Predominant-period site classification for response spectra prediction equations in Italy
Di Alessandro, Carola; Bonilla, Luis Fabian; Boore, David M.; Rovelli, Antonio; Scotti, Oona
2012-01-01
We propose a site‐classification scheme based on the predominant period of the site, as determined from the average horizontal‐to‐vertical (H/V) spectral ratios of ground motion. Our scheme extends Zhao et al. (2006) classifications by adding two classes, the most important of which is defined by flat H/V ratios with amplitudes less than 2. The proposed classification is investigated by using 5%‐damped response spectra from Italian earthquake records. We select a dataset of 602 three‐component analog and digital recordings from 120 earthquakes recorded at 214 seismic stations within a hypocentral distance of 200 km. Selected events are in the moment‐magnitude range 4.0≤Mw≤6.8 and focal depths from a few kilometers to 46 km. We computed H/V ratios for these data and used them to classify each site into one of six classes. We then investigate the impact of this classification scheme on empirical ground‐motion prediction equations (GMPEs) by comparing its performance with that of the conventional rock/soil classification. Although the adopted approach results in only a small reduction of the overall standard deviation, the use of H/V spectral ratios in site classification does capture the signature of sites with flat frequency‐response, as well as deep and shallow‐soil profiles, characterized by long‐ and short‐period resonance, respectively; in addition, the classification scheme is relatively quick and inexpensive, which is an advantage over schemes based on measurements of shear‐wave velocity.
NASA Astrophysics Data System (ADS)
Makowski, Christopher
The coastal (terrestrial) and benthic environments along the southeast Florida continental shelf show a unique biophysical succession of marine features from a highly urbanized, developed coastal region in the north (i.e. northern Miami-Dade County) to a protective marine sanctuary in the southeast (i.e. Florida Keys National Marine Sanctuary). However, the establishment of a standard bio-geomorphological classification scheme for this area of coastal and benthic environments is lacking. The purpose of this study was to test the hypothesis and answer the research question of whether new parameters of integrating geomorphological components with dominant biological covers could be developed and applied across multiple remote sensing platforms for an innovative way to identify, interpret, and classify diverse coastal and benthic environments along the southeast Florida continental shelf. An ordered manageable hierarchical classification scheme was developed to incorporate the categories of Physiographic Realm, Morphodynamic Zone, Geoform, Landform, Dominant Surface Sediment, and Dominant Biological Cover. Six different remote sensing platforms (i.e. five multi-spectral satellite image sensors and one high-resolution aerial orthoimagery) were acquired, delineated according to the new classification scheme, and compared to determine optimal formats for classifying the study area. Cognitive digital classification at a nominal scale of 1:6000 proved to be more accurate than autoclassification programs and therefore used to differentiate coastal marine environments based on spectral reflectance characteristics, such as color, tone, saturation, pattern, and texture of the seafloor topology. In addition, attribute tables were created in conjugation with interpretations to quantify and compare the spatial relationships between classificatory units. IKONOS-2 satellite imagery was determined to be the optimal platform for applying the hierarchical classification scheme. However, each remote sensing platform had beneficial properties depending on research goals, logistical restrictions, and financial support. This study concluded that a new hierarchical comprehensive classification scheme for identifying coastal marine environments along the southeast Florida continental shelf could be achieved by integrating geomorphological features with biological coverages. This newly developed scheme, which can be applied across multiple remote sensing platforms with GIS software, establishes an innovative classification protocol to be used in future research studies.
Yuan, Yuan; Lin, Jianzhe; Wang, Qi
2016-12-01
Hyperspectral image (HSI) classification is a crucial issue in remote sensing. Accurate classification benefits a large number of applications such as land use analysis and marine resource utilization. But high data correlation brings difficulty to reliable classification, especially for HSI with abundant spectral information. Furthermore, the traditional methods often fail to well consider the spatial coherency of HSI that also limits the classification performance. To address these inherent obstacles, a novel spectral-spatial classification scheme is proposed in this paper. The proposed method mainly focuses on multitask joint sparse representation (MJSR) and a stepwise Markov random filed framework, which are claimed to be two main contributions in this procedure. First, the MJSR not only reduces the spectral redundancy, but also retains necessary correlation in spectral field during classification. Second, the stepwise optimization further explores the spatial correlation that significantly enhances the classification accuracy and robustness. As far as several universal quality evaluation indexes are concerned, the experimental results on Indian Pines and Pavia University demonstrate the superiority of our method compared with the state-of-the-art competitors.
SOM Classification of Martian TES Data
NASA Technical Reports Server (NTRS)
Hogan, R. C.; Roush, T. L.
2002-01-01
A classification scheme based on unsupervised self-organizing maps (SOM) is described. Results from its application to the ASU mineral spectral database are presented. Applications to the Martian Thermal Emission Spectrometer data are discussed. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Cruz, Kelle L.; Núñez, Alejandro; Burgasser, Adam J.; Abrahams, Ellianna; Rice, Emily L.; Reid, I. Neill; Looper, Dagny
2018-01-01
Discrepancies between competing optical and near-infrared (NIR) spectral typing systems for L dwarfs have motivated us to search for a classification scheme that ties the optical and NIR schemes together, and addresses complexities in the spectral morphology. We use new and extant optical and NIR spectra to compile a sample of 171 L dwarfs, including 27 low-gravity β and γ objects, with spectral coverage from 0.6–2.4 μm. We present 155 new low-resolution NIR spectra and 19 new optical spectra. We utilize a method for analyzing NIR spectra that partially removes the broad-band spectral slope and reveals similarities in the absorption features between objects of the same optical spectral type. Using the optical spectra as an anchor, we generate near-infrared spectral average templates for L0–L8, L0–L4γ, and L0–L1β type dwarfs. These templates reveal that NIR spectral morphologies are correlated with the optical types. They also show the range of spectral morphologies spanned by each spectral type. We compare low-gravity and field-gravity templates to provide recommendations on the minimum required observations for credibly classifying low-gravity spectra using low-resolution NIR data. We use the templates to evaluate the existing NIR spectral standards and propose new ones where appropriate. Finally, we build on the work of Kirkpatrick et al. to provide a spectral typing method that is tied to the optical and can be used when only H or K band data are available. The methods we present here provide resolutions to several long-standing issues with classifying L dwarf spectra and could also be the foundation for a spectral classification scheme for cloudy exoplanets.
NASA Technical Reports Server (NTRS)
Williams, D. A.; Greeley, R.; Neukum, G.; Wagner, R.
1993-01-01
New visible and near-infrared multispectral data of the Moon were obtained by the Galileo spacecraft in December, 1990. These data were calibrated with Earth-based spectral observations of the nearside to compare compositional information to previously uncharacterized mare basalts filling craters and basins on the western near side and eastern far side. A Galileo-based spectral classification scheme, modified from the Earth-based scheme developed by Pieters, designates the different spectral classifications of mare basalt observed using the 0.41/0.56 micron reflectance ratio (titanium content), 0.56 micron reflectance values (albedo), and 0.76/0.99 micron reflectance ratio (absorption due to Fe(2+) in mafic minerals and glass). In addition, age determinations from crater counts and results of a linear spectral mixing model were used to assess the volcanic histories of specific regions of interest. These interpreted histories were related to models of mare basalt petrogenesis in an attempt to better understand the evolution of lunar volcanism.
User oriented ERTS-1 images. [vegetation identification in Canada through image enhancement
NASA Technical Reports Server (NTRS)
Shlien, S.; Goodenough, D.
1974-01-01
Photographic reproduction of ERTS-1 images are capable of displaying only a portion of the total information available from the multispectral scanner. Methods are being developed to generate ERTS-1 images oriented towards special users such as agriculturists, foresters, and hydrologists by applying image enhancement techniques and interactive statistical classification schemes. Spatial boundaries and linear features can be emphasized and delineated using simple filters. Linear and nonlinear transformations can be applied to the spectral data to emphasize certain ground information. An automatic classification scheme was developed to identify particular ground cover classes such as fallow, grain, rape seed or various vegetation covers. The scheme applies the maximum likelihood decision rule to the spectral information and classifies the ERTS-1 image on a pixel by pixel basis. Preliminary results indicate that the classifier has limited success in distinguishing crops, but is well adapted for identifying different types of vegetation.
Arc-Welding Spectroscopic Monitoring based on Feature Selection and Neural Networks.
Garcia-Allende, P Beatriz; Mirapeix, Jesus; Conde, Olga M; Cobo, Adolfo; Lopez-Higuera, Jose M
2008-10-21
A new spectral processing technique designed for application in the on-line detection and classification of arc-welding defects is presented in this paper. A noninvasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed in two consecutive stages. A compression algorithm is first applied to the data, allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, which will be demonstrated to provide an efficient weld defect detection and classification. The results obtained with the proposed technique are compared to a similar processing scheme presented in previous works, giving rise to an improvement in the performance of the monitoring system.
NASA Astrophysics Data System (ADS)
Mirapeix, J.; García-Allende, P. B.; Cobo, A.; Conde, O.; López-Higuera, J. M.
2007-07-01
A new spectral processing technique designed for its application in the on-line detection and classification of arc-welding defects is presented in this paper. A non-invasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed by means of two consecutive stages. A compression algorithm is first applied to the data allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, which will be demonstrated to provide an efficient weld defect detection and classification. The results obtained with the proposed technique are compared to a similar processing scheme presented in a previous paper, giving rise to an improvement in the performance of the monitoring system.
Guijarro, María; Pajares, Gonzalo; Herrera, P. Javier
2009-01-01
The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm. PMID:22399989
Hassan, Ahnaf Rashik; Bhuiyan, Mohammed Imamul Hassan
2016-09-15
Automatic sleep scoring is essential owing to the fact that conventionally a large volume of data have to be analyzed visually by the physicians which is onerous, time-consuming and error-prone. Therefore, there is a dire need of an automated sleep staging scheme. In this work, we decompose sleep-EEG signal segments using tunable-Q factor wavelet transform (TQWT). Various spectral features are then computed from TQWT sub-bands. The performance of spectral features in the TQWT domain has been determined by intuitive and graphical analyses, statistical validation, and Fisher criteria. Random forest is used to perform classification. Optimal choices and the effects of TQWT and random forest parameters have been determined and expounded. Experimental outcomes manifest the efficacy of our feature generation scheme in terms of p-values of ANOVA analysis and Fisher criteria. The proposed scheme yields 90.38%, 91.50%, 92.11%, 94.80%, 97.50% for 6-stage to 2-stage classification of sleep states on the benchmark Sleep-EDF data-set. In addition, its performance on DREAMS Subjects Data-set is also promising. The performance of the proposed method is significantly better than the existing ones in terms of accuracy and Cohen's kappa coefficient. Additionally, the proposed scheme gives high detection accuracy for sleep stages non-REM 1 and REM. Spectral features in the TQWT domain can discriminate sleep-EEG signals corresponding to various sleep states efficaciously. The proposed scheme will alleviate the burden of the physicians, speed-up sleep disorder diagnosis, and expedite sleep research. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Quesada-Barriuso, Pablo; Heras, Dora B.; Argüello, Francisco
2016-10-01
The classification of remote sensing hyperspectral images for land cover applications is a very intensive topic. In the case of supervised classification, Support Vector Machines (SVMs) play a dominant role. Recently, the Extreme Learning Machine algorithm (ELM) has been extensively used. The classification scheme previously published by the authors, and called WT-EMP, introduces spatial information in the classification process by means of an Extended Morphological Profile (EMP) that is created from features extracted by wavelets. In addition, the hyperspectral image is denoised in the 2-D spatial domain, also using wavelets and it is joined to the EMP via a stacked vector. In this paper, the scheme is improved achieving two goals. The first one is to reduce the classification time while preserving the accuracy of the classification by using ELM instead of SVM. The second one is to improve the accuracy results by performing not only a 2-D denoising for every spectral band, but also a previous additional 1-D spectral signature denoising applied to each pixel vector of the image. For each denoising the image is transformed by applying a 1-D or 2-D wavelet transform, and then a NeighShrink thresholding is applied. Improvements in terms of classification accuracy are obtained, especially for images with close regions in the classification reference map, because in these cases the accuracy of the classification in the edges between classes is more relevant.
Automated Classification of Thermal Infrared Spectra Using Self-organizing Maps
NASA Technical Reports Server (NTRS)
Roush, Ted L.; Hogan, Robert
2006-01-01
Existing and planned space missions to a variety of planetary and satellite surfaces produce an ever increasing volume of spectral data. Understanding the scientific informational content in this large data volume is a daunting task. Fortunately various statistical approaches are available to assess such data sets. Here we discuss an automated classification scheme based on Kohonen Self-organizing maps (SOM) we have developed. The SUM process produces an output layer were spectra having similar properties lie in close proximity to each other. One major effort is partitioning this output layer into appropriate regions. This is prefonned by defining dosed regions based upon the strength of the boundaries between adjacent cells in the SOM output layer. We use the Davies-Bouldin index as a measure of the inter-class similarities and intra-class dissimilarities that determines the optimum partition of the output layer, and hence number of SOM clusters. This allows us to identify the natural number of clusters formed from the spectral data. Mineral spectral libraries prepared at Arizona State University (ASU) and John Hopkins University (JHU) are used to test and evaluate the classification scheme. We label the library sample spectra in a hierarchical scheme with class, subclass, and mineral group names. We use a portion of the spectra to train the SOM, i.e. produce the output layer, while the remaining spectra are used to test the SOM. The test spectra are presented to the SOM output layer and assigned membership to the appropriate cluster. We then evaluate these assignments to assess the scientific meaning and accuracy of the derived SOM classes as they relate to the labels. We demonstrate that unsupervised classification by SOMs can be a useful component in autonomous systems designed to identify mineral species from reflectance and emissivity spectra in the therrnal IR.
Sunspot Pattern Classification using PCA and Neural Networks (Poster)
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Thompson, D. E.; Slater, G. L.
2005-01-01
The sunspot classification scheme presented in this paper is considered as a 2-D classification problem on archived datasets, and is not a real-time system. As a first step, it mirrors the Zuerich/McIntosh historical classification system and reproduces classification of sunspot patterns based on preprocessing and neural net training datasets. Ultimately, the project intends to move from more rudimentary schemes, to develop spatial-temporal-spectral classes derived by correlating spatial and temporal variations in various wavelengths to the brightness fluctuation spectrum of the sun in those wavelengths. Once the approach is generalized, then the focus will naturally move from a 2-D to an n-D classification, where "n" includes time and frequency. Here, the 2-D perspective refers both to the actual SOH0 Michelson Doppler Imager (MDI) images that are processed, but also refers to the fact that a 2-D matrix is created from each image during preprocessing. The 2-D matrix is the result of running Principal Component Analysis (PCA) over the selected dataset images, and the resulting matrices and their eigenvalues are the objects that are stored in a database, classified, and compared. These matrices are indexed according to the standard McIntosh classification scheme.
NASA Astrophysics Data System (ADS)
Muller, Sybrand Jacobus; van Niekerk, Adriaan
2016-07-01
Soil salinity often leads to reduced crop yield and quality and can render soils barren. Irrigated areas are particularly at risk due to intensive cultivation and secondary salinization caused by waterlogging. Regular monitoring of salt accumulation in irrigation schemes is needed to keep its negative effects under control. The dynamic spatial and temporal characteristics of remote sensing can provide a cost-effective solution for monitoring salt accumulation at irrigation scheme level. This study evaluated a range of pan-fused SPOT-5 derived features (spectral bands, vegetation indices, image textures and image transformations) for classifying salt-affected areas in two distinctly different irrigation schemes in South Africa, namely Vaalharts and Breede River. The relationship between the input features and electro conductivity measurements were investigated using regression modelling (stepwise linear regression, partial least squares regression, curve fit regression modelling) and supervised classification (maximum likelihood, nearest neighbour, decision tree analysis, support vector machine and random forests). Classification and regression trees and random forest were used to select the most important features for differentiating salt-affected and unaffected areas. The results showed that the regression analyses produced weak models (<0.4 R squared). Better results were achieved using the supervised classifiers, but the algorithms tend to over-estimate salt-affected areas. A key finding was that none of the feature sets or classification algorithms stood out as being superior for monitoring salt accumulation at irrigation scheme level. This was attributed to the large variations in the spectral responses of different crops types at different growing stages, coupled with their individual tolerances to saline conditions.
Mapping forest vegetation with ERTS-1 MSS data and automatic data processing techniques
NASA Technical Reports Server (NTRS)
Messmore, J.; Copeland, G. E.; Levy, G. F.
1975-01-01
This study was undertaken with the intent of elucidating the forest mapping capabilities of ERTS-1 MSS data when analyzed with the aid of LARS' automatic data processing techniques. The site for this investigation was the Great Dismal Swamp, a 210,000 acre wilderness area located on the Middle Atlantic coastal plain. Due to inadequate ground truth information on the distribution of vegetation within the swamp, an unsupervised classification scheme was utilized. Initially pictureprints, resembling low resolution photographs, were generated in each of the four ERTS-1 channels. Data found within rectangular training fields was then clustered into 13 spectral groups and defined statistically. Using a maximum likelihood classification scheme, the unknown data points were subsequently classified into one of the designated training classes. Training field data was classified with a high degree of accuracy (greater than 95%), and progress is being made towards identifying the mapped spectral classes.
Mapping forest vegetation with ERTS-1 MSS data and automatic data processing techniques
NASA Technical Reports Server (NTRS)
Messmore, J.; Copeland, G. E.; Levy, G. F.
1975-01-01
This study was undertaken with the intent of elucidating the forest mapping capabilities of ERTS-1 MSS data when analyzed with the aid of LARS' automatic data processing techniques. The site for this investigation was the Great Dismal Swamp, a 210,000 acre wilderness area located on the Middle Atlantic coastal plain. Due to inadequate ground truth information on the distribution of vegetation within the swamp, an unsupervised classification scheme was utilized. Initially pictureprints, resembling low resolution photographs, were generated in each of the four ERTS-1 channels. Data found within rectangular training fields was then clustered into 13 spectral groups and defined statistically. Using a maximum likelihood classification scheme, the unknown data points were subsequently classified into one of the designated training classes. Training field data was classified with a high degree of accuracy (greater than 95 percent), and progress is being made towards identifying the mapped spectral classes.
Automatic classification of spectral units in the Aristarchus plateau
NASA Astrophysics Data System (ADS)
Erard, S.; Le Mouelic, S.; Langevin, Y.
1999-09-01
A reduction scheme has been recently proposed for the NIR images of Clementine (Le Mouelic et al, JGR 1999). This reduction has been used to build an integrated UVvis-NIR image cube of the Aristarchus region, from which compositional and maturity variations can be studied (Pinet et al, LPSC 1999). We will present an analysis of this image cube, providing a classification in spectral types and spectral units. The image cube is processed with Gmode analysis using three different data sets: Normalized spectra provide a classification based mainly on spectral slope variations (ie. maturity and volcanic glasses). This analysis discriminates between craters plus ejecta, mare basalts, and DMD. Olivine-rich areas and Aristarchus central peak are also recognized. Continuum-removed spectra provide a classification more related to compositional variations, which correctly identifies olivine and pyroxenes-rich areas (in Aristarchus, Krieger, Schiaparelli\\ldots). A third analysis uses spectral parameters related to maturity and Fe composition (reflectance, 1 mu m band depth, and spectral slope) rather than intensities. It provides the most spatially consistent picture, but fails in detecting Vallis Schroeteri and DMDs. A supplementary unit, younger and rich in pyroxene, is found on Aristarchus south rim. In conclusion, Gmode analysis can discriminate between different spectral types already identified with more classic methods (PCA, linear mixing\\ldots). No previous assumption is made on the data structure, such as endmembers number and nature, or linear relationship between input variables. The variability of the spectral types is intrinsically accounted for, so that the level of analysis is always restricted to meaningful limits. A complete classification should integrate several analyses based on different sets of parameters. Gmode is therefore a powerful light toll to perform first look analysis of spectral imaging data. This research has been partly founded by the French Programme National de Planetologie.
VizieR Online Data Catalog: Catalogue of Stellar Spectral Classifications (Skiff, 2003)
NASA Astrophysics Data System (ADS)
Skiff, A. B.
2003-07-01
This file contains spectral classifications for stars collected from the literature, serving as a continuation of the compilations produced by the Jascheks, by Kennedy, and by Buscombe. The source of each spectral type is indicated by a standard 19-digit bibcode citation. The stars are identified either by the name used in each publication or by a valid SIMBAD identifier. Some effort has been made to determine accurate (~1" or better) coordinates for equinox J2000, and these serve as a secondary identifier. Magnitudes are provided as an indication of brightness, but these data are not necessarily accurate, as they often derive from photographic photometry or rough estimates. The classifications include MK types as well as types not strictly on the MK system (white dwarfs, Wolf-Rayet, etc), and in addition simple HD-style temperature types. Luminosity classes in the early Mount Wilson style (e.g. 'd' for dwarf, 'g' for giant) and other similar schemes have been converted to modern notation. Since a citation is provided for each entry, the source paper should be consulted for details about classification schemes, spectral dispersion, and instrumentation used. The file includes only spectral types determined from spectra (viz. line and band strengths or ratios), omitting those determined from photometry (e.g. DDO, Vilnius) or inferred from broadband colors or bulk spectral energy distributions. The catalogue includes for the first time results from many large-scale objective-prism spectral surveys done at Case, Stockholm, Crimea, Abastumani, and elsewhere. The stars in these surveys were usually identified only on charts or by other indirect means, and have been overlooked heretofore because of the difficulty in recovering the stars. More complete results from these separate publications, including notes and identifications, have been made available to the CDS, and are kept at the Lowell Observatory ftp area (ftp://ftp.lowell.edu/pub/bas/starcats). Not all of these stars are present in SIMBAD. As a 'living catalogue', an attempt will be made to keep up with current literature, and to extend the indexing of citations back in time. (1 data file).
The Ultracool Typing Kit - An Open-Source, Qualitative Spectral Typing GUI for L Dwarfs
NASA Astrophysics Data System (ADS)
Schwab, Ellianna; Cruz, Kelle; Núñez, Alejandro; Burgasser, Adam J.; Rice, Emily; Reid, Neill; Faherty, Jacqueline K.; BDNYC
2018-01-01
The Ultracool Typing Kit (UTK) is an open-source graphical user interface for classifying the NIR spectral types of L dwarfs, including field and low-gravity dwarfs spanning L0-L9. The user is able to input an NIR spectrum and qualitatively compare the input spectrum to a full suite of spectral templates, including low-gravity beta and gamma templates. The user can choose to view the input spectrum as both a band-by-band comparison with the templates and a full bandwidth comparison with NIR spectral standards. Once an optimal qualitative comparison is selected, the user can save their spectral type selection both graphically and to a database. Using UTK to classify 78 previously typed L dwarfs, we show that a band-by-band classification method more accurately agrees with optical spectral typing systems than previous L dwarf NIR classification schemes. UTK is written in python, released on Zenodo with a BSD-3 clause license and publicly available on the BDNYC Github page.
NASA Astrophysics Data System (ADS)
Wang, Ke; Guo, Ping; Luo, A.-Li
2017-03-01
Spectral feature extraction is a crucial procedure in automated spectral analysis. This procedure starts from the spectral data and produces informative and non-redundant features, facilitating the subsequent automated processing and analysis with machine-learning and data-mining techniques. In this paper, we present a new automated feature extraction method for astronomical spectra, with application in spectral classification and defective spectra recovery. The basic idea of our approach is to train a deep neural network to extract features of spectra with different levels of abstraction in different layers. The deep neural network is trained with a fast layer-wise learning algorithm in an analytical way without any iterative optimization procedure. We evaluate the performance of the proposed scheme on real-world spectral data. The results demonstrate that our method is superior regarding its comprehensive performance, and the computational cost is significantly lower than that for other methods. The proposed method can be regarded as a new valid alternative general-purpose feature extraction method for various tasks in spectral data analysis.
Wavelet packets for multi- and hyper-spectral imagery
NASA Astrophysics Data System (ADS)
Benedetto, J. J.; Czaja, W.; Ehler, M.; Flake, C.; Hirn, M.
2010-01-01
State of the art dimension reduction and classification schemes in multi- and hyper-spectral imaging rely primarily on the information contained in the spectral component. To better capture the joint spatial and spectral data distribution we combine the Wavelet Packet Transform with the linear dimension reduction method of Principal Component Analysis. Each spectral band is decomposed by means of the Wavelet Packet Transform and we consider a joint entropy across all the spectral bands as a tool to exploit the spatial information. Dimension reduction is then applied to the Wavelet Packets coefficients. We present examples of this technique for hyper-spectral satellite imaging. We also investigate the role of various shrinkage techniques to model non-linearity in our approach.
A Hybrid Semi-supervised Classification Scheme for Mining Multisource Geospatial Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatsavai, Raju; Bhaduri, Budhendra L
2011-01-01
Supervised learning methods such as Maximum Likelihood (ML) are often used in land cover (thematic) classification of remote sensing imagery. ML classifier relies exclusively on spectral characteristics of thematic classes whose statistical distributions (class conditional probability densities) are often overlapping. The spectral response distributions of thematic classes are dependent on many factors including elevation, soil types, and ecological zones. A second problem with statistical classifiers is the requirement of large number of accurate training samples (10 to 30 |dimensions|), which are often costly and time consuming to acquire over large geographic regions. With the increasing availability of geospatial databases, itmore » is possible to exploit the knowledge derived from these ancillary datasets to improve classification accuracies even when the class distributions are highly overlapping. Likewise newer semi-supervised techniques can be adopted to improve the parameter estimates of statistical model by utilizing a large number of easily available unlabeled training samples. Unfortunately there is no convenient multivariate statistical model that can be employed for mulitsource geospatial databases. In this paper we present a hybrid semi-supervised learning algorithm that effectively exploits freely available unlabeled training samples from multispectral remote sensing images and also incorporates ancillary geospatial databases. We have conducted several experiments on real datasets, and our new hybrid approach shows over 25 to 35% improvement in overall classification accuracy over conventional classification schemes.« less
Site classification of Indian strong motion network using response spectra ratios
NASA Astrophysics Data System (ADS)
Chopra, Sumer; Kumar, Vikas; Choudhury, Pallabee; Yadav, R. B. S.
2018-03-01
In the present study, we tried to classify the Indian strong motion sites spread all over Himalaya and adjoining region, located on varied geological formations, based on response spectral ratio. A total of 90 sites were classified based on 395 strong motion records from 94 earthquakes recorded at these sites. The magnitude of these earthquakes are between 2.3 and 7.7 and the hypocentral distance for most of the cases is less than 50 km. The predominant period obtained from response spectral ratios is used to classify these sites. It was found that the shape and predominant peaks of the spectra at these sites match with those in Japan, Italy, Iran, and at some of the sites in Europe and the same classification scheme can be applied to Indian strong motion network. We found that the earlier schemes based on description of near-surface geology, geomorphology, and topography were not able to capture the effect of sediment thickness. The sites are classified into seven classes (CL-I to CL-VII) with varying predominant periods and ranges as proposed by Alessandro et al. (Bull Seismol Soc Am 102:680-695 2012). The effect of magnitudes and hypocentral distances on the shape and predominant peaks were also studied and found to be very small. The classification scheme is robust and cost-effective and can be used in region-specific attenuation relationships for accounting local site effect.
NASA Astrophysics Data System (ADS)
Gavish, Yoni; O'Connell, Jerome; Marsh, Charles J.; Tarantino, Cristina; Blonda, Palma; Tomaselli, Valeria; Kunin, William E.
2018-02-01
The increasing need for high quality Habitat/Land-Cover (H/LC) maps has triggered considerable research into novel machine-learning based classification models. In many cases, H/LC classes follow pre-defined hierarchical classification schemes (e.g., CORINE), in which fine H/LC categories are thematically nested within more general categories. However, none of the existing machine-learning algorithms account for this pre-defined hierarchical structure. Here we introduce a novel Random Forest (RF) based application of hierarchical classification, which fits a separate local classification model in every branching point of the thematic tree, and then integrates all the different local models to a single global prediction. We applied the hierarchal RF approach in a NATURA 2000 site in Italy, using two land-cover (CORINE, FAO-LCCS) and one habitat classification scheme (EUNIS) that differ from one another in the shape of the class hierarchy. For all 3 classification schemes, both the hierarchical model and a flat model alternative provided accurate predictions, with kappa values mostly above 0.9 (despite using only 2.2-3.2% of the study area as training cells). The flat approach slightly outperformed the hierarchical models when the hierarchy was relatively simple, while the hierarchical model worked better under more complex thematic hierarchies. Most misclassifications came from habitat pairs that are thematically distant yet spectrally similar. In 2 out of 3 classification schemes, the additional constraints of the hierarchical model resulted with fewer such serious misclassifications relative to the flat model. The hierarchical model also provided valuable information on variable importance which can shed light into "black-box" based machine learning algorithms like RF. We suggest various ways by which hierarchical classification models can increase the accuracy and interpretability of H/LC classification maps.
New low-resolution spectrometer spectra for IRAS sources
NASA Astrophysics Data System (ADS)
Volk, Kevin; Kwok, Sun; Stencel, R. E.; Brugel, E.
1991-12-01
Low-resolution spectra of 486 IRAS point sources with Fnu(12 microns) in the range 20-40 Jy are presented. This is part of an effort to extract and classify spectra that were not included in the Atlas of Low-Resolution Spectra and represents an extension of the earlier work by Volk and Cohen which covers sources with Fnu(12 microns) greater than 40 Jy. The spectra have been examined by eye and classified into nine groups based on the spectral morphology. This new classification scheme is compared with the mechanical classification of the Atlas, and the differences are noted. Oxygen-rich stars of the asymptotic giant branch make up 33 percent of the sample. Solid state features dominate the spectra of most sources. It is found that the nature of the sources as implied by the present spectral classification is consistent with the classifications based on broad-band colors of the sources.
Classifying GRB 170817A/GW170817 in a Fermi duration-hardness plane
NASA Astrophysics Data System (ADS)
Horváth, I.; Tóth, B. G.; Hakkila, J.; Tóth, L. V.; Balázs, L. G.; Rácz, I. I.; Pintér, S.; Bagoly, Z.
2018-03-01
GRB 170817A, associated with the LIGO-Virgo GW170817 neutron-star merger event, lacks the short duration and hard spectrum of a Short gamma-ray burst (GRB) expected from long-standing classification models. Correctly identifying the class to which this burst belongs requires comparison with other GRBs detected by the Fermi GBM. The aim of our analysis is to classify Fermi GRBs and to test whether or not GRB 170817A belongs—as suggested—to the Short GRB class. The Fermi GBM catalog provides a large database with many measured variables that can be used to explore gamma-ray burst classification. We use statistical techniques to look for clustering in a sample of 1298 gamma-ray bursts described by duration and spectral hardness. Classification of the detected bursts shows that GRB 170817A most likely belongs to the Intermediate, rather than the Short GRB class. We discuss this result in light of theoretical neutron-star merger models and existing GRB classification schemes. It appears that GRB classification schemes may not yet be linked to appropriate theoretical models, and that theoretical models may not yet adequately account for known GRB class properties. We conclude that GRB 170817A may not fit into a simple phenomenological classification scheme.
NASA Astrophysics Data System (ADS)
Lazri, Mourad; Ameur, Soltane
2018-05-01
A model combining three classifiers, namely Support vector machine, Artificial neural network and Random forest (SAR) is designed for improving the classification of convective and stratiform rain. This model (SAR model) has been trained and then tested on a datasets derived from MSG-SEVIRI (Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager). Well-classified, mid-classified and misclassified pixels are determined from the combination of three classifiers. Mid-classified and misclassified pixels that are considered unreliable pixels are reclassified by using a novel training of the developed scheme. In this novel training, only the input data corresponding to the pixels in question to are used. This whole process is repeated a second time and applied to mid-classified and misclassified pixels separately. Learning and validation of the developed scheme are realized against co-located data observed by ground radar. The developed scheme outperformed different classifiers used separately and reached 97.40% of overall accuracy of classification.
Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy
NASA Astrophysics Data System (ADS)
Wyatt, Michael Bruce
2002-11-01
This dissertation comprises four separate parts that address the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) investigation objective of determining and mapping the composition and distribution of surface minerals and rocks on Mars from orbit. In Part 1, laboratory thermal infrared spectra (5 25 μm, at 2 cm-1 spectral sampling), deconvolved modal mineralogies, and derived mineral and bulk rock chemistries of basalt, basaltic andesite, andesite, and dacite were used to evaluate and revise volcanic rock classification schemes. Multiple steps of classification were required to distinguish volcanic rocks, reflecting the mineralogic diversity and continuum of compositions that exists in volcanic rock types. In Part 2, laboratory spectral data were convolved to TES 10 cm-1 sampling to ascertain whether adequate results for volcanic rock classification can be obtained with lower spectral resolution, comparable to that obtained from Mars orbit. Modeled spectra, modeled modal mineralogies, and derived bulk rock chemistries at low (10 cm-1) spectral sampling provide good matches to measured and high (2 cm-1) spectral sampling modeled values. These results demonstrate the feasibility of using similar techniques and classification schemes for the interpretation of terrestrial laboratory samples and TES-resolution data. In Part 3, new deconvolved mineral abundances from TES data and terrestrial basalts using a spectral end-member set representing minerals common in unaltered and low-temperature aqueously altered basalts were used to reclassify martian surface lithologies. The new formulations maintain the dominance of unaltered basalt in the southern highlands, but indicate the northern lowlands can be interpreted as weathered basalt. The coincidence between locations of altered basalt and a previously suggested northern ocean basin implies that lowland plains materials may be basalts altered under submarine conditions and/or weathered basaltic sediment transported into this depocenter. In Part 4, results from the previous parts are applied to examine the distribution of TES-derived surface compositions in the Oxia Palus region on Mars through high-spatial resolution mapping. Features of interest within Oxia Palus include volcanic/sedimentary materials in southern Acidalia Planitia, low-albedo crater floors and wind streaks in western Arabia Terra, and channel outflow deposits of the Mars Pathfinder (MP) landing site.
Acoustic/Seismic Ground Sensors for Detection, Localization and Classification on the Battlefield
2006-10-01
controlled so that collisions are avoided. Figure 1 presents BACH system components. 3 BACH Sensor Posts (1 to 8) Command Post BACH MMI PC VHF...2.2.4 Processing scheme Processing inside SP is dedicated to stationary spectral lines extraction and derives from ASW algorithms. Special attention...is similar to that used for helicopters (see figure 4), with adaptations to cope with vehicles signatures (fuzzy unstable spectral lines, abrupt
NASA Astrophysics Data System (ADS)
Zhang, Bin; Liu, Yueyan; Zhang, Zuyu; Shen, Yonglin
2017-10-01
A multifeature soft-probability cascading scheme to solve the problem of land use and land cover (LULC) classification using high-spatial-resolution images to map rural residential areas in China is proposed. The proposed method is used to build midlevel LULC features. Local features are frequently considered as low-level feature descriptors in a midlevel feature learning method. However, spectral and textural features, which are very effective low-level features, are neglected. The acquisition of the dictionary of sparse coding is unsupervised, and this phenomenon reduces the discriminative power of the midlevel feature. Thus, we propose to learn supervised features based on sparse coding, a support vector machine (SVM) classifier, and a conditional random field (CRF) model to utilize the different effective low-level features and improve the discriminability of midlevel feature descriptors. First, three kinds of typical low-level features, namely, dense scale-invariant feature transform, gray-level co-occurrence matrix, and spectral features, are extracted separately. Second, combined with sparse coding and the SVM classifier, the probabilities of the different LULC classes are inferred to build supervised feature descriptors. Finally, the CRF model, which consists of two parts: unary potential and pairwise potential, is employed to construct an LULC classification map. Experimental results show that the proposed classification scheme can achieve impressive performance when the total accuracy reached about 87%.
Cloud cover determination in polar regions from satellite imagery
NASA Technical Reports Server (NTRS)
Barry, R. G.; Maslanik, J. A.; Key, J. R.
1987-01-01
A definition is undertaken of the spectral and spatial characteristics of clouds and surface conditions in the polar regions, and to the creation of calibrated, geometrically correct data sets suitable for quantitative analysis. Ways are explored in which this information can be applied to cloud classifications as new methods or as extensions to existing classification schemes. A methodology is developed that uses automated techniques to merge Advanced Very High Resolution Radiometer (AVHRR) and Scanning Multichannel Microwave Radiometer (SMMR) data, and to apply first-order calibration and zenith angle corrections to the AVHRR imagery. Cloud cover and surface types are manually interpreted, and manual methods are used to define relatively pure training areas to describe the textural and multispectral characteristics of clouds over several surface conditions. The effects of viewing angle and bidirectional reflectance differences are studied for several classes, and the effectiveness of some key components of existing classification schemes is tested.
Signal Classification in Fading Channels Using Cyclic Spectral Analysis
2009-07-01
Classifier Design The proposed classifier is designed to classify AM, BFSK, OFDM, DS - CDMA , 4-ASK, 8-ASK, BPSK, QPSK, 8-PSK, 16-PSK, 16-QAM, and 64-QAM...five independent neural networks, each trained to classify a signal as either AM, BFSK, DS - CDMA , or a linear modulation scheme with a real-valued...in an SOF image that resembles those of QAM and PSK signals. Additionally, the DS - CDMA scheme can be thought to look like a BPSK signal. However, due
NASA Technical Reports Server (NTRS)
Harwood, P. (Principal Investigator); Finley, R.; Mcculloch, S.; Marphy, D.; Hupp, B.
1976-01-01
The author has identified the following significant results. Image interpretation mapping techniques were successfully applied to test site 5, an area with a semi-arid climate. The land cover/land use classification required further modification. A new program, HGROUP, added to the ADP classification schedule provides a convenient method for examining the spectral similarity between classes. This capability greatly simplifies the task of combining 25-30 unsupervised subclasses into about 15 major classes that approximately correspond to the land use/land cover classification scheme.
ERTS-1 data applications to Minnesota forest land use classification
NASA Technical Reports Server (NTRS)
Sizer, J. E. (Principal Investigator); Eller, R. G.; Meyer, M. P.; Ulliman, J. J.
1973-01-01
The author has identified the following significant results. Color-combined ERTS-1 MSS spectral slices were analyzed to determine the maximum (repeatable) level of meaningful forest resource classification data visually attainable by skilled forest photointerpreters for the following purposes: (1) periodic updating of the Minnesota Land Management Information System (MLMIS) statewide computerized land use data bank, and (2) to provide first-stage forest resources survey data for large area forest land management planning. Controlled tests were made of two forest classification schemes by experienced professional foresters with special photointerpretation training and experience. The test results indicate it is possible to discriminate the MLMIS forest class from the MLMIS nonforest classes, but that it is not possible, under average circumstances, to further stratify the forest classification into species components with any degree of reliability with ERTS-1 imagery. An ongoing test of the resulting classification scheme involves the interpretation, and mapping, of the south half of Itasca County, Minnesota, with ERTS-1 imagery. This map is undergoing field checking by on the ground field cooperators, whose evaluation will be completed in the fall of 1973.
Keihaninejad, Shiva; Heckemann, Rolf A.; Gousias, Ioannis S.; Hajnal, Joseph V.; Duncan, John S.; Aljabar, Paul; Rueckert, Daniel; Hammers, Alexander
2012-01-01
Brain images contain information suitable for automatically sorting subjects into categories such as healthy controls and patients. We sought to identify morphometric criteria for distinguishing controls (n = 28) from patients with unilateral temporal lobe epilepsy (TLE), 60 with and 20 without hippocampal atrophy (TLE-HA and TLE-N, respectively), and for determining the presumed side of seizure onset. The framework employs multi-atlas segmentation to estimate the volumes of 83 brain structures. A kernel-based separability criterion was then used to identify structures whose volumes discriminate between the groups. Next, we applied support vector machines (SVM) to the selected set for classification on the basis of volumes. We also computed pairwise similarities between all subjects and used spectral analysis to convert these into per-subject features. SVM was again applied to these feature data. After training on a subgroup, all TLE-HA patients were correctly distinguished from controls, achieving an accuracy of 96 ± 2% in both classification schemes. For TLE-N patients, the accuracy was 86 ± 2% based on structural volumes and 91 ± 3% using spectral analysis. Structures discriminating between patients and controls were mainly localized ipsilaterally to the presumed seizure focus. For the TLE-HA group, they were mainly in the temporal lobe; for the TLE-N group they included orbitofrontal regions, as well as the ipsilateral substantia nigra. Correct lateralization of the presumed seizure onset zone was achieved using hippocampi and parahippocampal gyri in all TLE-HA patients using either classification scheme; in the TLE-N patients, lateralization was accurate based on structural volumes in 86 ± 4%, and in 94 ± 4% with the spectral analysis approach. Unilateral TLE has imaging features that can be identified automatically, even when they are invisible to human experts. Such morphometric image features may serve as classification and lateralization criteria. The technique also detects unsuspected distinguishing features like the substantia nigra, warranting further study. PMID:22523539
A semi-supervised classification algorithm using the TAD-derived background as training data
NASA Astrophysics Data System (ADS)
Fan, Lei; Ambeau, Brittany; Messinger, David W.
2013-05-01
In general, spectral image classification algorithms fall into one of two categories: supervised and unsupervised. In unsupervised approaches, the algorithm automatically identifies clusters in the data without a priori information about those clusters (except perhaps the expected number of them). Supervised approaches require an analyst to identify training data to learn the characteristics of the clusters such that they can then classify all other pixels into one of the pre-defined groups. The classification algorithm presented here is a semi-supervised approach based on the Topological Anomaly Detection (TAD) algorithm. The TAD algorithm defines background components based on a mutual k-Nearest Neighbor graph model of the data, along with a spectral connected components analysis. Here, the largest components produced by TAD are used as regions of interest (ROI's),or training data for a supervised classification scheme. By combining those ROI's with a Gaussian Maximum Likelihood (GML) or a Minimum Distance to the Mean (MDM) algorithm, we are able to achieve a semi supervised classification method. We test this classification algorithm against data collected by the HyMAP sensor over the Cooke City, MT area and University of Pavia scene.
NASA Astrophysics Data System (ADS)
Lazri, Mourad; Ameur, Soltane
2016-09-01
In this paper, an algorithm based on the probability of rainfall intensities classification for rainfall estimation from Meteosat Second Generation/Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) has been developed. The classification scheme uses various spectral parameters of SEVIRI that provide information about cloud top temperature and optical and microphysical cloud properties. The presented method is developed and trained for the north of Algeria. The calibration of the method is carried out using as a reference rain classification fields derived from radar for rainy season from November 2006 to March 2007. Rainfall rates are assigned to rain areas previously identified and classified according to the precipitation formation processes. The comparisons between satellite-derived precipitation estimates and validation data show that the developed scheme performs reasonably well. Indeed, the correlation coefficient presents a significant level (r:0.87). The values of POD, POFD and FAR are 80%, 13% and 25%, respectively. Also, for a rainfall estimation of about 614 mm, the RMSD, Bias, MAD and PD indicate 102.06(mm), 2.18(mm), 68.07(mm) and 12.58, respectively.
Automatic identification of epileptic seizures from EEG signals using linear programming boosting.
Hassan, Ahnaf Rashik; Subasi, Abdulhamit
2016-11-01
Computerized epileptic seizure detection is essential for expediting epilepsy diagnosis and research and for assisting medical professionals. Moreover, the implementation of an epilepsy monitoring device that has low power and is portable requires a reliable and successful seizure detection scheme. In this work, the problem of automated epilepsy seizure detection using singe-channel EEG signals has been addressed. At first, segments of EEG signals are decomposed using a newly proposed signal processing scheme, namely complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Six spectral moments are extracted from the CEEMDAN mode functions and train and test matrices are formed afterward. These matrices are fed into the classifier to identify epileptic seizures from EEG signal segments. In this work, we implement an ensemble learning based machine learning algorithm, namely linear programming boosting (LPBoost) to perform classification. The efficacy of spectral features in the CEEMDAN domain is validated by graphical and statistical analyses. The performance of CEEMDAN is compared to those of its predecessors to further inspect its suitability. The effectiveness and the appropriateness of LPBoost are demonstrated as opposed to the commonly used classification models. Resubstitution and 10 fold cross-validation error analyses confirm the superior algorithm performance of the proposed scheme. The algorithmic performance of our epilepsy seizure identification scheme is also evaluated against state-of-the-art works in the literature. Experimental outcomes manifest that the proposed seizure detection scheme performs better than the existing works in terms of accuracy, sensitivity, specificity, and Cohen's Kappa coefficient. It can be anticipated that owing to its use of only one channel of EEG signal, the proposed method will be suitable for device implementation, eliminate the onus of clinicians for analyzing a large bulk of data manually, and expedite epilepsy diagnosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Äijälä, Mikko; Heikkinen, Liine; Fröhlich, Roman; Canonaco, Francesco; Prévôt, André S. H.; Junninen, Heikki; Petäjä, Tuukka; Kulmala, Markku; Worsnop, Douglas; Ehn, Mikael
2017-03-01
Mass spectrometric measurements commonly yield data on hundreds of variables over thousands of points in time. Refining and synthesizing this raw data into chemical information necessitates the use of advanced, statistics-based data analytical techniques. In the field of analytical aerosol chemistry, statistical, dimensionality reductive methods have become widespread in the last decade, yet comparable advanced chemometric techniques for data classification and identification remain marginal. Here we present an example of combining data dimensionality reduction (factorization) with exploratory classification (clustering), and show that the results cannot only reproduce and corroborate earlier findings, but also complement and broaden our current perspectives on aerosol chemical classification. We find that applying positive matrix factorization to extract spectral characteristics of the organic component of air pollution plumes, together with an unsupervised clustering algorithm, k-means+ + , for classification, reproduces classical organic aerosol speciation schemes. Applying appropriately chosen metrics for spectral dissimilarity along with optimized data weighting, the source-specific pollution characteristics can be statistically resolved even for spectrally very similar aerosol types, such as different combustion-related anthropogenic aerosol species and atmospheric aerosols with similar degree of oxidation. In addition to the typical oxidation level and source-driven aerosol classification, we were also able to classify and characterize outlier groups that would likely be disregarded in a more conventional analysis. Evaluating solution quality for the classification also provides means to assess the performance of mass spectral similarity metrics and optimize weighting for mass spectral variables. This facilitates algorithm-based evaluation of aerosol spectra, which may prove invaluable for future development of automatic methods for spectra identification and classification. Robust, statistics-based results and data visualizations also provide important clues to a human analyst on the existence and chemical interpretation of data structures. Applying these methods to a test set of data, aerosol mass spectrometric data of organic aerosol from a boreal forest site, yielded five to seven different recurring pollution types from various sources, including traffic, cooking, biomass burning and nearby sawmills. Additionally, three distinct, minor pollution types were discovered and identified as amine-dominated aerosols.
NASA Technical Reports Server (NTRS)
Harston, Craig; Schumacher, Chris
1992-01-01
Automated schemes are needed to classify multispectral remotely sensed data. Human intelligence is often required to correctly interpret images from satellites and aircraft. Humans suceed because they use various types of cues about a scene to accurately define the contents of the image. Consequently, it follows that computer techniques that integrate and use different types of information would perform better than single source approaches. This research illustrated that multispectral signatures and topographical information could be used in concert. Significantly, this dual source tactic classified a remotely sensed image better than the multispectral classification alone. These classifications were accomplished by fusing spectral signatures with topographical information using neural network technology. A neural network was trained to classify Landsat mulitspectral signatures. A file of georeferenced ground truth classifications were used as the training criterion. The network was trained to classify urban, agriculture, range, and forest with an accuracy of 65.7 percent. Another neural network was programmed and trained to fuse these multispectral signature results with a file of georeferenced altitude data. This topological file contained 10 levels of elevations. When this nonspectral elevation information was fused with the spectral signatures, the classifications were improved to 73.7 and 75.7 percent.
Heart Rate Variability Dynamics for the Prognosis of Cardiovascular Risk
Ramirez-Villegas, Juan F.; Lam-Espinosa, Eric; Ramirez-Moreno, David F.; Calvo-Echeverry, Paulo C.; Agredo-Rodriguez, Wilfredo
2011-01-01
Statistical, spectral, multi-resolution and non-linear methods were applied to heart rate variability (HRV) series linked with classification schemes for the prognosis of cardiovascular risk. A total of 90 HRV records were analyzed: 45 from healthy subjects and 45 from cardiovascular risk patients. A total of 52 features from all the analysis methods were evaluated using standard two-sample Kolmogorov-Smirnov test (KS-test). The results of the statistical procedure provided input to multi-layer perceptron (MLP) neural networks, radial basis function (RBF) neural networks and support vector machines (SVM) for data classification. These schemes showed high performances with both training and test sets and many combinations of features (with a maximum accuracy of 96.67%). Additionally, there was a strong consideration for breathing frequency as a relevant feature in the HRV analysis. PMID:21386966
NASA Astrophysics Data System (ADS)
Nomura, Yukihiro; Lu, Jianming; Sekiya, Hiroo; Yahagi, Takashi
This paper presents a speech enhancement using the classification between the dominants of speech and noise. In our system, a new classification scheme between the dominants of speech and noise is proposed. The proposed classifications use the standard deviation of the spectrum of observation signal in each band. We introduce two oversubtraction factors for the dominants of speech and noise, respectively. And spectral subtraction is carried out after the classification. The proposed method is tested on several noise types from the Noisex-92 database. From the investigation of segmental SNR, Itakura-Saito distance measure, inspection of spectrograms and listening tests, the proposed system is shown to be effective to reduce background noise. Moreover, the enhanced speech using our system generates less musical noise and distortion than that of conventional systems.
NASA Astrophysics Data System (ADS)
Pradhan, Biswajeet; Kabiri, Keivan
2012-07-01
This paper describes an assessment of coral reef mapping using multi sensor satellite images such as Landsat ETM, SPOT and IKONOS images for Tioman Island, Malaysia. The study area is known to be one of the best Islands in South East Asia for its unique collection of diversified coral reefs and serves host to thousands of tourists every year. For the coral reef identification, classification and analysis, Landsat ETM, SPOT and IKONOS images were collected processed and classified using hierarchical classification schemes. At first, Decision tree classification method was implemented to separate three main land cover classes i.e. water, rural and vegetation and then maximum likelihood supervised classification method was used to classify these main classes. The accuracy of the classification result is evaluated by a separated test sample set, which is selected based on the fieldwork survey and view interpretation from IKONOS image. Few types of ancillary data in used are: (a) DGPS ground control points; (b) Water quality parameters measured by Hydrolab DS4a; (c) Sea-bed substrates spectrum measured by Unispec and; (d) Landcover observation photos along Tioman island coastal area. The overall accuracy of the final classification result obtained was 92.25% with the kappa coefficient is 0.8940. Key words: Coral reef, Multi-spectral Segmentation, Pixel-Based Classification, Decision Tree, Tioman Island
NASA Astrophysics Data System (ADS)
Tebbs, E. J.; Remedios, J. J.; Avery, S. T.; Rowland, C. S.; Harper, D. M.
2015-08-01
In situ reflectance measurements and Landsat satellite imagery were combined to develop an optical classification scheme for alkaline-saline lakes in the Eastern Rift Valley. The classification allows the ecological state and consequent value, in this case to Lesser Flamingos, to be determined using Landsat satellite imagery. Lesser Flamingos depend on a network of 15 alkaline-saline lakes in East African Rift Valley, where they feed by filtering cyanobacteria and benthic diatoms from the lakes' waters. The classification developed here was based on a decision tree which used the reflectance in Landsat ETM+ bands 2-4 to assign one of six classes: low phytoplankton biomass; suspended sediment-dominated; microphytobenthos; high cyanobacterial biomass; cyanobacterial scum and bleached cyanobacterial scum. The classification accuracy was 77% when verified against in situ measurements. Classified imagery and timeseries were produced for selected lakes, which show the different ecological behaviours of these complex systems. The results have highlighted the importance to flamingos of the food resources offered by the extremely remote Lake Logipi. This study has demonstrated the potential of high spatial resolution, low spectral resolution sensors for providing ecologically valuable information at a regional scale, for alkaline-saline lakes and similar hypereutrophic inland waters.
Slaughter, Susan E; Zimmermann, Gabrielle L; Nuspl, Megan; Hanson, Heather M; Albrecht, Lauren; Esmail, Rosmin; Sauro, Khara; Newton, Amanda S; Donald, Maoliosa; Dyson, Michele P; Thomson, Denise; Hartling, Lisa
2017-12-06
As implementation science advances, the number of interventions to promote the translation of evidence into healthcare, health systems, or health policy is growing. Accordingly, classification schemes for these knowledge translation (KT) interventions have emerged. A recent scoping review identified 51 classification schemes of KT interventions to integrate evidence into healthcare practice; however, the review did not evaluate the quality of the classification schemes or provide detailed information to assist researchers in selecting a scheme for their context and purpose. This study aimed to further examine and assess the quality of these classification schemes of KT interventions, and provide information to aid researchers when selecting a classification scheme. We abstracted the following information from each of the original 51 classification scheme articles: authors' objectives; purpose of the scheme and field of application; socioecologic level (individual, organizational, community, system); adaptability (broad versus specific); target group (patients, providers, policy-makers), intent (policy, education, practice), and purpose (dissemination versus implementation). Two reviewers independently evaluated the methodological quality of the development of each classification scheme using an adapted version of the AGREE II tool. Based on these assessments, two independent reviewers reached consensus about whether to recommend each scheme for researcher use, or not. Of the 51 original classification schemes, we excluded seven that were not specific classification schemes, not accessible or duplicates. Of the remaining 44 classification schemes, nine were not recommended. Of the 35 recommended classification schemes, ten focused on behaviour change and six focused on population health. Many schemes (n = 29) addressed practice considerations. Fewer schemes addressed educational or policy objectives. Twenty-five classification schemes had broad applicability, six were specific, and four had elements of both. Twenty-three schemes targeted health providers, nine targeted both patients and providers and one targeted policy-makers. Most classification schemes were intended for implementation rather than dissemination. Thirty-five classification schemes of KT interventions were developed and reported with sufficient rigour to be recommended for use by researchers interested in KT in healthcare. Our additional categorization and quality analysis will aid in selecting suitable classification schemes for research initiatives in the field of implementation science.
Initial study of Schroedinger eigenmaps for spectral target detection
NASA Astrophysics Data System (ADS)
Dorado-Munoz, Leidy P.; Messinger, David W.
2016-08-01
Spectral target detection refers to the process of searching for a specific material with a known spectrum over a large area containing materials with different spectral signatures. Traditional target detection methods in hyperspectral imagery (HSI) require assuming the data fit some statistical or geometric models and based on the model, to estimate parameters for defining a hypothesis test, where one class (i.e., target class) is chosen over the other classes (i.e., background class). Nonlinear manifold learning methods such as Laplacian eigenmaps (LE) have extensively shown their potential use in HSI processing, specifically in classification or segmentation. Recently, Schroedinger eigenmaps (SE), which is built upon LE, has been introduced as a semisupervised classification method. In SE, the former Laplacian operator is replaced by the Schroedinger operator. The Schroedinger operator includes by definition, a potential term V that steers the transformation in certain directions improving the separability between classes. In this regard, we propose a methodology for target detection that is not based on the traditional schemes and that does not need the estimation of statistical or geometric parameters. This method is based on SE, where the potential term V is taken into consideration to include the prior knowledge about the target class and use it to steer the transformation in directions where the target location in the new space is known and the separability between target and background is augmented. An initial study of how SE can be used in a target detection scheme for HSI is shown here. In-scene pixel and spectral signature detection approaches are presented. The HSI data used comprise various target panels for testing simultaneous detection of multiple objects with different complexities.
Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong
2014-01-01
Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods. PMID:25061837
Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong
2014-07-24
Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods.
Vehicle Engine Classification Using Spectral Tone-Pitch Vibration Indexing and Neural Network*
Wei, Jie; Vongsy, Karmon; Mendoza-Schrock, Olga; Liu, Chi-Him
2015-01-01
As a non-invasive and remote sensor, the Laser Doppler Vibrometer (LDV) has found a broad spectrum of applications in various areas such as civil engineering, biomedical engineering, and even security and restoration within art museums. LDV is an ideal sensor to detect threats earlier and provide better protection to society, which is of utmost importance to military and law enforcement institutions. However, the use of LDV in situational surveillance, in particular vehicle classification, is still in its infancy due to the lack of systematic investigations on its behavioral properties. In this work, as a result of the pilot project initiated by Air Force Research Laboratory, the innate features of LDV data from many vehicles are examined, beginning with an investigation of feature differences compared to human speech signals. A spectral tone-pitch vibration indexing scheme is developed to capture the engine’s periodic vibrations and the associated fundamental frequencies over the vehicles’ surface. A two-layer feed-forward neural network with 20 intermediate neurons is employed to classify vehicles’ engines based on their spectral tone-pitch indices. The classification results using the proposed approach over the complete LDV dataset collected by the project are exceedingly encouraging; consistently higher than 96% accuracies are attained for all four types of engines collected from this project. PMID:26788417
Classification of Tree Species in Overstorey Canopy of Subtropical Forest Using QuickBird Images.
Lin, Chinsu; Popescu, Sorin C; Thomson, Gavin; Tsogt, Khongor; Chang, Chein-I
2015-01-01
This paper proposes a supervised classification scheme to identify 40 tree species (2 coniferous, 38 broadleaf) belonging to 22 families and 36 genera in high spatial resolution QuickBird multispectral images (HMS). Overall kappa coefficient (OKC) and species conditional kappa coefficients (SCKC) were used to evaluate classification performance in training samples and estimate accuracy and uncertainty in test samples. Baseline classification performance using HMS images and vegetation index (VI) images were evaluated with an OKC value of 0.58 and 0.48 respectively, but performance improved significantly (up to 0.99) when used in combination with an HMS spectral-spatial texture image (SpecTex). One of the 40 species had very high conditional kappa coefficient performance (SCKC ≥ 0.95) using 4-band HMS and 5-band VIs images, but, only five species had lower performance (0.68 ≤ SCKC ≤ 0.94) using the SpecTex images. When SpecTex images were combined with a Visible Atmospherically Resistant Index (VARI), there was a significant improvement in performance in the training samples. The same level of improvement could not be replicated in the test samples indicating that a high degree of uncertainty exists in species classification accuracy which may be due to individual tree crown density, leaf greenness (inter-canopy gaps), and noise in the background environment (intra-canopy gaps). These factors increase uncertainty in the spectral texture features and therefore represent potential problems when using pixel-based classification techniques for multi-species classification.
Cross-ontological analytics for alignment of different classification schemes
Posse, Christian; Sanfilippo, Antonio P; Gopalan, Banu; Riensche, Roderick M; Baddeley, Robert L
2010-09-28
Quantification of the similarity between nodes in multiple electronic classification schemes is provided by automatically identifying relationships and similarities between nodes within and across the electronic classification schemes. Quantifying the similarity between a first node in a first electronic classification scheme and a second node in a second electronic classification scheme involves finding a third node in the first electronic classification scheme, wherein a first product value of an inter-scheme similarity value between the second and third nodes and an intra-scheme similarity value between the first and third nodes is a maximum. A fourth node in the second electronic classification scheme can be found, wherein a second product value of an inter-scheme similarity value between the first and fourth nodes and an intra-scheme similarity value between the second and fourth nodes is a maximum. The maximum between the first and second product values represents a measure of similarity between the first and second nodes.
Analysis of the Tanana River Basin using LANDSAT data
NASA Technical Reports Server (NTRS)
Morrissey, L. A.; Ambrosia, V. G.; Carson-Henry, C.
1981-01-01
Digital image classification techniques were used to classify land cover/resource information in the Tanana River Basin of Alaska. Portions of four scenes of LANDSAT digital data were analyzed using computer systems at Ames Research Center in an unsupervised approach to derive cluster statistics. The spectral classes were identified using the IDIMS display and color infrared photography. Classification errors were corrected using stratification procedures. The classification scheme resulted in the following eleven categories; sedimented/shallow water, clear/deep water, coniferous forest, mixed forest, deciduous forest, shrub and grass, bog, alpine tundra, barrens, snow and ice, and cultural features. Color coded maps and acreage summaries of the major land cover categories were generated for selected USGS quadrangles (1:250,000) which lie within the drainage basin. The project was completed within six months.
Very Massive Stars and the Eddington Limit
NASA Astrophysics Data System (ADS)
Crowther, P. A.; Hirschi, R.; Walborn, N. R.; Yusof, N.
2012-12-01
We use contemporary evolutionary models for very massive stars (VMS) to assess whether the Eddington limit constrains the upper stellar mass limit. We also consider the interplay between mass and age for the wind properties and spectral morphology of VMS, with reference to the recently modified classification scheme for O2-3.5 If*/WN stars. Finally, the death of VMS in the local universe is considered in the context of pair instability supernovae.
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav; Ostendorf, Andreas
2011-07-01
A novel technique for the label-free analysis of micro and nanoparticles including biomolecules using optical micro cavity resonance of whispering-gallery-type modes is being developed. Various schemes of the method using both standard and specially produced microspheres have been investigated to make further development for microbial application. It was demonstrated that optical resonance under optimal geometry could be detected under the laser power of less 1 microwatt. The sensitivity of developed schemes has been tested by monitoring the spectral shift of the whispering gallery modes. Water solutions of ethanol, ascorbic acid, blood phantoms including albumin and HCl, glucose, biotin, biomarker like C reactive protein so as bacteria and virus phantoms (gels of silica micro and nanoparticles) have been used. Structure of resonance spectra of the solutions was a specific subject of investigation. Probabilistic neural network classifier for biological agents and micro/nano particles classification has been developed. Several parameters of resonance spectra as spectral shift, broadening, diffuseness and others have been used as input parameters to develop a network classifier for micro and nanoparticles and biological agents in solution. Classification probability of approximately 98% for probes under investigation have been achieved. Developed approach have been demonstrated to be a promising technology platform for sensitive, lab-on-chip type sensor which can be used for development of diagnostic tools for different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells as well as in different experimental contexts e.g. proteomics, genomics, drug discovery, and membrane studies.
The Benard problem: A comparison of finite difference and spectral collocation eigen value solutions
NASA Technical Reports Server (NTRS)
Skarda, J. Raymond Lee; Mccaughan, Frances E.; Fitzmaurice, Nessan
1995-01-01
The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation formulation is described. The performance of the spectral scheme is compared with that of a 2nd order finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude smaller than finite difference error for a grid resolution of N = 15 (number of points used). The performance of the spectral formulation far exceeded the performance of the finite difference formulation for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order finite difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher order finite difference schemes.
Nitrogen line spectroscopy in O-stars. III. The earliest O-stars
NASA Astrophysics Data System (ADS)
Rivero González, J. G.; Puls, J.; Massey, P.; Najarro, F.
2012-07-01
Context. The classification scheme proposed by Walborn et al. (2002, AJ, 123, 2754), based primarily on the relative strengths of the N ivλ4058 and N iiiλ4640 emission lines, has been used in a variety of studies to spectroscopically classify early O-type stars. Owing to the lack of a solid theoretical basis, this scheme has not yet been universally accepted though. Aims: We provide first theoretical predictions for the N ivλ4058/N iiiλ4640 emission line ratio in dependence of various parameters, and confront these predictions with results from the analysis of a sample of early-type LMC/SMC O-stars. Methods: Stellar and wind parameters of our sample stars are determined by line profile fitting of hydrogen, helium and nitrogen lines, exploiting the helium and nitrogen ionization balance. Corresponding synthetic spectra are calculated by means of the NLTE atmosphere/spectrum synthesis code fastwind. Results: Though there is a monotonic relationship between the N iv/N iii emission line ratio and the effective temperature, all other parameters being equal, theoretical predictions indicate additional dependencies on surface gravity, mass-loss, metallicity, and, particularly, nitrogen abundance. For a given line ratio (i.e., spectral type), more enriched objects should be typically hotter. These basic predictions are confirmed by results from the alternative model atmosphere code cmfgen. The effective temperatures for the earliest O-stars, inferred from the nitrogen ionization balance, are partly considerably hotter than indicated by previous studies. Consistent with earlier results, effective temperatures increase from supergiants to dwarfs for all spectral types in the LMC. The relation between observed N ivλ4058/N iiiλ4640 emission line ratio and effective temperature, for a given luminosity class, turned out to be quite monotonic for our sample stars, and to be fairly consistent with our model predictions. The scatter within a spectral sub-type is mainly produced by abundance effects. Conclusions: Our findings suggest that the Walborn et al. (2002, AJ, 123, 2754) classification scheme is able to provide a meaningful relation between spectral type and effective temperature, as long as it is possible to discriminate for the luminosity class. In terms of spectral morphology, this might be difficult to achieve in low-Z environments such as the SMC, owing to rather low wind-strengths. According to our predictions, the major bias of the classification scheme is due to nitrogen content, and the overall spectral type-Teff relation for low-metallicity (e.g., SMC) O-stars might be non-monotonic around O3.5/O4. Based on (i) observations collected at the European Southern Observatory Very Large Telescope, under programmes 68.D-0369, 171.D-0237 (FLAMES), and 67.D-0238, 70.D-0164, 074.D-0109 (UVES); (ii) observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programmes 6417, 7739, and 9412; and (iii) observations gathered with the 6.5 m Magellan telescopes at the Las Campanas Observatory, Chile.Appendices A and B are available in electronic form at http://www.aanda.org
Spectral analysis for automated exploration and sample acquisition
NASA Technical Reports Server (NTRS)
Eberlein, Susan; Yates, Gigi
1992-01-01
Future space exploration missions will rely heavily on the use of complex instrument data for determining the geologic, chemical, and elemental character of planetary surfaces. One important instrument is the imaging spectrometer, which collects complete images in multiple discrete wavelengths in the visible and infrared regions of the spectrum. Extensive computational effort is required to extract information from such high-dimensional data. A hierarchical classification scheme allows multispectral data to be analyzed for purposes of mineral classification while limiting the overall computational requirements. The hierarchical classifier exploits the tunability of a new type of imaging spectrometer which is based on an acousto-optic tunable filter. This spectrometer collects a complete image in each wavelength passband without spatial scanning. It may be programmed to scan through a range of wavelengths or to collect only specific bands for data analysis. Spectral classification activities employ artificial neural networks, trained to recognize a number of mineral classes. Analysis of the trained networks has proven useful in determining which subsets of spectral bands should be employed at each step of the hierarchical classifier. The network classifiers are capable of recognizing all mineral types which were included in the training set. In addition, the major components of many mineral mixtures can also be recognized. This capability may prove useful for a system designed to evaluate data in a strange environment where details of the mineral composition are not known in advance.
