters, Carle M.
1995-01-01
Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrite and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O, and adsorbed H2O. The spectral character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micron, 2.2 micron, 2.7 micron, 3 micron, and 6 microns are reported here in spectra measured under a Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micron band depth is 8-17%; this band is much stronger under moist conditions. Under Marslike atmospheric conditions the 1.9-micron feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micron feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3-micron band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micron band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials at 2.2-2.3 micron and 2.75 microns remain largely unaffected by the environmental conditions. A shift in the Christiansen feature towards shorter wavelengths has also been observed with decreasing atmospheric pressure and temperature in the midinfrared spectra of these samples.
Si, Jian-min; Luo, A-li; Wu, Fu-zhao; Wu, Yi-hong
2015-03-01
There are many valuable rare and unusual objects in spectra dataset of Sloan Digital Sky Survey (SDSS) Data Release eight (DR8), such as special white dwarfs (DZ, DQ, DC), carbon stars, white dwarf main-sequence binaries (WDMS), cataclysmic variable (CV) stars and so on, so it is extremely significant to search for rare and unusual celestial objects from massive spectra dataset. A novel algorithm based on Kernel dense estimation and K-nearest neighborhoods (KNN) has been presented, and applied to search for rare and unusual celestial objects from 546 383 stellar spectra of SDSS DR8. Their densities are estimated using Gaussian kernel density estimation, the top 5 000 spectra in descend order by their densities are selected as rare objects, and the top 300 000 spectra in ascend order by their densities are selected as normal objects. Then, KNN were used to classify the rest objects, and simultaneously K nearest neighbors of the 5 000 rare spectra are also selected as rare objects. As a result, there are totally 21 193 spectra selected as initial rare spectra, which include error spectra caused by deletion, redden, bad calibration, spectra consisting of different physically irrelevant components, planetary nebulas, QSOs, special white dwarfs (DZ, DQ, DC), carbon stars, white dwarf main-sequence binaries (WDMS), cataclysmic variable (CV) stars and so on. By cross identification with SIMBAD, NED, ADS and major literature, it is found that three DZ white dwarfs, one WDMS, two CVs with company of G-type star, three CVs candidates, six DC white dwarfs, one DC white dwarf candidate and one BL Lacertae (BL lac) candidate are our new findings. We also have found one special DA white dwarf with emission lines of Ca II triple and Mg I, and one unknown object whose spectrum looks like a late M star with emission lines and its image looks like a galaxy or nebula.
The Effect of Chain Length on Mid-Infrared and Near-Infrared Spectra of Aliphatic 1-Alcohols.
Kwaśniewicz, Michał; Czarnecki, Mirosław A
2018-02-01
Effect of the chain length on mid-infrared (MIR) and near-infrared (NIR) spectra of aliphatic 1-alcohols from methanol to 1-decanol was examined in detail. Of particular interest were the spectra-structure correlations in the NIR region and the correlation between MIR and NIR spectra of 1-alcohols. An application of two-dimensional correlation analysis (2D-COS) and chemometric methods provided comprehensive information on spectral changes in the data set. Principal component analysis (PCA) and cluster analysis evidenced that the spectra of methanol, ethanol, and 1-propanol are noticeably different from the spectra of higher 1-alcohols. The similarity between the spectra increases with an increase in the chain length. Hence, the most similar are the spectra of 1-nonanol and 1-decanol. Two-dimensional hetero-correlation analysis is very helpful for identification of the origin of bands and may guide selection of the best spectral ranges for the chemometric analysis. As shown, normalization of the spectra pronounces the intensity changes in various spectral regions and provides information not accessible from the raw data. The spectra of alcohols cannot be represented as a sum of the CH 3 , CH 2 , and OH group spectra since the OH group is involved in the hydrogen bonding. As a result, the spectral changes of this group are nonlinear and its spectral profile cannot be properly resolved. Finally, this work provides a lot of evidence that the degree of self-association of 1-alcohols decreases with the increase in chain length because of the growing meaning of the hydrophobic interactions. For butyl alcohol and higher 1-alcohols the hydrophobic interactions are more important than the OH OH interactions. Therefore, methanol, ethanol, and 1-propanol have unlimited miscibility with water, whereas 1-butanol and higher 1-alcohols have limited miscibility with water.
NASA Astrophysics Data System (ADS)
de Vries, B. L.; Skogby, H.; Waters, L. B. F. M.; Min, M.
2018-06-01
Meteorites contain minerals from Solar System asteroids with different properties (like size, presence of water, core formation). We provide new mid-IR transmission spectra of powdered meteorites to obtain templates of how mid-IR spectra of asteroidal debris would look like. This is essential for interpreting mid-IR spectra of past and future space observatories, like the James Webb Space Telescope. First we present new transmission spectra of powdered ordinary chondrite, pallasite and HED meteorites and then we combine them with already available transmission spectra of chondrites in the literature, giving a total set of 64 transmission spectra. In detail we study the spectral features of minerals in these spectra to obtain measurables used to spectroscopically distinguish between meteorite groups. Being able to differentiate between dust from different meteorite types means we can probe properties of parent bodies, like their size, if they were wet or dry and if they are differentiated (core formation) or not. We show that the transmission spectra of wet and dry chondrites, carbonaceous and ordinary chondrites and achondrite and chondrite meteorites are distinctly different in a way one can distinguish in astronomical mid-IR spectra. Carbonaceous chondrites type < 3 (aqueously altered) show distinct features of hydrated silicates (hydrosilicates) compared to the olivine and pyroxene rich ordinary chondrites (dry and equilibrated meteorites). Also the iron concentration of the olivine in carbonaceous chondrites differs from ordinary chondrites, which can be probed by the wavelength peak position of the olivine spectral features. The transmission spectra of chondrites (not differentiated) are also strongly different from the achondrite HED meteorites (meteorites from differentiated bodies like 4 Vesta), where the latter show much stronger pyroxene signatures. The two observables that spectroscopically separate the different meteorites groups (and thus the different types of parent bodies) are the pyroxene-olivine feature strength ratio and the peak shift of the olivine spectral features due to an increase in the iron concentration of the olivine.
Milman, Boris L
2005-01-01
A library consisting of 3766 MS(n) spectra of 1743 compounds, including 3126 MS2 spectra acquired mainly using ion trap (IT) and triple-quadrupole (QqQ) instruments, was composed of numerous collections/sources. Ionization techniques were mainly electrospray ionization and also atmospheric pressure chemical ionization and chemical ionization. The library was tested for the performance in identification of unknowns, and in this context this work is believed to be the largest of all known tests of product-ion mass spectral libraries. The MS2 spectra of the same compounds from different collections were in turn divided into spectra of 'unknown' and reference compounds. For each particular compound, library searches were performed resulting in selection by taking into account the best matches for each spectral collection/source. Within each collection/source, replicate MS2 spectra differed in the collision energy used. Overall, there were up to 950 search results giving the best match factors and their ranks in corresponding hit lists. In general, the correct answers were obtained as the 1st rank in up to 60% of the search results when retrieved with (on average) 2.2 'unknown' and 6.2 reference replicates per compound. With two or more replicates of both 'unknown' and reference spectra (the average numbers of replicates were 4.0 and 7.8, respectively), the fraction of correct answers in the 1st rank increased to 77%. This value is close to the performance of established electron ionization mass spectra libraries (up to 79%) found by other workers. The hypothesis that MS2 spectra better match reference spectra acquired using the same type of tandem mass spectrometer (IT or QqQ) was neither strongly proved nor rejected here. The present work shows that MS2 spectral libraries containing sufficiently numerous different entries for each compound are sufficiently efficient for identification of unknowns and suitable for use with different tandem mass spectrometers. 2005 John Wiley & Sons, Ltd.
LET spectra measurements from the STS-35 CPDs
NASA Technical Reports Server (NTRS)
1995-01-01
Linear energy transfer (LET) spectra derived form automated track analysis system (ATAS) track parameter measurements for crew passive dosimeters (CPD's) flown with the astronauts on STS-35 are plotted. The spread between the seven individual spectra is typical of past manual measurements of sets of CPD's. This difference is probably due to the cumulative net shielding variations experienced by the CPD's as the astronauts carrying them went about their activities on the Space Shuttle. The STS-35 mission was launched on Dec. 2, 1990, at 28.5 degrees inclination and 352-km altitude. This is somewhat higher than the nominal 300-km flights and the orbit intersects more of the high intensity trapped proton region in the South Atlantic Anomaly (SAA). However, in comparison with APD spectra measured on earlier lower altitude missions (STS-26, -29, -30, -32), the flux spectra are all roughly comparable. This may be due to the fact that the STS-35 mission took place close to solar maximum (Feb. 1990), or perhaps to shielding differences. The corresponding dose and dose equivalent spectra for this mission are shown. The effect of statistical fluctuations at the higher LET values, where track densities are small, is very noticeable. This results in an increased spread within the dose rate and dose equivalent rate spectra, as compared to the flux spectra. The contribution to dose and dose equivalent per measured track is much greater in the high LET region and the differences, though numerically small, are heavily weighted in the integral spectra. The optimum measurement and characterization of the high LET tails of the spectra represent an important part of the research into plastic nuclear track detector (PNTD) response. The integral flux, dose rate, dose equivalent rate and mission dose equivalent for the seven astronauts are also given.
Analysis and identification of two reconstituted tobacco sheets by three-level infrared spectroscopy
NASA Astrophysics Data System (ADS)
Wu, Xian-xue; Xu, Chang-hua; Li, Ming; Sun, Su-qin; Li, Jin-ming; Dong, Wei
2014-07-01
Two kinds of reconstituted tobacco (RT) from France (RTF) and China (RTC) were analyzed and identified by a three-level infrared spectroscopy method (Fourier-transform infrared spectroscopy (FT-IR) coupled with second derivative infrared spectroscopy (SD-IR) and two-dimensional infrared correlation spectroscopy (2D-IR)). The conventional IR spectra of RTF parallel samples were more consistent than those of RTC according to their overlapped parallel spectra and IR spectra correlation coefficients. FT-IR spectra of both two RTs were similar in holistic spectral profile except for small differences around 1430 cm-1, indicating that they have similar chemical constituents. By analysis of SD-IR spectra of RTFs and RTCs, more distinct fingerprint features, especially peaks at 1106 (1110), 1054 (1059) and 877 (874) cm-1, were disclosed. Even better reproducibility of five SD-IR spectra of RTF in 1750-1400 cm-1 could be seen intuitively from their stacked spectra and could be confirmed by further similarity evaluation of SD-IR spectra. Existence of calcium carbonate and calcium oxalate could be easily observed in two RTs by comparing their spectra with references. Furthermore, the 2D-IR spectra provided obvious, vivid and intuitive differences of RTF and RTC. Both two RTs had a pair of strong positive auto-peaks in 1600-1400 cm-1. Specifically, the autopeak at 1586 cm-1 in RTF was stronger than the one around 1421 cm-1, whereas the one at 1587 cm-1 in RTC was weaker than that at 1458 cm-1. Consequently, the RTs of two different brands were analyzed and identified thoroughly and RTF had better homogeneity than RTC. As a result, three-level infrared spectroscopy method has proved to be a simple, convenient and efficient method for rapid discrimination and homogeneousness estimation of RT.
The 8-13 micron spectra of comets and the composition of silicate grains
NASA Technical Reports Server (NTRS)
Hanner, Martha S.; Lynch, David K.; Russell, Ray W.
1994-01-01
We have analyzed the existing spectra of seven comets which show an emission feature at 7.8-13 micrometers. Most have been converted to a common calibration, taking into account the SiO feature in late-type standard stars. The spectra are compared with spectra of the Trapezium, interplanetary dust particles (IDPs), laboratory mineral samples, and small particle emission models. The emission spectra show a variety of shapes; there is no unique 'cometary silicate'. A peak at 11.20-11.25 micrometers, indicative of small crystalline olivine particles, is seen in only three comets of this sample, P/Halley, Bradfield 1987 XXIX, and Levy 1990 XX. The widths of the emission features range from 2.6 to 4.1 micrometers (FWHM). To explain the differing widths and the broad 9.8 micrometers maximum, glassy silicate particles, including both pyroxene and olivine compositions, are the most plausible candidates. Calculations of emission models confirm that small grains of glassy silicate well mixed with carbonaceous material are plausible cometary constituents. No single class of chondritic aggregate IDPs exhibits spectra closely matching the comet spectra. A mixture of IDP spectra, particularly the glass-rich aggregates, approximately matches the spectra of comets P/Halley, Levy, and Bradfield 1987 XXIX. Yet, if comets are simply a mix of IDP types, it is puzzling that the classes of IDPs are so distinct. None of the comet spectra match the spectrum of the Trapezium. Thus, the mineralogy of the cometary silicates is not the same as that of the interstellar medium. The presence of a component of crystalline silicates in comets may be evidence of mixing between high- and low-temperature regions in the solar nebula.
Cancelas, Jose A; Padmanabhan, Anand; Le, Tuan; Ambruso, Daniel R; Rugg, Neeta; Worsham, D Nicole; Pinkard, Susan L; Graminske, Sharon; Buck, Jennifer; Goldberg, Julie; Bill, Jerry
2015-04-01
Granulocyte transfusion from healthy donors is used in the treatment of patients with granulocyte function defects, or transient neutropenia and severe bacterial or fungal infections resistant to maximal antimicrobial treatment. This study evaluated the performance and safety of the newly developed granulocyte collection protocol of the Spectra Optia in a prospective, multicenter, open-label, randomized, paired crossover trial compared with the COBE Spectra apheresis system in a population of 32 evaluable healthy subjects. All subjects received granulocyte-colony-stimulating factor and dexamethasone before collection. Granulocyte procedures from Spectra Optia apheresis procedures had an approximately 23% higher polymorphonuclear (PMN) collection efficiency (CE) than the COBE Spectra collections (mean, 53.7% vs. 43.2%; p < 0.01), while the platelet CE (10.9% vs. 10.8%, respectively) and hematocrit (7.4% vs. 7.4%) were comparable between collections on both devices. Spectra Optia collections generated a higher total PMN yield per liter of blood processed than those produced by the COBE Spectra (with means of 8.6 × 10(10) vs. 6.8 × 10(10) , respectively). Granulocyte viability was more than 99% with both devices, and chemotaxic and bacterial killing activities of circulating versus collected granulocytes were similarly preserved. Fewer operator adjustments were required with Spectra Optia and there was no significant difference in the number or intensity of adverse events between instruments. CE of the granulocyte collection procedure with the Spectra Optia was approximately 10 percentage points higher than with the COBE Spectra, required less operator involvement, and is safe for clinical implementation. © 2014 AABB.
NASA Technical Reports Server (NTRS)
Dijk, D. J.
1999-01-01
In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.
NIR remission spectroscopy of turbid media
NASA Astrophysics Data System (ADS)
Krauter, P.; Foschum, F.; Kienle, A.
2013-06-01
We present a method for the determination of absorption spectra in VIS and NIR spectra of turbid media without the need for calibration. Measurements of the absorption spectra of a phantom and butter are presented.
VizieR Online Data Catalog: Radial velocities of the Be star HR 2142 (Peters+, 2016)
NASA Astrophysics Data System (ADS)
Peters, G. J.; Wang, L.; Gies, D. R.; Grundstrom, E. D.
2016-11-01
Radial velocity measurements were made using the set of spectra summarized in Table 1. The main focus of this work is a set of 88 high resolution, SWP HIRES FUV spectra acquired over the lifetime of the International Ultraviolet Explorer (IUE) observatory. These were downloaded from MAST and resampled. We also collected a set of 49 LWR and LWP near-UV spectra that were used to inspect the orbital variations in the MgII2796,2803 feature. The UV spectra were supplemented with a large collection of Hα spectra that we secured with the KPNO Coude Feed telescope and that were obtained by amateur astronomers participating in the Be Star Spectra database project (Pollmann 2007IBVS.5778....1P; Neiner et al. 2011AJ....142..149N). (2 data files).
Effect of causal and acausal filters on elastic and inelastic response spectra
Boore, D.M.; Akkar, Sinan
2003-01-01
With increasing interest in displacement spectra and long-period motions, it is important to check the sensitivity of both elastic and inelastic response spectra to the filtering that is often necessary to remove long period artifacts, even from many modern digital recordings. Using two records of very different character from the M=7.1, 1999 Hector Mine, California, earthquake, we find that the response spectra can be sensitive to the corner periods used in causal filtering, even for oscillator periods much less than the filter corner periods. The effect is most pronounced for inelastic response spectra, where the ratio of response spectra computed from accelerations filtered at 25 and 200 sec can be close to a factor of 2 for oscillator periods less than 5 sec. Published in 2003 by John Wiley and Sons, Ltd.
Soft x-ray absorption spectra of ilmenite family.
Agui, A; Mizumaki, M; Saitoh, Y; Matsushita, T; Nakatani, T; Fukaya, A; Torikai, E
2001-03-01
We have carried out soft x-ray absorption spectroscopy to study the electronic structure of ilmenite family, such as MnTiO3, FeTiO3, and CoTiO3 at the soft x-ray beamline, BL23SU, at the SPring-8. The Ti and M L2,3 absorption spectra of MTiO3 (M=Mn, Fe, and Co) show spectra of Ti4+ and M2+ electron configurations, respectively. Except the Fe L2,3 spectrum, those spectra were understood within the O(h) symmetry around the transition metal ions. The Fe L3-edge spectrum clearly shows a doublet peak at the L3 edge, which is attributed to Fe2+ state, moreover the very high-resolution the L-edge spectra of transition metals show fine structures. The spectra of those ilmenites are compared.
NASA Astrophysics Data System (ADS)
McCann, Kathleen; Laane, Jaan
2008-11-01
The Raman and infrared spectra of dipicolinic acid (DPA) and dinicotinic acid (DNic) and their salts (CaDPA, Na 2DPA, and CaDNic) have been recorded and the spectra have been assigned. Ab initio and DFT calculations were carried out to predict the structures and vibrational spectra and were compared to the experimental results. Because of extensive intermolecular hydrogen bonding in the crystals of these molecules, the calculated structures and spectra for the individual molecules agree only moderately well with the experimental values. Theoretical calculations were also carried out for DPA dimers and DPA·2H 2O to better understand the intermolecular interactions. The spectra do show that DPA and its calcium salt, which are present in anthrax spores, can be distinguished from the very similar DNic and CaDNic.
VizieR Online Data Catalog: Atlas of HST STIS spectra of Seyfert galaxies (Spinelli+, 2006)
NASA Astrophysics Data System (ADS)
Spinelli, P. F.; Storchi-Bergmann, T.; Brandt, C. H.; Calzetti, D.
2008-05-01
We present a compilation of spectra of 101 Seyfert galaxies obtained with the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS), covering the UV and/or optical spectral range. Information on all the available spectra have been collected in a Mastertable, which is a very useful tool for anyone interested in a quick glance at the existent STIS spectra for Seyfert galaxies in the HST archive, and it can be recovered electronically. Nuclear spectra of the galaxies have been extracted in windows of 0.2" for an optimized sampling (as this is the slit width in most cases) and combined in order to improve the signal-to-noise ratio and provide the widest possible wavelength coverage. These combined spectra are also available electronically, at http://www.if.ufrgs.br/~pat/atlas.htm . (3 data files).
MixGF: spectral probabilities for mixture spectra from more than one peptide.
Wang, Jian; Bourne, Philip E; Bandeira, Nuno
2014-12-01
In large-scale proteomic experiments, multiple peptide precursors are often cofragmented simultaneously in the same mixture tandem mass (MS/MS) spectrum. These spectra tend to elude current computational tools because of the ubiquitous assumption that each spectrum is generated from only one peptide. Therefore, tools that consider multiple peptide matches to each MS/MS spectrum can potentially improve the relatively low spectrum identification rate often observed in proteomics experiments. More importantly, data independent acquisition protocols promoting the cofragmentation of multiple precursors are emerging as alternative methods that can greatly improve the throughput of peptide identifications but their success also depends on the availability of algorithms to identify multiple peptides from each MS/MS spectrum. Here we address a fundamental question in the identification of mixture MS/MS spectra: determining the statistical significance of multiple peptides matched to a given MS/MS spectrum. We propose the MixGF generating function model to rigorously compute the statistical significance of peptide identifications for mixture spectra and show that this approach improves the sensitivity of current mixture spectra database search tools by a ≈30-390%. Analysis of multiple data sets with MixGF reveals that in complex biological samples the number of identified mixture spectra can be as high as 20% of all the identified spectra and the number of unique peptides identified only in mixture spectra can be up to 35.4% of those identified in single-peptide spectra. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
MixGF: Spectral Probabilities for Mixture Spectra from more than One Peptide*
Wang, Jian; Bourne, Philip E.; Bandeira, Nuno
2014-01-01
In large-scale proteomic experiments, multiple peptide precursors are often cofragmented simultaneously in the same mixture tandem mass (MS/MS) spectrum. These spectra tend to elude current computational tools because of the ubiquitous assumption that each spectrum is generated from only one peptide. Therefore, tools that consider multiple peptide matches to each MS/MS spectrum can potentially improve the relatively low spectrum identification rate often observed in proteomics experiments. More importantly, data independent acquisition protocols promoting the cofragmentation of multiple precursors are emerging as alternative methods that can greatly improve the throughput of peptide identifications but their success also depends on the availability of algorithms to identify multiple peptides from each MS/MS spectrum. Here we address a fundamental question in the identification of mixture MS/MS spectra: determining the statistical significance of multiple peptides matched to a given MS/MS spectrum. We propose the MixGF generating function model to rigorously compute the statistical significance of peptide identifications for mixture spectra and show that this approach improves the sensitivity of current mixture spectra database search tools by a ≈30–390%. Analysis of multiple data sets with MixGF reveals that in complex biological samples the number of identified mixture spectra can be as high as 20% of all the identified spectra and the number of unique peptides identified only in mixture spectra can be up to 35.4% of those identified in single-peptide spectra. PMID:25225354
Seasonal Variations of Stratospheric Age Spectra in GEOSCCM
NASA Technical Reports Server (NTRS)
Li, Feng; Waugh, Darryn; Douglass, Anne R.; Newman, Paul A.; Pawson, Steven; Stolarski, Richard S.; Strahan, Susan E.; Nielsen, J. Eric
2011-01-01
There are many pathways for an air parcel to travel from the troposphere to the stratosphere, each of which takes different time. The distribution of all the possible transient times, i.e. the stratospheric age spectrum, contains important information on transport characteristics. However, it is computationally very expensive to compute seasonally varying age spectra, and previous studies have focused mainly on the annual mean properties of the age spectra. To date our knowledge of the seasonality of the stratospheric age spectra is very limited. In this study we investigate the seasonal variations of the stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). We introduce a method to significantly reduce the computational cost for calculating seasonally dependent age spectra. Our simulations show that stratospheric age spectra in GEOSCCM have strong seasonal cycles and the seasonal cycles change with latitude and height. In the lower stratosphere extratropics, the average transit times and the most probable transit times in the winter/early spring spectra are more than twice as old as those in the summer/early fall spectra. But the seasonal cycle in the subtropical lower stratosphere is nearly out of phase with that in the extratropics. In the middle and upper stratosphere, significant seasonal variations occur in the sUbtropics. The spectral shapes also show dramatic seasonal change, especially at high latitudes. These seasonal variations reflect the seasonal evolution of the slow Brewer-Dobson circulation (with timescale of years) and the fast isentropic mixing (with timescale of days to months).
Reflection spectra of solids of planetary interest
NASA Technical Reports Server (NTRS)
Sill, G. T.
1973-01-01
The spectra of solids are reproduced which might be found on the surfaces of planetary bodies or as solid condensates in the upper planetary atmosphere. Among these are spectra of various iron compounds of interest in the study of the clouds of Venus. Other spectra are included of various sulfides, some at low temperature, relevant to the planet Jupiter. Meteorite and coal abstracts are also included, to illustrate dark carbon compounds.
Wavelength dispersive analysis with the synchrotron x ray fluorescence microprobe
NASA Technical Reports Server (NTRS)
Rivers, M. L.; Thorn, K. S.; Sutton, S. R.; Jones, K. W.; Bajt, S.
1993-01-01
A wavelength dispersive spectrometer (WDS) was tested on the synchrotron x ray fluorescence microprobe at Brookhaven National Laboratory. Compared to WDS spectra using an electron microprobe, the synchrotron WDS spectra have much better sensitivity and, due to the absence of bremsstrahlung radiation, lower backgrounds. The WDS spectrometer was successfully used to resolve REE L fluorescence spectra from standard glasses and transition metal K fluorescence spectra from kamacite.
Interaction study of collagen and sericin in blending solution.
Duan, Lian; Yuan, Jingjie; Yang, Xiao; Cheng, Xinjian; Li, Jiao
2016-12-01
The interactions of collagen and sericin were studied by fluorescence spectra, ultraviolet spectra, FTIR spectra and dynamic light scattering. The fluorescence quenching in emission spectra and red-shift (283-330nm) in synchronous fluorescence spectra suggested the Tyr of collagen and sericin overlapped with a distance of 3Å, generating excimer. The overlapped Tyr of collagen and sericin decreased the hydrophobicity of collagen, which resulted in the red-shifts (233-240nm) in ultraviolet spectra. Moreover, the red-shifts of amide bands of collagen in FTIR spectra indicated the hydrogen bonds of collagen were weaken and it could also be explained by the overlapped Tyr. The results of 2D-FTIR spectra demonstrated the backbone of collagen molecule was varied and the most susceptible structure of collagen was the triple helix with the presence of sericin. Based on dynamic light scattering, we conjectured large pure collagen aggregates were replaced by hybrid aggregates of collagen and sericin particles after the addition of sericin. With ascending sericin ratio, the diameters of the hybrid aggregates increased and attained maximum with 60% ratio of sericin, which were on account of the increasing excimer number. The results of DSC demonstrated the presence of sericin enhanced the thermal stability of collagen. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Holman, Megan; Tubbs, Drake; Keller, L. D.
2018-01-01
Using spectra models with known parameters and comparing them to spectra gathered from real systems is often the only ways to find out what is going on in those real systems. This project uses the modeling programs of RADMC-3D to generate model spectra for systems containing protoplanetary disks. The parameters can be changed to simulate protoplanetary disks in different stages of planet formation, with different sized gaps in different areas of the disks, as well as protoplanetary disks that contain different types of dust. We are working on producing a grid of models that all have different variations in the parameters in order to generate a miniature database to use for comparisons to gathered spectra. The spectra produced from these simulations will be compared to spectra that have been gathered from systems in the Small Magellanic cloud in order to find out the contents and stage of development of that system. This allows us to see if and how planets are forming in the Small Magellanic cloud, a region which has much less metallicity than our own galaxy. The data we gather from comparisons between the model spectra and the spectra of systems in the Small Magellanic Cloud can then be applied to how planets may have formed in the early universe.
Wiegers, Evita C; Philips, Bart W J; Heerschap, Arend; van der Graaf, Marinette
2017-12-01
J-difference editing is often used to select resonances of compounds with coupled spins in 1 H-MR spectra. Accurate phase and frequency alignment prior to subtracting J-difference-edited MR spectra is important to avoid artefactual contributions to the edited resonance. In-vivo J-difference-edited MR spectra were aligned by maximizing the normalized scalar product between two spectra (i.e., the correlation over a spectral region). The performance of our correlation method was compared with alignment by spectral registration and by alignment of the highest point in two spectra. The correlation method was tested at different SNR levels and for a broad range of phase and frequency shifts. In-vivo application of the proposed correlation method showed reduced subtraction errors and increased fit reliability in difference spectra as compared with conventional peak alignment. The correlation method and the spectral registration method generally performed equally well. However, better alignment using the correlation method was obtained for spectra with a low SNR (down to ~2) and for relatively large frequency shifts. Our correlation method for simultaneously phase and frequency alignment is able to correct both small and large phase and frequency drifts and also performs well at low SNR levels.
Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis
NASA Astrophysics Data System (ADS)
Czekala, Ian; Mandel, Kaisey S.; Andrews, Sean M.; Dittmann, Jason A.; Ghosh, Sujit K.; Montet, Benjamin T.; Newton, Elisabeth R.
2017-05-01
Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches for companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Ruth C.; Kurucz, Robert L.; Ayres, Thomas R., E-mail: peterson@ucolick.org
2017-04-01
The Fe i spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson and Kurucz identified Fe i lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe i excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe i. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imagingmore » Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H -band. The predicted gf values suggest that an additional 3700 Fe i lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe i levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.« less
[Preparation and spectral analysis of a new type of blue light-emitting material delta-Alq3].
Wang, Hua; Hao, Yu-ying; Gao, Zhi-xiang; Zhou, He-feng; Xu, Bing-she
2006-10-01
In the present article, delta-Alq3, a new type of blue light-emitting material, was synthesized and investigated by IR spectra, XRD spectra, UV-Vis absorption spectra, photoluminescence (PL) spectra, and electroluminescence (EL) spectra. The relationship between molecular spatial structure and spectral characteristics was studied by the spectral analysis of delta-Alq3 and alpha-Alq3. Results show that a new phase of Alq3 (delta-Alq3) can be obtained by vacuum heating alpha-Alq3, and the molecular spatial structure of alpha-Alq3 changes during the vacuum heating. The molecular spatial structure of delta-Alq3 lacks symmetry compared to alpha-Alq3. This transformation can reduce the electron cloud density on phenoxide of Alq3 and weaken the intermolecular conjugated interaction between adjacent Alq3 molecules. Hence, the pi--pi* electron transition absorption peak of delta-Alq3 shifts toward short wavelength in UV-Vis absorption spectra, and the maximum emission peak of delta-Alq3 (lamda max = 480 nm) blue-shifts by 35 nm compared with that of alpha-Alq3 (lamda max = 515 nm) in PL spectra. The maximum emission peaks of delta-Alq3 and alpha-Alq3 are all at 520 nm in EL spectra.
Desorption Kinetics of Benzene and Cyclohexane from a Graphene Surface.
Smith, R Scott; Kay, Bruce D
2018-01-18
The desorption kinetics for benzene and cyclohexane from a graphene covered Pt(111) surface were investigated using temperature-programmed desorption (TPD). The benzene desorption spectra show well-resolved monolayer and multilayer desorption peaks. The benzene monolayer and submonolayer TPD spectra for coverages greater than ∼0.1 ML have nearly the same desorption peak temperature and have line shapes which are consistent with first-order desorption kinetics. For benzene coverages greater than 1 ML, the TPD spectra align on a common leading edge which is consistent with zero-order desorption. An "inversion" procedure in which the prefactor is varied to find the value that best reproduces the entire set of experimental desorption spectra was used to analyze the benzene data. The inversion analysis of the benzene TPD spectra yielded a desorption activation energy of 54 ± 3 kJ/mol with a prefactor of 10 17±1 s -1 . The TPD spectra for cyclohexane also have well-resolved monolayer and multilayer desorption features. The desorption leading edges for the monolayer and the multilayer TPD spectra are aligned indicating zero-order desorption kinetics in both cases. An Arrhenius analysis of the monolayer cyclohexane TPD spectra yielded a desorption activation energy of 53.5 ± 2 kJ/mol with a prefactor of 10 16±1 ML s -1 .
On-line analysis of algae in water by discrete three-dimensional fluorescence spectroscopy.
Zhao, Nanjing; Zhang, Xiaoling; Yin, Gaofang; Yang, Ruifang; Hu, Li; Chen, Shuang; Liu, Jianguo; Liu, Wenqing
2018-03-19
In view of the problem of the on-line measurement of algae classification, a method of algae classification and concentration determination based on the discrete three-dimensional fluorescence spectra was studied in this work. The discrete three-dimensional fluorescence spectra of twelve common species of algae belonging to five categories were analyzed, the discrete three-dimensional standard spectra of five categories were built, and the recognition, classification and concentration prediction of algae categories were realized by the discrete three-dimensional fluorescence spectra coupled with non-negative weighted least squares linear regression analysis. The results show that similarities between discrete three-dimensional standard spectra of different categories were reduced and the accuracies of recognition, classification and concentration prediction of the algae categories were significantly improved. By comparing with that of the chlorophyll a fluorescence excitation spectra method, the recognition accuracy rate in pure samples by discrete three-dimensional fluorescence spectra is improved 1.38%, and the recovery rate and classification accuracy in pure diatom samples 34.1% and 46.8%, respectively; the recognition accuracy rate of mixed samples by discrete-three dimensional fluorescence spectra is enhanced by 26.1%, the recovery rate of mixed samples with Chlorophyta 37.8%, and the classification accuracy of mixed samples with diatoms 54.6%.
Ciesielski, Bartlomiej; Marciniak, Agnieszka; Zientek, Agnieszka; Krefft, Karolina; Cieszyński, Mateusz; Boguś, Piotr; Prawdzik-Dampc, Anita
2016-12-01
This study is about the accuracy of EPR dosimetry in bones based on deconvolution of the experimental spectra into the background (BG) and the radiation-induced signal (RIS) components. The model RIS's were represented by EPR spectra from irradiated enamel or bone powder; the model BG signals by EPR spectra of unirradiated bone samples or by simulated spectra. Samples of compact and trabecular bones were irradiated in the 30-270 Gy range and the intensities of their RIS's were calculated using various combinations of those benchmark spectra. The relationships between the dose and the RIS were linear (R 2 > 0.995), with practically no difference between results obtained when using signals from irradiated enamel or bone as the model RIS. Use of different experimental spectra for the model BG resulted in variations in intercepts of the dose-RIS calibration lines, leading to systematic errors in reconstructed doses, in particular for high- BG samples of trabecular bone. These errors were reduced when simulated spectra instead of the experimental ones were used as the benchmark BG signal in the applied deconvolution procedures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Spectra-first feature analysis in clinical proteomics - A case study in renal cancer.
Goh, Wilson Wen Bin; Wong, Limsoon
2016-10-01
In proteomics, useful signal may be unobserved or lost due to the lack of confident peptide-spectral matches. Selection of differential spectra, followed by associative peptide/protein mapping may be a complementary strategy for improving sensitivity and comprehensiveness of analysis (spectra-first paradigm). This approach is complementary to the standard approach where functional analysis is performed only on the finalized protein list assembled from identified peptides from the spectra (protein-first paradigm). Based on a case study of renal cancer, we introduce a simple spectra-binning approach, MZ-bin. We demonstrate that differential spectra feature selection using MZ-bin is class-discriminative and can trace relevant proteins via spectra associative mapping. Moreover, proteins identified in this manner are more biologically coherent than those selected directly from the finalized protein list. Analysis of constituent peptides per protein reveals high expression inconsistency, suggesting that the measured protein expressions are in fact, poor approximations of true protein levels. Moreover, analysis at the level of constituent peptides may provide higher resolution insight into the underlying biology: Via MZ-bin, we identified for the first time differential splice forms for the known renal cancer marker MAPT. We conclude that the spectra-first analysis paradigm is a complementary strategy to the traditional protein-first paradigm and can provide deeper level insight.
ELM: an Algorithm to Estimate the Alpha Abundance from Low-resolution Spectra
NASA Astrophysics Data System (ADS)
Bu, Yude; Zhao, Gang; Pan, Jingchang; Bharat Kumar, Yerra
2016-01-01
We have investigated a novel methodology using the extreme learning machine (ELM) algorithm to determine the α abundance of stars. Applying two methods based on the ELM algorithm—ELM+spectra and ELM+Lick indices—to the stellar spectra from the ELODIE database, we measured the α abundance with a precision better than 0.065 dex. By applying these two methods to the spectra with different signal-to-noise ratios (S/Ns) and different resolutions, we found that ELM+spectra is more robust against degraded resolution and ELM+Lick indices is more robust against variation in S/N. To further validate the performance of ELM, we applied ELM+spectra and ELM+Lick indices to SDSS spectra and estimated α abundances with a precision around 0.10 dex, which is comparable to the results given by the SEGUE Stellar Parameter Pipeline. We further applied ELM to the spectra of stars in Galactic globular clusters (M15, M13, M71) and open clusters (NGC 2420, M67, NGC 6791), and results show good agreement with previous studies (within 1σ). A comparison of the ELM with other widely used methods including support vector machine, Gaussian process regression, artificial neural networks, and linear least-squares regression shows that ELM is efficient with computational resources and more accurate than other methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barros, A. L. F. de; Lecointre, J.; Luna, H.
Experimental measurements of the kinetic energy distribution spectra of H{sup +} fragment ions released during radiolysis of water molecules in collision with 20, 50, and 100 keV proton projectiles and 35, 200, 400, and 1000 eV electron projectiles are reported using a pulsed beam and drift tube time-of-flight based velocity measuring technique. The spectra show that H{sup +} fragments carrying a substantial amount of energy are released, some having energies well in excess of 20 eV. The majority of the ions lie within the 0-5 eV energy range with the proton spectra showing an almost constant profile between 1.5 andmore » 5 eV and, below this, increasing gradually with decreasing ejection energy up to the near zero energy value while the electron spectra, in contrast, show a broad maximum between 1 and 3 eV and a pronounced dip around 0.25 eV. Beyond 5 eV, both projectile spectra show a decreasing profile with the electron spectra decreasing far more rapidly than the proton spectra. Our measured spectra thus indicate that major differences are present in the collision dynamics between the proton and the electron projectiles interacting with gas phase water molecules.« less
NASA Astrophysics Data System (ADS)
Peterson, Ruth C.; Kurucz, Robert L.; Ayres, Thomas R.
2017-04-01
The Fe I spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson & Kurucz identified Fe I lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe I excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe I. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imaging Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H-band. The predicted gf values suggest that an additional 3700 Fe I lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe I levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.
NASA Astrophysics Data System (ADS)
Bernatowicz, P.; Czerski, I.; Jaźwiński, J.; Szymański, S.
2004-08-01
In the standard NMR spectra, the lineshape patterns produced by a molecular rate process are often poorly structured. When alternative theoretical models of such a process are to be compared, even quantitative lineshape fits may then give inconclusive results. A detailed description is presented of an approach involving fits of the competing models to series of Carr-Purcell echo spectra. Its high discriminative power has already been exploited in a number of cases of practical significance. An explanation is given why it can be superior to methods based on the standard spectra. Its applicability in practice is now illustrated on example of the methyl proton spectra in 1,2,3,4-tetrachloro-9,10-dimethyltriptycene TCDMT. It is shown that, in the echo spectra, the recently discovered effect of nonclassical stochastic reorientation of the methyl group can be identified clearly while it is practically nondiscernible in the standard spectra of TCDMT. This is the first detection of the effect at temperatures above 200 K. It is also shown that in computer-assisted interpretation of exchange-broadened echo spectra, the usual description of the stimulating radiofrequency pulses in terms of rotation operators ought to be replaced by a more realistic pulse model.
The Evaluation of the 0.07 and 3 mm Dose Equivalent with a Portable Beta Spectrometer
NASA Astrophysics Data System (ADS)
Hoshi, Katsuya; Yoshida, Tadayoshi; Tsujimura, Norio; Okada, Kazuhiko
Beta spectra of various nuclide species were measured using a commercially available compact spectrometer. The shape of the spectra obtained via the spectrometer was almost similar to that of the theoretical spectra. The beta dose equivalent at any depth was obtained as a product of the measured pulse height spectra and the appropriate conversion coefficients of ICRP Publication 74. The dose rates evaluated from the spectra were comparable with the reference dose rates of standard beta calibration sources. In addition, we were able to determine the dose equivalents with a relative error of indication of 10% without the need for complicated correction.
[Experimental study on spectra of compressed air microwave plasma].
Liu, Yong-Xi; Zhang, Gui-Xin; Wang, Qiang; Hou, Ling-Yun
2013-03-01
Using a microwave plasma generator, compressed air microwave plasma was excited under 1 - 5 atm pressures. Under different pressures and different incident microwave power, the emission spectra of compressed air microwave plasma were studied with a spectra measuring system. The results show that continuum is significant at atmospheric pressure and the characteristic will be weakened as the pressure increases. The band spectra intensity will be reduced with the falling of the incident microwave power and the band spectra were still significant. The experimental results are valuable to studying the characteristics of compressed air microwave plasma and the generating conditions of NO active groups.