Biologically-inspired data decorrelation for hyper-spectral imaging
NASA Astrophysics Data System (ADS)
Picon, Artzai; Ghita, Ovidiu; Rodriguez-Vaamonde, Sergio; Iriondo, Pedro Ma; Whelan, Paul F.
2011-12-01
Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors) is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA), linear discriminant analysis (LDA), wavelet decomposition (WD), or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral) characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification
NASA Astrophysics Data System (ADS)
Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman
2018-02-01
The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.
NASA Technical Reports Server (NTRS)
Boslough, M. B.; Cygan, R. T.; Kirkpatrick, R. J.
1993-01-01
We have applied solid state Si-29 nuclear magnetic resonance (NMR) spectroscopy to five naturally-shocked Coconino Sandstone samples from Meteor Crater, Arizona, with the goal of examining possible correlations between NMR spectral characteristics and shock level. This work follows our observation of a strong correlation between the width of a Si-29 resonance and peak shock pressure for experimentally shocked quartz powders. The peak width increase is due to the shock-induced formation of amorphous silica, which increases as a function of shock pressure over the range that we studied (7.5 to 22 GPa). The Coconino Sandstone spectra are in excellent agreement with the classification scheme of Kieffer in terms of presence and approximate abundances of quartz, coesite, stishovite, and glass. We also observe a new resonance in two moderately shocked samples that we have tentatively identified with silicon in tetrahedra with one hydroxyl group in a densified form of amorphous silica.
Self-adjoint realisations of the Dirac-Coulomb Hamiltonian for heavy nuclei
NASA Astrophysics Data System (ADS)
Gallone, Matteo; Michelangeli, Alessandro
2018-02-01
We derive a classification of the self-adjoint extensions of the three-dimensional Dirac-Coulomb operator in the critical regime of the Coulomb coupling. Our approach is solely based upon the Kreĭn-Višik-Birman extension scheme, or also on Grubb's universal classification theory, as opposite to previous works within the standard von Neumann framework. This let the boundary condition of self-adjointness emerge, neatly and intrinsically, as a multiplicative constraint between regular and singular part of the functions in the domain of the extension, the multiplicative constant giving also immediate information on the invertibility property and on the resolvent and spectral gap of the extension.
Examination of Spectral Transformations on Spectral Mixture Analysis
NASA Astrophysics Data System (ADS)
Deng, Y.; Wu, C.
2018-04-01
While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.
Code of Federal Regulations, 2012 CFR
2012-01-01
... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...
Code of Federal Regulations, 2013 CFR
2013-01-01
... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...
Code of Federal Regulations, 2010 CFR
2010-01-01
... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...
Code of Federal Regulations, 2014 CFR
2014-01-01
... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...
Code of Federal Regulations, 2011 CFR
2011-01-01
... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...
Muench, Eugene V.
1971-01-01
A computerized English/Spanish correlation index to five biomedical library classification schemes and a computerized English/Spanish, Spanish/English listings of MeSH are described. The index was accomplished by supplying appropriate classification numbers of five classification schemes (National Library of Medicine; Library of Congress; Dewey Decimal; Cunningham; Boston Medical) to MeSH and a Spanish translation of MeSH The data were keypunched, merged on magnetic tape, and sorted in a computer alphabetically by English and Spanish subject headings and sequentially by classification number. Some benefits and uses of the index are: a complete index to classification schemes based on MeSH terms; a tool for conversion of classification numbers when reclassifying collections; a Spanish index and a crude Spanish translation of five classification schemes; a data base for future applications, e.g., automatic classification. Other classification schemes, such as the UDC, and translations of MeSH into other languages can be added. PMID:5172471
The Brown Dwarf Kinematics Project (BDKP. III. Parallaxes for 70 Ultracool Dwarfs
2012-06-10
highest mass exoplanets (Saumon et al. 1996; Chabrier & Baraffe 1997). In early 2000, the standard stellar spectral classification scheme was extended...Journal, 752:56 (22pp), 2012 June 10 Faherty et al. routine xdimsum was used to perform sky subtractions and mask holes from bright stars.13 3. PARALLAX...epoch. The precise centroids of the stars were measured by binning the stellar profile in the X and Y directions using a box of ∼2′′ around the pixel
Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery
Moran, Emilio Federico.
2010-01-01
High spatial resolution images have been increasingly used for urban land use/cover classification, but the high spectral variation within the same land cover, the spectral confusion among different land covers, and the shadow problem often lead to poor classification performance based on the traditional per-pixel spectral-based classification methods. This paper explores approaches to improve urban land cover classification with Quickbird imagery. Traditional per-pixel spectral-based supervised classification, incorporation of textural images and multispectral images, spectral-spatial classifier, and segmentation-based classification are examined in a relatively new developing urban landscape, Lucas do Rio Verde in Mato Grosso State, Brazil. This research shows that use of spatial information during the image classification procedure, either through the integrated use of textural and spectral images or through the use of segmentation-based classification method, can significantly improve land cover classification performance. PMID:21643433
NASA Astrophysics Data System (ADS)
Sojasi, Saeed; Yousefi, Bardia; Liaigre, Kévin; Ibarra-Castanedo, Clemente; Beaudoin, Georges; Maldague, Xavier P. V.; Huot, François; Chamberland, Martin
2017-05-01
Hyperspectral imaging (HSI) in the long-wave infrared spectrum (LWIR) provides spectral and spatial information concerning the emissivity of the surface of materials, which can be used for mineral identification. For this, an endmember, which is the purest form of a mineral, is used as reference. All pure minerals have specific spectral profiles in the electromagnetic wavelength, which can be thought of as the mineral's fingerprint. The main goal of this paper is the identification of minerals by LWIR hyperspectral imaging using a machine learning scheme. The information of hyperspectral imaging has been recorded from the energy emitted from the mineral's surface. Solar energy is the source of energy in remote sensing, while a heating element is the energy source employed in laboratory experiments. Our work contains three main steps where the first step involves obtaining the spectral signatures of pure (single) minerals with a hyperspectral camera, in the long-wave infrared (7.7 to 11.8 μm), which measures the emitted radiance from the minerals' surface. The second step concerns feature extraction by applying the continuous wavelet transform (CWT) and finally we use support vector machine classifier with radial basis functions (SVM-RBF) for classification/identification of minerals. The overall accuracy of classification in our work is 90.23+/- 2.66%. In conclusion, based on CWT's ability to capture the information of signals can be used as a good marker for classification and identification the minerals substance.
Automated structural classification of lipids by machine learning.
Taylor, Ryan; Miller, Ryan H; Miller, Ryan D; Porter, Michael; Dalgleish, James; Prince, John T
2015-03-01
Modern lipidomics is largely dependent upon structural ontologies because of the great diversity exhibited in the lipidome, but no automated lipid classification exists to facilitate this partitioning. The size of the putative lipidome far exceeds the number currently classified, despite a decade of work. Automated classification would benefit ongoing classification efforts by decreasing the time needed and increasing the accuracy of classification while providing classifications for mass spectral identification algorithms. We introduce a tool that automates classification into the LIPID MAPS ontology of known lipids with >95% accuracy and novel lipids with 63% accuracy. The classification is based upon simple chemical characteristics and modern machine learning algorithms. The decision trees produced are intelligible and can be used to clarify implicit assumptions about the current LIPID MAPS classification scheme. These characteristics and decision trees are made available to facilitate alternative implementations. We also discovered many hundreds of lipids that are currently misclassified in the LIPID MAPS database, strongly underscoring the need for automated classification. Source code and chemical characteristic lists as SMARTS search strings are available under an open-source license at https://www.github.com/princelab/lipid_classifier. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Novelli, Antonio; Aguilar, Manuel A.; Nemmaoui, Abderrahim; Aguilar, Fernando J.; Tarantino, Eufemia
2016-10-01
This paper shows the first comparison between data from Sentinel-2 (S2) Multi Spectral Instrument (MSI) and Landsat 8 (L8) Operational Land Imager (OLI) headed up to greenhouse detection. Two closely related in time scenes, one for each sensor, were classified by using Object Based Image Analysis and Random Forest (RF). The RF input consisted of several object-based features computed from spectral bands and including mean values, spectral indices and textural features. S2 and L8 data comparisons were also extended using a common segmentation dataset extracted form VHR World-View 2 (WV2) imagery to test differences only due to their specific spectral contribution. The best band combinations to perform segmentation were found through a modified version of the Euclidian Distance 2 index. Four different RF classifications schemes were considered achieving 89.1%, 91.3%, 90.9% and 93.4% as the best overall accuracies respectively, evaluated over the whole study area.
Multisource Data Classification Using A Hybrid Semi-supervised Learning Scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatsavai, Raju; Bhaduri, Budhendra L; Shekhar, Shashi
2009-01-01
In many practical situations thematic classes can not be discriminated by spectral measurements alone. Often one needs additional features such as population density, road density, wetlands, elevation, soil types, etc. which are discrete attributes. On the other hand remote sensing image features are continuous attributes. Finding a suitable statistical model and estimation of parameters is a challenging task in multisource (e.g., discrete and continuous attributes) data classification. In this paper we present a semi-supervised learning method by assuming that the samples were generated by a mixture model, where each component could be either a continuous or discrete distribution. Overall classificationmore » accuracy of the proposed method is improved by 12% in our initial experiments.« less
The Galah Survey: Classification and Diagnostics with t-SNE Reduction of Spectral Information
NASA Astrophysics Data System (ADS)
Traven, G.; Matijevič, G.; Zwitter, T.; Žerjal, M.; Kos, J.; Asplund, M.; Bland-Hawthorn, J.; Casey, A. R.; De Silva, G.; Freeman, K.; Lin, J.; Martell, S. L.; Schlesinger, K. J.; Sharma, S.; Simpson, J. D.; Zucker, D. B.; Anguiano, B.; Da Costa, G.; Duong, L.; Horner, J.; Hyde, E. A.; Kafle, P. R.; Munari, U.; Nataf, D.; Navin, C. A.; Reid, W.; Ting, Y.-S.
2017-02-01
Galah is an ongoing high-resolution spectroscopic survey with the goal of disentangling the formation history of the Milky Way using the fossil remnants of disrupted star formation sites that are now dispersed around the Galaxy. It is targeting a randomly selected magnitude-limited (V ≤ 14) sample of stars, with the goal of observing one million objects. To date, 300,000 spectra have been obtained. Not all of them are correctly processed by parameter estimation pipelines, and we need to know about them. We present a semi-automated classification scheme that identifies different types of peculiar spectral morphologies in an effort to discover and flag potentially problematic spectra and thus help to preserve the integrity of the survey results. To this end, we employ the recently developed dimensionality reduction technique t-SNE (t-distributed stochastic neighbor embedding), which enables us to represent the complex spectral morphology in a two-dimensional projection map while still preserving the properties of the local neighborhoods of spectra. We find that the majority (178,483) of the 209,533 Galah spectra considered in this study represents normal single stars, whereas 31,050 peculiar and problematic spectra with very diverse spectral features pertaining to 28,579 stars are distributed into 10 classification categories: hot stars, cool metal-poor giants, molecular absorption bands, binary stars, Hα/Hβ emission, Hα/Hβ emission superimposed on absorption, Hα/Hβ P-Cygni, Hα/Hβ inverted P-Cygni, lithium absorption, and problematic. Classified spectra with supplementary information are presented in the catalog, indicating candidates for follow-up observations and population studies of the short-lived phases of stellar evolution.
The Galah Survey: Classification and Diagnostics with t-SNE Reduction of Spectral Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traven, G.; Zwitter, T.; Žerjal, M.
Galah is an ongoing high-resolution spectroscopic survey with the goal of disentangling the formation history of the Milky Way using the fossil remnants of disrupted star formation sites that are now dispersed around the Galaxy. It is targeting a randomly selected magnitude-limited ( V ≤ 14) sample of stars, with the goal of observing one million objects. To date, 300,000 spectra have been obtained. Not all of them are correctly processed by parameter estimation pipelines, and we need to know about them. We present a semi-automated classification scheme that identifies different types of peculiar spectral morphologies in an effort tomore » discover and flag potentially problematic spectra and thus help to preserve the integrity of the survey results. To this end, we employ the recently developed dimensionality reduction technique t-SNE ( t -distributed stochastic neighbor embedding), which enables us to represent the complex spectral morphology in a two-dimensional projection map while still preserving the properties of the local neighborhoods of spectra. We find that the majority (178,483) of the 209,533 Galah spectra considered in this study represents normal single stars, whereas 31,050 peculiar and problematic spectra with very diverse spectral features pertaining to 28,579 stars are distributed into 10 classification categories: hot stars, cool metal-poor giants, molecular absorption bands, binary stars, H α /H β emission, H α /H β emission superimposed on absorption, H α /H β P-Cygni, H α /H β inverted P-Cygni, lithium absorption, and problematic. Classified spectra with supplementary information are presented in the catalog, indicating candidates for follow-up observations and population studies of the short-lived phases of stellar evolution.« less
NASA Astrophysics Data System (ADS)
Bangs, Corey F.; Kruse, Fred A.; Olsen, Chris R.
2013-05-01
Hyperspectral data were assessed to determine the effect of integrating spectral data and extracted texture feature data on classification accuracy. Four separate spectral ranges (hundreds of spectral bands total) were used from the Visible and Near Infrared (VNIR) and Shortwave Infrared (SWIR) portions of the electromagnetic spectrum. Haralick texture features (contrast, entropy, and correlation) were extracted from the average gray-level image for each of the four spectral ranges studied. A maximum likelihood classifier was trained using a set of ground truth regions of interest (ROIs) and applied separately to the spectral data, texture data, and a fused dataset containing both. Classification accuracy was measured by comparison of results to a separate verification set of test ROIs. Analysis indicates that the spectral range (source of the gray-level image) used to extract the texture feature data has a significant effect on the classification accuracy. This result applies to texture-only classifications as well as the classification of integrated spectral data and texture feature data sets. Overall classification improvement for the integrated data sets was near 1%. Individual improvement for integrated spectral and texture classification of the "Urban" class showed approximately 9% accuracy increase over spectral-only classification. Texture-only classification accuracy was highest for the "Dirt Path" class at approximately 92% for the spectral range from 947 to 1343nm. This research demonstrates the effectiveness of texture feature data for more accurate analysis of hyperspectral data and the importance of selecting the correct spectral range to be used for the gray-level image source to extract these features.
Classification in Astronomy: Past and Present
NASA Astrophysics Data System (ADS)
Feigelson, Eric
2012-03-01
Astronomers have always classified celestial objects. The ancient Greeks distinguished between asteros, the fixed stars, and planetos, the roving stars. The latter were associated with the Gods and, starting with Plato in his dialog Timaeus, provided the first mathematical models of celestial phenomena. Giovanni Hodierna classified nebulous objects, seen with a Galilean refractor telescope in the mid-seventeenth century into three classes: "Luminosae," "Nebulosae," and "Occultae." A century later, Charles Messier compiled a larger list of nebulae, star clusters and galaxies, but did not attempt a classification. Classification of comets was a significant enterprise in the 19th century: Alexander (1850) considered two groups based on orbit sizes, Lardner (1853) proposed three groups of orbits, and Barnard (1891) divided them into two classes based on morphology. Aside from the segmentation of the bright stars into constellations, most stellar classifications were based on colors and spectral properties. During the 1860s, the pioneering spectroscopist Angelo Secchi classified stars into five classes: white, yellow, orange, carbon stars, and emission line stars. After many debates, the stellar spectral sequence was refined by the group at Harvard into the familiar OBAFGKM spectral types, later found to be a sequence on surface temperature (Cannon 1926). The spectral classification is still being extended with recent additions of O2 hot stars (Walborn et al. 2002) and L and T brown dwarfs (Kirkpatrick 2005). Townley (1913) reviews 30 years of variable star classification, emerging with six classes with five subclasses. The modern classification of variable stars has about 80 (sub)classes, and is still under debate (Samus 2009). Shortly after his confirmation that some nebulae are external galaxies, Edwin Hubble (1926) proposed his famous bifurcated classification of galaxy morphologies with three classes: ellipticals, spirals, and irregulars. These classes are still used today with many refinements by Gerard de Vaucouleurs and others. Supernovae, nearly all of which are found in external galaxies, have a complicated classification scheme:Type I with subtypes Ia, Ib, Ic, Ib/c pec and Type II with subtypes IIb, IIL, IIP, and IIn (Turatto 2003). The classification is based on elemental abundances in optical spectra and on optical light curve shapes. Tadhunter (2009) presents a three-dimensional classification of active galactic nuclei involving radio power, emission line width, and nuclear luminosity. These taxonomies have played enormously important roles in the development of astronomy, yet all were developed using heuristic methods. Many are based on qualitative and subjective assessments of spatial, temporal, or spectral properties. A qualitative, morphological approach to astronomical studies was explicitly promoted by Zwicky (1957). Other classifications are based on quantitative criteria, but these criteria were developed by subjective examination of training datasets. For example, starburst galaxies are discriminated from narrow-line Seyfert galaxies by a curved line in a diagramof the ratios of four emission lines (Veilleux and Osterbrock 1987). Class II young stellar objects have been defined by a rectangular region in a mid-infrared color-color diagram (Allen et al. 2004). Short and hard gamma-ray bursts are discriminated by a dip in the distribution of burst durations (Kouveliotou et al. 2000). In no case was a statistical or algorithmic procedure used to define the classes.
[Accuracy improvement of spectral classification of crop using microwave backscatter data].
Jia, Kun; Li, Qiang-Zi; Tian, Yi-Chen; Wu, Bing-Fang; Zhang, Fei-Fei; Meng, Ji-Hua
2011-02-01
In the present study, VV polarization microwave backscatter data used for improving accuracies of spectral classification of crop is investigated. Classification accuracy using different classifiers based on the fusion data of HJ satellite multi-spectral and Envisat ASAR VV backscatter data are compared. The results indicate that fusion data can take full advantage of spectral information of HJ multi-spectral data and the structure sensitivity feature of ASAR VV polarization data. The fusion data enlarges the spectral difference among different classifications and improves crop classification accuracy. The classification accuracy using fusion data can be increased by 5 percent compared to the single HJ data. Furthermore, ASAR VV polarization data is sensitive to non-agrarian area of planted field, and VV polarization data joined classification can effectively distinguish the field border. VV polarization data associating with multi-spectral data used in crop classification enlarges the application of satellite data and has the potential of spread in the domain of agriculture.
Progressively expanded neural network for automatic material identification in hyperspectral imagery
NASA Astrophysics Data System (ADS)
Paheding, Sidike
The science of hyperspectral remote sensing focuses on the exploitation of the spectral signatures of various materials to enhance capabilities including object detection, recognition, and material characterization. Hyperspectral imagery (HSI) has been extensively used for object detection and identification applications since it provides plenty of spectral information to uniquely identify materials by their reflectance spectra. HSI-based object detection algorithms can be generally classified into stochastic and deterministic approaches. Deterministic approaches are comparatively simple to apply since it is usually based on direct spectral similarity such as spectral angles or spectral correlation. In contrast, stochastic algorithms require statistical modeling and estimation for target class and non-target class. Over the decades, many single class object detection methods have been proposed in the literature, however, deterministic multiclass object detection in HSI has not been explored. In this work, we propose a deterministic multiclass object detection scheme, named class-associative spectral fringe-adjusted joint transform correlation. Human brain is capable of simultaneously processing high volumes of multi-modal data received every second of the day. In contrast, a machine sees input data simply as random binary numbers. Although machines are computationally efficient, they are inferior when comes to data abstraction and interpretation. Thus, mimicking the learning strength of human brain has been current trend in artificial intelligence. In this work, we present a biological inspired neural network, named progressively expanded neural network (PEN Net), based on nonlinear transformation of input neurons to a feature space for better pattern differentiation. In PEN Net, discrete fixed excitations are disassembled and scattered in the feature space as a nonlinear line. Each disassembled element on the line corresponds to a pattern with similar features. Unlike the conventional neural network where hidden neurons need to be iteratively adjusted to achieve better accuracy, our proposed PEN Net does not require hidden neurons tuning which achieves better computational efficiency, and it has also shown superior performance in HSI classification tasks compared to the state-of-the-arts. Spectral-spatial features based HSI classification framework has shown stronger strength compared to spectral-only based methods. In our lastly proposed technique, PEN Net is incorporated with multiscale spatial features (i.e., multiscale complete local binary pattern) to perform a spectral-spatial classification of HSI. Several experiments demonstrate excellent performance of our proposed technique compared to the more recent developed approaches.
NASA Astrophysics Data System (ADS)
Díaz-Ayil, Gilberto; Amouroux, Marine; Clanché, Fabien; Granjon, Yves; Blondel, Walter C. P. M.
2009-07-01
Spatially-resolved bimodal spectroscopy (multiple AutoFluorescence AF excitation and Diffuse Reflectance DR), was used in vivo to discriminate various healthy and precancerous skin stages in a pre-clinical model (UV-irradiated mouse): Compensatory Hyperplasia CH, Atypical Hyperplasia AH and Dysplasia D. A specific data preprocessing scheme was applied to intensity spectra (filtering, spectral correction and intensity normalization), and several sets of spectral characteristics were automatically extracted and selected based on their discrimination power, statistically tested for every pair-wise comparison of histological classes. Data reduction with Principal Components Analysis (PCA) was performed and 3 classification methods were implemented (k-NN, LDA and SVM), in order to compare diagnostic performance of each method. Diagnostic performance was studied and assessed in terms of Sensibility (Se) and Specificity (Sp) as a function of the selected features, of the combinations of 3 different inter-fibres distances and of the numbers of principal components, such that: Se and Sp ~ 100% when discriminating CH vs. others; Sp ~ 100% and Se > 95% when discriminating Healthy vs. AH or D; Sp ~ 74% and Se ~ 63% for AH vs. D.
VizieR Online Data Catalog: GALAH semi-automated classification scheme (Traven+, 2017)
NASA Astrophysics Data System (ADS)
Traven, G.; Matijevic, G.; Zwitter, T.; Zerjal, M.; Kos, J.; Asplund, M.; Bland-Hawthorn, J.; Casey, A. R.; de Silva, G.; Freeman, K.; Lin, J.; Martell, S. L.; Schlesinger, K. J.; Sharma, S.; Simpson, J. D.; Zucker, D. B.; Anguiano, B.; da Costa, G.; Duong, L.; Horner, J.; Hyde, E. A.; Kafle, P. R.; Munari, U.; Nataf, D.; Navin, C. A.; Reid, W.; Ting, Y.-S.
2017-04-01
The GALactic Archaeology with HERMES (GALAH) survey was the main driver for the construction of Hermes (High Efficiency and Resolution Multi-Element Spectrograph), a fiber-fed multi-object spectrograph on the 3.9m Anglo-Australian Telescope. Its spectral resolving power (R) is about 28000, and there is also an R=45000 mode using a slit mask. Hermes has four simultaneous non-contiguous spectral arms centered at 4800, 5761, 6610, and 7740Å, covering about 1000Å in total, including Hα and Hβ lines. About 300000 spectra have been taken to date, including various calibration exposures. However, we concentrate on ~210000 spectra recorded before 2016 January 30. We devise a custom classification procedure which is based on two independently developed methods, the novel dimensionality reduction technique t-SNE (t-distributed stochastic neighbor embedding; van der Maaten & Hinton 2008, Journal of Machine Learning Research 9, 2579) and the renowned clustering algorithm DBSCAN (Ester+ 1996, Proc. 2nd Int. Conf. on KDD, 226 ed. E. Simoudis, J. Han, and U. Fayyad). (4 data files).
Data Field Modeling and Spectral-Spatial Feature Fusion for Hyperspectral Data Classification.
Liu, Da; Li, Jianxun
2016-12-16
Classification is a significant subject in hyperspectral remote sensing image processing. This study proposes a spectral-spatial feature fusion algorithm for the classification of hyperspectral images (HSI). Unlike existing spectral-spatial classification methods, the influences and interactions of the surroundings on each measured pixel were taken into consideration in this paper. Data field theory was employed as the mathematical realization of the field theory concept in physics, and both the spectral and spatial domains of HSI were considered as data fields. Therefore, the inherent dependency of interacting pixels was modeled. Using data field modeling, spatial and spectral features were transformed into a unified radiation form and further fused into a new feature by using a linear model. In contrast to the current spectral-spatial classification methods, which usually simply stack spectral and spatial features together, the proposed method builds the inner connection between the spectral and spatial features, and explores the hidden information that contributed to classification. Therefore, new information is included for classification. The final classification result was obtained using a random forest (RF) classifier. The proposed method was tested with the University of Pavia and Indian Pines, two well-known standard hyperspectral datasets. The experimental results demonstrate that the proposed method has higher classification accuracies than those obtained by the traditional approaches.
Multiple directed graph large-class multi-spectral processor
NASA Technical Reports Server (NTRS)
Casasent, David; Liu, Shiaw-Dong; Yoneyama, Hideyuki
1988-01-01
Numerical analysis techniques for the interpretation of high-resolution imaging-spectrometer data are described and demonstrated. The method proposed involves the use of (1) a hierarchical classifier with a tree structure generated automatically by a Fisher linear-discriminant-function algorithm and (2) a novel multiple-directed-graph scheme which reduces the local maxima and the number of perturbations required. Results for a 500-class test problem involving simulated imaging-spectrometer data are presented in tables and graphs; 100-percent-correct classification is achieved with an improvement factor of 5.
VizieR Online Data Catalog: Catalogue of Stellar Spectral Classifications (Skiff, 2005)
NASA Astrophysics Data System (ADS)
Skiff, A. B.
2004-05-01
This file contains spectral classifications for stars collected from the literature, serving as a continuation of the compilations produced by the Jascheks, by Kennedy, and by Buscombe. The source of each spectral type is indicated by a standard 19-digit bibcode citation. These papers of course should be cited in publication, not this compilation. The stars are identified either by the name used in each publication or by a valid SIMBAD identifier. Some effort has been made to determine accurate (~1" or better) coordinates for equinox J2000, and these serve as a secondary identifier. Magnitudes are provided as an indication of brightness, but these data are not necessarily accurate, as they often derive from photographic photometry or rough estimates. The classifications include MK types as well as types not strictly on the MK system (white dwarfs, Wolf-Rayet, etc), and in addition simple HD-style temperature types. Luminosity classes in the early Mount Wilson style (e.g. 'd' for dwarf, 'g' for giant) and other similar schemes have been converted to modern notation. Since a citation is provided for each entry, the source paper should be consulted for details about classification schemes, spectral dispersion, and instrumentation used. The file includes only spectral types determined from spectra (viz. line and band strengths or ratios), omitting those determined from photometry (e.g. DDO, Vilnius) or inferred from broadband colors or bulk spectral energy distributions. System-defining primary MK standard stars are included from the last lists by Morgan and Keenan, and are flagged by a + sign in column 79. The early-type standards comprise the 1973 "dagger standards" (1973ARA&A..11...29M) and stars from the Morgan, Abt, and Tapscott atlas (1978rmsa.book.....M). Keenan made continual adjustments to the standards lists up to the time of his death. Thus the late-type standards comprise those marked as high-weight standards in the 1989 Perkins catalogue (1989ApJS...71..245K = III/150), plus the carbon- and S-type standards (1980ApJS...43..379K, 1996ApJS..105..419B), and class IIIb 'clump giants' (1999ApJ...518..859K). In addition, I have made use of the final types by Keenan up to January 2000 shown at the Ohio State Web site (http://www-astronomy.mps.ohio-state.edu/MKCool). Though the present file contains all the stars in these lists, only those marked as standards are flagged as such. Garrison's list of MK 'anchor points' might also be consulted in this regard (1994mpyp.conf....3G). The catalogue includes for the first time results from many large-scale objective-prism spectral surveys done at Case, Stockholm, Crimea, Abastumani, and elsewhere. The stars in these surveys were usually identified only on charts or by other indirect means, and have been overlooked heretofore because of the difficulty in recovering the stars. More complete results from these separate publications, including notes and identifications, have been made available to the CDS, and are kept at the Lowell Observatory ftp area (ftp://ftp.lowell.edu/pub/bas/starcats). Not all of these stars are present in SIMBAD. As a 'living catalogue', an attempt will be made to keep up with current literature, and to extend the indexing of citations back in time. (1 data file).
NASA Astrophysics Data System (ADS)
Sukuta, Sydney; Bruch, Reinhard F.
2002-05-01
The goal of this study is to test the feasibility of using noise factor/eigenvector bands as general clinical analytical tools for diagnoses. We developed a new technique, Noise Band Factor Cluster Analysis (NBFCA), to diagnose benign tumors via their Fourier transform IR fiber optic evanescent wave spectral data for the first time. The middle IR region of human normal skin tissue and benign and melanoma tumors, were analyzed using this new diagnostic technique. Our results are not in full-agreement with pathological classifications hence there is a possibility that our approaches could complement or improve these traditional classification schemes. Moreover, the use of NBFCA make it much easier to delineate class boundaries hence this method provides results with much higher certainty.
Evaluation of change detection techniques for monitoring coastal zone environments
NASA Technical Reports Server (NTRS)
Weismiller, R. A. (Principal Investigator); Kristof, S. J.; Scholz, D. K.; Anuta, P. E.; Momin, S. M.
1977-01-01
The author has identified the following significant results. Four change detection techniques were designed and implemented for evaluation: (1) post classification comparison change detection, (2) delta data change detection, (3) spectral/temporal change classification, and (4) layered spectral/temporal change classification. The post classification comparison technique reliably identified areas of change and was used as the standard for qualitatively evaluating the other three techniques. The layered spectral/temporal change classification and the delta data change detection results generally agreed with the post classification comparison technique results; however, many small areas of change were not identified. Major discrepancies existed between the post classification comparison and spectral/temporal change detection results.
Karayannis, Nicholas V; Jull, Gwendolen A; Hodges, Paul W
2012-02-20
Several classification schemes, each with its own philosophy and categorizing method, subgroup low back pain (LBP) patients with the intent to guide treatment. Physiotherapy derived schemes usually have a movement impairment focus, but the extent to which other biological, psychological, and social factors of pain are encompassed requires exploration. Furthermore, within the prevailing 'biological' domain, the overlap of subgrouping strategies within the orthopaedic examination remains unexplored. The aim of this study was "to review and clarify through developer/expert survey, the theoretical basis and content of physical movement classification schemes, determine their relative reliability and similarities/differences, and to consider the extent of incorporation of the bio-psycho-social framework within the schemes". A database search for relevant articles related to LBP and subgrouping or classification was conducted. Five dominant movement-based schemes were identified: Mechanical Diagnosis and Treatment (MDT), Treatment Based Classification (TBC), Pathoanatomic Based Classification (PBC), Movement System Impairment Classification (MSI), and O'Sullivan Classification System (OCS) schemes. Data were extracted and a survey sent to the classification scheme developers/experts to clarify operational criteria, reliability, decision-making, and converging/diverging elements between schemes. Survey results were integrated into the review and approval obtained for accuracy. Considerable diversity exists between schemes in how movement informs subgrouping and in the consideration of broader neurosensory, cognitive, emotional, and behavioural dimensions of LBP. Despite differences in assessment philosophy, a common element lies in their objective to identify a movement pattern related to a pain reduction strategy. Two dominant movement paradigms emerge: (i) loading strategies (MDT, TBC, PBC) aimed at eliciting a phenomenon of centralisation of symptoms; and (ii) modified movement strategies (MSI, OCS) targeted towards documenting the movement impairments associated with the pain state. Schemes vary on: the extent to which loading strategies are pursued; the assessment of movement dysfunction; and advocated treatment approaches. A biomechanical assessment predominates in the majority of schemes (MDT, PBC, MSI), certain psychosocial aspects (fear-avoidance) are considered in the TBC scheme, certain neurophysiologic (central versus peripherally mediated pain states) and psychosocial (cognitive and behavioural) aspects are considered in the OCS scheme.
On Classification in the Study of Failure, and a Challenge to Classifiers
NASA Technical Reports Server (NTRS)
Wasson, Kimberly S.
2003-01-01
Classification schemes are abundant in the literature of failure. They serve a number of purposes, some more successfully than others. We examine several classification schemes constructed for various purposes relating to failure and its investigation, and discuss their values and limits. The analysis results in a continuum of uses for classification schemes, that suggests that the value of certain properties of these schemes is dependent on the goals a classification is designed to forward. The contrast in the value of different properties for different uses highlights a particular shortcoming: we argue that while humans are good at developing one kind of scheme: dynamic, flexible classifications used for exploratory purposes, we are not so good at developing another: static, rigid classifications used to trap and organize data for specific analytic goals. Our lack of strong foundation in developing valid instantiations of the latter impedes progress toward a number of investigative goals. This shortcoming and its consequences pose a challenge to researchers in the study of failure: to develop new methods for constructing and validating static classification schemes of demonstrable value in promoting the goals of investigations. We note current productive activity in this area, and outline foundations for more.
Proposed new classification scheme for chemical injury to the human eye.
Bagley, Daniel M; Casterton, Phillip L; Dressler, William E; Edelhauser, Henry F; Kruszewski, Francis H; McCulley, James P; Nussenblatt, Robert B; Osborne, Rosemarie; Rothenstein, Arthur; Stitzel, Katherine A; Thomas, Karluss; Ward, Sherry L
2006-07-01
Various ocular alkali burn classification schemes have been published and used to grade human chemical eye injuries for the purpose of identifying treatments and forecasting outcomes. The ILSI chemical eye injury classification scheme was developed for the additional purpose of collecting detailed human eye injury data to provide information on the mechanisms associated with chemical eye injuries. This information will have clinical application, as well as use in the development and validation of new methods to assess ocular toxicity. A panel of ophthalmic researchers proposed the new classification scheme based upon current knowledge of the mechanisms of eye injury, and their collective clinical and research experience. Additional ophthalmologists and researchers were surveyed to critique the scheme. The draft scheme was revised, and the proposed scheme represents the best consensus from at least 23 physicians and scientists. The new scheme classifies chemical eye injury into five categories based on clinical signs, symptoms, and expected outcomes. Diagnostic classification is based primarily on two clinical endpoints: (1) the extent (area) of injury at the limbus, and (2) the degree of injury (area and depth) to the cornea. The new classification scheme provides a uniform system for scoring eye injury across chemical classes, and provides enough detail for the clinician to collect data that will be relevant to identifying the mechanisms of ocular injury.
This paper utilizes a two-stage clustering approach as part of an objective classification scheme designed to elucidate 03's dependence on meteorology. hen applied to ten years (1981-1990) of meteorological data for Birmingham, Alabama, the classification scheme identified seven ...
Comparative Analysis of Haar and Daubechies Wavelet for Hyper Spectral Image Classification
NASA Astrophysics Data System (ADS)
Sharif, I.; Khare, S.
2014-11-01
With the number of channels in the hundreds instead of in the tens Hyper spectral imagery possesses much richer spectral information than multispectral imagery. The increased dimensionality of such Hyper spectral data provides a challenge to the current technique for analyzing data. Conventional classification methods may not be useful without dimension reduction pre-processing. So dimension reduction has become a significant part of Hyper spectral image processing. This paper presents a comparative analysis of the efficacy of Haar and Daubechies wavelets for dimensionality reduction in achieving image classification. Spectral data reduction using Wavelet Decomposition could be useful because it preserves the distinction among spectral signatures. Daubechies wavelets optimally capture the polynomial trends while Haar wavelet is discontinuous and resembles a step function. The performance of these wavelets are compared in terms of classification accuracy and time complexity. This paper shows that wavelet reduction has more separate classes and yields better or comparable classification accuracy. In the context of the dimensionality reduction algorithm, it is found that the performance of classification of Daubechies wavelets is better as compared to Haar wavelet while Daubechies takes more time compare to Haar wavelet. The experimental results demonstrate the classification system consistently provides over 84% classification accuracy.
Semi-supervised classification tool for DubaiSat-2 multispectral imagery
NASA Astrophysics Data System (ADS)
Al-Mansoori, Saeed
2015-10-01
This paper addresses a semi-supervised classification tool based on a pixel-based approach of the multi-spectral satellite imagery. There are not many studies demonstrating such algorithm for the multispectral images, especially when the image consists of 4 bands (Red, Green, Blue and Near Infrared) as in DubaiSat-2 satellite images. The proposed approach utilizes both unsupervised and supervised classification schemes sequentially to identify four classes in the image, namely, water bodies, vegetation, land (developed and undeveloped areas) and paved areas (i.e. roads). The unsupervised classification concept is applied to identify two classes; water bodies and vegetation, based on a well-known index that uses the distinct wavelengths of visible and near-infrared sunlight that is absorbed and reflected by the plants to identify the classes; this index parameter is called "Normalized Difference Vegetation Index (NDVI)". Afterward, the supervised classification is performed by selecting training homogenous samples for roads and land areas. Here, a precise selection of training samples plays a vital role in the classification accuracy. Post classification is finally performed to enhance the classification accuracy, where the classified image is sieved, clumped and filtered before producing final output. Overall, the supervised classification approach produced higher accuracy than the unsupervised method. This paper shows some current preliminary research results which point out the effectiveness of the proposed technique in a virtual perspective.
Development of a methodology for classifying software errors
NASA Technical Reports Server (NTRS)
Gerhart, S. L.
1976-01-01
A mathematical formalization of the intuition behind classification of software errors is devised and then extended to a classification discipline: Every classification scheme should have an easily discernible mathematical structure and certain properties of the scheme should be decidable (although whether or not these properties hold is relative to the intended use of the scheme). Classification of errors then becomes an iterative process of generalization from actual errors to terms defining the errors together with adjustment of definitions according to the classification discipline. Alternatively, whenever possible, small scale models may be built to give more substance to the definitions. The classification discipline and the difficulties of definition are illustrated by examples of classification schemes from the literature and a new study of observed errors in published papers of programming methodologies.
We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1) Lake Superior tributaries and 2) watersheds of riverine coastal wetlands...
We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1)Lake Superior tributaries and 2) watersheds of riverine coastal wetlands ...
Enriching User-Oriented Class Associations for Library Classification Schemes.
ERIC Educational Resources Information Center
Pu, Hsiao-Tieh; Yang, Chyan
2003-01-01
Explores the possibility of adding user-oriented class associations to hierarchical library classification schemes. Analyses a log of book circulation records from a university library in Taiwan and shows that classification schemes can be made more adaptable by analyzing circulation patterns of similar users. (Author/LRW)
15 CFR Appendix I to Part 921 - Biogeographic Classification Scheme
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Biogeographic Classification Scheme I Appendix I to Part 921 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 921—Biogeographic Classification Scheme Acadian 1. Northern of Maine (Eastport to the Sheepscot...
15 CFR Appendix I to Part 921 - Biogeographic Classification Scheme
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Biogeographic Classification Scheme I Appendix I to Part 921 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 921—Biogeographic Classification Scheme Acadian 1. Northern of Maine (Eastport to the Sheepscot...
15 CFR Appendix I to Part 921 - Biogeographic Classification Scheme
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Biogeographic Classification Scheme I Appendix I to Part 921 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 921—Biogeographic Classification Scheme Acadian 1. Northern of Maine (Eastport to the Sheepscot...
15 CFR Appendix I to Part 921 - Biogeographic Classification Scheme
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Biogeographic Classification Scheme I Appendix I to Part 921 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 921—Biogeographic Classification Scheme Acadian 1. Northern of Maine (Eastport to the Sheepscot...
15 CFR Appendix I to Part 921 - Biogeographic Classification Scheme
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Biogeographic Classification Scheme I Appendix I to Part 921 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 921—Biogeographic Classification Scheme Acadian 1. Northern of Maine (Eastport to the Sheepscot...
Using Landsat MSS data with soils information to identify wetland habitats
NASA Technical Reports Server (NTRS)
Ernst, C. L.; Hoffer, R. M.
1981-01-01
A previous study showed that certain fresh water wetland vegetation types can be spectrally separated when a maximum likelihood classification procedure is applied to Landsat spectral data. However, wetland and upland types which have similar vegetative life forms (e.g., upland hardwoods and hardwood swamps) are often confused because of spectral similarity. Therefore, the current investigation attempts to differentiate similar wetland and upland types by combining Landsat multispectral scanner (MSS) data with soils information. The Pigeon River area in northern Indiana used in the earlier study was also employed in this investigation. A layered classification algorithm which combined soils and spectral data was used to generate a wetland classification. The results of the spectral/soils wetland classification are compared to the previous classification that had been based on spectral data alone. The results indicate wetland habitat mapping can be improved by combining soils and other ancillary data with Landsat spectral data.
A Classification Methodology and Retrieval Model to Support Software Reuse
1988-01-01
Dewey Decimal Classification ( DDC 18), an enumerative scheme, occupies 40 pages [Buchanan 19791. Langridge [19731 states that the facets listed in the...sense of historical importance or wide spread use. The schemes are: Dewey Decimal Classification ( DDC ), Universal Decimal Classification (UDC...Classification Systems ..... ..... 2.3.3 Library Classification__- .52 23.3.1 Dewey Decimal Classification -53 2.33.2 Universal Decimal Classification 55 2333
Low-Power Analog Processing for Sensing Applications: Low-Frequency Harmonic Signal Classification
White, Daniel J.; William, Peter E.; Hoffman, Michael W.; Balkir, Sina
2013-01-01
A low-power analog sensor front-end is described that reduces the energy required to extract environmental sensing spectral features without using Fast Fouriér Transform (FFT) or wavelet transforms. An Analog Harmonic Transform (AHT) allows selection of only the features needed by the back-end, in contrast to the FFT, where all coefficients must be calculated simultaneously. We also show that the FFT coefficients can be easily calculated from the AHT results by a simple back-substitution. The scheme is tailored for low-power, parallel analog implementation in an integrated circuit (IC). Two different applications are tested with an ideal front-end model and compared to existing studies with the same data sets. Results from the military vehicle classification and identification of machine-bearing fault applications shows that the front-end suits a wide range of harmonic signal sources. Analog-related errors are modeled to evaluate the feasibility of and to set design parameters for an IC implementation to maintain good system-level performance. Design of a preliminary transistor-level integrator circuit in a 0.13 μm complementary metal-oxide-silicon (CMOS) integrated circuit process showed the ability to use online self-calibration to reduce fabrication errors to a sufficiently low level. Estimated power dissipation is about three orders of magnitude less than similar vehicle classification systems that use commercially available FFT spectral extraction. PMID:23892765
Classification of close binary systems by Svechnikov
NASA Astrophysics Data System (ADS)
Dryomova, G. N.
The paper presents the historical overview of classification schemes of eclipsing variable stars with the foreground of advantages of the classification scheme by Svechnikov being widely appreciated for Close Binary Systems due to simplicity of classification criteria and brevity.
State of the Art in the Cramer Classification Scheme and ...
Slide presentation at the SOT FDA Colloquium on State of the Art in the Cramer Classification Scheme and Threshold of Toxicological Concern in College Park, MD. Slide presentation at the SOT FDA Colloquium on State of the Art in the Cramer Classification Scheme and Threshold of Toxicological Concern in College Park, MD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, D.D.; Jones, H.E.
1994-05-06
Prosthetic heart valves have increased the life span of many patients with life threatening heart conditions. These valves have proven extremely reliable adding years to what would have been weeks to a patient`s life. Prosthetic valves, like the heart however, can suffer from this constant work load. A small number of valves have experienced structural fractures of the outlet strut due to fatigue. To study this problem a non-intrusive method to classify valves has been developed. By extracting from an acoustic signal the opening sounds which directly contain information from the outlet strut and then developing features which are suppliedmore » to an adaptive classification scheme (neural network) the condition of the valve can be determined. The opening sound extraction process has proved to be a classification problem itself. Due to the uniqueness of each heart and the occasional irregularity of the acoustic pattern it is often questionable as to the integrity of a given signal (beat), especially one occurring during an irregular beat pattern. A common cause of these irregular patterns is a condition known as atrial fibrillation, a prevalent arrhythmia among patients with prosthetic hear valves. Atrial fibrillation is suspected when the ECG shows no obvious P-waves. The atria do not contract and relax correctly to help contribute to ventricular filling during a normal cardiac cycle. Sometimes this leads to irregular patterns in the acoustic data. This study compares normal beat patterns to irregular patterns of the same heart. By analyzing the spectral content of the beats it can be determined whether or not these irregular patterns can contribute to the classification of a heart valve or if they should be avoided. The results have shown that the opening sounds which occur during irregular beat patterns contain the same spectral information as the opening which occur during a normal beat pattern of the same heart and these beats can be used for classification.« less
A Real-Time Infrared Ultra-Spectral Signature Classification Method via Spatial Pyramid Matching
Mei, Xiaoguang; Ma, Yong; Li, Chang; Fan, Fan; Huang, Jun; Ma, Jiayi
2015-01-01
The state-of-the-art ultra-spectral sensor technology brings new hope for high precision applications due to its high spectral resolution. However, it also comes with new challenges, such as the high data dimension and noise problems. In this paper, we propose a real-time method for infrared ultra-spectral signature classification via spatial pyramid matching (SPM), which includes two aspects. First, we introduce an infrared ultra-spectral signature similarity measure method via SPM, which is the foundation of the matching-based classification method. Second, we propose the classification method with reference spectral libraries, which utilizes the SPM-based similarity for the real-time infrared ultra-spectral signature classification with robustness performance. Specifically, instead of matching with each spectrum in the spectral library, our method is based on feature matching, which includes a feature library-generating phase. We calculate the SPM-based similarity between the feature of the spectrum and that of each spectrum of the reference feature library, then take the class index of the corresponding spectrum having the maximum similarity as the final result. Experimental comparisons on two publicly-available datasets demonstrate that the proposed method effectively improves the real-time classification performance and robustness to noise. PMID:26205263
Classification of communication signals of the little brown bat
NASA Astrophysics Data System (ADS)
Melendez, Karla V.; Jones, Douglas L.; Feng, Albert S.
2005-09-01
Little brown bats, Myotis lucifugus, are known for their ability to echolocate and utilize their echolocation system to navigate, locate, and identify prey. Their echolocation signals have been characterized in detail, but their communication signals are poorly understood despite their widespread use during the social interactions. The goal of this study was to characterize the communication signals of little brown bats. Sound recordings were made overnight on five individual bats (housed separately from a large group of captive bats) for 7 nights, using a Pettersson ultrasound detector D240x bat detector and Nagra ARES-BB digital recorder. The spectral and temporal characteristics of recorded sounds were first analyzed using BATSOUND software from Pettersson. Sounds were first classified by visual observation of calls' temporal pattern and spectral composition, and later using an automatic classification scheme based on multivariate statistical parameters in MATLAB. Human- and machine-based analysis revealed five discrete classes of bat's communication signals: downward frequency-modulated calls, constant frequency calls, broadband noise bursts, broadband chirps, and broadband click trains. Future studies will focus on analysis of calls' spectrotemporal modulations to discriminate any subclasses that may exist. [Research supported by Grant R01-DC-04998 from the National Institute for Deafness and Communication Disorders.
Classifying aerosol type using in situ surface spectral aerosol optical properties
NASA Astrophysics Data System (ADS)
Schmeisser, Lauren; Andrews, Elisabeth; Ogren, John A.; Sheridan, Patrick; Jefferson, Anne; Sharma, Sangeeta; Kim, Jeong Eun; Sherman, James P.; Sorribas, Mar; Kalapov, Ivo; Arsov, Todor; Angelov, Christo; Mayol-Bracero, Olga L.; Labuschagne, Casper; Kim, Sang-Woo; Hoffer, András; Lin, Neng-Huei; Chia, Hao-Ping; Bergin, Michael; Sun, Junying; Liu, Peng; Wu, Hao
2017-10-01
Knowledge of aerosol size and composition is important for determining radiative forcing effects of aerosols, identifying aerosol sources and improving aerosol satellite retrieval algorithms. The ability to extrapolate aerosol size and composition, or type, from intensive aerosol optical properties can help expand the current knowledge of spatiotemporal variability in aerosol type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of the scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and single scattering albedo (SSA) from 24 stations within the NOAA/ESRL Federated Aerosol Monitoring Network to infer aerosol type using previously published aerosol classification schemes.Three methods are implemented to obtain a best estimate of dominant aerosol type at each station using aerosol optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an aerosol type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics and thus similar dominant aerosol type. The third and final classification method pairs 3-day backward air mass trajectories with median aerosol optical properties to explore the relationship between trajectory origin (proxy for likely aerosol type) and aerosol intensive parameters, while allowing for multiple dominant aerosol types at each station.The three aerosol classification methods have some common, and thus robust, results. In general, estimating dominant aerosol type using optical properties is best suited for site locations with a stable and homogenous aerosol population, particularly continental polluted (carbonaceous aerosol), marine polluted (carbonaceous aerosol mixed with sea salt) and continental dust/biomass sites (dust and carbonaceous aerosol); however, current classification schemes perform poorly when predicting dominant aerosol type at remote marine and Arctic sites and at stations with more complex locations and topography where variable aerosol populations are not well represented by median optical properties. Although the aerosol classification methods presented here provide new ways to reduce ambiguity in typing schemes, there is more work needed to find aerosol typing methods that are useful for a larger range of geographic locations and aerosol populations.
MeMoVolc report on classification and dynamics of volcanic explosive eruptions
NASA Astrophysics Data System (ADS)
Bonadonna, C.; Cioni, R.; Costa, A.; Druitt, T.; Phillips, J.; Pioli, L.; Andronico, D.; Harris, A.; Scollo, S.; Bachmann, O.; Bagheri, G.; Biass, S.; Brogi, F.; Cashman, K.; Dominguez, L.; Dürig, T.; Galland, O.; Giordano, G.; Gudmundsson, M.; Hort, M.; Höskuldsson, A.; Houghton, B.; Komorowski, J. C.; Küppers, U.; Lacanna, G.; Le Pennec, J. L.; Macedonio, G.; Manga, M.; Manzella, I.; Vitturi, M. de'Michieli; Neri, A.; Pistolesi, M.; Polacci, M.; Ripepe, M.; Rossi, E.; Scheu, B.; Sulpizio, R.; Tripoli, B.; Valade, S.; Valentine, G.; Vidal, C.; Wallenstein, N.
2016-11-01
Classifications of volcanic eruptions were first introduced in the early twentieth century mostly based on qualitative observations of eruptive activity, and over time, they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here, we (i) review and assess existing classification schemes, focussing on subaerial eruptions; (ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism; (iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions and (iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterized in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance.
Multiple Spectral-Spatial Classification Approach for Hyperspectral Data
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.
2010-01-01
A .new multiple classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region, with the corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker selection procedure, each of them combining the results of a pixel-wise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification -driven marker and forms a region in the spectral -spatial classification: map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies, when compared to previously proposed classification techniques.
"Relative CIR": an image enhancement and visualization technique
Fleming, Michael D.
1993-01-01
Many techniques exist to spectrally and spatially enhance digital multispectral scanner data. One technique enhances an image while keeping the colors as they would appear in a color-infrared (CIR) image. This "relative CIR" technique generates an image that is both spectrally and spatially enhanced, while displaying a maximum range of colors. The technique enables an interpreter to visualize either spectral or land cover classes by their relative CIR characteristics. A relative CIR image is generated by developed spectral statistics for each class in the classifications and then, using a nonparametric approach for spectral enhancement, the means of the classes for each band are ranked. A 3 by 3 pixel smoothing filter is applied to the classification for spatial enhancement and the classes are mapped to the representative rank for each band. Practical applications of the technique include displaying an image classification product as a CIR image that was not derived directly from a spectral image, visualizing how a land cover classification would look as a CIR image, and displaying a spectral classification or intermediate product that will be used to label spectral classes.
NASA Astrophysics Data System (ADS)
Rodgers, Mel; Smith, Patrick; Pyle, David; Mather, Tamsin
2016-04-01
Understanding the transition between quiescence and eruption at dome-forming volcanoes, such as Soufrière Hills Volcano (SHV), Montserrat, is important for monitoring volcanic activity during long-lived eruptions. Statistical analysis of seismic events (e.g. spectral analysis and identification of multiplets via cross-correlation) can be useful for characterising seismicity patterns and can be a powerful tool for analysing temporal changes in behaviour. Waveform classification is crucial for volcano monitoring, but consistent classification, both during real-time analysis and for retrospective analysis of previous volcanic activity, remains a challenge. Automated classification allows consistent re-classification of events. We present a machine learning (random forest) approach to rapidly classify waveforms that requires minimal training data. We analyse the seismic precursors to the July 2008 Vulcanian explosion at SHV and show systematic changes in frequency content and multiplet behaviour that had not previously been recognised. These precursory patterns of seismicity may be interpreted as changes in pressure conditions within the conduit during magma ascent and could be linked to magma flow rates. Frequency analysis of the different waveform classes supports the growing consensus that LP and Hybrid events should be considered end members of a continuum of low-frequency source processes. By using both supervised and unsupervised machine-learning methods we investigate the nature of waveform classification and assess current classification schemes.
NASA Astrophysics Data System (ADS)
Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.
2017-09-01
Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification accuracy with the proposed classification scheme is 94.91 %, while that with the conventional classification scheme is 93.70 %. Moreover, for multi-temporal UAVSAR data, the averaged overall classification accuracy with the proposed classification scheme is up to 97.08 %, which is much higher than the 87.79 % from the conventional classification scheme. Furthermore, for multitemporal PolSAR data, the proposed classification scheme can achieve better robustness. The comparison studies also clearly demonstrate that mining and utilization of hidden polarimetric features and information in the rotation domain can gain the added benefits for PolSAR land cover classification and provide a new vision for PolSAR image interpretation and application.
A Classification Scheme for Smart Manufacturing Systems’ Performance Metrics
Lee, Y. Tina; Kumaraguru, Senthilkumaran; Jain, Sanjay; Robinson, Stefanie; Helu, Moneer; Hatim, Qais Y.; Rachuri, Sudarsan; Dornfeld, David; Saldana, Christopher J.; Kumara, Soundar
2017-01-01
This paper proposes a classification scheme for performance metrics for smart manufacturing systems. The discussion focuses on three such metrics: agility, asset utilization, and sustainability. For each of these metrics, we discuss classification themes, which we then use to develop a generalized classification scheme. In addition to the themes, we discuss a conceptual model that may form the basis for the information necessary for performance evaluations. Finally, we present future challenges in developing robust, performance-measurement systems for real-time, data-intensive enterprises. PMID:28785744
Spectral Target Detection using Schroedinger Eigenmaps
NASA Astrophysics Data System (ADS)
Dorado-Munoz, Leidy P.
Applications of optical remote sensing processes include environmental monitoring, military monitoring, meteorology, mapping, surveillance, etc. Many of these tasks include the detection of specific objects or materials, usually few or small, which are surrounded by other materials that clutter the scene and hide the relevant information. This target detection process has been boosted lately by the use of hyperspectral imagery (HSI) since its high spectral dimension provides more detailed spectral information that is desirable in data exploitation. Typical spectral target detectors rely on statistical or geometric models to characterize the spectral variability of the data. However, in many cases these parametric models do not fit well HSI data that impacts the detection performance. On the other hand, non-linear transformation methods, mainly based on manifold learning algorithms, have shown a potential use in HSI transformation, dimensionality reduction and classification. In target detection, non-linear transformation algorithms are used as preprocessing techniques that transform the data to a more suitable lower dimensional space, where the statistical or geometric detectors are applied. One of these non-linear manifold methods is the Schroedinger Eigenmaps (SE) algorithm that has been introduced as a technique for semi-supervised classification. The core tool of the SE algorithm is the Schroedinger operator that includes a potential term that encodes prior information about the materials present in a scene, and enables the embedding to be steered in some convenient directions in order to cluster similar pixels together. A completely novel target detection methodology based on SE algorithm is proposed for the first time in this thesis. The proposed methodology does not just include the transformation of the data to a lower dimensional space but also includes the definition of a detector that capitalizes on the theory behind SE. The fact that target pixels and those similar pixels are clustered in a predictable region of the low-dimensional representation is used to define a decision rule that allows one to identify target pixels over the rest of pixels in a given image. In addition, a knowledge propagation scheme is used to combine spectral and spatial information as a means to propagate the "potential constraints" to nearby points. The propagation scheme is introduced to reinforce weak connections and improve the separability between most of the target pixels and the background. Experiments using different HSI data sets are carried out in order to test the proposed methodology. The assessment is performed from a quantitative and qualitative point of view, and by comparing the SE-based methodology against two other detection methodologies that use linear/non-linear algorithms as transformations and the well-known Adaptive Coherence/Cosine Estimator (ACE) detector. Overall results show that the SE-based detector outperforms the other two detection methodologies, which indicates the usefulness of the SE transformation in spectral target detection problems.
A semi-Lagrangian advection scheme for radioactive tracers in a regional spectral model
NASA Astrophysics Data System (ADS)
Chang, E.-C.; Yoshimura, K.
2015-06-01
In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) to alleviate the Gibbs phenomenon. The Gibbs phenomenon is a problem wherein negative values of positive-definite quantities (e.g., moisture and tracers) are generated by the spectral space transformation in a spectral model system. To solve this problem, the spectral prognostic specific humidity and radioactive tracer advection scheme is replaced by the NDSL advection scheme, which considers advection of tracers in a grid system without spectral space transformations. A regional version of the NDSL is developed in this study and is applied to the RSM. Idealized experiments show that the regional version of the NDSL is successful. The model runs for an actual case study suggest that the NDSL can successfully advect radioactive tracers (iodine-131 and cesium-137) without noise from the Gibbs phenomenon. The NDSL can also remove negative specific humidity values produced in spectral calculations without losing detailed features.
Convergence of the Graph Allen-Cahn Scheme
NASA Astrophysics Data System (ADS)
Luo, Xiyang; Bertozzi, Andrea L.
2017-05-01
The graph Laplacian and the graph cut problem are closely related to Markov random fields, and have many applications in clustering and image segmentation. The diffuse interface model is widely used for modeling in material science, and can also be used as a proxy to total variation minimization. In Bertozzi and Flenner (Multiscale Model Simul 10(3):1090-1118, 2012), an algorithm was developed to generalize the diffuse interface model to graphs to solve the graph cut problem. This work analyzes the conditions for the graph diffuse interface algorithm to converge. Using techniques from numerical PDE and convex optimization, monotonicity in function value and convergence under an a posteriori condition are shown for a class of schemes under a graph-independent stepsize condition. We also generalize our results to incorporate spectral truncation, a common technique used to save computation cost, and also to the case of multiclass classification. Various numerical experiments are done to compare theoretical results with practical performance.
Classification of forest land attributes using multi-source remotely sensed data
NASA Astrophysics Data System (ADS)
Pippuri, Inka; Suvanto, Aki; Maltamo, Matti; Korhonen, Kari T.; Pitkänen, Juho; Packalen, Petteri
2016-02-01
The aim of the study was to (1) examine the classification of forest land using airborne laser scanning (ALS) data, satellite images and sample plots of the Finnish National Forest Inventory (NFI) as training data and to (2) identify best performing metrics for classifying forest land attributes. Six different schemes of forest land classification were studied: land use/land cover (LU/LC) classification using both national classes and FAO (Food and Agricultural Organization of the United Nations) classes, main type, site type, peat land type and drainage status. Special interest was to test different ALS-based surface metrics in classification of forest land attributes. Field data consisted of 828 NFI plots collected in 2008-2012 in southern Finland and remotely sensed data was from summer 2010. Multinomial logistic regression was used as the classification method. Classification of LU/LC classes were highly accurate (kappa-values 0.90 and 0.91) but also the classification of site type, peat land type and drainage status succeeded moderately well (kappa-values 0.51, 0.69 and 0.52). ALS-based surface metrics were found to be the most important predictor variables in classification of LU/LC class, main type and drainage status. In best classification models of forest site types both spectral metrics from satellite data and point cloud metrics from ALS were used. In turn, in the classification of peat land types ALS point cloud metrics played the most important role. Results indicated that the prediction of site type and forest land category could be incorporated into stand level forest management inventory system in Finland.
NASA Astrophysics Data System (ADS)
Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der
2010-08-01
Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.
CLASSIFICATION FRAMEWORK FOR COASTAL ECOSYSTEM RESPONSES TO AQUATIC STRESSORS
Many classification schemes have been developed to group ecosystems based on similar characteristics. To date, however, no single scheme has addressed coastal ecosystem responses to multiple stressors. We developed a classification framework for coastal ecosystems to improve the ...
Land use classification using texture information in ERTS-A MSS imagery
NASA Technical Reports Server (NTRS)
Haralick, R. M. (Principal Investigator); Shanmugam, K. S.; Bosley, R.
1973-01-01
The author has identified the following significant results. Preliminary digital analysis of ERTS-1 MSS imagery reveals that the textural features of the imagery are very useful for land use classification. A procedure for extracting the textural features of ERTS-1 imagery is presented and the results of a land use classification scheme based on the textural features are also presented. The land use classification algorithm using textural features was tested on a 5100 square mile area covered by part of an ERTS-1 MSS band 5 image over the California coastline. The image covering this area was blocked into 648 subimages of size 8.9 square miles each. Based on a color composite of the image set, a total of 7 land use categories were identified. These land use categories are: coastal forest, woodlands, annual grasslands, urban areas, large irrigated fields, small irrigated fields, and water. The automatic classifier was trained to identify the land use categories using only the textural characteristics of the subimages; 75 percent of the subimages were assigned correct identifications. Since texture and spectral features provide completely different kinds of information, a significant increase in identification accuracy will take place when both features are used together.
NASA Astrophysics Data System (ADS)
Paul, Subir; Nagesh Kumar, D.
2018-04-01
Hyperspectral (HS) data comprises of continuous spectral responses of hundreds of narrow spectral bands with very fine spectral resolution or bandwidth, which offer feature identification and classification with high accuracy. In the present study, Mutual Information (MI) based Segmented Stacked Autoencoder (S-SAE) approach for spectral-spatial classification of the HS data is proposed to reduce the complexity and computational time compared to Stacked Autoencoder (SAE) based feature extraction. A non-parametric dependency measure (MI) based spectral segmentation is proposed instead of linear and parametric dependency measure to take care of both linear and nonlinear inter-band dependency for spectral segmentation of the HS bands. Then morphological profiles are created corresponding to segmented spectral features to assimilate the spatial information in the spectral-spatial classification approach. Two non-parametric classifiers, Support Vector Machine (SVM) with Gaussian kernel and Random Forest (RF) are used for classification of the three most popularly used HS datasets. Results of the numerical experiments carried out in this study have shown that SVM with a Gaussian kernel is providing better results for the Pavia University and Botswana datasets whereas RF is performing better for Indian Pines dataset. The experiments performed with the proposed methodology provide encouraging results compared to numerous existing approaches.
THE ROLE OF WATERSHED CLASSIFICATION IN DIAGNOSING CAUSES OF BIOLOGICAL IMPAIRMENT
We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmention with a gewographically-based classification scheme for two case studies involving 1) Lake Superior tributaries and 2) watersheds of riverine coastal wetlands ...
Spatial-spectral blood cell classification with microscopic hyperspectral imagery
NASA Astrophysics Data System (ADS)
Ran, Qiong; Chang, Lan; Li, Wei; Xu, Xiaofeng
2017-10-01
Microscopic hyperspectral images provide a new way for blood cell examination. The hyperspectral imagery can greatly facilitate the classification of different blood cells. In this paper, the microscopic hyperspectral images are acquired by connecting the microscope and the hyperspectral imager, and then tested for blood cell classification. For combined use of the spectral and spatial information provided by hyperspectral images, a spatial-spectral classification method is improved from the classical extreme learning machine (ELM) by integrating spatial context into the image classification task with Markov random field (MRF) model. Comparisons are done among ELM, ELM-MRF, support vector machines(SVM) and SVMMRF methods. Results show the spatial-spectral classification methods(ELM-MRF, SVM-MRF) perform better than pixel-based methods(ELM, SVM), and the proposed ELM-MRF has higher precision and show more accurate location of cells.
Commission 45: Spectral Classification
NASA Astrophysics Data System (ADS)
Giridhar, Sunetra; Gray, Richard O.; Corbally, Christopher J.; Bailer-Jones, Coryn A. L.; Eyer, Laurent; Irwin, Michael J.; Kirkpatrick, J. Davy; Majewski, Steven; Minniti, Dante; Nordström, Birgitta
This report gives an update of developments (since the last General Assembly at Prague) in the areas that are of relevance to the commission. In addition to numerous papers, a new monograph entitled Stellar Spectral Classification with Richard Gray and Chris Corbally as leading authors will be published by Princeton University Press as part of their Princeton Series in Astrophysics in April 2009. This book is an up-to-date and encyclopedic review of stellar spectral classification across the H-R diagram, including the traditional MK system in the blue-violet, recent extensions into the ultraviolet and infrared, the newly defined L-type and T-type spectral classes, as well as spectral classification of carbon stars, S-type stars, white dwarfs, novae, supernovae and Wolf-Rayet stars.
Selective classification for improved robustness of myoelectric control under nonideal conditions.
Scheme, Erik J; Englehart, Kevin B; Hudgins, Bernard S
2011-06-01
Recent literature in pattern recognition-based myoelectric control has highlighted a disparity between classification accuracy and the usability of upper limb prostheses. This paper suggests that the conventionally defined classification accuracy may be idealistic and may not reflect true clinical performance. Herein, a novel myoelectric control system based on a selective multiclass one-versus-one classification scheme, capable of rejecting unknown data patterns, is introduced. This scheme is shown to outperform nine other popular classifiers when compared using conventional classification accuracy as well as a form of leave-one-out analysis that may be more representative of real prosthetic use. Additionally, the classification scheme allows for real-time, independent adjustment of individual class-pair boundaries making it flexible and intuitive for clinical use.
A classification scheme for edge-localized modes based on their probability distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabbir, A., E-mail: aqsa.shabbir@ugent.be; Max Planck Institute for Plasma Physics, D-85748 Garching; Hornung, G.
We present here an automated classification scheme which is particularly well suited to scenarios where the parameters have significant uncertainties or are stochastic quantities. To this end, the parameters are modeled with probability distributions in a metric space and classification is conducted using the notion of nearest neighbors. The presented framework is then applied to the classification of type I and type III edge-localized modes (ELMs) from a set of carbon-wall plasmas at JET. This provides a fast, standardized classification of ELM types which is expected to significantly reduce the effort of ELM experts in identifying ELM types. Further, themore » classification scheme is general and can be applied to various other plasma phenomena as well.« less
Al-Qazzaz, Noor Kamal; Ali, Sawal; Ahmad, Siti Anom; Escudero, Javier
2017-07-01
The aim of the present study was to discriminate the electroencephalogram (EEG) of 5 patients with vascular dementia (VaD), 15 patients with stroke-related mild cognitive impairment (MCI), and 15 control normal subjects during a working memory (WM) task. We used independent component analysis (ICA) and wavelet transform (WT) as a hybrid preprocessing approach for EEG artifact removal. Three different features were extracted from the cleaned EEG signals: spectral entropy (SpecEn), permutation entropy (PerEn) and Tsallis entropy (TsEn). Two classification schemes were applied - support vector machine (SVM) and k-nearest neighbors (kNN) - with fuzzy neighborhood preserving analysis with QR-decomposition (FNPAQR) as a dimensionality reduction technique. The FNPAQR dimensionality reduction technique increased the SVM classification accuracy from 82.22% to 90.37% and from 82.6% to 86.67% for kNN. These results suggest that FNPAQR consistently improves the discrimination of VaD, MCI patients and control normal subjects and it could be a useful feature selection to help the identification of patients with VaD and MCI.
A semi-Lagrangian advection scheme for radioactive tracers in the NCEP Regional Spectral Model (RSM)
NASA Astrophysics Data System (ADS)
Chang, E.-C.; Yoshimura, K.
2015-10-01
In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) to alleviate the Gibbs phenomenon. The Gibbs phenomenon is a problem wherein negative values of positive-definite quantities (e.g., moisture and tracers) are generated by the spectral space transformation in a spectral model system. To solve this problem, the spectral prognostic specific humidity and radioactive tracer advection scheme is replaced by the NDSL advection scheme, which considers advection of tracers in a grid system without spectral space transformations. A regional version of the NDSL is developed in this study and is applied to the RSM. Idealized experiments show that the regional version of the NDSL is successful. The model runs for an actual case study suggest that the NDSL can successfully advect radioactive tracers (iodine-131 and cesium-137) without noise from the Gibbs phenomenon. The NDSL can also remove negative specific humidity values produced in spectral calculations without losing detailed features.
Mapping Mangrove Density from Rapideye Data in Central America
NASA Astrophysics Data System (ADS)
Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru
2017-06-01
Mangrove forests provide a wide range of socioeconomic and ecological services for coastal communities. Extensive aquaculture development of mangrove waters in many developing countries has constantly ignored services of mangrove ecosystems, leading to unintended environmental consequences. Monitoring the current status and distribution of mangrove forests is deemed important for evaluating forest management strategies. This study aims to delineate the density distribution of mangrove forests in the Gulf of Fonseca, Central America with Rapideye data using the support vector machines (SVM). The data collected in 2012 for density classification of mangrove forests were processed based on four different band combination schemes: scheme-1 (bands 1-3, 5 excluding the red-edge band 4), scheme-2 (bands 1-5), scheme-3 (bands 1-3, 5 incorporating with the normalized difference vegetation index, NDVI), and scheme-4 (bands 1-3, 5 incorporating with the normalized difference red-edge index, NDRI). We also hypothesized if the obvious contribution of Rapideye red-edge band could improve the classification results. Three main steps of data processing were employed: (1), data pre-processing, (2) image classification, and (3) accuracy assessment to evaluate the contribution of red-edge band in terms of the accuracy of classification results across these four schemes. The classification maps compared with the ground reference data indicated the slightly higher accuracy level observed for schemes 2 and 4. The overall accuracies and Kappa coefficients were 97% and 0.95 for scheme-2 and 96.9% and 0.95 for scheme-4, respectively.
VizieR Online Data Catalog: Catalogue of Stellar Spectral Classifications (Skiff, 2009-2014)
NASA Astrophysics Data System (ADS)
Skiff, B. A.
2014-10-01
This file contains spectral classifications for stars collected from the literature, serving as a continuation of the compilations produced by the Jascheks, by Kennedy, and by Buscombe. The source of each spectral type is indicated by a standard 19-digit bibcode citation. These papers of course should be cited in publication, not this compilation. The stars are identified either by the name used in each publication or by a valid SIMBAD identifier. Some effort has been made to determine accurate (~1" or better) coordinates for equinox J2000 (and epoch 2000 if possible), and these serve as a secondary identifier. To the extent possible with current astrometric sources, the components of double stars and stars with composite spectra are shown as separate entries. Magnitudes are provided as an indication of brightness, but these data are not necessarily accurate, as they often derive from photographic photometry or rough estimates. The file includes only spectral types determined from spectra (viz. line and band strengths or ratios), omitting those determined from photometry (e.g. DDO, Vilnius) or inferred from broadband colors or spectral energy distributions. The classifications include MK types as well as types not strictly on the MK system (white dwarfs, Wolf-Rayet, etc), and in addition simple HD-style temperature types. Luminosity classes in the early Mount Wilson style (e.g. 'd' for dwarf, 'g' for giant) and other similar schemes have been converted to modern notation. Since a citation is provided for each entry, the source paper should be consulted for details about classification schemes, spectral dispersion, and instrumentation used. System-defining primary MK standard stars are included from the last lists by Morgan and Keenan, and are flagged by a + sign in column 83. The early-type standards comprise the 1973 "dagger standards" (1973ARA&A..11...29M) and stars from the Morgan, Abt, and Tapscott atlas (1978rmsa.book.....M). Standards from Table I of the Morgan & Abt 'MKA' paper (1972AJ.....77...35M) not appearing in the two later lists are added. Keenan made continual adjustments to the standards lists up to the time of his death. Thus the late-type standards comprise those marked as high-weight standards in the 1989 Perkins catalogue (1989ApJS...71..245K = III/150); the revised S-type standards in collaboration with Boeshaar (1980ApJS...43..379K); plus the carbon standards and class IIIb 'clump giants' in collaboration with Barnbaum (1996ApJS..105..419B and 1999ApJ...518..859K). In addition, I have made use of the final types by Keenan up to January 2000 shown at the Ohio State Web site (http://www.astronomy.ohio-state.edu/MKCool), accessed in autumn 2003. Though the present file contains all the stars in these lists, only those marked as standards are flagged as such. Garrison's list of MK 'anchor points' might also be consulted in this regard (1994mpyp.conf....3G, and http://www.astro.utoronto.ca/~garrison/mkstds.html). The catalogue includes for the first time results from many large-scale objective-prism spectral surveys done at Case, Stockholm, Crimea, Abastumani, and elsewhere. The stars in these surveys were usually identified only on charts or by other indirect means, and have been overlooked heretofore because of the difficulty in recovering the stars. More complete results from these separate publications, including notes and identifications, have been made available to the CDS, and are kept at the Lowell Observatory ftp area (ftp://ftp.lowell.edu/pub/bas/starcats). Not all of these stars are present in SIMBAD. As a 'living catalogue', an attempt will be made to keep up with current literature, and to extend the indexing of citations back in time. (2 data files).
VizieR Online Data Catalog: Catalogue of Stellar Spectral Classifications (Skiff, 2009-2016)
NASA Astrophysics Data System (ADS)
Skiff, B. A.
2014-10-01
This file contains spectral classifications for stars collected from the literature, serving as a continuation of the compilations produced by the Jascheks, by Kennedy, and by Buscombe. The source of each spectral type is indicated by a standard 19-digit bibcode citation. These papers of course should be cited in publication, not this compilation. The stars are identified either by the name used in each publication or by a valid SIMBAD identifier. Some effort has been made to determine accurate (~1" or better) coordinates for equinox J2000 (and epoch 2000 if possible), and these serve as a secondary identifier. To the extent possible with current astrometric sources, the components of double stars and stars with composite spectra are shown as separate entries. Magnitudes are provided as an indication of brightness, but these data are not necessarily accurate, as they often derive from photographic photometry or rough estimates. The file includes only spectral types determined from spectra (viz. line and band strengths or ratios), omitting those determined from photometry (e.g. DDO, Vilnius) or inferred from broadband colors or spectral energy distributions. The classifications include MK types as well as types not strictly on the MK system (white dwarfs, Wolf-Rayet, etc), and in addition simple HD-style temperature types. Luminosity classes in the early Mount Wilson style (e.g. 'd' for dwarf, 'g' for giant) and other similar schemes have been converted to modern notation. Since a citation is provided for each entry, the source paper should be consulted for details about classification schemes, spectral dispersion, and instrumentation used. System-defining primary MK standard stars are included from the last lists by Morgan and Keenan, and are flagged by a + sign in column 83. The early-type standards comprise the 1973 "dagger standards" (1973ARA&A..11...29M) and stars from the Morgan, Abt, and Tapscott atlas (1978rmsa.book.....M). Standards from Table I of the Morgan & Abt 'MKA' paper (1972AJ.....77...35M) not appearing in the two later lists are added. Keenan made continual adjustments to the standards lists up to the time of his death. Thus the late-type standards comprise those marked as high-weight standards in the 1989 Perkins catalogue (1989ApJS...71..245K = III/150); the revised S-type standards in collaboration with Boeshaar (1980ApJS...43..379K); plus the carbon standards and class IIIb 'clump giants' in collaboration with Barnbaum (1996ApJS..105..419B and 1999ApJ...518..859K). In addition, I have made use of the final types by Keenan up to January 2000 shown at the Ohio State Web site (http://www.astronomy.ohio-state.edu/MKCool), accessed in autumn 2003. Though the present file contains all the stars in these lists, only those marked as standards are flagged as such. Garrison's list of MK 'anchor points' might also be consulted in this regard (1994mpyp.conf....3G, and http://www.astro.utoronto.ca/~garrison/mkstds.html). The catalogue includes for the first time results from many large-scale objective-prism spectral surveys done at Case, Stockholm, Crimea, Abastumani, and elsewhere. The stars in these surveys were usually identified only on charts or by other indirect means, and have been overlooked heretofore because of the difficulty in recovering the stars. More complete results from these separate publications, including notes and identifications, have been made available to the CDS, and are kept at the Lowell Observatory ftp area (ftp://ftp.lowell.edu/pub/bas/starcats). Not all of these stars are present in SIMBAD. As a 'living catalogue', an attempt will be made to keep up with current literature, and to extend the indexing of citations back in time. (2 data files).
VizieR Online Data Catalog: Catalogue of Stellar Spectral Classifications (Skiff, 2010)
NASA Astrophysics Data System (ADS)
Skiff, B. A.
2009-02-01
This file contains spectral classifications for stars collected from the literature, serving as a continuation of the compilations produced by the Jascheks, by Kennedy, and by Buscombe. The source of each spectral type is indicated by a standard 19-digit bibcode citation. These papers of course should be cited in publication, not this compilation. The stars are identified either by the name used in each publication or by a valid SIMBAD identifier. Some effort has been made to determine accurate (~1" or better) coordinates for equinox J2000 (and epoch 2000 if possible), and these serve as a secondary identifier. To the extent possible with current astrometric sources, the components of double stars and stars with composite spectra are shown as separate entries. Magnitudes are provided as an indication of brightness, but these data are not necessarily accurate, as they often derive from photographic photometry or rough estimates. The file includes only spectral types determined from spectra (viz. line and band strengths or ratios), omitting those determined from photometry (e.g. DDO, Vilnius) or inferred from broadband colors or spectral energy distributions. The classifications include MK types as well as types not strictly on the MK system (white dwarfs, Wolf-Rayet, etc), and in addition simple HD-style temperature types. Luminosity classes in the early Mount Wilson style (e.g. 'd' for dwarf, 'g' for giant) and other similar schemes have been converted to modern notation. Since a citation is provided for each entry, the source paper should be consulted for details about classification schemes, spectral dispersion, and instrumentation used. System-defining primary MK standard stars are included from the last lists by Morgan and Keenan, and are flagged by a + sign in column 83. The early-type standards comprise the 1973 "dagger standards" (1973ARA&A..11...29M) and stars from the Morgan, Abt, and Tapscott atlas (1978rmsa.book.....M). Standards from Table I of the Morgan & Abt 'MKA' paper (1972AJ.....77...35M) not appearing in the two later lists are added. Keenan made continual adjustments to the standards lists up to the time of his death. Thus the late-type standards comprise those marked as high-weight standards in the 1989 Perkins catalogue (1989ApJS...71..245K = III/150); the revised S-type standards in collaboration with Boeshaar (1980ApJS...43..379K); plus the carbon standards and class IIIb 'clump giants' in collaboration with Barnbaum (1996ApJS..105..419B and 1999ApJ...518..859K). In addition, I have made use of the final types by Keenan up to January 2000 shown at the Ohio State Web site (http://www.astronomy.ohio-state.edu/MKCool), accessed in autumn 2003. Though the present file contains all the stars in these lists, only those marked as standards are flagged as such. Garrison's list of MK 'anchor points' might also be consulted in this regard (1994mpyp.conf....3G, and http://www.astro.utoronto.ca/~garrison/mkstds.html). The catalogue includes for the first time results from many large-scale objective-prism spectral surveys done at Case, Stockholm, Crimea, Abastumani, and elsewhere. The stars in these surveys were usually identified only on charts or by other indirect means, and have been overlooked heretofore because of the difficulty in recovering the stars. More complete results from these separate publications, including notes and identifications, have been made available to the CDS, and are kept at the Lowell Observatory ftp area (ftp://ftp.lowell.edu/pub/bas/starcats). Not all of these stars are present in SIMBAD. As a 'living catalogue', an attempt will be made to keep up with current literature, and to extend the indexing of citations back in time. (2 data files).
VizieR Online Data Catalog: Catalogue of Stellar Spectral Classifications (Skiff, 2009-2012)
NASA Astrophysics Data System (ADS)
Skiff, B. A.
2010-11-01
This file contains spectral classifications for stars collected from the literature, serving as a continuation of the compilations produced by the Jascheks, by Kennedy, and by Buscombe. The source of each spectral type is indicated by a standard 19-digit bibcode citation. These papers of course should be cited in publication, not this compilation. The stars are identified either by the name used in each publication or by a valid SIMBAD identifier. Some effort has been made to determine accurate (~1" or better) coordinates for equinox J2000 (and epoch 2000 if possible), and these serve as a secondary identifier. To the extent possible with current astrometric sources, the components of double stars and stars with composite spectra are shown as separate entries. Magnitudes are provided as an indication of brightness, but these data are not necessarily accurate, as they often derive from photographic photometry or rough estimates. The file includes only spectral types determined from spectra (viz. line and band strengths or ratios), omitting those determined from photometry (e.g. DDO, Vilnius) or inferred from broadband colors or spectral energy distributions. The classifications include MK types as well as types not strictly on the MK system (white dwarfs, Wolf-Rayet, etc), and in addition simple HD-style temperature types. Luminosity classes in the early Mount Wilson style (e.g. 'd' for dwarf, 'g' for giant) and other similar schemes have been converted to modern notation. Since a citation is provided for each entry, the source paper should be consulted for details about classification schemes, spectral dispersion, and instrumentation used. System-defining primary MK standard stars are included from the last lists by Morgan and Keenan, and are flagged by a + sign in column 83. The early-type standards comprise the 1973 "dagger standards" (1973ARA&A..11...29M) and stars from the Morgan, Abt, and Tapscott atlas (1978rmsa.book.....M). Standards from Table I of the Morgan & Abt 'MKA' paper (1972AJ.....77...35M) not appearing in the two later lists are added. Keenan made continual adjustments to the standards lists up to the time of his death. Thus the late-type standards comprise those marked as high-weight standards in the 1989 Perkins catalogue (1989ApJS...71..245K = III/150); the revised S-type standards in collaboration with Boeshaar (1980ApJS...43..379K); plus the carbon standards and class IIIb 'clump giants' in collaboration with Barnbaum (1996ApJS..105..419B and 1999ApJ...518..859K). In addition, I have made use of the final types by Keenan up to January 2000 shown at the Ohio State Web site (http://www.astronomy.ohio-state.edu/MKCool), accessed in autumn 2003. Though the present file contains all the stars in these lists, only those marked as standards are flagged as such. Garrison's list of MK 'anchor points' might also be consulted in this regard (1994mpyp.conf....3G, and http://www.astro.utoronto.ca/~garrison/mkstds.html). The catalogue includes for the first time results from many large-scale objective-prism spectral surveys done at Case, Stockholm, Crimea, Abastumani, and elsewhere. The stars in these surveys were usually identified only on charts or by other indirect means, and have been overlooked heretofore because of the difficulty in recovering the stars. More complete results from these separate publications, including notes and identifications, have been made available to the CDS, and are kept at the Lowell Observatory ftp area (ftp://ftp.lowell.edu/pub/bas/starcats). Not all of these stars are present in SIMBAD. As a 'living catalogue', an attempt will be made to keep up with current literature, and to extend the indexing of citations back in time. (2 data files).
VizieR Online Data Catalog: Catalogue of Stellar Spectral Classifications (Skiff, 2009-2013)
NASA Astrophysics Data System (ADS)
Skiff, B. A.
2013-05-01
This file contains spectral classifications for stars collected from the literature, serving as a continuation of the compilations produced by the Jascheks, by Kennedy, and by Buscombe. The source of each spectral type is indicated by a standard 19-digit bibcode citation. These papers of course should be cited in publication, not this compilation. The stars are identified either by the name used in each publication or by a valid SIMBAD identifier. Some effort has been made to determine accurate (~1" or better) coordinates for equinox J2000 (and epoch 2000 if possible), and these serve as a secondary identifier. To the extent possible with current astrometric sources, the components of double stars and stars with composite spectra are shown as separate entries. Magnitudes are provided as an indication of brightness, but these data are not necessarily accurate, as they often derive from photographic photometry or rough estimates. The file includes only spectral types determined from spectra (viz. line and band strengths or ratios), omitting those determined from photometry (e.g. DDO, Vilnius) or inferred from broadband colors or spectral energy distributions. The classifications include MK types as well as types not strictly on the MK system (white dwarfs, Wolf-Rayet, etc), and in addition simple HD-style temperature types. Luminosity classes in the early Mount Wilson style (e.g. 'd' for dwarf, 'g' for giant) and other similar schemes have been converted to modern notation. Since a citation is provided for each entry, the source paper should be consulted for details about classification schemes, spectral dispersion, and instrumentation used. System-defining primary MK standard stars are included from the last lists by Morgan and Keenan, and are flagged by a + sign in column 83. The early-type standards comprise the 1973 "dagger standards" (1973ARA&A..11...29M) and stars from the Morgan, Abt, and Tapscott atlas (1978rmsa.book.....M). Standards from Table I of the Morgan & Abt 'MKA' paper (1972AJ.....77...35M) not appearing in the two later lists are added. Keenan made continual adjustments to the standards lists up to the time of his death. Thus the late-type standards comprise those marked as high-weight standards in the 1989 Perkins catalogue (1989ApJS...71..245K = III/150); the revised S-type standards in collaboration with Boeshaar (1980ApJS...43..379K); plus the carbon standards and class IIIb 'clump giants' in collaboration with Barnbaum (1996ApJS..105..419B and 1999ApJ...518..859K). In addition, I have made use of the final types by Keenan up to January 2000 shown at the Ohio State Web site (http://www.astronomy.ohio-state.edu/MKCool), accessed in autumn 2003. Though the present file contains all the stars in these lists, only those marked as standards are flagged as such. Garrison's list of MK 'anchor points' might also be consulted in this regard (1994mpyp.conf....3G, and http://www.astro.utoronto.ca/~garrison/mkstds.html). The catalogue includes for the first time results from many large-scale objective-prism spectral surveys done at Case, Stockholm, Crimea, Abastumani, and elsewhere. The stars in these surveys were usually identified only on charts or by other indirect means, and have been overlooked heretofore because of the difficulty in recovering the stars. More complete results from these separate publications, including notes and identifications, have been made available to the CDS, and are kept at the Lowell Observatory ftp area (ftp://ftp.lowell.edu/pub/bas/starcats). Not all of these stars are present in SIMBAD. As a 'living catalogue', an attempt will be made to keep up with current literature, and to extend the indexing of citations back in time. (2 data files).
Realistic Expectations for Rock Identification.
ERIC Educational Resources Information Center
Westerback, Mary Elizabeth; Azer, Nazmy
1991-01-01
Presents a rock classification scheme for use by beginning students. The scheme is based on rock textures (glassy, crystalline, clastic, and organic framework) and observable structures (vesicles and graded bedding). Discusses problems in other rock classification schemes which may produce confusion, misidentification, and anxiety. (10 references)…
A Philosophical Approach to Describing Science Content: An Example From Geologic Classification.
ERIC Educational Resources Information Center
Finley, Fred N.
1981-01-01
Examines how research of philosophers of science may be useful to science education researchers and curriculum developers in the development of descriptions of science content related to classification schemes. Provides examples of concept analysis of two igneous rock classification schemes. (DS)
Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No
2015-11-01
One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Scheme, Erik J; Englehart, Kevin B
2013-07-01
When controlling a powered upper limb prosthesis it is important not only to know how to move the device, but also when not to move. A novel approach to pattern recognition control, using a selective multiclass one-versus-one classification scheme has been shown to be capable of rejecting unintended motions. This method was shown to outperform other popular classification schemes when presented with muscle contractions that did not correspond to desired actions. In this work, a 3-D Fitts' Law test is proposed as a suitable alternative to using virtual limb environments for evaluating real-time myoelectric control performance. The test is used to compare the selective approach to a state-of-the-art linear discriminant analysis classification based scheme. The framework is shown to obey Fitts' Law for both control schemes, producing linear regression fittings with high coefficients of determination (R(2) > 0.936). Additional performance metrics focused on quality of control are discussed and incorporated in the evaluation. Using this framework the selective classification based scheme is shown to produce significantly higher efficiency and completion rates, and significantly lower overshoot and stopping distances, with no significant difference in throughput.
NASA Astrophysics Data System (ADS)
Zhao, Bei; Zhong, Yanfei; Zhang, Liangpei
2016-06-01
Land-use classification of very high spatial resolution remote sensing (VHSR) imagery is one of the most challenging tasks in the field of remote sensing image processing. However, the land-use classification is hard to be addressed by the land-cover classification techniques, due to the complexity of the land-use scenes. Scene classification is considered to be one of the expected ways to address the land-use classification issue. The commonly used scene classification methods of VHSR imagery are all derived from the computer vision community that mainly deal with terrestrial image recognition. Differing from terrestrial images, VHSR images are taken by looking down with airborne and spaceborne sensors, which leads to the distinct light conditions and spatial configuration of land cover in VHSR imagery. Considering the distinct characteristics, two questions should be answered: (1) Which type or combination of information is suitable for the VHSR imagery scene classification? (2) Which scene classification algorithm is best for VHSR imagery? In this paper, an efficient spectral-structural bag-of-features scene classifier (SSBFC) is proposed to combine the spectral and structural information of VHSR imagery. SSBFC utilizes the first- and second-order statistics (the mean and standard deviation values, MeanStd) as the statistical spectral descriptor for the spectral information of the VHSR imagery, and uses dense scale-invariant feature transform (SIFT) as the structural feature descriptor. From the experimental results, the spectral information works better than the structural information, while the combination of the spectral and structural information is better than any single type of information. Taking the characteristic of the spatial configuration into consideration, SSBFC uses the whole image scene as the scope of the pooling operator, instead of the scope generated by a spatial pyramid (SP) commonly used in terrestrial image classification. The experimental results show that the whole image as the scope of the pooling operator performs better than the scope generated by SP. In addition, SSBFC codes and pools the spectral and structural features separately to avoid mutual interruption between the spectral and structural features. The coding vectors of spectral and structural features are then concatenated into a final coding vector. Finally, SSBFC classifies the final coding vector by support vector machine (SVM) with a histogram intersection kernel (HIK). Compared with the latest scene classification methods, the experimental results with three VHSR datasets demonstrate that the proposed SSBFC performs better than the other classification methods for VHSR image scenes.
GENIE: a hybrid genetic algorithm for feature classification in multispectral images
NASA Astrophysics Data System (ADS)
Perkins, Simon J.; Theiler, James P.; Brumby, Steven P.; Harvey, Neal R.; Porter, Reid B.; Szymanski, John J.; Bloch, Jeffrey J.
2000-10-01
We consider the problem of pixel-by-pixel classification of a multi- spectral image using supervised learning. Conventional spuervised classification techniques such as maximum likelihood classification and less conventional ones s uch as neural networks, typically base such classifications solely on the spectral components of each pixel. It is easy to see why: the color of a pixel provides a nice, bounded, fixed dimensional space in which these classifiers work well. It is often the case however, that spectral information alone is not sufficient to correctly classify a pixel. Maybe spatial neighborhood information is required as well. Or maybe the raw spectral components do not themselves make for easy classification, but some arithmetic combination of them would. In either of these cases we have the problem of selecting suitable spatial, spectral or spatio-spectral features that allow the classifier to do its job well. The number of all possible such features is extremely large. How can we select a suitable subset? We have developed GENIE, a hybrid learning system that combines a genetic algorithm that searches a space of image processing operations for a set that can produce suitable feature planes, and a more conventional classifier which uses those feature planes to output a final classification. In this paper we show that the use of a hybrid GA provides significant advantages over using either a GA alone or more conventional classification methods alone. We present results using high-resolution IKONOS data, looking for regions of burned forest and for roads.
Stratified random selection of watersheds allowed us to compare geographically-independent classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme within the Northern Lakes a...
Heerkens, Yvonne F; de Weerd, Marjolein; Huber, Machteld; de Brouwer, Carin P M; van der Veen, Sabina; Perenboom, Rom J M; van Gool, Coen H; Ten Napel, Huib; van Bon-Martens, Marja; Stallinga, Hillegonda A; van Meeteren, Nico L U
2018-03-01
The ICF (International Classification of Functioning, Disability and Health) framework (used worldwide to describe 'functioning' and 'disability'), including the ICF scheme (visualization of functioning as result of interaction with health condition and contextual factors), needs reconsideration. The purpose of this article is to discuss alternative ICF schemes. Reconsideration of ICF via literature review and discussions with 23 Dutch ICF experts. Twenty-six experts were invited to rank the three resulting alternative schemes. The literature review provided five themes: 1) societal developments; 2) health and research influences; 3) conceptualization of health; 4) models/frameworks of health and disability; and 5) ICF-criticism (e.g. position of 'health condition' at the top and role of 'contextual factors'). Experts concluded that the ICF scheme gives the impression that the medical perspective is dominant instead of the biopsychosocial perspective. Three alternative ICF schemes were ranked by 16 (62%) experts, resulting in one preferred scheme. There is a need for a new ICF scheme, better reflecting the ICF framework, for further (inter)national consideration. These Dutch schemes should be reviewed on a global scale, to develop a scheme that is more consistent with current and foreseen developments and changing ideas on health. Implications for Rehabilitation We propose policy makers on community, regional and (inter)national level to consider the use of the alternative schemes of the International Classification of Functioning, Disability and Health within their plans to promote functioning and health of their citizens and researchers and teachers to incorporate the alternative schemes into their research and education to emphasize the biopsychosocial paradigm. We propose to set up an international Delphi procedure involving citizens (including patients), experts in healthcare, occupational care, research, education and policy, and planning to get consensus on an alternative scheme of the International Classification of Functioning, Disability and Health. We recommend to discuss the alternatives for the present scheme of the International Classification of Functioning, Disability and Health in the present update and revision process within the World Health Organization as a part of the discussion on the future of the International Classification of Functioning, Disability and Health framework (including ontology, title and relation with the International Classification of Diseases). We recommend to revise the definition of personal factors and to draft a list of personal factors that can be used in policy making, clinical practice, research, and education and to put effort in the revision of the present list of environmental factors to make it more useful in, e.g., occupational health care.
Towards a Collaborative Intelligent Tutoring System Classification Scheme
ERIC Educational Resources Information Center
Harsley, Rachel
2014-01-01
This paper presents a novel classification scheme for Collaborative Intelligent Tutoring Systems (CITS), an emergent research field. The three emergent classifications of CITS are unstructured, semi-structured, and fully structured. While all three types of CITS offer opportunities to improve student learning gains, the full extent to which these…
A new family of high-order compact upwind difference schemes with good spectral resolution
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Yao, Zhaohui; He, Feng; Shen, M. Y.
2007-12-01
This paper presents a new family of high-order compact upwind difference schemes. Unknowns included in the proposed schemes are not only the values of the function but also those of its first and higher derivatives. Derivative terms in the schemes appear only on the upwind side of the stencil. One can calculate all the first derivatives exactly as one solves explicit schemes when the boundary conditions of the problem are non-periodic. When the proposed schemes are applied to periodic problems, only periodic bi-diagonal matrix inversions or periodic block-bi-diagonal matrix inversions are required. Resolution optimization is used to enhance the spectral representation of the first derivative, and this produces a scheme with the highest spectral accuracy among all known compact schemes. For non-periodic boundary conditions, boundary schemes constructed in virtue of the assistant scheme make the schemes not only possess stability for any selective length scale on every point in the computational domain but also satisfy the principle of optimal resolution. Also, an improved shock-capturing method is developed. Finally, both the effectiveness of the new hybrid method and the accuracy of the proposed schemes are verified by executing four benchmark test cases.
Power and spectrally efficient M-ARY QAM schemes for future mobile satellite communications
NASA Technical Reports Server (NTRS)
Sreenath, K.; Feher, K.
1990-01-01
An effective method to compensate nonlinear phase distortion caused by the mobile amplifier is proposed. As a first step towards the future use of spectrally efficient modulation schemes for mobile satellite applications, we have investigated effects of nonlinearities and the phase compensation method on 16-QAM. The new method provides about 2 dB savings in power for 16-QAM operation with cost effective amplifiers near saturation and thereby promising use of spectrally efficient linear modulation schemes for future mobile satellite applications.
NASA Astrophysics Data System (ADS)
Davies, J. S.; Guillaumont, B.; Tempera, F.; Vertino, A.; Beuck, L.; Ólafsdóttir, S. H.; Smith, C. J.; Fosså, J. H.; van den Beld, I. M. J.; Savini, A.; Rengstorf, A.; Bayle, C.; Bourillet, J.-F.; Arnaud-Haond, S.; Grehan, A.
2017-11-01
Cold-water corals (CWC) can form complex structures which provide refuge, nursery grounds and physical support for a diversity of other living organisms. However, irrespectively from such ecological significance, CWCs are still vulnerable to human pressures such as fishing, pollution, ocean acidification and global warming Providing coherent and representative conservation of vulnerable marine ecosystems including CWCs is one of the aims of the Marine Protected Areas networks being implemented across European seas and oceans under the EC Habitats Directive, the Marine Strategy Framework Directive and the OSPAR Convention. In order to adequately represent ecosystem diversity, these initiatives require a standardised habitat classification that organises the variety of biological assemblages and provides consistent and functional criteria to map them across European Seas. One such classification system, EUNIS, enables a broad level classification of the deep sea based on abiotic and geomorphological features. More detailed lower biotope-related levels are currently under-developed, particularly with regards to deep-water habitats (>200 m depth). This paper proposes a hierarchical CWC biotope classification scheme that could be incorporated by existing classification schemes such as EUNIS. The scheme was developed within the EU FP7 project CoralFISH to capture the variability of CWC habitats identified using a wealth of seafloor imagery datasets from across the Northeast Atlantic and Mediterranean. Depending on the resolution of the imagery being interpreted, this hierarchical scheme allows data to be recorded from broad CWC biotope categories down to detailed taxonomy-based levels, thereby providing a flexible yet valuable information level for management. The CWC biotope classification scheme identifies 81 biotopes and highlights the limitations of the classification framework and guidance provided by EUNIS, the EC Habitats Directive, OSPAR and FAO; which largely underrepresent CWC habitats.
ERIC Educational Resources Information Center
Merrett, Christopher E.
This guide to the theory and practice of map classification begins with a discussion of the filing of maps and the function of map classification based on area and theme as illustrated by four maps of Africa. The description of the various classification systems which follows is divided into book schemes with provision for maps (including Dewey…
Convergence Analysis of the Graph Allen-Cahn Scheme
2016-02-01
CONVERGENCE ANALYSIS OF THE GRAPH ALLEN-CAHN SCHEME ∗ XIYANG LUO† AND ANDREA L. BERTOZZI† Abstract. Graph partitioning problems have a wide range of...optimization, convergence and monotonicity are shown for a class of schemes under a graph-independent timestep restriction. We also analyze the effects of...spectral truncation, a common technique used to save computational cost. Convergence of the scheme with spectral truncation is also proved under a
A new precoding scheme for spectral efficient optical OFDM systems
NASA Astrophysics Data System (ADS)
Hardan, Saad Mshhain; Bayat, Oguz; Abdulkafi, Ayad Atiyah
2018-07-01
Achieving high spectral efficiency is the key requirement of 5G and optical wireless communication systems and has recently attracted much attention, aiming to satisfy the ever increasing demand for high data rates in communications systems. In this paper, we propose a new precoding/decoding algorithm for spectral efficient optical orthogonal frequency division multiplexing (OFDM) scheme based visible light communication (VLC) systems. The proposed coded modulated optical (CMO) based OFDM system can be applied for both single input single output (SISO) and multiple input multiple-output (MIMO) architectures. Firstly, the real OFDM time domain signal is obtained through invoking the precoding/decoding algorithm without the Hermitian symmetry. After that, the positive signal is achieved either by adding a DC-bias or by using the spatial multiplexing technique. The proposed CMO-OFDM scheme efficiently improves the spectral efficiency of the VLC system as it does not require the Hermitian symmetry constraint to yield real signals. A comparison of the performance improvement of the proposed scheme with other OFDM approaches is also presented in this work. Simulation results show that the proposed CMO-OFDM scheme can not only enhance the spectral efficiency of OFDM-based VLC systems but also improve bit error rate (BER) performance compared with other optical OFDM schemes.
Castorina, P; Delsanto, P P; Guiot, C
2006-05-12
A classification in universality classes of broad categories of phenomenologies, belonging to physics and other disciplines, may be very useful for a cross fertilization among them and for the purpose of pattern recognition and interpretation of experimental data. We present here a simple scheme for the classification of nonlinear growth problems. The success of the scheme in predicting and characterizing the well known Gompertz, West, and logistic models, suggests to us the study of a hitherto unexplored class of nonlinear growth problems.
An Expert System for Classifying Stars on the MK Spectral Classification System
NASA Astrophysics Data System (ADS)
Corbally, Christopher J.; Gray, R. O.
2013-01-01
We will describe an expert computer system designed to classify stellar spectra on the MK Spectral Classification system employing methods similar to those of humans who make direct comparison with the MK classification standards. Like an expert human classifier, MKCLASS first comes up with a rough spectral type, and then refines that type by direct comparison with MK standards drawn from a standards library using spectral criteria appropriate to the spectral class. Certain common spectral-type peculiarities can also be detected by the program. The program is also capable of identifying WD spectra and carbon stars and giving appropriate (but currently approximate) spectral types on the relevant systems. We will show comparisons between spectral types (including luminosity types) performed by MKCLASS and humans. The program currently is capable of competent classifications in the violet-green region, but plans are underway to extend the spectral criteria into the red and near-infrared regions. Two standard libraries with resolutions of 1.8 and 3.6Å are now available, but a higher-resolution standard library, using the new spectrograph on the Vatican Advanced Technology Telescope, is currently under preparation. Once that library is available, MKCLASS and the spectral libraries will be made available to the astronomical community.
A novel scheme for abnormal cell detection in Pap smear images
NASA Astrophysics Data System (ADS)
Zhao, Tong; Wachman, Elliot S.; Farkas, Daniel L.
2004-07-01
Finding malignant cells in Pap smear images is a "needle in a haystack"-type problem, tedious, labor-intensive and error-prone. It is therefore desirable to have an automatic screening tool in order that human experts can concentrate on the evaluation of the more difficult cases. Most research on automatic cervical screening tries to extract morphometric and texture features at the cell level, in accordance with the NIH "The Bethesda System" rules. Due to variances in image quality and features, such as brightness, magnification and focus, morphometric and texture analysis is insufficient to provide robust cervical cancer detection. Using a microscopic spectral imaging system, we have produced a set of multispectral Pap smear images with wavelengths from 400 nm to 690 nm, containing both spectral signatures and spatial attributes. We describe a novel scheme that combines spatial information (including texture and morphometric features) with spectral information to significantly improve abnormal cell detection. Three kinds of wavelet features, orthogonal, bi-orthogonal and non-orthogonal, are carefully chosen to optimize recognition performance. Multispectral feature sets are then extracted in the wavelet domain. Using a Back-Propagation Neural Network classifier that greatly decreases the influence of spurious events, we obtain a classification error rate of 5%. Cell morphometric features, such as area and shape, are then used to eliminate most remaining small artifacts. We report initial results from 149 cells from 40 separate image sets, in which only one abnormal cell was missed (TPR = 97.6%) and one normal cell was falsely classified as cancerous (FPR = 1%).
Retinex Preprocessing for Improved Multi-Spectral Image Classification
NASA Technical Reports Server (NTRS)
Thompson, B.; Rahman, Z.; Park, S.
2000-01-01
The goal of multi-image classification is to identify and label "similar regions" within a scene. The ability to correctly classify a remotely sensed multi-image of a scene is affected by the ability of the classification process to adequately compensate for the effects of atmospheric variations and sensor anomalies. Better classification may be obtained if the multi-image is preprocessed before classification, so as to reduce the adverse effects of image formation. In this paper, we discuss the overall impact on multi-spectral image classification when the retinex image enhancement algorithm is used to preprocess multi-spectral images. The retinex is a multi-purpose image enhancement algorithm that performs dynamic range compression, reduces the dependence on lighting conditions, and generally enhances apparent spatial resolution. The retinex has been successfully applied to the enhancement of many different types of grayscale and color images. We show in this paper that retinex preprocessing improves the spatial structure of multi-spectral images and thus provides better within-class variations than would otherwise be obtained without the preprocessing. For a series of multi-spectral images obtained with diffuse and direct lighting, we show that without retinex preprocessing the class spectral signatures vary substantially with the lighting conditions. Whereas multi-dimensional clustering without preprocessing produced one-class homogeneous regions, the classification on the preprocessed images produced multi-class non-homogeneous regions. This lack of homogeneity is explained by the interaction between different agronomic treatments applied to the regions: the preprocessed images are closer to ground truth. The principle advantage that the retinex offers is that for different lighting conditions classifications derived from the retinex preprocessed images look remarkably "similar", and thus more consistent, whereas classifications derived from the original images, without preprocessing, are much less similar.
Land cover mapping in Latvia using hyperspectral airborne and simulated Sentinel-2 data
NASA Astrophysics Data System (ADS)
Jakovels, Dainis; Filipovs, Jevgenijs; Brauns, Agris; Taskovs, Juris; Erins, Gatis
2016-08-01
Land cover mapping in Latvia is performed as part of the Corine Land Cover (CLC) initiative every six years. The advantage of CLC is the creation of a standardized nomenclature and mapping protocol comparable across all European countries, thereby making it a valuable information source at the European level. However, low spatial resolution and accuracy, infrequent updates and expensive manual production has limited its use at the national level. As of now, there is no remote sensing based high resolution land cover and land use services designed specifically for Latvia which would account for the country's natural and land use specifics and end-user interests. The European Space Agency launched the Sentinel-2 satellite in 2015 aiming to provide continuity of free high resolution multispectral satellite data thereby presenting an opportunity to develop and adapted land cover and land use algorithm which accounts for national enduser needs. In this study, land cover mapping scheme according to national end-user needs was developed and tested in two pilot territories (Cesis and Burtnieki). Hyperspectral airborne data covering spectral range 400-2500 nm was acquired in summer 2015 using Airborne Surveillance and Environmental Monitoring System (ARSENAL). The gathered data was tested for land cover classification of seven general classes (urban/artificial, bare, forest, shrubland, agricultural/grassland, wetlands, water) and sub-classes specific for Latvia as well as simulation of Sentinel-2 satellite data. Hyperspectral data sets consist of 122 spectral bands in visible to near infrared spectral range (356-950 nm) and 100 bands in short wave infrared (950-2500 nm). Classification of land cover was tested separately for each sensor data and fused cross-sensor data. The best overall classification accuracy 84.2% and satisfactory classification accuracy (more than 80%) for 9 of 13 classes was obtained using Support Vector Machine (SVM) classifier with 109 band hyperspectral data. Grassland and agriculture land demonstrated lowest classification accuracy in pixel based approach, but result significantly improved by looking at agriculture polygons registered in Rural Support Service data as objects. The test of simulated Sentinel-2 bands for land cover mapping using SVM classifier showed 82.8% overall accuracy and satisfactory separation of 7 classes. SVM provided highest overall accuracy 84.2% in comparison to 75.9% for k-Nearest Neighbor and 79.2% Linear Discriminant Analysis classifiers.
Enhancing Vocabulary Acquisition through Reading: A Hierarchy of Text-Related Exercise Types.
ERIC Educational Resources Information Center
Wesche, M.; Paribakht, T. Sima
This paper describes a classification scheme developed to examine the effects of extensive reading on primary and second language vocabulary acquisition and reports on an experiment undertaken to test the model scheme. The classification scheme represents a hypothesized hierarchy of the degree and type of mental processing required by various…
ERIC Educational Resources Information Center
Schatschneider, Christopher; Wagner, Richard K.; Hart, Sara A.; Tighe, Elizabeth L.
2016-01-01
The present study employed data simulation techniques to investigate the 1-year stability of alternative classification schemes for identifying children with reading disabilities. Classification schemes investigated include low performance, unexpected low performance, dual-discrepancy, and a rudimentary form of constellation model of reading…
NASA Astrophysics Data System (ADS)
Adi Putra, Januar
2018-04-01
In this paper, we propose a new mammogram classification scheme to classify the breast tissues as normal or abnormal. Feature matrix is generated using Local Binary Pattern to all the detailed coefficients from 2D-DWT of the region of interest (ROI) of a mammogram. Feature selection is done by selecting the relevant features that affect the classification. Feature selection is used to reduce the dimensionality of data and features that are not relevant, in this paper the F-test and Ttest will be performed to the results of the feature extraction dataset to reduce and select the relevant feature. The best features are used in a Neural Network classifier for classification. In this research we use MIAS and DDSM database. In addition to the suggested scheme, the competent schemes are also simulated for comparative analysis. It is observed that the proposed scheme has a better say with respect to accuracy, specificity and sensitivity. Based on experiments, the performance of the proposed scheme can produce high accuracy that is 92.71%, while the lowest accuracy obtained is 77.08%.
Automated spectral classification and the GAIA project
NASA Technical Reports Server (NTRS)
Lasala, Jerry; Kurtz, Michael J.
1995-01-01
Two dimensional spectral types for each of the stars observed in the global astrometric interferometer for astrophysics (GAIA) mission would provide additional information for the galactic structure and stellar evolution studies, as well as helping in the identification of unusual objects and populations. The classification of the large quantity generated spectra requires that automated techniques are implemented. Approaches for the automatic classification are reviewed, and a metric-distance method is discussed. In tests, the metric-distance method produced spectral types with mean errors comparable to those of human classifiers working at similar resolution. Data and equipment requirements for an automated classification survey, are discussed. A program of auxiliary observations is proposed to yield spectral types and radial velocities for the GAIA-observed stars.
NASA Technical Reports Server (NTRS)
Hill, C. L.
1984-01-01
A computer-implemented classification has been derived from Landsat-4 Thematic Mapper data acquired over Baldwin County, Alabama on January 15, 1983. One set of spectral signatures was developed from the data by utilizing a 3x3 pixel sliding window approach. An analysis of the classification produced from this technique identified forested areas. Additional information regarding only the forested areas. Additional information regarding only the forested areas was extracted by employing a pixel-by-pixel signature development program which derived spectral statistics only for pixels within the forested land covers. The spectral statistics from both approaches were integrated and the data classified. This classification was evaluated by comparing the spectral classes produced from the data against corresponding ground verification polygons. This iterative data analysis technique resulted in an overall classification accuracy of 88.4 percent correct for slash pine, young pine, loblolly pine, natural pine, and mixed hardwood-pine. An accuracy assessment matrix has been produced for the classification.
Operational monitoring of land-cover change using multitemporal remote sensing data
NASA Astrophysics Data System (ADS)
Rogan, John
2005-11-01
Land-cover change, manifested as either land-cover modification and/or conversion, can occur at all spatial scales, and changes at local scales can have profound, cumulative impacts at broader scales. The implication of operational land-cover monitoring is that researchers have access to a continuous stream of remote sensing data, with the long term goal of providing for consistent and repetitive mapping. Effective large area monitoring of land-cover (i.e., >1000 km2) can only be accomplished by using remotely sensed images as an indirect data source in land-cover change mapping and as a source for land-cover change model projections. Large area monitoring programs face several challenges: (1) choice of appropriate classification scheme/map legend over large, topographically and phenologically diverse areas; (2) issues concerning data consistency and map accuracy (i.e., calibration and validation); (3) very large data volumes; (4) time consuming data processing and interpretation. Therefore, this dissertation research broadly addresses these challenges in the context of examining state-of-the-art image pre-processing, spectral enhancement, classification, and accuracy assessment techniques to assist the California Land-cover Mapping and Monitoring Program (LCMMP). The results of this dissertation revealed that spatially varying haze can be effectively corrected from Landsat data for the purposes of change detection. The Multitemporal Spectral Mixture Analysis (MSMA) spectral enhancement technique produced more accurate land-cover maps than those derived from the Multitemporal Kauth Thomas (MKT) transformation in northern and southern California study areas. A comparison of machine learning classifiers showed that Fuzzy ARTMAP outperformed two classification tree algorithms, based on map accuracy and algorithm robustness. Variation in spatial data error (positional and thematic) was explored in relation to environmental variables using geostatistical interpolation techniques. Finally, the land-cover modification maps generated for three time intervals (1985--1990--1996--2000), with nine change-classes revealed important variations in land-cover gain and loss between northern and southern California study areas.
Pulley, Simon; Foster, Ian; Collins, Adrian L
2017-06-01
The objective classification of sediment source groups is at present an under-investigated aspect of source tracing studies, which has the potential to statistically improve discrimination between sediment sources and reduce uncertainty. This paper investigates this potential using three different source group classification schemes. The first classification scheme was simple surface and subsurface groupings (Scheme 1). The tracer signatures were then used in a two-step cluster analysis to identify the sediment source groupings naturally defined by the tracer signatures (Scheme 2). The cluster source groups were then modified by splitting each one into a surface and subsurface component to suit catchment management goals (Scheme 3). The schemes were tested using artificial mixtures of sediment source samples. Controlled corruptions were made to some of the mixtures to mimic the potential causes of tracer non-conservatism present when using tracers in natural fluvial environments. It was determined how accurately the known proportions of sediment sources in the mixtures were identified after unmixing modelling using the three classification schemes. The cluster analysis derived source groups (2) significantly increased tracer variability ratios (inter-/intra-source group variability) (up to 2122%, median 194%) compared to the surface and subsurface groupings (1). As a result, the composition of the artificial mixtures was identified an average of 9.8% more accurately on the 0-100% contribution scale. It was found that the cluster groups could be reclassified into a surface and subsurface component (3) with no significant increase in composite uncertainty (a 0.1% increase over Scheme 2). The far smaller effects of simulated tracer non-conservatism for the cluster analysis based schemes (2 and 3) was primarily attributed to the increased inter-group variability producing a far larger sediment source signal that the non-conservatism noise (1). Modified cluster analysis based classification methods have the potential to reduce composite uncertainty significantly in future source tracing studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Advances in Spectral-Spatial Classification of Hyperspectral Images
NASA Technical Reports Server (NTRS)
Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.
2012-01-01
Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation and contrast of the spatial structures present in the image. Then the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines using the available spectral information and the extracted spatial information. Spatial post-processing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple classifier system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.
Documentation of procedures for textural/spatial pattern recognition techniques
NASA Technical Reports Server (NTRS)
Haralick, R. M.; Bryant, W. F.
1976-01-01
A C-130 aircraft was flown over the Sam Houston National Forest on March 21, 1973 at 10,000 feet altitude to collect multispectral scanner (MSS) data. Existing textural and spatial automatic processing techniques were used to classify the MSS imagery into specified timber categories. Several classification experiments were performed on this data using features selected from the spectral bands and a textural transform band. The results indicate that (1) spatial post-processing a classified image can cut the classification error to 1/2 or 1/3 of its initial value, (2) spatial post-processing the classified image using combined spectral and textural features produces a resulting image with less error than post-processing a classified image using only spectral features and (3) classification without spatial post processing using the combined spectral textural features tends to produce about the same error rate as a classification without spatial post processing using only spectral features.
Waltman, Ludo; Yan, Erjia; van Eck, Nees Jan
2011-10-01
Two commonly used ideas in the development of citation-based research performance indicators are the idea of normalizing citation counts based on a field classification scheme and the idea of recursive citation weighing (like in PageRank-inspired indicators). We combine these two ideas in a single indicator, referred to as the recursive mean normalized citation score indicator, and we study the validity of this indicator. Our empirical analysis shows that the proposed indicator is highly sensitive to the field classification scheme that is used. The indicator also has a strong tendency to reinforce biases caused by the classification scheme. Based on these observations, we advise against the use of indicators in which the idea of normalization based on a field classification scheme and the idea of recursive citation weighing are combined.
Assessments of SENTINEL-2 Vegetation Red-Edge Spectral Bands for Improving Land Cover Classification
NASA Astrophysics Data System (ADS)
Qiu, S.; He, B.; Yin, C.; Liao, Z.
2017-09-01
The Multi Spectral Instrument (MSI) onboard Sentinel-2 can record the information in Vegetation Red-Edge (VRE) spectral domains. In this study, the performance of the VRE bands on improving land cover classification was evaluated based on a Sentinel-2A MSI image in East Texas, USA. Two classification scenarios were designed by excluding and including the VRE bands. A Random Forest (RF) classifier was used to generate land cover maps and evaluate the contributions of different spectral bands. The combination of VRE bands increased the overall classification accuracy by 1.40 %, which was statistically significant. Both confusion matrices and land cover maps indicated that the most beneficial increase was from vegetation-related land cover types, especially agriculture. Comparison of the relative importance of each band showed that the most beneficial VRE bands were Band 5 and Band 6. These results demonstrated the value of VRE bands for land cover classification.
Efficiency of the spectral-spatial classification of hyperspectral imaging data
NASA Astrophysics Data System (ADS)
Borzov, S. M.; Potaturkin, O. I.
2017-01-01
The efficiency of methods of the spectral-spatial classification of similarly looking types of vegetation on the basis of hyperspectral data of remote sensing of the Earth, which take into account local neighborhoods of analyzed image pixels, is experimentally studied. Algorithms that involve spatial pre-processing of the raw data and post-processing of pixel-based spectral classification maps are considered. Results obtained both for a large-size hyperspectral image and for its test fragment with different methods of training set construction are reported. The classification accuracy in all cases is estimated through comparisons of ground-truth data and classification maps formed by using the compared methods. The reasons for the differences in these estimates are discussed.
NASA Astrophysics Data System (ADS)
Othman, Arsalan A.; Gloaguen, Richard
2017-09-01
Lithological mapping in mountainous regions is often impeded by limited accessibility due to relief. This study aims to evaluate (1) the performance of different supervised classification approaches using remote sensing data and (2) the use of additional information such as geomorphology. We exemplify the methodology in the Bardi-Zard area in NE Iraq, a part of the Zagros Fold - Thrust Belt, known for its chromite deposits. We highlighted the improvement of remote sensing geological classification by integrating geomorphic features and spatial information in the classification scheme. We performed a Maximum Likelihood (ML) classification method besides two Machine Learning Algorithms (MLA): Support Vector Machine (SVM) and Random Forest (RF) to allow the joint use of geomorphic features, Band Ratio (BR), Principal Component Analysis (PCA), spatial information (spatial coordinates) and multispectral data of the Advanced Space-borne Thermal Emission and Reflection radiometer (ASTER) satellite. The RF algorithm showed reliable results and discriminated serpentinite, talus and terrace deposits, red argillites with conglomerates and limestone, limy conglomerates and limestone conglomerates, tuffites interbedded with basic lavas, limestone and Metamorphosed limestone and reddish green shales. The best overall accuracy (∼80%) was achieved by Random Forest (RF) algorithms in the majority of the sixteen tested combination datasets.
Causation and Validation of Nursing Diagnoses: A Middle Range Theory.
de Oliveira Lopes, Marcos Venícios; da Silva, Viviane Martins; Herdman, T Heather
2017-01-01
To describe a predictive middle range theory (MRT) that provides a process for validation and incorporation of nursing diagnoses in clinical practice. Literature review. The MRT includes definitions, a pictorial scheme, propositions, causal relationships, and translation to nursing practice. The MRT can be a useful alternative for education, research, and translation of this knowledge into practice. This MRT can assist clinicians in understanding clinical reasoning, based on temporal logic and spectral interaction among elements of nursing classifications. In turn, this understanding will improve the use and accuracy of nursing diagnosis, which is a critical component of the nursing process that forms a basis for nursing practice standards worldwide. © 2015 NANDA International, Inc.
Spectral Classification in the MK System of 167 Northern HD Stars
NASA Astrophysics Data System (ADS)
Jensen, K. S.
1981-09-01
Spectral classifications in the MK system of 167 northern HD stars are presented. The spectra (102 A/mm at Hγ, width 0.60 mm) are from objective prism plates obtained with the Schmidt telescope of the CUO, Brorfelde. Most of the stars have no previous MK classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Ackermann, M.; Adams, J.
Here we present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrinomore » flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.« less
Aartsen, M. G.; Ackermann, M.; Adams, J.; ...
2015-03-11
Here we present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrinomore » flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.« less
The Berkeley SuperNova Ia Program (BSNIP): Dataset and Initial Analysis
NASA Astrophysics Data System (ADS)
Silverman, Jeffrey; Ganeshalingam, M.; Kong, J.; Li, W.; Filippenko, A.
2012-01-01
I will present spectroscopic data from the Berkeley SuperNova Ia Program (BSNIP), their initial analysis, and the results of attempts to use spectral information to improve cosmological distance determinations to Type Ia supernova (SNe Ia). The dataset consists of 1298 low-redshift (z< 0.2) optical spectra of 582 SNe Ia observed from 1989 through the end of 2008. Many of the SNe have well-calibrated light curves with measured distance moduli as well as spectra that have been corrected for host-galaxy contamination. I will also describe the spectral classification scheme employed (using the SuperNova Identification code, SNID; Blondin & Tonry 2007) which utilizes a newly constructed set of SNID spectral templates. The sheer size of the BSNIP dataset and the consistency of the observation and reduction methods make this sample unique among all other published SN Ia datasets. I will also discuss measurements of the spectral features of about one-third of the spectra which were obtained within 20 days of maximum light. I will briefly describe the adopted method of automated, robust spectral-feature definition and measurement which expands upon similar previous studies. Comparisons of these measurements of SN Ia spectral features to photometric observables will be presented with an eye toward using spectral information to calculate more accurate cosmological distances. Finally, I will comment on related projects which also utilize the BSNIP dataset that are planned for the near future. This research was supported by NSF grant AST-0908886 and the TABASGO Foundation. I am grateful to Marc J. Staley for a Graduate Fellowship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apellániz, J. Maíz; Sota, A.; Alfaro, E. J.
This is the third installment of the Galactic O-Star Spectroscopic Survey (GOSSS), a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R ∼ 2500 digital observations selected from the Galactic O-Star Catalog. In this paper, we present 142 additional stellar systems with O stars from both hemispheres, bringing the total of O-type systems published within the project to 590. Among the new objects, there are 20 new O stars. We also identify 11 new double-lined spectroscopic binaries, 6 of which are of O+O type and 5 of O+B type, and an additional new tripled-lined spectroscopic binary of O+O+Bmore » type. We also revise some of the previous GOSSS classifications, present some egregious examples of stars erroneously classified as O-type in the past, introduce the use of luminosity class IV at spectral types O4-O5.5, and adapt the classification scheme to the work of Arias et al.« less
Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST/MIRI
NASA Astrophysics Data System (ADS)
Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay; Glasse, Alistair
2017-05-01
The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope (JWST) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer-IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST/MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.
NASA Astrophysics Data System (ADS)
Anker, Y.; Hershkovitz, Y.; Gasith, A.; Ben-Dor, E.
2011-12-01
Although remote sensing of fluvial ecosystems is well developed, the tradeoff between spectral and spatial resolutions prevents its application in small streams (<3m width). In the current study, a remote sensing approach for monitoring and research of small ecosystem was developed. The method is based on differentiation between two indicative vegetation species out of the ecosystem flora. Since when studied, the channel was covered mostly by a filamentous green alga (Cladophora glomerata) and watercress (Nasturtium officinale), these species were chosen as indicative; nonetheless, common reed (Phragmites australis) was also classified in order to exclude it from the stream ROI. The procedure included: A. For both section and habitat scales classifications, acquisition of aerial digital RGB datasets. B. For section scale classification, hyperspectral (HSR) dataset acquisition. C. For calibration, HSR reflectance measurements of specific ground targets, in close proximity to each dataset acquisition swath. D. For habitat scale classification, manual, in-stream flora grid transects classification. The digital RGB datasets were converted to reflectance units by spectral calibration against colored reference plates. These red, green, blue, white, and black EVA foam reference plates were measured by an ASD field spectrometer and each was given a spectral value. Each spectral value was later applied to the spectral calibration and radiometric correction of spectral RGB (SRGB) cube. Spectral calibration of the HSR dataset was done using the empirical line method, based on reference values of progressive grey scale targets. Differentiation between the vegetation species was done by supervised classification both for the HSR and for the SRGB datasets. This procedure was done using the Spectral Angle Mapper function with the spectral pattern of each vegetation species as a spectral end member. Comparison between the two remote sensing techniques and between the SRGB classification and the in-situ transects indicates that: A. Stream vegetation classification resolution is about 4 cm by the SRGB method compared to about 1 m by HSR. Moreover, this resolution is also higher than of the manual grid transect classification. B. The SRGB method is by far the most cost-efficient. The combination of spectral information (rather than the cognitive color) and high spatial resolution of aerial photography provides noise filtration and better sub-water detection capabilities than the HSR technique. C. Only the SRGB method applies for habitat and section scales; hence, its application together with in-situ grid transects for validation, may be optimal for use in similar scenarios.
The HSR dataset was first degraded to 17 bands with the same spectral range as the RGB dataset and also to a dataset with 3 equivalent bands
NASA Astrophysics Data System (ADS)
Liu, Wanjun; Liang, Xuejian; Qu, Haicheng
2017-11-01
Hyperspectral image (HSI) classification is one of the most popular topics in remote sensing community. Traditional and deep learning-based classification methods were proposed constantly in recent years. In order to improve the classification accuracy and robustness, a dimensionality-varied convolutional neural network (DVCNN) was proposed in this paper. DVCNN was a novel deep architecture based on convolutional neural network (CNN). The input of DVCNN was a set of 3D patches selected from HSI which contained spectral-spatial joint information. In the following feature extraction process, each patch was transformed into some different 1D vectors by 3D convolution kernels, which were able to extract features from spectral-spatial data. The rest of DVCNN was about the same as general CNN and processed 2D matrix which was constituted by by all 1D data. So that the DVCNN could not only extract more accurate and rich features than CNN, but also fused spectral-spatial information to improve classification accuracy. Moreover, the robustness of network on water-absorption bands was enhanced in the process of spectral-spatial fusion by 3D convolution, and the calculation was simplified by dimensionality varied convolution. Experiments were performed on both Indian Pines and Pavia University scene datasets, and the results showed that the classification accuracy of DVCNN improved by 32.87% on Indian Pines and 19.63% on Pavia University scene than spectral-only CNN. The maximum accuracy improvement of DVCNN achievement was 13.72% compared with other state-of-the-art HSI classification methods, and the robustness of DVCNN on water-absorption bands noise was demonstrated.
Defining functional biomes and monitoring their change globally.
Higgins, Steven I; Buitenwerf, Robert; Moncrieff, Glenn R
2016-11-01
Biomes are important constructs for organizing understanding of how the worlds' major terrestrial ecosystems differ from one another and for monitoring change in these ecosystems. Yet existing biome classification schemes have been criticized for being overly subjective and for explicitly or implicitly invoking climate. We propose a new biome map and classification scheme that uses information on (i) an index of vegetation productivity, (ii) whether the minimum of vegetation activity is in the driest or coldest part of the year, and (iii) vegetation height. Although biomes produced on the basis of this classification show a strong spatial coherence, they show little congruence with existing biome classification schemes. Our biome map provides an alternative classification scheme for comparing the biogeochemical rates of terrestrial ecosystems. We use this new biome classification scheme to analyse the patterns of biome change observed over recent decades. Overall, 13% to 14% of analysed pixels shifted in biome state over the 30-year study period. A wide range of biome transitions were observed. For example, biomes with tall vegetation and minimum vegetation activity in the cold season shifted to higher productivity biome states. Biomes with short vegetation and low seasonality shifted to seasonally moisture-limited biome states. Our findings and method provide a new source of data for rigorously monitoring global vegetation change, analysing drivers of vegetation change and for benchmarking models of terrestrial ecosystem function. © 2016 John Wiley & Sons Ltd.
VizieR Online Data Catalog: Vilnius photometry near Sh 2-205 (Straizys+, 2016)
NASA Astrophysics Data System (ADS)
Straizys, V.; Cepas, V.; Boyle, R. P.; Zdanavicius, J.; Maskoliunas, M.; Kazlauskas, A.; Zdanavicius, K.; Cernis, K.
2016-04-01
Table 1 contains the results of photometry of 302 stars down to V=19.5mag in the Vilnius seven-color system in the vicinity of the dark cloud TGU H942 P7 and emission nebula Sh2-205. Photometric data are used to classify stars in spectral and luminosity classes. The identification numbers, coordinates, V magnitudes and six color indices in the Vilnius system, photometric two-dimensional spectral types (spectral and luminosity classes) are given. The identification numbers start from from 1001 to avoid confusion with the catalog of Cepas et al. (2013BaltA..22..243C, Cat. J/BaltA/22/223). The coordinates are from PPMXL catalog (Roeser et al. 2010AJ....139.2440R, Cat. I/317). Table 2 contains the list of 88 YSOs, identified using the Koenig & Leisawitz (2014ApJ...791..131K) classification scheme, which combines the WISE and 2MASS near- and mid-infrared colours. The identification number and W1, W2, W3, J, H, Ks magnitudes are from WISE All-sky Data Release (Cutri et al., 2012yCat.2311....0C, Cat. II/311). The types of identified YSOs are given. (2 data files).
Gökçal, Elif; Niftaliyev, Elvin; Asil, Talip
2017-09-01
Analysis of stroke subtypes is important for making treatment decisions and prognostic evaluations. The TOAST classification system is most commonly used, but the CCS and ASCO classification systems might be more useful to identify stroke etiologies in young patients whose strokes have a wide range of different causes. In this manuscript, we aim to compare the differences in subtype classification between TOAST, CCS, and ASCO in young stroke patients. The TOAST, CCS, and ASCO classification schemes were applied to 151 patients with ischemic stroke aged 18-49 years old and the proportion of subtypes classified by each scheme was compared. For comparison, determined etiologies were defined as cases with evident and probable subtypes when using the CCS scheme and cases with grade 1 and 2 subtypes but no other grade 1 subtype when using the ASCO scheme. The McNemar test with Bonferroni correction was used to assess significance. By TOAST, 41.1% of patients' stroke etiology was classified as undetermined etiology, 19.2% as cardioembolic, 13.2% as large artery atherosclerosis, 11.3% as small vessel occlusion, and 15.2% as other causes. Compared with TOAST, both CCS and ASCO assigned fewer patients to the undetermined etiology group (30.5% p < 0.001 and 26.5% p < 0.001, respectively) and assigned more patients to the small vessel occlusion category (19.9%, p < 0.001, and 21.9%, p < 0.001, respectively). Additionally, both schemes assigned more patients to the large artery atherosclerosis group (15.9 and 16.6%, respectively). The proportion of patients assigned to either the cardioembolic or the other causes etiology did not differ significantly between the three schemes. Application of the CCS and ASCO classification schemes in young stroke patients seems feasible, and using both schemes may result in fewer patients being classified as undetermined etiology. New studies with more patients and a prospective design are needed to explore this topic further.
Classification of surface types using SIR-C/X-SAR, Mount Everest Area, Tibet
Albright, Thomas P.; Painter, Thomas H.; Roberts, Dar A.; Shi, Jiancheng; Dozier, Jeff; Fielding, Eric
1998-01-01
Imaging radar is a promising tool for mapping snow and ice cover in alpine regions. It combines a high-resolution, day or night, all-weather imaging capability with sensitivity to hydrologic and climatic snow and ice parameters. We use the spaceborne imaging radar-C/X-band synthetic aperture radar (SIR-C/X-SAR) to map snow and glacial ice on the rugged north slope of Mount Everest. From interferometrically derived digital elevation data, we compute the terrain calibration factor and cosine of the local illumination angle. We then process and terrain-correct radar data sets acquired on April 16, 1994. In addition to the spectral data, we include surface slope to improve discrimination among several surface types. These data sets are then used in a decision tree to generate an image classification. This method is successful in identifying and mapping scree/talus, dry snow, dry snow-covered glacier, wet snow-covered glacier, and rock-covered glacier, as corroborated by comparison with existing surface cover maps and other ancillary information. Application of the classification scheme to data acquired on October 7 of the same year yields accurate results for most surface types but underreports the extent of dry snow cover.
Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders
NASA Astrophysics Data System (ADS)
Rußwurm, Marc; Körner, Marco
2018-03-01
Earth observation (EO) sensors deliver data with daily or weekly temporal resolution. Most land use and land cover (LULC) approaches, however, expect cloud-free and mono-temporal observations. The increasing temporal capabilities of today's sensors enables the use of temporal, along with spectral and spatial features. Domains, such as speech recognition or neural machine translation, work with inherently temporal data and, today, achieve impressive results using sequential encoder-decoder structures. Inspired by these sequence-to-sequence models, we adapt an encoder structure with convolutional recurrent layers in order to approximate a phenological model for vegetation classes based on a temporal sequence of Sentinel 2 (S2) images. In our experiments, we visualize internal activations over a sequence of cloudy and non-cloudy images and find several recurrent cells, which reduce the input activity for cloudy observations. Hence, we assume that our network has learned cloud-filtering schemes solely from input data, which could alleviate the need for tedious cloud-filtering as a preprocessing step for many EO approaches. Moreover, using unfiltered temporal series of top-of-atmosphere (TOA) reflectance data, we achieved in our experiments state-of-the-art classification accuracies on a large number of crop classes with minimal preprocessing compared to other classification approaches.
Spectral band selection for classification of soil organic matter content
NASA Technical Reports Server (NTRS)
Henderson, Tracey L.; Szilagyi, Andrea; Baumgardner, Marion F.; Chen, Chih-Chien Thomas; Landgrebe, David A.
1989-01-01
This paper describes the spectral-band-selection (SBS) algorithm of Chen and Landgrebe (1987, 1988, and 1989) and uses the algorithm to classify the organic matter content in the earth's surface soil. The effectiveness of the algorithm was evaluated comparing the results of classification of the soil organic matter using SBS bands with those obtained using Landsat MSS bands and TM bands, showing that the algorithm was successful in finding important spectral bands for classification of organic matter content. Using the calculated bands, the probabilities of correct classification for climate-stratified data were found to range from 0.910 to 0.980.