Analysis of AIS data of the Bonanza Creek Experimental Forest, Alaska
NASA Technical Reports Server (NTRS)
Spanner, M. A.; Peterson, D. L.
1986-01-01
Airborne Imaging Spectrometer (AIS) data were acquired in 1985 over the Bonanza Creek Experimental Forest, Alaska for the analysis of canopy characteristics including biochemistry. Concurrent with AIS overflights, foliage from fifteen coniferous and deciduous forest stands were analyzed for a variety of biochemical constituents including nitrogen, lignin, protein, and chlorophyll. Preliminary analysis of AIS spectra indicates that the wavelength region between 1450 to 1800 namometers (nm) displays distinct differences in spectral response for some of the forest stands. A flat field subtraction (forest stand spectra - flat field spectra) of the AIS spectra assisted in the interpretation of features of the spectra that are related to biology.
Circular dichroism spectra of uridine derivatives: ChiraSac study.
Miyahara, Tomoo; Nakatsuji, Hiroshi; Wada, Takehiko
2014-04-24
The experimental circular dichroism (CD) spectra of uridine and NH2-uridine that were different in the intensity and shape were studied in the light of the ChiraSac method. The theoretical CD spectra at several different conformations using the symmetry-adapted-cluster configuration-interaction (SAC-CI) theory largely depended on the conformational angle, but those of the anti-conformers and the Boltzmann average reproduced the experimentally obtained CD spectra of both uridine and NH2-uridine. The differences in the CD spectra between the two uridine derivatives were analyzed by using the angle θ between the electric transition dipole moment (ETDM) and the magnetic transition dipole moment (MTDM).
Theoretical study on the anion photoelectron spectra of Ln(COT)2- including the spin-orbit effects
NASA Astrophysics Data System (ADS)
Nakajo, Erika; Yabushita, Satoshi
2017-06-01
The multiplet level splittings for both anion and neutral sandwich complexes Ln(COT)2 (Ln = Ce-Yb, COT = 1,3,5,7-cyclooctatetraene) were calculated with spin-orbit interactions to analyze their anion photoelectron spectra. The theoretically simulated spectra obtained with these energies and the pole strengths are generally consistent with the experimental spectra for the X peak. The magnitudes of the energy splittings, relative peak intensities, and their Ln dependence are reproduced. In comparison to our previous calculations, the inclusion of spin-orbit interactions with the SO-MCQDPT2 method makes the simulated spectra more consistent with the results of the experiment.
Analysis of disulphide bonds found in human hair by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Pina-Ruiz, A. L.; Cordova-Fraga, T.; Plascencia-Castro, A. S.; Hernandez-Rayas, A.; Ruvalcaba, J. M.
2017-04-01
Raman spectroscopy offers information-rich spectra, making it a technique easy to use in areas such as biology, chemistry, and in the field. Human hair spectra has been recorded obtaining interesting information about its composition. Correlating information obtained from these spectra to bone health and determining if Raman spectroscopy could be used as a diagnostic tool of bone health is proposed. Spectra from healthy women were compared to the spectra of women who have suffered a bone fracture, all which were aged 39-60. This technique has potential to become a regular diagnostic tool and further investigation to improve and validate this method are needed.
Picosecond flash spectroscopic studies on ultraviolet stabilizers and stabilized polymers
NASA Technical Reports Server (NTRS)
Scott, G. W.
1982-01-01
Spectroscopic and excited state decay kinetics are reported for monomeric and polymeric forms of ultraviolet stabilizers in the 2-(2'-hydroxyphenyl)-benzotriazole and 2-hydroxybenzophenone classes. For some of these molecules in various solvents at room temperature, (1) ground state absorption spectra, (2) emission spectra, (3) picosecond time-resolved transient absorption spectra, (4) ground state absorption recovery kinetics, (5) emission kinetics, and (6) transient absorption kinetics are reported. In the solid state at low temperatures, emission spectra and their temperature dependent kinetics up to approximately 200K as well as, in one case, the 12K excitation spectra of the observed dual emission are also reported.
Automatic Preocessing of Impact Ionization Mass Spectra Obtained by Cassini CDA
NASA Astrophysics Data System (ADS)
Villeneuve, M.
2015-12-01
Since Cassini's arrival at Saturn in 2004, the Comic Dust Analyzer (CDA) has recorded nearly 200,000 mass spectra of dust particles. A majority of this data has been collected in Saturn's diffuse E ring where sodium salts embedded in water ice particles indicate that many particles are in fact frozen droplets from Enceladus' subsurface ocean that have been expelled from cracks in the icy crust. So far only a small fraction of the obtained spectra have been processed because the steps in processing the spectra require human manipulation. We developed an automatic processing pipeline for CDA mass spectra which will consistently analyze this data. The preprocessing steps are to de-noise the spectra, determine and remove the baseline, calculate the correct stretch parameter, and finally to identify elements and compounds in the spectra. With the E ring constantly evolving due to embedded active moons, this data will provide valuable information about the source of the E ring, the subsurface of Saturn's ice moon Enceladus, as well as about the dynamics of the ring itself.
Classifying galaxy spectra at 0.5 < z < 1 with self-organizing maps
NASA Astrophysics Data System (ADS)
Rahmani, S.; Teimoorinia, H.; Barmby, P.
2018-05-01
The spectrum of a galaxy contains information about its physical properties. Classifying spectra using templates helps elucidate the nature of a galaxy's energy sources. In this paper, we investigate the use of self-organizing maps in classifying galaxy spectra against templates. We trained semi-supervised self-organizing map networks using a set of templates covering the wavelength range from far ultraviolet to near infrared. The trained networks were used to classify the spectra of a sample of 142 galaxies with 0.5 < z < 1 and the results compared to classifications performed using K-means clustering, a supervised neural network, and chi-squared minimization. Spectra corresponding to quiescent galaxies were more likely to be classified similarly by all methods while starburst spectra showed more variability. Compared to classification using chi-squared minimization or the supervised neural network, the galaxies classed together by the self-organizing map had more similar spectra. The class ordering provided by the one-dimensional self-organizing maps corresponds to an ordering in physical properties, a potentially important feature for the exploration of large datasets.
Rogue wave spectra of the Kundu-Eckhaus equation.
Bayındır, Cihan
2016-06-01
In this paper we analyze the rogue wave spectra of the Kundu-Eckhaus equation (KEE). We compare our findings with their nonlinear Schrödinger equation (NLSE) analogs and show that the spectra of the individual rogue waves significantly differ from their NLSE analogs. A remarkable difference is the one-sided development of the triangular spectrum before the rogue wave becomes evident in time. Also we show that increasing the skewness of the rogue wave results in increased asymmetry in the triangular Fourier spectra. Additionally, the triangular spectra of the rogue waves of the KEE begin to develop at earlier stages of their development compared to their NLSE analogs, especially for larger skew angles. This feature may be used to enhance the early warning times of the rogue waves. However, we show that in a chaotic wave field with many spectral components the triangular spectra remain as the main attribute as a universal feature of the typical wave fields produced through modulation instability and characteristic features of the KEE's analytical rogue wave spectra may be suppressed in a realistic chaotic wave field.
NASA Astrophysics Data System (ADS)
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-04-01
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models’ performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
NASA Astrophysics Data System (ADS)
Mackie, Cameron J.; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L.; Buma, Wybren Jan; Lee, Timothy J.; Tielens, Alexander G. G. M.
2016-08-01
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-03-13
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models' performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
Qu, Yuangang; Zhang, Shuai; Lian, Yuji; Kuang, Tingyun
2017-03-01
Chlorophyll a and β-carotene play an important role in harvesting light energy, which is used to drive photosynthesis in plants. In this study, terahertz (THz) and visible range spectra of chlorophyll a and β-carotene and their changes under light treatment were investigated. The results show that the all THz transmission and absorption spectra of chlorophyll a and β-carotene changed upon light treatment, with the maximum changes at 15 min of illumination indicating the greatest changes of the collective vibrational mode of chlorophyll a and β-carotene. The absorption spectra of chlorophyll a in the visible light region decreased upon light treatment, signifying the degradation of chlorophyll a molecules. It can be inferred from these results that the THz spectra are very sensitive in monitoring the changes of the collective vibrational mode, despite the absence of changes in molecular configuration. The THz spectra can therefore be used to monitor the decomposing process of biological macromolecules; however, visible absorption spectra can only be used to monitor the breakdown extent of biological macromolecules.
Fluorine Kα X-Ray Emission Spectra of MgF2, CaF2, SrF2 and BaF2
NASA Astrophysics Data System (ADS)
Sugiura, Chikara; Konishi, Wataru; Shoji, Shizuko; Kojima, Shinjiro
1990-11-01
The fluorine Kα emission spectra in fluorescence from a series of alkaline-earth fluorides MF2 (M=Mg, Ca, Sr and Ba) are measured with a high-resolution two-crystal vacuum spectrometer. An anomalously low intensity of the K1L1 satellite peak arising from 1s-1(2s2p)-1 initial states is observed for SrF2. The measured emission spectra are presented along with the UPS spectra of the F- 2p valence bands obtained by Poole et al. and the fluorine K absorption-edge spectra by Oizumi et al. By using these spectra, the first peak or shoulder in the fluorine K absorption-edge spectra is identified as being due to a core exciton which is formed below the bottom of the conduction band. The binding energy of the exciton is estimated to be 1.3(± 0.3), 1.1(± 0.2), 1.0(± 0.2) and 1.7(± 0.2) eV for MgF2, CaF2, SrF2 and BaF2, respectively.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2016-08-28
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
Infrared Spectra of Polycyclic Aromatic Hydrocarbons (PAHs)
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Bakes, E. L. O.
2000-01-01
We have computed the synthetic infrared spectra of some polycyclic aromatic hydrocarbons containing up to 54 carbon atoms. The species studied include ovalene, circumcoronene, dicoronylene, and hexabenzocoronene. We report spectra for anions, neutrals, cations, and multiply charged cations.
Energy spectra of X-ray clusters of galaxies
NASA Technical Reports Server (NTRS)
Avni, Y.
1976-01-01
A procedure for estimating the ranges of parameters that describe the spectra of X-rays from clusters of galaxies is presented. The applicability of the method is proved by statistical simulations of cluster spectra; such a proof is necessary because of the nonlinearity of the spectral functions. Implications for the spectra of the Perseus, Coma, and Virgo clusters are discussed. The procedure can be applied in more general problems of parameter estimation.
NASA Astrophysics Data System (ADS)
Shikama, T.; Fujii, K.; Mizushiri, K.; Hasuo, M.; Kado, S.; Zushi, H.
2009-12-01
A scheme for computation of emission spectra of light diatomic molecules under external magnetic and electric fields is presented. As model species in fusion edge plasmas, the scheme is applied to polarization-resolved emission spectra of H2, CH, C2, BH and BeH molecules. The possibility of performing spatially resolved measurements of these spectra is examined.
VizieR Online Data Catalog: Echelle spectra of 10 bright asteroids (Zwitter+, 2007)
NASA Astrophysics Data System (ADS)
Zwitter, T.; Mignard, F.; Crifo, F.
2006-10-01
Table 5 gives observed spectra of twilight and asteroids rebinned to the same wavelength bins, continuum normalized and Doppler shifted to zero radial velocity. Asteroid spectra of 1 Ceres, 2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 21 Lutetia, 27 Euterpe, 40 Harmonia, 49 Pales, and 80 Sappho are given. Spectra of observed twilight sky and of a theoretical Kurucz Solar model are added for comparison. (1 data file).
NASA Astrophysics Data System (ADS)
Jamróz, M. H.; Dobrowolski, J. Cz.
2001-05-01
For the most stable Li, Na, and Cu(I) diformates we present the vibrational spectra, supported by potential energy distribution (PED) analysis, and the interaction energies between formic acid and metal formate by the DFT (B3PW91) method. PED analysis of the theoretical spectra forms the basis for the elucidation of the future matrix isolation IR spectra.
NASA Technical Reports Server (NTRS)
Lance, D. G.; Nettles, A. T.
1991-01-01
Low velocity instrumented impact testing was utilized to examine the effects of an outer lamina of ultra-high molecular weight polyethylene (Spectra) on the damage tolerance of carbon epoxy composites. Four types of 16-ply quasi-isotropic panels (0, +45, 90, -45) were tested. Some panels contained no Spectra, while others had a lamina of Spectra bonded to the top (impacted side), bottom, or both sides of the composite plates. The specimens were impacted with energies up to 8.5 J. Force time plots and maximum force versus impact energy graphs were generated for comparison purposes. Specimens were also subjected to cross-sectional analysis and compression after impact tests. The results show that while the Spectra improved the maximum load that the panels could withstand before fiber breakage, the Spectra seemingly reduced the residual strength of the composites.
Numerical Study of the Generation of Linear Energy Transfer Spectra for Space Radiation Applications
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; Wilson, John W.; Hunter, Abigail
2005-01-01
In analyzing charged particle spectra in space due to galactic cosmic rays (GCR) and solar particle events (SPE), the conversion of particle energy spectra into linear energy transfer (LET) distributions is a convenient guide in assessing biologically significant components of these spectra. The mapping of LET to energy is triple valued and can be defined only on open energy subintervals where the derivative of LET with respect to energy is not zero. Presented here is a well-defined numerical procedure which allows for the generation of LET spectra on the open energy subintervals that are integrable in spite of their singular nature. The efficiency and accuracy of the numerical procedures is demonstrated by providing examples of computed differential and integral LET spectra and their equilibrium components for historically large SPEs and 1977 solar minimum GCR environments. Due to the biological significance of tissue, all simulations are done with tissue as the target material.
Nuclear Resonance Vibrational Spectra of Five-Coordinate Imidazole-ligated Iron(II) Porphyrinates
Hu, Chuanjiang; Barabanschikov, Alexander; Ellison, Mary K.; Zhao, Jiyong; Alp, E. Ercan; Sturhahn, Wolfgang; Zgierski, Marek Z.; Sage, J. Timothy; Scheidt, W. Robert
2012-01-01
Nuclear resonance vibrational spectra have been obtained for six five-coordinate imidazole-ligated iron(II) porphyrinates, [Fe(Por)(L)] (Por = tetraphenylporphyrinate, octaethylporphyrinate, tetratolylporphyrinate or protoporphyrinate IX and L = 2-methylimidazole or 1,2-dimethylimidazole). Measurements have been made on both powder and oriented crystal samples. The spectra are dominated by strong signals around 200–300 cm−1. Although the in-plane and out-of-plane vibrations are seriously overlapped, oriented crystal spectra allow their deconvolution. Thus, oriented crystal experimental data, along with DFT calculations, enable the assignment of key vibrations in the spectra. Molecular dynamics are also discussed. The nature of the Fe–NIm vibrations has been elaborated further than was possible from resonance Raman studies. Our study suggests that the Fe motions are coupled with the porphyrin core and peripheral groups motions. Both peripheral groups and their conformations have significant influence on the vibrational spectra (position and shape). PMID:22243131
Fluorescence Spectra of Highlighter Inks
NASA Astrophysics Data System (ADS)
Birriel, Jennifer J.; King, Damon
2018-01-01
Fluorescence spectra excited by laser pointers have been the subject of several papers in TPT. These papers all describe a fluorescence phenomenon in which the reflected laser light undergoes a change in color: this color change results from the combination of some partially reflected laser light and additional colors generated by fluorescent emission. Here we examine the fluorescence spectra of highlighter inks using green and violet laser pointers. We use an RSpec Explorer spectrometer to obtain spectra and compare the emission spectra of blue, green, yellow, orange, pink, and purple highlighters. The website Compound Interest details the chemical composition of highlighter inks; in addition, the site discusses how some base dye colors can be combined to produce the variety commercially available colors. Spectra obtained in this study were qualitatively consistent with the Compound Interest site. We discuss similarities and differences between various highlighter colors and conclude with the relevance of such studies to physics students.
NASA Technical Reports Server (NTRS)
Poole, L. R.
1976-01-01
An initial attempt was made to verify the Langley Research Center and Virginia Institute of Marine Science mid-Atlantic continental-shelf wave refraction model. The model was used to simulate refraction occurring during a continental-shelf remote sensing experiment conducted on August 17, 1973. Simulated wave spectra compared favorably, in a qualitative sense, with the experimental spectra. However, it was observed that most of the wave energy resided at frequencies higher than those for which refraction and shoaling effects were predicted, In addition, variations among the experimental spectra were so small that they were not considered statistically significant. In order to verify the refraction model, simulation must be performed in conjunction with a set of significantly varying spectra in which a considerable portion of the total energy resides at frequencies for which refraction and shoaling effects are likely.
THz spectra of 1,4-naphthoquinones and its four derivatives
NASA Astrophysics Data System (ADS)
Wang, Weining; Li, Hongqi; Luo, Xiang; Zeng, Xiaoni
2008-03-01
Recently some naphthoquinone derivatives have been found with anticancer or other therapeutic properties, but also have some negative side effects. Numerous research projects have been conducted to investigate their properties and therapeutic mechanisms. With Terahertz Time-Domain Spectroscopy (THz-TDS), we have successfully obtained THz spectra of 1,4-naphthoquinone and its four derivatives in a series of naphthazarin - juglone - 1,4-naphthoquinone - menadione - plumbagin, in the range between 0.2 and 2.4~2.8 THz. Although these molecules are almost identical to each other, they have very distinctive THz spectra so that they can be identified much more easily than using conventional spectroscopy. We have comparatively analyzed their THz spectra, and found some possible correlations between THz spectra and molecular structures. These THz spectra cannot only be used as spectral fingerprint, but also provide us their conformational properties that can be used in study of their interaction with biomolecules to reveal their pharmaceutical mechanisms.
NASA Technical Reports Server (NTRS)
Smith, P. L.; Yoshino, K.; Stark, G.; Ito, K.; Stevens, M. H.
1991-01-01
In the 91-100 nm spectral region, where absorption of photons by interstellar CO usually leads to dissociation, laboratory spectra obtained at 295 K show that most CO bands are both overlapped and perturbed. Reliable band oscillator strengths cannot be extracted from such spectra. As a consequence, synthetic extreme-ultraviolet absorption spectra for CO at the low temperatures that prevail in interstellar clouds are uncertain. A supersonic expansion technique has been used to cool CO to 30 K and three bands in the 97-nm region have been studied with high spectral resolution. The measured spectrum at 30 K is in reasonable agreement with some published modeled spectra, but the ratios of integrated cross sections are somewhat different from those determined from low resolution spectra obtained at 295 K, in which the bands are blended.
Rich magneto-absorption spectra of AAB-stacked trilayer graphene.
Do, Thi-Nga; Shih, Po-Hsin; Chang, Cheng-Peng; Lin, Chiun-Yan; Lin, Ming-Fa
2016-06-29
A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit single- or twin-peak structures which are determined by quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anti-crossings. AAB, AAA, ABA, and ABC stackings considerably differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configuration-enriched magneto-optical spectra.
ScanRanker: Quality Assessment of Tandem Mass Spectra via Sequence Tagging
Ma, Ze-Qiang; Chambers, Matthew C.; Ham, Amy-Joan L.; Cheek, Kristin L.; Whitwell, Corbin W.; Aerni, Hans-Rudolf; Schilling, Birgit; Miller, Aaron W.; Caprioli, Richard M.; Tabb, David L.
2011-01-01
In shotgun proteomics, protein identification by tandem mass spectrometry relies on bioinformatics tools. Despite recent improvements in identification algorithms, a significant number of high quality spectra remain unidentified for various reasons. Here we present ScanRanker, an open-source tool that evaluates the quality of tandem mass spectra via sequence tagging with reliable performance in data from different instruments. The superior performance of ScanRanker enables it not only to find unassigned high quality spectra that evade identification through database search, but also to select spectra for de novo sequencing and cross-linking analysis. In addition, we demonstrate that the distribution of ScanRanker scores predicts the richness of identifiable spectra among multiple LC-MS/MS runs in an experiment, and ScanRanker scores assist the process of peptide assignment validation to increase confident spectrum identifications. The source code and executable versions of ScanRanker are available from http://fenchurch.mc.vanderbilt.edu. PMID:21520941
Unassigned MS/MS Spectra: Who Am I?
Pathan, Mohashin; Samuel, Monisha; Keerthikumar, Shivakumar; Mathivanan, Suresh
2017-01-01
Recent advances in high resolution tandem mass spectrometry (MS) has resulted in the accumulation of high quality data. Paralleled with these advances in instrumentation, bioinformatics software have been developed to analyze such quality datasets. In spite of these advances, data analysis in mass spectrometry still remains critical for protein identification. In addition, the complexity of the generated MS/MS spectra, unpredictable nature of peptide fragmentation, sequence annotation errors, and posttranslational modifications has impeded the protein identification process. In a typical MS data analysis, about 60 % of the MS/MS spectra remains unassigned. While some of these could attribute to the low quality of the MS/MS spectra, a proportion can be classified as high quality. Further analysis may reveal how much of the unassigned MS spectra attribute to search space, sequence annotation errors, mutations, and/or posttranslational modifications. In this chapter, the tools used to identify proteins and ways to assign unassigned tandem MS spectra are discussed.
Spatially and momentum resolved energy electron loss spectra from an ultra-thin PrNiO{sub 3} layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinyanjui, M. K., E-mail: michael.kinyanjui@uni-ulm.de; Kaiser, U.; Benner, G.
2015-05-18
We present an experimental approach which allows for the acquisition of spectra from ultra-thin films at high spatial, momentum, and energy resolutions. Spatially and momentum (q) resolved electron energy loss spectra have been obtained from a 12 nm ultra-thin PrNiO{sub 3} layer using a nano-beam electron diffraction based approach which enabled the acquisition of momentum resolved spectra from individual, differently oriented nano-domains and at different positions of the PrNiO{sub 3} thin layer. The spatial and wavelength dependence of the spectral excitations are obtained and characterized after the analysis of the experimental spectra using calculated dielectric and energy loss functions. The presentedmore » approach makes a contribution towards obtaining momentum-resolved spectra from nanostructures, thin film, heterostructures, surfaces, and interfaces.« less
Libraries of High and Mid-Resolution Spectra of F, G, K, and M Field Stars
NASA Astrophysics Data System (ADS)
Montes, D.
1998-06-01
I have compiled here the three libraries of high and mid-resolution optical spectra of late-type stars I have recently published. The libraries include F, G, K and M field stars, from dwarfs to giants. The spectral coverage is from 3800 to 1000 Å, with spectral resolution ranging from 0.09 to 3.0 Å. These spectra include many of the spectral lines most widely used as optical and near-infrared indicators of chromospheric activity. The spectra have been obtained with the aim of providing a library of high and mid-resolution spectra to be used in the study of active chromosphere stars by applying a spectral subtraction technique. However, the data set presented here can also be utilized in a wide variety of ways. A digital version of all the fully reduced spectra is available via FTP and the World Wide Web (WWW) in FITS format.
NASA Astrophysics Data System (ADS)
Collombet, Annabelle; Guyot, Yannick; Joubert, Marie-France; Margerie, Jean; Moncorgé, Richard; Tkachuk, Alexandra
2004-11-01
Experimental spectroscopic results related to Nd3+-doped BaY2F8, are presented that include vacuum-ultraviolet ground-state absorption and excitation spectra as well as polarized emission and excited-state absorption spectra recorded in the near-ultraviolet spectral range at room and low temperatures. Calculations were performed to determine the positions of the 4f25d sublevels and the intensities and polarizations of the 4f3<-->4f25d optical transitions of the Nd3+ ions in the C2 symmetry sites of the biaxial host crystal. The simulated spectra agree well with the experimental spectra; in particular, the model that was used successfully reproduced the differences between the polarized spectra on one hand and between the spectra recorded at low and room temperatures on the other hand.
Comparative NEXAFS study of the selected icefish hard tissues and hydroxyapatite
NASA Astrophysics Data System (ADS)
Petrova, O. V.; Nekipelov, S. V.; Sivkov, D. V.; Mingaleva, A. E.; Nikolaev, A.; Frank-Kamenetskaya, O. V.; Bazhenov, V. V.; Vyalikh, D. V.; Molodtsov, S. L.; Sivkov, V. N.; Ehrlich, H.
2017-11-01
The structure of native Champsocephalus gunnari icefish otoliths, scales, teeth, bones and pristine hydroxyapatite (HA) were examined using Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. NEXAFS Cls-absorption spectra of the selected icefish hard tissues indicate that otoliths contain anion [CO3]2-. NEXAFS P2p-spectra clearly indicate the absence of phosphorus atoms only within otoliths and scales samples. However, the icefish teeth and bones P2p-spectra demonstrate identical spectral feature typical for the HA. NEXAFS Ca2p-spectra of the icefish hard tissues studied also shows features, which are in good correspondence with HA spectra. Interestingly, there is a red shift ≈ 0.1 eV of the 2p1/2,3/2 → 3d transition energies in NEXAFS Ca2p-spectra of teethes and bones of the C. gunnari in comparison to HA.
NASA Technical Reports Server (NTRS)
Sunshine, Jessica M.; Pieters, Carle M.
1993-01-01
The modified Gaussian model (MGM) is used to explore spectra of samples containing multiple pyroxene components as a function of modal abundance. The MGM allows spectra to be analyzed directly, without the use of actual or assumed end-member spectra and therefore holds great promise for remote applications. A series of mass fraction mixtures created from several different particle size fractions are analyzed with the MGM to quantify the properties of pyroxene mixtures as a function of both modal abundance and grain size. Band centers, band widths, and relative band strengths of absorptions from individual pyroxenes in mixture spectra are found to be largely independent of particle size. Spectral properties of both zoned and exsolved pyroxene components are resolved in exsolved samples using the MGM, and modal abundances are accurately estimated to within 5-10 percent without predetermined knowledge of the end-member spectra.
New low-resolution spectrometer spectra for IRAS sources
NASA Astrophysics Data System (ADS)
Volk, Kevin; Kwok, Sun; Stencel, R. E.; Brugel, E.
1991-12-01
Low-resolution spectra of 486 IRAS point sources with Fnu(12 microns) in the range 20-40 Jy are presented. This is part of an effort to extract and classify spectra that were not included in the Atlas of Low-Resolution Spectra and represents an extension of the earlier work by Volk and Cohen which covers sources with Fnu(12 microns) greater than 40 Jy. The spectra have been examined by eye and classified into nine groups based on the spectral morphology. This new classification scheme is compared with the mechanical classification of the Atlas, and the differences are noted. Oxygen-rich stars of the asymptotic giant branch make up 33 percent of the sample. Solid state features dominate the spectra of most sources. It is found that the nature of the sources as implied by the present spectral classification is consistent with the classifications based on broad-band colors of the sources.
Said, Mohammed El-Amin; Vanloot, Pierre; Bombarda, Isabelle; Naubron, Jean-Valère; Dahmane, El Montassir; Aamouche, Ahmed; Jean, Marion; Vanthuyne, Nicolas; Dupuy, Nathalie; Roussel, Christian
2016-01-15
An unprecedented methodology was developed to simultaneously assign the relative percentages of the major chiral compounds and their prevailing enantiomeric form in crude essential oils (EOs). In a first step the infrared (IR) and vibrational circular dichroism (VCD) spectra of the crude essential oils were recorded and in a second step they were modelized as a linear weighted combination of the IR and VCD spectra of the individual spectra of pure enantiomer of the major chiral compounds present in the EOs. The VCD spectra of enantiomer of known enantiomeric excess shall be recorded if they are not yet available in a library of VCD spectra. For IR, the spectra of pure enantiomer or racemic mixture can be used. The full spectra modelizations were performed using a well known and powerful mathematical model (least square estimation: LSE) which resulted in a weighting of each contributing compound. For VCD modelization, the absolute value of each weighting represented the percentage of the associate compound while the attached sign addressed the correctness of the enantiomeric form used to build the model. As an example, a model built with the non-prevailing enantiomer will show a negative sign of the weighting value. For IR spectra modelization, the absolute value of each weighting represented the percentage of the compounds without of course accounting for the chirality of the prevailing enantiomers. Comparison of the weighting values issuing from IR and VCD spectra modelizations is a valuable source of information: if they are identical, the EOs are composed of nearly pure enantiomers, if they are different the chiral compounds of the EOs are not in an optically pure form. The method was applied on four samples of essential oil of Artemisia herba-alba in which the three major compounds namely (-)-α-thujone, (+)-β-thujone and (-)-camphor were found in different proportions as determined by GC-MS and chiral HPLC using polarimetric detector. In order to validate the methodology, the modelization of the VCD spectra was performed on purpose using the individual VCD spectra of (-)-α-thujone, (+)-β-thujone and (+)-camphor instead of (-)-camphor. During this work, the absolute configurations of (-)-α-thujone and (+)-β-thujone were confirmed by comparison of experimental and calculated VCD spectra as being (1S,4R,5R) and (1S,4S,5R) respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Chandra Observations of Associates of η Carinae. II. Spectra
NASA Astrophysics Data System (ADS)
Evans, Nancy Remage; Schlegel, Eric M.; Waldron, Wayne L.; Seward, Frederick D.; Krauss, Miriam I.; Nichols, Joy; Wolk, Scott J.
2004-09-01
The low-resolution X-ray spectra around η Car covering Trumpler 16 and part of Trumpler 14 have been extracted from a Chandra CCD ACIS image. Various analysis techniques have been applied to the spectra based on their count rates. The spectra with the greatest number of counts (HD 93162 = WR 25, HD 93129 AB, and HD 93250) have been fitted with a wind model, which uses several components with different temperatures and depths in the wind. Weaker spectra have been fitted with Raymond-Smith models. The weakest spectra are simply intercompared with strong spectra. In general, fits produce reasonable parameters based on knowledge of the extinction from optical studies and on the range of temperatures for high- and low-mass stars. Direct comparisons of spectra confirm the consistency of the fitting results and also hardness ratios for cases of unusually large extinction in the clusters. The spectra of the low-mass stars are harder than the more massive stars. Stars in the sequence evolving from the main sequence (HD 93250) through the system containing the O supergiant (HD 93129 AB) and then through the Wolf-Rayet stage (HD 93162), presumably ending in the extreme example of η Car, share the property of being unusually luminous and hard in X-rays. For these X-ray-luminous stars, their high mass and evolutionary status (from the very last stages of the main sequence and beyond) is the common feature. Their binary status is mixed, and their magnetic status is still uncertain. Based on observations made with the Chandra X-Ray Observatory.
[Ultrastructure and Raman Spectral Characteristics of Two Kinds of Acute Myeloid Leukemia Cells].
Liang, Hao-Yue; Cheng, Xue-Lian; Dong, Shu-Xu; Zhao, Shi-Xuan; Wang, Ying; Ru, Yong-Xin
2018-02-01
To investigate the Raman spectral characteristics of leukemia cells from 4 patients with acute promyelocytic leukemia (M 3 ) and 3 patients with acute monoblastic leukemia (M 5 ), establish a novel Raman label-free method to distinguish 2 kinds of acute myeloid leukemia cells so as to provide basis for clinical research. Leukemia cells were collected from bone marrow of above-mentioned patients. Raman spectra were acquired by Horiba Xplora Raman spectrometer and Raman spectra of 30-50 cells from each patient were recorded. The diagnostic model was established according to principle component analysis (PCA), discriminant function analysis (DFA) and cluster analysis, and the spectra of leukemia cells from 7 patients were analyzed and classified. Characteristics of Raman spectra were analyzed combining with ultrastructure of leukemia cells. There were significant differences between Raman spectra of 2 kinds of leukemia cells. Compared with acute monoblastic leukemia cells, the spectra of acute promyelocytic leukemia cells showed stronger peaks in 622, 643, 757, 852, 1003, 1033, 1117, 1157, 1173, 1208, 1340, 1551, 1581 cm -1 . The diagnostic models established by PCA-DFA and cluster analysis could successfully classify these Raman spectra of different samples with a high accuracy of 100% (233/233). The model was evaluated by "Leave-one-out" cross-validation and reached a high accuracy of 97% (226/233). The level of macromolecules of M 3 cells is higher than that of M 5 . The diagnostic models established by PCA-DFA can classify these Raman spectra of different cells with a high accuracy. Raman spectra shows consistent result with ultrastructure by TEM.
Johnson, J. R.; Horz, F.; Lucey, P.G.; Christensen, P.R.
2002-01-01
The feldspar and pyroxene mineralogies on Mars revealed by the Thermal Emission Spectrometer (TES) on Mars Global Surveyor likely record a variety of shock effects, as suggested by petrologic analyses of the Martian meteorites and the abundance of impact craters on the planet's surface. To study the effects of shock pressures on thermal infrared spectra of these minerals, we performed shock recovery experiments on orthopyroxenite and anorthosite samples from the Stillwater Complex (Montana) over peak pressures from 17 to 63 GPa. We acquired emissivity and hemispherical reflectance spectra (350-1400 cm-1; ???7-29 ??m) of both coherent chips and fine-grained powders of shocked and unshocked samples. These spectra are more directly comparable to remotely sensed data of Mars (e.g., TES) than previously acquired absorption or transmission spectra of shocked minerals. The spectra of experimentally shocked feldspar show systematic changes with increasing pressure due to depolymerization of the silica tetrahedra. For the spectra of chips, this includes the disappearance of small bands in the 500-650 cm-1 region and a strong band at 1115 cm-1, and changes in positions of a strong band near 940 cm-1 and the Christiansen feature near 1250 cm-1. Spectra of the shocked powders show the gradual disappearance of a transparency feature near 830 cm-1. Fewer changes are observed in the pyroxene spectra at pressures as high as 63 GPa. Spectra of experimentally shocked minerals will help identify more precisely the mineralogy of rocks and soils not only from TES but also from Mars instruments such as miniTES and THEMIS.
Isaacson, P.J.; Pieters, C.M.; Besse, S.; Clark, R.N.; Head, J.W.; Klima, R.L.; Mustard, J.F.; Petro, N.E.; Staid, M.I.; Sunshine, J.M.; Taylor, L.A.; Thaisen, K.G.; Tompkins, S.
2011-01-01
A systematic approach for deconvolving remotely sensed lunar olivine-rich visible to near-infrared (VNIR) reflectance spectra with the Modified Gaussian Model (MGM) is evaluated with Chandrayaan-1 Moon Mineralogy Mapper (M 3) spectra. Whereas earlier studies of laboratory reflectance spectra focused only on complications due to chromite inclusions in lunar olivines, we develop a systematic approach for addressing (through continuum removal) the prominent continuum slopes common to remotely sensed reflectance spectra of planetary surfaces. We have validated our continuum removal on a suite of laboratory reflectance spectra. Suites of olivine-dominated reflectance spectra from a small crater near Mare Moscoviense, the Copernicus central peak, Aristarchus, and the crater Marius in the Marius Hills were analyzed. Spectral diversity was detected in visual evaluation of the spectra and was quantified using the MGM. The MGM-derived band positions are used to estimate the olivine's composition in a relative sense. Spectra of olivines from Moscoviense exhibit diversity in their absorption features, and this diversity suggests some variation in olivine Fe/Mg content. Olivines from Copernicus are observed to be spectrally homogeneous and thus are predicted to be more compositionally homogeneous than those at Moscoviense but are of broadly similar composition to the Moscoviense olivines. Olivines from Aristarchus and Marius exhibit clear spectral differences from those at Moscoviense and Copernicus but also exhibit features that suggest contributions from other phases. If the various precautions discussed here are weighed carefully, the methods presented here can be used to make general predictions of absolute olivine composition (Fe/Mg content). Copyright ?? 2011 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Kruse, Fred A.; Taranik, Dan L.; Kierein-Young, Kathryn S.
1988-01-01
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data for sites in Nevada and Colorado were evaluated to determine their utility for mineralogical mapping in support of geologic investigations. Equal energy normalization is commonly used with imaging spectrometer data to reduce albedo effects. Spectra, profiles, and stacked, color-coded spectra were extracted from the AVIRIS data using an interactive analysis program (QLook) and these derivative data were compared to Airborne Imaging Spectrometer (AIS) results, field and laboratory spectra, and geologic maps. A feature extraction algorithm was used to extract and characterize absorption features from AVIRIS and laboratory spectra, allowing direct comparison of the position and shape of absorption features. Both muscovite and carbonate spectra were identified in the Nevada AVIRIS data by comparison with laboratory and AIS spectra, and an image was made that showed the distribution of these minerals for the entire site. Additional, distinctive spectra were located for an unknown mineral. For the two Colorado sites, the signal-to-noise problem was significantly worse and attempts to extract meaningful spectra were unsuccessful. Problems with the Colorado AVIRIS data were accentuated by the IAR reflectance technique because of moderate vegetation cover. Improved signal-to-noise and alternative calibration procedures will be required to produce satisfactory reflectance spectra from these data. Although the AVIRIS data were useful for mapping strong mineral absorption features and producing mineral maps at the Nevada site, it is clear that significant improvements to the instrument performance are required before AVIRIS will be an operational instrument.
Ikeya, Teppei; Takeda, Mitsuhiro; Yoshida, Hitoshi; Terauchi, Tsutomu; Jee, Jun-Goo; Kainosho, Masatsune; Güntert, Peter
2009-08-01
Stereo-array isotope labeling (SAIL) has been combined with the fully automated NMR structure determination algorithm FLYA to determine the three-dimensional structure of the protein ubiquitin from different sets of input NMR spectra. SAIL provides a complete stereo- and regio-specific pattern of stable isotopes that results in sharper resonance lines and reduced signal overlap, without information loss. Here we show that as a result of the superior quality of the SAIL NMR spectra, reliable, fully automated analyses of the NMR spectra and structure calculations are possible using fewer input spectra than with conventional uniformly 13C/15N-labeled proteins. FLYA calculations with SAIL ubiquitin, using a single three-dimensional "through-bond" spectrum (and 2D HSQC spectra) in addition to the 13C-edited and 15N-edited NOESY spectra for conformational restraints, yielded structures with an accuracy of 0.83-1.15 A for the backbone RMSD to the conventionally determined solution structure of SAIL ubiquitin. NMR structures can thus be determined almost exclusively from the NOESY spectra that yield the conformational restraints, without the need to record many spectra only for determining intermediate, auxiliary data of the chemical shift assignments. The FLYA calculations for this report resulted in 252 ubiquitin structure bundles, obtained with different input data but identical structure calculation and refinement methods. These structures cover the entire range from highly accurate structures to seriously, but not trivially, wrong structures, and thus constitute a valuable database for the substantiation of structure validation methods.
The Spitzer Atlas of Stellar Spectra (SASS)
NASA Astrophysics Data System (ADS)
Ardila, D. R.; van Dyk, S. D., Makowiecki, W.; Stauffer, J.; Song, I.; Ro, J.; Fajardo-Acosta, S.; Hoard, D. W.; Wachter, S.
2011-11-01
We present the Spitzer Atlas of Stellar Spectra (SASS), which includes 159 stellar spectra (5 to 32 micron; R about 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, like blue stragglers and certain pulsating variables. All the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, dominated by Hydrogen lines around A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases PAH features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.
Chen, Jian-bo; Sun, Su-qin; Zhou, Qun
2015-07-01
The nondestructive and label-free infrared (IR) spectroscopy is a direct tool to characterize the spatial distribution of organic and inorganic compounds in plant. Since plant samples are usually complex mixtures, signal-resolving methods are necessary to find the spectral features of compounds of interest in the signal-overlapped IR spectra. In this research, two approaches using existing data-driven signal-resolving methods are proposed to interpret the IR spectra of plant samples. If the number of spectra is small, "tri-step identification" can enhance the spectral resolution to separate and identify the overlapped bands. First, the envelope bands of the original spectrum are interpreted according to the spectra-structure correlations. Then the spectrum is differentiated to resolve the underlying peaks in each envelope band. Finally, two-dimensional correlation spectroscopy is used to enhance the spectral resolution further. For a large number of spectra, "tri-step decomposition" can resolve the spectra by multivariate methods to obtain the structural and semi-quantitative information about the chemical components. Principal component analysis is used first to explore the existing signal types without any prior knowledge. Then the spectra are decomposed by self-modeling curve resolution methods to estimate the spectra and contents of significant chemical components. At last, targeted methods such as partial least squares target can explore the content profiles of specific components sensitively. As an example, the macroscopic and microscopic distribution of eugenol and calcium oxalate in the bud of clove is studied.