NASA Astrophysics Data System (ADS)
Cui, Binge; Ma, Xiudan; Xie, Xiaoyun; Ren, Guangbo; Ma, Yi
2017-03-01
The classification of hyperspectral images with a few labeled samples is a major challenge which is difficult to meet unless some spatial characteristics can be exploited. In this study, we proposed a novel spectral-spatial hyperspectral image classification method that exploited spatial autocorrelation of hyperspectral images. First, image segmentation is performed on the hyperspectral image to assign each pixel to a homogeneous region. Second, the visible and infrared bands of hyperspectral image are partitioned into multiple subsets of adjacent bands, and each subset is merged into one band. Recursive edge-preserving filtering is performed on each merged band which utilizes the spectral information of neighborhood pixels. Third, the resulting spectral and spatial feature band set is classified using the SVM classifier. Finally, bilateral filtering is performed to remove "salt-and-pepper" noise in the classification result. To preserve the spatial structure of hyperspectral image, edge-preserving filtering is applied independently before and after the classification process. Experimental results on different hyperspectral images prove that the proposed spectral-spatial classification approach is robust and offers more classification accuracy than state-of-the-art methods when the number of labeled samples is small.
Spectral-spatial classification of hyperspectral imagery with cooperative game
NASA Astrophysics Data System (ADS)
Zhao, Ji; Zhong, Yanfei; Jia, Tianyi; Wang, Xinyu; Xu, Yao; Shu, Hong; Zhang, Liangpei
2018-01-01
Spectral-spatial classification is known to be an effective way to improve classification performance by integrating spectral information and spatial cues for hyperspectral imagery. In this paper, a game-theoretic spectral-spatial classification algorithm (GTA) using a conditional random field (CRF) model is presented, in which CRF is used to model the image considering the spatial contextual information, and a cooperative game is designed to obtain the labels. The algorithm establishes a one-to-one correspondence between image classification and game theory. The pixels of the image are considered as the players, and the labels are considered as the strategies in a game. Similar to the idea of soft classification, the uncertainty is considered to build the expected energy model in the first step. The local expected energy can be quickly calculated, based on a mixed strategy for the pixels, to establish the foundation for a cooperative game. Coalitions can then be formed by the designed merge rule based on the local expected energy, so that a majority game can be performed to make a coalition decision to obtain the label of each pixel. The experimental results on three hyperspectral data sets demonstrate the effectiveness of the proposed classification algorithm.
2012-05-01
GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7 . PERFORMING ORGANIZATION NAME(S...2.3.3 Classification using template matching ...................................................... 7 2.4 Details of classification schemes... 7 2.4.1 Camp Butner TEMTADS data inversion and classification scheme .......... 9
Optimizing spectral CT parameters for material classification tasks
NASA Astrophysics Data System (ADS)
Rigie, D. S.; La Rivière, P. J.
2016-06-01
In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies.
Optimizing Spectral CT Parameters for Material Classification Tasks
Rigie, D. S.; La Rivière, P. J.
2017-01-01
In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies. PMID:27227430
NASA Astrophysics Data System (ADS)
Vicent, Jorge; Alonso, Luis; Sabater, Neus; Miesch, Christophe; Kraft, Stefan; Moreno, Jose
2015-09-01
The uncertainties in the knowledge of the Instrument Spectral Response Function (ISRF), barycenter of the spectral channels and bandwidth / spectral sampling (spectral resolution) are important error sources in the processing of satellite imaging spectrometers within narrow atmospheric absorption bands. The exhaustive laboratory spectral characterization is a costly engineering process that differs from the instrument configuration in-flight given the harsh space environment and harmful launching phase. The retrieval schemes at Level-2 commonly assume a Gaussian ISRF, leading to uncorrected spectral stray-light effects and wrong characterization and correction of the spectral shift and smile. These effects produce inaccurate atmospherically corrected data and are propagated to the final Level-2 mission products. Within ESA's FLEX satellite mission activities, the impact of the ISRF knowledge error and spectral calibration at Level-1 products and its propagation to Level-2 retrieved chlorophyll fluorescence has been analyzed. A spectral recalibration scheme has been implemented at Level-2 reducing the errors in Level-1 products below the 10% error in retrieved fluorescence within the oxygen absorption bands enhancing the quality of the retrieved products. The work presented here shows how the minimization of the spectral calibration errors requires an effort both for the laboratory characterization and for the implementation of specific algorithms at Level-2.
Transporter taxonomy - a comparison of different transport protein classification schemes.
Viereck, Michael; Gaulton, Anna; Digles, Daniela; Ecker, Gerhard F
2014-06-01
Currently, there are more than 800 well characterized human membrane transport proteins (including channels and transporters) and there are estimates that about 10% (approx. 2000) of all human genes are related to transport. Membrane transport proteins are of interest as potential drug targets, for drug delivery, and as a cause of side effects and drug–drug interactions. In light of the development of Open PHACTS, which provides an open pharmacological space, we analyzed selected membrane transport protein classification schemes (Transporter Classification Database, ChEMBL, IUPHAR/BPS Guide to Pharmacology, and Gene Ontology) for their ability to serve as a basis for pharmacology driven protein classification. A comparison of these membrane transport protein classification schemes by using a set of clinically relevant transporters as use-case reveals the strengths and weaknesses of the different taxonomy approaches.
NASA Astrophysics Data System (ADS)
Knoefel, Patrick; Loew, Fabian; Conrad, Christopher
2015-04-01
Crop maps based on classification of remotely sensed data are of increased attendance in agricultural management. This induces a more detailed knowledge about the reliability of such spatial information. However, classification of agricultural land use is often limited by high spectral similarities of the studied crop types. More, spatially and temporally varying agro-ecological conditions can introduce confusion in crop mapping. Classification errors in crop maps in turn may have influence on model outputs, like agricultural production monitoring. One major goal of the PhenoS project ("Phenological structuring to determine optimal acquisition dates for Sentinel-2 data for field crop classification"), is the detection of optimal phenological time windows for land cover classification purposes. Since many crop species are spectrally highly similar, accurate classification requires the right selection of satellite images for a certain classification task. In the course of one growing season, phenological phases exist where crops are separable with higher accuracies. For this purpose, coupling of multi-temporal spectral characteristics and phenological events is promising. The focus of this study is set on the separation of spectrally similar cereal crops like winter wheat, barley, and rye of two test sites in Germany called "Harz/Central German Lowland" and "Demmin". However, this study uses object based random forest (RF) classification to investigate the impact of image acquisition frequency and timing on crop classification uncertainty by permuting all possible combinations of available RapidEye time series recorded on the test sites between 2010 and 2014. The permutations were applied to different segmentation parameters. Then, classification uncertainty was assessed and analysed, based on the probabilistic soft-output from the RF algorithm at the per-field basis. From this soft output, entropy was calculated as a spatial measure of classification uncertainty. The results indicate that uncertainty estimates provide a valuable addition to traditional accuracy assessments and helps the user to allocate error in crop maps.
Archiving Spectral Libraries in the Planetary Data System
NASA Astrophysics Data System (ADS)
Slavney, S.; Guinness, E. A.; Scholes, D.; Zastrow, A.
2017-12-01
Spectral libraries are becoming popular candidates for archiving in PDS. With the increase in the number of individual investigators funded by programs such as NASA's PDART, the PDS Geosciences Node is receiving many requests for support from proposers wishing to archive various forms of laboratory spectra. To accommodate the need for a standardized approach to archiving spectra, the Geosciences Node has designed the PDS Spectral Library Data Dictionary, which contains PDS4 classes and attributes specifically for labeling spectral data, including a classification scheme for samples. The Reflectance Experiment Laboratory (RELAB) at Brown University, which has long been a provider of spectroscopy equipment and services to the science community, has provided expert input into the design of the dictionary. Together the Geosciences Node and RELAB are preparing the whole of the RELAB Spectral Library, consisting of many thousands of spectra collected over the years, to be archived in PDS. An online interface for searching, displaying, and downloading selected spectra is planned, using the Spectral Library metadata recorded in the PDS labels. The data dictionary and online interface will be extended to include spectral libraries submitted by other data providers. The Spectral Library Data Dictionary is now available from PDS at https://pds.nasa.gov/pds4/schema/released/. It can be used in PDS4 labels for reflectance spectra as well as for Raman, XRF, XRD, LIBS, and other types of spectra. Ancillary data such as images, chemistry, and abundance data are also supported. To help generate PDS4-compliant labels for spectra, the Geosciences Node provides a label generation program called MakeLabels (http://pds-geosciences.wustl.edu/tools/makelabels.html) which creates labels from a template, and which can be used for any kind of PDS4 label. For information, contact the Geosciences Node at geosci@wunder.wustl.edu.
NASA Technical Reports Server (NTRS)
Green, Robert O.; Roberts, Dar A.
1995-01-01
Plant species composition and plant architectural attributes are critical parameters required for the measuring, monitoring, and modeling of terrestrial ecosystems. Remote sensing is commonly cited as an important tool for deriving vegetation properties at an appropriate scale for ecosystem studies, ranging from local to regional and even synoptic scales. Classical approaches rely on vegetation indices such as the normalized difference vegetation index (NDVI) to estimate biophysical parameters such as leaf area index or intercepted photosynthetically active radiation (IPAR). Another approach is to apply a variety of classification schemes to map vegetation and thus extrapolate fine-scale information about specific sites to larger areas of similar composition. Imaging spectrometry provides additional information that is not obtainable through broad-band sensors and that may provide improved inputs both to direct biophysical estimates as well as classification schemes. Some of this capability has been demonstrated through improved discrimination of vegetation, estimates of canopy biochemistry, and liquid water estimates from vegetation. We investigate further the potential of leaf water absorption estimated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data as a means for discriminating vegetation types and deriving canopy architectural information. We expand our analysis to incorporate liquid water estimates from two spectral regions, the 1000-nm region and the 2200-nm region. The study was conducted in the vicinity of Jasper Ridge, California, which is located on the San Francisco peninsula to the west of the Stanford University campus. AVIRIS data were acquired over Jasper Ridge, CA, on June 2, 1992, at 19:31 UTC. Spectra from three sites in this image were analyzed. These data are from an area of healthy grass, oak woodland, and redwood forest, respectively. For these analyses, the AVIRIS-measured upwelling radiance spectra for the entire Jasper Ridge scene were transformed to apparent surface reflectance using a radiative transfer code-based inversion algorithm.
Forest tree species clssification based on airborne hyper-spectral imagery
NASA Astrophysics Data System (ADS)
Dian, Yuanyong; Li, Zengyuan; Pang, Yong
2013-10-01
Forest precision classification products were the basic data for surveying of forest resource, updating forest subplot information, logging and design of forest. However, due to the diversity of stand structure, complexity of the forest growth environment, it's difficult to discriminate forest tree species using multi-spectral image. The airborne hyperspectral images can achieve the high spatial and spectral resolution imagery of forest canopy, so it will good for tree species level classification. The aim of this paper was to test the effective of combining spatial and spectral features in airborne hyper-spectral image classification. The CASI hyper spectral image data were acquired from Liangshui natural reserves area. Firstly, we use the MNF (minimum noise fraction) transform method for to reduce the hyperspectral image dimensionality and highlighting variation. And secondly, we use the grey level co-occurrence matrix (GLCM) to extract the texture features of forest tree canopy from the hyper-spectral image, and thirdly we fused the texture and the spectral features of forest canopy to classify the trees species using support vector machine (SVM) with different kernel functions. The results showed that when using the SVM classifier, MNF and texture-based features combined with linear kernel function can achieve the best overall accuracy which was 85.92%. It was also confirm that combine the spatial and spectral information can improve the accuracy of tree species classification.
NASA Technical Reports Server (NTRS)
Bates, J. R.; Semazzi, F. H. M.; Higgins, R. W.; Barros, Saulo R. M.
1990-01-01
A vector semi-Lagrangian semi-implicit two-time-level finite-difference integration scheme for the shallow water equations on the sphere is presented. A C-grid is used for the spatial differencing. The trajectory-centered discretization of the momentum equation in vector form eliminates pole problems and, at comparable cost, gives greater accuracy than a previous semi-Lagrangian finite-difference scheme which used a rotated spherical coordinate system. In terms of the insensitivity of the results to increasing timestep, the new scheme is as successful as recent spectral semi-Lagrangian schemes. In addition, the use of a multigrid method for solving the elliptic equation for the geopotential allows efficient integration with an operation count which, at high resolution, is of lower order than in the case of the spectral models. The properties of the new scheme should allow finite-difference models to compete with spectral models more effectively than has previously been possible.
A scheme for a flexible classification of dietary and health biomarkers.
Gao, Qian; Praticò, Giulia; Scalbert, Augustin; Vergères, Guy; Kolehmainen, Marjukka; Manach, Claudine; Brennan, Lorraine; Afman, Lydia A; Wishart, David S; Andres-Lacueva, Cristina; Garcia-Aloy, Mar; Verhagen, Hans; Feskens, Edith J M; Dragsted, Lars O
2017-01-01
Biomarkers are an efficient means to examine intakes or exposures and their biological effects and to assess system susceptibility. Aided by novel profiling technologies, the biomarker research field is undergoing rapid development and new putative biomarkers are continuously emerging in the scientific literature. However, the existing concepts for classification of biomarkers in the dietary and health area may be ambiguous, leading to uncertainty about their application. In order to better understand the potential of biomarkers and to communicate their use and application, it is imperative to have a solid scheme for biomarker classification that will provide a well-defined ontology for the field. In this manuscript, we provide an improved scheme for biomarker classification based on their intended use rather than the technology or outcomes (six subclasses are suggested: food compound intake biomarkers (FCIBs), food or food component intake biomarkers (FIBs), dietary pattern biomarkers (DPBs), food compound status biomarkers (FCSBs), effect biomarkers, physiological or health state biomarkers). The application of this scheme is described in detail for the dietary and health area and is compared with previous biomarker classification for this field of research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilcher, Levi F
Model Validation and Site Characterization for Early Deployment Marine and Hydrokinetic Energy Sites and Establishment of Wave Classification Scheme presentation from from Water Power Technologies Office Peer Review, FY14-FY16.
NASA Astrophysics Data System (ADS)
Kazakova, E. I.; Medvedev, A. N.; Kolomytseva, A. O.; Demina, M. I.
2017-11-01
The paper presents a mathematical model of blasting schemes management in presence of random disturbances. Based on the lemmas and theorems proved, a control functional is formulated, which is stable. A universal classification of blasting schemes is developed. The main classification attributes are suggested: the orientation in plan the charging wells rows relatively the block of rocks; the presence of cuts in the blasting schemes; the separation of the wells series onto elements; the sequence of the blasting. The periodic regularity of transition from one Short-delayed scheme of blasting to another is proved.
Hyperspectral feature mapping classification based on mathematical morphology
NASA Astrophysics Data System (ADS)
Liu, Chang; Li, Junwei; Wang, Guangping; Wu, Jingli
2016-03-01
This paper proposed a hyperspectral feature mapping classification algorithm based on mathematical morphology. Without the priori information such as spectral library etc., the spectral and spatial information can be used to realize the hyperspectral feature mapping classification. The mathematical morphological erosion and dilation operations are performed respectively to extract endmembers. The spectral feature mapping algorithm is used to carry on hyperspectral image classification. The hyperspectral image collected by AVIRIS is applied to evaluate the proposed algorithm. The proposed algorithm is compared with minimum Euclidean distance mapping algorithm, minimum Mahalanobis distance mapping algorithm, SAM algorithm and binary encoding mapping algorithm. From the results of the experiments, it is illuminated that the proposed algorithm's performance is better than that of the other algorithms under the same condition and has higher classification accuracy.
A Legendre tau-spectral method for solving time-fractional heat equation with nonlocal conditions.
Bhrawy, A H; Alghamdi, M A
2014-01-01
We develop the tau-spectral method to solve the time-fractional heat equation (T-FHE) with nonlocal condition. In order to achieve highly accurate solution of this problem, the operational matrix of fractional integration (described in the Riemann-Liouville sense) for shifted Legendre polynomials is investigated in conjunction with tau-spectral scheme and the Legendre operational polynomials are used as the base function. The main advantage in using the presented scheme is that it converts the T-FHE with nonlocal condition to a system of algebraic equations that simplifies the problem. For demonstrating the validity and applicability of the developed spectral scheme, two numerical examples are presented. The logarithmic graphs of the maximum absolute errors is presented to achieve the exponential convergence of the proposed method. Comparing between our spectral method and other methods ensures that our method is more accurate than those solved similar problem.
A Legendre tau-Spectral Method for Solving Time-Fractional Heat Equation with Nonlocal Conditions
Bhrawy, A. H.; Alghamdi, M. A.
2014-01-01
We develop the tau-spectral method to solve the time-fractional heat equation (T-FHE) with nonlocal condition. In order to achieve highly accurate solution of this problem, the operational matrix of fractional integration (described in the Riemann-Liouville sense) for shifted Legendre polynomials is investigated in conjunction with tau-spectral scheme and the Legendre operational polynomials are used as the base function. The main advantage in using the presented scheme is that it converts the T-FHE with nonlocal condition to a system of algebraic equations that simplifies the problem. For demonstrating the validity and applicability of the developed spectral scheme, two numerical examples are presented. The logarithmic graphs of the maximum absolute errors is presented to achieve the exponential convergence of the proposed method. Comparing between our spectral method and other methods ensures that our method is more accurate than those solved similar problem. PMID:25057507
Detection of artificially ripened mango using spectrometric analysis
NASA Astrophysics Data System (ADS)
Mithun, B. S.; Mondal, Milton; Vishwakarma, Harsh; Shinde, Sujit; Kimbahune, Sanjay
2017-05-01
Hyperspectral sensing has been proven to be useful to determine the quality of food in general. It has also been used to distinguish naturally and artificially ripened mangoes by analyzing the spectral signature. However the focus has been on improving the accuracy of classification after performing dimensionality reduction, optimum feature selection and using suitable learning algorithm on the complete visible and NIR spectrum range data, namely 350nm to 1050nm. In this paper we focus on, (i) the use of low wavelength resolution and low cost multispectral sensor to reliably identify artificially ripened mango by selectively using the spectral information so that classification accuracy is not hampered at the cost of low resolution spectral data and (ii) use of visible spectrum i.e. 390nm to 700 nm data to accurately discriminate artificially ripened mangoes. Our results show that on a low resolution spectral data, the use of logistic regression produces an accuracy of 98.83% and outperforms other methods like classification tree, random forest significantly. And this is achieved by analyzing only 36 spectral reflectance data points instead of the complete 216 data points available in visual and NIR range. Another interesting experimental observation is that we are able to achieve more than 98% classification accuracy by selecting only 15 irradiance values in the visible spectrum. Even the number of data needs to be collected using hyper-spectral or multi-spectral sensor can be reduced by a factor of 24 for classification with high degree of confidence
NASA Astrophysics Data System (ADS)
Lazcano, R.; Madroñal, D.; Fabelo, H.; Ortega, S.; Salvador, R.; Callicó, G. M.; Juárez, E.; Sanz, C.
2017-10-01
Hyperspectral Imaging (HI) assembles high resolution spectral information from hundreds of narrow bands across the electromagnetic spectrum, thus generating 3D data cubes in which each pixel gathers the spectral information of the reflectance of every spatial pixel. As a result, each image is composed of large volumes of data, which turns its processing into a challenge, as performance requirements have been continuously tightened. For instance, new HI applications demand real-time responses. Hence, parallel processing becomes a necessity to achieve this requirement, so the intrinsic parallelism of the algorithms must be exploited. In this paper, a spatial-spectral classification approach has been implemented using a dataflow language known as RVCCAL. This language represents a system as a set of functional units, and its main advantage is that it simplifies the parallelization process by mapping the different blocks over different processing units. The spatial-spectral classification approach aims at refining the classification results previously obtained by using a K-Nearest Neighbors (KNN) filtering process, in which both the pixel spectral value and the spatial coordinates are considered. To do so, KNN needs two inputs: a one-band representation of the hyperspectral image and the classification results provided by a pixel-wise classifier. Thus, spatial-spectral classification algorithm is divided into three different stages: a Principal Component Analysis (PCA) algorithm for computing the one-band representation of the image, a Support Vector Machine (SVM) classifier, and the KNN-based filtering algorithm. The parallelization of these algorithms shows promising results in terms of computational time, as the mapping of them over different cores presents a speedup of 2.69x when using 3 cores. Consequently, experimental results demonstrate that real-time processing of hyperspectral images is achievable.
Khoo, Teik-Beng
2013-01-01
In its 2010 report, the International League Against Epilepsy Commission on Classification and Terminology had made a number of changes to the organization, terminology, and classification of seizures and epilepsies. This study aims to test the usefulness of this revised classification scheme on children with epilepsies aged between 0 and 18 years old. Of 527 patients, 75.1% only had 1 type of seizure and the commonest was focal seizure (61.9%). A specific electroclinical syndrome diagnosis could be made in 27.5%. Only 2.1% had a distinctive constellation. In this cohort, 46.9% had an underlying structural, metabolic, or genetic etiology. Among the important causes were pre-/perinatal insults, malformation of cortical development, intracranial infections, and neurocutaneous syndromes. However, 23.5% of the patients in our cohort were classified as having "epilepsies of unknown cause." The revised classification scheme is generally useful for pediatric patients. To make it more inclusive and clinically meaningful, some local customizations are required.
Toward an endovascular internal carotid artery classification system.
Shapiro, M; Becske, T; Riina, H A; Raz, E; Zumofen, D; Jafar, J J; Huang, P P; Nelson, P K
2014-02-01
Does the world need another ICA classification scheme? We believe so. The purpose of proposed angiography-driven classification is to optimize description of the carotid artery from the endovascular perspective. A review of existing, predominantly surgically-driven classifications is performed, and a new scheme, based on the study of NYU aneurysm angiographic and cross-sectional databases is proposed. Seven segments - cervical, petrous, cavernous, paraophthlamic, posterior communicating, choroidal, and terminus - are named. This nomenclature recognizes intrinsic uncertainty in precise angiographic and cross-sectional localization of aneurysms adjacent to the dural rings, regarding all lesions distal to the cavernous segment as potentially intradural. Rather than subdividing various transitional, ophthalmic, and hypophyseal aneurysm subtypes, as necessitated by their varied surgical approaches and risks, the proposed classification emphasizes their common endovascular treatment features, while recognizing that many complex, trans-segmental, and fusiform aneurysms not readily classifiable into presently available, saccular aneurysm-driven schemes, are being increasingly addressed by endovascular means. We believe this classification may find utility in standardizing nomenclature for outcome tracking, treatment trials and physician communication.
Underwater target classification using wavelet packets and neural networks.
Azimi-Sadjadi, M R; Yao, D; Huang, Q; Dobeck, G J
2000-01-01
In this paper, a new subband-based classification scheme is developed for classifying underwater mines and mine-like targets from the acoustic backscattered signals. The system consists of a feature extractor using wavelet packets in conjunction with linear predictive coding (LPC), a feature selection scheme, and a backpropagation neural-network classifier. The data set used for this study consists of the backscattered signals from six different objects: two mine-like targets and four nontargets for several aspect angles. Simulation results on ten different noisy realizations and for signal-to-noise ratio (SNR) of 12 dB are presented. The receiver operating characteristic (ROC) curve of the classifier generated based on these results demonstrated excellent classification performance of the system. The generalization ability of the trained network was demonstrated by computing the error and classification rate statistics on a large data set. A multiaspect fusion scheme was also adopted in order to further improve the classification performance.
Urrutia, Julio; Zamora, Tomas; Klaber, Ianiv; Carmona, Maximiliano; Palma, Joaquin; Campos, Mauricio; Yurac, Ratko
2016-04-01
It has been postulated that the complex patterns of spinal injuries have prevented adequate agreement using thoraco-lumbar spinal injuries (TLSI) classifications; however, limb fracture classifications have also shown variable agreements. This study compared agreement using two TLSI classifications with agreement using two classifications of fractures of the trochanteric area of the proximal femur (FTAPF). Six evaluators classified the radiographs and computed tomography scans of 70 patients with acute TLSI using the Denis and the new AO Spine thoraco-lumbar injury classifications. Additionally, six evaluators classified the radiographs of 70 patients with FTAPF using the Tronzo and the AO schemes. Six weeks later, all cases were presented in a random sequence for repeat assessment. The Kappa coefficient (κ) was used to determine agreement. Inter-observer agreement: For TLSI, using the AOSpine classification, the mean κ was 0.62 (0.57-0.66) considering fracture types, and 0.55 (0.52-0.57) considering sub-types; using the Denis classification, κ was 0.62 (0.59-0.65). For FTAPF, with the AO scheme, the mean κ was 0.58 (0.54-0.63) considering fracture types and 0.31 (0.28-0.33) considering sub-types; for the Tronzo classification, κ was 0.54 (0.50-0.57). Intra-observer agreement: For TLSI, using the AOSpine scheme, the mean κ was 0.77 (0.72-0.83) considering fracture types, and 0.71 (0.67-0.76) considering sub-types; for the Denis classification, κ was 0.76 (0.71-0.81). For FTAPF, with the AO scheme, the mean κ was 0.75 (0.69-0.81) considering fracture types and 0.45 (0.39-0.51) considering sub-types; for the Tronzo classification, κ was 0.64 (0.58-0.70). Using the main types of AO classifications, inter- and intra-observer agreement of TLSI were comparable to agreement evaluating FTAPF; including sub-types, inter- and intra-observer agreement evaluating TLSI were significantly better than assessing FTAPF. Inter- and intra-observer agreements using the Denis classification were also significantly better than agreement using the Tronzo scheme. Copyright © 2015 Elsevier Ltd. All rights reserved.
C/O Ratio as a Dimension for Characterizing Exoplanetary Atmospheres
NASA Astrophysics Data System (ADS)
Madhusudhan, Nikku
2012-10-01
Until recently, infrared observations of exoplanetary atmospheres have typically been interpreted using models that assumed solar elemental abundances. With the chemical composition fixed, attempts have been made to classify hot Jupiter atmospheres on the basis of stellar irradiation. However, recent observations have revealed deviations from predictions based on such classification schemes, and chemical compositions retrieved from some data sets have also indicated non-solar abundances. The data require a two-dimensional (2D) characterization scheme with dependence on both irradiation and chemistry. In this work, we suggest the carbon-to-oxygen (C/O) ratio as an important second dimension for characterizing exoplanetary atmospheres. In hot-hydrogen-dominated atmospheres, the C/O ratio critically influences the relative concentrations of several spectroscopically dominant species. Between a C/O of 0.5 (solar value) and 2, the H2O and CH4 abundances can vary by several orders of magnitude in the observable atmosphere, and new hydrocarbon species such as HCN and C2H2 become prominent for C/O >= 1, while the CO abundance remains almost unchanged. Furthermore, a C/O >= 1 can preclude a strong thermal inversion due to TiO and VO in a hot Jupiter atmosphere, since TiO and VO are naturally underabundant for C/O >= 1. We, therefore, suggest a new 2D classification scheme for hydrogen-dominated exoplanetary atmospheres with irradiation (or temperature) and C/O ratio as the two dimensions. We define four classes in this 2D space (O1, O2, C1, and C2) with distinct chemical, thermal, and spectral properties. Based on the most recent observations, we characterize the thermal structure and C/O ratios of six hot Jupiters (XO-1b, CoRoT-2b, WASP-14b, WASP-19b, WASP-33b, and WASP-12b) in the framework of our proposed 2D classification scheme. While the data for several systems in our sample are consistent with C-rich atmospheres, new observations are required to conclusively constrain their C/O ratios in the day side as well as the terminator regions of their atmospheres. We discuss how observations using existing and forthcoming facilities can constrain C/O ratios in exoplanetary atmospheres.
C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhusudhan, Nikku, E-mail: Nikku.Madhusudhan@yale.edu; Department of Astronomy, Yale University, New Haven, CT 06511
2012-10-10
Until recently, infrared observations of exoplanetary atmospheres have typically been interpreted using models that assumed solar elemental abundances. With the chemical composition fixed, attempts have been made to classify hot Jupiter atmospheres on the basis of stellar irradiation. However, recent observations have revealed deviations from predictions based on such classification schemes, and chemical compositions retrieved from some data sets have also indicated non-solar abundances. The data require a two-dimensional (2D) characterization scheme with dependence on both irradiation and chemistry. In this work, we suggest the carbon-to-oxygen (C/O) ratio as an important second dimension for characterizing exoplanetary atmospheres. In hot-hydrogen-dominated atmospheres,more » the C/O ratio critically influences the relative concentrations of several spectroscopically dominant species. Between a C/O of 0.5 (solar value) and 2, the H{sub 2}O and CH{sub 4} abundances can vary by several orders of magnitude in the observable atmosphere, and new hydrocarbon species such as HCN and C{sub 2}H{sub 2} become prominent for C/O {>=} 1, while the CO abundance remains almost unchanged. Furthermore, a C/O {>=} 1 can preclude a strong thermal inversion due to TiO and VO in a hot Jupiter atmosphere, since TiO and VO are naturally underabundant for C/O {>=} 1. We, therefore, suggest a new 2D classification scheme for hydrogen-dominated exoplanetary atmospheres with irradiation (or temperature) and C/O ratio as the two dimensions. We define four classes in this 2D space (O1, O2, C1, and C2) with distinct chemical, thermal, and spectral properties. Based on the most recent observations, we characterize the thermal structure and C/O ratios of six hot Jupiters (XO-1b, CoRoT-2b, WASP-14b, WASP-19b, WASP-33b, and WASP-12b) in the framework of our proposed 2D classification scheme. While the data for several systems in our sample are consistent with C-rich atmospheres, new observations are required to conclusively constrain their C/O ratios in the day side as well as the terminator regions of their atmospheres. We discuss how observations using existing and forthcoming facilities can constrain C/O ratios in exoplanetary atmospheres.« less
Urrutia, Julio; Zamora, Tomas; Campos, Mauricio; Yurac, Ratko; Palma, Joaquin; Mobarec, Sebastian; Prada, Carlos
2016-07-01
We performed an agreement study using two subaxial cervical spine classification systems: the AOSpine and the Allen and Ferguson (A&F) classifications. We sought to determine which scheme allows better agreement by different evaluators and by the same evaluator on different occasions. Complete imaging studies of 65 patients with subaxial cervical spine injuries were classified by six evaluators (three spine sub-specialists and three senior orthopaedic surgery residents) using the AOSpine subaxial cervical spine classification system and the A&F scheme. The cases were displayed in a random sequence after a 6-week interval for repeat evaluation. The Kappa coefficient (κ) was used to determine inter- and intra-observer agreement. Inter-observer: considering the main AO injury types, the agreement was substantial for the AOSpine classification [κ = 0.61 (0.57-0.64)]; using AO sub-types, the agreement was moderate [κ = 0.57 (0.54-0.60)]. For the A&F classification, the agreement [κ = 0.46 (0.42-0.49)] was significantly lower than using the AOSpine scheme. Intra-observer: the agreement was substantial considering injury types [κ = 0.68 (0.62-0.74)] and considering sub-types [κ = 0.62 (0.57-0.66)]. Using the A&F classification, the agreement was also substantial [κ = 0.66 (0.61-0.71)]. No significant differences were observed between spine surgeons and orthopaedic residents in the overall inter- and intra-observer agreement, or in the inter- and intra-observer agreement of specific type of injuries. The AOSpine classification (using the four main injury types or at the sub-types level) allows a significantly better agreement than the A&F classification. The A&F scheme does not allow reliable communication between medical professionals.
NASA Technical Reports Server (NTRS)
Hsu, Wei-Chen; Kuss, Amber Jean; Ketron, Tyler; Nguyen, Andrew; Remar, Alex Covello; Newcomer, Michelle; Fleming, Erich; Debout, Leslie; Debout, Brad; Detweiler, Angela;
2011-01-01
Tidal marshes are highly productive ecosystems that support migratory birds as roosting and over-wintering habitats on the Pacific Flyway. Microphytobenthos, or more commonly 'biofilms' contribute significantly to the primary productivity of wetland ecosystems, and provide a substantial food source for macroinvertebrates and avian communities. In this study, biofilms were characterized based on taxonomic classification, density differences, and spectral signatures. These techniques were then applied to remotely sensed images to map biofilm densities and distributions in the South Bay Salt Ponds and predict the carrying capacity of these newly restored ponds for migratory birds. The GER-1500 spectroradiometer was used to obtain in situ spectral signatures for each density-class of biofilm. The spectral variation and taxonomic classification between high, medium, and low density biofilm cover types was mapped using in-situ spectral measurements and classification of EO-1 Hyperion and Landsat TM 5 images. Biofilm samples were also collected in the field to perform laboratory analyses including chlorophyll-a, taxonomic classification, and energy content. Comparison of the spectral signatures between the three density groups shows distinct variations useful for classification. Also, analysis of chlorophyll-a concentrations show statistically significant differences between each density group, using the Tukey-Kramer test at an alpha level of 0.05. The potential carrying capacity in South Bay Salt Ponds is estimated to be 250,000 birds.
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-01-01
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification. PMID:28025525
NASA Astrophysics Data System (ADS)
Qu, Haicheng; Liang, Xuejian; Liang, Shichao; Liu, Wanjun
2018-01-01
Many methods of hyperspectral image classification have been proposed recently, and the convolutional neural network (CNN) achieves outstanding performance. However, spectral-spatial classification of CNN requires an excessively large model, tremendous computations, and complex network, and CNN is generally unable to use the noisy bands caused by water-vapor absorption. A dimensionality-varied CNN (DV-CNN) is proposed to address these issues. There are four stages in DV-CNN and the dimensionalities of spectral-spatial feature maps vary with the stages. DV-CNN can reduce the computation and simplify the structure of the network. All feature maps are processed by more kernels in higher stages to extract more precise features. DV-CNN also improves the classification accuracy and enhances the robustness to water-vapor absorption bands. The experiments are performed on data sets of Indian Pines and Pavia University scene. The classification performance of DV-CNN is compared with state-of-the-art methods, which contain the variations of CNN, traditional, and other deep learning methods. The experiment of performance analysis about DV-CNN itself is also carried out. The experimental results demonstrate that DV-CNN outperforms state-of-the-art methods for spectral-spatial classification and it is also robust to water-vapor absorption bands. Moreover, reasonable parameters selection is effective to improve classification accuracy.
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-12-22
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification.
NASA Astrophysics Data System (ADS)
Arnold, Thomas; De Biasio, Martin; Leitner, Raimund
2015-06-01
Two problems are addressed in this paper (i) the fluorescent marker-based and the (ii) marker-free discrimination between healthy and cancerous human tissues. For both applications the performance of hyper-spectral methods are quantified. Fluorescent marker-based tissue classification uses a number of fluorescent markers to dye specific parts of a human cell. The challenge is that the emission spectra of the fluorescent dyes overlap considerably. They are, furthermore disturbed by the inherent auto-fluorescence of human tissue. This results in ambiguities and decreased image contrast causing difficulties for the treatment decision. The higher spectral resolution introduced by tunable-filter-based spectral imaging in combination with spectral unmixing techniques results in an improvement of the image contrast and therefore more reliable information for the physician to choose the treatment decision. Marker-free tissue classification is based solely on the subtle spectral features of human tissue without the use of artificial markers. The challenge in this case is that the spectral differences between healthy and cancerous tissues are subtle and embedded in intra- and inter-patient variations of these features. The contributions of this paper are (i) the evaluation of hyper-spectral imaging in combination with spectral unmixing techniques for fluorescence marker-based tissue classification, (ii) the evaluation of spectral imaging for marker-free intra surgery tissue classification. Within this paper, we consider real hyper-spectral fluorescence and endoscopy data sets to emphasize the practical capability of the proposed methods. It is shown that the combination of spectral imaging with multivariate statistical methods can improve the sensitivity and specificity of the detection and the staging of cancerous tissues compared to standard procedures.
NASA Astrophysics Data System (ADS)
Gao, Yan; Marpu, Prashanth; Morales Manila, Luis M.
2014-11-01
This paper assesses the suitability of 8-band Worldview-2 (WV2) satellite data and object-based random forest algorithm for the classification of avocado growth stages in Mexico. We tested both pixel-based with minimum distance (MD) and maximum likelihood (MLC) and object-based with Random Forest (RF) algorithm for this task. Training samples and verification data were selected by visual interpreting the WV2 images for seven thematic classes: fully grown, middle stage, and early stage of avocado crops, bare land, two types of natural forests, and water body. To examine the contribution of the four new spectral bands of WV2 sensor, all the tested classifications were carried out with and without the four new spectral bands. Classification accuracy assessment results show that object-based classification with RF algorithm obtained higher overall higher accuracy (93.06%) than pixel-based MD (69.37%) and MLC (64.03%) method. For both pixel-based and object-based methods, the classifications with the four new spectral bands (overall accuracy obtained higher accuracy than those without: overall accuracy of object-based RF classification with vs without: 93.06% vs 83.59%, pixel-based MD: 69.37% vs 67.2%, pixel-based MLC: 64.03% vs 36.05%, suggesting that the four new spectral bands in WV2 sensor contributed to the increase of the classification accuracy.
Goode, N; Salmon, P M; Taylor, N Z; Lenné, M G; Finch, C F
2017-10-01
One factor potentially limiting the uptake of Rasmussen's (1997) Accimap method by practitioners is the lack of a contributing factor classification scheme to guide accident analyses. This article evaluates the intra- and inter-rater reliability and criterion-referenced validity of a classification scheme developed to support the use of Accimap by led outdoor activity (LOA) practitioners. The classification scheme has two levels: the system level describes the actors, artefacts and activity context in terms of 14 codes; the descriptor level breaks the system level codes down into 107 specific contributing factors. The study involved 11 LOA practitioners using the scheme on two separate occasions to code a pre-determined list of contributing factors identified from four incident reports. Criterion-referenced validity was assessed by comparing the codes selected by LOA practitioners to those selected by the method creators. Mean intra-rater reliability scores at the system (M = 83.6%) and descriptor (M = 74%) levels were acceptable. Mean inter-rater reliability scores were not consistently acceptable for both coding attempts at the system level (M T1 = 68.8%; M T2 = 73.9%), and were poor at the descriptor level (M T1 = 58.5%; M T2 = 64.1%). Mean criterion referenced validity scores at the system level were acceptable (M T1 = 73.9%; M T2 = 75.3%). However, they were not consistently acceptable at the descriptor level (M T1 = 67.6%; M T2 = 70.8%). Overall, the results indicate that the classification scheme does not currently satisfy reliability and validity requirements, and that further work is required. The implications for the design and development of contributing factors classification schemes are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Active Learning Framework for Hyperspectral Image Classification Using Hierarchical Segmentation
NASA Technical Reports Server (NTRS)
Zhang, Zhou; Pasolli, Edoardo; Crawford, Melba M.; Tilton, James C.
2015-01-01
Augmenting spectral data with spatial information for image classification has recently gained significant attention, as classification accuracy can often be improved by extracting spatial information from neighboring pixels. In this paper, we propose a new framework in which active learning (AL) and hierarchical segmentation (HSeg) are combined for spectral-spatial classification of hyperspectral images. The spatial information is extracted from a best segmentation obtained by pruning the HSeg tree using a new supervised strategy. The best segmentation is updated at each iteration of the AL process, thus taking advantage of informative labeled samples provided by the user. The proposed strategy incorporates spatial information in two ways: 1) concatenating the extracted spatial features and the original spectral features into a stacked vector and 2) extending the training set using a self-learning-based semi-supervised learning (SSL) approach. Finally, the two strategies are combined within an AL framework. The proposed framework is validated with two benchmark hyperspectral datasets. Higher classification accuracies are obtained by the proposed framework with respect to five other state-of-the-art spectral-spatial classification approaches. Moreover, the effectiveness of the proposed pruning strategy is also demonstrated relative to the approaches based on a fixed segmentation.
Li, Zhan; Schaefer, Michael; Strahler, Alan; Schaaf, Crystal; Jupp, David
2018-04-06
The Dual-Wavelength Echidna Lidar (DWEL), a full waveform terrestrial laser scanner (TLS), has been used to scan a variety of forested and agricultural environments. From these scanning campaigns, we summarize the benefits and challenges given by DWEL's novel coaxial dual-wavelength scanning technology, particularly for the three-dimensional (3D) classification of vegetation elements. Simultaneous scanning at both 1064 nm and 1548 nm by DWEL instruments provides a new spectral dimension to TLS data that joins the 3D spatial dimension of lidar as an information source. Our point cloud classification algorithm explores the utilization of both spectral and spatial attributes of individual points from DWEL scans and highlights the strengths and weaknesses of each attribute domain. The spectral and spatial attributes for vegetation element classification each perform better in different parts of vegetation (canopy interior, fine branches, coarse trunks, etc.) and under different vegetation conditions (dead or live, leaf-on or leaf-off, water content, etc.). These environmental characteristics of vegetation, convolved with the lidar instrument specifications and lidar data quality, result in the actual capabilities of spectral and spatial attributes to classify vegetation elements in 3D space. The spectral and spatial information domains thus complement each other in the classification process. The joint use of both not only enhances the classification accuracy but also reduces its variance across the multiple vegetation types we have examined, highlighting the value of the DWEL as a new source of 3D spectral information. Wider deployment of the DWEL instruments is in practice currently held back by challenges in instrument development and the demands of data processing required by coaxial dual- or multi-wavelength scanning. But the simultaneous 3D acquisition of both spectral and spatial features, offered by new multispectral scanning instruments such as the DWEL, opens doors to study biophysical and biochemical properties of forested and agricultural ecosystems at more detailed scales.
VizieR Online Data Catalog: Catalogue of Stellar Spectral Classifications (Skiff, 2008)
NASA Astrophysics Data System (ADS)
Skiff, B. A.
2007-01-01
This file contains spectral classifications for stars collected from the literature, serving as a continuation of the compilations produced by the Jascheks, by Kennedy, and by Buscombe. The source of each spectral type is indicated by a standard 19-digit bibcode citation. These papers of course should be cited in publication, not this compilation. The stars are identified either by the name used in each publication or by a valid SIMBAD identifier. Some effort has been made to determine accurate (~1" or better) coordinates for equinox J2000 (and epoch 2000 if possible), and these serve as a secondary identifier. To the extent possible with current astrometric sources, the components of double stars and stars with composite spectra are shown as separate entries. Magnitudes are provided as an indication of brightness, but these data are not necessarily accurate, as they often derive from photographic photometry or rough estimates. The file includes only spectral types determined from spectra (viz. line and band strengths or ratios), omitting those determined from photometry (e.g. DDO, Vilnius) or inferred from broadband colors or spectral energy distributions. The classifications include MK types as well as types not strictly on the MK system (white dwarfs, Wolf-Rayet, etc), and in addition simple HD-style temperature types. Luminosity classes in the early Mount Wilson style (e.g. 'd' for dwarf, 'g' for giant) and other similar schemes have been converted to modern notation. Since a citation is provided for each entry, the source paper should be consulted for details about classification schemes, spectral dispersion, and instrumentation used. System-defining primary MK standard stars are included from the last lists by Morgan and Keenan, and are flagged by a + sign in column 79. The early-type standards comprise the 1973 "dagger standards" (1973ARA&A..11...29M) and stars from the Morgan, Abt, and Tapscott atlas (1978rmsa.book.....M). Standards from Table I of the Morgan & Abt 'MKA' paper (1972AJ.....77...35M) not appearing in the two later lists are added. Keenan made continual adjustments to the standards lists up to the time of his death. Thus the late-type standards comprise those marked as high-weight standards in the 1989 Perkins catalogue (1989ApJS...71..245K = III/150); the revised S-type standards in collaboration with Boeshaar (1980ApJS...43..379K); plus the carbon standards and class IIIb 'clump giants' in collaboration with Barnbaum (1996ApJS..105..419B and 1999ApJ...518..859K). In addition, I have made use of the final types by Keenan up to January 2000 shown at the Ohio State Web site (http://www-astronomy.mps.ohio-state.edu/MKCool), accessed in autumn 2003. Though the present file contains all the stars in these lists, only those marked as standards are flagged as such. Garrison's list of MK 'anchor points' might also be consulted in this regard (1994mpyp.conf....3G, and http://www.astro.utoronto.ca/~garrison/mkstds.html). The catalogue includes for the first time results from many large-scale objective-prism spectral surveys done at Case, Stockholm, Crimea, Abastumani, and elsewhere. The stars in these surveys were usually identified only on charts or by other indirect means, and have been overlooked heretofore because of the difficulty in recovering the stars. More complete results from these separate publications, including notes and identifications, have been made available to the CDS, and are kept at the Lowell Observatory ftp area (ftp://ftp.lowell.edu/pub/bas/starcats). Not all of these stars are present in SIMBAD. As a 'living catalogue', an attempt will be made to keep up with current literature, and to extend the indexing of citations back in time. The sky coverage of the catalogue as of 2008 Aug 8 is shown in equatorial and galactic coordinates on these figures prepared by Chris Watson (AAVSO): ftp://ftp.lowell.edu/pub/bas/starcats/mktypes_equ.gif (113Kb) ftp://ftp.lowell.edu/pub/bas/starcats/mktypes_gal.gif (107Kb) (2 data files).
Marker-Based Hierarchical Segmentation and Classification Approach for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.; Benediktsson, Jon Atli; Chanussot, Jocelyn
2011-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, pixelwise classification is performed and the most reliably classified pixels are selected as markers, with the corresponding class labels. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.
Analysis of spectrally resolved autofluorescence images by support vector machines
NASA Astrophysics Data System (ADS)
Mateasik, A.; Chorvat, D.; Chorvatova, A.
2013-02-01
Spectral analysis of the autofluorescence images of isolated cardiac cells was performed to evaluate and to classify the metabolic state of the cells in respect to the responses to metabolic modulators. The classification was done using machine learning approach based on support vector machine with the set of the automatically calculated features from recorded spectral profile of spectral autofluorescence images. This classification method was compared with the classical approach where the individual spectral components contributing to cell autofluorescence were estimated by spectral analysis, namely by blind source separation using non-negative matrix factorization. Comparison of both methods showed that machine learning can effectively classify the spectrally resolved autofluorescence images without the need of detailed knowledge about the sources of autofluorescence and their spectral properties.
Spectral Band Selection for Urban Material Classification Using Hyperspectral Libraries
NASA Astrophysics Data System (ADS)
Le Bris, A.; Chehata, N.; Briottet, X.; Paparoditis, N.
2016-06-01
In urban areas, information concerning very high resolution land cover and especially material maps are necessary for several city modelling or monitoring applications. That is to say, knowledge concerning the roofing materials or the different kinds of ground areas is required. Airborne remote sensing techniques appear to be convenient for providing such information at a large scale. However, results obtained using most traditional processing methods based on usual red-green-blue-near infrared multispectral images remain limited for such applications. A possible way to improve classification results is to enhance the imagery spectral resolution using superspectral or hyperspectral sensors. In this study, it is intended to design a superspectral sensor dedicated to urban materials classification and this work particularly focused on the selection of the optimal spectral band subsets for such sensor. First, reflectance spectral signatures of urban materials were collected from 7 spectral libraires. Then, spectral optimization was performed using this data set. The band selection workflow included two steps, optimising first the number of spectral bands using an incremental method and then examining several possible optimised band subsets using a stochastic algorithm. The same wrapper relevance criterion relying on a confidence measure of Random Forests classifier was used at both steps. To cope with the limited number of available spectra for several classes, additional synthetic spectra were generated from the collection of reference spectra: intra-class variability was simulated by multiplying reference spectra by a random coefficient. At the end, selected band subsets were evaluated considering the classification quality reached using a rbf svm classifier. It was confirmed that a limited band subset was sufficient to classify common urban materials. The important contribution of bands from the Short Wave Infra-Red (SWIR) spectral domain (1000-2400 nm) to material classification was also shown.
New Course Design: Classification Schemes and Information Architecture.
ERIC Educational Resources Information Center
Weinberg, Bella Hass
2002-01-01
Describes a course developed at St. John's University (New York) in the Division of Library and Information Science that relates traditional classification schemes to information architecture and Web sites. Highlights include functional aspects of information architecture, that is, the way content is structured; assignments; student reactions; and…
Peatland classification of West Siberia based on Landsat imagery
NASA Astrophysics Data System (ADS)
Terentieva, I.; Glagolev, M.; Lapshina, E.; Maksyutov, S. S.
2014-12-01
Increasing interest in peatlands for prediction of environmental changes requires an understanding of its geographical distribution. West Siberia Plain is the biggest peatland area in Eurasia and is situated in the high latitudes experiencing enhanced rate of climate change. West Siberian taiga mires are important globally, accounting for about 12.5% of the global wetland area. A number of peatland maps of the West Siberia was developed in 1970s, but their accuracy is limited. Here we report the effort in mapping West Siberian peatlands using 30 m resolution Landsat imagery. As a first step, peatland classification scheme oriented on environmental parameter upscaling was developed. The overall workflow involves data pre-processing, training data collection, image classification on a scene-by-scene basis, regrouping of the derived classes into final peatland types and accuracy assessment. To avoid misclassification peatlands were distinguished from other landscapes using threshold method: for each scene, Green-Red Vegetation Indices was used for peatland masking and 5th channel was used for masking water bodies. Peatland image masks were made in Quantum GIS, filtered in MATLAB and then classified in Multispec (Purdue Research Foundation) using maximum likelihood algorithm of supervised classification method. Training sample selection was mostly based on spectral signatures due to limited ancillary and high-resolution image data. As an additional source of information, we applied our field knowledge resulting from more than 10 years of fieldwork in West Siberia summarized in an extensive dataset of botanical relevés, field photos, pH and electrical conductivity data from 40 test sites. After the classification procedure, discriminated spectral classes were generalized into 12 peatland types. Overall accuracy assessment was based on 439 randomly assigned test sites showing final map accuracy was 80%. Total peatland area was estimated at 73.0 Mha. Various ridge-hollow and ridge-hollow-pool bog complexes prevail here occupying 34.5 Mha. They are followed by lakes (11.1 Mha), fens (10.7 Mha), pine-dwarf-shrub sphagnum bogs (9.3 Mha) and palsa complexes (7.4 Mha).
Behavioral state classification in epileptic brain using intracranial electrophysiology
NASA Astrophysics Data System (ADS)
Kremen, Vaclav; Duque, Juliano J.; Brinkmann, Benjamin H.; Berry, Brent M.; Kucewicz, Michal T.; Khadjevand, Fatemeh; Van Gompel, Jamie; Stead, Matt; St. Louis, Erik K.; Worrell, Gregory A.
2017-04-01
Objective. Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. Approach. Data from seven patients (age 34+/- 12 , 4 women) who underwent intracranial depth electrode implantation for iEEG monitoring were included. Spectral power features (0.1-600 Hz) spanning several frequency bands from a single electrode were used to train and test a support vector machine classifier. Main results. Classification accuracy of 97.8 ± 0.3% (normal tissue) and 89.4 ± 0.8% (epileptic tissue) across seven subjects using multiple spectral power features from a single electrode was achieved. Spectral power features from electrodes placed in normal temporal neocortex were found to be more useful (accuracy 90.8 ± 0.8%) for sleep-wake state classification than electrodes located in normal hippocampus (87.1 ± 1.6%). Spectral power in high frequency band features (Ripple (80-250 Hz), Fast Ripple (250-600 Hz)) showed comparable performance for AW and SWS classification as the best performing Berger bands (Alpha, Beta, low Gamma) with accuracy ⩾90% using a single electrode contact and single spectral feature. Significance. Automated classification of wake and SWS should prove useful for future implantable epilepsy devices with limited computational power, memory, and number of electrodes. Applications include quantifying patient sleep patterns and behavioral state dependent detection, prediction, and electrical stimulation therapies.
Probabilistic Amplitude Shaping With Hard Decision Decoding and Staircase Codes
NASA Astrophysics Data System (ADS)
Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi; Steiner, Fabian
2018-05-01
We consider probabilistic amplitude shaping (PAS) as a means of increasing the spectral efficiency of fiber-optic communication systems. In contrast to previous works in the literature, we consider probabilistic shaping with hard decision decoding (HDD). In particular, we apply the PAS recently introduced by B\\"ocherer \\emph{et al.} to a coded modulation (CM) scheme with bit-wise HDD that uses a staircase code as the forward error correction code. We show that the CM scheme with PAS and staircase codes yields significant gains in spectral efficiency with respect to the baseline scheme using a staircase code and a standard constellation with uniformly distributed signal points. Using a single staircase code, the proposed scheme achieves performance within $0.57$--$1.44$ dB of the corresponding achievable information rate for a wide range of spectral efficiencies.
Advances in Spectral-Spatial Classification of Hyperspectral Images
NASA Technical Reports Server (NTRS)
Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.
2012-01-01
Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral–spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.
NASA Astrophysics Data System (ADS)
Pullanagari, Reddy; Kereszturi, Gábor; Yule, Ian J.; Ghamisi, Pedram
2017-04-01
Accurate and spatially detailed mapping of complex urban environments is essential for land managers. Classifying high spectral and spatial resolution hyperspectral images is a challenging task because of its data abundance and computational complexity. Approaches with a combination of spectral and spatial information in a single classification framework have attracted special attention because of their potential to improve the classification accuracy. We extracted multiple features from spectral and spatial domains of hyperspectral images and evaluated them with two supervised classification algorithms; support vector machines (SVM) and an artificial neural network. The spatial features considered are produced by a gray level co-occurrence matrix and extended multiattribute profiles. All of these features were stacked, and the most informative features were selected using a genetic algorithm-based SVM. After selecting the most informative features, the classification model was integrated with a segmentation map derived using a hidden Markov random field. We tested the proposed method on a real application of a hyperspectral image acquired from AisaFENIX and on widely used hyperspectral images. From the results, it can be concluded that the proposed framework significantly improves the results with different spectral and spatial resolutions over different instrumentation.
Hyperspectral analysis of seagrass in Redfish Bay, Texas
NASA Astrophysics Data System (ADS)
Wood, John S.
Remote sensing using multi- and hyperspectral imaging and analysis has been used in resource management for quite some time, and for a variety of purposes. In the studies to follow, hyperspectral imagery of Redfish Bay is used to discriminate between species of seagrasses found below the water surface. Water attenuates and reflects light and energy from the electromagnetic spectrum, and as a result, subsurface analysis can be more complex than that performed in the terrestrial world. In the following studies, an iterative process is developed, using ENVI image processing software and ArcGIS software. Band selection was based on recommendations developed empirically in conjunction with ongoing research into depth corrections, which were applied to the imagery bands (a default depth of 65 cm was used). Polygons generated, classified and aggregated within ENVI are reclassified in ArcGIS using field site data that was randomly selected for that purpose. After the first iteration, polygons that remain classified as 'Mixed' are subjected to another iteration of classification in ENVI, then brought into ArcGIS and reclassified. Finally, when that classification scheme is exhausted, a supervised classification is performed, using a 'Maximum Likelihood' classification technique, which assigned the remaining polygons to the classification that was most like the training polygons, by digital number value. Producer's Accuracy by classification ranged from 23.33 % for the 'MixedMono' class to 66.67% for the 'Bare' class; User's Accuracy by classification ranged from 22.58% for the 'MixedMono' class to 69.57% for the 'Bare' classification. An overall accuracy of 37.93% was achieved. Producers and Users Accuracies for Halodule were 29% and 39%, respectively; for Thalassia, they were 46% and 40%. Cohen's Kappa Coefficient was calculated at .2988. We then returned to the field and collected spectral signatures of monotypic stands of seagrass at varying depths and at three sensor levels: above the water surface, just below the air/water interface, and at the canopy position, when it differed from the subsurface position. Analysis of plots of these spectral curves, after applying depth corrections and Multiplicative Scatter Correction, indicates that there are detectable spectral differences between Halodule and Thalassia species at all three positions. Further analysis indicated that only above-surface spectral signals could reliably be used to discriminate between species, because there was an overlap of the standard deviations in the other two positions. A recommendation for wavelengths that would produce increased accuracy in hyperspectral image analysis was made, based on areas where there is a significant amount of difference between the mean spectral signatures, and no overlap of the standard deviations in our samples. The original hyperspectral imagery was reprocessed, using the bands recommended from the research above (approximately 535, 600, 620, 638, and 656 nm). A depth raster was developed from various available sources, which was resampled and reclassified to reflect values for water absorption and water scattering, which were then applied to each band using the depth correction algorithm. Processing followed the iterative classification methods described above. Accuracy for this round of processing improved; overall accuracy increased from 38% to 57%. Improvements were noted in Producer's Accuracy, with the 'Bare' vi classification increasing from 67% to 73%, Halodule increasing from 29% to 63%, Thalassia increasing slightly, from 46% to 50%, and 'MixedMono' improving from 23% to 42%. User's Accuracy also improved, with the 'Bare' class increasing from 69% to 70%, Halodule increasing from 39% to 67%, Thalassia increasing from 40% to 7%, and 'MixedMono' increasing from 22.5% to 35%. A very recent report shows the mean percent cover of seagrasses in Redfish Bay and Corpus Christi Bay combined for all species at 68.6%, and individually by species: Halodule 39.8%, Thalassia 23.7%, Syringodium 4%, Ruppia 1% and Halophila 0.1%. Our study classifies 15% as 'Bare', 23% Halodule, 18% Thalassia, and 2% Ruppia. In addition, we classify 5% as 'Mixed', 22% as 'MixedMono', 12% as 'Bare/Halodule Mix', and 3% 'Bare/Thalassia Mix'. Aggregating the 'Bare' and 'Bare/species' classes would equate to approximately 30%, very close to what this new study produces. Other classes are quite similar, when considering that their study includes no 'Mixed' classifications. This series of research studies illustrates the application and utility of hyperspectral imagery and associated processing to mapping shallow benthic habitats. It also demonstrates that the technology is rapidly changing and adapting, which will lead to even further increases in accuracy. Future studies with hyperspectral imaging should include extensive spectral field collection, and the application of a depth correction.
Enhancing Vocabulary Acquisition Through Reading: A Hierarchy of Text-Related Exercise Types.
ERIC Educational Resources Information Center
Paribakht, T. Sima; Wesche, Marjorie
1996-01-01
Presents a classification scheme for reading-related exercises advocated in English-as-a-Foreign-Language textbooks. The scheme proposes a hierarchy of the degree and type of mental processing required by various vocabulary exercises. The categories of classification are selective attention, recognition, manipulation, interpretation and…
Comparing ecoregional classifications for natural areas management in the Klamath Region, USA
Sarr, Daniel A.; Duff, Andrew; Dinger, Eric C.; Shafer, Sarah L.; Wing, Michael; Seavy, Nathaniel E.; Alexander, John D.
2015-01-01
We compared three existing ecoregional classification schemes (Bailey, Omernik, and World Wildlife Fund) with two derived schemes (Omernik Revised and Climate Zones) to explore their effectiveness in explaining species distributions and to better understand natural resource geography in the Klamath Region, USA. We analyzed presence/absence data derived from digital distribution maps for trees, amphibians, large mammals, small mammals, migrant birds, and resident birds using three statistical analyses of classification accuracy (Analysis of Similarity, Canonical Analysis of Principal Coordinates, and Classification Strength). The classifications were roughly comparable in classification accuracy, with Omernik Revised showing the best overall performance. Trees showed the strongest fidelity to the classifications, and large mammals showed the weakest fidelity. We discuss the implications for regional biogeography and describe how intermediate resolution ecoregional classifications may be appropriate for use as natural areas management domains.
NASA Technical Reports Server (NTRS)
Key, J.
1990-01-01
The spectral and textural characteristics of polar clouds and surfaces for a 7-day summer series of AVHRR data in two Arctic locations are examined, and the results used in the development of a cloud classification procedure for polar satellite data. Since spatial coherence and texture sensitivity tests indicate that a joint spectral-textural analysis based on the same cell size is inappropriate, cloud detection with AVHRR data and surface identification with passive microwave data are first done on the pixel level as described by Key and Barry (1989). Next, cloud patterns within 250-sq-km regions are described, then the spectral and local textural characteristics of cloud patterns in the image are determined and each cloud pixel is classified by statistical methods. Results indicate that both spectral and textural features can be utilized in the classification of cloudy pixels, although spectral features are most useful for the discrimination between cloud classes.
VizieR Online Data Catalog: LAMOST-Kepler MKCLASS spectral classification (Gray+, 2016)
NASA Astrophysics Data System (ADS)
Gray, R. O.; Corbally, C. J.; De Cat, P.; Fu, J. N.; Ren, A. B.; Shi, J. R.; Luo, A. L.; Zhang, H. T.; Wu, Y.; Cao, Z.; Li, G.; Zhang, Y.; Hou, Y.; Wang, Y.
2016-07-01
The data for the LAMOST-Kepler project are supplied by the Large Sky Area Multi Object Fiber Spectroscopic Telescope (LAMOST, also known as the Guo Shou Jing Telescope). This unique astronomical instrument is located at the Xinglong observatory in China, and combines a large aperture (4 m) telescope with a 5° circular field of view (Wang et al. 1996ApOpt..35.5155W). Our role in this project is to supply accurate two-dimensional spectral types for the observed targets. The large number of spectra obtained for this project (101086) makes traditional visual classification techniques impractical, so we have utilized the MKCLASS code to perform these classifications. The MKCLASS code (Gray & Corbally 2014AJ....147...80G, v1.07 http://www.appstate.edu/~grayro/mkclass/), an expert system designed to classify blue-violet spectra on the MK Classification system, was employed to produce the spectral classifications reported in this paper. MKCLASS was designed to reproduce the steps skilled human classifiers employ in the classification process. (2 data files).
NASA Astrophysics Data System (ADS)
Jürgens, Björn; Herrero-Solana, Victor
2017-04-01
Patents are an essential information source used to monitor, track, and analyze nanotechnology. When it comes to search nanotechnology-related patents, a keyword search is often incomplete and struggles to cover such an interdisciplinary discipline. Patent classification schemes can reveal far better results since they are assigned by experts who classify the patent documents according to their technology. In this paper, we present the most important classifications to search nanotechnology patents and analyze how nanotechnology is covered in the main patent classification systems used in search systems nowadays: the International Patent Classification (IPC), the United States Patent Classification (USPC), and the Cooperative Patent Classification (CPC). We conclude that nanotechnology has a significantly better patent coverage in the CPC since considerable more nanotechnology documents were retrieved than by using other classifications, and thus, recommend its use for all professionals involved in nanotechnology patent searches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arias, Julia I.; Barbá, Rodolfo H.; Sabín-Sanjulián, Carolina
On the basis of the Galactic O Star Spectroscopic Survey (GOSSS), we present a detailed systematic investigation of the O Vz stars. The currently used spectral classification criteria are rediscussed, and the Vz phenomenon is recalibrated through the addition of a quantitative criterion based on the equivalent widths of the He i λ 4471, He ii λ 4542, and He ii λ 4686 spectral lines. The GOSSS O Vz and O V populations resulting from the newly adopted spectral classification criteria are comparatively analyzed. The locations of the O Vz stars are probed, showing a concentration of the most extrememore » cases toward the youngest star-forming regions. The occurrence of the Vz spectral peculiarity in a solar-metallicity environment, as predicted by the fastwind code, is also investigated, confirming the importance of taking into account several processes for the correct interpretation of the phenomenon.« less
Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo
2017-01-01
Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise processing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selection and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels (disease severity) of intact Chardonnay grape bunches shortly before veraison. Instead of calculating texture features (spatial features) for the huge number of spectral bands independently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective extraction of texture parameters from the integral image representation of the image bands generated. Dimensionality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up to [Formula: see text] for detached berries used as a reference sample (training dataset). Our approach was validated by predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visually healthy and infected bunches proved to be challenging for a few samples, perhaps due to colonized berries or sparse mycelia hidden within the bunch or airborne conidia on the berries that were detected by qPCR. An advanced approach to hyperspectral image classification based on combined spatial and spectral image features, potentially applicable to many available hyperspectral sensor technologies, has been developed and validated to improve the detection of powdery mildew infection levels of Chardonnay grape bunches. The spatial-spectral approach improved especially the detection of light infection levels compared with pixel-wise spectral data analysis. This approach is expected to improve the speed and accuracy of disease detection once the thresholds for fungal biomass detected by hyperspectral imaging are established; it can also facilitate monitoring in plant phenotyping of grapevine and additional crops.
Palomar 60-inch SEDM classification of optical transients
NASA Astrophysics Data System (ADS)
Fremling, Christoffer; Blagorodnova, Nadejda; Neill, James D.; Walters, Richard; Cannella, Christopher B.; Kulkarni, Shrinivas R.
2018-03-01
We report the classification of the following bright transients. The spectra have been obtained with the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018).
Optical temperature compensation schemes of spectral modulation sensors for aircraft engine control
NASA Astrophysics Data System (ADS)
Berkcan, Ertugrul
1993-02-01
Optical temperature compensation schemes for the ratiometric interrogation of spectral modulation sensors for source temperature robustness are presented. We have obtained better than 50 - 100X decrease of the temperature coefficient of the sensitivity using these types of compensation. We have also developed a spectrographic interrogation scheme that provides increased source temperature robustness; this affords a significantly improved accuracy over FADEC temperature ranges as well as temperature coefficient of the sensitivity that is substantially and further reduced. This latter compensation scheme can be integrated in a small E/O package including the detection, analog and digital signal processing. We find that these interrogation schemes can be used within a detector spatially multiplexed architecture.
NASA Astrophysics Data System (ADS)
Shvelidze, Teimuraz; Malyuto, Valeri
2015-08-01
Quantitative spectral classification of F, G and K stars with the 70-cm telescope of the Ambastumani Astrophysical Observatory in areas of the main meridional section of the Galaxy, and for which proper motion data are available, has been performed. Fundamental parameters have been obtained for several hundred stars. Space densities of stars of different spectral types, the stellar luminosity function and the relationships between the kinematics and metallicity of stars have been studied. The results have confirmed and completed the conclusions made on the basis of some previous spectroscopic and photometric surveys. Many plates have been obtained for other important directions in the sky: the Kapteyn areas, the Galactic anticentre, the main meridional section of the Galaxy and etc. Very rich collection of photographic objective spectral plates (30,000 were accumulated during last 60 years) is available at Abastumani Observatory-wavelength range 3900-4900 A, about 2A resolution. Availability of new devices for automatic registration of spectra from photographic plates as well as some recently developed classification techniques may allow now to create a modern system of automatic spectral classification and with expension of classification techniques to additional types (B-A, M spectral classes). The data can be treated with the same quantitative method applied here. This method may also be applied to other available and future spectroscopic data of similar resolution, notably that obtained with large format CCD detectors on Schmidt-type telescopes.
McClements, David Julian; Li, Fang; Xiao, Hang
2015-01-01
The oral bioavailability of a health-promoting dietary component (nutraceutical) may be limited by various physicochemical and physiological phenomena: liberation from food matrices, solubility in gastrointestinal fluids, interaction with gastrointestinal components, chemical degradation or metabolism, and epithelium cell permeability. Nutraceutical bioavailability can therefore be improved by designing food matrices that control their bioaccessibility (B*), absorption (A*), and transformation (T*) within the gastrointestinal tract (GIT). This article reviews the major factors influencing the gastrointestinal fate of nutraceuticals, and then uses this information to develop a new scheme to classify the major factors limiting nutraceutical bioavailability: the nutraceutical bioavailability classification scheme (NuBACS). This new scheme is analogous to the biopharmaceutical classification scheme (BCS) used by the pharmaceutical industry to classify drug bioavailability, but it contains additional factors important for understanding nutraceutical bioavailability in foods. The article also highlights potential strategies for increasing the oral bioavailability of nutraceuticals based on their NuBACS designation (B*A*T*).
Thompson, Bryony A; Spurdle, Amanda B; Plazzer, John-Paul; Greenblatt, Marc S; Akagi, Kiwamu; Al-Mulla, Fahd; Bapat, Bharati; Bernstein, Inge; Capellá, Gabriel; den Dunnen, Johan T; du Sart, Desiree; Fabre, Aurelie; Farrell, Michael P; Farrington, Susan M; Frayling, Ian M; Frebourg, Thierry; Goldgar, David E; Heinen, Christopher D; Holinski-Feder, Elke; Kohonen-Corish, Maija; Robinson, Kristina Lagerstedt; Leung, Suet Yi; Martins, Alexandra; Moller, Pal; Morak, Monika; Nystrom, Minna; Peltomaki, Paivi; Pineda, Marta; Qi, Ming; Ramesar, Rajkumar; Rasmussen, Lene Juel; Royer-Pokora, Brigitte; Scott, Rodney J; Sijmons, Rolf; Tavtigian, Sean V; Tops, Carli M; Weber, Thomas; Wijnen, Juul; Woods, Michael O; Macrae, Finlay; Genuardi, Maurizio
2014-02-01
The clinical classification of hereditary sequence variants identified in disease-related genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test and apply a standardized classification scheme to constitutional variants in the Lynch syndrome-associated genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist in variant classification and was recognized through microattribution. The scheme was refined by multidisciplinary expert committee review of the clinical and functional data available for variants, applied to 2,360 sequence alterations, and disseminated online. Assessment using validated criteria altered classifications for 66% of 12,006 database entries. Clinical recommendations based on transparent evaluation are now possible for 1,370 variants that were not obviously protein truncating from nomenclature. This large-scale endeavor will facilitate the consistent management of families suspected to have Lynch syndrome and demonstrates the value of multidisciplinary collaboration in the curation and classification of variants in public locus-specific databases.
Cheese Classification, Characterization, and Categorization: A Global Perspective.
Almena-Aliste, Montserrat; Mietton, Bernard
2014-02-01
Cheese is one of the most fascinating, complex, and diverse foods enjoyed today. Three elements constitute the cheese ecosystem: ripening agents, consisting of enzymes and microorganisms; the composition of the fresh cheese; and the environmental conditions during aging. These factors determine and define not only the sensory quality of the final cheese product but also the vast diversity of cheeses produced worldwide. How we define and categorize cheese is a complicated matter. There are various approaches to cheese classification, and a global approach for classification and characterization is needed. We review current cheese classification schemes and the limitations inherent in each of the schemes described. While some classification schemes are based on microbiological criteria, others rely on descriptions of the technologies used for cheese production. The goal of this review is to present an overview of comprehensive and practical integrative classification models in order to better describe cheese diversity and the fundamental differences within cheeses, as well as to connect fundamental technological, microbiological, chemical, and sensory characteristics to contribute to an overall characterization of the main families of cheese, including the expanding world of American artisanal cheeses.
New KF-PP-SVM classification method for EEG in brain-computer interfaces.
Yang, Banghua; Han, Zhijun; Zan, Peng; Wang, Qian
2014-01-01
Classification methods are a crucial direction in the current study of brain-computer interfaces (BCIs). To improve the classification accuracy for electroencephalogram (EEG) signals, a novel KF-PP-SVM (kernel fisher, posterior probability, and support vector machine) classification method is developed. Its detailed process entails the use of common spatial patterns to obtain features, based on which the within-class scatter is calculated. Then the scatter is added into the kernel function of a radial basis function to construct a new kernel function. This new kernel is integrated into the SVM to obtain a new classification model. Finally, the output of SVM is calculated based on posterior probability and the final recognition result is obtained. To evaluate the effectiveness of the proposed KF-PP-SVM method, EEG data collected from laboratory are processed with four different classification schemes (KF-PP-SVM, KF-SVM, PP-SVM, and SVM). The results showed that the overall average improvements arising from the use of the KF-PP-SVM scheme as opposed to KF-SVM, PP-SVM and SVM schemes are 2.49%, 5.83 % and 6.49 % respectively.
Plazzer, John-Paul; Greenblatt, Marc S.; Akagi, Kiwamu; Al-Mulla, Fahd; Bapat, Bharati; Bernstein, Inge; Capellá, Gabriel; den Dunnen, Johan T.; du Sart, Desiree; Fabre, Aurelie; Farrell, Michael P.; Farrington, Susan M.; Frayling, Ian M.; Frebourg, Thierry; Goldgar, David E.; Heinen, Christopher D.; Holinski-Feder, Elke; Kohonen-Corish, Maija; Robinson, Kristina Lagerstedt; Leung, Suet Yi; Martins, Alexandra; Moller, Pal; Morak, Monika; Nystrom, Minna; Peltomaki, Paivi; Pineda, Marta; Qi, Ming; Ramesar, Rajkumar; Rasmussen, Lene Juel; Royer-Pokora, Brigitte; Scott, Rodney J.; Sijmons, Rolf; Tavtigian, Sean V.; Tops, Carli M.; Weber, Thomas; Wijnen, Juul; Woods, Michael O.; Macrae, Finlay; Genuardi, Maurizio
2015-01-01
Clinical classification of sequence variants identified in hereditary disease genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test and apply a standardized classification scheme to constitutional variants in the Lynch Syndrome genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist variant classification, and recognized by microattribution. The scheme was refined by multidisciplinary expert committee review of clinical and functional data available for variants, applied to 2,360 sequence alterations, and disseminated online. Assessment using validated criteria altered classifications for 66% of 12,006 database entries. Clinical recommendations based on transparent evaluation are now possible for 1,370 variants not obviously protein-truncating from nomenclature. This large-scale endeavor will facilitate consistent management of suspected Lynch Syndrome families, and demonstrates the value of multidisciplinary collaboration for curation and classification of variants in public locus-specific databases. PMID:24362816
Exploring new classification criteria for the earliest type stars: the 3400 Aregion
NASA Astrophysics Data System (ADS)
Morrell, Nidia I.; Walborn, Nolan R.; Arias, Julia I.
2002-02-01
We propose spectroscopic observations of a sample of standard O2-O4 stars in the wavelength region containing the N IV 3479-83-85 Aand O IV 3381-85-3412 Alines, in order to analyze the behavior of these spectral features as a function of the spectral type. We aim to define new classification criteria for the hottest stars, evaluating these N IV and O IV lines near 3400 Aas possible temperature and luminosity discriminators. The former spectral class O3 has just been split into three different classes: O2, O3 and O3.5 (Walborn et al. 2001). The paucity of classification criteria at these types in the traditional wavelength domain (4000 - 4700 Å), makes clear the need to explore other spectral ranges in order to define additional constraints on the determination of spectral types and luminosity classes. The wavelength range around 3400 Ahas been observed in many faint, crowded early O-type stars by HST/FOS, the corresponding data being available from the HST archive. This enhances our interest in observing this spectral range in the classification standards for the early O-type stars in order to make these existing HST observations even more useful, allowing the determination of accurate spectral types for unknown objects from them, once the behavior of the new criteria in the standards has been charted.
A comparison of autonomous techniques for multispectral image analysis and classification
NASA Astrophysics Data System (ADS)
Valdiviezo-N., Juan C.; Urcid, Gonzalo; Toxqui-Quitl, Carina; Padilla-Vivanco, Alfonso
2012-10-01
Multispectral imaging has given place to important applications related to classification and identification of objects from a scene. Because of multispectral instruments can be used to estimate the reflectance of materials in the scene, these techniques constitute fundamental tools for materials analysis and quality control. During the last years, a variety of algorithms has been developed to work with multispectral data, whose main purpose has been to perform the correct classification of the objects in the scene. The present study introduces a brief review of some classical as well as a novel technique that have been used for such purposes. The use of principal component analysis and K-means clustering techniques as important classification algorithms is here discussed. Moreover, a recent method based on the min-W and max-M lattice auto-associative memories, that was proposed for endmember determination in hyperspectral imagery, is introduced as a classification method. Besides a discussion of their mathematical foundation, we emphasize their main characteristics and the results achieved for two exemplar images conformed by objects similar in appearance, but spectrally different. The classification results state that the first components computed from principal component analysis can be used to highlight areas with different spectral characteristics. In addition, the use of lattice auto-associative memories provides good results for materials classification even in the cases where some spectral similarities appears in their spectral responses.
Use of field reflectance data for crop mapping using airborne hyperspectral image
NASA Astrophysics Data System (ADS)
Nidamanuri, Rama Rao; Zbell, Bernd
2011-09-01
Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question "what is the prospect of using independent reference reflectance spectra for image classification", while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of "non-existence of characteristic reflectance spectral signatures for vegetation", results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.
Best Merge Region Growing with Integrated Probabilistic Classification for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2011-01-01
A new method for spectral-spatial classification of hyperspectral images is proposed. The method is based on the integration of probabilistic classification within the hierarchical best merge region growing algorithm. For this purpose, preliminary probabilistic support vector machines classification is performed. Then, hierarchical step-wise optimization algorithm is applied, by iteratively merging regions with the smallest Dissimilarity Criterion (DC). The main novelty of this method consists in defining a DC between regions as a function of region statistical and geometrical features along with classification probabilities. Experimental results are presented on a 200-band AVIRIS image of the Northwestern Indiana s vegetation area and compared with those obtained by recently proposed spectral-spatial classification techniques. The proposed method improves classification accuracies when compared to other classification approaches.
NASA Astrophysics Data System (ADS)
Bianconi, Francesco; Bello-Cerezo, Raquel; Napoletano, Paolo
2018-01-01
Texture classification plays a major role in many computer vision applications. Local binary patterns (LBP) encoding schemes have largely been proven to be very effective for this task. Improved LBP (ILBP) are conceptually simple, easy to implement, and highly effective LBP variants based on a point-to-average thresholding scheme instead of a point-to-point one. We propose the use of this encoding scheme for extracting intra- and interchannel features for color texture classification. We experimentally evaluated the resulting improved opponent color LBP alone and in concatenation with the ILBP of the local color contrast map on a set of image classification tasks over 9 datasets of generic color textures and 11 datasets of biomedical textures. The proposed approach outperformed other grayscale and color LBP variants in nearly all the datasets considered and proved competitive even against image features from last generation convolutional neural networks, particularly for the classification of biomedical images.
TFM classification and staging of oral submucous fibrosis: A new proposal.
Arakeri, Gururaj; Thomas, Deepak; Aljabab, Abdulsalam S; Hunasgi, Santosh; Rai, Kirthi Kumar; Hale, Beverley; Fonseca, Felipe Paiva; Gomez, Ricardo Santiago; Rahimi, Siavash; Merkx, Matthias A W; Brennan, Peter A
2018-04-01
We have evaluated the rationale of existing grading and staging schemes of oral submucous fibrosis (OSMF) based on how they are categorized. A novel classification and staging scheme is proposed. A total of 300 OSMF patients were evaluated for agreement between functional, clinical, and histopathological staging. Bilateral biopsies were assessed in 25 patients to evaluate for any differences in histopathological staging of OSMF in the same mouth. Extent of clinician agreement for categorized staging data was evaluated using Cohen's weighted kappa analysis. Cross-tabulation was performed on categorical grading data to understand the intercorrelation, and the unweighted kappa analysis was used to assess the bilateral grade agreement. Probabilities of less than 0.05 were considered significant. Data were analyzed using SPSS Statistics (version 25.0, IBM, USA). A low agreement was found between all the stages depicting the independent nature of trismus, clinical features, and histopathological components (K = 0.312, 0.167, 0.152) in OSMF. Following analysis, a three-component classification scheme (TFM classification) was developed that describes the severity of each independently, grouping them using a novel three-tier staging scheme as a guide to the treatment plan. The proposed classification and staging could be useful for effective communication, categorization, and for recording data and prognosis, and for guiding treatment plans. Furthermore, the classification considers OSMF malignant transformation in detail. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Abramovich, N. S.; Kovalev, A. A.; Plyuta, V. Y.
1986-02-01
A computer algorithm has been developed to classify the spectral bands of natural scenes on Earth according to their optical characteristics. The algorithm is written in FORTRAN-IV and can be used in spectral data processing programs requiring small data loads. The spectral classifications of some different types of green vegetable canopies are given in order to illustrate the effectiveness of the algorithm.
Integrability and Linear Stability of Nonlinear Waves
NASA Astrophysics Data System (ADS)
Degasperis, Antonio; Lombardo, Sara; Sommacal, Matteo
2018-03-01
It is well known that the linear stability of solutions of 1+1 partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general N× N matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for N=3 for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants.
Palomar 60-inch SEDM classification of optical transients
NASA Astrophysics Data System (ADS)
Fremling, Christoffer; Blagorodnova, Nadejda; Kupfer, Thomas; Neill, James D.; Walters, Richard; Cannella, Christopher B.; Kulkarni, Shrinivas R.
2018-04-01
We report the classification of the following bright transients. The spectra have been obtained with the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003).
Palomar 60-inch SEDM classification of optical transients
NASA Astrophysics Data System (ADS)
Blagorodnova, Nadejda; Fremling, Christoffer; Neill, James D.; Walters, Richard; Cannella, Christopher B.; Kulkarni, Shrinivas R.
2018-03-01
We report the classification of the following bright transients. The spectra have been obtained with the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003).
NASA Technical Reports Server (NTRS)
Persinger, Tim; Castelaz, Michael W.
1990-01-01
This paper presents the results of spectral type and luminosity classification of reference stars in the Allegheny Observatory MAP parallax program, using broadband and intermediate-band photometry. In addition to the use of UBVRI and DDO photometric systems, the uvbyH-beta photometric system was included for classification of blue (B - V less than 0.6) reference stars. The stellar classifications made from the photometry are used to determine spectroscopic parallaxes. The spectroscopic parallaxes are used in turn to adjust the relative parallaxes measured with the MAP to absolute parallaxes. A new method for dereddening stars using more than one photometric system is presented. In the process of dereddening, visual extinctions, spectral types, and luminosity classes are determined, as well as a measure of the goodness of fit. The measure of goodness of fit quantifies confidence in the stellar classifications. It is found that the spectral types are reliable to within 2.5 spectral subclasses.
NASA Astrophysics Data System (ADS)
Pedersen, G. B. M.
2016-02-01
A new object-oriented approach is developed to classify glaciovolcanic landforms (Procedure A) and their landform elements boundaries (Procedure B). It utilizes the principle that glaciovolcanic edifices are geomorphometrically distinct from lava shields and plains (Pedersen and Grosse, 2014), and the approach is tested on data from Reykjanes Peninsula, Iceland. The outlined procedures utilize slope and profile curvature attribute maps (20 m/pixel) and the classified results are evaluated quantitatively through error matrix maps (Procedure A) and visual inspection (Procedure B). In procedure A, the highest obtained accuracy is 94.1%, but even simple mapping procedures provide good results (> 90% accuracy). Successful classification of glaciovolcanic landform element boundaries (Procedure B) is also achieved and this technique has the potential to delineate the transition from intraglacial to subaerial volcanic activity in orthographic view. This object-oriented approach based on geomorphometry overcomes issues with vegetation cover, which has been typically problematic for classification schemes utilizing spectral data. Furthermore, it handles complex edifice outlines well and is easily incorporated into a GIS environment, where results can be edited or fused with other mapping results. The approach outlined here is designed to map glaciovolcanic edifices within the Icelandic neovolcanic zone but may also be applied to similar subaerial or submarine volcanic settings, where steep volcanic edifices are surrounded by flat plains.
NASA Technical Reports Server (NTRS)
Huynh, H. T.; Wang, Z. J.; Vincent, P. E.
2013-01-01
Popular high-order schemes with compact stencils for Computational Fluid Dynamics (CFD) include Discontinuous Galerkin (DG), Spectral Difference (SD), and Spectral Volume (SV) methods. The recently proposed Flux Reconstruction (FR) approach or Correction Procedure using Reconstruction (CPR) is based on a differential formulation and provides a unifying framework for these high-order schemes. Here we present a brief review of recent developments for the FR/CPR schemes as well as some pacing items.
Discovery of User-Oriented Class Associations for Enriching Library Classification Schemes.
ERIC Educational Resources Information Center
Pu, Hsiao-Tieh
2002-01-01
Presents a user-based approach to exploring the possibility of adding user-oriented class associations to hierarchical library classification schemes. Classes not grouped in the same subject hierarchies yet relevant to users' knowledge are obtained by analyzing a log book of a university library's circulation records, using collaborative filtering…
Social Constructivism: Botanical Classification Schemes of Elementary School Children.
ERIC Educational Resources Information Center
Tull, Delena
The assertion that there is a social component to children's construction of knowledge about natural phenomena is supported by evidence from an examination of children's classification schemes for plants. An ethnographic study was conducted with nine sixth grade children in central Texas. The children classified plants in the outdoors, in a…
A Classification Scheme for Career Education Resource Materials.
ERIC Educational Resources Information Center
Koontz, Ronald G.
The introductory section of the paper expresses its purpose: to devise a classification scheme for career education resource material, which will be used to develop the USOE Office of Career Education Resource Library and will be disseminated to interested State departments of education and local school districts to assist them in classifying…
ERIC Educational Resources Information Center
Mertler, Craig A.
This study attempted to (1) expand the dichotomous classification scheme typically used by educators and researchers to describe teaching incentives and (2) offer administrators and teachers an alternative framework within which to develop incentive systems. Elementary, middle, and high school teachers in Ohio rated 10 commonly instituted teaching…
A Classification Scheme for Adult Education. Education Libraries Bulletin, Supplement Twelve.
ERIC Educational Resources Information Center
Greaves, Monica A., Comp.
This classification scheme, based on the 'facet formula' theory of Ranganathan, is designed primarily for the library of the National Institute of Adult Education in London, England. Kinds of persons being educated (educands), methods and problems of education, specific countries, specific organizations, and forms in which the information is…
Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay
The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes tomore » explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.« less
A Computer Oriented Scheme for Coding Chemicals in the Field of Biomedicine.
ERIC Educational Resources Information Center
Bobka, Marilyn E.; Subramaniam, J.B.
The chemical coding scheme of the Medical Coding Scheme (MCS), developed for use in the Comparative Systems Laboratory (CSL), is outlined and evaluated in this report. The chemical coding scheme provides a classification scheme and encoding method for drugs and chemical terms. Using the scheme complicated chemical structures may be expressed…
NASA Astrophysics Data System (ADS)
Suiter, Ashley Elizabeth
Multi-spectral imagery provides a robust and low-cost dataset for assessing wetland extent and quality over broad regions and is frequently used for wetland inventories. However in forested wetlands, hydrology is obscured by tree canopy making it difficult to detect with multi-spectral imagery alone. Because of this, classification of forested wetlands often includes greater errors than that of other wetlands types. Elevation and terrain derivatives have been shown to be useful for modelling wetland hydrology. But, few studies have addressed the use of LiDAR intensity data detecting hydrology in forested wetlands. Due the tendency of LiDAR signal to be attenuated by water, this research proposed the fusion of LiDAR intensity data with LiDAR elevation, terrain data, and aerial imagery, for the detection of forested wetland hydrology. We examined the utility of LiDAR intensity data and determined whether the fusion of Lidar derived data with multispectral imagery increased the accuracy of forested wetland classification compared with a classification performed with only multi-spectral image. Four classifications were performed: Classification A -- All Imagery, Classification B -- All LiDAR, Classification C -- LiDAR without Intensity, and Classification D -- Fusion of All Data. These classifications were performed using random forest and each resulted in a 3-foot resolution thematic raster of forested upland and forested wetland locations in Vermilion County, Illinois. The accuracies of these classifications were compared using Kappa Coefficient of Agreement. Importance statistics produced within the random forest classifier were evaluated in order to understand the contribution of individual datasets. Classification D, which used the fusion of LiDAR and multi-spectral imagery as input variables, had moderate to strong agreement between reference data and classification results. It was found that Classification A performed using all the LiDAR data and its derivatives (intensity, elevation, slope, aspect, curvatures, and Topographic Wetness Index) was the most accurate classification with Kappa: 78.04%, indicating moderate to strong agreement. However, Classification C, performed with LiDAR derivative without intensity data had less agreement than would be expected by chance, indicating that LiDAR contributed significantly to the accuracy of Classification B.
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Fisher, Travis C.; Nielsen, Eric J.; Frankel, Steven H.
2013-01-01
Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation methods of arbitrary order. The new methods are closely related to discontinuous Galerkin spectral collocation methods commonly known as DGFEM, but exhibit a more general entropy stability property. Although the new schemes are applicable to a broad class of linear and nonlinear conservation laws, emphasis herein is placed on the entropy stability of the compressible Navier-Stokes equations.
Research on Remote Sensing Image Classification Based on Feature Level Fusion
NASA Astrophysics Data System (ADS)
Yuan, L.; Zhu, G.
2018-04-01
Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.
A Noise-Filtered Under-Sampling Scheme for Imbalanced Classification.
Kang, Qi; Chen, XiaoShuang; Li, SiSi; Zhou, MengChu
2017-12-01
Under-sampling is a popular data preprocessing method in dealing with class imbalance problems, with the purposes of balancing datasets to achieve a high classification rate and avoiding the bias toward majority class examples. It always uses full minority data in a training dataset. However, some noisy minority examples may reduce the performance of classifiers. In this paper, a new under-sampling scheme is proposed by incorporating a noise filter before executing resampling. In order to verify the efficiency, this scheme is implemented based on four popular under-sampling methods, i.e., Undersampling + Adaboost, RUSBoost, UnderBagging, and EasyEnsemble through benchmarks and significance analysis. Furthermore, this paper also summarizes the relationship between algorithm performance and imbalanced ratio. Experimental results indicate that the proposed scheme can improve the original undersampling-based methods with significance in terms of three popular metrics for imbalanced classification, i.e., the area under the curve, -measure, and -mean.
Spectroscopic classification of SN2018afm and SN2018aik
NASA Astrophysics Data System (ADS)
Blagorodnova, Nadejda; Fremling, Christoffer; Neill, James D.; Walters, Richard; Cannella, Christopher B.; Kulkarni, Shrinivas R.
2018-03-01
We report the classification of the following bright transients. The spectra have been obtained with the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003).
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
The problem of estimating label imperfections and the use of the estimation in identifying mislabeled patterns is presented. Expressions for the maximum likelihood estimates of classification errors and a priori probabilities are derived from the classification of a set of labeled patterns. Expressions also are given for the asymptotic variances of probability of correct classification and proportions. Simple models are developed for imperfections in the labels and for classification errors and are used in the formulation of a maximum likelihood estimation scheme. Schemes are presented for the identification of mislabeled patterns in terms of threshold on the discriminant functions for both two-class and multiclass cases. Expressions are derived for the probability that the imperfect label identification scheme will result in a wrong decision and are used in computing thresholds. The results of practical applications of these techniques in the processing of remotely sensed multispectral data are presented.
Boskamp, Tobias; Lachmund, Delf; Oetjen, Janina; Cordero Hernandez, Yovany; Trede, Dennis; Maass, Peter; Casadonte, Rita; Kriegsmann, Jörg; Warth, Arne; Dienemann, Hendrik; Weichert, Wilko; Kriegsmann, Mark
2017-07-01
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) shows a high potential for applications in histopathological diagnosis, and in particular for supporting tumor typing and subtyping. The development of such applications requires the extraction of spectral fingerprints that are relevant for the given tissue and the identification of biomarkers associated with these spectral patterns. We propose a novel data analysis method based on the extraction of characteristic spectral patterns (CSPs) that allow automated generation of classification models for spectral data. Formalin-fixed paraffin embedded (FFPE) tissue samples from N=445 patients assembled on 12 tissue microarrays were analyzed. The method was applied to discriminate primary lung and pancreatic cancer, as well as adenocarcinoma and squamous cell carcinoma of the lung. A classification accuracy of 100% and 82.8%, resp., could be achieved on core level, assessed by cross-validation. The method outperformed the more conventional classification method based on the extraction of individual m/z values in the first application, while achieving a comparable accuracy in the second. LC-MS/MS peptide identification demonstrated that the spectral features present in selected CSPs correspond to peptides relevant for the respective classification. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2016 Elsevier B.V. All rights reserved.
Automatic parquet block sorting using real-time spectral classification
NASA Astrophysics Data System (ADS)
Astrom, Anders; Astrand, Erik; Johansson, Magnus
1999-03-01
This paper presents a real-time spectral classification system based on the PGP spectrograph and a smart image sensor. The PGP is a spectrograph which extracts the spectral information from a scene and projects the information on an image sensor, which is a method often referred to as Imaging Spectroscopy. The classification is based on linear models and categorizes a number of pixels along a line. Previous systems adopting this method have used standard sensors, which often resulted in poor performance. The new system, however, is based on a patented near-sensor classification method, which exploits analogue features on the smart image sensor. The method reduces the enormous amount of data to be processed at an early stage, thus making true real-time spectral classification possible. The system has been evaluated on hardwood parquet boards showing very good results. The color defects considered in the experiments were blue stain, white sapwood, yellow decay and red decay. In addition to these four defect classes, a reference class was used to indicate correct surface color. The system calculates a statistical measure for each parquet block, giving the pixel defect percentage. The patented method makes it possible to run at very high speeds with a high spectral discrimination ability. Using a powerful illuminator, the system can run with a line frequency exceeding 2000 line/s. This opens up the possibility to maintain high production speed and still measure with good resolution.
Going Deeper With Contextual CNN for Hyperspectral Image Classification.
Lee, Hyungtae; Kwon, Heesung
2017-10-01
In this paper, we describe a novel deep convolutional neural network (CNN) that is deeper and wider than other existing deep networks for hyperspectral image classification. Unlike current state-of-the-art approaches in CNN-based hyperspectral image classification, the proposed network, called contextual deep CNN, can optimally explore local contextual interactions by jointly exploiting local spatio-spectral relationships of neighboring individual pixel vectors. The joint exploitation of the spatio-spectral information is achieved by a multi-scale convolutional filter bank used as an initial component of the proposed CNN pipeline. The initial spatial and spectral feature maps obtained from the multi-scale filter bank are then combined together to form a joint spatio-spectral feature map. The joint feature map representing rich spectral and spatial properties of the hyperspectral image is then fed through a fully convolutional network that eventually predicts the corresponding label of each pixel vector. The proposed approach is tested on three benchmark data sets: the Indian Pines data set, the Salinas data set, and the University of Pavia data set. Performance comparison shows enhanced classification performance of the proposed approach over the current state-of-the-art on the three data sets.
NASA Astrophysics Data System (ADS)
Manteiga, M.; Carricajo, I.; Rodríguez, A.; Dafonte, C.; Arcay, B.
2009-02-01
Astrophysics is evolving toward a more rational use of costly observational data by intelligently exploiting the large terrestrial and spatial astronomical databases. In this paper, we present a study showing the suitability of an expert system to perform the classification of stellar spectra in the Morgan and Keenan (MK) system. Using the formalism of artificial intelligence for the development of such a system, we propose a rules' base that contains classification criteria and confidence grades, all integrated in an inference engine that emulates human reasoning by means of a hierarchical decision rules tree that also considers the uncertainty factors associated with rules. Our main objective is to illustrate the formulation and development of such a system for an astrophysical classification problem. An extensive spectral database of MK standard spectra has been collected and used as a reference to determine the spectral indexes that are suitable for classification in the MK system. It is shown that by considering 30 spectral indexes and associating them with uncertainty factors, we can find an accurate diagnose in MK types of a particular spectrum. The system was evaluated against the NOAO-INDO-US spectral catalog.
Liu, Chao; Gu, Jinwei
2014-01-01
Classifying raw, unpainted materials--metal, plastic, ceramic, fabric, and so on--is an important yet challenging task for computer vision. Previous works measure subsets of surface spectral reflectance as features for classification. However, acquiring the full spectral reflectance is time consuming and error-prone. In this paper, we propose to use coded illumination to directly measure discriminative features for material classification. Optimal illumination patterns--which we call "discriminative illumination"--are learned from training samples, after projecting to which the spectral reflectance of different materials are maximally separated. This projection is automatically realized by the integration of incident light for surface reflection. While a single discriminative illumination is capable of linear, two-class classification, we show that multiple discriminative illuminations can be used for nonlinear and multiclass classification. We also show theoretically that the proposed method has higher signal-to-noise ratio than previous methods due to light multiplexing. Finally, we construct an LED-based multispectral dome and use the discriminative illumination method for classifying a variety of raw materials, including metal (aluminum, alloy, steel, stainless steel, brass, and copper), plastic, ceramic, fabric, and wood. Experimental results demonstrate its effectiveness.
Jordan, Alan; Rees, Tony; Gowlett-Holmes, Karen
2015-01-01
Imagery collected by still and video cameras is an increasingly important tool for minimal impact, repeatable observations in the marine environment. Data generated from imagery includes identification, annotation and quantification of biological subjects and environmental features within an image. To be long-lived and useful beyond their project-specific initial purpose, and to maximize their utility across studies and disciplines, marine imagery data should use a standardised vocabulary of defined terms. This would enable the compilation of regional, national and/or global data sets from multiple sources, contributing to broad-scale management studies and development of automated annotation algorithms. The classification scheme developed under the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI) project provides such a vocabulary. The CATAMI classification scheme introduces Australian-wide acknowledged, standardised terminology for annotating benthic substrates and biota in marine imagery. It combines coarse-level taxonomy and morphology, and is a flexible, hierarchical classification that bridges the gap between habitat/biotope characterisation and taxonomy, acknowledging limitations when describing biological taxa through imagery. It is fully described, documented, and maintained through curated online databases, and can be applied across benthic image collection methods, annotation platforms and scoring methods. Following release in 2013, the CATAMI classification scheme was taken up by a wide variety of users, including government, academia and industry. This rapid acceptance highlights the scheme’s utility and the potential to facilitate broad-scale multidisciplinary studies of marine ecosystems when applied globally. Here we present the CATAMI classification scheme, describe its conception and features, and discuss its utility and the opportunities as well as challenges arising from its use. PMID:26509918
NASA Astrophysics Data System (ADS)
Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin
2015-03-01
The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.
Sheehan, D V; Sheehan, K H
1982-08-01
The history of the classification of anxiety, hysterical, and hypochondriacal disorders is reviewed. Problems in the ability of current classification schemes to predict, control, and describe the relationship between the symptoms and other phenomena are outlined. Existing classification schemes failed the first test of a good classification model--that of providing categories that are mutually exclusive. The independence of these diagnostic categories from each other does not appear to hold up on empirical testing. In the absence of inherently mutually exclusive categories, further empirical investigation of these classes is obstructed since statistically valid analysis of the nominal data and any useful multivariate analysis would be difficult if not impossible. It is concluded that the existing classifications are unsatisfactory and require some fundamental reconceptualization.
NASA Astrophysics Data System (ADS)
Alkilani, Amjad; Shirkhodaie, Amir
2013-05-01
Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.
NASA Astrophysics Data System (ADS)
Chauhan, H.; Krishna Mohan, B.
2014-11-01
The present study was undertaken with the objective to check effectiveness of spectral similarity measures to develop precise crop spectra from the collected hyperspectral field spectra. In Multispectral and Hyperspectral remote sensing, classification of pixels is obtained by statistical comparison (by means of spectral similarity) of known field or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been placed on use of various spectral similarity measures to select precise crop spectra from the set of field spectra. Conventionally crop spectra are developed after rejecting outliers based only on broad-spectrum analysis. Here a successful attempt has been made to develop precise crop spectra based on spectral similarity. As unevaluated data usage leads to uncertainty in the image classification, it is very crucial to evaluate the data. Hence, notwithstanding the conventional method, the data precision has been performed effectively to serve the purpose of the present research work. The effectiveness of developed precise field spectra was evaluated by spectral discrimination measures and found higher discrimination values compared to spectra developed conventionally. Overall classification accuracy for the image classified by field spectra selected conventionally is 51.89% and 75.47% for the image classified by field spectra selected precisely based on spectral similarity. KHAT values are 0.37, 0.62 and Z values are 2.77, 9.59 for image classified using conventional and precise field spectra respectively. Reasonable higher classification accuracy, KHAT and Z values shows the possibility of a new approach for field spectra selection based on spectral similarity measure.
ZTF Bright Transient Survey classifications
NASA Astrophysics Data System (ADS)
Fremling, C.; Sharma, Y.; Skulkarni, S. R.; Walters, R.; Blagorodnova, N.; Neill, J. D.; Miller, A. A.; Taggart, K.; Perley, D. A.; Goobar, A.; Graham, M. L.
2018-06-01
The Zwicky Transient Facility (ZTF; ATel #11266) Bright Transient Survey (BTS; ATel #11688) reports classifications of the following targets. Spectra have been obtained with the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003).
Precision spectral manipulation of optical pulses using a coherent photon echo memory.
Buchler, B C; Hosseini, M; Hétet, G; Sparkes, B M; Lam, P K
2010-04-01
Photon echo schemes are excellent candidates for high efficiency coherent optical memory. They are capable of high-bandwidth multipulse storage, pulse resequencing and have been shown theoretically to be compatible with quantum information applications. One particular photon echo scheme is the gradient echo memory (GEM). In this system, an atomic frequency gradient is induced in the direction of light propagation leading to a Fourier decomposition of the optical spectrum along the length of the storage medium. This Fourier encoding allows precision spectral manipulation of the stored light. In this Letter, we show frequency shifting, spectral compression, spectral splitting, and fine dispersion control of optical pulses using GEM.
Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.
Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong
2017-12-01
Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.
Vijay, G S; Kumar, H S; Srinivasa Pai, P; Sriram, N S; Rao, Raj B K N
2012-01-01
The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio (SNR) and reducing the root-mean-square error (RMSE). In this paper seven wavelet based denoising schemes have been evaluated based on the performance of the Artificial Neural Network (ANN) and the Support Vector Machine (SVM), for the bearing condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB) test rig for four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted from the denoised signals, out of which a few sensitive features were selected using the Fisher's Criterion (FC). Extracted features were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal.
NASA Astrophysics Data System (ADS)
Ani, Adi Irfan Che; Sairi, Ahmad; Tawil, Norngainy Mohd; Wahab, Siti Rashidah Hanum Abd; Razak, Muhd Zulhanif Abd
2016-08-01
High demand for housing and limited land in town area has increasing the provision of high-rise residential scheme. This type of housing has different owners but share the same land lot and common facilities. Thus, maintenance works of the buildings and common facilities must be well organized. The purpose of this paper is to identify and classify basic facilities for high-rise residential building hoping to improve the management of the scheme. The method adopted is a survey on 100 high-rise residential schemes that ranged from affordable housing to high cost housing by using a snowball sampling. The scope of this research is within Kajang area, which is rapidly developed with high-rise housing. The objective of the survey is to list out all facilities in every sample of the schemes. The result confirmed that pre-determined 11 classifications hold true and can provide the realistic classification for high-rise residential scheme. This paper proposed for redefinition of facilities provided to create a better management system and give a clear definition on the type of high-rise residential based on its facilities.
ERIC Educational Resources Information Center
Kinkead, J. Clint.; Katsinas, Stephen G.
2011-01-01
This work brings forward the geographically-based classification scheme for the public Master's Colleges and Universities sector. Using the same methodology developed by Katsinas and Hardy (2005) to classify community colleges, this work classifies Master's Colleges and Universities. This work has four major findings and conclusions. First, a…
What's in a Name? A Comparison of Methods for Classifying Predominant Type of Maltreatment
ERIC Educational Resources Information Center
Lau, A.S.; Leeb, R.T.; English, D.; Graham, J.C.; Briggs, E.C.; Brody, K.E.; Marshall, J.M.
2005-01-01
Objective:: The primary aim of the study was to identify a classification scheme, for determining the predominant type of maltreatment in a child's history that best predicts differences in developmental outcomes. Method:: Three different predominant type classification schemes were examined in a sample of 519 children with a history of alleged…
NASA Astrophysics Data System (ADS)
Skrzypek, N.; Warren, S. J.; Faherty, J. K.; Mortlock, D. J.; Burgasser, A. J.; Hewett, P. C.
2015-02-01
Aims: We present a method, named photo-type, to identify and accurately classify L and T dwarfs onto the standard spectral classification system using photometry alone. This enables the creation of large and deep homogeneous samples of these objects efficiently, without the need for spectroscopy. Methods: We created a catalogue of point sources with photometry in 8 bands, ranging from 0.75 to 4.6 μm, selected from an area of 3344 deg2, by combining SDSS, UKIDSS LAS, and WISE data. Sources with 13.0
Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species
NASA Astrophysics Data System (ADS)
Madonsela, Sabelo; Cho, Moses Azong; Mathieu, Renaud; Mutanga, Onisimo; Ramoelo, Abel; Kaszta, Żaneta; Kerchove, Ruben Van De; Wolff, Eléonore
2017-06-01
Biodiversity mapping in African savannah is important for monitoring changes and ensuring sustainable use of ecosystem resources. Biodiversity mapping can benefit from multi-spectral instruments such as WorldView-2 with very high spatial resolution and a spectral configuration encompassing important spectral regions not previously available for vegetation mapping. This study investigated i) the benefits of the eight-band WorldView-2 (WV-2) spectral configuration for discriminating tree species in Southern African savannah and ii) if multiple-images acquired at key points of the typical phenological development of savannahs (peak productivity, transition to senescence) improve on tree species classifications. We first assessed the discriminatory power of WV-2 bands using interspecies-Spectral Angle Mapper (SAM) via Band Add-On procedure and tested the spectral capability of WorldView-2 against simulated IKONOS for tree species classification. The results from interspecies-SAM procedure identified the yellow and red bands as the most statistically significant bands (p = 0.000251 and p = 0.000039 respectively) in the discriminatory power of WV-2 during the transition from wet to dry season (April). Using Random Forest classifier, the classification scenarios investigated showed that i) the 8-bands of the WV-2 sensor achieved higher classification accuracy for the April date (transition from wet to dry season, senescence) compared to the March date (peak productivity season) ii) the WV-2 spectral configuration systematically outperformed the IKONOS sensor spectral configuration and iii) the multi-temporal approach (March and April combined) improved the discrimination of tress species and produced the highest overall accuracy results at 80.4%. Consistent with the interspecies-SAM procedure, the yellow (605 nm) band also showed a statistically significant contribution in the improved classification accuracy from WV-2. These results highlight the mapping opportunities presented by WV-2 data for monitoring the distribution status of e.g. species often harvested by local communities (e.g. Sclerocharya birrea), encroaching species, or species-specific tree losses induced by elephants.
NASA Astrophysics Data System (ADS)
Yan, Wen-juan; Yang, Ming; He, Guo-quan; Qin, Lin; Li, Gang
2014-11-01
In order to identify the diabetic patients by using tongue near-infrared (NIR) spectrum - a spectral classification model of the NIR reflectivity of the tongue tip is proposed, based on the partial least square (PLS) method. 39sample data of tongue tip's NIR spectra are harvested from healthy people and diabetic patients , respectively. After pretreatment of the reflectivity, the spectral data are set as the independent variable matrix, and information of classification as the dependent variables matrix, Samples were divided into two groups - i.e. 53 samples as calibration set and 25 as prediction set - then the PLS is used to build the classification model The constructed modelfrom the 53 samples has the correlation of 0.9614 and the root mean square error of cross-validation (RMSECV) of 0.1387.The predictions for the 25 samples have the correlation of 0.9146 and the RMSECV of 0.2122.The experimental result shows that the PLS method can achieve good classification on features of healthy people and diabetic patients.
A multitemporal (1979-2009) land-use/land-cover dataset of the binational Santa Cruz Watershed
2011-01-01
Trends derived from multitemporal land-cover data can be used to make informed land management decisions and to help managers model future change scenarios. We developed a multitemporal land-use/land-cover dataset for the binational Santa Cruz watershed of southern Arizona, United States, and northern Sonora, Mexico by creating a series of land-cover maps at decadal intervals (1979, 1989, 1999, and 2009) using Landsat Multispectral Scanner and Thematic Mapper data and a classification and regression tree classifier. The classification model exploited phenological changes of different land-cover spectral signatures through the use of biseasonal imagery collected during the (dry) early summer and (wet) late summer following rains from the North American monsoon. Landsat images were corrected to remove atmospheric influences, and the data were converted from raw digital numbers to surface reflectance values. The 14-class land-cover classification scheme is based on the 2001 National Land Cover Database with a focus on "Developed" land-use classes and riverine "Forest" and "Wetlands" cover classes required for specific watershed models. The classification procedure included the creation of several image-derived and topographic variables, including digital elevation model derivatives, image variance, and multitemporal Kauth-Thomas transformations. The accuracy of the land-cover maps was assessed using a random-stratified sampling design, reference aerial photography, and digital imagery. This showed high accuracy results, with kappa values (the statistical measure of agreement between map and reference data) ranging from 0.80 to 0.85.
Efficient sensor network vehicle classification using peak harmonics of acoustic emissions
NASA Astrophysics Data System (ADS)
William, Peter E.; Hoffman, Michael W.
2008-04-01
An application is proposed for detection and classification of battlefield ground vehicles using the emitted acoustic signal captured at individual sensor nodes of an ad hoc Wireless Sensor Network (WSN). We make use of the harmonic characteristics of the acoustic emissions of battlefield vehicles, in reducing both the computations carried on the sensor node and the transmitted data to the fusion center for reliable and effcient classification of targets. Previous approaches focus on the lower frequency band of the acoustic emissions up to 500Hz; however, we show in the proposed application how effcient discrimination between battlefield vehicles is performed using features extracted from higher frequency bands (50 - 1500Hz). The application shows that selective time domain acoustic features surpass equivalent spectral features. Collaborative signal processing is utilized, such that estimation of certain signal model parameters is carried by the sensor node, in order to reduce the communication between the sensor node and the fusion center, while the remaining model parameters are estimated at the fusion center. The transmitted data from the sensor node to the fusion center ranges from 1 ~ 5% of the sampled acoustic signal at the node. A variety of classification schemes were examined, such as maximum likelihood, vector quantization and artificial neural networks. Evaluation of the proposed application, through processing of an acoustic data set with comparison to previous results, shows that the improvement is not only in the number of computations but also in the detection and false alarm rate as well.
NASA Technical Reports Server (NTRS)
Haralick, R. H. (Principal Investigator); Bosley, R. J.
1974-01-01
The author has identified the following significant results. A procedure was developed to extract cross-band textural features from ERTS MSS imagery. Evolving from a single image texture extraction procedure which uses spatial dependence matrices to measure relative co-occurrence of nearest neighbor grey tones, the cross-band texture procedure uses the distribution of neighboring grey tone N-tuple differences to measure the spatial interrelationships, or co-occurrences, of the grey tone N-tuples present in a texture pattern. In both procedures, texture is characterized in such a way as to be invariant under linear grey tone transformations. However, the cross-band procedure complements the single image procedure by extracting texture information and spectral information contained in ERTS multi-images. Classification experiments show that when used alone, without spectral processing, the cross-band texture procedure extracts more information than the single image texture analysis. Results show an improvement in average correct classification from 86.2% to 88.8% for ERTS image no. 1021-16333 with the cross-band texture procedure. However, when used together with spectral features, the single image texture plus spectral features perform better than the cross-band texture plus spectral features, with an average correct classification of 93.8% and 91.6%, respectively.
Dynamics of modulated beams in spectral domain
Yampolsky, Nikolai A.
2017-07-16
General formalism for describing dynamics of modulated beams along linear beamlines is developed. We describe modulated beams with spectral distribution function which represents Fourier transform of the conventional beam distribution function in the 6-dimensional phase space. The introduced spectral distribution function is localized in some region of the spectral domain for nearly monochromatic modulations. It can be characterized with a small number of typical parameters such as the lowest order moments of the spectral distribution. We study evolution of the modulated beams in linear beamlines and find that characteristic spectral parameters transform linearly. The developed approach significantly simplifies analysis ofmore » various schemes proposed for seeding X-ray free electron lasers. We use this approach to study several recently proposed schemes and find the bandwidth of the output bunching in each case.« less
NASA Technical Reports Server (NTRS)
Wrigley, R. C.; Acevedo, W.; Alexander, D.; Buis, J.; Card, D.
1984-01-01
An experiment of a factorial design was conducted to test the effects on classification accuracy of land cover types due to the improved spatial, spectral and radiometric characteristics of the Thematic Mapper (TM) in comparison to the Multispectral Scanner (MSS). High altitude aircraft scanner data from the Airborne Thematic Mapper instrument was acquired over central California in August, 1983 and used to simulate Thematic Mapper data as well as all combinations of the three characteristics for eight data sets in all. Results for the training sites (field center pixels) showed better classification accuracies for MSS spatial resolution, TM spectral bands and TM radiometry in order of importance.
Active-passive data fusion algorithms for seafloor imaging and classification from CZMIL data
NASA Astrophysics Data System (ADS)
Park, Joong Yong; Ramnath, Vinod; Feygels, Viktor; Kim, Minsu; Mathur, Abhinav; Aitken, Jennifer; Tuell, Grady
2010-04-01
CZMIL will simultaneously acquire lidar and passive spectral data. These data will be fused to produce enhanced seafloor reflectance images from each sensor, and combined at a higher level to achieve seafloor classification. In the DPS software, the lidar data will first be processed to solve for depth, attenuation, and reflectance. The depth measurements will then be used to constrain the spectral optimization of the passive spectral data, and the resulting water column estimates will be used recursively to improve the estimates of seafloor reflectance from the lidar. Finally, the resulting seafloor reflectance cube will be combined with texture metrics estimated from the seafloor topography to produce classifications of the seafloor.
Evaluation of AMOEBA: a spectral-spatial classification method
Jenson, Susan K.; Loveland, Thomas R.; Bryant, J.
1982-01-01
Muitispectral remotely sensed images have been treated as arbitrary multivariate spectral data for purposes of clustering and classifying. However, the spatial properties of image data can also be exploited. AMOEBA is a clustering and classification method that is based on a spatially derived model for image data. In an evaluation test, Landsat data were classified with both AMOEBA and a widely used spectral classifier. The test showed that irrigated crop types can be classified as accurately with the AMOEBA method as with the generally used spectral method ISOCLS; the AMOEBA method, however, requires less computer time.
Applications of remote sensing, volume 3
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Of the four change detection techniques (post classification comparison, delta data, spectral/temporal, and layered spectral temporal), the post classification comparison was selected for further development. This was based upon test performances of the four change detection method, straightforwardness of the procedures, and the output products desired. A standardized modified, supervised classification procedure for analyzing the Texas coastal zone data was compiled. This procedure was developed in order that all quadrangles in the study are would be classified using similar analysis techniques to allow for meaningful comparisons and evaluations of the classifications.
G Caton, Jack; Armitage, Gary; Berglundh, Tord; Chapple, Iain L C; Jepsen, Søren; S Kornman, Kenneth; L Mealey, Brian; Papapanou, Panos N; Sanz, Mariano; S Tonetti, Maurizio
2018-06-01
A classification scheme for periodontal and peri-implant diseases and conditions is necessary for clinicians to properly diagnose and treat patients as well as for scientists to investigate etiology, pathogenesis, natural history, and treatment of the diseases and conditions. This paper summarizes the proceedings of the World Workshop on the Classification of Periodontal and Peri-implant Diseases and Conditions. The workshop was co-sponsored by the American Academy of Periodontology (AAP) and the European Federation of Periodontology (EFP) and included expert participants from all over the world. Planning for the conference, which was held in Chicago on November 9 to 11, 2017, began in early 2015. An organizing committee from the AAP and EFP commissioned 19 review papers and four consensus reports covering relevant areas in periodontology and implant dentistry. The authors were charged with updating the 1999 classification of periodontal diseases and conditions and developing a similar scheme for peri-implant diseases and conditions. Reviewers and workgroups were also asked to establish pertinent case definitions and to provide diagnostic criteria to aid clinicians in the use of the new classification. All findings and recommendations of the workshop were agreed to by consensus. This introductory paper presents an overview for the new classification of periodontal and peri-implant diseases and conditions, along with a condensed scheme for each of four workgroup sections, but readers are directed to the pertinent consensus reports and review papers for a thorough discussion of the rationale, criteria, and interpretation of the proposed classification. Changes to the 1999 classification are highlighted and discussed. Although the intent of the workshop was to base classification on the strongest available scientific evidence, lower level evidence and expert opinion were inevitably used whenever sufficient research data were unavailable. The scope of this workshop was to align and update the classification scheme to the current understanding of periodontal and peri-implant diseases and conditions. This introductory overview presents the schematic tables for the new classification of periodontal and peri-implant diseases and conditions and briefly highlights changes made to the 1999 classification. It cannot present the wealth of information included in the reviews, case definition papers, and consensus reports that has guided the development of the new classification, and reference to the consensus and case definition papers is necessary to provide a thorough understanding of its use for either case management or scientific investigation. Therefore, it is strongly recommended that the reader use this overview as an introduction to these subjects. Accessing this publication online will allow the reader to use the links in this overview and the tables to view the source papers (Table ). © 2018 American Academy of Periodontology and European Federation of Periodontology.
G Caton, Jack; Armitage, Gary; Berglundh, Tord; Chapple, Iain L C; Jepsen, Søren; S Kornman, Kenneth; L Mealey, Brian; Papapanou, Panos N; Sanz, Mariano; S Tonetti, Maurizio
2018-06-01
A classification scheme for periodontal and peri-implant diseases and conditions is necessary for clinicians to properly diagnose and treat patients as well as for scientists to investigate etiology, pathogenesis, natural history, and treatment of the diseases and conditions. This paper summarizes the proceedings of the World Workshop on the Classification of Periodontal and Peri-implant Diseases and Conditions. The workshop was co-sponsored by the American Academy of Periodontology (AAP) and the European Federation of Periodontology (EFP) and included expert participants from all over the world. Planning for the conference, which was held in Chicago on November 9 to 11, 2017, began in early 2015. An organizing committee from the AAP and EFP commissioned 19 review papers and four consensus reports covering relevant areas in periodontology and implant dentistry. The authors were charged with updating the 1999 classification of periodontal diseases and conditions and developing a similar scheme for peri-implant diseases and conditions. Reviewers and workgroups were also asked to establish pertinent case definitions and to provide diagnostic criteria to aid clinicians in the use of the new classification. All findings and recommendations of the workshop were agreed to by consensus. This introductory paper presents an overview for the new classification of periodontal and peri-implant diseases and conditions, along with a condensed scheme for each of four workgroup sections, but readers are directed to the pertinent consensus reports and review papers for a thorough discussion of the rationale, criteria, and interpretation of the proposed classification. Changes to the 1999 classification are highlighted and discussed. Although the intent of the workshop was to base classification on the strongest available scientific evidence, lower level evidence and expert opinion were inevitably used whenever sufficient research data were unavailable. The scope of this workshop was to align and update the classification scheme to the current understanding of periodontal and peri-implant diseases and conditions. This introductory overview presents the schematic tables for the new classification of periodontal and peri-implant diseases and conditions and briefly highlights changes made to the 1999 classification. It cannot present the wealth of information included in the reviews, case definition papers, and consensus reports that has guided the development of the new classification, and reference to the consensus and case definition papers is necessary to provide a thorough understanding of its use for either case management or scientific investigation. Therefore, it is strongly recommended that the reader use this overview as an introduction to these subjects. Accessing this publication online will allow the reader to use the links in this overview and the tables to view the source papers (Table 1). © 2018 American Academy of Periodontology and European Federation of Periodontology.
Automatic classification of protein structures using physicochemical parameters.
Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam
2014-09-01
Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.
NASA Astrophysics Data System (ADS)
Yu, Shanshan; Murakami, Yuri; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki
2006-09-01
The article proposes a multispectral image compression scheme using nonlinear spectral transform for better colorimetric and spectral reproducibility. In the method, we show the reduction of colorimetric error under a defined viewing illuminant and also that spectral accuracy can be improved simultaneously using a nonlinear spectral transform called Labplus, which takes into account the nonlinearity of human color vision. Moreover, we show that the addition of diagonal matrices to Labplus can further preserve the spectral accuracy and has a generalized effect of improving the colorimetric accuracy under other viewing illuminants than the defined one. Finally, we discuss the usage of the first-order Markov model to form the analysis vectors for the higher order channels in Labplus to reduce the computational complexity. We implement a multispectral image compression system that integrates Labplus with JPEG2000 for high colorimetric and spectral reproducibility. Experimental results for a 16-band multispectral image show the effectiveness of the proposed scheme.
A classification scheme for risk assessment methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamp, Jason Edwin; Campbell, Philip LaRoche
2004-08-01
This report presents a classification scheme for risk assessment methods. This scheme, like all classification schemes, provides meaning by imposing a structure that identifies relationships. Our scheme is based on two orthogonal aspects--level of detail, and approach. The resulting structure is shown in Table 1 and is explained in the body of the report. Each cell in the Table represent a different arrangement of strengths and weaknesses. Those arrangements shift gradually as one moves through the table, each cell optimal for a particular situation. The intention of this report is to enable informed use of the methods so that amore » method chosen is optimal for a situation given. This report imposes structure on the set of risk assessment methods in order to reveal their relationships and thus optimize their usage.We present a two-dimensional structure in the form of a matrix, using three abstraction levels for the rows and three approaches for the columns. For each of the nine cells in the matrix we identify the method type by name and example. The matrix helps the user understand: (1) what to expect from a given method, (2) how it relates to other methods, and (3) how best to use it. Each cell in the matrix represent a different arrangement of strengths and weaknesses. Those arrangements shift gradually as one moves through the table, each cell optimal for a particular situation. The intention of this report is to enable informed use of the methods so that a method chosen is optimal for a situation given. The matrix, with type names in the cells, is introduced in Table 2 on page 13 below. Unless otherwise stated we use the word 'method' in this report to refer to a 'risk assessment method', though often times we use the full phrase. The use of the terms 'risk assessment' and 'risk management' are close enough that we do not attempt to distinguish them in this report. The remainder of this report is organized as follows. In Section 2 we provide context for this report--what a 'method' is and where it fits. In Section 3 we present background for our classification scheme--what other schemes we have found, the fundamental nature of methods and their necessary incompleteness. In Section 4 we present our classification scheme in the form of a matrix, then we present an analogy that should provide an understanding of the scheme, concluding with an explanation of the two dimensions and the nine types in our scheme. In Section 5 we present examples of each of our classification types. In Section 6 we present conclusions.« less
Stable multi-domain spectral penalty methods for fractional partial differential equations
NASA Astrophysics Data System (ADS)
Xu, Qinwu; Hesthaven, Jan S.
2014-01-01
We propose stable multi-domain spectral penalty methods suitable for solving fractional partial differential equations with fractional derivatives of any order. First, a high order discretization is proposed to approximate fractional derivatives of any order on any given grids based on orthogonal polynomials. The approximation order is analyzed and verified through numerical examples. Based on the discrete fractional derivative, we introduce stable multi-domain spectral penalty methods for solving fractional advection and diffusion equations. The equations are discretized in each sub-domain separately and the global schemes are obtained by weakly imposed boundary and interface conditions through a penalty term. Stability of the schemes are analyzed and numerical examples based on both uniform and nonuniform grids are considered to highlight the flexibility and high accuracy of the proposed schemes.
Mapping the Natchez Trace Parkway
Rangoonwala, Amina; Bannister, Terri; Ramsey, Elijah W.
2011-01-01
Based on a National Park Service (NPS) landcover classification, a landcover map of the 715-km (444-mile) NPS Natchez Trace Parkway (hereafter referred to as the "Parkway") was created. The NPS landcover classification followed National Vegetation Classification (NVC) protocols. The landcover map, which extended the initial landcover classification to the entire Parkway, was based on color-infrared photography converted to 1-m raster-based digital orthophoto quarter quadrangles, according to U.S. Geological Survey mapping standards. Our goal was to include as many alliance classes as possible in the Parkway landcover map. To reach this goal while maintaining a consistent and quantifiable map product throughout the Parkway extent, a mapping strategy was implemented based on the migration of class-based spectral textural signatures and the congruent progressive refinement of those class signatures along the Parkway. Progressive refinement provided consistent mapping by evaluating the spectral textural distinctiveness of the alliance-association classes, and where necessary, introducing new map classes along the Parkway. By following this mapping strategy, the use of raster-based image processing and geographic information system analyses for the map production provided a quantitative and reproducible product. Although field-site classification data were severely limited, the combination of spectral migration of class membership along the Parkway and the progressive classification strategy produced an organization of alliances that was internally highly consistent. The organization resulted from the natural patterns or alignments of spectral variance and the determination of those spectral patterns that were compositionally similar in the dominant species as NVC alliances. Overall, the mapped landcovers represented the existent spectral textural patterns that defined and encompassed the complex variety of compositional alliances and associations of the Parkway. Based on that mapped representation, forests dominate the Parkway landscape. Grass is the second largest Parkway land cover, followed by scrub-shrub and shrubland classes and pine plantations. The map provides a good representation of the landcover patterns and their changes over the extent of the Parkway, south to north.
[Extracting black soil border in Heilongjiang province based on spectral angle match method].
Zhang, Xin-Le; Zhang, Shu-Wen; Li, Ying; Liu, Huan-Jun
2009-04-01
As soils are generally covered by vegetation most time of a year, the spectral reflectance collected by remote sensing technique is from the mixture of soil and vegetation, so the classification precision based on remote sensing (RS) technique is unsatisfied. Under RS and geographic information systems (GIS) environment and with the help of buffer and overlay analysis methods, land use and soil maps were used to derive regions of interest (ROI) for RS supervised classification, which plus MODIS reflectance products were chosen to extract black soil border, with methods including spectral single match. The results showed that the black soil border in Heilongjiang province can be extracted with soil remote sensing method based on MODIS reflectance products, especially in the north part of black soil zone; the classification precision of spectral angel mapping method is the highest, but the classifying accuracy of other soils can not meet the need, because of vegetation covering and similar spectral characteristics; even for the same soil, black soil, the classifying accuracy has obvious spatial heterogeneity, in the north part of black soil zone in Heilongjiang province it is higher than in the south, which is because of spectral differences; as soil uncovering period in Northeastern China is relatively longer, high temporal resolution make MODIS images get the advantage over soil remote sensing classification; with the help of GIS, extracting ROIs by making the best of auxiliary data can improve the precision of soil classification; with the help of auxiliary information, such as topography and climate, the classification accuracy was enhanced significantly. As there are five main factors determining soil classes, much data of different types, such as DEM, terrain factors, climate (temperature, precipitation, etc.), parent material, vegetation map, and remote sensing images, were introduced to classify soils, so how to choose some of the data and quantify the weights of different data layers needs further study.
LAMOST OBSERVATIONS IN THE KEPLER FIELD: SPECTRAL CLASSIFICATION WITH THE MKCLASS CODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, R. O.; Corbally, C. J.; Cat, P. De
2016-01-15
The LAMOST-Kepler project was designed to obtain high-quality, low-resolution spectra of many of the stars in the Kepler field with the Large Sky Area Multi Object Fiber Spectroscopic Telescope (LAMOST) spectroscopic telescope. To date 101,086 spectra of 80,447 objects over the entire Kepler field have been acquired. Physical parameters, radial velocities, and rotational velocities of these stars will be reported in other papers. In this paper we present MK spectral classifications for these spectra determined with the automatic classification code MKCLASS. We discuss the quality and reliability of the spectral types and present histograms showing the frequency of the spectralmore » types in the main table organized according to luminosity class. Finally, as examples of the use of this spectral database, we compute the proportion of A-type stars that are Am stars, and identify 32 new barium dwarf candidates.« less
a Novel Deep Convolutional Neural Network for Spectral-Spatial Classification of Hyperspectral Data
NASA Astrophysics Data System (ADS)
Li, N.; Wang, C.; Zhao, H.; Gong, X.; Wang, D.
2018-04-01
Spatial and spectral information are obtained simultaneously by hyperspectral remote sensing. Joint extraction of these information of hyperspectral image is one of most import methods for hyperspectral image classification. In this paper, a novel deep convolutional neural network (CNN) is proposed, which extracts spectral-spatial information of hyperspectral images correctly. The proposed model not only learns sufficient knowledge from the limited number of samples, but also has powerful generalization ability. The proposed framework based on three-dimensional convolution can extract spectral-spatial features of labeled samples effectively. Though CNN has shown its robustness to distortion, it cannot extract features of different scales through the traditional pooling layer that only have one size of pooling window. Hence, spatial pyramid pooling (SPP) is introduced into three-dimensional local convolutional filters for hyperspectral classification. Experimental results with a widely used hyperspectral remote sensing dataset show that the proposed model provides competitive performance.
NASA Astrophysics Data System (ADS)
Yang, He; Ma, Ben; Du, Qian; Yang, Chenghai
2010-08-01
In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified class pairs, such as roof and trail, road and roof. These classes may be difficult to be separated because they may have similar spectral signatures and their spatial features are not distinct enough to help their discrimination. In addition, misclassification incurred from within-class trivial spectral variation can be corrected by using pixel connectivity information in a local window so that spectrally homogeneous regions can be well preserved. Our experimental results demonstrate the efficiency of the proposed approaches in classification accuracy improvement. The overall performance is competitive to the object-based SVM classification.
NASA Technical Reports Server (NTRS)
Huck, F. O.; Davis, R. E.; Fales, C. L.; Aherron, R. M.
1982-01-01
A computational model of the deterministic and stochastic processes involved in remote sensing is used to study spectral feature identification techniques for real-time onboard processing of data acquired with advanced earth-resources sensors. Preliminary results indicate that: Narrow spectral responses are advantageous; signal normalization improves mean-square distance (MSD) classification accuracy but tends to degrade maximum-likelihood (MLH) classification accuracy; and MSD classification of normalized signals performs better than the computationally more complex MLH classification when imaging conditions change appreciably from those conditions during which reference data were acquired. The results also indicate that autonomous categorization of TM signals into vegetation, bare land, water, snow and clouds can be accomplished with adequate reliability for many applications over a reasonably wide range of imaging conditions. However, further analysis is required to develop computationally efficient boundary approximation algorithms for such categorization.
Pu, Hongbin; Sun, Da-Wen; Ma, Ji; Cheng, Jun-Hu
2015-01-01
The potential of visible and near infrared hyperspectral imaging was investigated as a rapid and nondestructive technique for classifying fresh and frozen-thawed meats by integrating critical spectral and image features extracted from hyperspectral images in the region of 400-1000 nm. Six feature wavelengths (400, 446, 477, 516, 592 and 686 nm) were identified using uninformative variable elimination and successive projections algorithm. Image textural features of the principal component images from hyperspectral images were obtained using histogram statistics (HS), gray level co-occurrence matrix (GLCM) and gray level-gradient co-occurrence matrix (GLGCM). By these spectral and textural features, probabilistic neural network (PNN) models for classification of fresh and frozen-thawed pork meats were established. Compared with the models using the optimum wavelengths only, optimum wavelengths with HS image features, and optimum wavelengths with GLCM image features, the model integrating optimum wavelengths with GLGCM gave the highest classification rate of 93.14% and 90.91% for calibration and validation sets, respectively. Results indicated that the classification accuracy can be improved by combining spectral features with textural features and the fusion of critical spectral and textural features had better potential than single spectral extraction in classifying fresh and frozen-thawed pork meat. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Gurpreet; Singh, Maninder Lal
2017-07-01
A hybrid suboptimum channel separation (S-CS) scheme is presented. The distinct feature of the scheme is that it selectively minimizes the four-wave mixing (FWM) effect on the worst-affected channels and enhances the performance and spectral bandwidth efficiency in a controlled way. The scheme is helpful in the precise adjustment of tradeoff between immunity from FWM and spectral bandwidth requirement. The simulative comparison of the S-CS with optimum unequal channel separation (OUCS) and equal channel separation (ECS) schemes is performed to show its effectiveness. A dense wavelength division multiplexed system having a total capacity of 1.64 Tb/s in C band is implemented using the presented scheme. A maximum of 82 channels spaced at minimum CS of 50 GHz operating at a data rate of 20 Gb/s for each of the channels is realized using a S-CS (n=12) hybrid scheme. The simulations are performed in the presence of all the linear and nonlinear impairments and noises. A maximum of 480- and 300-km distances using SSMF and ITUT.G655 fibers, respectively, is realized using dispersion-compensating fibers for 82 channels. The ECS and hybrid OUCS can be realized to cover the same distances but with 73 and 79 channels, respectively, due to the realization problem and bandwidth inefficiency.