Spectral calibration in the mid-infrared: Challenges and solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloan, G. C.; Herter, T. L.; Houck, J. R.
2015-01-01
We present spectra obtained with the Infrared Spectrograph on the Spitzer Space Telescope of 33 K giants and 20 A dwarfs to assess their suitability as spectrophotometric standard stars. The K giants confirm previous findings that the strength of the SiO absorption band at 8 μm increases for both later optical spectral classes and redder (B–V){sub 0} colors, but with considerable scatter. For K giants, the synthetic spectra underpredict the strengths of the molecular bands from SiO and OH. For these reasons, the assumed true spectra for K giants should be based on the assumption that molecular band strengths inmore » the infrared can be predicted accurately from neither optical spectral class or color nor synthetric spectra. The OH bands in K giants grow stronger with cooler stellar temperatures, and they are stronger than predicted by synthetic spectra. As a group, A dwarfs are better behaved and more predictable than the K giants, but they are more likely to show red excesses from debris disks. No suitable A dwarfs were located in parts of the sky continuously observable from Spitzer, and with previous means of estimating the true spectra of K giants ruled out, it was necessary to use models of A dwarfs to calibrate spectra of K giants from observed spectral ratios of the two groups and then use the calibrated K giants as standards for the full database of infrared spectra from Spitzer. We also describe a lingering artifact that affects the spectra of faint blue sources at 24 μm.« less
A Public Set of Synthetic Spectra from Expanding Atmospheres for X-Ray Novae. I. Solar Abundances
NASA Astrophysics Data System (ADS)
van Rossum, Daniel R.
2012-09-01
X-ray grating observations have revealed great detail in the spectra of novae in the Super Soft Source (SSS) phase. Notable features in the SSS spectra are blueshifted absorption lines, P-Cygni line profiles, and the absence of strong ionization edges, all of which are indicators of an expanding atmosphere. We present, and make publicly available, a set of 672 wind-type (WT) synthetic spectra, obtained from the expanding NLTE SSS models introduced in Van Rossum & Ness with the PHOENIX stellar atmosphere code. The set presented in this paper is limited to solar abundances with the aim to focus on the basic model parameters and their effect on the spectra, providing the basis upon which abundance effects can be studied using a much bigger non-solar set in the next paper in this series. We fit the WT spectra to the five grating spectra taken in the SSS phase of nova V4743 Sgr 2003 as an example application of the WT models. Within the limits of solar abundances we demonstrate that the following parameters are constrained by the data (in order of decreasing accuracy): column density N H, bolometric luminosity L bol, effective temperature T eff, white dwarf radius R, wind asymptotic velocity v ∞, and the mass-loss rate \\dot{M}. The models are also sensitive to the assumed white dwarf mass M WD but the effect on the spectra can largely be compensated by the other model parameters. The WT spectra with solar abundances fit the data better than abundance optimized hydrostatic models.
Classification of specialty seed meals from NIR reflectance spectra
USDA-ARS?s Scientific Manuscript database
Near infrared reflectance spectroscopy was used to identify alternative seed meals proposed for food and feed formulations. Spectra were collected from cold pressed Camelina (Camelina sativa), Coriander (Coriandrum sativum), and Pennycress (Thlaspi arvense) meals. Additional spectra were collected ...
Study on Mössbauer spectra of hemoglobin in thalassemia
NASA Astrophysics Data System (ADS)
Xuanhui, Guo; Nanming, Zhao; Xiufang, Zhang; Naifei, Gao; Youwen, Huang; Rongxin, Wang
1988-02-01
The57Fe Mössbauer spectra of erythrocytes in normal subjects and nine patients of different thalassemias were studied. Together with clinical analysis, the correlation between the components in the spectra and different types of anemias was discussed.
Improved wavelengths for Fe V and Ni V for analysis of spectra of white dwarf stellar stars
NASA Astrophysics Data System (ADS)
Ward, Jacob; Nave, Gillian
2015-08-01
A recent paper by J.C. Berengut et al. tests for a potential variation in the fine-structure constant, α, in the presence of a high gravitational field through spectral analysis of white-dwarf stars. The spectrum of G191-B2B has prominent Fe V and Ni V lines in the vacuum ultraviolet (VUV) region that were used to determine any variation in α via observed shifts in their wavelengths. Although no strong evidence for a variation was found, the authors did find a difference between values obtained for Fe V and Ni V that were indicative of a problem with the laboratory wavelengths. The laboratory wavelengths dominate the uncertainty of the measured variation, so improved values would tighten the constraints on the variation of α.We have re-measured the spectra of Fe V and Ni V spectra in the VUV in order to reduce the wavelength uncertainties and put the two spectra on a consistent wavelength scale. The spectra were produced by a sliding spark light source with electrodes made of invar, an iron nickel alloy. Spectra of Fe V and Ni V were obtained using peak currents of 750-2000 A. The spectra were recorded using the NIST Normal Incidence Vacuum Spectrograph with phosphor image plates and photographic plates as detectors. Wavelengths from 1100 Å to 1800 Å were covered in a single exposure. A spectrum of a Pt/Ne hollow cathode lamp was also recorded for wavelength calibration.The spectra recorded on photographic plates are better resolved than the phosphor image plate spectra and are being measured in two ways. The first measures the positions of the spectral lines on a comparator, traditionally used to measure many archival spectra at NIST. The second uses a commercial image scanner to obtain a digital image of the plate that can be analyzed using line fitting software. Preliminary analysis of these spectra indicates that the literature values of the Fe V and Ni V wavelengths are not on the same scale and differ from our new measurements by up to 0.02 Å in some wavelength regions. We shall present improved analyses of the spectra using both methods and summarize their advantages and disadvantages.
Pattern recognition and classification of vibrational spectra by artificial neural networks
NASA Astrophysics Data System (ADS)
Yang, Husheng
1999-10-01
A drawback of current open-path Fourier transform infrared (OP/FT-IR) systems is that they need a human expert to determine those compounds that may be quantified from a given spectrum. In this study, three types of artificial neural networks were used to alleviate this problem. Firstly, multi-layer feed-forward neural networks were used to automatically recognize compounds in an OP/FT-IR spectrum. Each neural network was trained to recognize one compound in the presence of up to ten interferents in an OP/FT-IR spectrum. The networks were successfully used to recognize five alcohols and two chlorinated compounds in field-measured controlled-release OP/FT-IR spectra of mixtures of these compounds. It has also been demonstrated that a neural network could correctly identify a spectrum in the presence of an interferent that was not included in the training set and could also reject interferents it has not seen before. Secondly, the possibility of using one- and two- dimensional Kohonen self-organizing maps (SOMs) to recognize similarities in low-resolution vapor-phase infrared spectra without any additional information has been investigated. Both full-range reference spectra and open-path window reference spectra were used to train the networks and the trained networks were then used to classify the reference spectra into several groups. The results showed that the SOMs obtained from the two different training sets were quite different, and it is more appropriate to use the second SOM in OP/FT-IR spectrometry. Thirdly, vapor-phase FT-IR reference spectra of five alcohols along with four baseline spectra were encoded as prototype vectors for a Hopfield network. Inclusion of the baseline spectra allowed the network to classify spectra as unknowns, when the reference spectra of these compounds were not stored as prototype vectors in the network. The network could identify each of the 5 alcohols correctly even in the presence of noise and interfering compounds. Finally, one- and two-dimensional Kohonen SOMs were also successfully used for the unsupervised differentiation of the Fourier transform Raman spectra of hardwoods from softwoods. A semi-quantitative method that is based on the Euclidean distances of the weight matrix has been developed to assist the automatic clustering of the neurons in a two-dimensional SOM.
NASA Astrophysics Data System (ADS)
Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.
1995-10-01
We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various
Contribution to the study of turbulence spectra
NASA Technical Reports Server (NTRS)
Dumas, R.
1979-01-01
An apparatus suitable for turbulence measurement between ranges of 1 to 5000 cps and from 6 to 16,000 cps was developed and is described. Turbulence spectra downstream of the grills were examined with reference to their general characteristics, their LF qualities, and the effects of periodic turbulence. Medium and HF are discussed. Turbulence spectra in the boundary layers are similarly examined, with reference to their fluctuations at right angles to the wall, and to lateral fluctuations. Turbulence spectra in a boundary layer with suction to the wall is discussed. Induced turbulence, and turbulence spectra at high Reynolds numbers. Calculations are presented relating to the effect of filtering on the value of the correlations in time and space.
ON THE VIABILITY OF THE PAH MODEL AS AN EXPLANATION OF THE UNIDENTIFIED INFRARED EMISSION FEATURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yong; Kwok, Sun, E-mail: zhangy96@hku.hk, E-mail: sunkwok@hku.hk
2015-01-01
Polycyclic aromatic hydrocarbon (PAH) molecules are widely considered the preferred candidate for the carrier of the unidentified infrared emission bands observed in the interstellar medium and circumstellar envelopes. In this paper, we report the results of fitting a variety of non-PAH spectra (silicates, hydrogenated amorphous carbon, coal, and even artificial spectra) using the theoretical infrared spectra of PAHs from the NASA Ames PAH IR Spectroscopic Database. We show that these non-PAH spectra can be well fitted by PAH mixtures. This suggests that a general match between astronomical spectra and those of PAH mixtures does not necessarily provide definitive support formore » the PAH hypothesis.« less
A model for gravity-wave spectra observed by Doppler sounding systems
NASA Technical Reports Server (NTRS)
Vanzandt, T. E.
1986-01-01
A model for Mesosphere - Stratosphere - Troposphere (MST) radar spectra is developed following the formalism presented by Pinkel (1981). Expressions for the one-dimensional spectra of radial velocity versus frequency and versus radial wave number are presented. Their dependence on the parameters of the gravity-wave spectrum and on the experimental parameters, radar zenith angle and averaging time are described and the conditions for critical tests of the gravity-wave hypothesis are discussed. The model spectra is compared with spectra observed in the Arctic summer mesosphere by the Poker Flat radar. This model applies to any monostatic Doppler sounding system, including MST radar, Doppler lidar and Doppler sonar in the atmosphere, and Doppler sonar in the ocean.
Polar phonons in β-Ga2O3 studied by IR reflectance spectroscopy and first-principle calculations
NASA Astrophysics Data System (ADS)
Azuhata, Takashi; Shimada, Kazuhiro
2017-08-01
IR reflectance spectra of β-Ga2O3 are measured in the range from 400 to 1100 cm-1 using the (\\bar{2}01) and (010) planes for pure transverse Au- and Bu-mode phonons, respectively. The spectra measured using the (010) plane depend remarkably on the polarization direction of the incident light because of the monoclinic symmetry. Reflectance spectra simulated using parameters obtained from first-principle calculations are in good agreement with the experimental spectra. By adjusting the calculated phonon parameters so as to reproduce the experimental spectra, the polar phonon parameters were determined for six modes above 400 cm-1.
Wan, Quan; Galli, Giulia
2015-12-11
We present a first-principles framework to compute sum-frequency generation (SFG) vibrational spectra of semiconductors and insulators. The method is based on density functional theory and the use of maximally localized Wannier functions to compute the response to electric fields, and it includes the effect of electric field gradients at surfaces. In addition, it includes quadrupole contributions to SFG spectra, thus enabling the verification of the dipole approximation, whose validity determines the surface specificity of SFG spectroscopy. We compute the SFG spectra of ice I_{h} basal surfaces and identify which spectra components are affected by bulk contributions. Our results are in good agreement with experiments at low temperature.
Coronal temperatures of unusually active K-dwarf binary systems
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1994-01-01
We report the results of a ROSAT pointed study of 4 BY Dra systems. Good quality pulse-height spectra are available from all four systems. Except for a required interstellar absorption component in HD 319139, the four systems have remarkably similar x-ray spectra; the two systems BD +22deg.669 and BD +23deg.635 look virtually identical in x rays. Analysis of the 4 x-ray spectra reveals that, in all cases, a single-temperature hot plasma (RS or Mewe) spectra is inadequate to fit the data, and two temperatures are required. We present examples of fitted pulse-height spectra and chi squared contours in kT(sub 1)-kT(sub 2) space.
Simulation of femtosecond two-dimensional electronic spectra of conical intersections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krčmář, Jindřich; Gelin, Maxim F.; Domcke, Wolfgang
2015-08-21
We have simulated femtosecond two-dimensional (2D) electronic spectra for an excited-state conical intersection using the wave-function version of the equation-of-motion phase-matching approach. We show that 2D spectra at fixed values of the waiting time provide information on the structure of the vibronic eigenstates of the conical intersection, while the evolution of the spectra with the waiting time reveals predominantly ground-state wave-packet dynamics. The results show that 2D spectra of conical intersection systems differ significantly from those obtained for chromophores with well separated excited-state potential-energy surfaces. The spectral signatures which can be attributed to conical intersections are discussed.
The infrared spectrum of ammonia hydrate - Explanation for a reported ammonia phase
NASA Technical Reports Server (NTRS)
Still, G.; Fink, U.; Ferraro, J. R.
1981-01-01
A number of anomalous spectra of solid NH3 deposited from the vapor phase have appeared in the literature. These spectra have been ascribed to a new phase of NH3. In the experiment reported here these anomalous spectra were reproduced by depositing a thin film from a mixture of gaseous NH3 and H2O and annealing this film at a temperature of 162 K. The thin film spectra showed excellent agreement with recent data on NH3.H2O. The anomalous 'NH3' spectra are, therefore, seen to be caused by H2O contamination of solid NH3 with formation of NH3 hydrate.
National Institute of Standards and Technology Data Gateway
SRD 100 Database for Simulation of Electron Spectra for Surface Analysis (SESSA)Database for Simulation of Electron Spectra for Surface Analysis (SESSA) (PC database for purchase) This database has been designed to facilitate quantitative interpretation of Auger-electron and X-ray photoelectron spectra and to improve the accuracy of quantitation in routine analysis. The database contains all physical data needed to perform quantitative interpretation of an electron spectrum for a thin-film specimen of given composition. A simulation module provides an estimate of peak intensities as well as the energy and angular distributions of the emitted electron flux.
Reproducing impact ionization mass spectra of E and F ring ice grains at different impact speeds
NASA Astrophysics Data System (ADS)
Klenner, F.; Reviol, R.; Postberg, F.
2017-09-01
As impact speeds of E and F ring ice grains impinging onto the target of impact ionization mass spectrometers in space can vary greatly, the resulting cationic or anionic mass spectra can have very different appearances. The mass spectra can be accurately reproduced with an analog experimental setup IR-FL-MALDI-ToF-MS (Infrared Free Liquid Matrix Assisted Laser Desorption and Ionization Time of Flight Mass Spectrometry). We compare mass spectra of E and F ring ice grains taken by the Cosmic Dust Analyzer (CDA) onboard Cassini recorded at different impact speeds with our analog spectra and prove the capability of the analog experiment.
VizieR Online Data Catalog: CO in HCG galaxies with enhanced warm H2 (Lisenfeld+,
NASA Astrophysics Data System (ADS)
Lisenfeld, U.; Appleton, P. N.; Cluver, M. E.; Guillard, P.; Alatalo, K.; Ogle, P.
2014-07-01
The files name hcgxxco10offx_offy.fits are the fits files spectra in Fig. A1 (CO(1-0) spectra). The files name hcgxxco21offx_offy.fits are the fits files of the spectra in Fig. A2 (CO(2-1) spectra). Here, xx stands for the HCG number of the galaxy and offx, offy are the offsets with respect to the central pointing. (3 data files).
Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources.
Ghorbani, Mahdi; Mehrpouyan, Mohammad; Davenport, David; Ahmadi Moghaddas, Toktam
2016-06-01
The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems.
Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources
Ghorbani, Mahdi; Davenport, David
2016-01-01
Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558
NASA Astrophysics Data System (ADS)
Parente, Mario; Makarewicz, Heather D.; Bishop, Janice L.
2011-04-01
This study advances curve-fitting modeling of absorption bands of reflectance spectra and applies this new model to spectra of Martian meteorites ALH 84001 and EETA 79001 and data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). This study also details a recently introduced automated parameter initialization technique. We assess the performance of this automated procedure by comparing it to the currently available initialization method and perform a sensitivity analysis of the fit results to variation in initial guesses. We explore the issues related to the removal of the continuum, offer guidelines for continuum removal when modeling the absorptions and explore different continuum-removal techniques. We further evaluate the suitability of curve fitting techniques using Gaussians/Modified Gaussians to decompose spectra into individual end-member bands. We show that nonlinear least squares techniques such as the Levenberg-Marquardt algorithm achieve comparable results to the MGM model ( Sunshine and Pieters, 1993; Sunshine et al., 1990) for meteorite spectra. Finally we use Gaussian modeling to fit CRISM spectra of pyroxene and olivine-rich terrains on Mars. Analysis of CRISM spectra of two regions show that the pyroxene-dominated rock spectra measured at Juventae Chasma were modeled well with low Ca pyroxene, while the pyroxene-rich spectra acquired at Libya Montes required both low-Ca and high-Ca pyroxene for a good fit.
Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czekala, Ian; Mandel, Kaisey S.; Andrews, Sean M.
Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches formore » companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.« less
Chikayama, Eisuke; Yamashina, Ryo; Komatsu, Keiko; Tsuboi, Yuuri; Sakata, Kenji; Kikuchi, Jun; Sekiyama, Yasuyo
2016-01-01
Foods from agriculture and fishery products are processed using various technologies. Molecular mixture analysis during food processing has the potential to help us understand the molecular mechanisms involved, thus enabling better cooking of the analyzed foods. To date, there has been no web-based tool focusing on accumulating Nuclear Magnetic Resonance (NMR) spectra from various types of food processing. Therefore, we have developed a novel web-based tool, FoodPro, that includes a food NMR spectrum database and computes covariance and correlation spectra to tasting and hardness. As a result, FoodPro has accumulated 236 aqueous (extracted in D2O) and 131 hydrophobic (extracted in CDCl3) experimental bench-top 60-MHz NMR spectra, 1753 tastings scored by volunteers, and 139 hardness measurements recorded by a penetrometer, all placed into a core database. The database content was roughly classified into fish and vegetable groups from the viewpoint of different spectrum patterns. FoodPro can query a user food NMR spectrum, search similar NMR spectra with a specified similarity threshold, and then compute estimated tasting and hardness, covariance, and correlation spectra to tasting and hardness. Querying fish spectra exemplified specific covariance spectra to tasting and hardness, giving positive covariance for tasting at 1.31 ppm for lactate and 3.47 ppm for glucose and a positive covariance for hardness at 3.26 ppm for trimethylamine N-oxide. PMID:27775560
In-Vivo Fluorescence Spectroscopy Of Normal And Atherosclerotic Arteries
NASA Astrophysics Data System (ADS)
Deckelbaum, Lawrence I.; Sarembock, Ian J.; Stetz, Mark L.; O'Brien, Kenneth M.; Cutruzzola, Francis W.; Gmitro, Arthur F.; Ezekowitz, Michael D.
1988-06-01
Laser-induced fluorescence spectroscopy can discriminate atherosclerotic from normal arteries in-vitro and may thus potentially guide laser angioplasty. To evaluate the feasibility of laser-induced fluorescence spectroscopy in a living blood-filled arterial system we performed fiberoptic laser-induced fluorescence spectroscopy in a rabbit model of focal femoral atherosclerosis. A laser-induced fluorescence spectroscopy score was derived from stepwise linear regression analysis of in-vitro spectra to distinguish normal aorta (score>0) from atherosclerotic femoral artery (score<0). A 400 u silica fiber, coupled to a helium cadmium laser and optical multichannel analyzer, was inserted through a 5F catheter to induce and record in-vivo fluorescence from femoral and aortoiliac arteries. Arterial spectra could be recorded in all animals (n=10: 5 occlusions, 5 stenoses). Blood spectra were of low intensity and were easily distinguished from arterial spectra. The scores (mean ± SEM) for the in-vivo spectra were -0.69 +/- 0.29 for artherosclerotic femoral, and +0.54 ±. 0.15 for normal aorta (p<.01 p=NS compared to in-vitro spectra). In-vitro, a fiber tip to tissue distance <50 u was necessary for adequate arterial LIFS in blood. At larger distances low intensity blood spectra were recorded (1/20 the intensity of tissue spectra). Thus, fiberoptic laser-induced fluorescence spectroscopy can be sucessfully performed in a blood filled artery provided the fiber tip is approximated to the tissue.
Shlyaptseva, A S; Hansen, S B; Kantsyrev, V L; Fedin, D A; Ouart, N; Fournier, K B; Safronova, U I
2003-02-01
This paper presents a detailed investigation of the temporal, spatial, and spectroscopic properties of L-shell radiation from 0.8 to 1.0 MA Mo x pinches. Time-resolved measurements of x-ray radiation and both time-gated and time-integrated spectra and pinhole images are presented and analyzed. High-current x pinches are found to have complex spatial and temporal structures. A collisional-radiative kinetic model has been developed and used to interpret L-shell Mo spectra. The model includes the ground state of every ionization stage of Mo and detailed structure for the O-, F-, Ne-, Na-, and Mg-like ionization stages. Hot electron beams generated by current-carrying electrons in the x pinch are modeled by a non-Maxwellian electron distribution function and have significant influence on L-shell spectra. The results of 20 Mo x-pinch shots with wire diameters from 24 to 62 microm have been modeled. Overall, the modeled spectra fit the experimental spectra well and indicate for time-integrated spectra electron densities between 2 x 10(21) and 2 x 10(22) cm(-3), electron temperatures between 700 and 850 eV, and hot electron fractions between 3% and 7%. Time-gated spectra exhibit wide variations in temperature and density of plasma hot spots during the same discharge.
Neutron spectra from beam-target reactions in dense Z-pinches
NASA Astrophysics Data System (ADS)
Appelbe, B.; Chittenden, J.
2015-10-01
The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sargent, B. A.; Forrest, W.; Watson, Dan M.
We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seenmore » in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.« less
NASA Astrophysics Data System (ADS)
Mikuła, Andrzej; Król, Magdalena; Mozgawa, Włodzimierz; Koleżyński, Andrzej
2018-04-01
Vibrational spectroscopy can be considered as one of the most important methods used for structural characterization of various porous aluminosilicate materials, including zeolites. On the other hand, vibrational spectra of zeolites are still difficult to interpret, particularly in the pseudolattice region, where bands related to ring oscillations can be observed. Using combination of theoretical and computational approach, a detailed analysis of these regions of spectra is possible; such analysis should be, however, carried out employing models with different level of complexity and simultaneously the same theory level. In this work, an attempt was made to identify ring oscillations in vibrational spectra of selected zeolite structures. A series of ab initio calculations focused on S4R, S6R, and as a novelty, 5-1 isolated clusters, as well as periodic siliceous frameworks built from those building units (ferrierite (FER), mordenite (MOR) and heulandite (HEU) type) have been carried out. Due to the hierarchical structure of zeolite frameworks it can be expected that the total envelope of the zeolite spectra should be with good accuracy a sum of the spectra of structural elements that build each zeolite framework. Based on the results of HF calculations, normal vibrations have been visualized and detailed analysis of pseudolattice range of resulting theoretical spectra have been carried out. Obtained results have been applied for interpretation of experimental spectra of selected zeolites.
ELM: AN ALGORITHM TO ESTIMATE THE ALPHA ABUNDANCE FROM LOW-RESOLUTION SPECTRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bu, Yude; Zhao, Gang; Kumar, Yerra Bharat
We have investigated a novel methodology using the extreme learning machine (ELM) algorithm to determine the α abundance of stars. Applying two methods based on the ELM algorithm—ELM+spectra and ELM+Lick indices—to the stellar spectra from the ELODIE database, we measured the α abundance with a precision better than 0.065 dex. By applying these two methods to the spectra with different signal-to-noise ratios (S/Ns) and different resolutions, we found that ELM+spectra is more robust against degraded resolution and ELM+Lick indices is more robust against variation in S/N. To further validate the performance of ELM, we applied ELM+spectra and ELM+Lick indices to SDSSmore » spectra and estimated α abundances with a precision around 0.10 dex, which is comparable to the results given by the SEGUE Stellar Parameter Pipeline. We further applied ELM to the spectra of stars in Galactic globular clusters (M15, M13, M71) and open clusters (NGC 2420, M67, NGC 6791), and results show good agreement with previous studies (within 1σ). A comparison of the ELM with other widely used methods including support vector machine, Gaussian process regression, artificial neural networks, and linear least-squares regression shows that ELM is efficient with computational resources and more accurate than other methods.« less
Chikayama, Eisuke; Yamashina, Ryo; Komatsu, Keiko; Tsuboi, Yuuri; Sakata, Kenji; Kikuchi, Jun; Sekiyama, Yasuyo
2016-10-19
Foods from agriculture and fishery products are processed using various technologies. Molecular mixture analysis during food processing has the potential to help us understand the molecular mechanisms involved, thus enabling better cooking of the analyzed foods. To date, there has been no web-based tool focusing on accumulating Nuclear Magnetic Resonance (NMR) spectra from various types of food processing. Therefore, we have developed a novel web-based tool, FoodPro, that includes a food NMR spectrum database and computes covariance and correlation spectra to tasting and hardness. As a result, FoodPro has accumulated 236 aqueous (extracted in D₂O) and 131 hydrophobic (extracted in CDCl₃) experimental bench-top 60-MHz NMR spectra, 1753 tastings scored by volunteers, and 139 hardness measurements recorded by a penetrometer, all placed into a core database. The database content was roughly classified into fish and vegetable groups from the viewpoint of different spectrum patterns. FoodPro can query a user food NMR spectrum, search similar NMR spectra with a specified similarity threshold, and then compute estimated tasting and hardness, covariance, and correlation spectra to tasting and hardness. Querying fish spectra exemplified specific covariance spectra to tasting and hardness, giving positive covariance for tasting at 1.31 ppm for lactate and 3.47 ppm for glucose and a positive covariance for hardness at 3.26 ppm for trimethylamine N -oxide.
Flakus, Henryk T; Michta, Anna
2010-02-04
This Article presents the investigation results of the polarized IR spectra of the hydrogen bond in acetanilide (ACN) crystals measured in the frequency range of the proton and deuteron stretching vibration bands, nu(N-H) and nu(N-D). The basic spectral properties of the crystals were interpreted quantitatively in terms of the "strong-coupling" theory. The model of the centrosymmetric dimer of hydrogen bonds postulated by us facilitated the explanation of the well-developed, two-branch structure of the nu(N-H) and nu(N-D) bands as well as the isotopic dilution effects in the spectra. On the basis of the linear dichroic and temperature effects in the polarized IR spectra of ACN crystals, the H/D isotopic "self-organization" effects were revealed. A nonrandom distribution of hydrogen isotope atoms (H or D) in the lattice was deduced from the spectra of isotopically diluted ACN crystals. It was also determined that identical hydrogen isotope atoms occupy both hydrogen bonds in the dimeric systems, where each hydrogen bond belongs to a different chain. A more complex fine structure pattern of nu(N-H) and nu(N-D) bands in ACN spectra in comparison with the spectra of other secondary amides (e.g., N-methylacetamide) can be explained in terms of the "relaxation" theory of the IR spectra of hydrogen-bonded systems.
Deep learning approaches for detection and removal of ghosting artifacts in MR spectroscopy.
Kyathanahally, Sreenath P; Döring, André; Kreis, Roland
2018-09-01
To make use of deep learning (DL) methods to detect and remove ghosting artifacts in clinical magnetic resonance spectra of human brain. Deep learning algorithms, including fully connected neural networks, deep-convolutional neural networks, and stacked what-where auto encoders, were implemented to detect and correct MR spectra containing spurious echo ghost signals. The DL methods were trained on a huge database of simulated spectra with and without ghosting artifacts that represent complex variations of ghost-ridden spectra, transformed to time-frequency spectrograms. The trained model was tested on simulated and in vivo spectra. The preliminary results for ghost detection are very promising, reaching almost 100% accuracy, and the DL ghost removal methods show potential in simulated and in vivo spectra, but need further refinement and quantitative testing. Ghosting artifacts in spectroscopy are problematic, as they superimpose with metabolites and lead to inaccurate quantification. Detection and removal of ghosting artifacts using traditional machine learning approaches with feature extraction/selection is difficult, as ghosts appear at different frequencies. Here, we show that DL methods perform extremely well for ghost detection if the spectra are treated as images in the form of time-frequency representations. Further optimization for in vivo spectra will hopefully confirm their "ghostbusting" capacity. Magn Reson Med 80:851-863, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
Response to "Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra".
Griss, Johannes; Perez-Riverol, Yasset; The, Matthew; Käll, Lukas; Vizcaíno, Juan Antonio
2018-05-04
In the recent benchmarking article entitled "Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra", Rieder et al. compared several different approaches to cluster MS/MS spectra. While we certainly recognize the value of the manuscript, here, we report some shortcomings detected in the original analyses. For most analyses, the authors clustered only single MS/MS runs. In one of the reported analyses, three MS/MS runs were processed together, which already led to computational performance issues in many of the tested approaches. This fact highlights the difficulties of using many of the tested algorithms on the nowadays produced average proteomics data sets. Second, the authors only processed identified spectra when merging MS runs. Thereby, all unidentified spectra that are of lower quality were already removed from the data set and could not influence the clustering results. Next, we found that the authors did not analyze the effect of chimeric spectra on the clustering results. In our analysis, we found that 3% of the spectra in the used data sets were chimeric, and this had marked effects on the behavior of the different clustering algorithms tested. Finally, the authors' choice to evaluate the MS-Cluster and spectra-cluster algorithms using a precursor tolerance of 5 Da for high-resolution Orbitrap data only was, in our opinion, not adequate to assess the performance of MS/MS clustering approaches.
Clustering and Filtering Tandem Mass Spectra Acquired in Data-Independent Mode
NASA Astrophysics Data System (ADS)
Pak, Huisong; Nikitin, Frederic; Gluck, Florent; Lisacek, Frederique; Scherl, Alexander; Muller, Markus
2013-12-01
Data-independent mass spectrometry activates all ion species isolated within a given mass-to-charge window ( m/z) regardless of their abundance. This acquisition strategy overcomes the traditional data-dependent ion selection boosting data reproducibility and sensitivity. However, several tandem mass (MS/MS) spectra of the same precursor ion are acquired during chromatographic elution resulting in large data redundancy. Also, the significant number of chimeric spectra and the absence of accurate precursor ion masses hamper peptide identification. Here, we describe an algorithm to preprocess data-independent MS/MS spectra by filtering out noise peaks and clustering the spectra according to both the chromatographic elution profiles and the spectral similarity. In addition, we developed an approach to estimate the m/z value of precursor ions from clustered MS/MS spectra in order to improve database search performance. Data acquired using a small 3 m/z units precursor mass window and multiple injections to cover a m/z range of 400-1400 was processed with our algorithm. It showed an improvement in the number of both peptide and protein identifications by 8 % while reducing the number of submitted spectra by 18 % and the number of peaks by 55 %. We conclude that our clustering method is a valid approach for data analysis of these data-independent fragmentation spectra. The software including the source code is available for the scientific community.
Glandular radiation dose in tomosynthesis of the breast using tungsten targets.
Sechopoulos, Ioannis; D'Orsi, Carl J
2008-10-24
With the advent of new detector technology, digital tomosynthesis imaging of the breast has, in the past few years, become a technique intensely investigated as a replacement for planar mammography. As with all other x-ray-based imaging methods, radiation dose is of utmost concern in the development of this new imaging technology. For virtually all development and optimization studies, knowledge of the radiation dose involved in an imaging protocol is necessary. A previous study characterized the normalized glandular dose in tomosynthesis imaging and its variation with various breast and imaging system parameters. This characterization was performed with x-ray spectra generated by molybdenum and rhodium targets. In the recent past, many preliminary patient studies of tomosynthesis imaging have been reported in which the x-ray spectra were generated with x-ray tubes with tungsten targets. The differences in x-ray distribution among spectra from these target materials make the computation of new normalized glandular dose values for tungsten target spectra necessary. In this study we used previously obtained monochromatic normalized glandular dose results to obtain spectral results for twelve different tungsten target x-ray spectra. For each imaging condition, two separate values were computed: the normalized glandular dose for the zero degree projection angle (DgN0), and the ratio of the glandular dose for non-zero projection angles to the glandular dose for the zero degree projection (the relative glandular dose, RGD(alpha)). It was found that DgN0 is higher for tungsten target x-ray spectra when compared with DgN0 values for molybdenum and rhodium target spectra of both equivalent tube voltage and first half value layer. Therefore, the DgN0 for the twelve tungsten target x-ray spectra and different breast compositions and compressed breast thicknesses simulated are reported. The RGD(alpha) values for the tungsten spectra vary with the parameters studied in a similar manner to that found for the molybdenum and rhodium target spectra. The surface fit equations and the fit coefficients for RGD(alpha) included in the previous study were also found to be appropriate for the tungsten spectra.
NASA Technical Reports Server (NTRS)
Bishop, Janice L.; Pieters, Carle M.
1995-01-01
Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrate and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O and adsorbed H2O. The spectal character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micrometers, 2.2 micrometers, 2.7 micrometers, 3 micrometers, and 6 micrometers are reported here in spetra measured under Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micrometer band depth is 8-17%; this band is much stonger under moist conditions. Under Marslike atmospheric conditions the 1.9-micrometer feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micrometer feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3- micrometer band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micromter band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials at 2.2-2.3 micrometers and 2.27 micrometers remain largely unaffected by the environmental conditions. A shift in the Christiansen feature towards shorter wavelengths has also been observed with decreasing atmospheric pressure and temperature in the midinfrared spectra of these samples.
NASA Astrophysics Data System (ADS)
Dzifčáková, Elena; Dudík, Jaroslav
2018-03-01
Context. Transition region (TR) spectra typically show the Si IV 1402.8 Å line to be enhanced by a factor of 5 or more compared to the neighboring O IV 1401.2 Å, contrary to predictions of ionization equilibrium models and the Maxwellian distribution of particle energies. Non-equilibrium effects in TR spectra are therefore expected. Aims: To investigate the combination of non-equilibrium ionization and high-energy particles, we apply the model of the periodic electron beam, represented by a κ-distribution that recurs at periods of several seconds, to plasma at chromospheric temperatures of 104 K. This simple model can approximate a burst of energy release involving accelerated particles. Methods: Instantaneous time-dependent charge states of silicon and oxygen were calculated and used to synthesize the instantaneous and period-averaged spectra of Si IV and O IV. Results: The electron beam drives the plasma out of equilibrium. At electron densities of Ne = 1010 cm-3, the plasma is out of ionization equilibrium at all times in all cases we considered, while for a higher density of Ne = 1011 cm-3, ionization equilibrium can be reached toward the end of each period, depending on the conditions. In turn, the character of the period-averaged synthetic spectra also depends on the properties of the beam. While the case of κ = 2 results in spectra with strong or even dominant O IV, higher values of κ can approximate a range of observed TR spectra. Spectra similar to typically observed spectra, with the Si IV 1402.8 Å line about a factor 5 higher than O IV 1401.2 Å, are obtained for κ = 3. An even higher value of κ = 5 results in spectra that are exclusively dominated by Si IV, with negligible O IV emission. This is a possible interpretation of the TR spectra of UV (Ellerman) bursts, although an interpretation that requires a density that is 1-3 orders of magnitude lower than for equilibrium estimates. Movies associated to Fig. A.1 are available at http://https://www.aanda.org
A Toolkit for Eye Recognition of LAMOST Spectroscopy
NASA Astrophysics Data System (ADS)
Yuan, H.; Zhang, H.; Zhang, Y.; Lei, Y.; Dong, Y.; Zhao, Y.
2014-05-01
The Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST, also named the Guo Shou Jing Telescope) has finished the pilot survey and now begun the normal survey by the end of 2012 September. There have already been millions of targets observed, including thousands of quasar candidates. Because of the difficulty in the automatic identification of quasar spectra, eye recognition is always necessary and efficient. However massive spectra identification by eye is a huge job. In order to improve the efficiency and effectiveness of spectra , a toolkit for eye recognition of LAMOST spectroscopy is developed. Spectral cross-correlation templates from the Sloan Digital Sky Survey (SDSS) are applied as references, including O star, O/B transition star, B star, A star, F/A transition star, F star, G star, K star, M1 star, M3 star,M5 star,M8 star, L1 star, magnetic white dwarf, carbon star, white dwarf, B white dwarf, low metallicity K sub-dwarf, "Early-type" galaxy, galaxy, "Later-type" galaxy, Luminous Red Galaxy, QSO, QSO with some BAL activity and High-luminosity QSO. By adjusting the redshift and flux ratio of the template spectra in an interactive graphic interface, the spectral type of the target can be discriminated in a easy and feasible way and the redshift is estimated at the same time with a precision of about millesimal. The advantage of the tool in dealing with low quality spectra is indicated. Spectra from the Pilot Survey of LAMSOT are applied as examples and spectra from SDSS are also tested from comparison. Target spectra in both image format and fits format are supported. For convenience several spectra accessing manners are provided. All the spectra from LAMOST pilot survey can be located and acquired via the VOTable files on the internet as suggested by International Virtual Observatory Alliance (IVOA). After the construction of the Simple Spectral Access Protocol (SSAP) service by the Chinese Astronomical Data Center (CAsDC), spectra can be obtained and analyzed in a more efficient way.
Johnson, J. R.; Lucey, P.G.; Horton, K.A.; Winter, E.M.
1998-01-01
Comparison of emissivity spectra (8-13 ??m) of pristine soils in the field with laboratory reflectance spectra of the same soils showed that laboratory spectra tend to have less spectral contrast than field spectra (see following article). We investigated this the phenomenon by measuring emission spectra of both undisturbed (in situ) and disturbed soils (prepared as if for transport to the laboratory). The disturbed soils had much less spectral contrast than the undisturbed soils in the reststrahlen region near 9 ??m. While the increased porosity of a disturbed soil can decrease spectral contrast due to multiple scattering, we hypothesize that the effect is dominantly the result of a difference in grain-size distribution of the optically active layer (i.e., fine particle coatings). This concept was proposed by Salisbury et al. (1994) to explain their observations that soils washed free of small particles adhering the larger grains exhibited greater spectral contrast than unwashed soils. Our laboratory reflectance spectra of wet- and dry-sieved soils returned from field sites also show greater spectral contrast for wet-sieved (washed) soils. We therefore propose that undisturbed soils in the field can be characterized as 'clean' soils (washed free of fine particles at the surface due to rain and wind action) and that disturbed soils represent 'dirty' soils (contaminated with fine particle coatings). The effect of packing soils in the field and laboratory also increases spectral contrast but not to the magnitude of that observed for undisturbed and wet-sieved soils. Since it is a common practice to use laboratory spectra of field samples to interpret spectra obtained remotely, we suggest that the influence of fine particle coatings on disturbed soils, if unrecognized, could influence interpretations of remote sensing data.Comparison of emissivity spectra (8-13 ??m) of pristine soils in the field with laboratory reflectance spectra of the same soils showed that laboratory spectra tend to have less spectral contrast than field spectra (see following article). We investigated this phenomenon by measuring emission spectra of both undisturbed (in situ) and disturbed soils (prepared as if for transport to the laboratory). The disturbed soils had much less spectral contrast than the undisturbed soils in the reststrahlen region near 9 ??m. While the increased porosity of a disturbed soil can decrease spectral contrast due to multiple scattering, we hypothesize that the effect is dominantly the result of a difference in grain-size distribution of the optically active layer (i.e., fine particle coatings). This concept was proposed by Salisbury et al. (1994) to explain their observations that soils washed free of small particles adhering to larger grains exhibited greater spectral contrast than unwashed soils. Our laboratory reflectance spectra of wet- and dry-sieved soils returned from field sites also show greater spectral contrast for wet-sieved (washed) soils. We therefore propose that undisturbed soils in the field can be characterized as `clean' soils (washed free of fine particles at the surface due to rain and wind action) and that disturbed soils represent `dirty' soils (contaminated with fine particle coatings). The effect of packing soils in the field and laboratory also increases spectral contrast but not to the magnitude of that observed for undisturbed and wet-sieved soils. Since it is a common practice to use laboratory spectra of field samples to interpret spectra obtained remotely, we suggest that the influence of fine particle coatings on disturbed soils, if unrecognized, could influence interpretations of remote sensing data.