Abdelfattah, Adham; Otto, Randall J; Simon, Peter; Christmas, Kaitlyn N; Tanner, Gregory; LaMartina, Joey; Levy, Jonathan C; Cuff, Derek J; Mighell, Mark A; Frankle, Mark A
2018-04-01
Revision of unstable reverse shoulder arthroplasty (RSA) remains a significant challenge. The purpose of this study was to determine the reliability of a new treatment-guiding classification for instability after RSA, to describe the clinical outcomes of patients stabilized operatively, and to identify those with higher risk of recurrence. All patients undergoing revision for instability after RSA were identified at our institution. Demographic, clinical, radiographic, and intraoperative data were collected. A classification was developed using all identified causes of instability after RSA and allocating them to 1 of 3 defined treatment-guiding categories. Eight surgeons reviewed all data and applied the classification scheme to each case. Interobserver and intraobserver reliability was used to evaluate the classification scheme. Preoperative clinical outcomes were compared with final follow-up in stabilized shoulders. Forty-three revision cases in 34 patients met the inclusion for study. Five patients remained unstable after revision. Persistent instability most commonly occurred in persistent deltoid dysfunction and postoperative acromial fractures but also in 1 case of soft tissue impingement. Twenty-one patients remained stable at minimum 2 years of follow-up and had significant improvement of clinical outcome scores and range of motion. Reliability of the classification scheme showed substantial and almost perfect interobserver and intraobserver agreement among all the participants (κ = 0.699 and κ = 0.851, respectively). Instability after RSA can be successfully treated with revision surgery using the reliable treatment-guiding classification scheme presented herein. However, more understanding is needed for patients with greater risk of recurrent instability after revision surgery. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Azadmanjir, Zahra; Safdari, Reza; Ghazisaeedi, Marjan; Mokhtaran, Mehrshad; Kameli, Mohammad Esmail
2017-06-01
Accurate coded data in the healthcare are critical. Computer-Assisted Coding (CAC) is an effective tool to improve clinical coding in particular when a new classification will be developed and implemented. But determine the appropriate method for development need to consider the specifications of existing CAC systems, requirements for each type, our infrastructure and also, the classification scheme. The aim of the study was the development of a decision model for determining accurate code of each medical intervention in Iranian Classification of Health Interventions (IRCHI) that can be implemented as a suitable CAC system. first, a sample of existing CAC systems was reviewed. Then feasibility of each one of CAC types was examined with regard to their prerequisites for their implementation. The next step, proper model was proposed according to the structure of the classification scheme and was implemented as an interactive system. There is a significant relationship between the level of assistance of a CAC system and integration of it with electronic medical documents. Implementation of fully automated CAC systems is impossible due to immature development of electronic medical record and problems in using language for medical documenting. So, a model was proposed to develop semi-automated CAC system based on hierarchical relationships between entities in the classification scheme and also the logic of decision making to specify the characters of code step by step through a web-based interactive user interface for CAC. It was composed of three phases to select Target, Action and Means respectively for an intervention. The proposed model was suitable the current status of clinical documentation and coding in Iran and also, the structure of new classification scheme. Our results show it was practical. However, the model needs to be evaluated in the next stage of the research.
NASA Astrophysics Data System (ADS)
Wang, Z.; Wu, J.; Wang, Y.; Kong, X.; Bao, H.; Ni, Y.; Ma, L.; Jin, J.
2018-05-01
Mapping tree species is essential for sustainable planning as well as to improve our understanding of the role of different trees as different ecological service. However, crown-level tree species automatic classification is a challenging task due to the spectral similarity among diversified tree species, fine-scale spatial variation, shadow, and underlying objects within a crown. Advanced remote sensing data such as airborne Light Detection and Ranging (LiDAR) and hyperspectral imagery offer a great potential opportunity to derive crown spectral, structure and canopy physiological information at the individual crown scale, which can be useful for mapping tree species. In this paper, an innovative approach was developed for tree species classification at the crown level. The method utilized LiDAR data for individual tree crown delineation and morphological structure extraction, and Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery for pure crown-scale spectral extraction. Specifically, four steps were include: 1) A weighted mean filtering method was developed to improve the accuracy of the smoothed Canopy Height Model (CHM) derived from LiDAR data; 2) The marker-controlled watershed segmentation algorithm was, therefore, also employed to delineate the tree-level canopy from the CHM image in this study, and then individual tree height and tree crown were calculated according to the delineated crown; 3) Spectral features within 3 × 3 neighborhood regions centered on the treetops detected by the treetop detection algorithm were derived from the spectrally normalized CASI imagery; 4) The shape characteristics related to their crown diameters and heights were established, and different crown-level tree species were classified using the combination of spectral and shape characteristics. Analysis of results suggests that the developed classification strategy in this paper (OA = 85.12 %, Kc = 0.90) performed better than LiDAR-metrics method (OA = 79.86 %, Kc = 0.81) and spectral-metircs method (OA = 71.26, Kc = 0.69) in terms of classification accuracy, which indicated that the advanced method of data processing and sensitive feature selection are critical for improving the accuracy of crown-level tree species classification.
Zu, Qin; Zhang, Shui-fa; Cao, Yang; Zhao, Hui-yi; Dang, Chang-qing
2015-02-01
Weeds automatic identification is the key technique and also the bottleneck for implementation of variable spraying and precision pesticide. Therefore, accurate, rapid and non-destructive automatic identification of weeds has become a very important research direction for precision agriculture. Hyperspectral imaging system was used to capture the hyperspectral images of cabbage seedlings and five kinds of weeds such as pigweed, barnyard grass, goosegrass, crabgrass and setaria with the wavelength ranging from 1000 to 2500 nm. In ENVI, by utilizing the MNF rotation to implement the noise reduction and de-correlation of hyperspectral data and reduce the band dimensions from 256 to 11, and extracting the region of interest to get the spectral library as standard spectra, finally, using the SAM taxonomy to identify cabbages and weeds, the classification effect was good when the spectral angle threshold was set as 0. 1 radians. In HSI Analyzer, after selecting the training pixels to obtain the standard spectrum, the SAM taxonomy was used to distinguish weeds from cabbages. Furthermore, in order to measure the recognition accuracy of weeds quantificationally, the statistical data of the weeds and non-weeds were obtained by comparing the SAM classification image with the best classification effects to the manual classification image. The experimental results demonstrated that, when the parameters were set as 5-point smoothing, 0-order derivative and 7-degree spectral angle, the best classification result was acquired and the recognition rate of weeds, non-weeds and overall samples was 80%, 97.3% and 96.8% respectively. The method that combined the spectral imaging technology and the SAM taxonomy together took full advantage of fusion information of spectrum and image. By applying the spatial classification algorithms to establishing training sets for spectral identification, checking the similarity among spectral vectors in the pixel level, integrating the advantages of spectra and images meanwhile considering their accuracy and rapidity and improving weeds detection range in the full range that could detect weeds between and within crop rows, the above method contributes relevant analysis tools and means to the application field requiring the accurate information of plants in agricultural precision management
NASA Astrophysics Data System (ADS)
Zhu, Zhenyu; Wang, Jianyu
1996-11-01
In this paper, two compression schemes are presented to meet the urgent needs of compressing the huge volume and high data rate of imaging spectrometer images. According to the multidimensional feature of the images and the high fidelity requirement of the reconstruction, both schemes were devised to exploit the high redundancy in both spatial and spectral dimension based on the mature wavelet transform technology. Wavelet transform was applied here in two ways: First, with the spatial wavelet transform and the spectral DPCM decorrelation, a ratio up to 84.3 with PSNR > 48db's near-lossless result was attained. This is based ont he fact that the edge structure among all the spectral bands are similar while WT has higher resolution in high frequency components. Secondly, with the wavelet's high efficiency in processing the 'wideband transient' signals, it was used to transform the raw nonstationary signals in the spectral dimension. A good result was also attained.
On the Conservation and Convergence to Weak Solutions of Global Schemes
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Gottlieb, David; Shu, Chi-Wang
2001-01-01
In this paper we discuss the issue of conservation and convergence to weak solutions of several global schemes, including the commonly used compact schemes and spectral collocation schemes, for solving hyperbolic conservation laws. It is shown that such schemes, if convergent boundedly almost everywhere, will converge to weak solutions. The results are extensions of the classical Lax-Wendroff theorem concerning conservative schemes.
NASA Technical Reports Server (NTRS)
Sabol, Donald E., Jr.; Roberts, Dar A.; Adams, John B.; Smith, Milton O.
1993-01-01
An important application of remote sensing is to map and monitor changes over large areas of the land surface. This is particularly significant with the current interest in monitoring vegetation communities. Most of traditional methods for mapping different types of plant communities are based upon statistical classification techniques (i.e., parallel piped, nearest-neighbor, etc.) applied to uncalibrated multispectral data. Classes from these techniques are typically difficult to interpret (particularly to a field ecologist/botanist). Also, classes derived for one image can be very different from those derived from another image of the same area, making interpretation of observed temporal changes nearly impossible. More recently, neural networks have been applied to classification. Neural network classification, based upon spectral matching, is weak in dealing with spectral mixtures (a condition prevalent in images of natural surfaces). Another approach to mapping vegetation communities is based on spectral mixture analysis, which can provide a consistent framework for image interpretation. Roberts et al. (1990) mapped vegetation using the band residuals from a simple mixing model (the same spectral endmembers applied to all image pixels). Sabol et al. (1992b) and Roberts et al. (1992) used different methods to apply the most appropriate spectral endmembers to each image pixel, thereby allowing mapping of vegetation based upon the the different endmember spectra. In this paper, we describe a new approach to classification of vegetation communities based upon the spectra fractions derived from spectral mixture analysis. This approach was applied to three 1992 AVIRIS images of Jasper Ridge, California to observe seasonal changes in surface composition.
Thoe, W; Lee, Olive H K; Leung, K F; Lee, T; Ashbolt, Nicholas J; Yang, Ron R; Chui, Samuel H K
2018-06-01
Hong Kong's beach water quality classification scheme, used effectively for >25 years in protecting public health, was first established in local epidemiology studies during the late 1980s where Escherichia coli (E. coli) was identified as the most suitable faecal indicator bacteria. To review and further substantiate the scheme's robustness, a performance check was carried out to classify water quality of 37 major local beaches in Hong Kong during four bathing seasons (March-October) from 2010 to 2013. Given the enterococci and E. coli data collected, beach classification by the local scheme was found to be in line with the prominent international benchmarks recommended by the World Health Organization and the European Union. Local bacteriological studies over the last 15 years further confirmed that E. coli is the more suitable faecal indicator bacteria than enterococci in the local context. Copyright © 2018 Elsevier Ltd. All rights reserved.
Update on diabetes classification.
Thomas, Celeste C; Philipson, Louis H
2015-01-01
This article highlights the difficulties in creating a definitive classification of diabetes mellitus in the absence of a complete understanding of the pathogenesis of the major forms. This brief review shows the evolving nature of the classification of diabetes mellitus. No classification scheme is ideal, and all have some overlap and inconsistencies. The only diabetes in which it is possible to accurately diagnose by DNA sequencing, monogenic diabetes, remains undiagnosed in more than 90% of the individuals who have diabetes caused by one of the known gene mutations. The point of classification, or taxonomy, of disease, should be to give insight into both pathogenesis and treatment. It remains a source of frustration that all schemes of diabetes mellitus continue to fall short of this goal. Copyright © 2015 Elsevier Inc. All rights reserved.
Identification of terrain cover using the optimum polarimetric classifier
NASA Technical Reports Server (NTRS)
Kong, J. A.; Swartz, A. A.; Yueh, H. A.; Novak, L. M.; Shin, R. T.
1988-01-01
A systematic approach for the identification of terrain media such as vegetation canopy, forest, and snow-covered fields is developed using the optimum polarimetric classifier. The covariance matrices for various terrain cover are computed from theoretical models of random medium by evaluating the scattering matrix elements. The optimal classification scheme makes use of a quadratic distance measure and is applied to classify a vegetation canopy consisting of both trees and grass. Experimentally measured data are used to validate the classification scheme. Analytical and Monte Carlo simulated classification errors using the fully polarimetric feature vector are compared with classification based on single features which include the phase difference between the VV and HH polarization returns. It is shown that the full polarimetric results are optimal and provide better classification performance than single feature measurements.
Discrimination of alkalinity in granitoid Rocks: A potential TIMS application
NASA Technical Reports Server (NTRS)
Ruff, Steven W.
1995-01-01
In mineral exploration, the ability to distinguish and map petrochemical variations of magmatic rocks can be a useful reconnaissance tool. Alkalinity is one such petrochemical parameter and is used in the characterization of granitoid rocks. In quartz normative plutonic rocks, alkalinity is related to the composition and abundance of feldspars. Together with quartz abundance, knowledge of feldspar modes allows the classification of these igneous rocks according to the Streckeisen diagram. Alternative classification schemes rely on whole rock geochemistry instead of mineral identifications. The relative ease of obtaining whole rock analyses means that geochemical classifications tend to be favored in exploration geology. But the technique of thermal infrared spectroscopy of rocks yields information on mineralogy and is one that can be applied remotely. The goal of the current work then is to establish whether data from TIMS can be used to distinguish the mineralogical variations that relate to alkalinity. An ideal opportunity to test this thesis arises from the work presented in a paper by Dewitt (1989). This paper contains the results of mapping and analysis of Proterozoic plutonic rocks in north-central Arizona. The map resulting from this work delineates plutons according to alkalinity in an effort to establish a trend or polarity in the regional magmatism. Also contained within this paper are brief descriptions of the mineralogy of half of the region's plutons. This combination of mineralogical and geochemical information was the rationale behind choosing this area as a site for TIMS over flights. A portion of the region centered on the northern Bradshaw Mountains was selected because it contains plutons of all three alkalinity classifications (alkali-calcic, calc-alkalic, and calic) present on DeWitt's map within a relatively small area. The site was flown in August of 1994 and the data received a few days before the writing of this manuscript. Most of this paper is devoted to the description of laboratory based spectroscopy and spectral simulations. These are required to gain insight into the correct procedures for enhancing the relatively small differences in the low spectral resolution TIMS data.
A proposed classification scheme for Ada-based software products
NASA Technical Reports Server (NTRS)
Cernosek, Gary J.
1986-01-01
As the requirements for producing software in the Ada language become a reality for projects such as the Space Station, a great amount of Ada-based program code will begin to emerge. Recognizing the potential for varying levels of quality to result in Ada programs, what is needed is a classification scheme that describes the quality of a software product whose source code exists in Ada form. A 5-level classification scheme is proposed that attempts to decompose this potentially broad spectrum of quality which Ada programs may possess. The number of classes and their corresponding names are not as important as the mere fact that there needs to be some set of criteria from which to evaluate programs existing in Ada. An exact criteria for each class is not presented, nor are any detailed suggestions of how to effectively implement this quality assessment. The idea of Ada-based software classification is introduced and a set of requirements from which to base further research and development is suggested.
Keitel, Anne; Gross, Joachim
2016-06-01
The human brain can be parcellated into diverse anatomical areas. We investigated whether rhythmic brain activity in these areas is characteristic and can be used for automatic classification. To this end, resting-state MEG data of 22 healthy adults was analysed. Power spectra of 1-s long data segments for atlas-defined brain areas were clustered into spectral profiles ("fingerprints"), using k-means and Gaussian mixture (GM) modelling. We demonstrate that individual areas can be identified from these spectral profiles with high accuracy. Our results suggest that each brain area engages in different spectral modes that are characteristic for individual areas. Clustering of brain areas according to similarity of spectral profiles reveals well-known brain networks. Furthermore, we demonstrate task-specific modulations of auditory spectral profiles during auditory processing. These findings have important implications for the classification of regional spectral activity and allow for novel approaches in neuroimaging and neurostimulation in health and disease.
NASA Astrophysics Data System (ADS)
Xie, Qing; Xiao, Zhixiang; Ren, Zhuyin
2018-09-01
A spectral radius scaling semi-implicit time stepping scheme has been developed for simulating unsteady compressible reactive flows with detailed chemistry, in which the spectral radius in the LUSGS scheme has been augmented to account for viscous/diffusive and reactive terms and a scalar matrix is proposed to approximate the chemical Jacobian using the minimum species destruction timescale. The performance of the semi-implicit scheme, together with a third-order explicit Runge-Kutta scheme and a Strang splitting scheme, have been investigated in auto-ignition and laminar premixed and nonpremixed flames of three representative fuels, e.g., hydrogen, methane, and n-heptane. Results show that the minimum species destruction time scale can well represent the smallest chemical time scale in reactive flows and the proposed scheme can significantly increase the allowable time steps in simulations. The scheme is stable when the time step is as large as 10 μs, which is about three to five orders of magnitude larger than the smallest time scales in various tests considered. For the test flames considered, the semi-implicit scheme achieves second order of accuracy in time. Moreover, the errors in quantities of interest are smaller than those from the Strang splitting scheme indicating the accuracy gain when the reaction and transport terms are solved coupled. Results also show that the relative efficiency of different schemes depends on fuel mechanisms and test flames. When the minimum time scale in reactive flows is governed by transport processes instead of chemical reactions, the proposed semi-implicit scheme is more efficient than the splitting scheme. Otherwise, the relative efficiency depends on the cost in sub-iterations for convergence within each time step and in the integration for chemistry substep. Then, the capability of the compressible reacting flow solver and the proposed semi-implicit scheme is demonstrated for capturing the hydrogen detonation waves. Finally, the performance of the proposed method is demonstrated in a two-dimensional hydrogen/air diffusion flame.
Development the EarthCARE aerosol classification scheme
NASA Astrophysics Data System (ADS)
Wandinger, Ulla; Baars, Holger; Hünerbein, Anja; Donovan, Dave; van Zadelhoff, Gerd-Jan; Fischer, Jürgen; von Bismarck, Jonas; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias
2015-04-01
The Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) mission is a joint ESA/JAXA mission planned to be launched in 2018. The multi-sensor platform carries a cloud-profiling radar (CPR), a high-spectral-resolution cloud/aerosol lidar (ATLID), a cloud/aerosol multi-spectral imager (MSI), and a three-view broad-band radiometer (BBR). Three out of the four instruments (ATLID, MSI, and BBR) will be able to sense the global aerosol distribution and contribute to the overarching EarthCARE goals of sensor synergy and radiation closure with respect to aerosols. The high-spectral-resolution lidar ATLID obtains profiles of particle extinction and backscatter coefficients, lidar ratio, and linear depolarization ratio as well as the aerosol optical thickness (AOT) at 355 nm. MSI provides AOT at 670 nm (over land and ocean) and 865 nm (over ocean). Next to these primary observables the aerosol type is one of the required products to be derived from both lidar stand-alone and ATLID-MSI synergistic retrievals. ATLID measurements of the aerosol intensive properties (lidar ratio, depolarization ratio) and ATLID-MSI observations of the spectral AOT will provide the basic input for aerosol-type determination. Aerosol typing is needed for the quantification of anthropogenic versus natural aerosol loadings of the atmosphere, the investigation of aerosol-cloud interaction, assimilation purposes, and the validation of atmospheric transport models which carry components like dust, sea salt, smoke and pollution. Furthermore, aerosol classification is a prerequisite for the estimation of direct aerosol radiative forcing and radiative closure studies. With an appropriate underlying microphysical particle description, the categorization of aerosol observations into predefined aerosol types allows us to infer information needed for the calculation of shortwave radiative effects, such as mean particle size, single-scattering albedo, and spectral conversion factors. In order to ensure the consistency of EarthCARE retrievals, to support aerosol description in the EarthCARE simulator ECSIM, and to facilitate a uniform specification of broad-band aerosol optical properties, a hybrid end-to-end aerosol classification model (HETEAC) is developed which serves as a baseline for EarthCARE algorithm development and evaluation procedures. The model's theoretical description of aerosol microphysics (bi-modal size distribution, spectral refractive index, and particle shape distribution) is adjusted to experimental data of aerosol optical properties, i.e. lidar ratio, depolarization ratio, Ångström exponents (hybrid approach). The experimental basis is provided by ground-based observations with sophisticated multi-wavelength, polarization lidars applied in the European Aerosol Research Lidar Network (EARLINET) and in dedicated field campaigns in the Sahara (SAMUM-1), Cape Verde (SAMUM-2), Barbados (SALTRACE), Atlantic Ocean (Polarstern and Meteor cruises), and Amazonia. The model is designed such that it covers the entire loop from aerosol microphysics via aerosol classification to optical and radiative properties of the respective types and allows consistency checks of modeled and measured parameters (end-to-end approach). Optical modeling considers scattering properties of spherical and non-spherical particles. A suitable set of aerosol types is defined which includes dust, clean marine, clean continental, pollution, smoke, and stratospheric aerosol. Mixtures of these types are included as well. The definition is consistent with CALIPSO approaches and will thus enable the establishment of a long-term global four-dimensional aerosol dataset.
NASA Astrophysics Data System (ADS)
Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Pandarinath, Kailasa; Amezcua-Valdez, Alejandra; Rosales-Rivera, Mauricio; Verma, Sanjeet K.; Quiroz-Ruiz, Alfredo; Armstrong-Altrin, John S.
2017-05-01
A new multidimensional scheme consistent with the International Union of Geological Sciences (IUGS) is proposed for the classification of igneous rocks in terms of four magma types: ultrabasic, basic, intermediate, and acid. Our procedure is based on an extensive database of major element composition of a total of 33,868 relatively fresh rock samples having a multinormal distribution (initial database with 37,215 samples). Multinormally distributed database in terms of log-ratios of samples was ascertained by a new computer program DOMuDaF, in which the discordancy test was applied at the 99.9% confidence level. Isometric log-ratio (ilr) transformation was used to provide overall percent correct classification of 88.7%, 75.8%, 88.0%, and 80.9% for ultrabasic, basic, intermediate, and acid rocks, respectively. Given the known mathematical and uncertainty propagation properties, this transformation could be adopted for routine applications. The incorrect classification was mainly for the "neighbour" magma types, e.g., basic for ultrabasic and vice versa. Some of these misclassifications do not have any effect on multidimensional tectonic discrimination. For an efficient application of this multidimensional scheme, a new computer program MagClaMSys_ilr (MagClaMSys-Magma Classification Major-element based System) was written, which is available for on-line processing on http://tlaloc.ier.unam.mx/index.html. This classification scheme was tested from newly compiled data for relatively fresh Neogene igneous rocks and was found to be consistent with the conventional IUGS procedure. The new scheme was successfully applied to inter-laboratory data for three geochemical reference materials (basalts JB-1 and JB-1a, and andesite JA-3) from Japan and showed that the inferred magma types are consistent with the rock name (basic for basalts JB-1 and JB-1a and intermediate for andesite JA-3). The scheme was also successfully applied to five case studies of older Archaean to Mesozoic igneous rocks. Similar or more reliable results were obtained from existing tectonomagmatic discrimination diagrams when used in conjunction with the new computer program as compared to the IUGS scheme. The application to three case studies of igneous provenance of sedimentary rocks was demonstrated as a novel approach. Finally, we show that the new scheme is more robust for post-emplacement compositional changes than the conventional IUGS procedure.
An expert computer program for classifying stars on the MK spectral classification system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, R. O.; Corbally, C. J.
2014-04-01
This paper describes an expert computer program (MKCLASS) designed to classify stellar spectra on the MK Spectral Classification system in a way similar to humans—by direct comparison with the MK classification standards. Like an expert human classifier, the program first comes up with a rough spectral type, and then refines that spectral type by direct comparison with MK standards drawn from a standards library. A number of spectral peculiarities, including barium stars, Ap and Am stars, λ Bootis stars, carbon-rich giants, etc., can be detected and classified by the program. The program also evaluates the quality of the delivered spectralmore » type. The program currently is capable of classifying spectra in the violet-green region in either the rectified or flux-calibrated format, although the accuracy of the flux calibration is not important. We report on tests of MKCLASS on spectra classified by human classifiers; those tests suggest that over the entire HR diagram, MKCLASS will classify in the temperature dimension with a precision of 0.6 spectral subclass, and in the luminosity dimension with a precision of about one half of a luminosity class. These results compare well with human classifiers.« less
Classification of proteins: available structural space for molecular modeling.
Andreeva, Antonina
2012-01-01
The wealth of available protein structural data provides unprecedented opportunity to study and better understand the underlying principles of protein folding and protein structure evolution. A key to achieving this lies in the ability to analyse these data and to organize them in a coherent classification scheme. Over the past years several protein classifications have been developed that aim to group proteins based on their structural relationships. Some of these classification schemes explore the concept of structural neighbourhood (structural continuum), whereas other utilize the notion of protein evolution and thus provide a discrete rather than continuum view of protein structure space. This chapter presents a strategy for classification of proteins with known three-dimensional structure. Steps in the classification process along with basic definitions are introduced. Examples illustrating some fundamental concepts of protein folding and evolution with a special focus on the exceptions to them are presented.
Inter-sectoral costs and benefits of mental health prevention: towards a new classification scheme.
Drost, Ruben M W A; Paulus, Aggie T G; Ruwaard, Dirk; Evers, Silvia M A A
2013-12-01
Many preventive interventions for mental disorders have costs and benefits that spill over to sectors outside the healthcare sector. Little is known about these "inter-sectoral costs and benefits" (ICBs) of prevention. However, to achieve an efficient allocation of scarce resources, insights on ICBs are indispensable. The main aim was to identify the ICBs related to the prevention of mental disorders and provide a sector-specific classification scheme for these ICBs. Using PubMed, a literature search was conducted for ICBs of mental disorders and related (psycho)social effects. A policy perspective was used to build the scheme's structure, which was adapted to the outcomes of the literature search. In order to validate the scheme's international applicability inside and outside the mental health domain, semi-structured interviews were conducted with (inter)national experts in the broad fields of health promotion and disease prevention. The searched-for items appeared in a total of 52 studies. The ICBs found were classified in one of four sectors: "Education", "Labor and Social Security", "Household and Leisure" or "Criminal Justice System". Psycho(social) effects were placed in a separate section under "Individual and Family". Based on interviews, the scheme remained unadjusted, apart from adding a population-based dimension. This is the first study which offers a sector-specific classification of ICBs. Given the explorative nature of the study, no guidelines on sector-specific classification of ICBs were available. Nevertheless, the classification scheme was acknowledged by an international audience and could therefore provide added value to researchers and policymakers in the field of mental health economics and prevention. The identification and classification of ICBs offers decision makers supporting information on how to optimally allocate scarce resources with respect to preventive interventions for mental disorders. By exploring a new area of research, which has remained largely unexplored until now, the current study has an added value as it may form the basis for the development of a tool which can be used to calculate the ICBs of specific mental health related preventive interventions.
Spectral-Spatial Classification of Hyperspectral Images Using Hierarchical Optimization
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2011-01-01
A new spectral-spatial method for hyperspectral data classification is proposed. For a given hyperspectral image, probabilistic pixelwise classification is first applied. Then, hierarchical step-wise optimization algorithm is performed, by iteratively merging neighboring regions with the smallest Dissimilarity Criterion (DC) and recomputing class labels for new regions. The DC is computed by comparing region mean vectors, class labels and a number of pixels in the two regions under consideration. The algorithm is converged when all the pixels get involved in the region merging procedure. Experimental results are presented on two remote sensing hyperspectral images acquired by the AVIRIS and ROSIS sensors. The proposed approach improves classification accuracies and provides maps with more homogeneous regions, when compared to previously proposed classification techniques.
Hyperspectral microscopic analysis of normal, benign and carcinoma microarray tissue sections
NASA Astrophysics Data System (ADS)
Maggioni, Mauro; Davis, Gustave L.; Warner, Frederick J.; Geshwind, Frank B.; Coppi, Andreas C.; DeVerse, Richard A.; Coifman, Ronald R.
2006-02-01
We apply a unique micro-optoelectromechanical tuned light source and new algorithms to the hyper-spectral microscopic analysis of human colon biopsies. The tuned light prototype (Plain Sight Systems Inc.) transmits any combination of light frequencies, range 440nm 700nm, trans-illuminating H and E stained tissue sections of normal (N), benign adenoma (B) and malignant carcinoma (M) colon biopsies, through a Nikon Biophot microscope. Hyper-spectral photomicrographs, randomly collected 400X magnication, are obtained with a CCD camera (Sensovation) from 59 different patient biopsies (20 N, 19 B, 20 M) mounted as a microarray on a single glass slide. The spectra of each pixel are normalized and analyzed to discriminate among tissue features: gland nuclei, gland cytoplasm and lamina propria/lumens. Spectral features permit the automatic extraction of 3298 nuclei with classification as N, B or M. When nuclei are extracted from each of the 59 biopsies the average classification among N, B and M nuclei is 97.1%; classification of the biopsies, based on the average nuclei classification, is 100%. However, when the nuclei are extracted from a subset of biopsies, and the prediction is made on nuclei in the remaining biopsies, there is a marked decrement in performance to 60% across the 3 classes. Similarly the biopsy classification drops to 54%. In spite of these classification differences, which we believe are due to instrument and biopsy normalization issues, hyper-spectral analysis has the potential to achieve diagnostic efficiency needed for objective microscopic diagnosis.
Graph-Based Semi-Supervised Hyperspectral Image Classification Using Spatial Information
NASA Astrophysics Data System (ADS)
Jamshidpour, N.; Homayouni, S.; Safari, A.
2017-09-01
Hyperspectral image classification has been one of the most popular research areas in the remote sensing community in the past decades. However, there are still some problems that need specific attentions. For example, the lack of enough labeled samples and the high dimensionality problem are two most important issues which degrade the performance of supervised classification dramatically. The main idea of semi-supervised learning is to overcome these issues by the contribution of unlabeled samples, which are available in an enormous amount. In this paper, we propose a graph-based semi-supervised classification method, which uses both spectral and spatial information for hyperspectral image classification. More specifically, two graphs were designed and constructed in order to exploit the relationship among pixels in spectral and spatial spaces respectively. Then, the Laplacians of both graphs were merged to form a weighted joint graph. The experiments were carried out on two different benchmark hyperspectral data sets. The proposed method performed significantly better than the well-known supervised classification methods, such as SVM. The assessments consisted of both accuracy and homogeneity analyses of the produced classification maps. The proposed spectral-spatial SSL method considerably increased the classification accuracy when the labeled training data set is too scarce.When there were only five labeled samples for each class, the performance improved 5.92% and 10.76% compared to spatial graph-based SSL, for AVIRIS Indian Pine and Pavia University data sets respectively.
NASA Astrophysics Data System (ADS)
Koch, Karl
2002-10-01
The Vogtland region, in the border region of Germany and the Czech Republic, is of special interest for the identification of seismic events on a local and regional scale, since both earthquakes and explosions occur frequently in the same area, and thus are relevant for discrimination research for verification of the Comprehensive Nuclear Test Ban Treaty. Previous research on event discrimination using spectral decay and variance from data recorded by the GERESS array indicated that spectral variance determined for the S phase for the seismic events in the Vogtland region seems to be the most promising parameter for event discrimination, because this parameter provides for almost complete separation of the earthquake and explosion populations. Almost the entire set of Vogtland events used in this research and more than 3000 local events detected in Germany in 1998 and 1999 were analysed to determine spectral slopes and variance for the P- and S-wave windows from stacked spectra of recordings at the GERESS array. The results suggest that small values for the spectral variance are associated not only with earthquakes in the Vogtland region, but also with earthquakes in other parts of Germany and neighbouring countries. While mining blasts show larger spectral variance values, mining-induced events yield a wide range of values, for example, in the Lubin area. A threshold-based identification scheme was applied; almost all events classified as earthquakes are found in seismically active regions. While the earthquakes are uniformly distributed throughout the day, events classified as explosions correlate with normal working hours, which is when blasting is done in Germany. In this study spectral variance provides good event discrimination for events in other parts of Germany, not only for the Vogtland region, showing that this identification parameter may be transported to other geological regions.
Newly discovered Wolf-Rayet and weak emission-line central stars of planetary nebulae
NASA Astrophysics Data System (ADS)
DePew, K.; Parker, Q. A.; Miszalski, B.; De Marco, O.; Frew, D. J.; Acker, A.; Kovacevic, A. V.; Sharp, R. G.
2011-07-01
We present the spectra of 32 previously unpublished confirmed and candidate Wolf-Rayet ([WR]) and weak emission-line (WELS) central stars of planetary nebulae (CSPNe). 18 stars have been discovered in the Macquarie/AAO/Strasbourg Hα (MASH) PN survey sample, and we have also uncovered 14 confirmed and candidate [WR]s and WELS among the CSPNe of previously known PNe. Spectral classifications have been undertaken using both Acker & Neiner and Crowther, De Marco & Barlow schemes. 22 members in this sample are identified as probable [WR]s; the remaining 10 appear to be WELS. Observations undertaken as part of the MASH spectroscopic survey have now increased the number of known [WR]s by ˜30 per cent. This will permit a better analysis of [WR] subclass distribution, metallicity effects and evolutionary sequences in these uncommon objects.
NASA Technical Reports Server (NTRS)
Matic, Roy M.; Mosley, Judith I.
1994-01-01
Future space-based, remote sensing systems will have data transmission requirements that exceed available downlinks necessitating the use of lossy compression techniques for multispectral data. In this paper, we describe several algorithms for lossy compression of multispectral data which combine spectral decorrelation techniques with an adaptive, wavelet-based, image compression algorithm to exploit both spectral and spatial correlation. We compare the performance of several different spectral decorrelation techniques including wavelet transformation in the spectral dimension. The performance of each technique is evaluated at compression ratios ranging from 4:1 to 16:1. Performance measures used are visual examination, conventional distortion measures, and multispectral classification results. We also introduce a family of distortion metrics that are designed to quantify and predict the effect of compression artifacts on multi spectral classification of the reconstructed data.
Nonlinear single-spin spectrum analyzer.
Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee
2013-03-15
Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.
Decoding magnetoencephalographic rhythmic activity using spectrospatial information.
Kauppi, Jukka-Pekka; Parkkonen, Lauri; Hari, Riitta; Hyvärinen, Aapo
2013-12-01
We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for the analysis of magnetoencephalography (MEG). The method allows investigation of changes in rhythmic neural activity as a result of different stimuli and tasks. The introduced classification model only assumes that each "brain state" can be characterized as a combination of neural sources, each of which shows rhythmic activity at one or several frequency bands. Furthermore, the model allows the oscillation frequencies to be different for each such state. We present decoding results from 9 subjects in a four-category classification problem defined by an experiment involving randomly alternating epochs of auditory, visual and tactile stimuli interspersed with rest periods. The performance of Spectral LDA was very competitive compared with four alternative classifiers based on different assumptions concerning the organization of rhythmic brain activity. In addition, the spectral and spatial patterns extracted automatically on the basis of trained classifiers showed that Spectral LDA offers a novel and interesting way of analyzing spectrospatial oscillatory neural activity across the brain. All the presented classification methods and visualization tools are freely available as a Matlab toolbox. © 2013.
Fan, Leland L; Dishop, Megan K; Galambos, Csaba; Askin, Frederic B; White, Frances V; Langston, Claire; Liptzin, Deborah R; Kroehl, Miranda E; Deutsch, Gail H; Young, Lisa R; Kurland, Geoffrey; Hagood, James; Dell, Sharon; Trapnell, Bruce C; Deterding, Robin R
2015-10-01
Children's Interstitial and Diffuse Lung Disease (chILD) is a heterogeneous group of disorders that is challenging to categorize. In previous study, a classification scheme was successfully applied to children 0 to 2 years of age who underwent lung biopsies for chILD. This classification scheme has not been evaluated in children 2 to 18 years of age. This multicenter interdisciplinary study sought to describe the spectrum of biopsy-proven chILD in North America and to apply a previously reported classification scheme in children 2 to 18 years of age. Mortality and risk factors for mortality were also assessed. Patients 2 to 18 years of age who underwent lung biopsies for diffuse lung disease from 12 North American institutions were included. Demographic and clinical data were collected and described. The lung biopsies were reviewed by pediatric lung pathologists with expertise in diffuse lung disease and were classified by the chILD classification scheme. Logistic regression was used to determine risk factors for mortality. A total of 191 cases were included in the final analysis. Number of biopsies varied by center (5-49 biopsies; mean, 15.8) and by age (2-18 yr; mean, 10.6 yr). The most common classification category in this cohort was Disorders of the Immunocompromised Host (40.8%), and the least common was Disorders of Infancy (4.7%). Immunocompromised patients suffered the highest mortality (52.8%). Additional associations with mortality included mechanical ventilation, worse clinical status at time of biopsy, tachypnea, hemoptysis, and crackles. Pulmonary hypertension was found to be a risk factor for mortality but only in the immunocompetent patients. In patients 2 to 18 years of age who underwent lung biopsies for diffuse lung disease, there were far fewer diagnoses prevalent in infancy and more overlap with adult diagnoses. Immunocompromised patients with diffuse lung disease who underwent lung biopsies had less than 50% survival at time of last follow-up.
A new brain-computer interface design using fuzzy ARTMAP.
Palaniappan, Ramaswamy; Paramesran, Raveendran; Nishida, Shogo; Saiwaki, Naoki
2002-09-01
This paper proposes a new brain-computer interface (BCI) design using fuzzy ARTMAP (FA) neural network, as well as an application of the design. The objective of this BCI-FA design is to classify the best three of the five available mental tasks for each subject using power spectral density (PSD) values of electroencephalogram (EEG) signals. These PSD values are extracted using the Wiener-Khinchine and autoregressive methods. Ten experiments employing different triplets of mental tasks are studied for each subject. The findings show that the average BCI-FA outputs for four subjects gave less than 6% of error using the best triplets of mental tasks identified from the classification performances of FA. This implies that the BCI-FA can be successfully used with a tri-state switching device. As an application, a proposed tri-state Morse code scheme could be utilized to translate the outputs of this BCI-FA design into English letters. In this scheme, the three BCI-FA outputs correspond to a dot and a dash, which are the two basic Morse code alphabets and a space to denote the end (or beginning) of a dot or a dash. The construction of English letters using this tri-state Morse code scheme is determined only by the sequence of mental tasks and is independent of the time duration of each mental task. This is especially useful for constructing letters that are represented as multiple dots or dashes. This combination of BCI-FA design and the tri-state Morse code scheme could be developed as a communication system for paralyzed patients.
NASA Astrophysics Data System (ADS)
Cialone, Claudia; Stock, Kristin
2010-05-01
EuroGEOSS is a European Commission funded project. It aims at improving a scientific understanding of the complex mechanisms which drive changes affecting our planet, identifying and establishing interoperable arrangements between environmental information systems. These systems would be sustained and operated by organizations with a clear mandate and resources and rendered available following the specifications of already existent frameworks such as GEOSS (the Global Earth Observation System of systems)1 and INSPIRE (the Infrastructure for Spatial Information in the European Community)2. The EuroGEOSS project's infrastructure focuses on three thematic areas: forestry, drought and biodiversity. One of the important activities in the project is the retrieval, parsing and harmonization of the large amount of heterogeneous environmental data available at local, regional and global levels between these strategic areas. The challenge is to render it semantically and technically interoperable in a simple way. An initial step in achieving this semantic and technical interoperability involves the selection of appropriate classification schemes (for example, thesauri, ontologies and controlled vocabularies) to describe the resources in the EuroGEOSS framework. These classifications become a crucial part of the interoperable framework scaffolding because they allow data providers to describe their resources and thus support resource discovery, execution and orchestration of varying levels of complexity. However, at present, given the diverse range of environmental thesauri, controlled vocabularies and ontologies and the large number of resources provided by project participants, the selection of appropriate classification schemes involves a number of considerations. First of all, there is the semantic difficulty of selecting classification schemes that contain concepts that are relevant to each thematic area. Secondly, EuroGEOSS is intended to accommodate a number of existing environmental projects (for example, GEOSS and INSPIRE). This requirement imposes constraints on the selection. Thirdly, the selected classification scheme or group of schemes (if more than one) must be capable of alignment (establishing different kinds of mappings between concepts, hence preserving intact the original knowledge schemes) or merging (the creation of another unique ontology from the original ontological sources) (Pérez-Gómez et al., 2004). Last but not least, there is the issue of including multi-lingual schemes that are based on free, open standards (non-proprietary). Using these selection criteria, we aim to support open and convenient data discovery and exchange for users who speak different languages (particularly the European ones for the broad scopes of EuroGEOSS). In order to support the project, we have developed a solution that employs two classification schemes: the Societal Benefit Areas (SBAs)3: the upper-level environmental categorization developed for the GEOSS project and the GEneral Multilingual Environmental Thesaurus (GEMET)4: a general environmental thesaurus whose conceptual structure has already been integrated with the spatial data themes proposed by the INSPIRE project. The former seems to provide the spatial data keywords relevant to the INSPIRE's Directive (JRC, 2008). In this way, we provide users with a basic set of concepts to support resource description and discovery in the thematic areas while supporting the requirements of INSPIRE and GEOSS. Furthermore, the use of only two classification schemes together with the fact that the SBAs are very general categories while GEMET includes much more detailed, yet still top-level, concepts, makes alignment an achievable task. Alignment was selected over merging because it leaves the existing classification schemes intact and requires only a simple activity of defining mappings from GEMET to the SBAs. In order to accomplish this task we are developing a simple, automated, open-source application to assist thematic experts in defining the mappings between concepts in the two classification schemes. The application will then generate SKOS mappings (exactMatch, closeMatch, broadMatch, narrowMatch, relatedMatch) based on thematic expert selections between the concepts in GEMET with the SBAs (including both the general Societal Benefit Areas and their subcategories). Once these mappings are defined and the SKOS files generated, resource providers will be able to select concepts from either GEMET or the SBAs (or a mixture) to describe their resources, and discovery approaches will support selection of concepts from either classification scheme, also returning results classified using the other scheme. While the focus of our work has been on the SBAs and GEMET, we also plan to provide a method for resource providers to further extend the semantic infrastructure by defining alignments to new classification schemes if these are required to support particular specialized thematic areas that are not covered by GEMET. In this way, the approach is flexible and suited to the general scope of EuroGEOSS, allowing specialists to increase at will the level of semantic quality and specificity of data to the initial infrastructural skeleton of the project. References ____________________________________________ Joint research Centre (JRC), 2008. INSPIRE Metadata Editor User Guide Pérez-Gómez A., Fernandez-Lopez M., Corcho O. Ontological engineering: With Examples from the Areas of Knowledge Management, e-Commerce and the Semantic Web.Spinger: London, 2004
Dieye, A.M.; Roy, David P.; Hanan, N.P.; Liu, S.; Hansen, M.; Toure, A.
2012-01-01
Spatially explicit land cover land use (LCLU) change information is needed to drive biogeochemical models that simulate soil organic carbon (SOC) dynamics. Such information is increasingly being mapped using remotely sensed satellite data with classification schemes and uncertainties constrained by the sensing system, classification algorithms and land cover schemes. In this study, automated LCLU classification of multi-temporal Landsat satellite data were used to assess the sensitivity of SOC modeled by the Global Ensemble Biogeochemical Modeling System (GEMS). The GEMS was run for an area of 1560 km2 in Senegal under three climate change scenarios with LCLU maps generated using different Landsat classification approaches. This research provides a method to estimate the variability of SOC, specifically the SOC uncertainty due to satellite classification errors, which we show is dependent not only on the LCLU classification errors but also on where the LCLU classes occur relative to the other GEMS model inputs.
Abramoff, Michael D.; Fort, Patrice E.; Han, Ian C.; Jayasundera, K. Thiran; Sohn, Elliott H.; Gardner, Thomas W.
2018-01-01
The Early Treatment Diabetic Retinopathy Study (ETDRS) and other standardized classification schemes have laid a foundation for tremendous advances in the understanding and management of diabetic retinopathy (DR). However, technological advances in optics and image analysis, especially optical coherence tomography (OCT), OCT angiography (OCTa), and ultra-widefield imaging, as well as new discoveries in diabetic retinal neuropathy (DRN), are exposing the limitations of ETDRS and other classification systems to completely characterize retinal changes in diabetes, which we term diabetic retinal disease (DRD). While it may be most straightforward to add axes to existing classification schemes, as diabetic macular edema (DME) was added as an axis to earlier DR classifications, doing so may make these classifications increasingly complicated and thus clinically intractable. Therefore, we propose future research efforts to develop a new, comprehensive, and clinically useful classification system that will identify multimodal biomarkers to reflect the complex pathophysiology of DRD and accelerate the development of therapies to prevent vision-threatening DRD. PMID:29372250
Abramoff, Michael D; Fort, Patrice E; Han, Ian C; Jayasundera, K Thiran; Sohn, Elliott H; Gardner, Thomas W
2018-01-01
The Early Treatment Diabetic Retinopathy Study (ETDRS) and other standardized classification schemes have laid a foundation for tremendous advances in the understanding and management of diabetic retinopathy (DR). However, technological advances in optics and image analysis, especially optical coherence tomography (OCT), OCT angiography (OCTa), and ultra-widefield imaging, as well as new discoveries in diabetic retinal neuropathy (DRN), are exposing the limitations of ETDRS and other classification systems to completely characterize retinal changes in diabetes, which we term diabetic retinal disease (DRD). While it may be most straightforward to add axes to existing classification schemes, as diabetic macular edema (DME) was added as an axis to earlier DR classifications, doing so may make these classifications increasingly complicated and thus clinically intractable. Therefore, we propose future research efforts to develop a new, comprehensive, and clinically useful classification system that will identify multimodal biomarkers to reflect the complex pathophysiology of DRD and accelerate the development of therapies to prevent vision-threatening DRD.
NASA Astrophysics Data System (ADS)
Ma, Weiwei; Gong, Cailan; Hu, Yong; Meng, Peng; Xu, Feifei
2013-08-01
Hyperspectral data, consisting of hundreds of spectral bands with a high spectral resolution, enables acquisition of continuous spectral characteristic curves, and therefore have served as a powerful tool for vegetation classification. The difficulty of using hyperspectral data is that they are usually redundant, strongly correlated and subject to Hughes phenomenon where classification accuracy increases gradually in the beginning as the number of spectral bands or dimensions increases, but decreases dramatically when the band number reaches some value. In recent years,some algorithms have been proposed to overcome the Hughes phenomenon in classification, such as selecting several bands from full bands, PCA- and MNF-based feature transformations. Up to date, however, few studies have been conducted to investigate the turning point of Hughes phenomenon (i.e., the point at which the classification accuracy begins to decline). In this paper, we firstly analyze reasons for occurrence of Hughes phenomenon, and then based on the Mahalanobis classifier, classify the ground spectrum of several grasslands which were recorded in September 2012 using FieldSpec3 spectrometer in the regions around Qinghai Lake,a important pasturing area in the north of China. Before classification, we extract features from hyperspectral data by bands selecting and PCA- based feature transformations, and In the process of classification, we analyze how the correlation coefficient between wavebands, the number of waveband channels and the number of principal components affect the classification result. The results show that Hushes phenomenon may occur when the correlation coefficient between wavebands is greater than 94%,the number of wavebands is greater than 6, or the number of principal components is greater than 6. Best classification result can be achieved (overall accuracy of grasslands 90%) if the number of wavebands equals to 3 (the band positions are 370nm, 509nm and 886nm respectively) or the number of principal components ranges from 4 to 6.
Pang, Junbiao; Qin, Lei; Zhang, Chunjie; Zhang, Weigang; Huang, Qingming; Yin, Baocai
2015-12-01
Local coordinate coding (LCC) is a framework to approximate a Lipschitz smooth function by combining linear functions into a nonlinear one. For locally linear classification, LCC requires a coding scheme that heavily determines the nonlinear approximation ability, posing two main challenges: 1) the locality making faraway anchors have smaller influences on current data and 2) the flexibility balancing well between the reconstruction of current data and the locality. In this paper, we address the problem from the theoretical analysis of the simplest local coding schemes, i.e., local Gaussian coding and local student coding, and propose local Laplacian coding (LPC) to achieve the locality and the flexibility. We apply LPC into locally linear classifiers to solve diverse classification tasks. The comparable or exceeded performances of state-of-the-art methods demonstrate the effectiveness of the proposed method.
Toward functional classification of neuronal types.
Sharpee, Tatyana O
2014-09-17
How many types of neurons are there in the brain? This basic neuroscience question remains unsettled despite many decades of research. Classification schemes have been proposed based on anatomical, electrophysiological, or molecular properties. However, different schemes do not always agree with each other. This raises the question of whether one can classify neurons based on their function directly. For example, among sensory neurons, can a classification scheme be devised that is based on their role in encoding sensory stimuli? Here, theoretical arguments are outlined for how this can be achieved using information theory by looking at optimal numbers of cell types and paying attention to two key properties: correlations between inputs and noise in neural responses. This theoretical framework could help to map the hierarchical tree relating different neuronal classes within and across species. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ness, P. H.; Jacobson, H.
1984-10-01
The thrust of 'group technology' is toward the exploitation of similarities in component design and manufacturing process plans to achieve assembly line flow cost efficiencies for small batch production. The systematic method devised for the identification of similarities in component geometry and processing steps is a coding and classification scheme implemented by interactive CAD/CAM systems. This coding and classification scheme has led to significant increases in computer processing power, allowing rapid searches and retrievals on the basis of a 30-digit code together with user-friendly computer graphics.
Rahman, Md Mostafizur; Fattah, Shaikh Anowarul
2017-01-01
In view of recent increase of brain computer interface (BCI) based applications, the importance of efficient classification of various mental tasks has increased prodigiously nowadays. In order to obtain effective classification, efficient feature extraction scheme is necessary, for which, in the proposed method, the interchannel relationship among electroencephalogram (EEG) data is utilized. It is expected that the correlation obtained from different combination of channels will be different for different mental tasks, which can be exploited to extract distinctive feature. The empirical mode decomposition (EMD) technique is employed on a test EEG signal obtained from a channel, which provides a number of intrinsic mode functions (IMFs), and correlation coefficient is extracted from interchannel IMF data. Simultaneously, different statistical features are also obtained from each IMF. Finally, the feature matrix is formed utilizing interchannel correlation features and intrachannel statistical features of the selected IMFs of EEG signal. Different kernels of the support vector machine (SVM) classifier are used to carry out the classification task. An EEG dataset containing ten different combinations of five different mental tasks is utilized to demonstrate the classification performance and a very high level of accuracy is achieved by the proposed scheme compared to existing methods.
ZTF Bright Transient Survey classifications
NASA Astrophysics Data System (ADS)
Graham, M. L.; Bellm, E.; Bektesevic, D.; Eadie, G.; Huppenkothen, D.; Davenport, J. R. A.; Fremling, C.; Sharma, Y.; Kulkarni, S. R.; Walters, R.; Blagorodnova, N.; Neill, J.; Miller, A. A.; Taddia, F.; Lunnan, R.; Taggart, K.; Perley, D. A.; Goobar, A.
2018-06-01
The Zwicky Transient Facility (ZTF; ATel #11266) Bright Transient Survey (BTS; ATel #11688) reports classifications of the following targets. Spectra have been obtained with the Dual Imaging Spectrograph (range 340-1000nm, spectral resolution R 1000) mounted on the 3.5m telescope at Apache Point Observatory, the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003), or the Andalucia Faint Object Spectrograph and Camera (ALFOSC) on the 2.5m Nordic Optical Telescope (NOT).
NASA Astrophysics Data System (ADS)
Wan, Xiaoqing; Zhao, Chunhui; Wang, Yanchun; Liu, Wu
2017-11-01
This paper proposes a novel classification paradigm for hyperspectral image (HSI) using feature-level fusion and deep learning-based methodologies. Operation is carried out in three main steps. First, during a pre-processing stage, wave atoms are introduced into bilateral filter to smooth HSI, and this strategy can effectively attenuate noise and restore texture information. Meanwhile, high quality spectral-spatial features can be extracted from HSI by taking geometric closeness and photometric similarity among pixels into consideration simultaneously. Second, higher order statistics techniques are firstly introduced into hyperspectral data classification to characterize the phase correlations of spectral curves. Third, multifractal spectrum features are extracted to characterize the singularities and self-similarities of spectra shapes. To this end, a feature-level fusion is applied to the extracted spectral-spatial features along with higher order statistics and multifractal spectrum features. Finally, stacked sparse autoencoder is utilized to learn more abstract and invariant high-level features from the multiple feature sets, and then random forest classifier is employed to perform supervised fine-tuning and classification. Experimental results on two real hyperspectral data sets demonstrate that the proposed method outperforms some traditional alternatives.
NASA Technical Reports Server (NTRS)
Valdez, P. F.; Donohoe, G. W.
1997-01-01
Statistical classification of remotely sensed images attempts to discriminate between surface cover types on the basis of the spectral response recorded by a sensor. It is well known that surfaces reflect incident radiation as a function of wavelength producing a spectral signature specific to the material under investigation. Multispectral and hyperspectral sensors sample the spectral response over tens and even hundreds of wavelength bands to capture the variation of spectral response with wavelength. Classification algorithms then exploit these differences in spectral response to distinguish between materials of interest. Sensors of this type, however, collect detailed spectral information from one direction (usually nadir); consequently, do not consider the directional nature of reflectance potentially detectable at different sensor view angles. Improvements in sensor technology have resulted in remote sensing platforms capable of detecting reflected energy across wavelengths (spectral signatures) and from multiple view angles (angular signatures) in the fore and aft directions. Sensors of this type include: the moderate resolution imaging spectroradiometer (MODIS), the multiangle imaging spectroradiometer (MISR), and the airborne solid-state array spectroradiometer (ASAS). A goal of this paper, then, is to explore the utility of Bidirectional Reflectance Distribution Function (BRDF) models in the selection of optimal view angles for the classification of remotely sensed images by employing a strategy of searching for the maximum difference between surface BRDFs. After a brief discussion of directional reflect ante in Section 2, attention is directed to the Beard-Maxwell BRDF model and its use in predicting the bidirectional reflectance of a surface. The selection of optimal viewing angles is addressed in Section 3, followed by conclusions and future work in Section 4.
HMM for hyperspectral spectrum representation and classification with endmember entropy vectors
NASA Astrophysics Data System (ADS)
Arabi, Samir Y. W.; Fernandes, David; Pizarro, Marco A.
2015-10-01
The Hyperspectral images due to its good spectral resolution are extensively used for classification, but its high number of bands requires a higher bandwidth in the transmission data, a higher data storage capability and a higher computational capability in processing systems. This work presents a new methodology for hyperspectral data classification that can work with a reduced number of spectral bands and achieve good results, comparable with processing methods that require all hyperspectral bands. The proposed method for hyperspectral spectra classification is based on the Hidden Markov Model (HMM) associated to each Endmember (EM) of a scene and the conditional probabilities of each EM belongs to each other EM. The EM conditional probability is transformed in EM vector entropy and those vectors are used as reference vectors for the classes in the scene. The conditional probability of a spectrum that will be classified is also transformed in a spectrum entropy vector, which is classified in a given class by the minimum ED (Euclidian Distance) among it and the EM entropy vectors. The methodology was tested with good results using AVIRIS spectra of a scene with 13 EM considering the full 209 bands and the reduced spectral bands of 128, 64 and 32. For the test area its show that can be used only 32 spectral bands instead of the original 209 bands, without significant loss in the classification process.
Crop Characteristics Research: Growth and Reflectance Analysis
NASA Technical Reports Server (NTRS)
Badhwar, G. D. (Principal Investigator)
1985-01-01
Much of the early research in remote sensing follows along developing spectral signatures of cover types. It was found, however, that a signature from an unknown cover class could not always be matched to a catalog value of known cover class. This approach was abandoned and supervised classification schemes followed. These were not efficient and required extensive training. It was obvious that data acquired at a single time could not separate cover types. A large portion of the proposed research has concentrated on modeling the temporal behavior of agricultural crops and on removing the need for any training data in remote sensing surveys; the key to which is the solution of the so-called 'signature extension' problem. A clear need to develop spectral estimaters of crop ontogenic stages and yield has existed even though various correlations have been developed. Considerable effort in developing techniques to estimate these variables was devoted to this work. The need to accurately evaluate existing canopy reflectance model(s), improve these models, use them to understand the crop signatures, and estimate leaf area index was the third objective of the proposed work. A synopsis of this research effort is discussed.
NASA Technical Reports Server (NTRS)
Brumfield, J. O.; Bloemer, H. H. L.; Campbell, W. J.
1981-01-01
Two unsupervised classification procedures for analyzing Landsat data used to monitor land reclamation in a surface mining area in east central Ohio are compared for agreement with data collected from the corresponding locations on the ground. One procedure is based on a traditional unsupervised-clustering/maximum-likelihood algorithm sequence that assumes spectral groupings in the Landsat data in n-dimensional space; the other is based on a nontraditional unsupervised-clustering/canonical-transformation/clustering algorithm sequence that not only assumes spectral groupings in n-dimensional space but also includes an additional feature-extraction technique. It is found that the nontraditional procedure provides an appreciable improvement in spectral groupings and apparently increases the level of accuracy in the classification of land cover categories.
Spectral Observations and Analyses of Low-Redshift Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Silverman, Jeffrey Michael
The explosive deaths of stars, known as a supernovae (SNe), have been critical to our understanding of the Universe for centuries. An introduction to SNe, their importance in astronomy, and how we observe them is given in Chapter 1. In the second Chapter, I present the full BSNIP sample which consists of 1298 low-redshift (z ≤ 0.2) optical spectra of 582 SNe Ia observed from 1989 through the end of 2008. I describe our spectral classification scheme (using the SuperNova IDentification code, SNID; Blondin & Tonry 2007), utilizing my newly constructed set of SNID spectral templates. These templates allow me to accurately spectroscopically classify the entire BSNIP dataset, and by doing so I am able to reclassify a handful of objects as bona fide SNe Ia and a few other objects as members of some of the peculiar SN Ia subtypes. In fact, the BSNIP dataset includes spectra of nearly 90 spectroscopically peculiar SNe Ia. I also present spectroscopic host-galaxy redshifts of some SNe Ia where these values were previously unknown. I present measurements of spectral features of 432 low-redshift ( z < 0.1) optical spectra within 20 d of maximum brightness of 261 SNe Ia from the BSNIP sample in the third Chapter. I describe in detail my method of automated, robust spectral feature definition and measurement which expands upon similar previous studies. Using this procedure, I attempt to measure expansion velocities, (pseudo-)equivalent widths (pEWs), spectral feature depths, and fluxes at the center and endpoints of each of nine major spectral feature complexes. A sanity check of the consistency of the measurements is performed using the BSNIP data (as well as a separate spectral dataset). I investigate how velocity and pEW evolve with time and how they correlate with each other. Various spectral classification schemes are employed and quantitative spectral differences among the subclasses are investigated. Several ratios of pEW values are calculated and studied. Furthermore, SNe Ia that show strong evidence for interaction with circumstellar material or an aspherical explosion are found to have the largest near-maximum expansion velocities and pEWs, possibly linking extreme values of spectral observables with specific progenitor or explosion scenarios. The fourth Chapter of this Thesis presents comparisons of spectral feature measurements to photometric properties of 115 low-redshift (z < 0.1) SNe Ia with optical spectra within 5 d of maximum brightness. The spectral data come from the BSNIP sample described in Chapter 2, and the photometric data come mainly from the Lick Observatory Supernova Search (LOSS) and are published by Ganeshalingam et al. (2010). The spectral measurements come from BSNIP II (Chapter 3 of this Thesis) and the light-curve fits and photometric parameters can be found in Ganeshalingam et al. (in preparation). A variety of previously proposed correlations between spectral and photometric parameters are investigated using the large and self-consistent BSNIP dataset. We also use a combination of light-curve parameters (specifically the SALT2 stretch and color parameters x1 and c) and spectral measurements to calculate distance moduli. The residuals from these models is then compared to the standard model which only uses light-curve stretch and color. The pEW of Si II lambda4000 is found to be a good indicator of light-curve width and the pEWs of the Mg II and Fe II complexes are relatively good proxies for color. Chapter 5 presents and analyzes optical photometry and spectra of the extremely luminous and slowly evolving Type Ia SN 2009dc, and offers evidence that it is a super-Chandrasekhar mass (SC) SN Ia and thus had a SC white dwarf (WD) progenitor. I calculate a lower limit to the peak bolometric luminosity of ˜2.4x1043 erg s-1, though the actual value is likely almost 40% larger. The high luminosity and low expansion velocities of SN 2009dc lead to a derived WD progenitor mass of more than 2 MSun and a 56Ni mass of about 1.4--1.7 MSun. I propose that the host galaxy of SN 2009dc underwent a gravitational interaction with a neighboring galaxy in the relatively recent past. This may have led to a sudden burst of star formation which could have produced the SC WD progenitor of SN 2009dc and likely turned the neighboring galaxy into a "post-starburst galaxy." (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Sears, Derek W. G.; Shaoxiong, Huang; Benoit, Paul H.
1995-01-01
The recently proposed compositional classification scheme for meteoritic chondrules divides the chondrules into groups depending on the composition of their two major phases, olivine (or pyroxene) and the mesostasis, both of which are genetically important. The scheme is here applied to discussions of three topics: the petrographic classification of Roosevelt County 075 (the least-metamorphosed H chondrite known), brecciation (an extremely important and ubiquitous process probably experienced by greater than 40% of all unequilibrated ordinary chondrites), and the group A5 chondrules in the least metamorphosed ordinary chondrites which have many similarities to chondrules in the highly metamorphosed 'equilibrated' chondrites. Since composition provides insights into both primary formation properties of the chondruies and the effects of metamorphism on the entire assemblage it is possible to determine the petrographic type of RC075 as 3.1 with unique certainty. Similarly, the near scheme can be applied to individual chondrules without knowledge of the petrographic type of the host chondrite, which makes it especially suitable for studying breccias. Finally, the new scheme has revealed the existence of chondrules not identified by previous techniques and which appear to be extremely important. Like group A1 and A2 chondrules (but unlike group B1 chondrules) the primitive group A5 chondruies did not supercool during formation, but unlike group A1 and A2 chondrules (and like group B1 chondrules) they did not suffer volatile loss and reduction during formation. It is concluded that the compositional classification scheme provides important new insights into the formation and history of chondrules and chondrites which would be overlooked by previous schemes.
Carnegie's New Community Engagement Classification: Affirming Higher Education's Role in Community
ERIC Educational Resources Information Center
Driscoll, Amy
2009-01-01
In 2005, the Carnegie Foundation for the Advancement of Teaching (CFAT) stirred the higher education world with the announcement of a new classification for institutions that engage with community. The classification, community engagement, is the first in a set of planned classification schemes resulting from the foundation's reexamination of the…
A classification model of Hyperion image base on SAM combined decision tree
NASA Astrophysics Data System (ADS)
Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin
2009-10-01
Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model heightens 9.9%.
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav; Ostendorf, Andreas
2012-04-01
A novel emerging technique for the label-free analysis of nanoparticles and biomolecules in liquid fluids using optical micro cavity resonance of whispering-gallery-type modes is being developed.A scheme based on polymer microspheres fixed by adhesive on the evanescence wave coupling element has been used. We demonstrated that the only spectral shift can't be used for identification of biological agents by developed approach. So neural network classifier for biological agents and micro/nano particles classification has been developed. The developed technique is the following. While tuning the laser wavelength images were recorded as avi-file. All sequences were broken into single frames and the location of the resonance was allocated in each frame. The image was filtered for noise reduction and integrated over two coordinates for evaluation of integrated energy of a measured signal. As input data normalized resonance shift of whispering-gallery modes and the relative efficiency of whispering-gallery modes excitation were used. Other parameters such as polarization of excited light, "center of gravity" of a resonance spectra etc. are also tested as input data for probabilistic neural network. After network designing and training we estimated the accuracy of classification. The classification of antibiotics such as penicillin and cephasolin have been performed with the accuracy of not less 97 %. Developed techniques can be used for lab-on-chip sensor based diagnostic tools as for identification of different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells and for dynamics of a delivery of medicines to bodies.
Khanmohammadi, Mohammadreza; Bagheri Garmarudi, Amir; Samani, Simin; Ghasemi, Keyvan; Ashuri, Ahmad
2011-06-01
Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) microspectroscopy was applied for detection of colon cancer according to the spectral features of colon tissues. Supervised classification models can be trained to identify the tissue type based on the spectroscopic fingerprint. A total of 78 colon tissues were used in spectroscopy studies. Major spectral differences were observed in 1,740-900 cm(-1) spectral region. Several chemometric methods such as analysis of variance (ANOVA), cluster analysis (CA) and linear discriminate analysis (LDA) were applied for classification of IR spectra. Utilizing the chemometric techniques, clear and reproducible differences were observed between the spectra of normal and cancer cases, suggesting that infrared microspectroscopy in conjunction with spectral data processing would be useful for diagnostic classification. Using LDA technique, the spectra were classified into cancer and normal tissue classes with an accuracy of 95.8%. The sensitivity and specificity was 100 and 93.1%, respectively.
An Extended Spectral-Spatial Classification Approach for Hyperspectral Data
NASA Astrophysics Data System (ADS)
Akbari, D.
2017-11-01
In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.
The use and abuse of standard stars
NASA Astrophysics Data System (ADS)
Garrison, R. F.
The 'mandate' of classification systems is examined with reference to spectral classification. In using a classification system, it is of the greatest importance to be aware of why it was created, how it was constructed, what its useful limits are, how it has evolved, and what credibility it has achieved in practice . . . all of which constitute the mandate of the system. In the particular case of the MK system of spectral classification, types are defined by the standard stars. They can be calibrated, and the calibration may evolve with time, but the types are relatively stable because they are defined by the standards. The autonomy of this powerful system is crucial to its success, but some astronomers do not understand the importance of this distinction. Recent suggestions to change the spectral type of the sun show an ignorance of the way the system works. The confrontation and complementary use of autonomous systems yield information which is not contained in any individual system.
NASA Technical Reports Server (NTRS)
Lillesand, T. M.; Werth, L. F. (Principal Investigator)
1980-01-01
A 25% improvement in average classification accuracy was realized by processing double-date vs. single-date data. Under the spectrally and spatially complex site conditions characterizing the geographical area used, further improvement in wetland classification accuracy is apparently precluded by the spectral and spatial resolution restrictions of the LANDSAT MSS. Full scene analysis of scanning densitometer data extracted from scale infrared photography failed to permit discrimination of many wetland and nonwetland cover types. When classification of photographic data was limited to wetland areas only, much more detailed and accurate classification could be made. The integration of conventional image interpretation (to simply delineate wetland boundaries) and machine assisted classification (to discriminate among cover types present within the wetland areas) appears to warrant further research to study the feasibility and cost of extending this methodology over a large area using LANDSAT and/or small scale photography.
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-06-01
Hyperspectral imaging combines imaging and spectroscopy to provide detailed spectral information for each spatial point in the image. This gives a three-dimensional spatial-spatial-spectral datacube with hundreds of spectral images. Probe-based hyperspectral imaging systems have been developed so that they can be used in regions where conventional table-top platforms would find it difficult to access. A fiber bundle, which is made up of specially-arranged optical fibers, has recently been developed and integrated with a spectrograph-based hyperspectral imager. This forms a snapshot hyperspectral imaging probe, which is able to form a datacube using the information from each scan. Compared to the other configurations, which require sequential scanning to form a datacube, the snapshot configuration is preferred in real-time applications where motion artifacts and pixel misregistration can be minimized. Principal component analysis is a dimension-reducing technique that can be applied in hyperspectral imaging to convert the spectral information into uncorrelated variables known as principal components. A confidence ellipse can be used to define the region of each class in the principal component feature space and for classification. This paper demonstrates the use of the snapshot hyperspectral imaging probe to acquire data from samples of different colors. The spectral library of each sample was acquired and then analyzed using principal component analysis. Confidence ellipse was then applied to the principal components of each sample and used as the classification criteria. The results show that the applied analysis can be used to perform classification of the spectral data acquired using the snapshot hyperspectral imaging probe.