Jaeger, Carsten; Méret, Michaël; Schmitt, Clemens A; Lisec, Jan
2017-08-15
A bottleneck in metabolic profiling of complex biological extracts is confident, non-supervised annotation of ideally all contained, chemically highly diverse small molecules. Recent computational strategies combining sum formula prediction with in silico fragmentation achieve confident de novo annotation, once the correct neutral mass of a compound is known. Current software solutions for automated adduct ion assignment, however, are either publicly unavailable or have been validated against only few experimental electrospray ionization (ESI) mass spectra. We here present findMAIN (find Main Adduct IoN), a new heuristic approach for interpreting ESI mass spectra. findMAIN scores MS 1 spectra based on explained intensity, mass accuracy and isotope charge agreement of adducts and related ionization products and annotates peaks of the (de)protonated molecule and adduct ions. The approach was validated against 1141 ESI positive mode spectra of chemically diverse standard compounds acquired on different high-resolution mass spectrometric instruments (Orbitrap and time-of-flight). Robustness against impure spectra was evaluated. Correct adduct ion assignment was achieved for up to 83% of the spectra. Performance was independent of compound class and mass spectrometric platform. The algorithm proved highly tolerant against spectral contamination as demonstrated exemplarily for co-eluting compounds as well as systematically by pairwise mixing of spectra. When used in conjunction with MS-FINDER, a state-of-the-art sum formula tool, correct sum formulas were obtained for 77% of spectra. It outperformed both 'brute force' approaches and current state-of-the-art annotation packages tested as potential alternatives. Limitations of the heuristic pertained to poorly ionizing compounds and cationic compounds forming [M] + ions. A new, validated approach for interpreting ESI mass spectra is presented, filling a gap in the nontargeted metabolomics workflow. It is freely available in the latest version of R package InterpretMSSpectrum. Copyright © 2017 John Wiley & Sons, Ltd.
Photon spectral characteristics of dissimilar 6 MV linear accelerators.
Hinson, William H; Kearns, William T; deGuzman, Allan F; Bourland, J Daniel
2008-05-01
This work measures and compares the energy spectra of four dosimetrically matched 6 MV beams, generated from four physically different linear accelerators. The goal of this work is twofold. First, this study determines whether the spectra of dosimetrically matched beams are measurably different. This study also demonstrates that the spectra of clinical photon beams can be measured as a part of the beam data collection process for input to a three-dimensional (3D) treatment planning system. The spectra of 6 MV beams that are dosimetrically matched for clinical use were studied to determine if the beam spectra are similarly matched. Each of the four accelerators examined had a standing waveguide, but with different physical designs. The four accelerators were two Varian 2100C/Ds (one 6 MV/18 MV waveguide and one 6 MV/10 MV waveguide), one Varian 600 C with a vertically mounted waveguide and no bending magnet, and one Siemens MD 6740 with a 6 MV/10 MV waveguide. All four accelerators had percent depth dose curves for the 6 MV beam that were matched within 1.3%. Beam spectra were determined from narrow beam transmission measurements through successive thicknesses of pure aluminum along the central axis of the accelerator, made with a graphite Farmer ion chamber with a Lucite buildup cap. An iterative nonlinear fit using a Marquardt algorithm was used to find each spectrum. Reconstructed spectra show that all four beams have similar energy distributions with only subtle differences, despite the differences in accelerator design. The measured spectra of different 6 MV beams are similar regardless of accelerator design. The measured spectra show excellent agreement with those found by the auto-modeling algorithm in a commercial 3D treatment planning system that uses a convolution dose calculation algorithm. Thus, beam spectra can be acquired in a clinical setting at the time of commissioning as a part of the routine beam data collection.
Ultrafast X-Ray Absorption Spectroscopy of Isochorically Heated Warm Dense Matter
NASA Astrophysics Data System (ADS)
Engelhorn, Kyle Craig
This dissertation will present a series of new tools, together with new techniques, focused on the understanding of warm and dense matter. We report on the development of a high time resolution and high detection efficiency x-ray camera. The camera is integrated with a short pulse laser and an x-ray beamline at the Advanced Light Source synchrotron. This provides an instrument for single shot, broadband x-ray absorption spectroscopy of warm and dense matter with 2 picosecond time resolution. Warm and dense matter is created by isochorically heating samples of known density with an ultrafast optical laser pulse, and X-ray absorption spectroscopy probes the unoccupied electronic density of states before the onset of hydrodynamic expansion and electron-ion equilibrium is reached. Measured spectra from a variety of materials are compared with first principle molecular dynamics and density functional theory calculations. In heated silicon dioxide spectra, two novel pre-edge features are observed, a peak below the band gap and absorption within the band gap, while a reduction was observed in the features above the edge. From consideration of the calculated spectra, the peak below the gap is attributed to valence electrons that have been promoted to the conduction band, the absorption within the gap is attributed to broken Si-O bonds, and the reduction above the edge is attributed to an elevated ionic temperature. In heated copper spectra, a time-dependent shift and broadening of the absorption edge are observed, consistent with and elevated electron temperature. The temporal evolution of the electronic temperature is accurately determined by fitting the measured spectra with calculated spectra. The electron-ion equilibration is studied with a two-temperature model. In heated nickel spectra, a shift of the absorption edge is observed. This shift is found to be inconsistent with calculated spectra and independent of incident laser fluence. A shift of the chemical potential is applied to the calculated spectra to obtain satisfactory agreement with measured spectra.
Evaluation of burst-mode LDA spectra with implications
NASA Astrophysics Data System (ADS)
Velte, Clara; George, William
2009-11-01
Burst-mode LDA spectra, as described in [1], are compared to spectra obtained from corresponding HWA measurements using the FFT in a round jet and cylinder wake experiment. The phrase ``burst-mode LDA'' refers to an LDA which operates with at most one particle present in the measuring volume at a time. Due to the random sampling and velocity bias of the LDA signal, the Direct Fourier Transform with accompanying weighting by the measured residence times was applied to obtain a correct interpretation of the spectral estimate. Further, the self-noise was removed as described in [2]. In addition, resulting spectra from common interpolation and uniform resampling techniques are compared to the above mentioned estimates. The burst-mode LDA spectra are seen to concur well with the HWA spectra up to the emergence of the noise floor, caused mainly by the intermittency of the LDA signal. The interpolated and resampled counterparts yield unphysical spectra, which are buried in frequency dependent noise and step noise, except at very high LDA data rates where they perform well up to a limited frequency.[4pt] [1] Buchhave, P. PhD Thesis, SUNY/Buffalo, 1979.[0pt] [2] Velte, C.M. PhD Thesis, DTU/Copenhagen, 2009.
de Groot, P J; Swierenga, H; Postma, G J; Melssen, W J; Buydens, L M C
2003-06-01
The combination of Raman and infrared spectroscopy on the one hand and wavelength selection on the other hand is used to improve the partial least-squares (PLS) prediction of seven selected yarn properties. These properties are important for on-line quality control during production. From 71 yarn samples, the Raman and infrared spectra are measured and reference methods are used to determine the selected properties. Making separate PLS models for all yarn properties using the Raman and infrared spectra, prior to wavelength selection, reveals that Raman spectroscopy outperforms infrared spectroscopy. If wavelength selection is applied, the PLS prediction error decreases and the correlation coefficient increases for all properties. However, a substantial wavelength selection effect is present for the infrared spectra compared to the Raman spectra. For the infrared spectra, wavelength selection results in PLS prediction errors comparable with the prediction performance of the Raman spectra prior to wavelength selection. Concatenating the Raman and infrared spectra does not enhance the PLS prediction performance, not even after wavelength selection. It is concluded that an infrared spectrometer, combined with a wavelength selection procedure, can be used if no (suitable) Raman instrument is available.
Atmospheric radiance interpolation for the modeling of hyperspectral data
NASA Astrophysics Data System (ADS)
Fuehrer, Perry; Healey, Glenn; Rauch, Brian; Slater, David; Ratkowski, Anthony
2008-04-01
The calibration of data from hyperspectral sensors to spectral radiance enables the use of physical models to predict measured spectra. Since environmental conditions are often unknown, material detection algorithms have emerged that utilize predicted spectra over ranges of environmental conditions. The predicted spectra are typically generated by a radiative transfer (RT) code such as MODTRAN TM. Such techniques require the specification of a set of environmental conditions. This is particularly challenging in the LWIR for which temperature and atmospheric constituent profiles are required as inputs for the RT codes. We have developed an automated method for generating environmental conditions to obtain a desired sampling of spectra in the sensor radiance domain. Our method provides a way of eliminating the usual problems encountered, because sensor radiance spectra depend nonlinearly on the environmental parameters, when model conditions are specified by a uniform sampling of environmental parameters. It uses an initial set of radiance vectors concatenated over a set of conditions to define the mapping from environmental conditions to sensor spectral radiance. This approach enables a given number of model conditions to span the space of desired radiance spectra and improves both the accuracy and efficiency of detection algorithms that rely upon use of predicted spectra.
Hara, Risa; Ishigaki, Mika; Kitahama, Yasutaka; Ozaki, Yukihiro; Genkawa, Takuma
2018-08-30
The difference in Raman spectra for different excitation wavelengths (532 nm, 785 nm, and 1064 nm) was investigated to identify an appropriate wavelength for the quantitative analysis of carotenoids in tomatoes. For the 532 nm-excited Raman spectra, the intensity of the peak assigned to the carotenoid has no correlation with carotenoid concentration, and the peak shift reflects carotenoid composition changing from lycopene to β-carotene and lutein. Thus, 532 nm-excited Raman spectra are useful for the qualitative analysis of carotenoids. For the 785 nm- and 1064 nm-excited Raman spectra, the peak intensity of the carotenoid showed good correlation with carotenoid concentration; thus, regression models for carotenoid concentration were developed using these Raman spectra and partial least squares regression. A regression model designed using the 785 nm-excited Raman spectra showed a better result than the 532 nm- and 1064 nm-excited Raman spectra. Therefore, it can be concluded that 785 nm is the most suitable excitation wavelength for the quantitative analysis of carotenoid concentration in tomatoes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thermal denaturation of protein studied by terahertz time-domain spectroscopy
NASA Astrophysics Data System (ADS)
Fu, Xiuhua; Li, Xiangjun; Liu, Jianjun; Du, Yong; Hong, Zhi
2012-12-01
In this study, the absorption spectra of native or thermal protein were measured in 0.2-1.4THz using terahertz time-domain spectroscopy (THz-TDS) system at room temperature, their absorption spectra and the refractive spectra were obtained. Experimental results indicate that protein both has strong absorption but their characteristics were not distinct in the THz region, and the absorption decreased during thermal denatured state. In order to prove protein had been denatured, we used Differential scanning calorimeter (DSC) measured their denatured temperature, from their DSC heating traces, collagen Td=101℃, Bovine serum albumin Td=97℃. While we also combined the Fourier transform infrared spectrometer (FTIR) to investigate their secondary and tertiary structure before and after denatuation, but the results did not have the distinct changes. We turned the absorption spectra and the refractive spectra to the dielectric spectra, and used the one-stage Debye model simulated the terahertz dielectric spectra of protein before and after denaturation. This research proved that the terahertz spectrum technology is feasible in testing protein that were affected by temperature or other factors which can provide theoretical foundation in the further study about the THz spectrum of protein and peptide temperature stability.
Time-resolved spectroscopic measurements behind incident and reflected shock waves in air and xenon
NASA Technical Reports Server (NTRS)
Yoshinaga, T.
1973-01-01
Time-resolved spectra have been obtained behind incident and reflected shock waves in air and xenon at initial pressures of 0.1 and 1.0 torr using a rotating drum spectrograph and the OSU (The Ohio State University) arc-driven shock tube. These spectra were used to determine the qualitative nature of the flow as well as for making estimates of the available test time. The (n+1,n) and (n,n) band spectra of N2(+) (1st negative) were observed in the test gas behind incident shock waves in air at p1=1.0 torr and Us=9-10 km/sec. Behind reflected shock waves in air, the continuum of spectra appeared to cover almost the entire wavelength of 2,500-7,000 A for the shock-heated test gas. For xenon, the spectra for the incident shock wave cases for p1=0.1 torr show an interesting structure in which two intensely bright regions are witnessed in the time direction. The spectra obtained behind reflected shock waves in xenon were also dominated by continuum radiation but included strong absorption spectra due to FeI and FeII from the moment the reflected shock passed and on.
LSD-based analysis of high-resolution stellar spectra
NASA Astrophysics Data System (ADS)
Tsymbal, V.; Tkachenko, A.; Van, Reeth T.
2014-11-01
We present a generalization of the method of least-squares deconvolution (LSD), a powerful tool for extracting high S/N average line profiles from stellar spectra. The generalization of the method is effected by extending it towards the multiprofile LSD and by introducing the possibility to correct the line strengths from the initial mask. We illustrate the new approach by two examples: (a) the detection of astroseismic signatures from low S/N spectra of single stars, and (b) disentangling spectra of multiple stellar objects. The analysis is applied to spectra obtained with 2-m class telescopes in the course of spectroscopic ground-based support for space missions such as CoRoT and Kepler. Usually, rather high S/N is required, so smaller telescopes can only compete successfully with more advanced ones when one can apply a technique that enables a remarkable increase in the S/N of the spectra which they observe. Since the LSD profiles have a potential for reconstruction what is common in all the spectral profiles, it should have a particular practical application to faint stars observed with 2-m class telescopes and whose spectra show remarkable LPVs.
Detection of carbon monoxide (CO) as a furnace byproduct using a rotating mask spectrometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, Michael B.; Flemming, Jeb Hunter; Blair, Raymond
2006-02-01
Sandia National Laboratories, in partnership with the Consumer Product Safety Commission (CPSC), has developed an optical-based sensor for the detection of CO in appliances such as residential furnaces. The device is correlation radiometer based on detection of the difference signal between the transmission spectrum of the sample multiplied by two alternating synthetic spectra (called Eigen spectra). These Eigen spectra are derived from a priori knowledge of the interferents present in the exhaust stream. They may be determined empirically for simple spectra, or using a singular value decomposition algorithm for more complex spectra. Data is presented on the details of themore » design of the instrument and Eigen spectra along with results from detection of CO in background N{sub 2}, and CO in N{sub 2} with large quantities of interferent CO{sub 2}. Results indicate that using the Eigen spectra technique, CO can be measured at levels well below acceptable limits in the presence of strongly interfering species. In addition, a conceptual design is presented for reducing the complexity and cost of the instrument to a level compatible with consumer products.« less
Bahreyni Toossi, M T; Moradi, H; Zare, H
2008-01-01
In this work, the general purpose Monte Carlo N-particle radiation transport computer code (MCNP-4C) was used for the simulation of X-ray spectra in diagnostic radiology. The electron's path in the target was followed until its energy was reduced to 10 keV. A user-friendly interface named 'diagnostic X-ray spectra by Monte Carlo simulation (DXRaySMCS)' was developed to facilitate the application of MCNP-4C code for diagnostic radiology spectrum prediction. The program provides a user-friendly interface for: (i) modifying the MCNP input file, (ii) launching the MCNP program to simulate electron and photon transport and (iii) processing the MCNP output file to yield a summary of the results (relative photon number per energy bin). In this article, the development and characteristics of DXRaySMCS are outlined. As part of the validation process, output spectra for 46 diagnostic radiology system settings produced by DXRaySMCS were compared with the corresponding IPEM78. Generally, there is a good agreement between the two sets of spectra. No statistically significant differences have been observed between IPEM78 reported spectra and the simulated spectra generated in this study.
Measurement of CIB power spectra over large sky areas from Planck HFI maps
NASA Astrophysics Data System (ADS)
Mak, Daisy Suet Ying; Challinor, Anthony; Efstathiou, George; Lagache, Guilaine
2017-04-01
We present new measurements of the power spectra of the cosmic infrared background (CIB) anisotropies using the Planck 2015 full-mission High frequency instrument data at 353, 545 and 857 GHz over 20 000 deg2. We use techniques similar to those applied for the cosmological analysis of Planck, subtracting dust emission at the power spectrum level. Our analysis gives stable solutions for the CIB power spectra with increasing sky coverage up to about 50 per cent of the sky. These spectra agree well with H I-cleaned spectra from Planck measured on much smaller areas of sky with low Galactic dust emission. At 545 and 857 GHz, our CIB spectra agree well with those measured from Herschel data. We find that the CIB spectra at ℓ ≳ 500 are well fitted by a power-law model for the clustered CIB, with a shallow index γcib = 0.53 ± 0.02. This is consistent with the CIB results at 217 GHz from the cosmological parameter analysis of Planck. We show that a linear combination of the 545 and 857 GHz Planck maps is dominated by the CIB fluctuations at multipoles ℓ ≳ 300.
Drooghaag, Xavier; Marchand-Brynaert, Jacqueline; Champagne, Benoît; Liégeois, Vincent
2010-09-16
The synthesis and the separation of the four stereoisomers of 2,4,6,8,10-pentamethylundecane (PMU) are described together with their characterization by Raman spectroscopy. In parallel, theoretical calculations of the Raman and vibrational Raman optical activity (VROA) spectra are reported and analyzed in relation with the recorded spectra. A very good agreement is found between the experimental and theoretical spectra. The Raman spectra are also shown to be less affected by the change of configuration than the VROA spectra. Nevertheless, by studying the overlap between the theoretical Raman spectra, we show clear relationships between the spectral fingerprints and the structures displaying a mixture of the TGTGTGTG conformation of the (4R,6s,8S)-PMU (isotactic compound) with the TTTTTTTT conformation of the (4R,6r,8S)-PMU (syndiotactic compound). Then, the fingerprints of the VROA spectra of the five conformers of the (4R,8R)-PMU have been related to the fingerprints of the regular (TG)(N) isotactic compound as a function of the torsion angles. Since the (TT)(N) syndiotactic compound has no VROA signatures, the VROA spectroscopy is very sensitive to the helical structures, as demonstrated here.
pH titration monitored by quantum cascade laser-based vibrational circular dichroism.
Rüther, Anja; Pfeifer, Marcel; Lórenz-Fonfría, Víctor A; Lüdeke, Steffen
2014-04-10
Vibrational circular dichroism (VCD) spectra of aqueous solutions of proline were recorded in the course of titrations from basic to acidic pH using a spectrometer equipped with a quantum cascade laser (QCL) as an infrared light source in the spectral range from 1320 to 1220 cm(-1). The pH-dependent spectra were analyzed by singular value decomposition and global fitting of a two-pK Henderson-Hasselbalch model. The analysis delivered relative fractions of the three different protonation species. Their agreement with the relative fractions obtained from performing the same analysis on pH-dependent Fourier transform infrared (FT-IR) and QCL-IR spectra validates the quantitative results from QCL-VCD. Global fitting of the pH-dependent VCD spectra of L-proline allowed for extraction of pure spectra corresponding to anionic, zwitterionic, and cationic L-proline. From a static experiment, only pure spectra of the zwitterion would be accessible in a straightforward way. A comparison to VCD spectra calculated for all three species led to assignment of vibrational modes that are characteristic for the respective protonation states. The study demonstrates the applicability of QCL-VCD both for quantitative evaluation and for qualitative interpretation of dynamic processes in aqueous solutions.
Symmetry Breaking and the B3LYP Functional
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Hudgins, Douglas M.; Allamandola, Louis J.; Arnold, James O. (Technical Monitor)
1999-01-01
The infrared spectra of six molecules, each of which contains a five-membered ring, and their cations are determined using density functional theory (DFT); both the B3LYP and BP86 functionals are used. The computed results are compared with the experimental spectra. For the neutral molecules, both methods are in good agreement with experiment. Even the Hartree-Fock (HF) approach is qualitatively correct for the neutrals. For the cations, the HF approach fails, as found for other organic ring systems. The B3LYP and BP86 approaches are in good mutual agreement for five of the six cation spectra, and in good agreement with experiment for four of the five cations where the experimental spectra are available. It is only for the fluoranthene cation, where the BP86 and B3LYP functionals yield different results; the BP86 yields the expected C2v symmetry, while the B3LYP approach breaks symmetry. The experimental spectra supports the BP86 spectra over the B3LYP, but the quality of the experimental spectra does not allow a critical evaluation of the accuracy of the BP86 approach for this difficult system.
Compositional, Atomic and Molecular Analysis in Support of Materials Needs of the U.S. Air Force.
1982-09-01
internally hydrogen-bonded monomer in .which the keto group is involved in the hydrogen bond but the acid carbonyl is not. 3 ) 3 - Bromopyruvic Acid...The spectra and structure of 3 - bromopyruvic acid were investigated and compared to those of pyruvic acid. It has been found that the spectra of 3 ...phase, cyclic monomer in dilute solution). The solid state spectra are quite different, however. The solid states spectra of 3 - bromopyruvic acid show a
Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals
NASA Astrophysics Data System (ADS)
Kirillov, D.; Bozovic, I.; Geballe, T. H.; Kapitulnik, A.; Mitzi, D. B.
1988-12-01
Raman spectra of Bi2Sr2CaCu2O8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi2Sr2CaCu2O8 and YBa2Cu3O7 was found.
CCD reflectance spectra of selected asteroids. I - Presentation and data analysis considerations
NASA Technical Reports Server (NTRS)
Vilas, Faith; Mcfadden, Lucy A.
1992-01-01
Narrowband reflectance spectra have been acquired which contribute to the library of asteroid data in the visible and near-IR spectral regions. The spectra support the existence of aqueous alteration products on asteroids located in the outer part of the main asteroid belt out to at least 4 AU. No evidence for features similar to the spectral features of ordinary chondrite meteorites was found in the spectra of asteroids located near the 3:1 Kirkwood Gap chaotic zone.
Method for calibrating mass spectrometers
Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA
2002-12-24
A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.
Computer Processing Of Tunable-Diode-Laser Spectra
NASA Technical Reports Server (NTRS)
May, Randy D.
1991-01-01
Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.
Primary Cosmic-Ray Spectra in the Knee Region
NASA Astrophysics Data System (ADS)
Ter-Antonyan, Samvel V.; Biermann, P. L.
2003-07-01
Using EAS inverse approach and KASCADE EAS data the primary energy spectra for different primary nuclei at energies 1015 - 1017 eV are obtained in the framework of multi-comp onent model of primary cosmic ray origin and QGSJET and SIBYLL interaction models. The rigidity-dep endent behavior of spectra is the same for two interaction models. The extrap olation of the obtained primary spectra in a 1017 - 1018 eV energy range displays a presence of the extragalactic component of primary cosmic rays.
VizieR Online Data Catalog: Spectra of a Holmium in the near-UV. I. Ho I. (Al-Labady+, 2017)
NASA Astrophysics Data System (ADS)
Al-Labady, N.; Ozdalgic, B.; Er, A.; Guzelcimen, F.; Ozturk, I. K.; Kroger, S.; Kruzins, A.; Tamanis, M.; Ferber, R.; Basar, G.
2017-04-01
The high-resolution spectra of Holmium (Ho) were recorded with a Fourier Transform spectrometer IFS125 HR at the Laser Centre of the University of Latvia in Riga. Two Ho spectra were recorded, one with argon (Ar) as a buffer gas and one with neon (Ne). The spectra cover the ultraviolet spectral range from 25000 up to 31530cm-1, or 317 to 400nm, respectively. (1 data file).
Berlin Reflectance Spectral Library (BRSL)
NASA Astrophysics Data System (ADS)
Henckel, D.; Arnold, G.; Kappel, D.; Moroz, L. V.; Markus, K.
2017-09-01
The Berlin Reflectance Spectral Library (BRSL) provides a collection of reflectance spectra between 0.3 and 17 µm. It was originally dedicated to support space missions to small solar system bodies. Meanwhile the library includes selections of biconical reflectance spectra for spectral data analysis of other planetary bodies as well. The library provides reference spectra of well-characterized terrestrial analogue materials and meteorites for interpretation of remote sensing reflectance spectra of planetary surfaces. We introduce the BRSL, summarize the data available, and access to use them for further relevant applications.
Terahertz spectral characteristics of two kinds of important functional oligosaccharides
NASA Astrophysics Data System (ADS)
Li, Ge; Liu, Wei; Wang, Wenai
2018-01-01
The absorption spectra of two kinds of important functional oligosaccharides were firstly acquired based on Fourier transform infrared spectroscopy in the range of 0.15-10THz. The simulation results of their infrared spectra were given based on Gaussian software, which were in good agreement with the experiment results. The rotation spectra and some perssad vibration spectra of these molecules were analyzed, and their absorption peaks were exactly identified. The components information was obtained by comparing the simulation results of different molecules.
Substituent and solvent effects on electronic spectra of some substituted phenoxyacetic acids.
Shanthi, M; Kabilan, S
2007-06-01
The effects of substituents and solvents have been studied through the absorption spectra of nearly 19 para- and ortho-substituted phenoxyacetic acids in the range of 200-400 nm. The effects of substituent on the absorption spectra of compounds under present investigation are interpreted by correlation of absorption frequencies with simple and extended Hammett equations. Effect of solvent polarity and hydrogen bonding on the absorption spectra are interpreted by means of Kamlet equation and the results are discussed.
Substituent and solvent effects on electronic spectra of some substituted phenoxyacetic acids
NASA Astrophysics Data System (ADS)
Shanthi, M.; Kabilan, S.
2007-06-01
The effects of substituents and solvents have been studied through the absorption spectra of nearly 19 para- and ortho-substituted phenoxyacetic acids in the range of 200-400 nm. The effects of substituent on the absorption spectra of compounds under present investigation are interpreted by correlation of absorption frequencies with simple and extended Hammett equations. Effect of solvent polarity and hydrogen bonding on the absorption spectra are interpreted by means of Kamlet equation and the results are discussed.
NASA Astrophysics Data System (ADS)
Suganya, Krishnasamy; Kabilan, Senthamaraikannan
2004-04-01
The effects of substituents and solvents have been studied through the absorption spectra of nearly 23 ortho- and para-N-(substitutedphenyl)benzene sulphonamides in the range of 200-400 nm. The effects of substituents on the absorption spectra of compounds under present investigation are interpreted by correlation of absorption frequencies with simple and extended Hammett equations. Effect of solvent polarity and hydrogen bonding on the absorption spectra are interpreted by means of Kamlet equation and the results are discussed.
Study on Properties of Energy Spectra of the Molecular Crystals
NASA Astrophysics Data System (ADS)
Pang, Xiao-Feng; Chen, Xiang-Rong
The energy-spectra of nonlinear vibration of molecular crystals such as acetanilide have been calculated by using discrete nonlinear Schrödinger equation appropriate to the systems, containing various interactions. The energy levels including higher excited states are basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide. We further give the features of distribution of the energy-spectra for the acetanilide. Using the energy spectra we also explained well experimental results obtained by Careri et al..
National Institute of Standards and Technology Data Gateway
SRD 69 NIST Chemistry WebBook (Web, free access) The NIST Chemistry WebBook contains: Thermochemical data for over 7000 organic and small inorganic compounds; thermochemistry data for over 8000 reactions; IR spectra for over 16,000 compounds; mass spectra for over 33,000 compounds; UV/Vis spectra for over 1600 compounds; electronic and vibrational spectra for over 5000 compounds; constants of diatomic molecules(spectroscopic data) for over 600 compounds; ion energetics data for over 16,000 compounds; thermophysical property data for 74 fluids.
The vibrational spectra and structure of 4-methyl oxaloacetate (carbomethoxypyruvic acid)
NASA Astrophysics Data System (ADS)
Schiering, David W.; Katon, J. E.
1986-04-01
The vibrational spectra of solid 4-methyl oxalocetate have been recorded. Infrared spectra were collected at ambient and liquid nitrogen temperatures; Raman spectra were collected at ambient temperature only. A tentative vibrational assignment of the solid is proposed based on a dimer structure composed of two enolic monomer units hydrogen bonded through the carboxylic acid group. 4-Methyl oxaloacetate was found to undergo keto—enol tautomerization in solution, and the solvent dependency of this equilibrium was demonstrated.
Data Processing Algorithm for Diagnostics of Combustion Using Diode Laser Absorption Spectrometry.
Mironenko, Vladimir R; Kuritsyn, Yuril A; Liger, Vladimir V; Bolshov, Mikhail A
2018-02-01
A new algorithm for the evaluation of the integral line intensity for inferring the correct value for the temperature of a hot zone in the diagnostic of combustion by absorption spectroscopy with diode lasers is proposed. The algorithm is based not on the fitting of the baseline (BL) but on the expansion of the experimental and simulated spectra in a series of orthogonal polynomials, subtracting of the first three components of the expansion from both the experimental and simulated spectra, and fitting the spectra thus modified. The algorithm is tested in the numerical experiment by the simulation of the absorption spectra using a spectroscopic database, the addition of white noise, and the parabolic BL. Such constructed absorption spectra are treated as experimental in further calculations. The theoretical absorption spectra were simulated with the parameters (temperature, total pressure, concentration of water vapor) close to the parameters used for simulation of the experimental data. Then, spectra were expanded in the series of orthogonal polynomials and first components were subtracted from both spectra. The value of the correct integral line intensities and hence the correct temperature evaluation were obtained by fitting of the thus modified experimental and simulated spectra. The dependence of the mean and standard deviation of the evaluation of the integral line intensity on the linewidth and the number of subtracted components (first two or three) were examined. The proposed algorithm provides a correct estimation of temperature with standard deviation better than 60 K (for T = 1000 K) for the line half-width up to 0.6 cm -1 . The proposed algorithm allows for obtaining the parameters of a hot zone without the fitting of usually unknown BL.
THE SPITZER ATLAS OF STELLAR SPECTRA (SASS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech
2010-12-15
We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 {mu}m; R {approx} 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, themore » spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.« less
The Spitzer Atlas of Stellar Spectra (SASS)
NASA Astrophysics Data System (ADS)
Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech; Stauffer, John; Song, Inseok; Rho, Jeonghee; Fajardo-Acosta, Sergio; Hoard, D. W.; Wachter, Stefanie
2010-12-01
We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 μm R ~ 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.
Jeannerat, Damien
2017-01-01
The introduction of a universal data format to report the correlation data of 2D NMR spectra such as COSY, HSQC and HMBC spectra will have a large impact on the reliability of structure determination of small organic molecules. These lists of assigned cross peaks will bridge signals found in NMR 1D and 2D spectra and the assigned chemical structure. The record could be very compact, human and computer readable so that it can be included in the supplementary material of publications and easily transferred into databases of scientific literature and chemical compounds. The records will allow authors, reviewers and future users to test the consistency and, in favorable situations, the uniqueness of the assignment of the correlation data to the associated chemical structures. Ideally, the data format of the correlation data should include direct links to the NMR spectra to make it possible to validate their reliability and allow direct comparison of spectra. In order to take the full benefits of their potential, the correlation data and the NMR spectra should therefore follow any manuscript in the review process and be stored in open-access database after publication. Keeping all NMR spectra, correlation data and assigned structures together at all time will allow the future development of validation tools increasing the reliability of past and future NMR data. This will facilitate the development of artificial intelligence analysis of NMR spectra by providing a source of data than can be used efficiently because they have been validated or can be validated by future users. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Conversion of 3-imidazoline-3-oxide nitroxyl radicals into nitronylnitroxyl radicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigor'ev, I.A.; Shchukin, G.I.; Khramtsov, V.V.
1986-04-20
Continuing the studies of the effect of the pH of the medium on the EPR spectra of nitroxyl radicals (NR) containing acid-base functional groups at a distance of 2-3 sigma-bonds from the radical center, they have examined the EPR spectra of NR, which contain OH groups in the 2-position of the heterocycle. It is assumed that deprotonation of the OH group is accompanied by changes in the hfc constant a/sub N//sup 1/ and the g-factor. At pH values greater than or equal to 12, however, the EPR spectra of aqueous solutions of radicals undergo irreversible changes from a triplet tomore » a more complex multiplet, similar to the spectra of nitronylnitroxyl radicals. The EPR spectra of these solutions remain unchanged over periods of several days. The spectra have a quintet structure, with further splitting into four or three components. When similar experiments are carried out in D/sub 2/O, the additional hfs disappear as a result of deuterium exchange in the CH/sub 2/ and CH/sub 3/ groups of the radicals. A simulation of the EPR spectra was carried out, assuming splitting into two N nuclei (a/sub N//sup 1/ and a/sub N//sup 3/), with three or two equivalent H. This resulted in complete agreement between the calculated and experimental spectra. In order to assign the nitrogen hfc constants, they synthesized radicals containing the N/sup 15/ isotope in the 3-position of the imidazole ring. Comparison of the results of simulations of the EPR spectra enabled unambiguous assignments of the hfc constants a/sub N//sup 1/ and a/sub N//sup 3/ to be made.« less
Kim, Jaehyup; Joseph, Ranjit; Matevosyan, Karen; Sarode, Ravi
2016-12-01
Spectra Optia (Terumo BCT, Lakewood, CO) was FDA approved for red blood cell exchange (RBCx) procedures in January 2014 and is expected to replace COBE spectra (Terumo BCT) very soon in the USA. The performance characteristics of these devices for Isovolemic Hemodilution (IHD-RBCx) procedure were compared in this study. A total of 114 IHD-RBCx procedures from 19 patients were analyzed. For every patient, three procedures on each device with similar pre-procedure hematocrits were compared. Pre and post procedure laboratory parameters compared were hemoglobin S (HbS), hematocrits (Hct), platelet counts and fraction of cells remaining (FCR). Statistical analysis was performed using t-test adjusted by the Holm-Bonferroni method to reduce family-wise error rate. There were no significant differences between these two devices in regards to HbS, Hct, FCR and platelet counts (p = > 0.05). However, rinseback volume (124.2 ± 8.9 ml) and normal saline replacement volume during IHD phase (296.1 ± 97.2 ml) were lower in Spectra Optia as compared to COBE Spectra (337 ± 33.8 ml and 326.6 ± 105.2 ml, p value <0.001 and 0.030 respectively). Spectra Optia had a longer run time (107.1 ± 15.9 min vs 123.8 ± 19.6 min, p value <0.001) overall. Performance characteristics of Spectra Optia for HbS, Hct and FCR were similar to COBE Spectra for IHD-RBCx. IHD-RBCx procedure on Optia required less normal saline replacement volume and rinse back volume but with overall longer procedure run time. Copyright © 2016. Published by Elsevier Ltd.
Spectra of clinical CT scanners using a portable Compton spectrometer.
Duisterwinkel, H A; van Abbema, J K; van Goethem, M J; Kawachimaru, R; Paganini, L; van der Graaf, E R; Brandenburg, S
2015-04-01
Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.
Poullin, Pascale; Sanderson, Frederick; Bernit, Emmanuelle; Brun, Marion; Berdah, Yael; Badens, Catherine
2016-10-01
This study aims to compare in patients with sickle cell disease (SCD), the technical performance and packed red blood cell unit consumption between the automated depletion/Red Blood Cell exchange (RBCx) program (Spectra Optia Apheresis System) with the isovolemic hemodilution (IHD)/RBCx procedure (COBE Spectra Apheresis System) in a routine clinical setting. We retrospectively reviewed the data of 23 patients treated between October 2010 and August 2013 who underwent repeated RBCx on both apheresis systems for preventive indications. Each patient was their own control and had undergone two procedures on each system, totaling 46 sessions per group. On Spectra Optia, we performed the automated depletion/RBCx program. For COBE Spectra, we used a modified IHD/RBCx protocol. All patients had an initial 250 mL depletion offset by a 5% albumin prior to the exchange procedure, for the respective device, with leucodepleted Rh/Kell compatible and cross-matched RBC packs. All procedures were well tolerated except three mild febrile nonhemolytic reactions. Postprocedure hemoglobin S (HbS), fraction of cells remaining (FCR), procedure duration and processed blood and anticoagulant volumes were comparable in the two groups. However, the RBCx volume was significantly higher for the Spectra Optia group (+71 mL, P = 0.01), with no significant difference in the number of RBC units used. Technical performance and packed RBC unit consumption were not compromised when switching from the COBE Spectra IHD/RBCx protocol to the depletion/RBCx protocol on the Spectra Optia. Tolerability was equal for both protocols. J. Clin. Apheresis 31:429-433, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Therapeutic plasma exchange: a paired comparison of Fresenius AS104 vs. COBE Spectra.
Burgstaler, E A; Pineda, A A
2001-01-01
For therapeutic plasma exchange (TPE), continuous flow separators are known to be efficient as exemplified by Fresenius AS104 and COBE Spectra. The AS104 uses an interface monitoring system in the centrifuge during TPE, whereas Spectra uses computer algorithms to establish the plasma-cell interface. To determine the plasma collection efficiency (PLCE), anticoagulant (AC) volumes used, and platelets (PLT) lost of the AS104 and the Spectra, we performed a prospective paired comparison of 20 TPE (each machine). The study included 17 patients, 1.3 plasma volume exchanges (without AC), equal inlet rates, and AC ratio of 13:1. Processing times did not include reinfuse mode. Platelet loss was determined by sampling the collection bags. Inlet rates were between 60-110 ml/min. Diagnosis included peripheral neuropathies, TTP and cryoglobulinemia. The AS104 had significantly (P<0.0001) lower average whole blood processed (F:6,601 vs. S:8,584 ml), AC volume (F:532 vs. S:719 ml), and processing time (F:80 vs. S:102 minutes) than Spectra. The AS104 had significantly (P<0.0001) higher average plasma flow rates (F:53 vs. S:44 ml/minute), plasma collection efficiency (F:90 vs. S:69%), and platelet loss (F:2.0 vs. S:0.14 x 10(11) plt) than Spectra. Platelet loss correlated with inlet flow rate with the AS104 but not with the Spectra. The AS104 has a significantly higher collection efficiency than Spectra allowing it to remove the same amount of plasma in significantly less time, by processing significantly less blood, using significantly less AC, but removing significantly more platelets than Spectra. Copyright 2001 Wiley-Liss, Inc.
Fletcher, Joe B.; McGarr, A.
2011-01-01
By averaging the spectra of events within two episodes of tremor (on Jan. 21 and 24, 2005) across the 12 stations of UPSAR, we improved the S/N sufficiently to define source spectra. Analysis of eleven impulsive events revealed attenuation-corrected spectra of displacement similar to those of earthquakes, with a low-frequency plateau, a corner frequency, and a high frequency decay proportional to f−2. Seismic moments, M0, estimated from these spectra range from about 3 to 10 × 1011 N-m or moment magnitudes in the range 1.6 to 1.9. The corner frequencies range from 2.6 to 7.2 Hz and, if interpreted in the same way as for earthquakes, indicate low stress drops that vary from 0.001 to 0.04 MPa. Seismic energies, estimated from the ground motion spectra, vary from 0.2 × 105 to 4.4 × 105 J, or apparent stresses in the range 0.002 to 0.02 MPa. The low stress parameters are consistent with a weak fault zone in the lower crust at the depth of tremor. In contrast, the same analysis on a micro-earthquake, located near Cholame (depth = 10.3 km), revealed a stress drop of 0.5 MPa and an apparent stress of 0.02 MPa. Residual spectra from ω−2 model fits to the displacement spectra of the non-volcanic tremor events show peaks near 4 Hz that are not apparent in the spectra for the microearthquake nor for the spectrum of earth noise. These spectral peaks may indicate that tremor entails more than shear failure reminiscent of mechanisms, possibly entailing fluid flow, associated with volcanic tremor or deep volcanic earthquakes.