NASA Astrophysics Data System (ADS)
Usenik, Peter; Bürmen, Miran; Vrtovec, Tomaž; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan
2011-03-01
Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots which are difficult to diagnose. If detected early enough, such demineralization can be arrested and reversed by non-surgical means through well established dental treatments (fluoride therapy, anti-bacterial therapy, low intensity laser irradiation). Near-infrared (NIR) hyper-spectral imaging is a new promising technique for early detection of demineralization based on distinct spectral features of healthy and pathological dental tissues. In this study, we apply NIR hyper-spectral imaging to classify and visualize healthy and pathological dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized areas. For this purpose, a standardized teeth database was constructed consisting of 12 extracted human teeth with different degrees of natural dental lesions imaged by NIR hyper-spectral system, X-ray and digital color camera. The color and X-ray images of teeth were presented to a clinical expert for localization and classification of the dental tissues, thereby obtaining the gold standard. Principal component analysis was used for multivariate local modeling of healthy and pathological dental tissues. Finally, the dental tissues were classified by employing multiple discriminant analysis. High agreement was observed between the resulting classification and the gold standard with the classification sensitivity and specificity exceeding 85 % and 97 %, respectively. This study demonstrates that NIR hyper-spectral imaging has considerable diagnostic potential for imaging hard dental tissues.
ASERA: A spectrum eye recognition assistant for quasar spectra
NASA Astrophysics Data System (ADS)
Yuan, Hailong; Zhang, Haotong; Zhang, Yanxia; Lei, Yajuan; Dong, Yiqiao; Zhao, Yongheng
2013-11-01
Spectral type recognition is an important and fundamental step of large sky survey projects in the data reduction for further scientific research, like parameter measurement and statistic work. It tends out to be a huge job to manually inspect the low quality spectra produced from the massive spectroscopic survey, where the automatic pipeline may not provide confident type classification results. In order to improve the efficiency and effectiveness of spectral classification, we develop a semi-automated toolkit named ASERA, ASpectrum Eye Recognition Assistant. The main purpose of ASERA is to help the user in quasar spectral recognition and redshift measurement. Furthermore it can also be used to recognize various types of spectra of stars, galaxies and AGNs (Active Galactic Nucleus). It is an interactive software allowing the user to visualize observed spectra, superimpose template spectra from the Sloan Digital Sky Survey (SDSS), and interactively access related spectral line information. It is an efficient and user-friendly toolkit for the accurate classification of spectra observed by LAMOST (the Large Sky Area Multi-object Fiber Spectroscopic Telescope). The toolkit is available in two modes: a Java standalone application and a Java applet. ASERA has a few functions, such as wavelength and flux scale setting, zoom in and out, redshift estimation, spectral line identification, which helps user to improve the spectral classification accuracy especially for low quality spectra and reduce the labor of eyeball check. The function and performance of this tool is displayed through the recognition of several quasar spectra and a late type stellar spectrum from the LAMOST Pilot survey. Its future expansion capabilities are discussed.
A new classification of glaucomas
Bordeianu, Constantin-Dan
2014-01-01
Purpose To suggest a new glaucoma classification that is pathogenic, etiologic, and clinical. Methods After discussing the logical pathway used in criteria selection, the paper presents the new classification and compares it with the classification currently in use, that is, the one issued by the European Glaucoma Society in 2008. Results The paper proves that the new classification is clear (being based on a coherent and consistently followed set of criteria), is comprehensive (framing all forms of glaucoma), and helps in understanding the sickness understanding (in that it uses a logical framing system). The great advantage is that it facilitates therapeutic decision making in that it offers direct therapeutic suggestions and avoids errors leading to disasters. Moreover, the scheme remains open to any new development. Conclusion The suggested classification is a pathogenic, etiologic, and clinical classification that fulfills the conditions of an ideal classification. The suggested classification is the first classification in which the main criterion is consistently used for the first 5 to 7 crossings until its differentiation capabilities are exhausted. Then, secondary criteria (etiologic and clinical) pick up the relay until each form finds its logical place in the scheme. In order to avoid unclear aspects, the genetic criterion is no longer used, being replaced by age, one of the clinical criteria. The suggested classification brings only benefits to all categories of ophthalmologists: the beginners will have a tool to better understand the sickness and to ease their decision making, whereas the experienced doctors will have their practice simplified. For all doctors, errors leading to therapeutic disasters will be less likely to happen. Finally, researchers will have the object of their work gathered in the group of glaucoma with unknown or uncertain pathogenesis, whereas the results of their work will easily find a logical place in the scheme, as the suggested classification remains open to any new development. PMID:25246759
An Extension of the Time-Spectral Method to Overset Solvers
NASA Technical Reports Server (NTRS)
Leffell, Joshua Isaac; Murman, Scott M.; Pulliam, Thomas
2013-01-01
Relative motion in the Cartesian or overset framework causes certain spatial nodes to move in and out of the physical domain as they are dynamically blanked by moving solid bodies. This poses a problem for the conventional Time-Spectral approach, which expands the solution at every spatial node into a Fourier series spanning the period of motion. The proposed extension to the Time-Spectral method treats unblanked nodes in the conventional manner but expands the solution at dynamically blanked nodes in a basis of barycentric rational polynomials spanning partitions of contiguously defined temporal intervals. Rational polynomials avoid Runge's phenomenon on the equidistant time samples of these sub-periodic intervals. Fourier- and rational polynomial-based differentiation operators are used in tandem to provide a consistent hybrid Time-Spectral overset scheme capable of handling relative motion. The hybrid scheme is tested with a linear model problem and implemented within NASA's OVERFLOW Reynolds-averaged Navier- Stokes (RANS) solver. The hybrid Time-Spectral solver is then applied to inviscid and turbulent RANS cases of plunging and pitching airfoils and compared to time-accurate and experimental data. A limiter was applied in the turbulent case to avoid undershoots in the undamped turbulent eddy viscosity while maintaining accuracy. The hybrid scheme matches the performance of the conventional Time-Spectral method and converges to the time-accurate results with increased temporal resolution.
Classification for Estuarine Ecosystems: A Review and Comparison of Selected Classification Schemes
Estuarine scientists have devoted considerable effort to classifying coastal, estuarine and marine environments and their watersheds, for a variety of purposes. These classifications group systems with similarities – most often in physical and hydrodynamic properties – in order ...
Remote sensing imagery classification using multi-objective gravitational search algorithm
NASA Astrophysics Data System (ADS)
Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie
2016-10-01
Simultaneous optimization of different validity measures can capture different data characteristics of remote sensing imagery (RSI) and thereby achieving high quality classification results. In this paper, two conflicting cluster validity indices, the Xie-Beni (XB) index and the fuzzy C-means (FCM) (Jm) measure, are integrated with a diversity-enhanced and memory-based multi-objective gravitational search algorithm (DMMOGSA) to present a novel multi-objective optimization based RSI classification method. In this method, the Gabor filter method is firstly implemented to extract texture features of RSI. Then, the texture features are syncretized with the spectral features to construct the spatial-spectral feature space/set of the RSI. Afterwards, cluster of the spectral-spatial feature set is carried out on the basis of the proposed method. To be specific, cluster centers are randomly generated initially. After that, the cluster centers are updated and optimized adaptively by employing the DMMOGSA. Accordingly, a set of non-dominated cluster centers are obtained. Therefore, numbers of image classification results of RSI are produced and users can pick up the most promising one according to their problem requirements. To quantitatively and qualitatively validate the effectiveness of the proposed method, the proposed classification method was applied to classifier two aerial high-resolution remote sensing imageries. The obtained classification results are compared with that produced by two single cluster validity index based and two state-of-the-art multi-objective optimization algorithms based classification results. Comparison results show that the proposed method can achieve more accurate RSI classification.
Murphy, I G; Collins, J; Powell, A; Markl, M; McCarthy, P; Malaisrie, S C; Carr, J C; Barker, A J
2017-08-01
Bicuspid aortic valve (BAV) disease is heterogeneous and related to valve dysfunction and aortopathy. Appropriate follow up and surveillance of patients with BAV may depend on correct phenotypic categorization. There are multiple classification schemes, however a need exists to comprehensively capture commissure fusion, leaflet asymmetry, and valve orifice orientation. Our aim was to develop a BAV classification scheme for use at MRI to ascertain the frequency of different phenotypes and the consistency of BAV classification. The BAV classification scheme builds on the Sievers surgical BAV classification, adding valve orifice orientation, partial leaflet fusion and leaflet asymmetry. A single observer successfully applied this classification to 386 of 398 Cardiac MRI studies. Repeatability of categorization was ascertained with intraobserver and interobserver kappa scores. Sensitivity and specificity of MRI findings was determined from operative reports, where available. Fusion of the right and left leaflets accounted for over half of all cases. Partial leaflet fusion was seen in 46% of patients. Good interobserver agreement was seen for orientation of the valve opening (κ = 0.90), type (κ = 0.72) and presence of partial fusion (κ = 0.83, p < 0.0001). Retrospective review of operative notes showed sensitivity and specificity for orientation (90, 93%) and for Sievers type (73, 87%). The proposed BAV classification schema was assessed by MRI for its reliability to classify valve morphology in addition to illustrating the wide heterogeneity of leaflet size, orifice orientation, and commissural fusion. The classification may be helpful in further understanding the relationship between valve morphology, flow derangement and aortopathy.
Centrifuge: rapid and sensitive classification of metagenomic sequences
Song, Li; Breitwieser, Florian P.
2016-01-01
Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quantification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a few minutes. Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop computers. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonredundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based indexing schemes, which require far more extensive space. PMID:27852649
Modern radiosurgical and endovascular classification schemes for brain arteriovenous malformations.
Tayebi Meybodi, Ali; Lawton, Michael T
2018-05-04
Stereotactic radiosurgery (SRS) and endovascular techniques are commonly used for treating brain arteriovenous malformations (bAVMs). They are usually used as ancillary techniques to microsurgery but may also be used as solitary treatment options. Careful patient selection requires a clear estimate of the treatment efficacy and complication rates for the individual patient. As such, classification schemes are an essential part of patient selection paradigm for each treatment modality. While the Spetzler-Martin grading system and its subsequent modifications are commonly used for microsurgical outcome prediction for bAVMs, the same system(s) may not be easily applicable to SRS and endovascular therapy. Several radiosurgical- and endovascular-based grading scales have been proposed for bAVMs. However, a comprehensive review of these systems including a discussion on their relative advantages and disadvantages is missing. This paper is dedicated to modern classification schemes designed for SRS and endovascular techniques.
Mai, Xiaofeng; Liu, Jie; Wu, Xiong; Zhang, Qun; Guo, Changjian; Yang, Yanfu; Li, Zhaohui
2017-02-06
A Stokes-space modulation format classification (MFC) technique is proposed for coherent optical receivers by using a non-iterative clustering algorithm. In the clustering algorithm, two simple parameters are calculated to help find the density peaks of the data points in Stokes space and no iteration is required. Correct MFC can be realized in numerical simulations among PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM and PM-64QAM signals within practical optical signal-to-noise ratio (OSNR) ranges. The performance of the proposed MFC algorithm is also compared with those of other schemes based on clustering algorithms. The simulation results show that good classification performance can be achieved using the proposed MFC scheme with moderate time complexity. Proof-of-concept experiments are finally implemented to demonstrate MFC among PM-QPSK/16QAM/64QAM signals, which confirm the feasibility of our proposed MFC scheme.
Sarkar, Sankho Turjo; Bhondekar, Amol P; Macaš, Martin; Kumar, Ritesh; Kaur, Rishemjit; Sharma, Anupma; Gulati, Ashu; Kumar, Amod
2015-11-01
The paper presents a novel encoding scheme for neuronal code generation for odour recognition using an electronic nose (EN). This scheme is based on channel encoding using multiple Gaussian receptive fields superimposed over the temporal EN responses. The encoded data is further applied to a spiking neural network (SNN) for pattern classification. Two forms of SNN, a back-propagation based SpikeProp and a dynamic evolving SNN are used to learn the encoded responses. The effects of information encoding on the performance of SNNs have been investigated. Statistical tests have been performed to determine the contribution of the SNN and the encoding scheme to overall odour discrimination. The approach has been implemented in odour classification of orthodox black tea (Kangra-Himachal Pradesh Region) thereby demonstrating a biomimetic approach for EN data analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vulnerable land ecosystems classification using spatial context and spectral indices
NASA Astrophysics Data System (ADS)
Ibarrola-Ulzurrun, Edurne; Gonzalo-Martín, Consuelo; Marcello, Javier
2017-10-01
Natural habitats are exposed to growing pressure due to intensification of land use and tourism development. Thus, obtaining information on the vegetation is necessary for conservation and management projects. In this context, remote sensing is an important tool for monitoring and managing habitats, being classification a crucial stage. The majority of image classifications techniques are based upon the pixel-based approach. An alternative is the object-based (OBIA) approach, in which a previous segmentation step merges image pixels to create objects that are then classified. Besides, improved results may be gained by incorporating additional spatial information and specific spectral indices into the classification process. The main goal of this work was to implement and assess object-based classification techniques on very-high resolution imagery incorporating spectral indices and contextual spatial information in the classification models. The study area was Teide National Park in Canary Islands (Spain) using Worldview-2 orthoready imagery. In the classification model, two common indices were selected Normalized Difference Vegetation Index (NDVI) and Optimized Soil Adjusted Vegetation Index (OSAVI), as well as two specific Worldview-2 sensor indices, Worldview Vegetation Index and Worldview Soil Index. To include the contextual information, Grey Level Co-occurrence Matrices (GLCM) were used. The classification was performed training a Support Vector Machine with sufficient and representative number of vegetation samples (Spartocytisus supranubius, Pterocephalus lasiospermus, Descurainia bourgaeana and Pinus canariensis) as well as urban, road and bare soil classes. Confusion Matrices were computed to evaluate the results from each classification model obtaining the highest overall accuracy (90.07%) combining both Worldview indices with the GLCM-dissimilarity.
Keitel, Anne; Gross, Joachim
2016-01-01
The human brain can be parcellated into diverse anatomical areas. We investigated whether rhythmic brain activity in these areas is characteristic and can be used for automatic classification. To this end, resting-state MEG data of 22 healthy adults was analysed. Power spectra of 1-s long data segments for atlas-defined brain areas were clustered into spectral profiles (“fingerprints”), using k-means and Gaussian mixture (GM) modelling. We demonstrate that individual areas can be identified from these spectral profiles with high accuracy. Our results suggest that each brain area engages in different spectral modes that are characteristic for individual areas. Clustering of brain areas according to similarity of spectral profiles reveals well-known brain networks. Furthermore, we demonstrate task-specific modulations of auditory spectral profiles during auditory processing. These findings have important implications for the classification of regional spectral activity and allow for novel approaches in neuroimaging and neurostimulation in health and disease. PMID:27355236
Plasmonic rainbow rings induced by white radial polarization.
Lan, Tzu-Hsiang; Chung, Yi-Kuan; Li, Jie-En; Tien, Chung-Hao
2012-04-01
This Letter presents a scheme to embed both angular/spectral surface plasmon resonance (SPR) in a unique far-field rainbow feature by tightly focusing (effective NA=1.45) a polychromatic radially polarized beam on an Au (20 nm)/SiO2 (500 nm)/Au (20 nm) sandwich structure. Without the need for angular or spectral scanning, the virtual spectral probe snapshots a wide operation range (n=1-1.42; λ=400-700 nm) of SPR excitation in a locally nanosized region. Combined with the high-speed spectral analysis, a proof-of-concept scenario was given by monitoring the NaCl liquid concentration change in real time. The proposed scheme will certainly has a promising impact on the development of objective-based SPR sensor and biometric studies due to its rapidity and versatility.
Yang, Wen; Zhu, Jin-Yong; Lu, Kai-Hong; Wan, Li; Mao, Xiao-Hua
2014-06-01
Appropriate schemes for classification of freshwater phytoplankton are prerequisites and important tools for revealing phytoplanktonic succession and studying freshwater ecosystems. An alternative approach, functional group of freshwater phytoplankton, has been proposed and developed due to the deficiencies of Linnaean and molecular identification in ecological applications. The functional group of phytoplankton is a classification scheme based on autoecology. In this study, the theoretical basis and classification criterion of functional group (FG), morpho-functional group (MFG) and morphology-based functional group (MBFG) were summarized, as well as their merits and demerits. FG was considered as the optimal classification approach for the aquatic ecology research and aquatic environment evaluation. The application status of FG was introduced, with the evaluation standards and problems of two approaches to assess water quality on the basis of FG, index methods of Q and QR, being briefly discussed.
Fernandes, Melissa A; Verstraete, Sofia G; Garnett, Elizabeth A; Heyman, Melvin B
2016-02-01
The aim of the study was to investigate the value of microscopic findings in the classification of pediatric Crohn disease (CD) by determining whether classification of disease changes significantly with inclusion of histologic findings. Sixty patients were randomly selected from a cohort of patients studied at the Pediatric Inflammatory Bowel Disease Clinic at the University of California, San Francisco Benioff Children's Hospital. Two physicians independently reviewed the electronic health records of the included patients to determine the Paris classification for each patient by adhering to present guidelines and then by including microscopic findings. Macroscopic and combined disease location classifications were discordant in 34 (56.6%), with no statistically significant differences between groups. Interobserver agreement was higher in the combined classification (κ = 0.73, 95% confidence interval 0.65-0.82) as opposed to when classification was limited to macroscopic findings (κ = 0.53, 95% confidence interval 0.40-0.58). When evaluating the proximal upper gastrointestinal tract (Paris L4a), the interobserver agreement was better in macroscopic compared with the combined classification. Disease extent classifications differed significantly when comparing isolated macroscopic findings (Paris classification) with the combined scheme that included microscopy. Further studies are needed to determine which scheme provides more accurate representation of disease extent.
Fluorescence-based classification of Caribbean coral reef organisms and substrates
Zawada, David G.; Mazel, Charles H.
2014-01-01
A diverse group of coral reef organisms, representing several phyla, possess fluorescent pigments. We investigated the potential of using the characteristic fluorescence emission spectra of these pigments to enable unsupervised, optical classification of coral reef habitats. We compiled a library of characteristic fluorescence spectra through in situ and laboratory measurements from a variety of specimens throughout the Caribbean. Because fluorescent pigments are not species-specific, the spectral library is organized in terms of 15 functional groups. We investigated the spectral separability of the functional groups in terms of the number of wavebands required to distinguish between them, using the similarity measures Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), SID-SAM mixed measure, and Mahalanobis distance. This set of measures represents geometric, stochastic, joint geometric-stochastic, and statistical approaches to classifying spectra. Our hyperspectral fluorescence data were used to generate sets of 4-, 6-, and 8-waveband spectra, including random variations in relative signal amplitude, spectral peak shifts, and water-column attenuation. Each set consisted of 2 different band definitions: ‘optimally-picked’ and ‘evenly-spaced.’ The optimally-picked wavebands were chosen to coincide with as many peaks as possible in the functional group spectra. Reference libraries were formed from half of the spectra in each set and used for training purposes. Average classification accuracies ranged from 76.3% for SAM with 4 evenly-spaced wavebands to 93.8% for Mahalanobis distance with 8 evenly-spaced wavebands. The Mahalanobis distance consistently outperformed the other measures. In a second test, empirically-measured spectra were classified using the same reference libraries and the Mahalanobis distance for just the 8 evenly-spaced waveband case. Average classification accuracies were 84% and 87%, corresponding to the extremes in modeled water-column attenuation. The classification results from both tests indicate that a high degree of separability among the 15 fluorescent-spectra functional groups is possible using only a modest number of spectral bands.
Spectroscopic classification of icy satellites of Saturn II: Identification of terrain units on Rhea
NASA Astrophysics Data System (ADS)
Scipioni, F.; Tosi, F.; Stephan, K.; Filacchione, G.; Ciarniello, M.; Capaccioni, F.; Cerroni, P.
2014-05-01
Rhea is the second largest icy satellites of Saturn and it is mainly composed of water ice. Its surface is characterized by a leading hemisphere slightly brighter than the trailing side. The main goal of this work is to identify homogeneous compositional units on Rhea by applying the Spectral Angle Mapper (SAM) classification technique to Rhea’s hyperspectral images acquired by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini Orbiter in the infrared range (0.88-5.12 μm). The first step of the classification is dedicated to the identification of Rhea’s spectral endmembers by applying the k-means unsupervised clustering technique to four hyperspectral images representative of a limited portion of the surface, imaged at relatively high spatial resolution. We then identified eight spectral endmembers, corresponding to as many terrain units, which mostly distinguish for water ice abundance and ice grain size. In the second step, endmembers are used as reference spectra in SAM classification method to achieve a comprehensive classification of the entire surface. From our analysis of the infrared spectra returned by VIMS, it clearly emerges that Rhea’ surface units shows differences in terms of water ice bands depths, average ice grain size, and concentration of contaminants, particularly CO2 and hydrocarbons. The spectral units that classify optically dark terrains are those showing suppressed water ice bands, a finer ice grain size and a higher concentration of carbon dioxide. Conversely, spectral units labeling brighter regions have deeper water ice absorption bands, higher albedo and a smaller concentration of contaminants. All these variations reflect surface’s morphological and geological structures. Finally, we performed a comparison between Rhea and Dione, to highlight different magnitudes of space weathering effects in the icy satellites as a function of the distance from Saturn.
The search for structure - Object classification in large data sets. [for astronomers
NASA Technical Reports Server (NTRS)
Kurtz, Michael J.
1988-01-01
Research concerning object classifications schemes are reviewed, focusing on large data sets. Classification techniques are discussed, including syntactic, decision theoretic methods, fuzzy techniques, and stochastic and fuzzy grammars. Consideration is given to the automation of MK classification (Morgan and Keenan, 1973) and other problems associated with the classification of spectra. In addition, the classification of galaxies is examined, including the problems of systematic errors, blended objects, galaxy types, and galaxy clusters.
Azadmanjir, Zahra; Safdari, Reza; Ghazisaeedi, Marjan; Mokhtaran, Mehrshad; Kameli, Mohammad Esmail
2017-01-01
Introduction: Accurate coded data in the healthcare are critical. Computer-Assisted Coding (CAC) is an effective tool to improve clinical coding in particular when a new classification will be developed and implemented. But determine the appropriate method for development need to consider the specifications of existing CAC systems, requirements for each type, our infrastructure and also, the classification scheme. Aim: The aim of the study was the development of a decision model for determining accurate code of each medical intervention in Iranian Classification of Health Interventions (IRCHI) that can be implemented as a suitable CAC system. Methods: first, a sample of existing CAC systems was reviewed. Then feasibility of each one of CAC types was examined with regard to their prerequisites for their implementation. The next step, proper model was proposed according to the structure of the classification scheme and was implemented as an interactive system. Results: There is a significant relationship between the level of assistance of a CAC system and integration of it with electronic medical documents. Implementation of fully automated CAC systems is impossible due to immature development of electronic medical record and problems in using language for medical documenting. So, a model was proposed to develop semi-automated CAC system based on hierarchical relationships between entities in the classification scheme and also the logic of decision making to specify the characters of code step by step through a web-based interactive user interface for CAC. It was composed of three phases to select Target, Action and Means respectively for an intervention. Conclusion: The proposed model was suitable the current status of clinical documentation and coding in Iran and also, the structure of new classification scheme. Our results show it was practical. However, the model needs to be evaluated in the next stage of the research. PMID:28883671
Classification and reduction of pilot error
NASA Technical Reports Server (NTRS)
Rogers, W. H.; Logan, A. L.; Boley, G. D.
1989-01-01
Human error is a primary or contributing factor in about two-thirds of commercial aviation accidents worldwide. With the ultimate goal of reducing pilot error accidents, this contract effort is aimed at understanding the factors underlying error events and reducing the probability of certain types of errors by modifying underlying factors such as flight deck design and procedures. A review of the literature relevant to error classification was conducted. Classification includes categorizing types of errors, the information processing mechanisms and factors underlying them, and identifying factor-mechanism-error relationships. The classification scheme developed by Jens Rasmussen was adopted because it provided a comprehensive yet basic error classification shell or structure that could easily accommodate addition of details on domain-specific factors. For these purposes, factors specific to the aviation environment were incorporated. Hypotheses concerning the relationship of a small number of underlying factors, information processing mechanisms, and error types types identified in the classification scheme were formulated. ASRS data were reviewed and a simulation experiment was performed to evaluate and quantify the hypotheses.
A Visual Basic program to plot sediment grain-size data on ternary diagrams
Poppe, L.J.; Eliason, A.H.
2008-01-01
Sedimentologic datasets are typically large and compiled into tables or databases, but pure numerical information can be difficult to understand and interpret. Thus, scientists commonly use graphical representations to reduce complexities, recognize trends and patterns in the data, and develop hypotheses. Of the graphical techniques, one of the most common methods used by sedimentologists is to plot the basic gravel, sand, silt, and clay percentages on equilateral triangular diagrams. This means of presenting data is simple and facilitates rapid classification of sediments and comparison of samples.The original classification scheme developed by Shepard (1954) used a single ternary diagram with sand, silt, and clay in the corners and 10 categories to graphically show the relative proportions among these three grades within a sample. This scheme, however, did not allow for sediments with significant amounts of gravel. Therefore, Shepard's classification scheme was later modified by the addition of a second ternary diagram with two categories to account for gravel and gravelly sediment (Schlee, 1973). The system devised by Folk (1954, 1974)\\ is also based on two triangular diagrams, but it has 21 categories and uses the term mud (defined as silt plus clay). Patterns within the triangles of both systems differ, as does the emphasis placed on gravel. For example, in the system described by Shepard, gravelly sediments have more than 10% gravel; in Folk's system, slightly gravelly sediments have as little as 0.01% gravel. Folk's classification scheme stresses gravel because its concentration is a function of the highest current velocity at the time of deposition as is the maximum grain size of the detritus that is available; Shepard's classification scheme emphasizes the ratios of sand, silt, and clay because they reflect sorting and reworking (Poppe et al., 2005).The program described herein (SEDPLOT) generates verbal equivalents and ternary diagrams to characterize sediment grain-size distributions. It is written in Microsoft Visual Basic 6.0 and provides a window to facilitate program execution. The inputs for the sediment fractions are percentages of gravel, sand, silt, and clay in the Wentworth (1922) grade scale, and the program permits the user to select output in either the Shepard (1954) classification scheme, modified as described above, or the Folk (1954, 1974) scheme. Users select options primarily with mouse-click events and through interactive dialogue boxes. This program is intended as a companion to other Visual Basic software we have developed to process sediment data (Poppe et al., 2003, 2004).
VizieR Online Data Catalog: Spectral properties of 441 radio pulsars (Jankowski+, 2018)
NASA Astrophysics Data System (ADS)
Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.
2018-03-01
We present spectral parameters for 441 radio pulsars. These were obtained from observations centred at 728, 1382 and 3100MHz using the 10-50cm and the 20cm multibeam receiver at the Parkes radio telescope. In particular, we list the pulsar names (J2000), the calibrated, band-integrated flux densities at 728, 1382 and 3100MHz, the spectral classifications, the frequency ranges the spectral classifications were performed over, the spectral indices for pulsars with simple power-law spectra and the robust modulation indices at all three centre frequencies for pulsars of which we have at least six measurement epochs. The flux density uncertainties include scintillation and a systematic contribution, in addition to the statistical uncertainty. Upper limits are reported at the 3σ level and all other uncertainties at the 1σ level. (1 data file).
Multispectral scanner system parameter study and analysis software system description, volume 2
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Mobasseri, B. G.; Wiersma, D. J.; Wiswell, E. R.; Mcgillem, C. D.; Anuta, P. E.
1978-01-01
The author has identified the following significant results. The integration of the available methods provided the analyst with the unified scanner analysis package (USAP), the flexibility and versatility of which was superior to many previous integrated techniques. The USAP consisted of three main subsystems; (1) a spatial path, (2) a spectral path, and (3) a set of analytic classification accuracy estimators which evaluated the system performance. The spatial path consisted of satellite and/or aircraft data, data correlation analyzer, scanner IFOV, and random noise model. The output of the spatial path was fed into the analytic classification and accuracy predictor. The spectral path consisted of laboratory and/or field spectral data, EXOSYS data retrieval, optimum spectral function calculation, data transformation, and statistics calculation. The output of the spectral path was fended into the stratified posterior performance estimator.
Research in the application of spectral data to crop identification and assessment, volume 2
NASA Technical Reports Server (NTRS)
Daughtry, C. S. T. (Principal Investigator); Hixson, M. M.; Bauer, M. E.
1980-01-01
The development of spectrometry crop development stage models is discussed with emphasis on models for corn and soybeans. One photothermal and four thermal meteorological models are evaluated. Spectral data were investigated as a source of information for crop yield models. Intercepted solar radiation and soil productivity are identified as factors related to yield which can be estimated from spectral data. Several techniques for machine classification of remotely sensed data for crop inventory were evaluated. Early season estimation, training procedures, the relationship of scene characteristics to classification performance, and full frame classification methods were studied. The optimal level for combining area and yield estimates of corn and soybeans is assessed utilizing current technology: digital analysis of LANDSAT MSS data on sample segments to provide area estimates and regression models to provide yield estimates.
NASA Astrophysics Data System (ADS)
Broderick, Ciaran; Fealy, Rowan
2013-04-01
Circulation type classifications (CTCs) compiled as part of the COST733 Action, entitled 'Harmonisation and Application of Weather Type Classifications for European Regions', are examined for their synoptic and climatological applicability to Ireland based on their ability to characterise surface temperature and precipitation. In all 16 different objective classification schemes, representative of four different methodological approaches to circulation typing (optimization algorithms, threshold based methods, eigenvector techniques and leader algorithms) are considered. Several statistical metrics which variously quantify the ability of CTCs to discretize daily data into well-defined homogeneous groups are used to evaluate and compare different approaches to synoptic typing. The records from 14 meteorological stations located across the island of Ireland are used in the study. The results indicate that while it was not possible to identify a single optimum classification or approach to circulation typing - conditional on the location and surface variables considered - a number of general assertions regarding the performance of different schemes can be made. The findings for surface temperature indicate that that those classifications based on predefined thresholds (e.g. Litynski, GrossWetterTypes and original Lamb Weather Type) perform well, as do the Kruizinga and Lund classification schemes. Similarly for precipitation predefined type classifications return high skill scores, as do those classifications derived using some optimization procedure (e.g. SANDRA, Self Organizing Maps and K-Means clustering). For both temperature and precipitation the results generally indicate that the classifications perform best for the winter season - reflecting the closer coupling between large-scale circulation and surface conditions during this period. In contrast to the findings for temperature, spatial patterns in the performance of classifications were more evident for precipitation. In the case of this variable those more westerly synoptic stations open to zonal airflow and less influenced by regional scale forcings generally exhibited a stronger link with large-scale circulation.
SCAT Classification of 4 Optical Transients
NASA Astrophysics Data System (ADS)
Tucker, Michael A.; Rowan, Dominick M.; Shappee, Benjamin J.; Dong, Subo; Bose, Subhash; Stanek, K. Z.
2018-06-01
The Spectral Classification of Astronomical Transients (SCAT) survey (ATel #11444) presents the classification of 4 optical transients. We report optical spectroscopy (330-970nm) taken with the University of Hawaii 88-inch (UH88) telescope using the SuperNova Integral Field Spectrograph (SNIFS).
SCAT Classifications of 5 Supernovae with the UH88/SNIFS
NASA Astrophysics Data System (ADS)
Tucker, Michael A.; Huber, Mark; Shappee, Benjamin J.; Dong, Subo; Bose, S.; Chen, Ping
2018-03-01
We present the first classifications from the newly formed Spectral Classification of Astronomical Transients (SCAT) survey. SCAT is a transient identification survey utilizing the SuperNova Integral Field Spectrograph (SNIFS) on the University of Hawaii (UH) 88-inch telescope.
The Classification of Hysteria and Related Disorders: Historical and Phenomenological Considerations
North, Carol S.
2015-01-01
This article examines the history of the conceptualization of dissociative, conversion, and somatoform syndromes in relation to one another, chronicles efforts to classify these and other phenomenologically-related psychopathology in the American diagnostic system for mental disorders, and traces the subsequent divergence in opinions of dissenting sectors on classification of these disorders. This article then considers the extensive phenomenological overlap across these disorders in empirical research, and from this foundation presents a new model for the conceptualization of these disorders. The classification of disorders formerly known as hysteria and phenomenologically-related syndromes has long been contentious and unsettled. Examination of the long history of the conceptual difficulties, which remain inherent in existing classification schemes for these disorders, can help to address the continuing controversy. This review clarifies the need for a major conceptual revision of the current classification of these disorders. A new phenomenologically-based classification scheme for these disorders is proposed that is more compatible with the agnostic and atheoretical approach to diagnosis of mental disorders used by the current classification system. PMID:26561836
Hazrati, Mehrnaz Kh; Erfanian, Abbas
2008-01-01
This paper presents a new EEG-based Brain-Computer Interface (BCI) for on-line controlling the sequence of hand grasping and holding in a virtual reality environment. The goal of this research is to develop an interaction technique that will allow the BCI to be effective in real-world scenarios for hand grasp control. Moreover, for consistency of man-machine interface, it is desirable the intended movement to be what the subject imagines. For this purpose, we developed an on-line BCI which was based on the classification of EEG associated with imagination of the movement of hand grasping and resting state. A classifier based on probabilistic neural network (PNN) was introduced for classifying the EEG. The PNN is a feedforward neural network that realizes the Bayes decision discriminant function by estimating probability density function using mixtures of Gaussian kernels. Two types of classification schemes were considered here for on-line hand control: adaptive and static. In contrast to static classification, the adaptive classifier was continuously updated on-line during recording. The experimental evaluation on six subjects on different days demonstrated that by using the static scheme, a classification accuracy as high as the rate obtained by the adaptive scheme can be achieved. At the best case, an average classification accuracy of 93.0% and 85.8% was obtained using adaptive and static scheme, respectively. The results obtained from more than 1500 trials on six subjects showed that interactive virtual reality environment can be used as an effective tool for subject training in BCI.
On the classification of the spectrally stable standing waves of the Hartree problem
NASA Astrophysics Data System (ADS)
Georgiev, Vladimir; Stefanov, Atanas
2018-05-01
We consider the fractional Hartree model, with general power non-linearity and arbitrary spatial dimension. We construct variationally the "normalized" solutions for the corresponding Choquard-Pekar model-in particular a number of key properties, like smoothness and bell-shapedness are established. As a consequence of the construction, we show that these solitons are spectrally stable as solutions to the time-dependent Hartree model. In addition, we analyze the spectral stability of the Moroz-Van Schaftingen solitons of the classical Hartree problem, in any dimensions and power non-linearity. A full classification is obtained, the main conclusion of which is that only and exactly the "normalized" solutions (which exist only in a portion of the range) are spectrally stable.
A spectral-knowledge-based approach for urban land-cover discrimination
NASA Technical Reports Server (NTRS)
Wharton, Stephen W.
1987-01-01
A prototype expert system was developed to demonstrate the feasibility of classifying multispectral remotely sensed data on the basis of spectral knowledge. The spectral expert was developed and tested with Thematic Mapper Simulator (TMS) data having eight spectral bands and a spatial resolution of 5 m. A knowledge base was developed that describes the target categories in terms of characteristic spectral relationships. The knowledge base was developed under the following assumptions: the data are calibrated to ground reflectance, the area is well illuminated, the pixels are dominated by a single category, and the target categories can be recognized without the use of spatial knowledge. Classification decisions are made on the basis of convergent evidence as derived from applying the spectral rules to a multiple spatial resolution representation of the image. The spectral expert achieved an accuracy of 80-percent correct or higher in recognizing 11 spectral categories in TMS data for the washington, DC, area. Classification performance can be expected to decrease for data that do not satisfy the above assumptions as illustrated by the 63-percent accuracy for 30-m resolution Thematic Mapper data.
Machine learning in APOGEE. Unsupervised spectral classification with K-means
NASA Astrophysics Data System (ADS)
Garcia-Dias, Rafael; Allende Prieto, Carlos; Sánchez Almeida, Jorge; Ordovás-Pascual, Ignacio
2018-05-01
Context. The volume of data generated by astronomical surveys is growing rapidly. Traditional analysis techniques in spectroscopy either demand intensive human interaction or are computationally expensive. In this scenario, machine learning, and unsupervised clustering algorithms in particular, offer interesting alternatives. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) offers a vast data set of near-infrared stellar spectra, which is perfect for testing such alternatives. Aims: Our research applies an unsupervised classification scheme based on K-means to the massive APOGEE data set. We explore whether the data are amenable to classification into discrete classes. Methods: We apply the K-means algorithm to 153 847 high resolution spectra (R ≈ 22 500). We discuss the main virtues and weaknesses of the algorithm, as well as our choice of parameters. Results: We show that a classification based on normalised spectra captures the variations in stellar atmospheric parameters, chemical abundances, and rotational velocity, among other factors. The algorithm is able to separate the bulge and halo populations, and distinguish dwarfs, sub-giants, RC, and RGB stars. However, a discrete classification in flux space does not result in a neat organisation in the parameters' space. Furthermore, the lack of obvious groups in flux space causes the results to be fairly sensitive to the initialisation, and disrupts the efficiency of commonly-used methods to select the optimal number of clusters. Our classification is publicly available, including extensive online material associated with the APOGEE Data Release 12 (DR12). Conclusions: Our description of the APOGEE database can help greatly with the identification of specific types of targets for various applications. We find a lack of obvious groups in flux space, and identify limitations of the K-means algorithm in dealing with this kind of data. Full Tables B.1-B.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A98
NASA Astrophysics Data System (ADS)
Kim, H. O.; Yeom, J. M.
2014-12-01
Space-based remote sensing in agriculture is particularly relevant to issues such as global climate change, food security, and precision agriculture. Recent satellite missions have opened up new perspectives by offering high spatial resolution, various spectral properties, and fast revisit rates to the same regions. Here, we examine the utility of broadband red-edge spectral information in multispectral satellite image data for classifying paddy rice crops in South Korea. Additionally, we examine how object-based spectral features affect the classification of paddy rice growth stages. For the analysis, two seasons of RapidEye satellite image data were used. The results showed that the broadband red-edge information slightly improved the classification accuracy of the crop condition in heterogeneous paddy rice crop environments, particularly when single-season image data were used. This positive effect appeared to be offset by the multi-temporal image data. Additional texture information brought only a minor improvement or a slight decline, although it is well known to be advantageous for object-based classification in general. We conclude that broadband red-edge information derived from conventional multispectral satellite data has the potential to improve space-based crop monitoring. Because the positive or negative effects of texture features for object-based crop classification could barely be interpreted, the relationships between the textual properties and paddy rice crop parameters at the field scale should be further examined in depth.
NASA Astrophysics Data System (ADS)
Fan, Jiayuan; Tan, Hui Li; Toomik, Maria; Lu, Shijian
2016-10-01
Spatial pyramid matching has demonstrated its power for image recognition task by pooling features from spatially increasingly fine sub-regions. Motivated by the concept of feature pooling at multiple pyramid levels, we propose a novel spectral-spatial hyperspectral image classification approach using superpixel-based spatial pyramid representation. This technique first generates multiple superpixel maps by decreasing the superpixel number gradually along with the increased spatial regions for labelled samples. By using every superpixel map, sparse representation of pixels within every spatial region is then computed through local max pooling. Finally, features learned from training samples are aggregated and trained by a support vector machine (SVM) classifier. The proposed spectral-spatial hyperspectral image classification technique has been evaluated on two public hyperspectral datasets, including the Indian Pines image containing 16 different agricultural scene categories with a 20m resolution acquired by AVIRIS and the University of Pavia image containing 9 land-use categories with a 1.3m spatial resolution acquired by the ROSIS-03 sensor. Experimental results show significantly improved performance compared with the state-of-the-art works. The major contributions of this proposed technique include (1) a new spectral-spatial classification approach to generate feature representation for hyperspectral image, (2) a complementary yet effective feature pooling approach, i.e. the superpixel-based spatial pyramid representation that is used for the spatial correlation study, (3) evaluation on two public hyperspectral image datasets with superior image classification performance.
Texture classification of vegetation cover in high altitude wetlands zone
NASA Astrophysics Data System (ADS)
Wentao, Zou; Bingfang, Wu; Hongbo, Ju; Hua, Liu
2014-03-01
The aim of this study was to investigate the utility of datasets composed of texture measures and other features for the classification of vegetation cover, specifically wetlands. QUEST decision tree classifier was applied to a SPOT-5 image sub-scene covering the typical wetlands area in Three River Sources region in Qinghai province, China. The dataset used for the classification comprised of: (1) spectral data and the components of principal component analysis; (2) texture measures derived from pixel basis; (3) DEM and other ancillary data covering the research area. Image textures is an important characteristic of remote sensing images; it can represent spatial variations with spectral brightness in digital numbers. When the spectral information is not enough to separate the different land covers, the texture information can be used to increase the classification accuracy. The texture measures used in this study were calculated from GLCM (Gray level Co-occurrence Matrix); eight frequently used measures were chosen to conduct the classification procedure. The results showed that variance, mean and entropy calculated by GLCM with a 9*9 size window were effective in distinguishing different vegetation types in wetlands zone. The overall accuracy of this method was 84.19% and the Kappa coefficient was 0.8261. The result indicated that the introduction of texture measures can improve the overall accuracy by 12.05% and the overall kappa coefficient by 0.1407 compared with the result using spectral and ancillary data.
Snyder, A Peter; Dworzanski, Jacek P; Tripathi, Ashish; Maswadeh, Waleed M; Wick, Charles H
2004-11-01
A pyrolysis-gas chromatography-ion mobility spectrometry (Py-GC-IMS) briefcase system has been shown to detect and classify deliberately released bioaerosols in outdoor field scenarios. The bioaerosols included Gram-positive and Gram-negative bacteria, MS-2 coliphage virus, and ovalbumin protein species. However, the origin and structural identities of the pyrolysate peaks in the GC-IMS data space, their microbiological information content, and taxonomic importance with respect to biodetection have not been determined. The present work interrogates the identities of the peaks by inserting a time-of-flight mass spectrometry system in parallel with the IMS detector through a Tee connection in the GC module. Biological substances producing ion mobility peaks from the pyrolysis of microorganisms were identified by their GC retention time, matching of their electron ionization mass spectra with authentic standards, and the National Institutes for Standards and Technology mass spectral database. Strong signals from 2-pyridinecarboxamide were identified in Bacillus samples including Bacillus anthracis, and its origin was traced to the cell wall peptidoglycan macromolecule. 3-Hydroxymyristic acid is a component of lipopolysaccharides in the cell walls of Gram-negative organisms. The Gram-negative Escherichia coli organism showed significant amounts of 3-hydroxymyristic acid derivatives and degradation products in Py-GC-MS analyses. Some of the fatty acid derivatives were observed in very low abundance in the ion mobility spectra, and the higher boiling lipid species were absent. Evidence is presented that the Py-GC-ambient temperature and pressure-IMS system generates and detects bacterial biochemical information that can serve as components of a biological classification scheme directly correlated to the Gram stain reaction in microorganism taxonomy.
NASA Astrophysics Data System (ADS)
Urbanek, Benedikt; Groß, Silke; Wirth, Martin
2017-04-01
Cirrus clouds impose high uncertainties on weather and climate prediction, as knowledge on important processes is still incomplete. For instance it remains unclear how cloud optical, microphysical, and radiative properties change as the cirrus evolves. To gain better understanding of cirrus clouds, their optical and microphysical properties and their changes with cirrus cloud evolution the ML-CIRRUS campaign was conducted in March and April 2014. Measurements with a combined in-situ and remote sensing payload were performed with the German research aircraft HALO based in Oberpfaffenhofen. 16 research flights with altogether 88 flight hours were performed over the North-Atlantic, western and central Europe to probe different cirrus cloud regimes and cirrus clouds at different stages of evolution. One of the key remotes sensing instruments during ML-CIRRUS was the airborne differential absorption and high spectral lidar system WALES. It measures the 2-dimensional distribution of water vapor inside and outside of cirrus clouds as well as the optical properties of the clouds. Bases on these airborne lidar measurements a novel classification scheme to derive the stage of cirrus cloud evolution was developed. It identifies regions of ice nucleation, particle growth by deposition of water vapor, and ice sublimation. This method is used to investigate differences in the distribution and value of optical properties as well as in the distribution of water vapor and relative humidity depending on the stage of evolution of the cloud. We will present the lidar based classification scheme and its application on a wave driven cirrus cloud case, and we will show first results of the dependence of optical cloud properties and relative humidity distributions on the determined stage of evolution.
Coccolithophorid blooms in the global ocean
NASA Technical Reports Server (NTRS)
Brown, Christopher W.; Yoder, James A.
1994-01-01
The global distribution pattern of coccolithophrid blooms was mapped in order to ascertain the prevalence of these blooms in the world's oceans and to estimate their worldwide production of CaCO3 and dimethyl sulfide (DMS). Mapping was accomplished by classifying pixels of 5-day global composites of coastal zone color scanner imagery into bloom and nonbloom classes using a supervised, multispectral classification scheme. Surface waters with the spectral signature of coccolithophorid blooms annually covered an average of 1.4 x 10(exp 6) sq km in the world oceans from 1979 to 1985, with the subpolar latitudes accounting for 71% of this surface area. Classified blooms were most extensive in the Subartic North Atlantic. Large expanses of the bloom signal were also detected in the North Pacific, on the Argentine shelf and slope, and in numerous lower latitude marginal seas and shelf regions. The greatest spatial extent of classified blooms in subpolar oceanic regions occurred in the months from summer to early autumn, while those in lower latitude marginal seas occurred in midwinter to early spring. Though the classification scheme was effcient in separating bloom and nonbloom classes during test simulations, and biogeographical literature generally confirms the resulting distribution pattern of blooms in the subpolar regions, the cause of the bloom signal is equivocal in some geographic areas, particularly on shelf regions at lower latitudes. Standing stock estimates suggest that the presumed Emiliania huxleyi blooms act as a significant source of calcite carbon and DMS sulfur on a regional scale. On a global scale, however, the satellite-detected coccolithophorid blooms are estimated to play only a minor role in the annual production of these two compounds and their flux from the surface mixed layer.
Classification of Instructional Programs: 2000 Edition.
ERIC Educational Resources Information Center
Morgan, Robert L.; Hunt, E. Stephen
This third revision of the Classification of Instructional Programs (CIP) updates and modifies education program classifications, providing a taxonomic scheme that supports the accurate tracking, assessment, and reporting of field of study and program completions activity. This edition has also been adopted as the standard field of study taxonomy…
Attribution of local climate zones using a multitemporal land use/land cover classification scheme
NASA Astrophysics Data System (ADS)
Wicki, Andreas; Parlow, Eberhard
2017-04-01
Worldwide, the number of people living in an urban environment exceeds the rural population with increasing tendency. Especially in relation to global climate change, cities play a major role considering the impacts of extreme heat waves on the population. For urban planners, it is important to know which types of urban structures are beneficial for a comfortable urban climate and which actions can be taken to improve urban climate conditions. Therefore, it is essential to differ between not only urban and rural environments, but also between different levels of urban densification. To compare these built-up types within different cities worldwide, Stewart and Oke developed the concept of local climate zones (LCZ) defined by morphological characteristics. The original LCZ scheme often has considerable problems when adapted to European cities with historical city centers, including narrow streets and irregular patterns. In this study, a method to bridge the gap between a classical land use/land cover (LULC) classification and the LCZ scheme is presented. Multitemporal Landsat 8 data are used to create a high accuracy LULC map, which is linked to the LCZ by morphological parameters derived from a high-resolution digital surface model and cadastral data. A bijective combination of the different classification schemes could not be achieved completely due to overlapping threshold values and the spatially homogeneous distribution of morphological parameters, but the attribution of LCZ to the LULC classification was successful.
NASA Astrophysics Data System (ADS)
Caras, Tamir; Hedley, John; Karnieli, Arnon
2017-12-01
Remote sensing offers a potential tool for large scale environmental surveying and monitoring. However, remote observations of coral reefs are difficult especially due to the spatial and spectral complexity of the target compared to sensor specifications as well as the environmental implications of the water medium above. The development of sensors is driven by technological advances and the desired products. Currently, spaceborne systems are technologically limited to a choice between high spectral resolution and high spatial resolution, but not both. The current study explores the dilemma of whether future sensor design for marine monitoring should prioritise on improving their spatial or spectral resolution. To address this question, a spatially and spectrally resampled ground-level hyperspectral image was used to test two classification elements: (1) how the tradeoff between spatial and spectral resolutions affects classification; and (2) how a noise reduction by majority filter might improve classification accuracy. The studied reef, in the Gulf of Aqaba (Eilat), Israel, is heterogeneous and complex so the local substrate patches are generally finer than currently available imagery. Therefore, the tested spatial resolution was broadly divided into four scale categories from five millimeters to one meter. Spectral resolution resampling aimed to mimic currently available and forthcoming spaceborne sensors such as (1) Environmental Mapping and Analysis Program (EnMAP) that is characterized by 25 bands of 6.5 nm width; (2) VENμS with 12 narrow bands; and (3) the WorldView series with broadband multispectral resolution. Results suggest that spatial resolution should generally be prioritized for coral reef classification because the finer spatial scale tested (pixel size < 0.1 m) may compensate for some low spectral resolution drawbacks. In this regard, it is shown that the post-classification majority filtering substantially improves the accuracy of all pixel sizes up to the point where the kernel size reaches the average unit size (pixel < 0.25 m). However, careful investigation as to the effect of band distribution and choice could improve the sensor suitability for the marine environment task. This in mind, while the focus in this study was on the technologically limited spaceborne design, aerial sensors may presently provide an opportunity to implement the suggested setup.
An Automated Scheme for the Large-Scale Survey of Herbig-Haro Objects
NASA Astrophysics Data System (ADS)
Deng, Licai; Yang, Ji; Zheng, Zhongyuan; Jiang, Zhaoji
2001-04-01
Owing to their spectral properties, Herbig-Haro (HH) objects can be discovered using photometric methods through a combination of filters, sampling the characteristic spectral lines and the nearby continuum. The data are commonly processed through direct visual inspection of the images. To make data reduction more efficient and the results more uniform and complete, an automated searching scheme for HH objects is developed to manipulate the images using IRAF. This approach helps to extract images with only intrinsic HH emissions. By using this scheme, the pointlike stellar sources and extended nebulous sources with continuum emission can be eliminated from the original images. The objects with only characteristic HH emission become prominent and can be easily picked up. In this paper our scheme is illustrated by a sample field and has been applied to our surveys for HH objects.
NASA Astrophysics Data System (ADS)
Yao, W.; Poleswki, P.; Krzystek, P.
2016-06-01
The recent success of deep convolutional neural networks (CNN) on a large number of applications can be attributed to large amounts of available training data and increasing computing power. In this paper, a semantic pixel labelling scheme for urban areas using multi-resolution CNN and hand-crafted spatial-spectral features of airborne remotely sensed data is presented. Both CNN and hand-crafted features are applied to image/DSM patches to produce per-pixel class probabilities with a L1-norm regularized logistical regression classifier. The evidence theory infers a degree of belief for pixel labelling from different sources to smooth regions by handling the conflicts present in the both classifiers while reducing the uncertainty. The aerial data used in this study were provided by ISPRS as benchmark datasets for 2D semantic labelling tasks in urban areas, which consists of two data sources from LiDAR and color infrared camera. The test sites are parts of a city in Germany which is assumed to consist of typical object classes including impervious surfaces, trees, buildings, low vegetation, vehicles and clutter. The evaluation is based on the computation of pixel-based confusion matrices by random sampling. The performance of the strategy with respect to scene characteristics and method combination strategies is analyzed and discussed. The competitive classification accuracy could be not only explained by the nature of input data sources: e.g. the above-ground height of nDSM highlight the vertical dimension of houses, trees even cars and the nearinfrared spectrum indicates vegetation, but also attributed to decision-level fusion of CNN's texture-based approach with multichannel spatial-spectral hand-crafted features based on the evidence combination theory.
Stellar spectral classification of previously unclassified stars GSC 4461-698 and GSC 4466-870
NASA Astrophysics Data System (ADS)
Grau, Darren Moser
Stellar spectral classification is one of the first efforts undertaken to begin defining the physical characteristics of stars. However, many stars lack even this basic information, which is the foundation for later research to constrain stellar effective temperatures, masses, radial velocities, the number of stars in the system, and age. This research obtained visible-λ stellar spectra via the testing and commissioning of a Santa Barbara Instruments Group (SBIG) Self-Guiding Spectrograph (SGS) at the UND Observatory. Utilizing a 16-inch-aperture telescope on Internet Observatory #3, the SGS obtained spectra of GSC 4461-698 and GSC 4466-870 in the low-resolution mode using an 18-µm wide slit with dispersion of 4.3 Å/pixel, resolution of 8 Å, and a spectral range from 3800-7500 Å. Observational protocols include automatic bias/dark frame subtraction for each stellar spectrum obtained. This was followed by spectral averaging to obtain a combined spectrum for each star observed. Image calibration and spectral averaging was performed using the software programs, Maxim DL, Image J, Microsoft Excel, and Winmk. A wavelength calibration process was used to obtain spectra of an Hg/Ne source that allowed the conversion of spectrograph channels into wavelengths. Stellar emission and absorption lines, such as those for hydrogen (H) and helium (He), were identified, extracted, and rectified. Each average spectrum was compared to the MK stellar spectral standards to determine an initial spectral classification for each star. The hope is that successful completion of this project will allow long-term stellar spectral observations to begin at the UND Observatory.
Spectral Collocation Time-Domain Modeling of Diffractive Optical Elements
NASA Astrophysics Data System (ADS)
Hesthaven, J. S.; Dinesen, P. G.; Lynov, J. P.
1999-11-01
A spectral collocation multi-domain scheme is developed for the accurate and efficient time-domain solution of Maxwell's equations within multi-layered diffractive optical elements. Special attention is being paid to the modeling of out-of-plane waveguide couplers. Emphasis is given to the proper construction of high-order schemes with the ability to handle very general problems of considerable geometric and material complexity. Central questions regarding efficient absorbing boundary conditions and time-stepping issues are also addressed. The efficacy of the overall scheme for the time-domain modeling of electrically large, and computationally challenging, problems is illustrated by solving a number of plane as well as non-plane waveguide problems.
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa
2018-07-01
Automatic text classification techniques are useful for classifying plaintext medical documents. This study aims to automatically predict the cause of death from free text forensic autopsy reports by comparing various schemes for feature extraction, term weighing or feature value representation, text classification, and feature reduction. For experiments, the autopsy reports belonging to eight different causes of death were collected, preprocessed and converted into 43 master feature vectors using various schemes for feature extraction, representation, and reduction. The six different text classification techniques were applied on these 43 master feature vectors to construct a classification model that can predict the cause of death. Finally, classification model performance was evaluated using four performance measures i.e. overall accuracy, macro precision, macro-F-measure, and macro recall. From experiments, it was found that that unigram features obtained the highest performance compared to bigram, trigram, and hybrid-gram features. Furthermore, in feature representation schemes, term frequency, and term frequency with inverse document frequency obtained similar and better results when compared with binary frequency, and normalized term frequency with inverse document frequency. Furthermore, the chi-square feature reduction approach outperformed Pearson correlation, and information gain approaches. Finally, in text classification algorithms, support vector machine classifier outperforms random forest, Naive Bayes, k-nearest neighbor, decision tree, and ensemble-voted classifier. Our results and comparisons hold practical importance and serve as references for future works. Moreover, the comparison outputs will act as state-of-art techniques to compare future proposals with existing automated text classification techniques. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
DREAM: Classification scheme for dialog acts in clinical research query mediation.
Hoxha, Julia; Chandar, Praveen; He, Zhe; Cimino, James; Hanauer, David; Weng, Chunhua
2016-02-01
Clinical data access involves complex but opaque communication between medical researchers and query analysts. Understanding such communication is indispensable for designing intelligent human-machine dialog systems that automate query formulation. This study investigates email communication and proposes a novel scheme for classifying dialog acts in clinical research query mediation. We analyzed 315 email messages exchanged in the communication for 20 data requests obtained from three institutions. The messages were segmented into 1333 utterance units. Through a rigorous process, we developed a classification scheme and applied it for dialog act annotation of the extracted utterances. Evaluation results with high inter-annotator agreement demonstrate the reliability of this scheme. This dataset is used to contribute preliminary understanding of dialog acts distribution and conversation flow in this dialog space. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sameen, Maher Ibrahim; Pradhan, Biswajeet
2016-06-01
In this study, we propose a novel built-up spectral index which was developed by using particle-swarm-optimization (PSO) technique for Worldview-2 images. PSO was used to select the relevant bands from the eight (8) spectral bands of Worldview-2 image and then were used for index development. Multiobiective optimization was used to minimize the number of selected spectral bands and to maximize the classification accuracy. The results showed that the most important and relevant spectral bands among the eight (8) bands for built-up area extraction are band4 (yellow) and band7 (NIR1). Using those relevant spectral bands, the final spectral index was form ulated by developing a normalized band ratio. The validation of the classification result using the proposed spectral index showed that our novel spectral index performs well compared to the existing WV -BI index. The accuracy assessment showed that the new proposed spectral index could extract built-up areas from Worldview-2 image with an area under curve (AUC) of (0.76) indicating the effectiveness of the developed spectral index. Further improvement could be done by using several datasets during the index development process to ensure the transferability of the index to other datasets and study areas.
NASA Technical Reports Server (NTRS)
Myint, Soe W.; Mesev, Victor; Quattrochi, Dale; Wentz, Elizabeth A.
2013-01-01
Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post-classification steps. Within this chapter, each of the four approaches is described in terms of scale and accuracy classifying urban land use and urban land cover; and for its range of urban applications. We demonstrate the overview of four main classification groups in Figure 1 while Table 1 details the approaches with respect to classification requirements and procedures (e.g., reflectance conversion, steps before training sample selection, training samples, spatial approaches commonly used, classifiers, primary inputs for classification, output structures, number of output layers, and accuracy assessment). The chapter concludes with a brief summary of the methods reviewed and the challenges that remain in developing new classification methods for improving the efficiency and accuracy of mapping urban areas.
NASA Astrophysics Data System (ADS)
Chen, Zuojing; Polizzi, Eric
2010-11-01
Effective modeling and numerical spectral-based propagation schemes are proposed for addressing the challenges in time-dependent quantum simulations of systems ranging from atoms, molecules, and nanostructures to emerging nanoelectronic devices. While time-dependent Hamiltonian problems can be formally solved by propagating the solutions along tiny simulation time steps, a direct numerical treatment is often considered too computationally demanding. In this paper, however, we propose to go beyond these limitations by introducing high-performance numerical propagation schemes to compute the solution of the time-ordered evolution operator. In addition to the direct Hamiltonian diagonalizations that can be efficiently performed using the new eigenvalue solver FEAST, we have designed a Gaussian propagation scheme and a basis-transformed propagation scheme (BTPS) which allow to reduce considerably the simulation times needed by time intervals. It is outlined that BTPS offers the best computational efficiency allowing new perspectives in time-dependent simulations. Finally, these numerical schemes are applied to study the ac response of a (5,5) carbon nanotube within a three-dimensional real-space mesh framework.
Evaluating Sentinel-2 for Lakeshore Habitat Mapping Based on Airborne Hyperspectral Data.
Stratoulias, Dimitris; Balzter, Heiko; Sykioti, Olga; Zlinszky, András; Tóth, Viktor R
2015-09-11
Monitoring of lakeshore ecosystems requires fine-scale information to account for the high biodiversity typically encountered in the land-water ecotone. Sentinel-2 is a satellite with high spatial and spectral resolution and improved revisiting frequency and is expected to have significant potential for habitat mapping and classification of complex lakeshore ecosystems. In this context, investigations of the capabilities of Sentinel-2 in regard to the spatial and spectral dimensions are needed to assess its potential and the quality of the expected output. This study presents the first simulation of the high spatial resolution (i.e., 10 m and 20 m) bands of Sentinel-2 for lakeshore mapping, based on the satellite's Spectral Response Function and hyperspectral airborne data collected over Lake Balaton, Hungary in August 2010. A comparison of supervised classifications of the simulated products is presented and the information loss from spectral aggregation and spatial upscaling in the context of lakeshore vegetation classification is discussed. We conclude that Sentinel-2 imagery has a strong potential for monitoring fine-scale habitats, such as reed beds.
Classification of hyperspectral imagery with neural networks: comparison to conventional tools
NASA Astrophysics Data System (ADS)
Merényi, Erzsébet; Farrand, William H.; Taranik, James V.; Minor, Timothy B.
2014-12-01
Efficient exploitation of hyperspectral imagery is of great importance in remote sensing. Artificial intelligence approaches have been receiving favorable reviews for classification of hyperspectral data because the complexity of such data challenges the limitations of many conventional methods. Artificial neural networks (ANNs) were shown to outperform traditional classifiers in many situations. However, studies that use the full spectral dimensionality of hyperspectral images to classify a large number of surface covers are scarce if non-existent. We advocate the need for methods that can handle the full dimensionality and a large number of classes to retain the discovery potential and the ability to discriminate classes with subtle spectral differences. We demonstrate that such a method exists in the family of ANNs. We compare the maximum likelihood, Mahalonobis distance, minimum distance, spectral angle mapper, and a hybrid ANN classifier for real hyperspectral AVIRIS data, using the full spectral resolution to map 23 cover types and using a small training set. Rigorous evaluation of the classification accuracies shows that the ANN outperforms the other methods and achieves ≈90% accuracy on test data.
Evaluating Sentinel-2 for Lakeshore Habitat Mapping Based on Airborne Hyperspectral Data
Stratoulias, Dimitris; Balzter, Heiko; Sykioti, Olga; Zlinszky, András; Tóth, Viktor R.
2015-01-01
Monitoring of lakeshore ecosystems requires fine-scale information to account for the high biodiversity typically encountered in the land-water ecotone. Sentinel-2 is a satellite with high spatial and spectral resolution and improved revisiting frequency and is expected to have significant potential for habitat mapping and classification of complex lakeshore ecosystems. In this context, investigations of the capabilities of Sentinel-2 in regard to the spatial and spectral dimensions are needed to assess its potential and the quality of the expected output. This study presents the first simulation of the high spatial resolution (i.e., 10 m and 20 m) bands of Sentinel-2 for lakeshore mapping, based on the satellite’s Spectral Response Function and hyperspectral airborne data collected over Lake Balaton, Hungary in August 2010. A comparison of supervised classifications of the simulated products is presented and the information loss from spectral aggregation and spatial upscaling in the context of lakeshore vegetation classification is discussed. We conclude that Sentinel-2 imagery has a strong potential for monitoring fine-scale habitats, such as reed beds. PMID:26378538
Pattern recognition and image processing for environmental monitoring
NASA Astrophysics Data System (ADS)
Siddiqui, Khalid J.; Eastwood, DeLyle
1999-12-01
Pattern recognition (PR) and signal/image processing methods are among the most powerful tools currently available for noninvasively examining spectroscopic and other chemical data for environmental monitoring. Using spectral data, these systems have found a variety of applications employing analytical techniques for chemometrics such as gas chromatography, fluorescence spectroscopy, etc. An advantage of PR approaches is that they make no a prior assumption regarding the structure of the patterns. However, a majority of these systems rely on human judgment for parameter selection and classification. A PR problem is considered as a composite of four subproblems: pattern acquisition, feature extraction, feature selection, and pattern classification. One of the basic issues in PR approaches is to determine and measure the features useful for successful classification. Selection of features that contain the most discriminatory information is important because the cost of pattern classification is directly related to the number of features used in the decision rules. The state of the spectral techniques as applied to environmental monitoring is reviewed. A spectral pattern classification system combining the above components and automatic decision-theoretic approaches for classification is developed. It is shown how such a system can be used for analysis of large data sets, warehousing, and interpretation. In a preliminary test, the classifier was used to classify synchronous UV-vis fluorescence spectra of relatively similar petroleum oils with reasonable success.
NASA Astrophysics Data System (ADS)
Adjorlolo, Clement; Mutanga, Onisimo; Cho, Moses A.; Ismail, Riyad
2013-04-01
In this paper, a user-defined inter-band correlation filter function was used to resample hyperspectral data and thereby mitigate the problem of multicollinearity in classification analysis. The proposed resampling technique convolves the spectral dependence information between a chosen band-centre and its shorter and longer wavelength neighbours. Weighting threshold of inter-band correlation (WTC, Pearson's r) was calculated, whereby r = 1 at the band-centre. Various WTC (r = 0.99, r = 0.95 and r = 0.90) were assessed, and bands with coefficients beyond a chosen threshold were assigned r = 0. The resultant data were used in the random forest analysis to classify in situ C3 and C4 grass canopy reflectance. The respective WTC datasets yielded improved classification accuracies (kappa = 0.82, 0.79 and 0.76) with less correlated wavebands when compared to resampled Hyperion bands (kappa = 0.76). Overall, the results obtained from this study suggested that resampling of hyperspectral data should account for the spectral dependence information to improve overall classification accuracy as well as reducing the problem of multicollinearity.
Hyperspectral imaging of colonic polyps in vivo (Conference Presentation)
NASA Astrophysics Data System (ADS)
Clancy, Neil T.; Elson, Daniel S.; Teare, Julian
2017-02-01
Standard endoscopic tools restrict clinicians to making subjective visual assessments of lesions detected in the bowel, with classification results depending strongly on experience level and training. Histological examination of resected tissue remains the diagnostic gold standard, meaning that all detected lesions are routinely removed. This subjects the patient to risk of polypectomy-related injury, and places significant workload and economic burdens on the hospital. An objective endoscopic classification method would allow hyperplastic polyps, with no malignant potential, to be left in situ, or low grade adenomas to be resected and discarded without histology. A miniature multimodal flexible endoscope is proposed to obtain hyperspectral reflectance and dual excitation autofluorescence information from polyps in vivo. This is placed inside the working channel of a conventional colonoscope, with the external scanning and detection optics on a bedside trolley. A blue and violet laser diode pair excite endogenous fluorophores in the respiration chain, while the colonoscope's xenon light source provides broadband white light for diffuse reflectance measurements. A push-broom HSI scanner collects the hypercube. System characterisation experiments are presented, defining resolution limits as well as acquisition settings for optimal spectral, spatial and temporal performance. The first in vivo results in human subjects are presented, demonstrating the clinical utility of the device. The optical properties (reflectance and autofluorescence) of imaged polyps are quantified and compared to the histologically-confirmed tissue type as well as the clinician's visual assessment. Further clinical studies will allow construction of a full robust training dataset for development of classification schemes.