NASA Astrophysics Data System (ADS)
Nave, Gillian
I propose to measure wavelengths and energy levels for the spectra of Cr I, Mn I, and Mn III covering the wavelength range 80 nm to 5500 nm, and oscillator strengths for Fe II and Cr II in the region 120 nm to 2500 nm. I shall also produce intensity calibrated atlases and linelists of the iron-neon and chromium-neon hollow cathode lamps that can be compared with astrophysical spectra. The spectra will be obtained from archival data from spectrometers at NIST and Kitt Peak National Observatory and additional experimental observations as necessary from Fourier transform (FT) and grating spectrometers at NIST. The wavelength uncertainty of the strong lines will be better than 1 part in 10^7. The radiometric calibration of the spectra will be improved in order to reduce the uncertainty of measured oscillator strengths in the near UV region and extend the wavelength range of these measurements down to 120 nm. These will complement and support the measurements of lifetimes and branching fractions by J. E. Lawler in the near UV region. An intensive effort by NIST and Imperial College London that was partly funded by previous NASA awards has resulted in comprehensive analyses of the spectra of Fe II, Cr II and Cu II, with similar analyses of Mn II, Ni II, and Sc II underway. The species included in this proposal will complete the analysis of the first two ionization stages of the elements titanium through nickel using the same techniques, and add the spectrum of Mn III - one of the most important doubly-ionized elements. The elements Cr I and Mn I give large numbers of spectral lines in spectra of cool stars and important absorption lines in the interstellar medium. The spectrum of Mn III is important in chemically peculiar stars and can often only be studied in the UV region. Analyses of many stellar spectra depend on comprehensive analyses of iron-group elements and are hampered by incomplete spectroscopic data. As a result of many decades of work by the group at the University of WisconsinMadison (UW) accurate lifetimes exist for many of the most important levels of the irongroup elements needed for the interpretation of astrophysical spectra. The accuracy of the oscillator strengths is now limited by the accuracy of the branching fractions, particularly when the branches from an upper level span a wide wavelength range that requires multiple calibration lamps. A laser-driven light source as a calibration lamp will reduce the calibration uncertainty in the UV region. Our FT and grating spectrometers will be used to extend the wavelength region of the measurements from 120 nm to 2500 nm. Fe II and Cr II give thousands of lines in the UV stellar spectra but accurate oscillator strengths are available only for a few hundred in each species. Many lines remain unidentified in the laboratory spectra of Fe/Ne and Cr/Ne hollow cathode lamps that correspond to lines in stellar spectra. The proposed atlases and linelists of these lamps will assist astronomers in confirming the species of these spectra lines and help them to identify lines of other elements in stellar spectra that are not blended with iron or chromium lines. These measurements will be of importance in interpreting spectra obtained from many current and future NASA missions including the Hubble Space Telescope, the James Webb Space Telescope and SOFIA. They will be particularly important in the analysis of spectra from the ASTRAL project - a large HST Treasury program that recorded the spectra of 29 bright and characteristic stars at high resolution and high signal-to-noise ratio. They will also be important for the interpretation of spectra from ground-based optical and infrared spectrographs. The proposed work thus supports the NASA Objective to explore the universe to understand its origin, structure, evolution and destiny
NASA Astrophysics Data System (ADS)
Hieu, Hoang Chi; Li, Hongyan; Miyauchi, Yoshihiro; Mizutani, Goro; Fujita, Naoko; Nakamura, Yasunori
2015-03-01
We report a sum frequency generation (SFG) spectroscopy study of D-glucose, D-fructose and sucrose in the Csbnd H stretching vibration regime. Wetting effect on the SFG spectra was investigated. The SFG spectrum of D-glucose changed from that of α-D-glucose into those of α-D-glucose monohydrate by wetting. The SFG spectra showed evidence of a small change of β-D-fructopyranose into other anomers by wetting. SFG spectra of sucrose did not change by wetting. Assignments of the vibrational peaks in the SFG spectra of the three sugars in the dry and wet states were performed in the Csbnd H stretching vibration region near 3000 cm-1.
Hieu, Hoang Chi; Li, Hongyan; Miyauchi, Yoshihiro; Mizutani, Goro; Fujita, Naoko; Nakamura, Yasunori
2015-03-05
We report a sum frequency generation (SFG) spectroscopy study of d-glucose, d-fructose and sucrose in the CH stretching vibration regime. Wetting effect on the SFG spectra was investigated. The SFG spectrum of d-glucose changed from that of α-d-glucose into those of α-d-glucose monohydrate by wetting. The SFG spectra showed evidence of a small change of β-d-fructopyranose into other anomers by wetting. SFG spectra of sucrose did not change by wetting. Assignments of the vibrational peaks in the SFG spectra of the three sugars in the dry and wet states were performed in the CH stretching vibration region near 3000cm(-1). Copyright © 2014 Elsevier B.V. All rights reserved.
Umari, P; Pasquarello, Alfredo
2005-09-23
We determine the fraction f of B atoms belonging to boroxol rings in vitreous boron oxide through a first-principles analysis. After generating a model structure of vitreous B2O3 by first-principles molecular dynamics, we address a large set of properties, including the neutron structure factor, the neutron density of vibrational states, the infrared spectra, the Raman spectra, and the 11B NMR spectra, and find overall good agreement with corresponding experimental data. From the analysis of Raman and 11B NMR spectra, we yield consistently for both probes a fraction f of approximately 0.75. This result indicates that the structure of vitreous boron oxide is largely dominated by boroxol rings.
Suppression in high-order above-threshold ionization: destructive interference from quantum orbits
NASA Astrophysics Data System (ADS)
Lai, Xuan Yang; Quan, Wei; Yu, Shao Gang; Huang, Yi Yi; Liu, Xiao Jun
2018-05-01
We experimentally study the above-threshold ionization (ATI) spectra of noble gas argon in an intense laser field and focus on a novel suppression structure in the high-order ATI (HATI) spectra. It is found that, when a well-documented resonancelike enhancement feature appears in the HATI spectra, a significant suppression structure is followed in a higher energy region of the spectra. The observation is well reproduced by a numerical solution of the time-dependent Schrödinger equation. In terms of quantum-orbit theory, the observed suppression structure can be ascribed to the destructive interference from longer quantum orbits. Furthermore, an intrinsic relation between the ionization suppression and the ionization enhancement in the HATI spectra is well established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hameka, H.F.; Jensen, J.O.
1993-05-01
This report presents the computed optimized geometry and vibrational IR and Raman frequencies of the V-agent VX. The computations are performed with the Gaussian 90 Program Package using 6-31G* basis sets. We assign the vibrational frequencies and correct each frequency by multiplying it with a previously derived 6-31G* correction factor. The result is a computer-generated prediction of the IR and Raman spectra of VX. This study was intended as a blind test of the utility of IR spectral prediction. Therefore, we intentionally did not look at experimental data on the IR and Raman spectra of VX.... IR Spectra, VX, Ramanmore » spectra, Computer predictions.« less
Water in Betelgeuse and Antares
NASA Technical Reports Server (NTRS)
Jennings, D. E.; Sada, P. V.
1998-01-01
Absorption lines of hot water have been identified in the infrared spectra of Betelgeuse (alpha Orionis) and Antares (alpha Scorpii) near 12.3 micrometers (811 to 819 wavenumbers). The water lines originate in the atmospheres of the stars, not in their circumstellar material. The spectra are similar in structure to umbral sunspot spectra. Pure rotation water lines of this type will occur throughout the spectra of cool stars at wavelengths greater than 10 micrometers. From the water spectra, the upper limit for the temperature in the line formation region in both stars is 2800 kelvin. The water column density in both stars is (3 +/- 2) x 10(18) molecules per square centimeter, yielding an abundance relative to atomic hydrogen of n(H2O)/n(H) approximately 10(-)7.
Power spectra at radio frequency of lightning return stroke waveforms
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.
1989-01-01
The power spectra of the wideband (10 Hz to 100 kHz) magnetic field signals in a number of lightning return strokes (primarily first return strokes) measured during a lightning storm which occurred in Lindau, West Germany in August, 1984 have been calculated. The RF magnetic field data were obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks appearing in the spectra of many of the waveforms. An enhancement of power at frequencies of about 60-70 kHz is often seen in the spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.
NASA Astrophysics Data System (ADS)
Itoga, Toshiro; Nakashima, Hiroshi; Sanami, Toshiya; Namito, Yoshihito; Kirihara, Yoichi; Miyamoto, Shuji; Takemoto, Akinori; Yamaguchi, Masashi; Asano, Yoshihiro
2017-09-01
Photo-neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photons on natC were measured using laser Compton scattering facility at NewSUBARU BL01. The photon energy spectra were evaluated through measurements and simulations with collimator sizes and arrangements for the laser electron photon. The neutron energy spectra for the natC(g,xn) reaction were measured at 60 degrees in horizontal and 90 degrees in horizontal and vertical with respect to incident photon. The spectra show almost isotropic angular distribution and flat energy distribution from detection threshold to upper limit defined by reaction Q-value.
Underdetermined blind separation of three-way fluorescence spectra of PAHs in water
NASA Astrophysics Data System (ADS)
Yang, Ruifang; Zhao, Nanjing; Xiao, Xue; Zhu, Wei; Chen, Yunan; Yin, Gaofang; Liu, Jianguo; Liu, Wenqing
2018-06-01
In this work, underdetermined blind decomposition method is developed to recognize individual components from the three-way fluorescent spectra of their mixtures by using sparse component analysis (SCA). The mixing matrix is estimated from the mixtures using fuzzy data clustering algorithm together with the scatters corresponding to local energy maximum value in the time-frequency domain, and the spectra of object components are recovered by pseudo inverse technique. As an example, using this method three and four pure components spectra can be blindly extracted from two samples of their mixture, with similarities between resolved and reference spectra all above 0.80. This work opens a new and effective path to realize monitoring PAHs in water by three-way fluorescence spectroscopy technique.
A catalog of 0.2 A resolution far-ultraviolet stellar spectra measured with Copernicus
NASA Technical Reports Server (NTRS)
Snow, T. P., Jr.; Jenkins, E. B.
1977-01-01
Spectra between 1000 and 1450 A for 60 O- and B-type stars observed by Copernicus at 0.2-A resolution are presented in three forms: tables containing the numerical data, plots showing renormalized spectra, and synthetic photographic spectra. The data have been corrected for all instrument effects of importance for the photometric accuracy except fluctuations in continuum level caused by small variations in spacecraft guidance. Spectrometer sensitivity curves are provided for use in converting to absolute fluxes. It is expected that this catalog will be of use for research on many aspects of stellar UV spectra, including spectral classification, line identification, abundance determinations, spectrum synthesis, model atmosphere calculations, flux distributions, bolometric corrections, stellar winds, and mass loss.
Effects of Space Weathering on Reflectance Spectra of Ureilites: First Studies
NASA Technical Reports Server (NTRS)
Goodrich, C. A.; Gillis-Davis, J.; Cloutis, E.; Applin, D.; Takir, D.; Hibbitts, C.; Christoffersen, R.; Fries, M.; Klima, R.; Decker, S.
2018-01-01
Ureilites are differentiated meteorites (ultramafic rocks interpreted to be mantle residues) that contain as much carbon as the most carbon-rich carbonaceous chondrites (CCs). Reflectance spectra of ureilites are similar to those of some CCs. Hence, ureilitic asteroids may accidentally be categorized as primitive because their spectra could resemble those of C-complex asteroids, which are thought to be CC-like. We began spectral studies of progressively laser-weathered ureilites with the goals of predicting UV-VIS-IR spectra of ureilitic asteroids, and identifying features that could distinguish differentiated from primitive dark asteroids. Space weathering has not previously been studied for ureilites, and, based on space weathering studies of CCs and other C-rich materials, it could significantly alter their reflectance spectra.
Locally linear embedding: dimension reduction of massive protostellar spectra
NASA Astrophysics Data System (ADS)
Ward, J. L.; Lumsden, S. L.
2016-09-01
We present the results of the application of locally linear embedding (LLE) to reduce the dimensionality of dereddened and continuum subtracted near-infrared spectra using a combination of models and real spectra of massive protostars selected from the Red MSX Source survey data base. A brief comparison is also made with two other dimension reduction techniques; principal component analysis (PCA) and Isomap using the same set of spectra as well as a more advanced form of LLE, Hessian locally linear embedding. We find that whilst LLE certainly has its limitations, it significantly outperforms both PCA and Isomap in classification of spectra based on the presence/absence of emission lines and provides a valuable tool for classification and analysis of large spectral data sets.
Far-infrared reflectance spectra of optical black coatings
NASA Technical Reports Server (NTRS)
Smith, S. M.
1983-01-01
Far-infrared specular reflectance spectra of six optically black coatings near normal incidence are presented. The spectra were obtained using nine bandpass transmission filters in the wavelength range between 12 and 300 microns. Data on the construction, thickness, and rms surface roughness of the coatings are also presented. The chemical composition of two coatings can be distinguished from that of the others by a strong absorption feature between 20 and 40 microns which is attributed to amorphous silicate material. Inverse relationships between these spectra and coating roughness and thickness are noted and lead to development of a reflecting-layer model for the measured reflectance. The model is applied to the spectra of several coatings whose construction falls within its constraints.
Analysis of soft x-ray emission spectra of laser-produced dysprosium, erbium and thulium plasmas
NASA Astrophysics Data System (ADS)
Sheil, John; Dunne, Padraig; Higashiguchi, Takeshi; Kos, Domagoj; Long, Elaine; Miyazaki, Takanori; O'Reilly, Fergal; O'Sullivan, Gerard; Sheridan, Paul; Suzuki, Chihiro; Sokell, Emma; White, Elgiva; Kilbane, Deirdre
2017-03-01
Soft x-ray emission spectra of dysprosium, erbium and thulium ions created in laser-produced plasmas were recorded with a flat-field grazing-incidence spectrometer in the 2.5-8 nm spectral range. The ions were produced using an Nd:YAG laser of 7 ns pulse duration and the spectra were recorded at various power densities. The experimental spectra were interpreted with the aid of the Cowan suite of atomic structure codes and the flexible atomic code. At wavelengths above 5.5 nm the spectra are dominated by overlapping n = 4 - n = 4 unresolved transition arrays from adjacent ion stages. Below 6 nm, n = 4 - n = 5 transitions also give rise to a series of interesting overlapping spectral features.
NASA Technical Reports Server (NTRS)
Giver, Lawrence P.; Benner, D. C.; Tomasko, M. G.; Fink, U.; Kerola, D.
1990-01-01
Transmission measurements made on near-infrared laboratory methane spectra have previously been fit using a Malkmus band model. The laboratory spectra were obtained in three groups at temperatures averaging 112, 188, and 295 K; band model fitting was done separately for each temperature group. These band model parameters cannot be used directly in scattering atmosphere model computations, so an exponential sum model is being developed which includes pressure and temperature fitting parameters. The goal is to obtain model parameters by least square fits at 10/cm intervals from 3800 to 9100/cm. These results will be useful in the interpretation of current planetary spectra and also NIMS spectra of Jupiter anticipated from the Galileo mission.
Calibration and Vegetation Field Spectra Collection for the 2000 AVIRIS Hawaii Deployment
NASA Technical Reports Server (NTRS)
Dennison, Philip E.; Gardner, Margaret E.; Roberts, Dar A.; Green, Robert O.
2001-01-01
As part of the April 2000 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Hawaii deployment, two researchers from the University of California, Santa Barbara, were sent to Hawaii to collect supporting field data. The primary goal of the fieldwork was to obtain spectra of bright targets to be used for retrieving surface reflectance from AVIRIS imagery. Secondary goals included recording the spectra of dominant vegetation, marking the position of homogeneous land cover for use as potential image endmembers (PIEs), and recording firsthand impressions of cover types. Primary and secondary goals were met. Spectra were recorded for 12 calibration targets on 5 islands and spectra were obtained for 61 vegetation species. Twenty PIEs were located, and video was used to document cover at 56 locations.
NASA Astrophysics Data System (ADS)
Sugiura, Chikara
1991-08-01
The fluorine Kα emission spectra in fluorescence from a series of 3d transition-metal difluorides MF2 (M=Mn, Fe, Co, Ni, Cu and Zn) have been measured with a high-resolution two-crystal vacuum spectrometer. It is shown that the observed FWHM of the Kα1,2 emission band is closely related to the difference in the electronegativity between the metal and fluorine atoms. The measured emission spectra are presented along with the UPS or XPS spectra of the valence bands and the fluorine K absorption spectra of the metal difluorides, reported previously. The structures at the fluorine K absorption edges are interpreted in terms of a molecular orbital (MO) model.
Elemental composition and energy spectra of galactic cosmic rays
NASA Technical Reports Server (NTRS)
Mewaldt, R. A.
1988-01-01
A brief review is presented of the major features of the elemental composition and energy spectra of galactic cosmic rays. The requirements for phenomenological models of cosmic ray composition and energy spectra are discussed, and possible improvements to an existing model are suggested.
NASA Astrophysics Data System (ADS)
Stepanenko, Tetyana; Lapinski, Leszek; Nowak, Maciej J.; Kwiatkowski, Józef S.; Leszczynski, Jerzy
2001-02-01
Infrared spectra of 2-thiopurine (2-mercaptopurine, 2-purinethiol ) isolated in low-temperature Ar and N 2 matrixes are reported. These spectra indicate that the compound adopts exclusively the thiol N9H tautomeric form. The theoretical calculations of relative energies of 2-thiopurine tautomers have been carried out at the MP4(SDTQ)//HF level using the 6-31G( d, p) basis set. The thiol N9H tautomer was predicted to be the most stable of all isomers of 2-thiopurine. The infrared spectra of the tautomers of 2-thiopurine have been calculated at the DFT(B3LYP)/6-31G( d, p) level. Good agreement between the experimental spectra and the spectra calculated for thiol N9H tautomer supported the identification of the dominant tautomer. It has also allowed for the reliable assignment of the bands observed in the experimental IR spectrum.
Petasis, Doros T; Hendrich, Michael P
2015-01-01
Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.
Spectra of turbulent static pressure fluctuations in jet mixing layers
NASA Technical Reports Server (NTRS)
Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.
1977-01-01
Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.
Kokaly, Raymond F.
2011-01-01
This report describes procedures for installing and using the U.S. Geological Survey Processing Routines in IDL for Spectroscopic Measurements (PRISM) software. PRISM provides a framework to conduct spectroscopic analysis of measurements made using laboratory, field, airborne, and space-based spectrometers. Using PRISM functions, the user can compare the spectra of materials of unknown composition with reference spectra of known materials. This spectroscopic analysis allows the composition of the material to be identified and characterized. Among its other functions, PRISM contains routines for the storage of spectra in database files, import/export of ENVI spectral libraries, importation of field spectra, correction of spectra to absolute reflectance, arithmetic operations on spectra, interactive continuum removal and comparison of spectral features, correction of imaging spectrometer data to ground-calibrated reflectance, and identification and mapping of materials using spectral feature-based analysis of reflectance data. This report provides step-by-step instructions for installing the PRISM software and running its functions.
The spanwise spectra in wall-bounded turbulence
NASA Astrophysics Data System (ADS)
Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei
2017-12-01
The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.
NASA Astrophysics Data System (ADS)
Gardini, A.; Maíz Apellániz, J.; Pérez, E.; Quesada, J. A.; Funke, B.
2013-05-01
The Radiative Transfer Model (RTM) and the retrieval algorithm, incorporated in the SCIATRAN 2.2 software package developed at the Institute of Remote Sensing/Institute of Enviromental Physics of Bremen University (Germany), allows to simulate, among other things, radiance/irradiance spectra in the 2400--24 000 Å range. In this work we present applications of RTM to two case studies. In the first case the RTM was used to simulate direct solar irradiance spectra, with different water vapor amounts, for the study of the water vapor content in the atmosphere above Sierra Nevada Observatory. Simulated spectra were compared with those measured with a spectrometer operating in the 8000--10 000 Å range. In the second case the RTM was used to generate telluric model spectra to subtract the atmospheric contribution and correct high-resolution stellar spectra from atmospheric water vapor and oxygen lines. The results of both studies are discussed.
NASA Astrophysics Data System (ADS)
Luce, R.; Hildebrandt, P.; Kuhlmann, U.; Liesen, J.
2016-09-01
The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for non-negative matrix factorization which is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed.
Observations of normal main-sequence and giant B stars
NASA Astrophysics Data System (ADS)
When interpreting the continuous and line spectra of B stars, it is helpful to think in terms of a model consisting of a photosphere and a mantle which is the outer part of the atmosphere where the effects of nonradiative heating are seen. A survey of the spectra of these stars shows that conditions in the photosphere determine most of what is seen, and in the case of most B stars, the presence of the mantle can be detected only by a special effort. The shape of the visible continuum spectrum and the shape and absolute value of the UV continuous spectrum as determined from low resolution spectra are discussed. Effective temperature for B stars in the main sequence, including corrections for interstellar extinction and bolometric corrections are explored. The major constituents of B-type spectra, variation of the strength of line along the main sequence band, the UV spectra, UV line blocking, intrinsic colors, and variations in light and spectra are also examined.
[Performance dependence of organic light-emitting devices on the thickness of Alq3 emitting layer].
Lian, Jia-rong; Liao, Qiao-sheng; Yang, Rui-bo; Zheng, Wei; Zeng, Peng-ju
2010-10-01
The dependence of opto-electronical characteristics in organic light-emitting devices on the thickness of Alq3 emitter layer was studied, where MoO3, NPB, and Alq3 were used as hole injector, hole transporter, and emitter/electron transporter, respectively. By increasing the thickness of Alq3 layer from 20 to 100 nm, the device current decreased gradually, and the EL spectra of devices performed a little red shift with an obvious broadening in long wavelength range but a little decrease in intensity of short wavelength range. The authors simulated the EL spectra using the photoluminescence (PL) spectra of Alq3 as Alq3 intrinsic emission, which coincided with the experimental EL spectra well. The simulated results suggested that the effect of interference takes the major role in broadening the long wavelength range of EL spectra, and the distribution of emission zone largely affects the profile of EL spectra in short wavelength range.
Direct evidence of double-slope power spectra in the high-latitude ionospheric plasma
NASA Astrophysics Data System (ADS)
Spicher, A.; Miloch, W. J.; Moen, J. I.
2014-03-01
We report direct observations of the double-slope power spectra for plasma irregularities in the F layer of the polar ionosphere. The investigation of cusp irregularities ICI-2 sounding rocket, which was launched into the polar cusp ionosphere, intersected enhanced plasma density regions with decameter-scale irregularities. Density measurements at unprecedented high resolution with multi-Needle Langmuir Probes allowed for a detailed study of the plasma irregularities down to kinetic scales. Spectral analysis reveals double-slope power spectra for regions of enhanced fluctuations associated mainly with density gradients, with the steepening of the spectra occurring close to the oxygen gyrofrequency. These findings are further supported with the first results from the ICI-3 rocket, which flew through regions with strong precipitation and velocity shears. Previously, double-slope spectra have been observed in the equatorial ionosphere. The present work gives a direct evidence that the double-slope power spectra can be common in the high-latitude ionosphere.
Ke, Yaling; Zhao, Yi
2017-05-07
A theoretically solid and numerically exact method is presented for the calculation of absorption and circular dichroism (CD) spectra of molecular aggregates immersed in a harmonic bath constituted as the combination of some prominent quantized vibrational modes and continuous overdamped Brownian oscillators. The feasibility and the validity of newly proposed method are affirmed in the analytical monomer spectra. To go beyond the independent local bath approximation, all the correlations of site energy fluctuations and excitonic coupling fluctuations are included in our strategy, and their influence on the absorption and CD spectra is investigated based on the Frenkel exciton model of homodimer. In the end, a good fit of the absorption and part of CD spectra for the entire B800-B850 ring in the light-harvesting complexes 2 of purple bacteria to the experimental data is given, and the simulation results suggest that the asymmetry in the 800 nm region of CD spectra is actually an indication of B800-B850 inter-ring coupling.
Heterodyne-detected dispersed vibrational echo spectroscopy.
Jones, Kevin C; Ganim, Ziad; Tokmakoff, Andrei
2009-12-24
We develop heterodyned dispersed vibrational echo spectroscopy (HDVE) and demonstrate the new capabilities in biophysical applications. HDVE is a robust ultrafast technique that provides a characterization of the real and imaginary components of third-order nonlinear signals with high sensitivity and single-laser-shot capability and can be used to extract dispersed pump-probe and dispersed vibrational echo spectra. Four methods for acquiring HDVE phase and amplitude spectra were compared: Fourier transform spectral interferometry, a new phase modulation spectral interferometry technique, and combination schemes. These extraction techniques were demonstrated in the context of protein amide I spectroscopy. Experimental HDVE and heterodyned free induction decay amide I spectra were explicitly compared to conventional dispersed pump-probe, dispersed vibrational echo, and absorption spectra. The new capabilities of HDVE were demonstrated by acquiring single-shot spectra and melting curves of ubiquitin and concentration-dependent spectra of insulin suitable for extracting the binding constant for dimerization. The introduced techniques will prove particularly useful in transient experiments, studying irreversible reactions, and micromolar concentration studies of small proteins.
Cheng, Xueli
2016-11-01
The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in methanol, water, and chloroform in the molecularly imprinted recognition were investigated systematically. The M06-2X results revealed that: 1) the hydroxyl groups in polar solvents such as methanol and water may markedly influence the weak interactions, and then alter the adsorption and emission spectra; 2) the electronic excitation in absorption spectra of dichlorvos is dominated by the configuration HOMO → LUMO, but in the most stable dichlorvos-MAA it becomes the ππ* excitation of HOMO → LUMO + 1; 3) Mulliken charges reveal that dichlorvos almost dissociates to Cl - and a cation in its S 1 excitation state; 4) the phosphorescence spectra of dichlorvos-MAA are relatively weak. Graphical Abstract The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in the molecularly imprinted recognition of dichlorvos were investigated systematically in methanol, water, and chloroform as solvents.
Unified analysis of optical absorption spectra of carotenoids based on a stochastic model.
Uragami, Chiasa; Saito, Keisuke; Yoshizawa, Masayuki; Molnár, Péter; Hashimoto, Hideki
2018-05-03
The chemical structures of the carotenoid molecules are very simple and one might think that the electronic feature of it is easily predicted. However, it still has so much unknown information except the correlation between the electronic energy state and the length of effective conjugation chain of carotenoids. To investigate the electronic feature of the carotenoids, the most essential method is measuring the optical absorption spectra, but simulating it from the resonance Raman spectra is also the effective way. From this reason, we studied the optical absorption spectra as well as resonance Raman spectra of 15 different kinds of cyclic carotenoid molecules, recorded in tetrahydrofuran (THF) solutions at room temperature. The whole band shapes of the absorption spectra of all these carotenoid molecules were successfully simulated based on a stochastic model using Brownian oscillators. The parameters obtained from the simulation made it possible to discuss the intermolecular interaction between carotenoids and solvent THF molecules quantitatively. Copyright © 2018. Published by Elsevier Inc.
Iterative fitting method for the evaluation and quantification of PAES spectra
NASA Astrophysics Data System (ADS)
Zimnik, Samantha; Hackenberg, Mathias; Hugenschmidt, Christoph
2017-01-01
The elemental composition of surfaces is of great importance for the understanding of many surface processes such as catalysis. For a reliable analysis and a comparison of results, the quantification of the measured data is indispensable. Positron annihilation induced Auger Electron Spectroscopy (PAES) is a spectroscopic technique that measures the elemental composition with outstanding surface sensitivity, but up to now, no standardized evaluation procedure for PAES spectra is available. In this paper we present a new approach for the evaluation of PAES spectra of compounds, using the spectra obtained for the pure elements as reference. The measured spectrum is then fitted by a linear combination of the reference spectra by varying their intensities. The comparison of the results of the fitting routine with a calculation of the full parameter range shows an excellent agreement. We present the results of the new analysis method to evaluate the PAES spectra of sub-monolayers of Ni on a Pd substrate.
NASA Astrophysics Data System (ADS)
Ke, Yaling; Zhao, Yi
2017-05-01
A theoretically solid and numerically exact method is presented for the calculation of absorption and circular dichroism (CD) spectra of molecular aggregates immersed in a harmonic bath constituted as the combination of some prominent quantized vibrational modes and continuous overdamped Brownian oscillators. The feasibility and the validity of newly proposed method are affirmed in the analytical monomer spectra. To go beyond the independent local bath approximation, all the correlations of site energy fluctuations and excitonic coupling fluctuations are included in our strategy, and their influence on the absorption and CD spectra is investigated based on the Frenkel exciton model of homodimer. In the end, a good fit of the absorption and part of CD spectra for the entire B800-B850 ring in the light-harvesting complexes 2 of purple bacteria to the experimental data is given, and the simulation results suggest that the asymmetry in the 800 nm region of CD spectra is actually an indication of B800-B850 inter-ring coupling.
The spanwise spectra in wall-bounded turbulence
NASA Astrophysics Data System (ADS)
Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei
2018-06-01
The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.
NASA Astrophysics Data System (ADS)
Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong
2016-05-01
The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.
NASA Astrophysics Data System (ADS)
Xie, Changan; Li, Yong-qing; Tang, Wei; Newton, Ronald J.
2003-11-01
The development of laser traps has made it possible to investigate single cells and record real-time Raman spectra during a heat-denaturation process when the temperature of the surrounding medium is increased. Large changes in the phenylalanine band (1004 cm-1) of near-infrared spectra between living and heat-treated cells were observed in yeast and Escerichia coli and Enterobacter aerogenes bacteria. This change appears to reflect the change in environment of phenylalanine as proteins within the cells unfold as a result of increasing temperatures. As a comparison, we measured Raman spectra of native and heat-denatured solutions of bovine serum albumin proteins, and a similar change in the phenylalanine band of spectra was observed. In addition, we measured Raman spectra of native and heat-treated solutions of pure phenylalanine molecules; no observable difference in vibrational spectra was observed. These findings may make it possible to study conformational changes in proteins within single cells.
Classification of ion mobility spectra by functional groups using neural networks
NASA Technical Reports Server (NTRS)
Bell, S.; Nazarov, E.; Wang, Y. F.; Eiceman, G. A.
1999-01-01
Neural networks were trained using whole ion mobility spectra from a standardized database of 3137 spectra for 204 chemicals at various concentrations. Performance of the network was measured by the success of classification into ten chemical classes. Eleven stages for evaluation of spectra and of spectral pre-processing were employed and minimums established for response thresholds and spectral purity. After optimization of the database, network, and pre-processing routines, the fraction of successful classifications by functional group was 0.91 throughout a range of concentrations. Network classification relied on a combination of features, including drift times, number of peaks, relative intensities, and other factors apparently including peak shape. The network was opportunistic, exploiting different features within different chemical classes. Application of neural networks in a two-tier design where chemicals were first identified by class and then individually eliminated all but one false positive out of 161 test spectra. These findings establish that ion mobility spectra, even with low resolution instrumentation, contain sufficient detail to permit the development of automated identification systems.
NASA Astrophysics Data System (ADS)
Cloutis, Edward A.; Pietrasz, Valerie B.; Kiddell, Cain; Izawa, Matthew R. M.; Vernazza, Pierre; Burbine, Thomas H.; DeMeo, Francesca; Tait, Kimberly T.; Bell, James F.; Mann, Paul; Applin, Daniel M.; Reddy, Vishnu
2018-05-01
Carbonaceous chondrites (CCs) are important materials for understanding the early evolution of the solar system and delivery of volatiles and organic material to the early Earth. Presumed CC-like asteroids are also the targets of two current sample return missions: OSIRIS-REx to asteroid Bennu and Hayabusa-2 to asteroid Ryugu, and the Dawn orbital mission at asteroid Ceres. To improve our ability to identify and characterize CM2 CC-type parent bodies, we have examined how factors such as particle size, particle packing, and viewing geometry affect reflectance spectra of the Murchison CM2 CC. The derived relationships have implications for disc-resolved examinations of dark asteroids and sampleability. It has been found that reflectance spectra of slabs are more blue-sloped (reflectance decreasing toward longer wavelengths as measured by the 1.8/0.6 μm reflectance ratio), and generally darker, than powdered sample spectra. Decreasing the maximum grain size of a powdered sample results in progressively brighter and more red-sloped spectra. Decreasing the average grain size of a powdered sample results in a decrease in diagnostic absorption band depths, and redder and brighter spectra. Decreasing porosity of powders and variations in surface texture result in spectral changes that may be different as a function of viewing geometry. Increasing thickness of loose dust on a denser powdered substrate leads to a decrease in absorption band depths. Changes in viewing geometry lead to different changes in spectral metrics depending on whether the spectra are acquired in backscatter or forward-scatter geometries. In backscattered geometry, increasing phase angle leads to an initial increase and then decrease in spectral slope, and a general decrease in visible region reflectance and absorption band depths, and frequent decreases in absorption band minima positions. In forward scattering geometry, increasing phase angle leads to small non-systematic changes in spectral slope, and general decreases in visible region reflectance, and absorption band depths. The highest albedos and larger band depths are generally seen in the lowest phase angle backscattering geometry spectra. The reddest spectra are generally seen in the lowest phase angle backscatter geometry spectra. For the same phase angle, spectra acquired in forward scatter geometry are generally redder and darker and have shallower absorption bands than those acquired in backscatter geometry. Overall, backscatter geometry-acquired spectra are flatter, brighter, and have deeper 0.7 μm region absorption band depths than forward scatter geometry-acquired spectra. It was also found that the 0.7, 0.9, and 1.1 μm absorption bands in Murchison spectra, which are attributable to various Fe electronic processes, are ubiquitous and can be used to recognize CM2 chondrites regardless of the physical properties of the meteorite and viewing geometry.
NASA Technical Reports Server (NTRS)
Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan
2017-01-01
In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3-micrometers absorption band. To this purpose we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 per cm range. The experimental spectra are compared with standard harmonic calculations, and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3-micrometers region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive dataset of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly-condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3-micrometers band, and on features such as the two-component emission character of this band and the 3-micrometers emission plateau.
Ramsey, Elijah W.; Rangoonwala, A.; Nelson, G.; Ehrlich, R.; Martella, K.
2005-01-01
Chinese tallow (Triadica sebifera) is an invasive tree that is spreading throughout the south-eastern United States and now into the west, and in many places causing extensive change to native habitat and associated wildlife. Detecting and mapping the relative distribution of this species is important to its control and eradication. To map the relative distribution of Chinese tallow within a southwestern Louisiana coastal wetland to upland environment, Earth Observing 1 (EO1) satellite Hyperion sensor hyperspectral image data were combined with a subpixel extraction method that modelled characteristic spectra from the image data without requiring a priori characteristic spectra. Because of the low percentage occurrences of Chinese tallow and high spectral covariation in the environment, unique validation and verification methods were implemented, relying on simultaneous collection of field canopy reflectance spectra and subsequent classification of canopy compositions. The subpixel extraction method produced five characteristic spectra, which we further refined to four that adequately represented the field spectra, as well as the Hyperion imaged canopy reflectance datasets. Characteristic spectra were designated as senescing foliage, cypress-tupelo trees, and trees without leaves; shadows and green vegetation; senescing Chinese tallow with yellow leaves and yellowing foliage; and senescing Chinese tallow with red leaves ('red tallow'). About 81% (n=34) of the field and 78% (n=33) of the Hyperion imaged characteristic spectra associated with 'red tallow' were explained by the compositions generated in the field slide classifications. ?? 2005 US Government.
Soptrajanov, Bojan; Cahil, Adnan; Najdoski, Metodija; Koleva, Violeta; Stefov, Viktor
2011-09-01
The infrared and Raman spectra of magnesium rubidium phosphate hexahydrate MgRbPO4 • 6H2O and magnesium thallium phosphate hexahydrate, MgTlPO4 • 6H2O were recorded at room temperature (RT) and the boiling temperature of liquid nitrogen (LNT). To facilitate their analysis, also recorded were the spectra of partially deuterated analogues with varying content of deuterium. The effects of deuteration and those of lowering the temperature were the basis of the conclusions drawn regarding the origin of the observed bands which were assigned to vibrations which are predominantly localized in the water molecules (four crystallographically different types of such molecules exist in the structures) and those with PO43- character. It was concluded that in some cases coupling of phosphate and water vibrations is likely to take place. The appearance of the infrared spectra in the O-H stretching regions of the infrared spectra is explained as being the result of an extensive overlap of bands due to components of the fundamental stretching modes of the H2O units with a possible participation of bands due to second-order transitions. A broad band reminiscent of the B band of the well-known ABC trio characteristic of spectra of substances containing strong hydrogen bonds in their structure was found around 2400 cm-1 in the infrared spectra of the two studied compounds.
NASA Astrophysics Data System (ADS)
Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan
2016-11-01
In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3 μm absorption band. For this purpose, we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 cm-1 range. The experimental spectra are compared with standard harmonic calculations and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3 μm region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive data set of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3 μm band, and on features such as the two-component emission character of this band and the 3 μm emission plateau.
Infrared spectra alteration in water proximate to the palms of therapeutic practitioners.
Schwartz, Stephan A; De Mattei, Randall J; Brame, Edward G; Spottiswoode, S James P
2015-01-01
Through standard techniques of infrared (IR) spectrophotometry, sterile water samples in randomly selected sealed vials evidence alteration of infrared (IR) spectra after being proximate to the palms of the hands of both Practicing and Non-practicing Therapy Practitioners, each of whom employed a personal variation of the Laying-on-of-Hands/Therapeutic Touch processes. This pilot study presents 14 cases, involving 14 Practitioners and 14 Recipients. The first hypothesis, that a variation in the spectra of all (84) Treated spectra compared with all (57) Control spectra would be observed in the 2.5-3.0µm range, was confirmed (P = .02). Overall, 10% (15) of the spectra were done using a germanium internal reflection element (IRE), and 90% of the spectra (126) were done with a zinc selenide IRE. The difference in refractive index between the two IREs skews the data. The zinc selenide IRE spectra alone yield P = .005. The authors believe the most representative evidence for the effect appeared in the sample group of Treated vs Calibration Controls using the zinc selenide IRE (P = .0004). The second hypothesis, that there existed a direct relationship between intensity of effect and time of exposure, was not confirmed. This study replicates earlier findings under conditions of blindness, randomicity, and several levels of controls. Environmental factors are considered as explanations for the observed IR spectrum alteration, including temperature, barometric pressure, and variations dependent on sampling order. They do not appear to explain the effect. Copyright © 2015. Published by Elsevier Inc.
Mikuła, Andrzej; Król, Magdalena; Mozgawa, Włodzimierz; Koleżyński, Andrzej
2018-04-15
Vibrational spectroscopy can be considered as one of the most important methods used for structural characterization of various porous aluminosilicate materials, including zeolites. On the other hand, vibrational spectra of zeolites are still difficult to interpret, particularly in the pseudolattice region, where bands related to ring oscillations can be observed. Using combination of theoretical and computational approach, a detailed analysis of these regions of spectra is possible; such analysis should be, however, carried out employing models with different level of complexity and simultaneously the same theory level. In this work, an attempt was made to identify ring oscillations in vibrational spectra of selected zeolite structures. A series of ab initio calculations focused on S4R, S6R, and as a novelty, 5-1 isolated clusters, as well as periodic siliceous frameworks built from those building units (ferrierite (FER), mordenite (MOR) and heulandite (HEU) type) have been carried out. Due to the hierarchical structure of zeolite frameworks it can be expected that the total envelope of the zeolite spectra should be with good accuracy a sum of the spectra of structural elements that build each zeolite framework. Based on the results of HF calculations, normal vibrations have been visualized and detailed analysis of pseudolattice range of resulting theoretical spectra have been carried out. Obtained results have been applied for interpretation of experimental spectra of selected zeolites. Copyright © 2018 Elsevier B.V. All rights reserved.
Machine Learning Method for Pattern Recognition in Volcano Seismic Spectra
NASA Astrophysics Data System (ADS)
Radic, V.; Unglert, K.; Jellinek, M.
2016-12-01
Variations in the spectral content of volcano seismicity related to changes in volcanic activity are commonly identified manually in spectrograms. However, long time series of monitoring data at volcano observatories require tools to facilitate automated and rapid processing. Techniques such as Self-Organizing Maps (SOM), Principal Component Analysis (PCA) and clustering methods can help to quickly and automatically identify important patterns related to impending eruptions. In this study we develop and evaluate an algorithm applied on a set of synthetic volcano seismic spectra as well as observed spectra from Kılauea Volcano, Hawai`i. Our goal is to retrieve a set of known spectral patterns that are associated with dominant phases of volcanic tremor before, during, and after periods of volcanic unrest. The algorithm is based on training a SOM on the spectra and then identifying local maxima and minima on the SOM 'topography'. The topography is derived from the first two PCA modes so that the maxima represent the SOM patterns that carry most of the variance in the spectra. Patterns identified in this way reproduce the known set of spectra. Our results show that, regardless of the level of white noise in the spectra, the algorithm can accurately reproduce the characteristic spectral patterns and their occurrence in time. The ability to rapidly classify spectra of volcano seismic data without prior knowledge of the character of the seismicity at a given volcanic system holds great potential for real time or near-real time applications, and thus ultimately for eruption forecasting.
NASA Astrophysics Data System (ADS)
Flakus, Henryk T.; Miros, Artur; Jones, Peter G.
2002-01-01
We have studied the polarized IR spectra of the hydrogen-bonded molecular crystals of 2-hydroxybenzothiazole (HBT) and 2-mercaptobenzothiazole (MBT). The crystal structure of 2-hydroxybenzothiazole was determined by X-ray diffraction. The polarized spectra of the crystals were measured, in the frequency ranges of the νN-H and νN-D bands, at room temperature, and at 77 K. In both systems an extremely strong H/D isotopic effect in the spectra was observed, involving reduction of the well-developed νN-H band fine structure to a single prominent νN-D line only. The two νN-H bands were also shown to exhibit almost identical properties, band shapes, temperature and dichroic properties included. The spectra were quantitatively reconstituted, along with the strong isotopic effect, when calculated using the 'strong-coupling' theory, assuming the centrosymmetric dimers of HBT or MBT to be the structural units responsible for the crystalline spectral properties. The similarity of the spectra of the two crystalline systems was considered to be a result of longer-distance couplings between the proton vibrations in the dimers, via the aromatic ring electrons. When investigating the 'residual' νN-H band shapes for crystals isotopically diluted by deuterium, we observed some 'self-organization' effects in the spectra, indicating the energetically favored presence of two identical hydrogen isotopes in each hydrogen bond dimer.
NASA Astrophysics Data System (ADS)
Baker, Kevin C.; Bambot, Shabbir
2011-02-01
Optical spectroscopy has been shown to be an effective method for detecting neoplasia. Guided Therapeutics has developed LightTouch, a non invasive device that uses a combination of reflectance and fluorescence spectroscopy for identifying early cancer of the human cervix. The combination of the multispectral information from the two spectroscopic modalities has been shown to be an effective method to screen for cervical cancer. There has however been a relative paucity of work in identifying the individual spectral components that contribute to the measured fluorescence and reflectance spectra. This work aims to identify the constituent source spectra and their concentrations. We used non-negative matrix factorization (NNMF) numerical methods to decompose the mixed multispectral data into the constituent spectra and their corresponding concentrations. NNMF is an iterative approach that factorizes the measured data into non-negative factors. The factors are chosen to minimize the root-mean-squared residual error. NNMF has shown promise for feature extraction and identification in the fields of text mining and spectral data analysis. Since both the constituent source spectra and their corresponding concentrations are assumed to be non-negative by nature NNMF is a reasonable approach to deconvolve the measured multispectral data. Supervised learning methods were then used to determine which of the constituent spectra sources best predict the amount of neoplasia. The constituent spectra sources found to best predict neoplasia were then compared with spectra of known biological chromophores.
Jensen, Peter Snoer; Bak, Jimmy; Andersson-Engels, Stefan
2003-01-01
Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm-1 were measured in the temperature range 30-42 degrees C in steps of 2 degrees C. Measurements were carried out with an FT-IR spectrometer and a variable pathlength transmission cell controlled within 0.02 degree C. Pathlengths of 50 microns and 0.4 mm were used in the mid- and near-infrared spectral region, respectively. Difference spectra were used to determine the effect of temperature on the water spectra quantitatively. These spectra were obtained by subtracting the 37 degrees C water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between. On the basis of these spectra, prospects for and limitations on data analysis for infrared diagnostic methods are discussed. As an example, the absorptive properties of glucose were studied in the same temperature range in order to determine the effect of temperature on the spectral shape of glucose. The change in water absorption associated with the addition of glucose has also been studied. An estimate of these effects is given and is related to the expected level of infrared signals from glucose in humans.
Quantitative analysis of Earth's field NMR spectra of strongly-coupled heteronuclear systems.
Halse, Meghan E; Callaghan, Paul T; Feland, Brett C; Wasylishen, Roderick E
2009-09-01
In the Earth's magnetic field, it is possible to observe spin systems consisting of unlike spins that exhibit strongly coupled second-order NMR spectra. Such spectra result when the J-coupling between two unlike spins is of the same order of magnitude as the difference in their Larmor precession frequencies. Although the analysis of second-order spectra involving only spin-(1/2) nuclei has been discussed since the early days of NMR spectroscopy, NMR spectra involving spin-(1/2) nuclei and quadrupolar (I>(1/2)) nuclei have rarely been treated. Two examples are presented here, the tetrahydroborate anion, BH4-, and the ammonium cation, NH4+. For the tetrahydroborate anion, (1)J((11)B,(1)H)=80.9Hz, and in an Earth's field of 53.3microT, nu((1)H)=2269Hz and nu((11)B)=728Hz. The (1)H NMR spectra exhibit features that both first- and second-order perturbation theory are unable to reproduce. On the other hand, second-order perturbation theory adequately describes (1)H NMR spectra of the ammonium anion, (14)NH4+, where (1)J((14)N,(1)H)=52.75Hz when nu((1)H)=2269Hz and nu((14)N)=164Hz. Contrary to an early report, we find that the (1)H NMR spectra are independent of the sign of (1)J((14)N,(1)H). Exact analysis of two-spin systems consisting of quadrupolar nuclei and spin-(1/2) nuclei are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yu-Qian; Modjaz, Maryam; Bianco, Federica B.
Using the largest spectroscopic data set of stripped-envelope core-collapse supernovae (stripped SNe), we present a systematic investigation of spectral properties of Type IIb SNe (SNe IIb), Type Ib SNe (SNe Ib), and Type Ic SNe (SNe Ic). Prior studies have been based on individual objects or small samples. Here, we analyze 242 spectra of 14 SNe IIb, 262 spectra of 21 SNe Ib, and 207 spectra of 17 SNe Ic based on the stripped SN data set of Modjaz et al. and other published spectra of individual SNe. Each SN in our sample has a secure spectroscopic ID, a datemore » of V -band maximum light, and most have multiple spectra at different phases. We analyze these spectra as a function of subtype and phase in order to improve the SN identification scheme and constrain the progenitors of different kinds of stripped SNe. By comparing spectra of SNe IIb with those of SNe Ib, we find that the strength of H α can be used to quantitatively differentiate between these two subtypes at all epochs. Moreover, we find a continuum in observational properties between SNe IIb and Ib. We address the question of hidden He in SNe Ic by comparing our observations with predictions from various models that either include hidden He or in which He has been burnt. Our results favor the He-free progenitor models for SNe Ic. Finally, we construct continuum-divided average spectra as a function of subtype and phase to quantify the spectral diversity of the different types of stripped SNe.« less
[Infrared spectroscopic analysis of Guilin watermelon frost products].
Huang, Dong-lan; Chen, Xiao-kang; Xu, Yong-qun; Sun, Su-qin; Zhou, Qun; Lu, Wen-guan
2012-08-01
The objective of the present study is to analyze different products of Guilin watermelon frost by Fourier transform infrared spectroscopy (FTIR), second derivative infrared spectroscopy and two-dimensional correlation spectroscopy (2D-IR) under thermal perturbation. The structural information of the samples indicates that samples from the same factory but of different brands had some dissimilarities in the IR spectra, and the type and content of accessories of them were different compared with conventional IR spectra of samples, peaks at 638 and 616 cm(-1) all arise from anhydrous sodium sulfate in watermelon frost spray and watermelon frost capsule; the characteristic absorption peaks of the sucrose, dextrin or other accessories can be seen clearly in the spectra of watermelon frost throat-clearing buccal tablets, watermelon frost throat tablets and watermelon frost lozenge. And the IR spectra of watermelon frost lozenge is very similar to the IR spectra of sucrose, so it can be easily proved that the content of sucrose in watermelon frost lozenge is high. In the 2D-IR correlation spectra, the samples presented the differences in the position, number and relative intensity of autopeaks and correlation peak clusters. Consequently, the macroscopical fingerprint characters of FTIR, second derivative infrared spectra and 2D-IR spectra can not only provide the information about main chemical constituents in medical materials, but also analyze and identify the type and content of accessories in Guilin watermelon frost. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research.
ARES I-X USS Fracture Analysis Loads Spectra Development
NASA Technical Reports Server (NTRS)
Larsen, Curtis; Mackey, Alden
2008-01-01
This report describes the development of a set of bounding load spectra for the ARES I-X launch vehicle. These load spectra are used in the determination of the critical initial flaw size (CIFS) of the welds in the ARES I-X upper stage simulator (USS).
Interpretation of comet spectra
NASA Technical Reports Server (NTRS)
Arpigny, C.
1976-01-01
The spectra of comets are discussed by considering successively a number of molecules that have been studied recently: CN, CH, C2, C3, OH, CH(+). The first two of this list, CN and CH, have been analyzed in greatest detail. A classification of the spectra of cometary heads is introduced.
Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.
ERIC Educational Resources Information Center
McQuarrie, Donald A.
1988-01-01
Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julyk, L.J.
1995-09-01
In-structure response spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site are developed on the basis of recent soil-structure-interaction analyses. Recommended design spectra are provided for various locations on the tank dome.
VizieR Online Data Catalog: 6 cold-gas-bearing debris-disc stars spectra (Rebollido+, 2018)
NASA Astrophysics Data System (ADS)
Rebollido, I.; Eiroa, C.; Montesinos, B.; Maldonado, J.; Villaver, E.; Absi, O.; Bayo, A.; Canovas, H.; Carmona, A.; Chen, Ch.; Ertel, S.; Garufi, A.; Henning, T.; Iglesias, D. P.; Launhardt, R.; Liseau, R.; Meeus, G.; Moor, A.; Mora, A.; Olofsson, J.; Rauw, G.; Riviere-Marichalar, P.
2018-02-01
Spectra obtained with Mercator (La Palma, Spain), NOT (La Palma, Spain) and Tigre (La Luz, Mexico) echelle spectrographs. Observation dates range from September 2015 to July 2016. They were reduced using instrument pipelines. Barycentric correction has been applied to all spectra. (2 data files).
DFT studies of the vibrational spectra of salicylic acid and related compounds
USDA-ARS?s Scientific Manuscript database
Compounds that exhibit intra- and intermolecular hydrogen bonds can have infrared and Raman spectra that show evidences of these hydrogen bonds. In modeling the vibrational spectra of such compounds, the addition of explicit hydrogen bonding species (e.g. solvent molecules) can often improve agreeme...
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Finch, N.; Clegg, S.; Graff, T.; Morris, R. V.; Laura, J.
2017-06-01
We present a Python-based library and graphical interface for the analysis of point spectra. The tool is being developed with a focus on methods used for ChemCam data, but is flexible enough to handle spectra from other instruments.
IDEOS: Fitting Infrared Spectra from Dusty Galaxies
NASA Astrophysics Data System (ADS)
Viola, Vincent; Rupke, D.
2014-01-01
We fit models to heavily obscured infrared spectra taken by the Spitzer Space Telescope and prepare them for cataloguing in the Infrared Database of Extragalactic Observables from Spitzer (IDEOS). When completed, IDEOS will contain homogeneously measured mid-infrared spectroscopic observables of more than 4200 galaxies beyond the Local Group. The software we use, QUESTFit, models the spectra using up to three extincted blackbodies (including silicate, water ice, and hydrocarbon absorption) and PAH templates. We present results from a sample of the approximately 200 heavily obscured spectra that will be present in IDEOS.
Spectral characterization of Martian soil analogues
NASA Technical Reports Server (NTRS)
Agresti, David G.
1987-01-01
As previously reported, reflectance spectra of iron oxide precipitated as ultrafine particles, unlike ordinary fine grained hematite, have significant similarities to reflectance spectra from the bright regions of Mars. These particles were characterized according to composition, magnetic properties, and particle size distribution. Mossbauer, magnetic susceptibility, and optical data were obtained for samples with a range of concentrations of iron oxide in silica gel of varying pore diameters. To analyze the Mossbauer spectra, a versatile fitting program was enhanced to provide user friendly screen input and theoretical models appropriate for the superparamagnetic spectra obtained.
2017-10-31
of isolated molecules and that of bulk systems. DFT calculated absorption spectra represent quantitative estimates that can be correlated with...spectra, can be correlated with the presence of these hydrocarbons (see reference [1]). Accordingly, the molecular structure and IR absorption spectra of...associated with different types of ambient molecules, e.g., H2O, in order to apply background subtraction or spectral-signature- correlation algorithms
Method and system for calibrating acquired spectra for use in spectral analysis
Reber, Edward L.; Rohde, Kenneth W.; Blackwood, Larry G.
2010-09-14
A method for calibrating acquired spectra for use in spectral analysis includes performing Gaussian peak fitting to spectra acquired by a plurality of NaI detectors to define peak regions. A Na and annihilation doublet may be located among the peak regions. A predetermined energy level may be applied to one of the peaks in the doublet and a location of a hydrogen peak may be predicted based on the location of at least one of the peaks of the doublet. Control systems for calibrating spectra are also disclosed.
From non-trivial geometries to power spectra and vice versa
NASA Astrophysics Data System (ADS)
Brooker, D. J.; Tsamis, N. C.; Woodard, R. P.
2018-04-01
We review a recent formalism which derives the functional forms of the primordial—tensor and scalar—power spectra of scalar potential inflationary models. The formalism incorporates the case of geometries with non-constant first slow-roll parameter. Analytic expressions for the power spectra are given that explicitly display the dependence on the geometric properties of the background. Moreover, we present the full algorithm for using our formalism, to reconstruct the model from the observed power spectra. Our techniques are applied to models possessing "features" in their potential with excellent agreement.
Anisotropic spectra of acoustic type turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, E.; P.N. Lebedev Physical Institute, 53 Leninsky Ave., 119991 Moscow; Krasnoselskikh, V.
2008-06-15
The problem of spectra for acoustic type of turbulence generated by shocks being randomly distributed in space is considered. It is shown that for turbulence with a weak anisotropy, such spectra have the same dependence in k-space as the Kadomtsev-Petviashvili spectrum: E(k){approx}k{sup -2}. However, the frequency spectrum has always the falling {approx}{omega}{sup -2}, independent of anisotropy. In the strong anisotropic case the energy distribution relative to wave vectors takes anisotropic dependence, forming in the large-k region spectra of the jet type.
1987-04-30
1.5 ZrO2 * 0.3 As203, 0.024 Cr203, melted under various conditions. Parallel measurements of X-ray diffraction, optical and EPR spectra reveal the...optical and EPR spectra reveal the different formation of gahnite from precursor glass or petalite-like phase. Introduction In a number of recent...conditions on optical and EPR spectra of Cr(III). Further on the parallel changes of spectra and x-ray diffraction patterns are indica- ted. The gahnite
NASA Astrophysics Data System (ADS)
Shou-te, Lian C. T.; Mittal, Jai P.
The absorption spectra of several perfluorosubstituted aromatic radical anions are compared with the corresponding perhydro compounds in which the various transitions involved have been assigned to those predicted theoretically. The electronic absorption spectra were obtained for pentafluorostyrene, pentafluorobenzaldehyde, pentafluorobenzoic acid, pentafluorobenzonitride, tetrafluorophthalic acid and pentafluoroaniline, by gamma radiolysis in 2-methyltetrahydrofuran at 77 K. A general similarity in the absorption spectra between the perfluorinated and the corresponding perhydro radical anion is observed except for a shift in the absorption band.
Proton spectra diagnostics for shock-compression studies
NASA Astrophysics Data System (ADS)
Welch, D. R.; Harris, D. B.; Bennish, A. H.; Miley, G. H.
1984-12-01
The energy spectra of fusion products escaping long-pulse-length laser-imploded deuterium-tritium filled glass microballoons have been measured with a time-of-flight spectrometer. The D(d,p)T reaction proton energy spectra showed two distinct peaks, indicating two burn phases in the target. The first burn phase is attributed to a spherically converging shock, while the second is attributed to subsequent compression heating. The analysis of these spectra provides the first conclusive proof of significant compression yields in these targets, where approximately half of the yield occurs during the compression burn phase.
[Micro-Raman and fluorescence spectra of several agrochemicals].
Xiao, Yi-lin; Zhang, Peng-xiang; Qian, Xiao-fan
2004-05-01
Raman and fluorescence spectra from several agrochemicals were measured, which are sold for the use in vegetables, fruits and grains. Characteristic vibration Raman peaks from some of the agrochemicals were recorded, hence the spectra can be used for their identification. Other marketed agrochemicals demonstrated strong fluorescence under 514.5 nm excitation. It was found that the fluorescence spectra of the agrochemicals are very different. According to these results one can detect the trace amount of agrochemicals left on the surface of fruits, vegetables and grains in situ and conveniently.
SpS1-The Spitzer atlas of stellar spectra
NASA Astrophysics Data System (ADS)
Ardila, David R.; Makowiecki, W.; van Dyk, S.; Song, I.; Stauffer, J.; Rho, J.; Fajardo-Acosta, S.; Hoard, D. W.; Wachter, S.
2010-11-01
We present Spitzer Space Telescope spectra of 147 stars (R~64 - 128, λλ = 5 - 35 μm, S/N~100) covering most spectral and luminosity classes within the HR diagram. The spectra are available from the NASA/IPAC Infrared Science Archive (IRSA) and from the first author's webpage (http://web.ipac.caltech.edu/staff/ardila/Atlas/). The Atlas contains spectra of ‘typical’ stars, which may serve to refine galactic synthesis models, study stellar atmospheres, and establish a legacy for future IR missions, such as JWST.
NASA Technical Reports Server (NTRS)
Conti, P. S.
1982-01-01
The properties of stars showing Wolf-Rayet phenomena are outlined along with the direction of future work. Emphasis is placed on the characteristics of W-R spectra. Specifically the following topics are covered: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions the mass loss rates; and the existence of very luminous and possibly very massive W-R stars. Also, a brief overview of current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R spectra are included.
NASA Technical Reports Server (NTRS)
2004-01-01
The color image on the lower left from the panoramic camera on the Mars Exploration Rover Opportunity shows the 'Lily Pad' bounce-mark area at Meridiani Planum, Mars. This image was acquired on the 3rd sol, or martian day, of Opportunity's mission (Jan.26, 2004). The upper left image is a monochrome (single filter) image from the rover's panoramic camera, showing regions from which spectra were extracted from the 'Lily Pad' area. As noted by the line graph on the right, the green spectra is from the undisturbed surface and the red spectra is from the airbag bounce mark.
Suganya, Krishnasamy; Kabilan, Senthamaraikannan
2004-04-01
The effects of substituents and solvents have been studied through the absorption spectra of nearly 23 ortho- and para-N-(substitutedphenyl)benzene sulphonamides in the range of 200-400 nm. The effects of substituents on the absorption spectra of compounds under present investigation are interpreted by correlation of absorption frequencies with simple and extended Hammett equations. Effect of solvent polarity and hydrogen bonding on the absorption spectra are interpreted by means of Kamlet equation and the results are discussed. Copyright 2003 Elsevier B.V.
Redox effects in ordinary chondrites and implications for asteroid spectrophotometry
NASA Technical Reports Server (NTRS)
Mcsween, Harry Y., Jr.
1992-01-01
The sensitivity of reflectance spectra to mean ferrous iron content and olivine and pyroxene proportion enhancements in the course of metamorphic oxidation is presently used to examine whether metamorphically-induced ranges in mineralogy, and corresponding spectral parameters, may explain the observed variations in S-asteroid rotational spectra. The predicted spectral variations within any one chondrite class are, however, insufficient to account for S-asteroid rotational spectra, and predicted spectral-range slopes have a sign opposite to the rotational measurements. Metamorphic oxidation is found unable to account for S-asteroid rotational spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobryakov, A. L.; Quick, M.; Ioffe, I. N.
We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.
Systolic Processor Array For Recognition Of Spectra
NASA Technical Reports Server (NTRS)
Chow, Edward T.; Peterson, John C.
1995-01-01
Spectral signatures of materials detected and identified quickly. Spectral Analysis Systolic Processor Array (SPA2) relatively inexpensive and satisfies need to analyze large, complex volume of multispectral data generated by imaging spectrometers to extract desired information: computational performance needed to do this in real time exceeds that of current supercomputers. Locates highly similar segments or contiguous subsegments in two different spectra at time. Compares sampled spectra from instruments with data base of spectral signatures of known materials. Computes and reports scores that express degrees of similarity between sampled and data-base spectra.
Study of the peak shape in alpha spectra measured by liquid scintillation
NASA Astrophysics Data System (ADS)
Vera Tomé, F.; Gómez Escobar, V.; Martín Sánchez, A.
2002-06-01
Liquid-scintillation counting allows the measurement of alpha and beta activities jointly or only of the alpha-emitting nuclides in a sample. Although the resolution of the alpha spectra is poorer than that attained with semiconductor detectors, it is still an attractive alternative. We describe here attempts to fit a peak shape to experimental liquid-scintillation alpha spectra and discuss the parameters affecting this shape, such as the PSA (pulse-shape analyser) level, vial type, shaking the sample, etc. Spectral analysis has been applied for complex alpha spectra.
Incorporation of Dynamic SSI Effects in the Design Response Spectra
NASA Astrophysics Data System (ADS)
Manjula, N. K.; Pillai, T. M. Madhavan; Nagarajan, Praveen; Reshma, K. K.
2018-05-01
Many studies in the past on dynamic soil-structure interactions have revealed the detrimental and advantageous effects of soil flexibility. Based on such studies, the design response spectra of international seismic codes are being improved worldwide. The improvements required for the short period range of the design response spectra in the Indian seismic code (IS 1893:2002) are presented in this paper. As the recent code revisions has not incorporated the short period amplifications, proposals given in this paper are equally applicable for the latest code also (IS 1893:2016). Analyses of single degree of freedom systems are performed to predict the required improvements. The proposed modifications to the constant acceleration portion of the spectra are evaluated with respect to the current design spectra in Eurocode 8.
Fine structure in RF spectra of lightning return stroke wave forms
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.
1988-01-01
The power spectra of the wide-band (10 Hz to 100 kHz) magnetic-field signals for a number of lightning return strokes measured during a thunderstorm which occurred in Lindau in August, 1984 have been calculated. The RF magnetic field data are obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. Each return stroke data stream is passed through an adaptive filter designed to whiten its spectrum. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks in the spectra of many of the waveforms. A peak at f of about 60-70 kHz is often seen in the power spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.
fd3: Spectral disentangling of double-lined spectroscopic binary stars
NASA Astrophysics Data System (ADS)
Ilijić, Saša
2017-05-01
The spectral disentangling technique can be applied on a time series of observed spectra of a spectroscopic double-lined binary star (SB2) to determine the parameters of orbit and reconstruct the spectra of component stars, without the use of template spectra. fd3 disentangles the spectra of SB2 stars, capable also of resolving the possible third companion. It performs the separation of spectra in the Fourier space which is faster, but in several respects less versatile than the wavelength-space separation. (Wavelength-space separation is implemented in the twin code CRES.) fd3 is written in C and is designed as a command-line utility for a Unix-like operating system. fd3 is a new version of FDBinary (ascl:1705.011), which is now deprecated.
Cross spectra between temperature and pressure in a constant area duct downstream of a combustor
NASA Technical Reports Server (NTRS)
Miles, J. H.; Wasserbauer, C. A.; Krejsa, E. A.
1983-01-01
The feasibility of measuring pressure temperature cross spectra and coherence and temperature-temperature cross spectra and coherence at spatially separated points along with pressure and temperature auto-spectra in a combustion rig was investigated. The measurements were made near the inlet and exit of a 6.44 m long duct attached to a J-47 combustor. The fuel used was Jet A. The cross spectra and coherence measurements show the pressure and temperature fluctuations correlate best at low frequencies. At the inlet the phenomena controlling the phase relationship between pressure and temperature could not be identified. However, at the duct exit the phase angle of the pressure is related to the phase angle of the temperature by the convected flow time delay.
Berengut, J C; Flambaum, V V; Ong, A; Webb, J K; Barrow, John D; Barstow, M A; Preval, S P; Holberg, J B
2013-07-05
We propose a new probe of the dependence of the fine-structure constant α on a strong gravitational field using metal lines in the spectra of white-dwarf stars. Comparison of laboratory spectra with far-UV astronomical spectra from the white-dwarf star G191-B2B recorded by the Hubble Space Telescope Imaging Spectrograph gives limits of Δα/α=(4.2±1.6)×10(-5) and (-6.1±5.8)×10(-5) from FeV and NiV spectra, respectively, at a dimensionless gravitational potential relative to Earth of Δφ≈5×10(-5). With better determinations of the laboratory wavelengths of the lines employed these results could be improved by up to 2 orders of magnitude.
Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars
NASA Technical Reports Server (NTRS)
Sherman, D. M.
1985-01-01
Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.
Study of the Auger line shape of polyethylene and diamond
NASA Technical Reports Server (NTRS)
Dayan, M.; Pepper, S. V.
1984-01-01
The KVV Auger electron line shapes of carbon in polyethylene and diamond have been studied. The spectra were obtained in derivative form by electron beam excitation. They were treated by background subtraction, integration and deconvolution to produce the intrinsic Auger line shape. Electron energy loss spectra provided the response function in the deconvolution procedure. The line shape from polyethylene is compared with spectra from linear alkanes and with a previous spectrum of Kelber et al. Both spectra are compared with the self-convolution of their full valence band densities of states and of their p-projected densities. The experimental spectra could not be understood in terms of existing theories. This is so even when correlation effects are qualitatively taken into account account to the theories of Cini and Sawatzky and Lenselink.
NASA Astrophysics Data System (ADS)
Berengut, J. C.; Flambaum, V. V.; Ong, A.; Webb, J. K.; Barrow, John D.; Barstow, M. A.; Preval, S. P.; Holberg, J. B.
2013-07-01
We propose a new probe of the dependence of the fine-structure constant α on a strong gravitational field using metal lines in the spectra of white-dwarf stars. Comparison of laboratory spectra with far-UV astronomical spectra from the white-dwarf star G191-B2B recorded by the Hubble Space Telescope Imaging Spectrograph gives limits of Δα/α=(4.2±1.6)×10-5 and (-6.1±5.8)×10-5 from FeV and NiV spectra, respectively, at a dimensionless gravitational potential relative to Earth of Δϕ≈5×10-5. With better determinations of the laboratory wavelengths of the lines employed these results could be improved by up to 2 orders of magnitude.
Solvent effect on the vibrational spectra of Carvedilol.
Billes, Ferenc; Pataki, Hajnalka; Unsalan, Ozan; Mikosch, Hans; Vajna, Balázs; Marosi, György
2012-09-01
Carvedilol (CRV) is an important medicament for heart arrhythmia. The aim of this work was the interpretation of its vibrational spectra with consideration on the solvent effect. Infrared and Raman spectra were recorded in solid state as well in solution. The experimental spectra were evaluated using DFT quantum chemical calculations computing the optimized structure, atomic net charges, vibrational frequencies and force constants. The same calculations were done for the molecule in DMSO and aqueous solutions applying the PCM method. The calculated force constants were scaled to the experimentally observed solid state frequencies. The characters of the vibrational modes were determined by their potential energy distributions. Solvent effects on the molecular properties were interpreted. Based on these results vibrational spectra were simulated. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wegner, Gary A.
1988-01-01
Recent research under NASA grant NAG5-971 consisted of the performance of two projects in conjunction with the International Ultraviolet Explorer (IUE) satellites. These are: (1) to look at the ultraviolet spectra of subluminous stars identified from visual wavelength spectroscopy that had been originally discovered from the Kiso Schmidt survey for ultraviolet excess stars and (2) to carry out a systematic reanalysis of the archived IUE spectra of white dwarfs. This report presents information on the progress of the re-reduction of over 600 IUE white dwarf spectra and their subsequent analysis employing model atmospheres and the observation of the Kiso ultraviolet excess stars.
Systematization method for distinguishing plastic groups by using NIR spectroscopy.
Kaihara, Mikio; Satoh, Minami; Satoh, Minoru
2007-07-01
A systematic classification method for polymers is not yet available in case of using near infrared spectra (NIR). That is why we have been searching for a systematic method. Because raw NIR spectra usually have few obvious peaks, NIR spectra have been pretreated by 2nd derivation for taking well modulated spectra. After the pretreatment, we applied classification and regression trees (CART) to the discrimination between the spectra and the species of polymers. As a result, we obtained a relatively simple classification tree. Judging from the obtained splitting conditions and the classified polymers, we concluded that obtained knowledge on the chemical function groups estimated by the important wavelength regions is not always applicable to this classification tree. However, we clarified the splitting rules for polymer species from the NIR spectral point of view.
Underdetermined blind separation of three-way fluorescence spectra of PAHs in water.
Yang, Ruifang; Zhao, Nanjing; Xiao, Xue; Zhu, Wei; Chen, Yunan; Yin, Gaofang; Liu, Jianguo; Liu, Wenqing
2018-06-15
In this work, underdetermined blind decomposition method is developed to recognize individual components from the three-way fluorescent spectra of their mixtures by using sparse component analysis (SCA). The mixing matrix is estimated from the mixtures using fuzzy data clustering algorithm together with the scatters corresponding to local energy maximum value in the time-frequency domain, and the spectra of object components are recovered by pseudo inverse technique. As an example, using this method three and four pure components spectra can be blindly extracted from two samples of their mixture, with similarities between resolved and reference spectra all above 0.80. This work opens a new and effective path to realize monitoring PAHs in water by three-way fluorescence spectroscopy technique. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Shook, D. F.; Pierce, C. R.
1972-01-01
Proton recoil distributions were obtained by using organic liquid scintillators of different size. The measured distributions are converted to neutron spectra by differentiation analysis for comparison to the unfolded spectra of the largest scintillator. The approximations involved in the differentiation analysis are indicated to have small effects on the precision of neutron spectra measured with the smaller scintillators but introduce significant error for the largest scintillator. In the case of the smallest cylindrical scintillator, nominally 1.2 by 1.3 cm, the efficiency is shown to be insensitive to multiple scattering and to the angular distribution to the incident flux. These characteristics of the smaller scintillator make possible its use to measure scalar flux spectra within media high efficiency is not required.
Real-Time Detection Method And System For Identifying Individual Aerosol Particles
Gard, Eric Evan; Fergenson, David Philip
2005-10-25
A method and system of identifying individual aerosol particles in real time. Sample aerosol particles are compared against and identified with substantially matching known particle types by producing positive and negative test spectra of an individual aerosol particle using a bipolar single particle mass spectrometer. Each test spectrum is compared to spectra of the same respective polarity in a database of predetermined positive and negative spectra for known particle types and a set of substantially matching spectra is obtained. Finally the identity of the individual aerosol particle is determined from the set of substantially matching spectra by determining a best matching one of the known particle types having both a substantially matching positive spectrum and a substantially matching negative spectrum associated with the best matching known particle type.
An electron spin resonance study of some gamma-irradiated fruits
NASA Astrophysics Data System (ADS)
Maloney, Darren R.; Tabner, Brian J.; Tabner, Vivienne A.
The ESR spectra of the seeds, skins and stalks of unirradiated and γ-irradiated Chilean white grapes have been obtained and the results compared to those previously reported for Cape black grapes. The high degree of reproducibility of the spectra obtained from the stalks of different varieties of grapes suggest that ESR spectroscopy could form the basis of a viable test to determine their irradiation history. The condition of the stalk prior to irradiation has been found to have little effect on the resulting spectra. The spectra from the stalks, skins and seeds of unirradiated and γ-irradiated apples, peers and cherries have also been examined. Although most of the spectra from irradiated components exhibit extra features, they are sometimes short-lived and restrict the development of ESR as a viable test.
NASA Astrophysics Data System (ADS)
Kim, Min Gyu; Lee, Hyung Mok; Arai, Toshiaki; Bock, James; Cooray, Asantha; Jeong, Woong-Seob; Kim, Seong Jin; Korngut, Phillip; Lanz, Alicia; Lee, Dae Hee; Lee, Myung Gyoon; Matsumoto, Toshio; Matsuura, Shuji; Nam, Uk Won; Onishi, Yosuke; Shirahata, Mai; Smidt, Joseph; Tsumura, Kohji; Yamamura, Issei; Zemcov, Michael
2017-02-01
We present near-infrared (0.8-1.8 μm) spectra of 105 bright ({m}J < 10) stars observed with the low-resolution spectrometer on the rocket-borne Cosmic Infrared Background Experiment. As our observations are performed above the Earth's atmosphere, our spectra are free from telluric contamination, which makes them a unique resource for near-infrared spectral calibration. Two-Micron All-Sky Survey photometry information is used to identify cross-matched stars after reduction and extraction of the spectra. We identify the spectral types of the observed stars by comparing them with spectral templates from the Infrared Telescope Facility library. All the observed spectra are consistent with late F to M stellar spectral types, and we identify various infrared absorption lines.
Sader, John E; Yousefi, Morteza; Friend, James R
2014-02-01
Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noise spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sader, John E., E-mail: jsader@unimelb.edu.au; Yousefi, Morteza; Friend, James R.
2014-02-15
Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noisemore » spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.« less
NASA Astrophysics Data System (ADS)
Szostak, M. M.; Le Calvé, N.; Romain, F.; Pasquier, B.
1994-10-01
The polarized IR reflection spectra of the meta-nitroaniline ( m-NA) single crystal along the a, b and c crystallographic axes as well as the b and c polarized transmission spectra have been measured in the 100-400 cm -1 region. The LO-TO splitting values have been calculated from the reflection spectra by fitting them with the four parameter dielectric function. The dipole moment derivatives, relevant to dynamic effective charges, of the vibrations have also been calculated and used to check the applicability of the oriented gas model (OGM) to reflection spectra. The discrepancies from the OGM have been discussed in terms of vibronic couplings, weak hydrogen bondings (HB) and intramolecular charge transfer.
Polarization-Dependent Ti 2p-Resonant X-ray Raman Scattering from Ti2O3
NASA Astrophysics Data System (ADS)
Tezuka, Yasuhisa; Nakajima, Nobuo; Adachi, Jun-ichi; Morimoto, Osamu; Sato, Hitoshi; Uozumi, Takayuki
2017-12-01
Detailed resonant X-ray emission spectra (XES) and these polarization dependences of Ti2O3 were obtained by excitation at the Ti 2p absorption edge. About 100 XES spectra were observed in different polarization configurations. X-ray Raman scattering spectra showed two types of crystal field (dd) excitations as well as charge-transfer (CT) excitations. Bulk states of the powder sample were obtained by the XES measurement, which is the photon-in/photon-out method. Partial photon yields (PPYs) of some elementary excitations were extracted from the XES spectra. The CT excitations were hidden in total electron yield spectra, but these were revealed by PPY measurements. Symmetry information of these excitations was acquired on the basis of polarization dependences.
NASA Astrophysics Data System (ADS)
Klyubin, V. V.; Klyubina, K. A.; Makovetskaya, K. N.
2017-04-01
The electronic absorption spectra of aqueous solutions of iodine monochloride ICl are studied. The spectra of as-prepared solutions display the absorption band associated with hydrated ICl molecules. An additional band indicating that molecular iodine was formed in the solution emerges in the spectrum as dissolution takes place. Only the band belonging to iodine monochloride remains in the absorption spectra, and no additional bands appear after chloride anions Cl- are added to the solution. The absorption spectrum becomes more complex when ICl is dissolved in an alkaline medium. The band belonging to molecular iodine emerges in the spectra at low alkali concentrations, while being transformed to other shorter-wavelength bands at high alkali concentrations (pH ≥ 12).
Laaser, Jennifer E.; Skoff, David R.; Ho, Jia-Jung; Joo, Yongho; Serrano, Arnaldo L.; Steinkruger, Jay D.; Gopalan, Padma; Gellman, Samuel H.; Zanni, Martin T.
2014-01-01
Surface-bound polypeptides and proteins are increasingly used to functionalize inorganic interfaces such as electrodes, but their structural characterization is exceedingly difficult with standard technologies. In this paper, we report the first two-dimensional sum-frequency generation (2D SFG) spectra of a peptide monolayer, which is collected by adding a mid-IR pulse shaper to a standard femtosecond SFG spectrometer. On a gold surface, standard FTIR spectroscopy is inconclusive about the peptide structure because of solvation-induced frequency shifts, but the 2D lineshapes, anharmonic shifts, and lifetimes obtained from 2D SFG reveal that the peptide is largely α-helical and upright. Random coil residues are also observed, which do not themselves appear in SFG spectra due to their isotropic structural distribution, but which still absorb infrared light and so can be detected by cross-peaks in 2D SFG spectra. We discuss these results in the context of peptide design. Because of the similar way in which the spectra are collected, these 2D SFG spectra can be directly compared to 2D IR spectra, thereby enabling structural interpretations of surface-bound peptides and biomolecules based on the well-studied structure/2D IR spectra relationships established from soluble proteins. PMID:24372101
Etienne, E; Le Breton, N; Martinho, M; Mileo, E; Belle, V
2017-08-01
Site-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the residue level, structural transitions in proteins. SDSL-EPR is based on the selective grafting of a paramagnetic label on the protein under study, followed by cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give reliable interpretation on biological system dynamics, numerical simulations of the spectra are required. Such spectral simulations can be carried out by coding in MATLAB using functions from the EasySpin toolbox. For non-expert users of MATLAB, this could be a complex task or even impede the use of such simulation tool. We developed a graphical user interface called SimLabel dedicated to run cw EPR spectra simulations particularly coming from SDSL-EPR experiments. Simlabel provides an intuitive way to visualize, simulate, and fit such cw EPR spectra. An example of SDSL-EPR spectra simulation concerning the study of an intrinsically disordered region undergoing a local induced folding is described and discussed. We believe that this new tool will help the users to rapidly obtain reliable simulated spectra and hence facilitate the interpretation of their results. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
THE X-RAY LINE FEATURE AT 3.5 KeV IN GALAXY CLUSTER SPECTRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, K. J. H.; Sylwester, B.; Sylwester, J., E-mail: kennethjhphillips@yahoo.com, E-mail: bs@cbk.pan.wroc.pl, E-mail: js@cbk.pan.wroc.pl
2015-08-10
Recent work by Bulbul et al. and Boyarsky et al. has suggested that a line feature at ∼3.5 keV in the X-ray spectra of galaxy clusters and individual galaxies seen with XMM-Newton is due to the decay of sterile neutrinos, a dark matter candidate. This identification has been criticized by Jeltema and Profumo on the grounds that model spectra suggest that atomic transitions in helium-like potassium (K xviii) and chlorine (Cl xvi) are more likely to be the emitters. Here it is pointed out that the K xviii lines have been observed in numerous solar flare spectra at high spectralmore » resolution with the RESIK crystal spectrometer and also appear in Chandra HETG spectra of the coronally active star σ Gem. In addition, the solar flare spectra at least indicate a mean coronal potassium abundance, which is a factor between 9 and 11 higher than the solar photospheric abundance. This fact, together with the low statistical quality of the XMM-Newton spectra, completely account for the ∼3.5 keV feature and there is therefore no need to invoke a sterile neutrino interpretation of the observed line feature at ∼3.5 keV.« less
Assessment of Cell Line Models of Primary Human Cells by Raman Spectral Phenotyping
Swain, Robin J.; Kemp, Sarah J.; Goldstraw, Peter; Tetley, Teresa D.; Stevens, Molly M.
2010-01-01
Abstract Researchers have previously questioned the suitability of cell lines as models for primary cells. In this study, we used Raman microspectroscopy to characterize live A549 cells from a unique molecular biochemical perspective to shed light on their suitability as a model for primary human pulmonary alveolar type II (ATII) cells. We also investigated a recently developed transduced type I (TT1) cell line as a model for alveolar type I (ATI) cells. Single-cell Raman spectra provide unique biomolecular fingerprints that can be used to characterize cellular phenotypes. A multivariate statistical analysis of Raman spectra indicated that the spectra of A549 and TT1 cells are characterized by significantly lower phospholipid content compared to ATII and ATI spectra because their cytoplasm contains fewer surfactant lamellar bodies. Furthermore, we found that A549 spectra are statistically more similar to ATI spectra than to ATII spectra. The spectral variation permitted phenotypic classification of cells based on Raman spectral signatures with >99% accuracy. These results suggest that A549 cells are not a good model for ATII cells, but TT1 cells do provide a reasonable model for ATI cells. The findings have far-reaching implications for the assessment of cell lines as suitable primary cellular models in live cultures. PMID:20409492
Cancer detection based on Raman spectra super-paramagnetic clustering
NASA Astrophysics Data System (ADS)
González-Solís, José Luis; Guizar-Ruiz, Juan Ignacio; Martínez-Espinosa, Juan Carlos; Martínez-Zerega, Brenda Esmeralda; Juárez-López, Héctor Alfonso; Vargas-Rodríguez, Héctor; Gallegos-Infante, Luis Armando; González-Silva, Ricardo Armando; Espinoza-Padilla, Pedro Basilio; Palomares-Anda, Pascual
2016-08-01
The clustering of Raman spectra of serum sample is analyzed using the super-paramagnetic clustering technique based in the Potts spin model. We investigated the clustering of biochemical networks by using Raman data that define edge lengths in the network, and where the interactions are functions of the Raman spectra's individual band intensities. For this study, we used two groups of 58 and 102 control Raman spectra and the intensities of 160, 150 and 42 Raman spectra of serum samples from breast and cervical cancer and leukemia patients, respectively. The spectra were collected from patients from different hospitals from Mexico. By using super-paramagnetic clustering technique, we identified the most natural and compact clusters allowing us to discriminate the control and cancer patients. A special interest was the leukemia case where its nearly hierarchical observed structure allowed the identification of the patients's leukemia type. The goal of this study is to apply a model of statistical physics, as the super-paramagnetic, to find these natural clusters that allow us to design a cancer detection method. To the best of our knowledge, this is the first report of preliminary results evaluating the usefulness of super-paramagnetic clustering in the discipline of spectroscopy where it is used for classification of spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gronke, M.; Dijkstra, M., E-mail: maxbg@astro.uio.no
We perform Lyman- α (Ly α ) Monte-Carlo radiative transfer calculations on a suite of 2500 models of multiphase, outflowing media, which are characterized by 14 parameters. We focus on the Ly α spectra emerging from these media and investigate which properties are dominant in shaping the emerging Ly α profile. Multiphase models give rise to a wide variety of emerging spectra, including single-, double-, and triple-peaked spectra. We find that the dominant parameters in shaping the spectra include (i) the cloud covering factor, f {sub c} , which is in agreement with earlier studies, and (ii) the temperature andmore » number density of residual H i in the hot ionized medium. We attempt to reproduce spectra emerging from multiphase models with “shell models” which are commonly used to fit observed Ly α spectra, and investigate the connection between shell-model parameters and the physical parameters of the clumpy media. In shell models, the neutral hydrogen content of the shell is one of the key parameters controlling Ly α radiative transfer. Because Ly α spectra emerging from multiphase media depend much less on the neutral hydrogen content of the clumps, the shell-model parameters such as H i column density (but also shell velocity and dust content) are generally not well matched to the associated physical parameters of the clumpy media.« less
NASA Astrophysics Data System (ADS)
Lucey, Paul G.; Trang, David; Johnson, Jeffrey R.; Glotch, Timothy D.
2018-01-01
Several studies have detected the presence of nanophase ferric oxide, such as nanophase hematite, across the martian surface through spacecraft and rover data. In this study, we used the radiative transfer method to detect and quantify the abundance of these nanophase particles. Because the visible/near-infrared spectral characteristics of hematite > 10 nm in size are different from nanophase hematite < 10 nm, there are not any adequate optical constants of nanophase hematite to study visible to near-infrared rover/spacecraft data of the martian surface. Consequently, we found that radiative transfer models based upon the optical constants of crystalline hematite are unable to reproduce laboratory spectra of nanophase hematite. In order to match the model spectra to the laboratory spectra, we developed a new set of optical constants of nanophase hematite in the visible and near-infrared and found that radiative transfer models based upon these optical constants consistently model the laboratory spectra. We applied our model to the passive bidirectional reflectance spectra data from the Chemistry and Camera (ChemCam) instrument onboard the Mars Science Laboratory rover, Curiosity. After modeling six spectra representing different major units identified during the first year of rover operations, we found that the nanophase hematite abundance was no more than 4 wt%.
Chen, Shuo; Ong, Yi Hong; Lin, Xiaoqian; Liu, Quan
2015-01-01
Raman spectroscopy has shown great potential in biomedical applications. However, intrinsically weak Raman signals cause slow data acquisition especially in Raman imaging. This problem can be overcome by narrow-band Raman imaging followed by spectral reconstruction. Our previous study has shown that Raman spectra free of fluorescence background can be reconstructed from narrow-band Raman measurements using traditional Wiener estimation. However, fluorescence-free Raman spectra are only available from those sophisticated Raman setups capable of fluorescence suppression. The reconstruction of Raman spectra with fluorescence background from narrow-band measurements is much more challenging due to the significant variation in fluorescence background. In this study, two advanced Wiener estimation methods, i.e. modified Wiener estimation and sequential weighted Wiener estimation, were optimized to achieve this goal. Both spontaneous Raman spectra and surface enhanced Raman spectra were evaluated. Compared with traditional Wiener estimation, two advanced methods showed significant improvement in the reconstruction of spontaneous Raman spectra. However, traditional Wiener estimation can work as effectively as the advanced methods for SERS spectra but much faster. The wise selection of these methods would enable accurate Raman reconstruction in a simple Raman setup without the function of fluorescence suppression for fast Raman imaging. PMID:26203387
A molecular Rayleigh scattering setup to measure density fluctuations in thermal boundary layers
NASA Astrophysics Data System (ADS)
Panda, J.
2016-12-01
A Rayleigh scattering-based density fluctuation measurement system was set up inside a low-speed wind tunnel of NASA Ames Research Center. The immediate goal was to study the thermal boundary layer on a heated flat plate. A large number of obstacles had to be overcome to set up the system, such as the removal of dust particles using air filters, the use of photoelectron counting electronics to measure low intensity light, an optical layout to minimize stray light contamination, the reduction in tunnel vibration, and an expanded calibration process to relate photoelectron arrival rate to air density close to the plate surface. To measure spectra of turbulent density fluctuations, a two-PMT cross-correlation system was used to minimize the shot noise floor. To validate the Rayleigh measurements, temperature fluctuations spectra were calculated from density spectra and then compared with temperature spectra measured with a cold-wire probe operated in constant current mode. The spectra from the downstream half of the plate were found to be in good agreement with cold-wire probe, whereas spectra from the leading edge differed. Various lessons learnt are discussed. It is believed that the present effort is the first measurement of density fluctuations spectra in a boundary layer flow.
Reconstruction of full high-resolution HSQC using signal split in aliased spectra.
Foroozandeh, Mohammadali; Jeannerat, Damien
2015-11-01
Resolution enhancement is a long-sought goal in NMR spectroscopy. In conventional multidimensional NMR experiments, such as the (1) H-(13) C HSQC, the resolution in the indirect dimensions is typically 100 times lower as in 1D spectra because it is limited by the experimental time. Reducing the spectral window can significantly increase the resolution but at the cost of ambiguities in frequencies as a result of spectral aliasing. Fortunately, this information is not completely lost and can be retrieved using methods in which chemical shifts are encoded in the aliased spectra and decoded after processing to reconstruct high-resolution (1) H-(13) C HSQC spectrum with full spectral width and a resolution similar to that of 1D spectra. We applied a new reconstruction method, RHUMBA (reconstruction of high-resolution using multiplet built on aliased spectra), to spectra obtained from the differential evolution for non-ambiguous aliasing-HSQC and the new AMNA (additional modulation for non-ambiguous aliasing)-HSQC experiments. The reconstructed spectra significantly facilitate both manual and automated spectral analyses and structure elucidation based on heteronuclear 2D experiments. The resolution is enhanced by two orders of magnitudes without the usual complications due to spectral aliasing. Copyright © 2015 John Wiley & Sons, Ltd.
David, Matthieu; Fertin, Guillaume; Rogniaux, Hélène; Tessier, Dominique
2017-08-04
The analysis of discovery proteomics experiments relies on algorithms that identify peptides from their tandem mass spectra. The almost exhaustive interpretation of these spectra remains an unresolved issue. At present, an important number of missing interpretations is probably due to peptides displaying post-translational modifications and variants that yield spectra that are particularly difficult to interpret. However, the emergence of a new generation of mass spectrometers that provide high fragment ion accuracy has paved the way for more efficient algorithms. We present a new software, SpecOMS, that can handle the computational complexity of pairwise comparisons of spectra in the context of large volumes. SpecOMS can compare a whole set of experimental spectra generated by a discovery proteomics experiment to a whole set of theoretical spectra deduced from a protein database in a few minutes on a standard workstation. SpecOMS can ingeniously exploit those capabilities to improve the peptide identification process, allowing strong competition between all possible peptides for spectrum interpretation. Remarkably, this software resolves the drawbacks (i.e., efficiency problems and decreased sensitivity) that usually accompany open modification searches. We highlight this promising approach using results obtained from the analysis of a public human data set downloaded from the PRIDE (PRoteomics IDEntification) database.
NASA Astrophysics Data System (ADS)
Castelli, F.; Munari, U.
2001-02-01
In this paper we complete the library of synthetic spectra for the range 7650-8750 Å, which includes the 8500-8750 Å interval currently base-lined for the spectroscopic observations by GAIA, candidate ESA Cornerstone 5 mission. As for Paper II, the spectra are based on Kurucz's codes and line data. The explored metallicity, gravity and temperature ranges are -2.5<= [Z/Zsun]<= +0.5, 4.5<=log g<= 2.0 and 7750<=Teff <=50 000 K, respectively. The 698 new spectra are computed at the same lambda / bigtriangleup lambda =20 000 resolving power of the observed spectra given in Paper I (131 standard stars mapping the MKK spectral classification system) and the 254 synthetic spectra of Paper II (characterized by Teff <= 7 500 K). Tables 2-4 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/366/1003 or via the personal HomePage http://ulisse.pd.astro.it/Astro/Atlases/ The spectra are available in electronic form at the CDS. Figures 5-224 are only available in electronic form at http://www.edpsciences.org
Goddard, Braden; Croft, Stephen; Lousteau, Angela; ...
2016-05-25
Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with ( α,n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured spectra ofmore » various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. Finally, the singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis.« less
Peres, Marines Bertolo; Silveira, Landulfo; Zângaro, Renato Amaro; Pacheco, Marcos Tadeu Tavares; Pasqualucci, Carlos Augusto
2011-09-01
This study presents the results of Raman spectroscopy applied to the classification of arterial tissue based on a simplified model using basal morphological and biochemical information extracted from the Raman spectra of arteries. The Raman spectrograph uses an 830-nm diode laser, imaging spectrograph, and a CCD camera. A total of 111 Raman spectra from arterial fragments were used to develop the model, and those spectra were compared to the spectra of collagen, fat cells, smooth muscle cells, calcification, and cholesterol in a linear fit model. Non-atherosclerotic (NA), fatty and fibrous-fatty atherosclerotic plaques (A) and calcified (C) arteries exhibited different spectral signatures related to different morphological structures presented in each tissue type. Discriminant analysis based on Mahalanobis distance was employed to classify the tissue type with respect to the relative intensity of each compound. This model was subsequently tested prospectively in a set of 55 spectra. The simplified diagnostic model showed that cholesterol, collagen, and adipocytes were the tissue constituents that gave the best classification capability and that those changes were correlated to histopathology. The simplified model, using spectra obtained from a few tissue morphological and biochemical constituents, showed feasibility by using a small amount of variables, easily extracted from gross samples.
Computer simulation of backscattering spectra from paint
NASA Astrophysics Data System (ADS)
Mayer, M.; Silva, T. F.
2017-09-01
To study the role of lateral non-homogeneity on backscattering analysis of paintings, a simplified model of paint consisting of randomly distributed spherical pigment particles embedded in oil/binder has been developed. Backscattering spectra for lead white pigment particles in linseed oil have been calculated for 3 MeV H+ at a scattering angle of 165° for pigment volume concentrations ranging from 30 vol.% to 70 vol.% using the program STRUCTNRA. For identical pigment volume concentrations the heights and shapes of the backscattering spectra depend on the diameter of the pigment particles: This is a structural ambiguity for identical mean atomic concentrations but different lateral arrangement of materials. Only for very small pigment particles the resulting spectra are close to spectra calculated supposing atomic mixing and assuming identical concentrations of all elements. Generally, a good fit can be achieved when evaluating spectra from structured materials assuming atomic mixing of all elements and laterally homogeneous depth distributions. However, the derived depth profiles are inaccurate by a factor of up to 3. The depth range affected by this structural ambiguity ranges from the surface to a depth of roughly 0.5-1 pigment particle diameters. Accurate quantitative evaluation of backscattering spectra from paintings therefore requires taking the correct microstructure of the paint layer into account.
NASA Astrophysics Data System (ADS)
Yehia, Ali M.; Abd El-Rahman, Mohamed K.
2015-03-01
Normalized spectra have a great power in resolving spectral overlap of challenging Orphenadrine (ORP) and Paracetamol (PAR) binary mixture, four smart techniques utilizing the normalized spectra were used in this work, namely, amplitude modulation (AM), simultaneous area ratio subtraction (SARS), simultaneous derivative spectrophotometry (S1DD) and ratio H-point standard addition method (RHPSAM). In AM, peak amplitude at 221.6 nm of the division spectra was measured for both ORP and PAR determination, while in SARS, concentration of ORP was determined using the area under the curve from 215 nm to 222 nm of the regenerated ORP zero order absorption spectra, in S1DD, concentration of ORP was determined using the peak amplitude at 224 nm of the first derivative ratio spectra. PAR concentration was determined directly at 288 nm in the division spectra obtained during the manipulation steps in the previous three methods. The last RHPSAM is a dual wavelength method in which two calibrations were plotted at 216 nm and 226 nm. RH point is the intersection of the two calibration lines, where ORP and PAR concentrations were directly determined from coordinates of RH point. The proposed methods were applied successfully for the determination of ORP and PAR in their dosage form.
Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide
2014-01-01
Coherent anti-Stokes Raman scattering (CARS) of carbon nanostructures, namely, highly oriented pyrolytic graphite, graphene nanoplatelets, graphene oxide, and multiwall carbon nanotubes as well CARS spectra of thymine (Thy) molecules adsorbed on graphene oxide were studied. The spectra of the samples were compared with spontaneous Raman scattering (RS) spectra. The CARS spectra of Thy adsorbed on graphene oxide are characterized by shifts of the main bands in comparison with RS. The CARS spectra of the initial nanocarbons are definitely different: for all investigated materials, there is a redistribution of D- and G-mode intensities, significant shift of their frequencies (more than 20 cm-1), and appearance of new modes about 1,400 and 1,500 cm-1. The D band in CARS spectra is less changed than the G band; there is an absence of 2D-mode at 2,600 cm-1 for graphene and appearance of intensive modes of the second order between 2,400 and 3,000 cm-1. Multiphonon processes in graphene under many photon excitations seem to be responsible for the features of the CARS spectra. We found an enhancement of the CARS signal from thymine adsorbed on graphene oxide with maximum enhancement factor about 105. The probable mechanism of CARS enhancement is discussed. PMID:24948887
VizieR Online Data Catalog: Census of blue stars in SDSS DR8 (Scibelli+, 2014)
NASA Astrophysics Data System (ADS)
Scibelli, S.; Newberg, H. J.; Carlin, J. L.; Yanny, B.
2015-02-01
We present a census of the 12060 spectra of blue objects ((g-r)0<-0.25) in the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8). As part of the data release, all of the spectra were cross-correlated with 48 template spectra of stars, galaxies, and QSOs to determine the best match. We compared the blue spectra by eye to the templates assigned in SDSS DR8. 10856 of the objects matched their assigned template, 170 could not be classified due to low signal-to-noise ratio, and 1034 were given new classifications. We identify 7458 DA white dwarfs, 1145 DB white dwarfs, 273 rarer white dwarfs (including carbon, DZ, DQ, and magnetic), 294 subdwarf O stars, 648 subdwarf B stars, 679 blue horizontal branch stars, 1026 blue stragglers, 13 cataclysmic variables, 129 white dwarf-M dwarf binaries, 36 objects with spectra similar to DO white dwarfs, 179, quasi-stellar objects (QSOs), and 10 galaxies. We provide two tables of these objects, sample spectra that match the templates, figures showing all of the spectra that were grouped by eye, and diagnostic plots that show the positions, colors, apparent magnitudes, proper motions, etc., for each classification. (3 data files).
Research on Spectroscopy, Opacity, and Atmospheres
NASA Technical Reports Server (NTRS)
Oliversen, Ronald (Technical Monitor); Kurucz, Robert L.
2004-01-01
I propose to continue providing observers with basic data for interpreting spectra from stars, novas, supernovas, clusters, and galaxies. These data will include allowed forbidden line lists both laboratory and computed, for the first five to ten ions of all atoms and for all relevant diatomic molecules. I will eventually expend to all ions of the first thirty elements to treat far UV end X-ray spectra, and for envelope opacities. I also include triatomic molecules providing by other researchers. I have made CDs with Partridge and Schwanke's water data for work on M stars.The luna data also serve as input to my model atmosphere and synthesis programs that generated energy distributions, photometry, limb darkening, and spectra that can be used for planning observations and for fitting observed spectra. The spectrum synthesis programs produce detailed plots with the line identified. Grids of stellar spectra can be used for radial velocity-, rotation-, or abundance templates and for population synthesis. I am fitting spectra of bright stars to test the data and to produce atlases to guide observer. For each star the whole spectrum is computed from the UV to the far IR. The line data, opacities, models, spectra, and programs are freely distributed on CDs and on my web site and represent a unique resource for many NASA programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisniega, A.; Vaquero, J. J., E-mail: juanjose.vaquero@uc3m.es; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007
Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modifiedmore » to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in line with those reported for other models for radiology or mammography. Conclusions: A new version of the TASMIP model for the estimation of x-ray spectra in microfocus x-ray sources has been developed and validated experimentally. Similarly to other versions of TASMIP, the estimation of spectra is very simple, involving only the evaluation of polynomial expressions.« less
Towards de novo identification of metabolites by analyzing tandem mass spectra.
Böcker, Sebastian; Rasche, Florian
2008-08-15
Mass spectrometry is among the most widely used technologies in proteomics and metabolomics. Being a high-throughput method, it produces large amounts of data that necessitates an automated analysis of the spectra. Clearly, database search methods for protein analysis can easily be adopted to analyze metabolite mass spectra. But for metabolites, de novo interpretation of spectra is even more important than for protein data, because metabolite spectra databases cover only a small fraction of naturally occurring metabolites: even the model plant Arabidopsis thaliana has a large number of enzymes whose substrates and products remain unknown. The field of bio-prospection searches biologically diverse areas for metabolites which might serve as pharmaceuticals. De novo identification of metabolite mass spectra requires new concepts and methods since, unlike proteins, metabolites possess a non-linear molecular structure. In this work, we introduce a method for fully automated de novo identification of metabolites from tandem mass spectra. Mass spectrometry data is usually assumed to be insufficient for identification of molecular structures, so we want to estimate the molecular formula of the unknown metabolite, a crucial step for its identification. The method first calculates all molecular formulas that explain the parent peak mass. Then, a graph is build where vertices correspond to molecular formulas of all peaks in the fragmentation mass spectra, whereas edges correspond to hypothetical fragmentation steps. Our algorithm afterwards calculates the maximum scoring subtree of this graph: each peak in the spectra must be scored at most once, so the subtree shall contain only one explanation per peak. Unfortunately, finding this subtree is NP-hard. We suggest three exact algorithms (including one fixed parameter tractable algorithm) as well as two heuristics to solve the problem. Tests on real mass spectra show that the FPT algorithm and the heuristics solve the problem suitably fast and provide excellent results: for all 32 test compounds the correct solution was among the top five suggestions, for 26 compounds the first suggestion of the exact algorithm was correct. http://www.bio.inf.uni-jena.de/tandemms
[A New Distance Metric between Different Stellar Spectra: the Residual Distribution Distance].
Liu, Jie; Pan, Jing-chang; Luo, A-li; Wei, Peng; Liu, Meng
2015-12-01
Distance metric is an important issue for the spectroscopic survey data processing, which defines a calculation method of the distance between two different spectra. Based on this, the classification, clustering, parameter measurement and outlier data mining of spectral data can be carried out. Therefore, the distance measurement method has some effect on the performance of the classification, clustering, parameter measurement and outlier data mining. With the development of large-scale stellar spectral sky surveys, how to define more efficient distance metric on stellar spectra has become a very important issue in the spectral data processing. Based on this problem and fully considering of the characteristics and data features of the stellar spectra, a new distance measurement method of stellar spectra named Residual Distribution Distance is proposed. While using this method to measure the distance, the two spectra are firstly scaled and then the standard deviation of the residual is used the distance. Different from the traditional distance metric calculation methods of stellar spectra, when used to calculate the distance between stellar spectra, this method normalize the two spectra to the same scale, and then calculate the residual corresponding to the same wavelength, and the standard error of the residual spectrum is used as the distance measure. The distance measurement method can be used for stellar classification, clustering and stellar atmospheric physical parameters measurement and so on. This paper takes stellar subcategory classification as an example to test the distance measure method. The results show that the distance defined by the proposed method is more effective to describe the gap between different types of spectra in the classification than other methods, which can be well applied in other related applications. At the same time, this paper also studies the effect of the signal to noise ratio (SNR) on the performance of the proposed method. The result show that the distance is affected by the SNR. The smaller the signal-to-noise ratio is, the greater impact is on the distance; While SNR is larger than 10, the signal-to-noise ratio has little effect on the performance for the classification.
NASA Astrophysics Data System (ADS)
Flakus, Henryk T.; Michta, Anna
2004-11-01
This paper presents the investigation results of the polarized IR spectra of H1245 imidazole crystals and of D1H245, D1245 and H1D245 imidazole deuterium derivative crystals. The spectra were measured using polarized light at the room temperature and at 77 K by a transmission method, for two different crystalline faces. Theoretical analysis of the results concerned linear dichroic effects, H/D isotopic and temperature effects, observed in the spectra of the hydrogen and of the deuterium bonds in imidazole crystals, at the frequency ranges of νN-H and νN-D bands. The basic crystal spectral properties can be satisfactorily interpreted in a quantitative way for a hydrogen bond linear dimer model. Such a model explains not only a two-branch structure of the νN-H and νN-D bands in crystalline spectra, but also some essential linear dichroic effects in the band frequency ranges, for isotopically diluted crystals. Model calculations, performed within the limits of the strong-coupling model, allowed for quantitative interpretation and for understanding of the basic properties of the hydrogen bond IR spectra of imidazole crystals, H/D isotopic, temperature and dichroic effects included. The results allowed verification of theoretical models proposed recently for the imidazole crystal spectra generation mechanisms. In the scope of our studies, the mechanism of H/D isotopic self-organization processes, taking place in the crystal hydrogen bond lattices, was also recognized. It was proved that for isotopically diluted crystalline samples of imidazole, a non-random distribution of protons and deuterons exclusively occurs in some restricted fragments (domains) of open chains of the hydrogen-bonded molecules. Nevertheless, these co-operative interactions between the hydrogen bonds do not concern adjacent fragments of neighboring hydrogen bond chains in the lattice. Analysis of the isotopic self-organization effects in the spectra of imidazole crystals delivered crucial arguments for understanding of the nature of the hydrogen bond spectra generation mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez Almeida, J.; Allende Prieto, C., E-mail: jos@iac.es, E-mail: callende@iac.es
2013-01-20
Large spectroscopic surveys require automated methods of analysis. This paper explores the use of k-means clustering as a tool for automated unsupervised classification of massive stellar spectral catalogs. The classification criteria are defined by the data and the algorithm, with no prior physical framework. We work with a representative set of stellar spectra associated with the Sloan Digital Sky Survey (SDSS) SEGUE and SEGUE-2 programs, which consists of 173,390 spectra from 3800 to 9200 A sampled on 3849 wavelengths. We classify the original spectra as well as the spectra with the continuum removed. The second set only contains spectral lines,more » and it is less dependent on uncertainties of the flux calibration. The classification of the spectra with continuum renders 16 major classes. Roughly speaking, stars are split according to their colors, with enough finesse to distinguish dwarfs from giants of the same effective temperature, but with difficulties to separate stars with different metallicities. There are classes corresponding to particular MK types, intrinsically blue stars, dust-reddened, stellar systems, and also classes collecting faulty spectra. Overall, there is no one-to-one correspondence between the classes we derive and the MK types. The classification of spectra without continuum renders 13 classes, the color separation is not so sharp, but it distinguishes stars of the same effective temperature and different metallicities. Some classes thus obtained present a fairly small range of physical parameters (200 K in effective temperature, 0.25 dex in surface gravity, and 0.35 dex in metallicity), so that the classification can be used to estimate the main physical parameters of some stars at a minimum computational cost. We also analyze the outliers of the classification. Most of them turn out to be failures of the reduction pipeline, but there are also high redshift QSOs, multiple stellar systems, dust-reddened stars, galaxies, and, finally, odd spectra whose nature we have not deciphered. The template spectra representative of the classes are publicly available in the online journal.« less
Wenjun, Ji; Zhou, Shi; Jingyi, Huang; Shuo, Li
2014-01-01
In situ measurements with visible and near-infrared spectroscopy (vis-NIR) provide an efficient way for acquiring soil information of paddy soils in the short time gap between the harvest and following rotation. The aim of this study was to evaluate its feasibility to predict a series of soil properties including organic matter (OM), organic carbon (OC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK) and pH of paddy soils in Zhejiang province, China. Firstly, the linear partial least squares regression (PLSR) was performed on the in situ spectra and the predictions were compared to those with laboratory-based recorded spectra. Then, the non-linear least-square support vector machine (LS-SVM) algorithm was carried out aiming to extract more useful information from the in situ spectra and improve predictions. Results show that in terms of OC, OM, TN, AN and pH, (i) the predictions were worse using in situ spectra compared to laboratory-based spectra with PLSR algorithm (ii) the prediction accuracy using LS-SVM (R2>0.75, RPD>1.90) was obviously improved with in situ vis-NIR spectra compared to PLSR algorithm, and comparable or even better than results generated using laboratory-based spectra with PLSR; (iii) in terms of AP and AK, poor predictions were obtained with in situ spectra (R2<0.5, RPD<1.50) either using PLSR or LS-SVM. The results highlight the use of LS-SVM for in situ vis-NIR spectroscopic estimation of soil properties of paddy soils. PMID:25153132
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Hamid; Murugkar, Sangeeta; Ahmad, Abrar
Purpose: To improve classification by reducing batch effect in samples from the ovarian carcinoma cell lines A2780s (parental wild type) and A2780cp (cisplatin cross-radio-resistant), before, right after, and 24 hours after irradiation to 10Gy. Methods: Spectra were acquired with a home built confocal Raman microscope in 3 distinct runs of six samples: unirradiated s&cp (control pair), then 0h and 24h after irradiation. The Raman spectra were noise reduced, then background subtracted with SMIRF algorithm. ∼35 cell spectra were collected from each sample in 1024 channels from 700cm-1 to 1618cm-1. The spectra were analyzed by regularized multiclass LDA. For feature reductionmore » the spectra were grouped into 3 overlapping group pairs: s-cp, 0Gy–10Gy0h and 0Gy10–Gy24h. The three features, the three differences of the mean spectra were mapped to the analysis sub-space by the inverse regularized covariance matrix. The batch effect noticeably confounded the dose and time effect. Results: To remove the batch effect, the 2+2=4D subspace extended by the covariance matrix of the means of the 0Gy control groups was subtracted from the spectra of each sample. Repeating the analysis on the spectra with the control group variability removed, the batch effect was dramatically reduced in the dose and time directions enabling sharp linear discrimination. The cell type classification also improved. Conclusions: We identified a efficient batch effect removal technique crucial to the applicability of Raman microscopy to radiosensitivity studies both on cell cultures and potential clinical diagnostic applications.« less
2D fluorescence spectra measurement of six kinds of bioagents simulants by short range Lidar
NASA Astrophysics Data System (ADS)
Sanpedro, Man
2018-02-01
Pantoea agglomerans (Pan), Staphylococcus aureus (Sta), Bacillus globigii (BG) and Escherichia coli (EH), these four kinds of bioagents simulants of were cultured and then their growth curves were measured, the generation time was 0.99h, 0.835h, 1.07h and 1.909h, respectively. A small short range fluorescence lidar working at wavelengths of 266nm and 355nm was designed and used to measure the two-dimensional fluorescence spectra of bioagents simulants in the amino acid segment and NADH segment, respectively. In a controllable fluorescence measurement chamber, the two-dimensional fluorescence spectra of vegetative liquid bacterial aerosols as well as BSA and OVA, two protein toxinic simulants were measured with a resolution of 4nm. The two-dimensional fluorescence spectral shape of Pan, Sta, EH and BG, BSA and OVA were consistent with the standard fluorescent component tryptophan in the amino acid band with FWHM of 60nm, but the central wavelength of the fluorescence spectra of these simulants blue/purple shifted obviously as affected by the external biochemical environment, concentration and ratio of different bacterial internal fluorophores, so the energy level between the excited state and the ground state of the fluorescence molecule increased. Differently, weak NADH fluorescence spectra with 100nm FWHM inside the four vegetative bacteria aerosols were detected, but Rayleigh scattering, Raman scattering contribution of water, nitrogen in the fluorescence spectra could not be effectively extracted. The second - order derivative fluorescence spectra of four simulants showed that the high - order processing and recognition of the fluorescence spectra was feasible.
Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars
Johnson, J. R.; Horz, F.; Staid, M.I.
2003-01-01
Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.
NASA Astrophysics Data System (ADS)
Iwamoto, Yosuke; Ogawa, Tatsuhiko
2017-04-01
Because primary knock-on atoms (PKAs) create point defects and clusters in materials that are irradiated with neutrons, it is important to validate the calculations of recoil cross section spectra that are used to estimate radiation damage in materials. Here, the recoil cross section spectra of fission- and fusion-relevant materials were calculated using the Event Generator Mode (EGM) of the Particle and Heavy Ion Transport code System (PHITS) and also using the data processing code NJOY2012 with the nuclear data libraries TENDL2015, ENDF/BVII.1, and JEFF3.2. The heating number, which is the integral of the recoil cross section spectra, was also calculated using PHITS-EGM and compared with data extracted from the ACE files of TENDL2015, ENDF/BVII.1, and JENDL4.0. In general, only a small difference was found between the PKA spectra of PHITS + TENDL2015 and NJOY + TENDL2015. From analyzing the recoil cross section spectra extracted from the nuclear data libraries using NJOY2012, we found that the recoil cross section spectra were incorrect for 72Ge, 75As, 89Y, and 109Ag in the ENDF/B-VII.1 library, and for 90Zr and 55Mn in the JEFF3.2 library. From analyzing the heating number, we found that the data extracted from the ACE file of TENDL2015 for all nuclides were problematic in the neutron capture region because of incorrect data regarding the emitted gamma energy. However, PHITS + TENDL2015 can calculate PKA spectra and heating numbers correctly.
[The NIR spectra based variety discrimination for single soybean seed].
Zhu, Da-Zhou; Wang, Kun; Zhou, Guang-Hua; Hou, Rui-Feng; Wang, Cheng
2010-12-01
With the development of soybean producing and processing, the quality breeding becomes more and more important for soybean breeders. Traditional sampling detection methods for soybean quality need to destroy the seed, and does not satisfy the requirement of earlier generation materials sieving for breeding. Near infrared (NIR) spectroscopy has been widely used for soybean quality detection. However, all these applications were referred to mass samples, and they were not suitable for little or single seed detection in breeding procedure. In the present study, the acousto--optic tunable filter (AOTF) NIR spectroscopy was used to measure the single soybean seed. Two varieties of soybean were measured, which contained 60 KENJIANDOU43 seeds and 60 ZHONGHUANG13 seeds. The results showed that NIR spectra combined with soft independent modeling of class analogy (SIMCA) could accurately discriminate the soybean varieties. The classification accuracy for KENJIANDOU43 seeds and ZHONGHUANG13 was 100%. The spectra of single soybean seed were measured at different positions, and it showed that the seed shape has significant influence on the measurement of spectra, therefore, the key point for single seed measurement was how to accurately acquire the spectra and keep their representativeness. The spectra for soybeans with glossy surface had high repeatability, while the spectra of seeds with external defects had significant difference for several measurements. For the fast sieving of earlier generation materials in breeding, one could firstly eliminate the seeds with external defects, then apply NIR spectra for internal quality detection, and in this way the influence of seed shape and external defects could be reduced.
NASA Technical Reports Server (NTRS)
Li, Feng; Waugh, Darryn W.; Douglass, Anne R.; Newman, Paul A.; Strahan, Susan E.; Ma, Jun; Nielsen, J. Eric; Liang, Qing
2012-01-01
In this study we investigate the long-term variations in the stratospheric age spectra using simulations of the 21st century with the Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM). Our purposes are to characterize the long-term changes in the age spectra and identify processes that cause the decrease of the mean age in a warming climate. Changes in the age spectra in the 21st century simulations are characterized by decreases in the modal age, the mean age, the spectral width, and the tail decay timescale. Our analyses show that the decrease in the mean age is caused by two processes: the acceleration of the residual circulation that increases the young air masses in the stratosphere, and the weakening of the recirculation that leads to the decrease of tail of the age spectra and the decrease of the old air masses. The weakening of the stratospheric recirculation is also strongly correlated with the increase of the residual circulation. One important result of this study is that the decrease of the tail of the age spectra makes an important contribution to the decrease of the main age. Long-term changes in the stratospheric isentropic mixing are investigated. Mixing increases in the subtropical lower stratosphere, but its impact on the age spectra is outweighed by the increase of the residual circulation. The impacts of the long-term changes in the age spectra on long-lived chemical traces are also investigated. 37 2
ASERA: A spectrum eye recognition assistant for quasar spectra
NASA Astrophysics Data System (ADS)
Yuan, Hailong; Zhang, Haotong; Zhang, Yanxia; Lei, Yajuan; Dong, Yiqiao; Zhao, Yongheng
2013-11-01
Spectral type recognition is an important and fundamental step of large sky survey projects in the data reduction for further scientific research, like parameter measurement and statistic work. It tends out to be a huge job to manually inspect the low quality spectra produced from the massive spectroscopic survey, where the automatic pipeline may not provide confident type classification results. In order to improve the efficiency and effectiveness of spectral classification, we develop a semi-automated toolkit named ASERA, ASpectrum Eye Recognition Assistant. The main purpose of ASERA is to help the user in quasar spectral recognition and redshift measurement. Furthermore it can also be used to recognize various types of spectra of stars, galaxies and AGNs (Active Galactic Nucleus). It is an interactive software allowing the user to visualize observed spectra, superimpose template spectra from the Sloan Digital Sky Survey (SDSS), and interactively access related spectral line information. It is an efficient and user-friendly toolkit for the accurate classification of spectra observed by LAMOST (the Large Sky Area Multi-object Fiber Spectroscopic Telescope). The toolkit is available in two modes: a Java standalone application and a Java applet. ASERA has a few functions, such as wavelength and flux scale setting, zoom in and out, redshift estimation, spectral line identification, which helps user to improve the spectral classification accuracy especially for low quality spectra and reduce the labor of eyeball check. The function and performance of this tool is displayed through the recognition of several quasar spectra and a late type stellar spectrum from the LAMOST Pilot survey. Its future expansion capabilities are discussed.
Titan solar occultation observations reveal transit spectra of a hazy world.
Robinson, Tyler D; Maltagliati, Luca; Marley, Mark S; Fortney, Jonathan J
2014-06-24
High-altitude clouds and hazes are integral to understanding exoplanet observations, and are proposed to explain observed featureless transit spectra. However, it is difficult to make inferences from these data because of the need to disentangle effects of gas absorption from haze extinction. Here, we turn to the quintessential hazy world, Titan, to clarify how high-altitude hazes influence transit spectra. We use solar occultation observations of Titan's atmosphere from the Visual and Infrared Mapping Spectrometer aboard National Aeronautics and Space Administration's (NASA) Cassini spacecraft to generate transit spectra. Data span 0.88-5 μm at a resolution of 12-18 nm, with uncertainties typically smaller than 1%. Our approach exploits symmetry between occultations and transits, producing transit radius spectra that inherently include the effects of haze multiple scattering, refraction, and gas absorption. We use a simple model of haze extinction to explore how Titan's haze affects its transit spectrum. Our spectra show strong methane-absorption features, and weaker features due to other gases. Most importantly, the data demonstrate that high-altitude hazes can severely limit the atmospheric depths probed by transit spectra, bounding observations to pressures smaller than 0.1-10 mbar, depending on wavelength. Unlike the usual assumption made when modeling and interpreting transit observations of potentially hazy worlds, the slope set by haze in our spectra is not flat, and creates a variation in transit height whose magnitude is comparable to those from the strongest gaseous-absorption features. These findings have important consequences for interpreting future exoplanet observations, including those from NASA's James Webb Space Telescope.
Even-odd alternation of near-infrared spectra of alkane-α,ω-diols in their solid states
NASA Astrophysics Data System (ADS)
Toyama, Yuta; Murakami, Kohei; Yoshimura, Norio; Takayanagi, Masao
2018-05-01
Even-odd alternation of the melting points of α,ω-disubstituted linear alkanes such as alkane-α,ω-diols, alkane-α,ω-dinitriles and α,ω-diaminoalkanes is well known. Melting points for compounds with an even number of carbons in their alkyl chains are systematically higher than those for compounds with an odd number of carbons. In order to clarify the origin of this alternation, near-infrared absorption spectra of linear alkane-α,ω-diols with 3 to 9 carbon atoms in their alkyl chains were measured in the liquid and solid states. The band due to the first overtone of the Osbnd H stretching mode was investigated. The temperature-dependent spectra of all alkane-α,ω-diols in their liquid states were found to be similar; no even-odd alternation was observed. In the solid state, however, spectra of alkane-α,ω-diols with even and odd numbers of carbon atoms differed greatly. Spectra of alkane-α,ω-diols with an odd number of carbon atoms in their solid states were similar to those in the liquid states, although the variation of spectra observed upon lowering the temperature of liquid seemed to continue when the liquids were frozen. In contrast, spectra of alkane-α,ω-diols with an even number of carbon atoms in their liquid and solid states were found to be quite different. New bands appeared upon freezing. The observed even-odd alternation of the spectra observed for alkane-α,ω-diols in their solid states is presumably caused by their even-odd alternation of crystal structures.
Detecting skin malignancy using elastic light scattering spectroscopy
NASA Astrophysics Data System (ADS)
Canpolat, Murat; Akman, Ayşe; Çiftçioğlu, M. Akif; Alpsoy, Erkan
2007-07-01
We have used elastic light scattering spectroscopy to differentiate between malign and benign skin lesions. The system consists of a UV spectrometer, a single optical fiber probe and a laptop. The single optical fiber probe was used for both delivery and detection of white light to tissue and from the tissue. The single optical fiber probe received singly scattered photons rather than diffused photons in tissue. Therefore, the spectra are correlated with morphological differences of the cells. It has been shown that spectra of malign skin lesions are different than spectra of benign skin lesions. While slopes of the spectra taken on benign lesions or normal skin tissues were positive, slopes of the spectra taken on malign skin lesions tissues were negative. In vivo experiments were conducted on 20 lesions from 18 patients (11 men with mean age of 68 +/- 9 years and 7 women with mean age of 52 +/- 20 years) applied to the Department of Dermatology and Venerology. Before the biopsy, spectra were taken on the lesion and adjacent (approximately 1 cm distant) normal-appearing skin. Spectra of the normal skin were used as a control group. The spectra were correlated to the pathology results with sensitivity and specificity of 82% and 89%, respectively. Due to small diameter of fiber probe and limited number of sampling (15), some positive cases are missed, which is lowered the sensitivity of the system. The results are promising and could suggest that the system may be able to detect malignant skin lesion non-invasively and in real time.
Rapid acquisition of mean Raman spectra of eukaryotic cells for a robust single cell classification.
Schie, Iwan W; Kiselev, Roman; Krafft, Christoph; Popp, Jürgen
2016-11-14
Raman spectroscopy has previously been used to identify eukaryotic and prokaryotic cells. While prokaryotic cells are small in size and can be assessed by a single Raman spectrum, the larger size of eukaryotic cells and their complex organization requires the acquisition of multiple Raman spectra to properly characterize them. A Raman spectrum from a diffraction-limited spot at an arbitrary location within a cell results in spectral variations that affect classification approaches. To probe whole cells with Raman imaging at high spatial resolution is time consuming, because a large number of Raman spectra need to be collected, resulting in low cell throughput and impairing statistical analysis due to low cell numbers. Here we propose a method to overcome the effects of cellular heterogeneity by acquiring integrated Raman spectra covering a large portion of a cell. The acquired spectrum represents the mean macromolecular composition of a cell with an exposure time that is comparable to acquisition of a single Raman spectrum. Data sets were collected from T lymphocyte Jurkat cells, and pancreatic cell lines Capan1 and MiaPaca2. Cell classification by support vector machines was compared for single spectra, spectra of images and integrated Raman spectra of cells. The integrated approach provides better and more stable prediction for individual cells, and in the current implementation, the mean macromolecular information of a cell can be acquired faster than with the acquisition of individual spectra from a comparable region. It is expected that this approach will have a major impact on the implementation of Raman based cell classification.
Parameterization of spectral baseline directly from short echo time full spectra in 1 H-MRS.
Lee, Hyeong Hun; Kim, Hyeonjin
2017-09-01
To investigate the feasibility of parameterizing macromolecule (MM) resonances directly from short echo time (TE) spectra rather than pre-acquired, T 1 -weighted, metabolite-nulled spectra in 1 H-MRS. Initial line parameters for metabolites and MMs were set for rat brain spectra acquired at 9.4 Tesla upon a priori knowledge. Then, MM line parameters were optimized over several steps with fixed metabolite line parameters. The proposed method was tested by estimating metabolite T 1 . The results were compared with those obtained with two existing methods. Furthermore, subject-specific, spin density-weighted, MM model spectra were generated according to the MM line parameters from the proposed method for metabolite quantification. The results were compared with those obtained with subject-specific, T 1 -weighted, metabolite-nulled spectra. The metabolite T 1 were largely in close agreement among the three methods. The spin density-weighted MM resonances from the proposed method were in good agreement with the T 1 -weighted, metabolite-nulled spectra except for the MM resonance at ∼3.2 ppm. The metabolite concentrations estimated by incorporating these two different spectral baselines were also in good agreement except for several metabolites with resonances at ∼3.2 ppm. The MM parameterization directly from short-TE spectra is feasible. Further development of the method may allow for better representation of spectral baseline with negligible T 1 -weighting. Magn Reson Med 78:836-847, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Directional spectra of hurricane-generated waves in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Hu, Kelin; Chen, Qin
2011-10-01
Hurricane-induced directional wave spectra in the Gulf of Mexico are investigated based on the measurements collected at 12 buoys during 7 hurricane events in recent years. Focusing on hurricane-generated wave spectra, we only consider the wave measurements at the buoys within eight times the radius of the hurricane maximum wind speed (Rmax) from the hurricane center. A series of numerical experiments using a third-generation spectral wave prediction model were carried out to gain insight into the mechanism controlling the directional and frequency distributions of hurricane wave energy. It is found that hurricane wave spectra are almost swell-dominated except for the right-rear quadrant of a hurricane with respect to the forward direction, where the local strong winds control the spectra. Despite the complexity of a hurricane wind field, most of the spectra are mono-modal, similar to those under fetch-limited, unidirectional winds. However, bi-modal spectra were also found in both measurements and model results. Four types of bi-modal spectra have been observed. Type I happens far away (>6 × Rmax) from a hurricane. Type II is bi-modal in frequency with significant differences in direction. It happens in the two left quadrants when the direction of hurricane winds deviates considerably from the swell direction. Type III is bi-modal in frequency in almost the same wave direction with two close peaks. It occurs when the energy of locally-generated wind-sea is only partially transferred to the swell energy by non-linear wave-wave interactions. Type IV was observed in shallow waters owing to coastal effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maltseva, Elena; Petrignani, Annemieke; Buma, Wybren Jan
2016-11-01
In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3 μ m absorption band. For this purpose, we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950–3150 cm{sup −1} range. The experimental spectra are compared with standard harmonic calculations and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3 μmore » m region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive data set of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3 μ m band, and on features such as the two-component emission character of this band and the 3 μ m emission plateau.« less
NASA Astrophysics Data System (ADS)
Young, Mitchell. E.; Short, C. Ian
2017-02-01
We present an investigation of the globular cluster population synthesis method of McWilliam & Bernstein, focusing on the impact of non-LTE (NLTE) modeling effects and color-magnitude diagram (CMD) discretization. Johnson-Cousins-Bessel U - B, B-V, V-I, and J-K colors are produced for 96 synthetic integrated light (IL) spectra with two different discretization prescriptions and three degrees of NLTE treatment. These color values are used to compare NLTE- and LTE-derived population ages. Relative contributions of different spectral types to the IL spectra for different wavebands are measured. IL NLTE spectra are shown to be more luminous in the UV and optical than LTE spectra, but show stronger absorption features in the IR. The main features showing discrepancies between NLTE and LTE IL spectra may be attributed to light metals, primarily Fe I, Ca I, and Ti I, as well as TiO molecular bands. Main-sequence stars are shown to have negligible NLTE effects at IR wavelengths compared to more evolved stars. Photometric color values are shown to vary at the millimagnitude level as a function of CMD discretization. Finer CMD sampling for the upper main sequence and turnoff, base of the red giant branch, and the horizontal branch minimizes this variation. Differences in ages derived from LTE and NLTE IL spectra are found to range from 0.55 to 2.54 Gyr, comparable to the uncertainty in GC ages derived from color indices with observational uncertainties of 0.01 mag, the limiting precision of the Harris catalog.
Application of blind source separation to real-time dissolution dynamic nuclear polarization.
Hilty, Christian; Ragavan, Mukundan
2015-01-20
The use of a blind source separation (BSS) algorithm is demonstrated for the analysis of time series of nuclear magnetic resonance (NMR) spectra. This type of data is obtained commonly from experiments, where analytes are hyperpolarized using dissolution dynamic nuclear polarization (D-DNP), both in in vivo and in vitro contexts. High signal gains in D-DNP enable rapid measurement of data sets characterizing the time evolution of chemical or metabolic processes. BSS is based on an algorithm that can be applied to separate the different components contributing to the NMR signal and determine the time dependence of the signals from these components. This algorithm requires minimal prior knowledge of the data, notably, no reference spectra need to be provided, and can therefore be applied rapidly. In a time-resolved measurement of the enzymatic conversion of hyperpolarized oxaloacetate to malate, the two signal components are separated into computed source spectra that closely resemble the spectra of the individual compounds. An improvement in the signal-to-noise ratio of the computed source spectra is found compared to the original spectra, presumably resulting from the presence of each signal more than once in the time series. The reconstruction of the original spectra yields the time evolution of the contributions from the two sources, which also corresponds closely to the time evolution of integrated signal intensities from the original spectra. BSS may therefore be an approach for the efficient identification of components and estimation of kinetics in D-DNP experiments, which can be applied at a high level of automation.
Optical spectra of 73 stripped-envelope core-collapse supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modjaz, M.; Bianco, F. B.; Liu, Y. Q.
2014-05-01
We present 645 optical spectra of 73 supernovae (SNe) of Types IIb, Ib, Ic, and broad-lined Ic. All of these types are attributed to the core collapse of massive stars, with varying degrees of intact H and He envelopes before explosion. The SNe in our sample have a mean redshift (cz) = 4200 km s{sup –1}. Most of these spectra were gathered at the Harvard-Smithsonian Center for Astrophysics (CfA) between 2004 and 2009. For 53 SNe, these are the first published spectra. The data coverage ranges from mere identification (1-3 spectra) for a few SNe to extensive series of observationsmore » (10-30 spectra) that trace the spectral evolution for others, with an average of 9 spectra per SN. For 44 SNe of the 73 SNe presented here, we have well-determined dates of maximum light to determine the phase of each spectrum. Our sample constitutes the most extensive spectral library of stripped-envelope SNe to date. We provide very early coverage (as early as 30 days before V-band max) for photospheric spectra, as well as late-time nebular coverage when the innermost regions of the SN are visible (as late as 2 yr after explosion, while for SN 1993J, we have data as late as 11.6 yr). This data set has homogeneous observations and reductions that allow us to study the spectroscopic diversity of these classes of stripped SNe and to compare these to SNe-gamma-ray bursts. We undertake these matters in follow-up papers.« less
NASA Astrophysics Data System (ADS)
Khawaja, Nozair; Postberg, Frank; Reviol, Rene; Srama, Ralf
2015-04-01
The major source of ice particles in Saturn's E-ring is Enceladus - a geological active moon of Saturn. Enceladus is emanating ice particles from its fractured south polar terrain (SPT), the so-called "Tiger Stripes". The source of Enceladus activity and many of the ice particles is a subsurface ocean. The Cosmic Dust Analyzer (CDA) onboard the Cassini spacecraft is sampling these icy particles and producing TOF mass spectra of cations of impinging particles [1]. Three compositional types of ice particles have been identified from CDA-mass spectra: (i) pure water ice (Type-1) (ii) organic rich (Type-2) (iii) salt rich (Type-3) [2][3]. These organic rich (Type-2) spectra are particularly abundant in the icy jets of Enceladus as we found out during the Cassini's Enceladus flybys (E17 and E18) in 2012 [4]. We present a compositional analysis of the CDA spectra of these organic rich icy grains sampled in the E ring. We have characterized hundreds of Type-2 spectra of impinging ice particles. These were recorded at different impact velocities causing different molecular fragmentation patterns observed in the mass spectra. We defined 3 typical impact speed intervals: (i) 4-7 km/s (ii) 8-11 km/s and (iii) 12-16km/s. Organic features best observed at slow (4-7 km/s) or at intermediate (8-11 km/s) impact velocity ranges. Several classes of organic rich spectra are identified. Classifying Type-2 spectra are according to their characteristic mass lines of possible organic species. We try to infer the composition of each class of organic rich spectra is inferred by using an experimental setup (IR-FL-MALDI) to simulate the CDA spectra of different compositional types. In the laboratory we have used infrared laser to disperse a micro-beam of a water solution [5]. The laser energy is adjusted to simulate different impact velocities of ice particles on the CDA. Four families of organic compounds including alcohols, fatty acids, amines and aromatic, with varying number of carbon atoms, have been measured and compared with the CDA Type-2 spectra. References [1] Srama, R. et.al.: The Cassini Cosmic Dust Analyzer, SSR, Vol. 114, 465 -- 518, 2004. [2] Postberg, F. et.al.: The E-ring in the vicinity of Enceladus II. Probing the moon's interior -- The composition of E-ring particles, Icarus, Vol. 193, 438 -- 454, 2008. [3] Postberg, F. et.al.: Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus, Nature, Vol. 459, 1098 - 1101, 2009. [4] Khawaja, N. et.al.: Compositional differentiation of Enceladus' plume, EPSC, Vol. 9, 2014. [5] Reviol, R. et.al.: Simulation of TOF spectra from cosmic ice particles in the Laboratory by IR-FL-MALDI, EPSC, Vol. 7, 2012.
The AMBRE Project: Stellar parameterisation of the ESO:UVES archived spectra
NASA Astrophysics Data System (ADS)
Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.
2016-06-01
Context. The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA) that has been established to determine the stellar atmospheric parameters for the archived spectra of four ESO spectrographs. Aims: The analysis of the UVES archived spectra for their stellar parameters was completed in the third phase of the AMBRE Project. From the complete ESO:UVES archive dataset that was received covering the period 2000 to 2010, 51 921 spectra for the six standard setups were analysed. These correspond to approximately 8014 distinct targets (that comprise stellar and non-stellar objects) by radial coordinate search. Methods: The AMBRE analysis pipeline integrates spectral normalisation, cleaning and radial velocity correction procedures in order that the UVES spectra can then be analysed automatically with the stellar parameterisation algorithm MATISSE to obtain the stellar atmospheric parameters. The synthetic grid against which the MATISSE analysis is carried out is currently constrained to parameters of FGKM stars only. Results: Stellar atmospheric parameters are reported for 12 403 of the 51 921 UVES archived spectra analysed in AMBRE:UVES. This equates to ~23.9% of the sample and ~3708 stars. Effective temperature, surface gravity, metallicity, and alpha element to iron ratio abundances are provided for 10 212 spectra (~19.7%), while effective temperature at least is provided for the remaining 2191 spectra. Radial velocities are reported for 36 881 (~71.0%) of the analysed archive spectra. While parameters were determined for 32 306 (62.2%) spectra these parameters were not considered reliable (and thus not reported to ESO) for reasons such as very low S/N, too poor radial velocity determination, spectral features too broad for analysis, and technical issues from the reduction. Similarly the parameters of a further 7212 spectra (13.9%) were also not reported to ESO based on quality criteria and error analysis which were determined within the automated parameterisation process. Those tests lead us to expect that multi-component stellar systems will return high errors in radial velocity and fitting to the synthetic spectra and therefore will not have parameters reported to ESO. Typical external errors of σTeff ~ 110 dex, σlog g ~ 0.18 dex, σ[ M/H ] ~ 0.13 dex, and σ[ α/ Fe ] ~ 0.05 dex with some variation between giants and dwarfs and between setups are reported. Conclusions: UVES is used to observe an extensive collection of stellar and non-stellar objects all of which have been included in the archived dataset provided to OCA by ESO. The AMBRE analysis extracts those objects that lie within the FGKM parameter space of the AMBRE slow-rotating synthetic spectra grid. Thus by homogeneous blind analysis AMBRE has successfully extracted and parameterised the targeted FGK stars (23.9% of the analysed sample) from within the ESO:UVES archive.
NASA Astrophysics Data System (ADS)
Iliescu, T.; Milea, I.; Abdolrahman, P. M.
1984-03-01
The paper studies the absorption, fluorescence and phosphorescence spectra of α and β-F, Cl, Br-naphtalenes (α, β-F, Cl,BrN) in different matrixes at 77 K and different concentrations. From these spectra one obtaines the vibrational frequences.
FT-IR SOLUTION SPECTRA OF PROPYL SULFIDE, PROPYL SULFOXIDE, AND PROPYL SULFONE
FT-IR spectra were obtained of 0.5% volumetric solutions of propyl sulfide, propyl sulfoxide, and propyl sulfone in hexane, CCl4, CS2, and CHCl3 to assist in the assignment of FT-IR-PAS spectra of propyl sulfoxide sorbed within the structure of several peats and onto cellulose. T...
Energy Spectra of Very Large Gradual Solar Particle Events
2001-01-01
Proceedings of ICRC 2001: 1 c Copernicus Gesellschaft 2001 ICRC 2001 Energy Spectra of Very Large Gradual Solar Particle Events A.J. Tylka 1, C.M.S...Greenbelt, MD 20771, USA 6Department of Astronomy , University of Maryland, College Park, MD 20742 USA Abstract. Energy spectra provide a powerful tool in
Hyperion's Dark Material: Rotational Variation
NASA Technical Reports Server (NTRS)
Jarvis, K. S.; Vilas, F.; Buratti, B. J.; Hicks, M. D.; Gaffey, M. J.
2002-01-01
We present two new dark material spectra of Hyperion compared with previously published dark material spectra of Hyperion and Iapetus. A 0.67-micron absorption feature is seen in one of the two new spectra. This suggests possible mineralogical differences across the surface of this Saturnian satellite. Additional information is contained in the original extended abstract.
USDA-ARS?s Scientific Manuscript database
FTIR analysis of solid biomaterials by the familiar KBr disc technique is very often frustrated by water interference in the important protein (amide I) and carbohydrate (hydroxyl) regions of their spectra. A method was therefore devised that overcomes the difficulty and measures FTIR spectra of so...
Solar Energetic Particle Spectra
NASA Astrophysics Data System (ADS)
Ryan, J. M.; Boezio, M.; Bravar, U.; Bruno, A.; Christian, E. R.; de Nolfo, G. A.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Sparvoli, R.; Stochaj, S.
2017-12-01
We report updated event-integrated spectra from several SEP events measured with PAMELA. The measurements were made from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high latitudes. Spectra have been assembled from these high-latitude measurements. The field of view of PAMELA is small and during the high-latitude passes it scans a wide range of asymptotic directions as the spacecraft orbits. Correcting for data gaps, solid angle effects and improved background corrections, we have compiled event-integrated intensity spectra for twenty-eight SEP events. Where statistics permit, the spectra exhibit power law shapes in energy with a high-energy exponential roll over. The events analyzed include two genuine ground level enhancements (GLE). In those cases the roll-over energy lies above the neutron monitor threshold ( 1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events, i.e., all roll over in an exponential fashion with rapidly decreasing intensity at high energies.
Monte Carlo simulation of semiconductor detector response to (222)Rn and (220)Rn environments.
Irlinger, J; Trinkl, S; Wielunksi, M; Tschiersch, J; Rühm, W
2016-07-01
A new electronic radon/thoron monitor employing semiconductor detectors based on a passive diffusion chamber design has been recently developed at the Helmholtz Zentrum München (HMGU). This device allows for acquisition of alpha particle energy spectra, in order to distinguish alpha particles originating from radon and radon progeny decays, as well as those originating from thoron and its progeny decays. A Monte-Carlo application is described which uses the Geant4 toolkit to simulate these alpha particle spectra. Reasonable agreement between measured and simulated spectra were obtained for both (220)Rn and (222)Rn, in the energy range between 1 and 10 MeV. Measured calibration factors could be reproduced by the simulation, given the uncertainties involved in the measurement and simulation. The simulated alpha particle spectra can now be used to interpret spectra measured in mixed radon/thoron atmospheres. The results agreed well with measurements performed in both radon and thoron gas environments. It is concluded that the developed simulation allows for an accurate prediction of calibration factors and alpha particle energy spectra. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dolcetti, Giulio; Krynkin, Anton
2017-11-01
Experimental data are presented on the Doppler spectra of airborne ultrasound forward scattered by the rough dynamic surface of an open channel turbulent flow. The data are numerically interpreted based on a Kirchhoff approximation for a stationary random water surface roughness. The results show a clear link between the Doppler spectra and the characteristic spatial and temporal scales of the water surface. The decay of the Doppler spectra is proportional to the velocity of the flow near the surface. At higher Doppler frequencies the measurements show a less steep decrease of the Doppler spectra with the frequency compared to the numerical simulations. A semi-empirical equation for the spectrum of the surface elevation in open channel turbulent flows over a rough bed is provided. The results of this study suggest that the dynamic surface of open channel turbulent flows can be characterized remotely based on the Doppler spectra of forward scattered airborne ultrasound. The method does not require any equipment to be submerged in the flow and works remotely with a very high signal to noise ratio.
Cleaning HI Spectra Contaminated by GPS RFI
NASA Astrophysics Data System (ADS)
Sylvia, Kamin; Hallenbeck, Gregory L.; Undergraduate ALFALFA Team
2016-01-01
The NUDET systems aboard GPS satellites utilize radio waves to communicate information regarding surface nuclear events. The system tests appear in spectra as RFI (radio frequency interference) at 1381MHz, which contaminates observations of extragalactic HI (atomic hydrogen) signals at 50-150 Mpc. Test durations last roughly 20-120 seconds and can occur upwards of 30 times during a single night of observing. The disruption essentially renders the corresponding HI spectra useless.We present a method that automatically removes RFI in HI spectra caused by these tests. By capitalizing on the GPS system's short test durations and predictable frequency appearance we are able to devise a method of identifying times containing compromised data records. By reevaluating the remaining data, we are able to recover clean spectra while sacrificing little in terms of sensitivity to extragalactic signals. This method has been tested on 500+ spectra taken by the Undergraduate ALFALFA Team (UAT), in which it successfully identified and removed all sources of GPS RFI. It will also be used to eliminate RFI in the upcoming Arecibo Pisces-Perseus Supercluster Survey (APPSS).This work has been supported by NSF grant AST-1211005.
NASA Astrophysics Data System (ADS)
Salem, Hesham; Lotfy, Hayam M.; Hassan, Nagiba Y.; El-Zeiny, Mohamed B.; Saleh, Sarah S.
2015-01-01
This work represents a comparative study of different aspects of manipulating ratio spectra, which are: double divisor ratio spectra derivative (DR-DD), area under curve of derivative ratio (DR-AUC) and its novel approach, namely area under the curve correction method (AUCCM) applied for overlapped spectra; successive derivative of ratio spectra (SDR) and continuous wavelet transform (CWT) methods. The proposed methods represent different aspects of manipulating ratio spectra of the ternary mixture of Ofloxacin (OFX), Prednisolone acetate (PA) and Tetryzoline HCl (TZH) combined in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the reported HPLC method, showing no significant difference with respect to accuracy and precision.
VizieR Online Data Catalog: IRS spectra with features of crystalline silicates (Chen+, 2016)
NASA Astrophysics Data System (ADS)
Chen, R.; Luo, A.; Liu, J.; Jiang, B.
2018-04-01
Spectra taken by the IRS (Houck et al. 2004ApJS..154...18H) on the Spitzer space telescope (Werner et al. 2004ApJS..154....1W) are now publicly available. These spectra are produced using the bksub.tbl products from SL and LL modules of final SSC pipeline, version 18.18. From the IRS data archive, we found a collection of 16986 low-resolution spectra. The spectra are merged by four slits: SL2 (5.21-7.56 μm), SL1 (7.57-14.28 μm), LL2 (14.29-20.66 μm), and LL1 (20.67-38.00 μm). As crystalline silicates have no features in the SL2 band, we choose the spectra that include all the other three bands: SL1, LL2, and LL1 so that the object has a continuous spectrum from about 7.5-38 μm. In this way, five of the seven infrared complexes of crystalline silicates are covered, i.e., the 10, 18, 23, 28, and 33 μm complexes. (5 data files).
Observations of the Infrared Solar Spectrum from Space by the ATMOS Experiment
NASA Technical Reports Server (NTRS)
Abrams, M. C.; Goldman, A.; Gunson, M. R.; Rinsland, C. P.; Zander, R.
1999-01-01
The final flight of the Atmospheric Trace Molecule Spectroscopy experiment as part of the Atmospheric na Laboratory for Applications and Science (ATLAS-3) Space Shuttle mission in 1994 provided a new opportunity to measure broadband 625-4800/ cm, 2.1 - 16 micron infrared solar spectra at an unapodized resolution of 0.0l/ cm from space. The majority of the observations were obtained as exoatmospheric, of near Sun center, absorption spectra, which were later ratioed to grazing atmospheric measurements to compute the atmospheric transmission of the Earth's atmosphere and analyzed for vertical profiles of minor and trace gases. Relative to the SPACELAB-3 mission that produced 4800 high Sun spectra (which were averaged into four grand average spectra), the ATLAS-3 mission produced some 40,000 high Sun spectra (which have been similarly averaged) with an improvement in signal-to-noise ratio of a factor of 3-4 in the spectral region between 1000 and 4800/ cm. A brief description of the spectral calibration and spectral quality is given as well as the location of electronic archives of these spectra.
AN ATLAS OF BRIGHT STAR SPECTRA IN THE NEAR-INFRARED FROM CASSINI-VIMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.
2015-12-15
We present the Cassini Atlas Of Stellar Spectra (CAOSS), comprised of near-infrared, low-resolution spectra of bright stars recovered from space-based observations by the Cassini spacecraft. The 65 stellar targets in the atlas are predominately M, K, and S giants. However, it also contains spectra of other bright nearby stars including carbon stars and main-sequence stars from A to F. The spectra presented are free of all spectral contamination caused by the Earth's atmosphere, including the detrimental telluric molecular bands which put parts of the near-infrared spectrum out of reach of terrestrial observations. With a single instrument, a spectro-photometric data set is recoveredmore » that spans the near-infrared from 0.8 to 5.1 μm with spectral resolution ranging from R = 53.5 to R = 325. Spectra have been calibrated into absolute flux units after careful characterization of the instrumental spectral efficiency. Spectral energy distributions for most stars match closely with literature values. All final data products have been made available online.« less
Measurement and validation of benchmark-quality thick-target tungsten X-ray spectra below 150 kVp.
Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M
2000-11-01
Pulse-height distributions of two constant potential X-ray tubes with fixed anode tungsten targets were measured and unfolded. The measurements employed quantitative alignment of the beam, the use of two different semiconductor detectors (high-purity germanium and cadmium-zinc-telluride), two different ion chamber systems with beam-specific calibration factors, and various filter and tube potential combinations. Monte Carlo response matrices were generated for each detector for unfolding the pulse-height distributions into spectra incident on the detectors. These response matrices were validated for the low error bars assigned to the data. A significant aspect of the validation of spectra, and a detailed characterization of the X-ray tubes, involved measuring filtered and unfiltered beams at multiple tube potentials (30-150 kVp). Full corrections to ion chamber readings were employed to convert normalized fluence spectra into absolute fluence spectra. The characterization of fixed anode pitting and its dominance over exit window plating and/or detector dead layer was determined. An Appendix of tabulated benchmark spectra with assigned error ranges was developed for future reference.
SEARCHING FOR EXTRATERRESTRIAL INTELLIGENCE SIGNALS IN ASTRONOMICAL SPECTRA, INCLUDING EXISTING DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borra, Ermanno F., E-mail: borra@phy.ulaval.ca
The main purpose of this article is to make astronomers aware that Searches for Extraterrestrial Intelligence (SETIs) can be carried out by analyzing standard astronomical spectra, including those they have already taken. Simplicity is the outstanding advantage of a search in spectra. The spectra can be analyzed by simple eye inspection or a few lines of code that uses Fourier transform software. Theory, confirmed by published experiments, shows that periodic signals in spectra can be easily generated by sending light pulses separated by constant time intervals. While part of this article, like all articles on SETIs, is highly speculative themore » basic physics is sound. In particular, technology now available on Earth could be used to send signals having the required energy to be detected at a target located 1000 lt-yr away. Extraterrestrial Intelligence (ETI) could use these signals to make us aware of their existence. For an ETI, the technique would also have the advantage that the signals could be detected both in spectra and searches for intensity pulses like those currently carried out on Earth.« less
Variations in the Infrared Spectra of Wüstite with Defects and Disorder
NASA Astrophysics Data System (ADS)
Koike, C.; Matsuno, J.; Chihara, H.
2017-08-01
The presence of FeO particles in circumstellar space has been suggested based on the observation of a mysterious 21 μm emission band. However, the complete infrared spectra of FeO have not been obtained so far; hence, data of the infrared (IR) spectra of FeO need to be investigated. We prepared synthetic and commercial samples of FeO, which were obtained by crushing bulk samples, annealing iron oxalate dihydrate ({{FeC}}2{{{O}}}4\\cdot 2{{{H}}}2{{O}}), and mechanical milling of a powder mixture comprising (Fe and {{Fe}}2{{{O}}}3) particles with different milling times. We present a new study on the IR spectra of these samples, and show that these spectra changed according to defects and disorders. Furthermore, FeO particles are very sensitive to oxygen fugacity and temperature. The spectra of FeO particles were compared with the unidentified observed feature. It may be difficult for FeO particles to exist alone in the ISM and circumstellar space. This may be connected to the problem of missing iron in the ISM.
INTRIGOSS: A new Library of High Resolution Synthetic Spectra
NASA Astrophysics Data System (ADS)
Franchini, Mariagrazia; Morossi, Carlo; Di Marcancantonio, Paolo; Chavez, Miguel; GES-Builders
2018-01-01
INTRIGOSS (INaf Trieste Grid Of Synthetic Spectra) is a new High Resolution (HiRes) synthetic spectral library designed for studying F, G, and K stars. The library is based on atmosphere models computed with specified individual element abundances via ATLAS12 code. Normalized SPectra (NSP) and surface Flux SPectra (FSP), in the 4800-5400 Å wavelength range, were computed by means of the SPECTRUM code. The synthetic spectra are computed with an atomic and bi-atomic molecular line list including "bona fide" Predicted Lines (PLs) built by tuning loggf to reproduce very high SNR Solar spectrum and the UVES-U580 spectra of five cool giants extracted from the Gaia-ESO survey (GES). The astrophysical gf-values were then assessed by using more than 2000 stars with homogenous and accurate atmosphere parameters and detailed chemical composition from GES. The validity and greater accuracy of INTRIGOSS NSPs and FSPs with respect to other available spectral libraries is discussed. INTRIGOSS will be available on the web and will be a valuable tool for both stellar atmospheric parameters and stellar population studies.
First light with Trident: multi-platform synthetic quasar spectra
NASA Astrophysics Data System (ADS)
Silvia, Devin W.; Hummels, Cameron B.; Smith, Britton
2017-01-01
Observational efforts to better understand the nature of the intergalactic and circumgalactic media have relied heavily on the information encoded in the absorption line systems of quasar spectra. Numerical simulations of large-scale structure and galaxy evolution are well-suited to explore the properties of those same media owing to the relative ease with which one can access physical quantities from complex, three-dimensional data. However, a difficulty arises when one tries to make direct “apple-to-apples” comparisons between observed spectra and simulated data. In an effort to provide a common language capable of linking theory and observation, we announce the release of Trident. Trident is a publicly available software tool that enables the creation of realistic synthetic absorption spectra from virtually all widely-used hydrodynamics simulation codes. Through user-controlled levels of spectral realism, direct comparisons between simulated and observed data become not only possible, but greatly simplified. We present the methods for extracting artificial quasar sightlines and generating spectra as well as early-stage applications of those spectra to intergalactic and circumgalactic absorption line studies.
Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; ...
2016-04-20
Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree withmore » those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. As a result, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.« less
Similarity spectra analysis of high-performance jet aircraft noise.
Neilsen, Tracianne B; Gee, Kent L; Wall, Alan T; James, Michael M
2013-04-01
Noise measured in the vicinity of an F-22A Raptor has been compared to similarity spectra found previously to represent mixing noise from large-scale and fine-scale turbulent structures in laboratory-scale jet plumes. Comparisons have been made for three engine conditions using ground-based sideline microphones, which covered a large angular aperture. Even though the nozzle geometry is complex and the jet is nonideally expanded, the similarity spectra do agree with large portions of the measured spectra. Toward the sideline, the fine-scale similarity spectrum is used, while the large-scale similarity spectrum provides a good fit to the area of maximum radiation. Combinations of the two similarity spectra are shown to match the data in between those regions. Surprisingly, a combination of the two is also shown to match the data at the farthest aft angle. However, at high frequencies the degree of congruity between the similarity and the measured spectra changes with engine condition and angle. At the higher engine conditions, there is a systematically shallower measured high-frequency slope, with the largest discrepancy occurring in the regions of maximum radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meglinskii, I V
2001-12-31
The reflection spectra of a multilayer random medium - the human skin - strongly scattering and absorbing light are numerically simulated. The propagation of light in the medium and the absorption spectra are simulated by the stochastic Monte Carlo method, which combines schemes for calculations of real photon trajectories and the statistical weight method. The model takes into account the inhomogeneous spatial distribution of blood vessels, water, and melanin, the degree of blood oxygenation, and the hematocrit index. The attenuation of the incident radiation caused by reflection and refraction at Fresnel boundaries of layers inside the medium is also considered.more » The simulated reflection spectra are compared with the experimental reflection spectra of the human skin. It is shown that a set of parameters that was used to describe the optical properties of skin layers and their possible variations, despite being far from complete, is nevertheless sufficient for the simulation of the reflection spectra of the human skin and their quantitative analysis. (laser applications and other topics in quantum electronics)« less
Xu, Henglong; Jiang, Yong; Xu, Guangjian
2016-11-15
Body-size spectra has proved to be a useful taxon-free resolution to summarize a community structure for bioassessment. The spatial variations in annual cycles of body-size spectra of planktonic ciliates and their environmental drivers were studied based on an annual dataset. Samples were biweekly collected at five stations in a bay of the Yellow Sea, northern China during a 1-year cycle. Based on a multivariate approach, the second-stage analysis, it was shown that the annual cycles of the body-size spectra were significantly different among five sampling stations. Correlation analysis demonstrated that the spatial variations in the body-size spectra were significantly related to changes of environmental conditions, especially dissolved nitrogen, alone or in combination with salinity and dissolve oxygen. Based on results, it is suggested that the nutrients may be the environmental drivers to shape the spatial variations in annual cycles of planktonic ciliates in terms of body-size spectra in marine ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Luce, Robert; Hildebrandt, Peter; Kuhlmann, Uwe; Liesen, Jörg
2016-09-01
The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for nonnegative matrix factorization that is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with the vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed. © The Author(s) 2016.
Linear Regression Links Transcriptomic Data and Cellular Raman Spectra.
Kobayashi-Kirschvink, Koseki J; Nakaoka, Hidenori; Oda, Arisa; Kamei, Ken-Ichiro F; Nosho, Kazuki; Fukushima, Hiroko; Kanesaki, Yu; Yajima, Shunsuke; Masaki, Haruhiko; Ohta, Kunihiro; Wakamoto, Yuichi
2018-06-08
Raman microscopy is an imaging technique that has been applied to assess molecular compositions of living cells to characterize cell types and states. However, owing to the diverse molecular species in cells and challenges of assigning peaks to specific molecules, it has not been clear how to interpret cellular Raman spectra. Here, we provide firm evidence that cellular Raman spectra and transcriptomic profiles of Schizosaccharomyces pombe and Escherichia coli can be computationally connected and thus interpreted. We find that the dimensions of high-dimensional Raman spectra and transcriptomes measured by RNA sequencing can be reduced and connected linearly through a shared low-dimensional subspace. Accordingly, we were able to predict global gene expression profiles by applying the calculated transformation matrix to Raman spectra, and vice versa. Highly expressed non-coding RNAs contributed to the Raman-transcriptome linear correspondence more significantly than mRNAs in S. pombe. This demonstration of correspondence between cellular Raman spectra and transcriptomes is a promising step toward establishing spectroscopic live-cell omics studies. Copyright © 2018 Elsevier Inc. All rights reserved.
Electron acceleration in solar flares
NASA Technical Reports Server (NTRS)
Droge, Wolfgang; Meyer, Peter; Evenson, Paul; Moses, Dan
1989-01-01
For the period Spetember 1978 to December 1982, 55 solar flare particle events for which the instruments on board the ISEE-3 spacecraft detected electrons above 10 MeV. Combining data with those from the ULEWAT spectrometer electron spectra in the range from 0.1 to 100 MeV were obtained. The observed spectral shapes can be divided into two classes. The spectra of the one class can be fit by a single power law in rigidity over the entire observed range. The spectra of the other class deviate from a power law, instead exhibiting a steepening at low rigidities and a flattening at high rigidities. Events with power-law spectra are associated with impulsive (less than 1 hr duration) soft X-ray emission, whereas events with hardening spectra are associated with long-duration (more than 1 hr) soft X-ray emission. The characteristics of long-duration events are consistent with diffusive shock acceleration taking place high in the corona. Electron spectra of short-duration flares are well reproduced by the distribution functions derived from a model assuming simultaneous second-order Fermi acceleration and Coulomb losses operating in closed flare loops.
The role of satellite directional wave spectra for the improvement of the ocean-waves coupling
NASA Astrophysics Data System (ADS)
Aouf, Lotfi; Hauser, Danièle; Chapron, Bertrand
2017-04-01
Swell waves are well captured by the Synthetic Aperture Radar (SAR) which provides the directional wave spectra for waves roughly larger than 200 m. Since the launch of sentinel-1A and 1B SAR directional wave spectra are available to improve the swell wave forecasting and the coupling processes at the air-sea interface. Moreover next year CFOSAT mission will provide directional wave spectra for waves with wavelengths comprised between 70 to 500 m. This study aims to evaluate the assimilation of SAR and synthetic CFOSAT wave spectra on the coupling between the wave model MFWAM and the ocean model NEMO. Three coupling processes as described in Breivik et al. (2014) of Stokes-Coriolis forcing, the ocean side stress and the turbulence injected by the wave breaking in the ocean mixed layer have been used. a coupling run is performed with and without assimilation of directional wave spectra. the impact of SAR wave data on key parameters such as surface sea temperature, currents and salinity is investigated. Particular attention is carried out for ocean areas with swell dominant wave climate.
Salem, Hesham; Lotfy, Hayam M; Hassan, Nagiba Y; El-Zeiny, Mohamed B; Saleh, Sarah S
2015-01-25
This work represents a comparative study of different aspects of manipulating ratio spectra, which are: double divisor ratio spectra derivative (DR-DD), area under curve of derivative ratio (DR-AUC) and its novel approach, namely area under the curve correction method (AUCCM) applied for overlapped spectra; successive derivative of ratio spectra (SDR) and continuous wavelet transform (CWT) methods. The proposed methods represent different aspects of manipulating ratio spectra of the ternary mixture of Ofloxacin (OFX), Prednisolone acetate (PA) and Tetryzoline HCl (TZH) combined in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the reported HPLC method, showing no significant difference with respect to accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.
Chemistry of cometary meteoroids from video-tape records of meteor spectra
NASA Technical Reports Server (NTRS)
Millman, P. M.
1982-01-01
The chemistry of the cometary meteoroids was studied by closed circuit television observing systems. Vidicon cameras produce basic data on standard video tape and enable the recording of the spectra of faint shower meteors, consequently the chemical study is extended to smaller particles and we have a larger data bank than is available from the more conventional method of recording meteor spectra by photography. The two main problems in using video tape meteor spectrum records are: (1) the video tape recording has a much lower resolution than the photographic technique; (2) video tape is relatively new type of data storage in astronomy and the methods of quantitative photometry have not yet been fully developed in the various fields where video tape is used. The use of the most detailed photographic meteor spectra to calibrate the video tape records and to make positive identification of the more prominent chemical elements appearing in the spectra may solve the low resolution problem. Progress in the development of standard photometric techniques for the analysis of video tape records of meteor spectra is reported.