Spectral classification with the International Ultraviolet Explorer: An atlas of B-type spectra
NASA Technical Reports Server (NTRS)
Rountree, Janet; Sonneborn, George
1993-01-01
New criteria for the spectral classification of B stars in the ultraviolet show that photospheric absorption lines in the 1200-1900A wavelength region can be used to classify the spectra of B-type dwarfs, subgiants, and giants on a 2-D system consistent with the optical MK system. This atlas illustrates a large number of such spectra at the scale used for classification. These spectra provide a dense matrix of standard stars, and also show the effects of rapid stellar rotation and stellar winds on the spectra and their classification. The observational material consists of high-dispersion spectra from the International Ultraviolet Explorer archives, resampled to a resolution of 0.25 A, uniformly normalized, and plotted at 10 A/cm. The atlas should be useful for the classification of other IUE high-dispersion spectra, especially for stars that have not been observed in the optical.
FPGA design of correlation-based pattern recognition
NASA Astrophysics Data System (ADS)
Jridi, Maher; Alfalou, Ayman
2017-05-01
Optical/Digital pattern recognition and tracking based on optical/digital correlation are a well-known techniques to detect, identify and localize a target object in a scene. Despite the limited number of treatments required by the correlation scheme, computational time and resources are relatively high. The most computational intensive treatment required by the correlation is the transformation from spatial to spectral domain and then from spectral to spatial domain. Furthermore, these transformations are used on optical/digital encryption schemes like the double random phase encryption (DRPE). In this paper, we present a VLSI architecture for the correlation scheme based on the fast Fourier transform (FFT). One interesting feature of the proposed scheme is its ability to stream image processing in order to perform correlation for video sequences. A trade-off between the hardware consumption and the robustness of the correlation can be made in order to understand the limitations of the correlation implementation in reconfigurable and portable platforms. Experimental results obtained from HDL simulations and FPGA prototype have demonstrated the advantages of the proposed scheme.
Acute Oral Toxicity of Trimethylolethane Trinitrate (TMETN) in Sprague- Dawley Rats
1989-07-01
classification scheme of Hodge and Steiner, these results indicate that TMETN is a slightly toxic compound.1 20. ON-RIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT...the classification scheme of Hodge and Sterner, these results indcate that TMETN is a slightly toxic compound. KEY WORDS: Acute Oral Toxicit-y...Dawley rats and 1027.4 63.7 mg/kg in female Sprague-Dawley rats. These MLD values place TMETN in the "slightly toxic" range by the system of Hodge and
Liu, Hao; Zhu, Lili; Bai, Shuming; Shi, Qiang
2014-04-07
We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly in the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hao; Zhu, Lili; Bai, Shuming
2014-04-07
We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly inmore » the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.« less
NASA Scope and Subject Category Guide
NASA Technical Reports Server (NTRS)
2011-01-01
This guide provides a simple, effective tool to assist aerospace information analysts and database builders in the high-level subject classification of technical materials. Each of the 76 subject categories comprising the classification scheme is presented with a description of category scope, a listing of subtopics, cross references, and an indication of particular areas of NASA interest. The guide also includes an index of nearly 3,000 specific research topics cross referenced to the subject categories. The portable document format (PDF) version of the guide contains links in the index from each input subject to its corresponding categories. In addition to subject classification, the guide can serve as an aid to searching databases that use the classification scheme, and is also an excellent selection guide for those involved in the acquisition of aerospace literature. The CD-ROM contains both HTML and PDF versions.
Hyperspectral and Hypertemporal Longwave Infrared Data Characterization
NASA Astrophysics Data System (ADS)
Jeganathan, Nirmalan
The Army Research Lab conducted a persistent imaging experiment called the Spectral and Polarimetric Imagery Collection Experiment (SPICE) in 2012 and 2013 which focused on collecting and exploiting long wave infrared hyperspectral and polarimetric imagery. A part of this dataset was made for public release for research and development purposes. This thesis investigated the hyperspectral portion of this released dataset through data characterization and scene characterization of man-made and natural objects. First, the data were contrasted with MODerate resolution atmospheric TRANsmission (MODTRAN) results and found to be comparable. Instrument noise was characterized using an in-scene black panel, and was found to be comparable with the sensor manufacturer's specication. The temporal and spatial variation of certain objects in the scene were characterized. Temporal target detection was conducted on man-made objects in the scene using three target detection algorithms: spectral angle mapper (SAM), spectral matched lter (SMF) and adaptive coherence/cosine estimator (ACE). SMF produced the best results for detecting the targets when the training and testing data originated from different time periods, with a time index percentage result of 52.9%. Unsupervised and supervised classification were conducted using spectral and temporal target signatures. Temporal target signatures produced better visual classification than spectral target signature for unsupervised classification. Supervised classification yielded better results using the spectral target signatures, with a highest weighted accuracy of 99% for 7-class reference image. Four emissivity retrieval algorithms were applied on this dataset. However, the retrieved emissivities from all four methods did not represent true material emissivity and could not be used for analysis. This spectrally and temporally rich dataset enabled to conduct analysis that was not possible with other data collections. Regarding future work, applying noise-reduction techniques before applying temperature-emissivity retrieval algorithms may produce more realistic emissivity values, which could be used for target detection and material identification.
Chao, Eunice; Krewski, Daniel
2008-12-01
This paper presents an exploratory evaluation of four functional components of a proposed risk-based classification scheme (RBCS) for crop-derived genetically modified (GM) foods in a concordance study. Two independent raters assigned concern levels to 20 reference GM foods using a rating form based on the proposed RBCS. The four components of evaluation were: (1) degree of concordance, (2) distribution across concern levels, (3) discriminating ability of the scheme, and (4) ease of use. At least one of the 20 reference foods was assigned to each of the possible concern levels, demonstrating the ability of the scheme to identify GM foods of different concern with respect to potential health risk. There was reasonably good concordance between the two raters for the three separate parts of the RBCS. The raters agreed that the criteria in the scheme were sufficiently clear in discriminating reference foods into different concern levels, and that with some experience, the scheme was reasonably easy to use. Specific issues and suggestions for improvements identified in the concordance study are discussed.
Spectrally based mapping of riverbed composition
Legleiter, Carl; Stegman, Tobin K.; Overstreet, Brandon T.
2016-01-01
Remote sensing methods provide an efficient means of characterizing fluvial systems. This study evaluated the potential to map riverbed composition based on in situ and/or remote measurements of reflectance. Field spectra and substrate photos from the Snake River, Wyoming, USA, were used to identify different sediment facies and degrees of algal development and to quantify their optical characteristics. We hypothesized that accounting for the effects of depth and water column attenuation to isolate the reflectance of the streambed would enhance distinctions among bottom types and facilitate substrate classification. A bottom reflectance retrieval algorithm adapted from coastal research yielded realistic spectra for the 450 to 700 nm range; but bottom reflectance-based substrate classifications, generated using a random forest technique, were no more accurate than classifications derived from above-water field spectra. Additional hypothesis testing indicated that a combination of reflectance magnitude (brightness) and indices of spectral shape provided the most accurate riverbed classifications. Convolving field spectra to the response functions of a multispectral satellite and a hyperspectral imaging system did not reduce classification accuracies, implying that high spectral resolution was not essential. Supervised classifications of algal density produced from hyperspectral data and an inferred bottom reflectance image were not highly accurate, but unsupervised classification of the bottom reflectance image revealed distinct spectrally based clusters, suggesting that such an image could provide additional river information. We attribute the failure of bottom reflectance retrieval to yield more reliable substrate maps to a latent correlation between depth and bottom type. Accounting for the effects of depth might have eliminated a key distinction among substrates and thus reduced discriminatory power. Although further, more systematic study across a broader range of fluvial environments is needed to substantiate our initial results, this case study suggests that bed composition in shallow, clear-flowing rivers potentially could be mapped remotely.
A new local-global approach for classification.
Peres, R T; Pedreira, C E
2010-09-01
In this paper, we propose a new local-global pattern classification scheme that combines supervised and unsupervised approaches, taking advantage of both, local and global environments. We understand as global methods the ones concerned with the aim of constructing a model for the whole problem space using the totality of the available observations. Local methods focus into sub regions of the space, possibly using an appropriately selected subset of the sample. In the proposed method, the sample is first divided in local cells by using a Vector Quantization unsupervised algorithm, the LBG (Linde-Buzo-Gray). In a second stage, the generated assemblage of much easier problems is locally solved with a scheme inspired by Bayes' rule. Four classification methods were implemented for comparison purposes with the proposed scheme: Learning Vector Quantization (LVQ); Feedforward Neural Networks; Support Vector Machine (SVM) and k-Nearest Neighbors. These four methods and the proposed scheme were implemented in eleven datasets, two controlled experiments, plus nine public available datasets from the UCI repository. The proposed method has shown a quite competitive performance when compared to these classical and largely used classifiers. Our method is simple concerning understanding and implementation and is based on very intuitive concepts. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chung, Hyunkoo; Lu, Guolan; Tian, Zhiqiang; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei
2016-03-01
Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications. HSI acquires two dimensional images at various wavelengths. The combination of both spectral and spatial information provides quantitative information for cancer detection and diagnosis. This paper proposes using superpixels, principal component analysis (PCA), and support vector machine (SVM) to distinguish regions of tumor from healthy tissue. The classification method uses 2 principal components decomposed from hyperspectral images and obtains an average sensitivity of 93% and an average specificity of 85% for 11 mice. The hyperspectral imaging technology and classification method can have various applications in cancer research and management.
A novel encoding scheme for effective biometric discretization: Linearly Separable Subcode.
Lim, Meng-Hui; Teoh, Andrew Beng Jin
2013-02-01
Separability in a code is crucial in guaranteeing a decent Hamming-distance separation among the codewords. In multibit biometric discretization where a code is used for quantization-intervals labeling, separability is necessary for preserving distance dissimilarity when feature components are mapped from a discrete space to a Hamming space. In this paper, we examine separability of Binary Reflected Gray Code (BRGC) encoding and reveal its inadequacy in tackling interclass variation during the discrete-to-binary mapping, leading to a tradeoff between classification performance and entropy of binary output. To overcome this drawback, we put forward two encoding schemes exhibiting full-ideal and near-ideal separability capabilities, known as Linearly Separable Subcode (LSSC) and Partially Linearly Separable Subcode (PLSSC), respectively. These encoding schemes convert the conventional entropy-performance tradeoff into an entropy-redundancy tradeoff in the increase of code length. Extensive experimental results vindicate the superiority of our schemes over the existing encoding schemes in discretization performance. This opens up possibilities of achieving much greater classification performance with high output entropy.
A spectral nudging method for the ACCESS1.3 atmospheric model
NASA Astrophysics Data System (ADS)
Uhe, P.; Thatcher, M.
2015-06-01
A convolution-based method of spectral nudging of atmospheric fields is developed in the Australian Community Climate and Earth Systems Simulator (ACCESS) version 1.3 which uses the UK Met Office Unified Model version 7.3 as its atmospheric component. The use of convolutions allow for flexibility in application to different atmospheric grids. An approximation using one-dimensional convolutions is applied, improving the time taken by the nudging scheme by 10-30 times compared with a version using a two-dimensional convolution, without measurably degrading its performance. Care needs to be taken in the order of the convolutions and the frequency of nudging to obtain the best outcome. The spectral nudging scheme is benchmarked against a Newtonian relaxation method, nudging winds and air temperature towards ERA-Interim reanalyses. We find that the convolution approach can produce results that are competitive with Newtonian relaxation in both the effectiveness and efficiency of the scheme, while giving the added flexibility of choosing which length scales to nudge.
A spectral nudging method for the ACCESS1.3 atmospheric model
NASA Astrophysics Data System (ADS)
Uhe, P.; Thatcher, M.
2014-10-01
A convolution based method of spectral nudging of atmospheric fields is developed in the Australian Community Climate and Earth Systems Simulator (ACCESS) version 1.3 which uses the UK Met Office Unified Model version 7.3 as its atmospheric component. The use of convolutions allow flexibility in application to different atmospheric grids. An approximation using one-dimensional convolutions is applied, improving the time taken by the nudging scheme by 10 to 30 times compared with a version using a two-dimensional convolution, without measurably degrading its performance. Care needs to be taken in the order of the convolutions and the frequency of nudging to obtain the best outcome. The spectral nudging scheme is benchmarked against a Newtonian relaxation method, nudging winds and air temperature towards ERA-Interim reanalyses. We find that the convolution approach can produce results that are competitive with Newtonian relaxation in both the effectiveness and efficiency of the scheme, while giving the added flexibility of choosing which length scales to nudge.
A periodic spatio-spectral filter for event-related potentials.
Ghaderi, Foad; Kim, Su Kyoung; Kirchner, Elsa Andrea
2016-12-01
With respect to single trial detection of event-related potentials (ERPs), spatial and spectral filters are two of the most commonly used pre-processing techniques for signal enhancement. Spatial filters reduce the dimensionality of the data while suppressing the noise contribution and spectral filters attenuate frequency components that most likely belong to noise subspace. However, the frequency spectrum of ERPs overlap with that of the ongoing electroencephalogram (EEG) and different types of artifacts. Therefore, proper selection of the spectral filter cutoffs is not a trivial task. In this research work, we developed a supervised method to estimate the spatial and finite impulse response (FIR) spectral filters, simultaneously. We evaluated the performance of the method on offline single trial classification of ERPs in datasets recorded during an oddball paradigm. The proposed spatio-spectral filter improved the overall single-trial classification performance by almost 9% on average compared with the case that no spatial filters were used. We also analyzed the effects of different spectral filter lengths and the number of retained channels after spatial filtering. Copyright © 2016. Published by Elsevier Ltd.
Interpretation for scales of measurement linking with abstract algebra
2014-01-01
The Stevens classification of levels of measurement involves four types of scale: “Nominal”, “Ordinal”, “Interval” and “Ratio”. This classification has been used widely in medical fields and has accomplished an important role in composition and interpretation of scale. With this classification, levels of measurements appear organized and validated. However, a group theory-like systematization beckons as an alternative because of its logical consistency and unexceptional applicability in the natural sciences but which may offer great advantages in clinical medicine. According to this viewpoint, the Stevens classification is reformulated within an abstract algebra-like scheme; ‘Abelian modulo additive group’ for “Ordinal scale” accompanied with ‘zero’, ‘Abelian additive group’ for “Interval scale”, and ‘field’ for “Ratio scale”. Furthermore, a vector-like display arranges a mixture of schemes describing the assessment of patient states. With this vector-like notation, data-mining and data-set combination is possible on a higher abstract structure level based upon a hierarchical-cluster form. Using simple examples, we show that operations acting on the corresponding mixed schemes of this display allow for a sophisticated means of classifying, updating, monitoring, and prognosis, where better data mining/data usage and efficacy is expected. PMID:24987515
Interpretation for scales of measurement linking with abstract algebra.
Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun
2014-01-01
THE STEVENS CLASSIFICATION OF LEVELS OF MEASUREMENT INVOLVES FOUR TYPES OF SCALE: "Nominal", "Ordinal", "Interval" and "Ratio". This classification has been used widely in medical fields and has accomplished an important role in composition and interpretation of scale. With this classification, levels of measurements appear organized and validated. However, a group theory-like systematization beckons as an alternative because of its logical consistency and unexceptional applicability in the natural sciences but which may offer great advantages in clinical medicine. According to this viewpoint, the Stevens classification is reformulated within an abstract algebra-like scheme; 'Abelian modulo additive group' for "Ordinal scale" accompanied with 'zero', 'Abelian additive group' for "Interval scale", and 'field' for "Ratio scale". Furthermore, a vector-like display arranges a mixture of schemes describing the assessment of patient states. With this vector-like notation, data-mining and data-set combination is possible on a higher abstract structure level based upon a hierarchical-cluster form. Using simple examples, we show that operations acting on the corresponding mixed schemes of this display allow for a sophisticated means of classifying, updating, monitoring, and prognosis, where better data mining/data usage and efficacy is expected.
Generation of spectral clusters in a mixture of noble and Raman-active gases.
Hosseini, Pooria; Abdolvand, Amir; St J Russell, Philip
2016-12-01
We report a novel scheme for the generation of dense clusters of Raman sidebands. The scheme uses a broadband-guiding hollow-core photonic crystal fiber (HC-PCF) filled with a mixture of H2, D2, and Xe for efficient interaction between the gas mixture and a green laser pump pulse (532 nm, 1 ns) of only 5 μJ of energy. This results in the generation from noise of more than 135 rovibrational Raman sidebands covering the visible spectral region with an average spacing of only 2.2 THz. Such a spectrally dense and compact fiber-based source is ideal for applications where closely spaced narrow-band laser lines with high spectral power density are required, such as in spectroscopy and sensing. When the HC-PCF is filled with a H2-D2 mixture, the Raman comb spans the spectral region from the deep UV (280 nm) to the near infrared (1000 nm).
Many-Body Spectral Functions from Steady State Density Functional Theory.
Jacob, David; Kurth, Stefan
2018-03-14
We propose a scheme to extract the many-body spectral function of an interacting many-electron system from an equilibrium density functional theory (DFT) calculation. To this end we devise an ideal scanning tunneling microscope (STM) setup and employ the recently proposed steady-state DFT formalism (i-DFT) which allows one to calculate the steady current through a nanoscopic region coupled to two biased electrodes. In our setup, one of the electrodes serves as a probe ("STM tip"), which is weakly coupled to the system we want to measure. In the ideal STM limit of vanishing coupling to the tip, the system is restored to quasi-equilibrium and the normalized differential conductance yields the exact equilibrium many-body spectral function. Calculating this quantity from i-DFT, we derive an exact relation expressing the interacting spectral function in terms of the Kohn-Sham one. As illustrative examples, we apply our scheme to calculate the spectral functions of two nontrivial model systems, namely the single Anderson impurity model and the Constant Interaction Model.
TRANSIENT X-RAY SOURCE POPULATION IN THE MAGELLANIC-TYPE GALAXY NGC 55
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jithesh, V.; Wang, Zhongxiang, E-mail: jithesh@shao.ac.cn
2016-04-10
We present the spectral and temporal properties of 15 candidate transient X-ray sources detected in archival XMM-Newton and Chandra observations of the nearby Magellanic-type, SB(s)m galaxy NGC 55. Based on an X-ray color classification scheme, the majority of the sources may be identified as X-ray binaries (XRBs), and six sources are soft, including a likely supernova remnant. We perform a detailed spectral and variability analysis of the data for two bright candidate XRBs. Both sources displayed strong short-term X-ray variability, and their X-ray spectra and hardness ratios are consistent with those of XRBs. These results, combined with their high X-raymore » luminosities (∼10{sup 38} erg s{sup −1}), strongly suggest that they are black hole (BH) binaries. Seven less luminous sources have spectral properties consistent with those of neutron star or BH XRBs in both normal and high-rate accretion modes, but one of them is the likely counterpart to a background galaxy (because of positional coincidence). From our spectral analysis, we find that the six soft sources are candidate super soft sources (SSSs) with dominant emission in the soft (0.3–2 keV) X-ray band. Archival Hubble Space Telescope optical images for seven sources are available, and the data suggest that most of them are likely to be high-mass XRBs. Our analysis has revealed the heterogeneous nature of the transient population in NGC 55 (six high-mass XRBs, one low-mass XRBs, six SSSs, one active galactic nucleus), helping establish the similarity of the X-ray properties of this galaxy to those of other Magellanic-type galaxies.« less
Spectral cumulus parameterization based on cloud-resolving model
NASA Astrophysics Data System (ADS)
Baba, Yuya
2018-02-01
We have developed a spectral cumulus parameterization using a cloud-resolving model. This includes a new parameterization of the entrainment rate which was derived from analysis of the cloud properties obtained from the cloud-resolving model simulation and was valid for both shallow and deep convection. The new scheme was examined in a single-column model experiment and compared with the existing parameterization of Gregory (2001, Q J R Meteorol Soc 127:53-72) (GR scheme). The results showed that the GR scheme simulated more shallow and diluted convection than the new scheme. To further validate the physical performance of the parameterizations, Atmospheric Model Intercomparison Project (AMIP) experiments were performed, and the results were compared with reanalysis data. The new scheme performed better than the GR scheme in terms of mean state and variability of atmospheric circulation, i.e., the new scheme improved positive bias of precipitation in western Pacific region, and improved positive bias of outgoing shortwave radiation over the ocean. The new scheme also simulated better features of convectively coupled equatorial waves and Madden-Julian oscillation. These improvements were found to be derived from the modification of parameterization for the entrainment rate, i.e., the proposed parameterization suppressed excessive increase of entrainment, thus suppressing excessive increase of low-level clouds.
A new scheme for urban impervious surface classification from SAR images
NASA Astrophysics Data System (ADS)
Zhang, Hongsheng; Lin, Hui; Wang, Yunpeng
2018-05-01
Urban impervious surfaces have been recognized as a significant indicator for various environmental and socio-economic studies. There is an increasingly urgent demand for timely and accurate monitoring of the impervious surfaces with satellite technology from local to global scales. In the past decades, optical remote sensing has been widely employed for this task with various techniques. However, there are still a range of challenges, e.g. handling cloud contamination on optical data. Therefore, the Synthetic Aperture Radar (SAR) was introduced for the challenging task because it is uniquely all-time- and all-weather-capable. Nevertheless, with an increasing number of SAR data applied, the methodology used for impervious surfaces classification remains unchanged from the methods used for optical datasets. This shortcoming has prevented the community from fully exploring the potential of using SAR data for impervious surfaces classification. We proposed a new scheme that is comparable to the well-known and fundamental Vegetation-Impervious surface-Soil (V-I-S) model for mapping urban impervious surfaces. Three scenes of fully polarimetric Radsarsat-2 data for the cities of Shenzhen, Hong Kong and Macau were employed to test and validate the proposed methodology. Experimental results indicated that the overall accuracy and Kappa coefficient were 96.00% and 0.8808 in Shenzhen, 93.87% and 0.8307 in Hong Kong and 97.48% and 0.9354 in Macau, indicating the applicability and great potential of the new scheme for impervious surfaces classification using polarimetric SAR data. Comparison with the traditional scheme indicated that this new scheme was able to improve the overall accuracy by up to 4.6% and Kappa coefficient by up to 0.18.
FORUM: A Suggestion for an Improved Vegetation Scheme for Local and Global Mapping and Monitoring.
ADAMS
1999-01-01
/ Understanding of global ecological problems is at least partly dependent on clear assessments of vegetation change, and such assessment is always dependent on the use of a vegetation classification scheme. Use of satellite remotely sensed data is the only practical means of carrying out any global-scale vegetation mapping exercise, but if the resulting maps are to be useful to most ecologists and conservationists, they must be closely tied to clearly defined features of vegetation on the ground. Furthermore, much of the mapping that does take place involves more local-scale description of field sites; for purposes of cost and practicality, such studies usually do not involve remote sensing using satellites. There is a need for a single scheme that integrates the smallest to the largest scale in a way that is meaningful to most environmental scientists. Existing schemes are unsatisfactory for this task; they are ambiguous, unnecessarily complex, and their categories do not correspond to common-sense definitions. In response to these problems, a simple structural-physiognomically based scheme with 23 fundamental categories is proposed here for mapping and monitoring on any scale, from local to global. The fundamental categories each subdivide into more specific structural categories for more detailed mapping, but all the categories can be used throughout the world and at any scale, allowing intercomparison between regions. The next stage in the process will be to obtain the views of as many people working in as many different fields as possible, to see whether the proposed scheme suits their needs and how it should be modified. With a few modifications, such a scheme could easily be appended to an existing land cover classification scheme, such as the FAO system, greatly increasing the usefulness and accessability of the results of the landcover classification. KEY WORDS: Vegetation scheme; Mapping; Monitoring; Land cover
Hyperspectral imaging of polymer banknotes for building and analysis of spectral library
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-11-01
The use of counterfeit banknotes increases crime rates and cripples the economy. New countermeasures are required to stop counterfeiters who use advancing technologies with criminal intent. Many countries started adopting polymer banknotes to replace paper notes, as polymer notes are more durable and have better quality. The research on authenticating such banknotes is of much interest to the forensic investigators. Hyperspectral imaging can be employed to build a spectral library of polymer notes, which can then be used for classification to authenticate these notes. This is however not widely reported and has become a research interest in forensic identification. This paper focuses on the use of hyperspectral imaging on polymer notes to build spectral libraries, using a pushbroom hyperspectral imager which has been previously reported. As an initial study, a spectral library will be built from three arbitrarily chosen regions of interest of five circulated genuine polymer notes. Principal component analysis is used for dimension reduction and to convert the information in the spectral library to principal components. A 99% confidence ellipse is formed around the cluster of principal component scores of each class and then used as classification criteria. The potential of the adopted methodology is demonstrated by the classification of the imaged regions as training samples.
Toward an Attention-Based Diagnostic Tool for Patients With Locked-in Syndrome.
Lesenfants, Damien; Habbal, Dina; Chatelle, Camille; Soddu, Andrea; Laureys, Steven; Noirhomme, Quentin
2018-03-01
Electroencephalography (EEG) has been proposed as a supplemental tool for reducing clinical misdiagnosis in severely brain-injured populations helping to distinguish conscious from unconscious patients. We studied the use of spectral entropy as a measure of focal attention in order to develop a motor-independent, portable, and objective diagnostic tool for patients with locked-in syndrome (LIS), answering the issues of accuracy and training requirement. Data from 20 healthy volunteers, 6 LIS patients, and 10 patients with a vegetative state/unresponsive wakefulness syndrome (VS/UWS) were included. Spectral entropy was computed during a gaze-independent 2-class (attention vs rest) paradigm, and compared with EEG rhythms (delta, theta, alpha, and beta) classification. Spectral entropy classification during the attention-rest paradigm showed 93% and 91% accuracy in healthy volunteers and LIS patients respectively. VS/UWS patients were at chance level. EEG rhythms classification reached a lower accuracy than spectral entropy. Resting-state EEG spectral entropy could not distinguish individual VS/UWS patients from LIS patients. The present study provides evidence that an EEG-based measure of attention could detect command-following in patients with severe motor disabilities. The entropy system could detect a response to command in all healthy subjects and LIS patients, while none of the VS/UWS patients showed a response to command using this system.
Song, Weiran; Wang, Hui; Maguire, Paul; Nibouche, Omar
2018-06-07
Partial Least Squares Discriminant Analysis (PLS-DA) is one of the most effective multivariate analysis methods for spectral data analysis, which extracts latent variables and uses them to predict responses. In particular, it is an effective method for handling high-dimensional and collinear spectral data. However, PLS-DA does not explicitly address data multimodality, i.e., within-class multimodal distribution of data. In this paper, we present a novel method termed nearest clusters based PLS-DA (NCPLS-DA) for addressing the multimodality and nonlinearity issues explicitly and improving the performance of PLS-DA on spectral data classification. The new method applies hierarchical clustering to divide samples into clusters and calculates the corresponding centre of every cluster. For a given query point, only clusters whose centres are nearest to such a query point are used for PLS-DA. Such a method can provide a simple and effective tool for separating multimodal and nonlinear classes into clusters which are locally linear and unimodal. Experimental results on 17 datasets, including 12 UCI and 5 spectral datasets, show that NCPLS-DA can outperform 4 baseline methods, namely, PLS-DA, kernel PLS-DA, local PLS-DA and k-NN, achieving the highest classification accuracy most of the time. Copyright © 2018 Elsevier B.V. All rights reserved.
Spectral Data Reduction via Wavelet Decomposition
NASA Technical Reports Server (NTRS)
Kaewpijit, S.; LeMoigne, J.; El-Ghazawi, T.; Rood, Richard (Technical Monitor)
2002-01-01
The greatest advantage gained from hyperspectral imagery is that narrow spectral features can be used to give more information about materials than was previously possible with broad-band multispectral imagery. For many applications, the new larger data volumes from such hyperspectral sensors, however, present a challenge for traditional processing techniques. For example, the actual identification of each ground surface pixel by its corresponding reflecting spectral signature is still one of the most difficult challenges in the exploitation of this advanced technology, because of the immense volume of data collected. Therefore, conventional classification methods require a preprocessing step of dimension reduction to conquer the so-called "curse of dimensionality." Spectral data reduction using wavelet decomposition could be useful, as it does not only reduce the data volume, but also preserves the distinctions between spectral signatures. This characteristic is related to the intrinsic property of wavelet transforms that preserves high- and low-frequency features during the signal decomposition, therefore preserving peaks and valleys found in typical spectra. When comparing to the most widespread dimension reduction technique, the Principal Component Analysis (PCA), and looking at the same level of compression rate, we show that Wavelet Reduction yields better classification accuracy, for hyperspectral data processed with a conventional supervised classification such as a maximum likelihood method.
Mineral Information Extraction Based on GAOFEN-5'S Thermal Infrared Data
NASA Astrophysics Data System (ADS)
Liu, L.; Shang, K.
2018-04-01
Gaofen-5 carries six instruments aimed at various land and atmosphere applications, and it's an important unit of China High-resolution Earth Observation System. As Gaofen-5's thermal infrared payload is similar to that of ASTER, which is widely used in mineral exploration, application of Gaofen-5's thermal infrared data is discussed regarding its capability in mineral classification and silica content estimation. First, spectra of silicate, carbonate, sulfate minerals from a spectral library are used to conduct spectral feature analysis on Gaofen-5's thermal infrared emissivities. Spectral indices of band emissivities are proposed, and by setting thresholds of these spectral indices, it can classify three types of minerals mentioned above. This classification method is tested on a simulated Gaofen-5 emissivity image. With samples acquired from the study area, this method is proven to be feasible. Second, with band emissivities of silicate and their silica content from the same spectral library, correlation models have been tried to be built for silica content inversion. However, the highest correlation coefficient is merely 0.592, which is much lower than that of correlation model built on ASTER thermal infrared emissivity. It can be concluded that GF-5's thermal infrared data can be utilized in mineral classification but not in silica content inversion.
Robust and transferable quantification of NMR spectral quality using IROC analysis
NASA Astrophysics Data System (ADS)
Zambrello, Matthew A.; Maciejewski, Mark W.; Schuyler, Adam D.; Weatherby, Gerard; Hoch, Jeffrey C.
2017-12-01
Non-Fourier methods are increasingly utilized in NMR spectroscopy because of their ability to handle nonuniformly-sampled data. However, non-Fourier methods present unique challenges due to their nonlinearity, which can produce nonrandom noise and render conventional metrics for spectral quality such as signal-to-noise ratio unreliable. The lack of robust and transferable metrics (i.e. applicable to methods exhibiting different nonlinearities) has hampered comparison of non-Fourier methods and nonuniform sampling schemes, preventing the identification of best practices. We describe a novel method, in situ receiver operating characteristic analysis (IROC), for characterizing spectral quality based on the Receiver Operating Characteristic curve. IROC utilizes synthetic signals added to empirical data as "ground truth", and provides several robust scalar-valued metrics for spectral quality. This approach avoids problems posed by nonlinear spectral estimates, and provides a versatile quantitative means of characterizing many aspects of spectral quality. We demonstrate applications to parameter optimization in Fourier and non-Fourier spectral estimation, critical comparison of different methods for spectrum analysis, and optimization of nonuniform sampling schemes. The approach will accelerate the discovery of optimal approaches to nonuniform sampling experiment design and non-Fourier spectrum analysis for multidimensional NMR.
Paschalidou, A K; Kassomenos, P A
2016-01-01
Wildfire management is closely linked to robust forecasts of changes in wildfire risk related to meteorological conditions. This link can be bridged either through fire weather indices or through statistical techniques that directly relate atmospheric patterns to wildfire activity. In the present work the COST-733 classification schemes are applied in order to link wildfires in Greece with synoptic circulation patterns. The analysis reveals that the majority of wildfire events can be explained by a small number of specific synoptic circulations, hence reflecting the synoptic climatology of wildfires. All 8 classification schemes used, prove that the most fire-dangerous conditions in Greece are characterized by a combination of high atmospheric pressure systems located N to NW of Greece, coupled with lower pressures located over the very Eastern part of the Mediterranean, an atmospheric pressure pattern closely linked to the local Etesian winds over the Aegean Sea. During these events, the atmospheric pressure has been reported to be anomalously high, while anomalously low 500hPa geopotential heights and negative total water column anomalies were also observed. Among the various classification schemes used, the 2 Principal Component Analysis-based classifications, namely the PCT and the PXE, as well as the Leader Algorithm classification LND proved to be the best options, in terms of being capable to isolate the vast amount of fire events in a small number of classes with increased frequency of occurrence. It is estimated that these 3 schemes, in combination with medium-range to seasonal climate forecasts, could be used by wildfire risk managers to provide increased wildfire prediction accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.
Computer-aided diagnosis of pulmonary diseases using x-ray darkfield radiography
NASA Astrophysics Data System (ADS)
Einarsdóttir, Hildur; Yaroshenko, Andre; Velroyen, Astrid; Bech, Martin; Hellbach, Katharina; Auweter, Sigrid; Yildirim, Önder; Meinel, Felix G.; Eickelberg, Oliver; Reiser, Maximilian; Larsen, Rasmus; Kjær Ersbøll, Bjarne; Pfeiffer, Franz
2015-12-01
In this work we develop a computer-aided diagnosis (CAD) scheme for classification of pulmonary disease for grating-based x-ray radiography. In addition to conventional transmission radiography, the grating-based technique provides a dark-field imaging modality, which utilizes the scattering properties of the x-rays. This modality has shown great potential for diagnosing early stage emphysema and fibrosis in mouse lungs in vivo. The CAD scheme is developed to assist radiologists and other medical experts to develop new diagnostic methods when evaluating grating-based images. The scheme consists of three stages: (i) automatic lung segmentation; (ii) feature extraction from lung shape and dark-field image intensities; (iii) classification between healthy, emphysema and fibrosis lungs. A study of 102 mice was conducted with 34 healthy, 52 emphysema and 16 fibrosis subjects. Each image was manually annotated to build an experimental dataset. System performance was assessed by: (i) determining the quality of the segmentations; (ii) validating emphysema and fibrosis recognition by a linear support vector machine using leave-one-out cross-validation. In terms of segmentation quality, we obtained an overlap percentage (Ω) 92.63 ± 3.65%, Dice Similarity Coefficient (DSC) 89.74 ± 8.84% and Jaccard Similarity Coefficient 82.39 ± 12.62%. For classification, the accuracy, sensitivity and specificity of diseased lung recognition was 100%. Classification between emphysema and fibrosis resulted in an accuracy of 93%, whilst the sensitivity was 94% and specificity 88%. In addition to the automatic classification of lungs, deviation maps created by the CAD scheme provide a visual aid for medical experts to further assess the severity of pulmonary disease in the lung, and highlights regions affected.
Centrifuge: rapid and sensitive classification of metagenomic sequences.
Kim, Daehwan; Song, Li; Breitwieser, Florian P; Salzberg, Steven L
2016-12-01
Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quantification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a few minutes. Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop computers. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonredundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based indexing schemes, which require far more extensive space. © 2016 Kim et al.; Published by Cold Spring Harbor Laboratory Press.
"Interactive Classification Technology"
NASA Technical Reports Server (NTRS)
deBessonet, Cary
1999-01-01
The investigators are upgrading a knowledge representation language called SL (Symbolic Language) and an automated reasoning system called SMS (Symbolic Manipulation System) to enable the technologies to be used in automated reasoning and interactive classification systems. The overall goals of the project are: a) the enhancement of the representation language SL to accommodate multiple perspectives and a wider range of meaning; b) the development of a sufficient set of operators to enable the interpreter of SL to handle representations of basic cognitive acts; and c) the development of a default inference scheme to operate over SL notation as it is encoded. As to particular goals the first-year work plan focused on inferencing and.representation issues, including: 1) the development of higher level cognitive/ classification functions and conceptual models for use in inferencing and decision making; 2) the specification of a more detailed scheme of defaults and the enrichment of SL notation to accommodate the scheme; and 3) the adoption of additional perspectives for inferencing.
Gangodagamage, Chandana; Wullschleger, Stan
2014-07-03
The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.
Forest tree species discrimination in western Himalaya using EO-1 Hyperion
NASA Astrophysics Data System (ADS)
George, Rajee; Padalia, Hitendra; Kushwaha, S. P. S.
2014-05-01
The information acquired in the narrow bands of hyperspectral remote sensing data has potential to capture plant species spectral variability, thereby improving forest tree species mapping. This study assessed the utility of spaceborne EO-1 Hyperion data in discrimination and classification of broadleaved evergreen and conifer forest tree species in western Himalaya. The pre-processing of 242 bands of Hyperion data resulted into 160 noise-free and vertical stripe corrected reflectance bands. Of these, 29 bands were selected through step-wise exclusion of bands (Wilk's Lambda). Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) algorithms were applied to the selected bands to assess their effectiveness in classification. SVM was also applied to broadband data (Landsat TM) to compare the variation in classification accuracy. All commonly occurring six gregarious tree species, viz., white oak, brown oak, chir pine, blue pine, cedar and fir in western Himalaya could be effectively discriminated. SVM produced a better species classification (overall accuracy 82.27%, kappa statistic 0.79) than SAM (overall accuracy 74.68%, kappa statistic 0.70). It was noticed that classification accuracy achieved with Hyperion bands was significantly higher than Landsat TM bands (overall accuracy 69.62%, kappa statistic 0.65). Study demonstrated the potential utility of narrow spectral bands of Hyperion data in discriminating tree species in a hilly terrain.
Multi-source remotely sensed data fusion for improving land cover classification
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Bo; Xu, Bing
2017-02-01
Although many advances have been made in past decades, land cover classification of fine-resolution remotely sensed (RS) data integrating multiple temporal, angular, and spectral features remains limited, and the contribution of different RS features to land cover classification accuracy remains uncertain. We proposed to improve land cover classification accuracy by integrating multi-source RS features through data fusion. We further investigated the effect of different RS features on classification performance. The results of fusing Landsat-8 Operational Land Imager (OLI) data with Moderate Resolution Imaging Spectroradiometer (MODIS), China Environment 1A series (HJ-1A), and Advanced Spaceborne Thermal Emission and Reflection (ASTER) digital elevation model (DEM) data, showed that the fused data integrating temporal, spectral, angular, and topographic features achieved better land cover classification accuracy than the original RS data. Compared with the topographic feature, the temporal and angular features extracted from the fused data played more important roles in classification performance, especially those temporal features containing abundant vegetation growth information, which markedly increased the overall classification accuracy. In addition, the multispectral and hyperspectral fusion successfully discriminated detailed forest types. Our study provides a straightforward strategy for hierarchical land cover classification by making full use of available RS data. All of these methods and findings could be useful for land cover classification at both regional and global scales.
Characterization and delineation of caribou habitat on Unimak Island using remote sensing techniques
NASA Astrophysics Data System (ADS)
Atkinson, Brain M.
The assessment of herbivore habitat quality is traditionally based on quantifying the forages available to the animal across their home range through ground-based techniques. While these methods are highly accurate, they can be time-consuming and highly expensive, especially for herbivores that occupy vast spatial landscapes. The Unimak Island caribou herd has been decreasing in the last decade at rates that have prompted discussion of management intervention. Frequent inclement weather in this region of Alaska has provided for little opportunity to study the caribou forage habitat on Unimak Island. The overall objectives of this study were two-fold 1) to assess the feasibility of using high-resolution color and near-infrared aerial imagery to map the forage distribution of caribou habitat on Unimak Island and 2) to assess the use of a new high-resolution multispectral satellite imagery platform, RapidEye, and use of the "red-edge" spectral band on vegetation classification accuracy. Maximum likelihood classification algorithms were used to create land cover maps in aerial and satellite imagery. Accuracy assessments and transformed divergence values were produced to assess vegetative spectral information and classification accuracy. By using RapidEye and aerial digital imagery in a hierarchical supervised classification technique, we were able to produce a high resolution land cover map of Unimak Island. We obtained overall accuracy rates of 71.4 percent which are comparable to other land cover maps using RapidEye imagery. The "red-edge" spectral band included in the RapidEye imagery provides additional spectral information that allows for a more accurate overall classification, raising overall accuracy 5.2 percent.
NASA Astrophysics Data System (ADS)
Mwaniki, M. W.; Kuria, D. N.; Boitt, M. K.; Ngigi, T. G.
2017-04-01
Image enhancements lead to improved performance and increased accuracy of feature extraction, recognition, identification, classification and hence change detection. This increases the utility of remote sensing to suit environmental applications and aid disaster monitoring of geohazards involving large areas. The main aim of this study was to compare the effect of image enhancement applied to synthetic aperture radar (SAR) data and Landsat 8 imagery in landslide identification and mapping. The methodology involved pre-processing Landsat 8 imagery, image co-registration, despeckling of the SAR data, after which Landsat 8 imagery was enhanced by Principal and Independent Component Analysis (PCA and ICA), a spectral index involving bands 7 and 4, and using a False Colour Composite (FCC) with the components bearing the most geologic information. The SAR data were processed using textural and edge filters, and computation of SAR incoherence. The enhanced spatial, textural and edge information from the SAR data was incorporated to the spectral information from Landsat 8 imagery during the knowledge based classification. The methodology was tested in the central highlands of Kenya, characterized by rugged terrain and frequent rainfall induced landslides. The results showed that the SAR data complemented Landsat 8 data which had enriched spectral information afforded by the FCC with enhanced geologic information. The SAR classification depicted landslides along the ridges and lineaments, important information lacking in the Landsat 8 image classification. The success of landslide identification and classification was attributed to the enhanced geologic features by spectral, textural and roughness properties.
Dewey Decimal Classification for U. S. Conn: An Advantage?
ERIC Educational Resources Information Center
Marek, Kate
This paper examines the use of the Dewey Decimal Classification (DDC) system at the U. S. Conn Library at Wayne State College (WSC) in Nebraska. Several developments in the last 20 years which have eliminated the trend toward reclassification of academic library collections from DDC to the Library of Congress (LC) classification scheme are…
A Global Classification System for Catchment Hydrology
NASA Astrophysics Data System (ADS)
Woods, R. A.
2004-05-01
It is a shocking state of affairs - there is no underpinning scientific taxonomy of catchments. There are widely used global classification systems for climate, river morphology, lakes and wetlands, but for river catchments there exists only a plethora of inconsistent, incomplete regional schemes. By proceeding without a common taxonomy for catchments, freshwater science has missed one of its key developmental stages, and has leapt from definition of phenomena to experiments, theories and models, without the theoretical framework of a classification. I propose the development of a global hierarchical classification system for physical aspects of river catchments, to help underpin physical science in the freshwater environment and provide a solid foundation for classification of river ecosystems. Such a classification scheme can open completely new vistas in hydrology: for example it will be possible to (i) rationally transfer experimental knowledge of hydrological processes between basins anywhere in the world, provided they belong to the same class; (ii) perform meaningful meta-analyses in order to reconcile studies that show inconsistent results (iii) generate new testable hypotheses which involve locations worldwide.
Guidelines for a priori grouping of species in hierarchical community models
Pacifici, Krishna; Zipkin, Elise; Collazo, Jaime; Irizarry, Julissa I.; DeWan, Amielle A.
2014-01-01
Recent methodological advances permit the estimation of species richness and occurrences for rare species by linking species-level occurrence models at the community level. The value of such methods is underscored by the ability to examine the influence of landscape heterogeneity on species assemblages at large spatial scales. A salient advantage of community-level approaches is that parameter estimates for data-poor species are more precise as the estimation process borrows from data-rich species. However, this analytical benefit raises a question about the degree to which inferences are dependent on the implicit assumption of relatedness among species. Here, we assess the sensitivity of community/group-level metrics, and individual-level species inferences given various classification schemes for grouping species assemblages using multispecies occurrence models. We explore the implications of these groupings on parameter estimates for avian communities in two ecosystems: tropical forests in Puerto Rico and temperate forests in northeastern United States. We report on the classification performance and extent of variability in occurrence probabilities and species richness estimates that can be observed depending on the classification scheme used. We found estimates of species richness to be most precise and to have the best predictive performance when all of the data were grouped at a single community level. Community/group-level parameters appear to be heavily influenced by the grouping criteria, but were not driven strictly by total number of detections for species. We found different grouping schemes can provide an opportunity to identify unique assemblage responses that would not have been found if all of the species were analyzed together. We suggest three guidelines: (1) classification schemes should be determined based on study objectives; (2) model selection should be used to quantitatively compare different classification approaches; and (3) sensitivity of results to different classification approaches should be assessed. These guidelines should help researchers apply hierarchical community models in the most effective manner.
Diagnostic classification scheme in Iranian breast cancer patients using a decision tree.
Malehi, Amal Saki
2014-01-01
The objective of this study was to determine a diagnostic classification scheme using a decision tree based model. The study was conducted as a retrospective case-control study in Imam Khomeini hospital in Tehran during 2001 to 2009. Data, including demographic and clinical-pathological characteristics, were uniformly collected from 624 females, 312 of them were referred with positive diagnosis of breast cancer (cases) and 312 healthy women (controls). The decision tree was implemented to develop a diagnostic classification scheme using CART 6.0 Software. The AUC (area under curve), was measured as the overall performance of diagnostic classification of the decision tree. Five variables as main risk factors of breast cancer and six subgroups as high risk were identified. The results indicated that increasing age, low age at menarche, single and divorced statues, irregular menarche pattern and family history of breast cancer are the important diagnostic factors in Iranian breast cancer patients. The sensitivity and specificity of the analysis were 66% and 86.9% respectively. The high AUC (0.82) also showed an excellent classification and diagnostic performance of the model. Decision tree based model appears to be suitable for identifying risk factors and high or low risk subgroups. It can also assists clinicians in making a decision, since it can identify underlying prognostic relationships and understanding the model is very explicit.
Heuristic pattern correction scheme using adaptively trained generalized regression neural networks.
Hoya, T; Chambers, J A
2001-01-01
In many pattern classification problems, an intelligent neural system is required which can learn the newly encountered but misclassified patterns incrementally, while keeping a good classification performance over the past patterns stored in the network. In the paper, an heuristic pattern correction scheme is proposed using adaptively trained generalized regression neural networks (GRNNs). The scheme is based upon both network growing and dual-stage shrinking mechanisms. In the network growing phase, a subset of the misclassified patterns in each incoming data set is iteratively added into the network until all the patterns in the incoming data set are classified correctly. Then, the redundancy in the growing phase is removed in the dual-stage network shrinking. Both long- and short-term memory models are considered in the network shrinking, which are motivated from biological study of the brain. The learning capability of the proposed scheme is investigated through extensive simulation studies.
Particle-size distribution models for the conversion of Chinese data to FAO/USDA system.
Shangguan, Wei; Dai, YongJiu; García-Gutiérrez, Carlos; Yuan, Hua
2014-01-01
We investigated eleven particle-size distribution (PSD) models to determine the appropriate models for describing the PSDs of 16349 Chinese soil samples. These data are based on three soil texture classification schemes, including one ISSS (International Society of Soil Science) scheme with four data points and two Katschinski's schemes with five and six data points, respectively. The adjusted coefficient of determination r (2), Akaike's information criterion (AIC), and geometric mean error ratio (GMER) were used to evaluate the model performance. The soil data were converted to the USDA (United States Department of Agriculture) standard using PSD models and the fractal concept. The performance of PSD models was affected by soil texture and classification of fraction schemes. The performance of PSD models also varied with clay content of soils. The Anderson, Fredlund, modified logistic growth, Skaggs, and Weilbull models were the best.
Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Timothy; Steinmaus, Karen L.
2005-02-01
New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.
Fourier/Chebyshev methods for the incompressible Navier-Stokes equations in finite domains
NASA Technical Reports Server (NTRS)
Corral, Roque; Jimenez, Javier
1992-01-01
A fully spectral numerical scheme for the incompressible Navier-Stokes equations in domains which are infinite or semi-infinite in one dimension. The domain is not mapped, and standard Fourier or Chebyshev expansions can be used. The handling of the infinite domain does not introduce any significant overhead. The scheme assumes that the vorticity in the flow is essentially concentrated in a finite region, which is represented numerically by standard spectral collocation methods. To accomodate the slow exponential decay of the velocities at infinity, extra expansion functions are introduced, which are handled analytically. A detailed error analysis is presented, and two applications to Direct Numerical Simulation of turbulent flows are discussed in relation with the numerical performance of the scheme.
Integration of multispectral satellite and hyperspectral field data for aquatic macrophyte studies
NASA Astrophysics Data System (ADS)
John, C. M.; Kavya, N.
2014-11-01
Aquatic macrophytes (AM) can serve as useful indicators of water pollution along the littoral zones. The spectral signatures of various AM were investigated to determine whether species could be discriminated by remote sensing. In this study the spectral readings of different AM communities identified were done using the ASD Fieldspec® Hand Held spectro-radiometer in the wavelength range of 325-1075 nm. The collected specific reflectance spectra were applied to space borne multi-spectral remote sensing data from Worldview-2, acquired on 26th March 2011. The dimensionality reduction of the spectro-radiometric data was done using the technique principal components analysis (PCA). Out of the different PCA axes generated, 93.472 % variance of the spectra was explained by the first axis. The spectral derivative analysis was done to identify the wavelength where the greatest difference in reflectance is shown. The identified wavelengths are 510, 690, 720, 756, 806, 885, 907 and 923 nm. The output of PCA and derivative analysis were applied to Worldview-2 satellite data for spectral subsetting. The unsupervised classification was used to effectively classify the AM species using the different spectral subsets. The accuracy assessment of the results of the unsupervised classification and their comparison were done. The overall accuracy of the result of unsupervised classification using the band combinations Red-Edge, Green, Coastal blue & Red-edge, Yellow, Blue is 100%. The band combinations NIR-1, Green, Coastal blue & NIR-1, Yellow, Blue yielded an accuracy of 82.35 %. The existing vegetation indices and new hyper-spectral indices for the different type of AM communities were computed. Overall, results of this study suggest that high spectral and spatial resolution images provide useful information for natural resource managers especially with regard to the location identification and distribution mapping of macrophyte species and their communities.
Katiyar, Prateek; Divine, Mathew R; Kohlhofer, Ursula; Quintanilla-Martinez, Leticia; Schölkopf, Bernhard; Pichler, Bernd J; Disselhorst, Jonathan A
2017-04-01
In this study, we described and validated an unsupervised segmentation algorithm for the assessment of tumor heterogeneity using dynamic 18 F-FDG PET. The aim of our study was to objectively evaluate the proposed method and make comparisons with compartmental modeling parametric maps and SUV segmentations using simulations of clinically relevant tumor tissue types. Methods: An irreversible 2-tissue-compartmental model was implemented to simulate clinical and preclinical 18 F-FDG PET time-activity curves using population-based arterial input functions (80 clinical and 12 preclinical) and the kinetic parameter values of 3 tumor tissue types. The simulated time-activity curves were corrupted with different levels of noise and used to calculate the tissue-type misclassification errors of spectral clustering (SC), parametric maps, and SUV segmentation. The utility of the inverse noise variance- and Laplacian score-derived frame weighting schemes before SC was also investigated. Finally, the SC scheme with the best results was tested on a dynamic 18 F-FDG measurement of a mouse bearing subcutaneous colon cancer and validated using histology. Results: In the preclinical setup, the inverse noise variance-weighted SC exhibited the lowest misclassification errors (8.09%-28.53%) at all noise levels in contrast to the Laplacian score-weighted SC (16.12%-31.23%), unweighted SC (25.73%-40.03%), parametric maps (28.02%-61.45%), and SUV (45.49%-45.63%) segmentation. The classification efficacy of both weighted SC schemes in the clinical case was comparable to the unweighted SC. When applied to the dynamic 18 F-FDG measurement of colon cancer, the proposed algorithm accurately identified densely vascularized regions from the rest of the tumor. In addition, the segmented regions and clusterwise average time-activity curves showed excellent correlation with the tumor histology. Conclusion: The promising results of SC mark its position as a robust tool for quantification of tumor heterogeneity using dynamic PET studies. Because SC tumor segmentation is based on the intrinsic structure of the underlying data, it can be easily applied to other cancer types as well. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1998-01-01
This project is about the development of high order, non-oscillatory type schemes for computational fluid dynamics. Algorithm analysis, implementation, and applications are performed. Collaborations with NASA scientists have been carried out to ensure that the research is relevant to NASA objectives. The combination of ENO finite difference method with spectral method in two space dimension is considered, jointly with Cai [3]. The resulting scheme behaves nicely for the two dimensional test problems with or without shocks. Jointly with Cai and Gottlieb, we have also considered one-sided filters for spectral approximations to discontinuous functions [2]. We proved theoretically the existence of filters to recover spectral accuracy up to the discontinuity. We also constructed such filters for practical calculations.
NASA Astrophysics Data System (ADS)
Karakacan Kuzucu, A.; Bektas Balcik, F.
2017-11-01
Accurate and reliable land use/land cover (LULC) information obtained by remote sensing technology is necessary in many applications such as environmental monitoring, agricultural management, urban planning, hydrological applications, soil management, vegetation condition study and suitability analysis. But this information still remains a challenge especially in heterogeneous landscapes covering urban and rural areas due to spectrally similar LULC features. In parallel with technological developments, supplementary data such as satellite-derived spectral indices have begun to be used as additional bands in classification to produce data with high accuracy. The aim of this research is to test the potential of spectral vegetation indices combination with supervised classification methods and to extract reliable LULC information from SPOT 7 multispectral imagery. The Normalized Difference Vegetation Index (NDVI), the Ratio Vegetation Index (RATIO), the Soil Adjusted Vegetation Index (SAVI) were the three vegetation indices used in this study. The classical maximum likelihood classifier (MLC) and support vector machine (SVM) algorithm were applied to classify SPOT 7 image. Catalca is selected region located in the north west of the Istanbul in Turkey, which has complex landscape covering artificial surface, forest and natural area, agricultural field, quarry/mining area, pasture/scrubland and water body. Accuracy assessment of all classified images was performed through overall accuracy and kappa coefficient. The results indicated that the incorporation of these three different vegetation indices decrease the classification accuracy for the MLC and SVM classification. In addition, the maximum likelihood classification slightly outperformed the support vector machine classification approach in both overall accuracy and kappa statistics.
NASA Technical Reports Server (NTRS)
Welch, Ronald M.
1996-01-01
The ASTER polar cloud mask algorithm is currently under development. Several classification techniques have been developed and implemented. The merits and accuracy of each are being examined. The classification techniques under investigation include fuzzy logic, hierarchical neural network, and a pairwise histogram comparison scheme based on sample histograms called the Paired Histogram Method. Scene adaptive methods also are being investigated as a means to improve classifier performance. The feature, arctan of Band 4 and Band 5, and the Band 2 vs. Band 4 feature space are key to separating frozen water (e.g., ice/snow, slush/wet ice, etc.) from cloud over frozen water, and land from cloud over land, respectively. A total of 82 Landsat TM circumpolar scenes are being used as a basis for algorithm development and testing. Numerous spectral features are being tested and include the 7 basic Landsat TM bands, in addition to ratios, differences, arctans, and normalized differences of each combination of bands. A technique for deriving cloud base and top height is developed. It uses 2-D cross correlation between a cloud edge and its corresponding shadow to determine the displacement of the cloud from its shadow. The height is then determined from this displacement, the solar zenith angle, and the sensor viewing angle.
Integrating multisource land use and land cover data
Wright, Bruce E.; Tait, Mike; Lins, K.F.; Crawford, J.S.; Benjamin, S.P.; Brown, Jesslyn F.
1995-01-01
As part of the U.S. Geological Survey's (USGS) land use and land cover (LULC) program, the USGS in cooperation with the Environmental Systems Research Institute (ESRI) is collecting and integrating LULC data for a standard USGS 1:100,000-scale product. The LULC data collection techniques include interpreting spectrally clustered Landsat Thematic Mapper (TM) images; interpreting 1-meter resolution digital panchromatic orthophoto images; and, for comparison, aggregating locally available large-scale digital data of urban areas. The area selected is the Vancouver, WA-OR quadrangle, which has a mix of urban, rural agriculture, and forest land. Anticipated products include an integrated LULC prototype data set in a standard classification scheme referenced to the USGS digital line graph (DLG) data of the area and prototype software to develop digital LULC data sets.This project will evaluate a draft standard LULC classification system developed by the USGS for use with various source material and collection techniques. Federal, State, and local governments, and private sector groups will have an opportunity to evaluate the resulting prototype software and data sets and to provide recommendations. It is anticipated that this joint research endeavor will increase future collaboration among interested organizations, public and private, for LULC data collection using common standards and tools.
Mapping Neglected Swimming Pools from Satellite Data for Urban Vector Control
NASA Astrophysics Data System (ADS)
Barker, C. M.; Melton, F. S.; Reisen, W. K.
2010-12-01
Neglected swimming pools provide suitable breeding habit for mosquitoes, can contain thousands of mosquito larvae, and present both a significant nuisance and public health risk due to their inherent proximity to urban and suburban populations. The rapid increase and sustained rate of foreclosures in California associated with the recent recession presents a challenge for vector control districts seeking to identify, treat, and monitor neglected pools. Commercial high resolution satellite imagery offers some promise for mapping potential neglected pools, and for mapping pools for which routine maintenance has been reestablished. We present progress on unsupervised classification techniques for mapping both neglected pools and clean pools using high resolution commercial satellite data and discuss the potential uses and limitations of this data source in support of vector control efforts. An unsupervised classification scheme that utilizes image segmentation, band thresholds, and a change detection approach was implemented for sample regions in Coachella Valley, CA and the greater Los Angeles area. Comparison with field data collected by vector control personal was used to assess the accuracy of the estimates. The results suggest that the current system may provide some utility for early detection, or cost effective and time efficient annual monitoring, but additional work is required to address spectral and spatial limitations of current commercial satellite sensors for this purpose.
NASA Astrophysics Data System (ADS)
Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Quiroz-Ruiz, Alfredo
2016-12-01
A new multidimensional classification scheme consistent with the chemical classification of the International Union of Geological Sciences (IUGS) is proposed for the nomenclature of High-Mg altered rocks. Our procedure is based on an extensive database of major element (SiO2, TiO2, Al2O3, Fe2O3t, MnO, MgO, CaO, Na2O, K2O, and P2O5) compositions of a total of 33,868 (920 High-Mg and 32,948 "Common") relatively fresh igneous rock samples. The database consisting of these multinormally distributed samples in terms of their isometric log-ratios was used to propose a set of 11 discriminant functions and 6 diagrams to facilitate High-Mg rock classification. The multinormality required by linear discriminant and canonical analysis was ascertained by a new computer program DOMuDaF. One multidimensional function can distinguish the High-Mg and Common igneous rocks with high percent success values of about 86.4% and 98.9%, respectively. Similarly, from 10 discriminant functions the High-Mg rocks can also be classified as one of the four rock types (komatiite, meimechite, picrite, and boninite), with high success values of about 88%-100%. Satisfactory functioning of this new classification scheme was confirmed by seven independent tests. Five further case studies involving application to highly altered rocks illustrate the usefulness of our proposal. A computer program HMgClaMSys was written to efficiently apply the proposed classification scheme, which will be available for online processing of igneous rock compositional data. Monte Carlo simulation modeling and mass-balance computations confirmed the robustness of our classification with respect to analytical errors and postemplacement compositional changes.
Ahn, Jae-Hyun; Park, Young-Je; Kim, Wonkook; Lee, Boram
2016-12-26
An estimation of the aerosol multiple-scattering reflectance is an important part of the atmospheric correction procedure in satellite ocean color data processing. Most commonly, the utilization of two near-infrared (NIR) bands to estimate the aerosol optical properties has been adopted for the estimation of the effects of aerosols. Previously, the operational Geostationary Color Ocean Imager (GOCI) atmospheric correction scheme relies on a single-scattering reflectance ratio (SSE), which was developed for the processing of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data to determine the appropriate aerosol models and their aerosol optical thicknesses. The scheme computes reflectance contributions (weighting factor) of candidate aerosol models in a single scattering domain then spectrally extrapolates the single-scattering aerosol reflectance from NIR to visible (VIS) bands using the SSE. However, it directly applies the weight value to all wavelengths in a multiple-scattering domain although the multiple-scattering aerosol reflectance has a non-linear relationship with the single-scattering reflectance and inter-band relationship of multiple scattering aerosol reflectances is non-linear. To avoid these issues, we propose an alternative scheme for estimating the aerosol reflectance that uses the spectral relationships in the aerosol multiple-scattering reflectance between different wavelengths (called SRAMS). The process directly calculates the multiple-scattering reflectance contributions in NIR with no residual errors for selected aerosol models. Then it spectrally extrapolates the reflectance contribution from NIR to visible bands for each selected model using the SRAMS. To assess the performance of the algorithm regarding the errors in the water reflectance at the surface or remote-sensing reflectance retrieval, we compared the SRAMS atmospheric correction results with the SSE atmospheric correction using both simulations and in situ match-ups with the GOCI data. From simulations, the mean errors for bands from 412 to 555 nm were 5.2% for the SRAMS scheme and 11.5% for SSE scheme in case-I waters. From in situ match-ups, 16.5% for the SRAMS scheme and 17.6% scheme for the SSE scheme in both case-I and case-II waters. Although we applied the SRAMS algorithm to the GOCI, it can be applied to other ocean color sensors which have two NIR wavelengths.
Adaptive video-based vehicle classification technique for monitoring traffic.
DOT National Transportation Integrated Search
2015-08-01
This report presents a methodology for extracting two vehicle features, vehicle length and number of axles in order : to classify the vehicles from video, based on Federal Highway Administration (FHWA)s recommended vehicle : classification scheme....
Stygoregions – a promising approach to a bioregional classification of groundwater systems
Stein, Heide; Griebler, Christian; Berkhoff, Sven; Matzke, Dirk; Fuchs, Andreas; Hahn, Hans Jürgen
2012-01-01
Linked to diverse biological processes, groundwater ecosystems deliver essential services to mankind, the most important of which is the provision of drinking water. In contrast to surface waters, ecological aspects of groundwater systems are ignored by the current European Union and national legislation. Groundwater management and protection measures refer exclusively to its good physicochemical and quantitative status. Current initiatives in developing ecologically sound integrative assessment schemes by taking groundwater fauna into account depend on the initial classification of subsurface bioregions. In a large scale survey, the regional and biogeographical distribution patterns of groundwater dwelling invertebrates were examined for many parts of Germany. Following an exploratory approach, our results underline that the distribution patterns of invertebrates in groundwater are not in accordance with any existing bioregional classification system established for surface habitats. In consequence, we propose to develope a new classification scheme for groundwater ecosystems based on stygoregions. PMID:22993698
NASA Astrophysics Data System (ADS)
Schmalz, M.; Ritter, G.; Key, R.
Accurate and computationally efficient spectral signature classification is a crucial step in the nonimaging detection and recognition of spaceborne objects. In classical hyperspectral recognition applications using linear mixing models, signature classification accuracy depends on accurate spectral endmember discrimination [1]. If the endmembers cannot be classified correctly, then the signatures cannot be classified correctly, and object recognition from hyperspectral data will be inaccurate. In practice, the number of endmembers accurately classified often depends linearly on the number of inputs. This can lead to potentially severe classification errors in the presence of noise or densely interleaved signatures. In this paper, we present an comparison of emerging technologies for nonimaging spectral signature classfication based on a highly accurate, efficient search engine called Tabular Nearest Neighbor Encoding (TNE) [3,4] and a neural network technology called Morphological Neural Networks (MNNs) [5]. Based on prior results, TNE can optimize its classifier performance to track input nonergodicities, as well as yield measures of confidence or caution for evaluation of classification results. Unlike neural networks, TNE does not have a hidden intermediate data structure (e.g., the neural net weight matrix). Instead, TNE generates and exploits a user-accessible data structure called the agreement map (AM), which can be manipulated by Boolean logic operations to effect accurate classifier refinement algorithms. The open architecture and programmability of TNE's agreement map processing allows a TNE programmer or user to determine classification accuracy, as well as characterize in detail the signatures for which TNE did not obtain classification matches, and why such mis-matches occurred. In this study, we will compare TNE and MNN based endmember classification, using performance metrics such as probability of correct classification (Pd) and rate of false detections (Rfa). As proof of principle, we analyze classification of multiple closely spaced signatures from a NASA database of space material signatures. Additional analysis pertains to computational complexity and noise sensitivity, which are superior to Bayesian techniques based on classical neural networks. [1] Winter, M.E. "Fast autonomous spectral end-member determination in hyperspectral data," in Proceedings of the 13th International Conference On Applied Geologic Remote Sensing, Vancouver, B.C., Canada, pp. 337-44 (1999). [2] N. Keshava, "A survey of spectral unmixing algorithms," Lincoln Laboratory Journal 14:55-78 (2003). [3] Key, G., M.S. SCHMALZ, F.M. Caimi, and G.X. Ritter. "Performance analysis of tabular nearest neighbor encoding algorithm for joint compression and ATR", in Proceedings SPIE 3814:115-126 (1999). [4] Schmalz, M.S. and G. Key. "Algorithms for hyperspectral signature classification in unresolved object detection using tabular nearest neighbor encoding" in Proceedings of the 2007 AMOS Conference, Maui HI (2007). [5] Ritter, G.X., G. Urcid, and M.S. Schmalz. "Autonomous single-pass endmember approximation using lattice auto-associative memories", Neurocomputing (Elsevier), accepted (June 2008).
NASA Astrophysics Data System (ADS)
Wang, J.; Sulla-menashe, D. J.; Woodcock, C. E.; Sonnentag, O.; Friedl, M. A.
2017-12-01
Rapid climate change in arctic and boreal ecosystems is driving changes to land cover composition, including woody expansion in the arctic tundra, successional shifts following boreal fires, and thaw-induced wetland expansion and forest collapse along the southern limit of permafrost. The impacts of these land cover transformations on the physical climate and the carbon cycle are increasingly well-documented from field and model studies, but there have been few attempts to empirically estimate rates of land cover change at decadal time scale and continental spatial scale. Previous studies have used too coarse spatial resolution or have been too limited in temporal range to enable broad multi-decadal assessment of land cover change. As part of NASA's Arctic Boreal Vulnerability Experiment (ABoVE), we are using dense time series of Landsat remote sensing data to map disturbances and classify land cover types across the ABoVE extended domain (spanning western Canada and Alaska) over the last three decades (1982-2014) at 30 m resolution. We utilize regionally-complete and repeated acquisition high-resolution (<2 m) DigitalGlobe imagery to generate training data from across the region that follows a nested, hierarchical classification scheme encompassing plant functional type and cover density, understory type, wetland status, and land use. Additionally, we crosswalk plot-level field data into our scheme for additional high quality training sites. We use the Continuous Change Detection and Classification algorithm to estimate land cover change dates and temporal-spectral features in the Landsat data. These features are used to train random forest classification models and map land cover and analyze land cover change processes, focusing primarily on tundra "shrubification", post-fire succession, and boreal wetland expansion. We will analyze the high resolution data based on stratified random sampling of our change maps to validate and assess the accuracy of our model predictions. In this paper, we present initial results from this effort, including sub-regional analyses focused on several key areas, such as the Taiga Plains and the Southern Arctic ecozones, to calibrate our random forest models and assess results.
Test of spectral/spatial classifier
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Kast, J. L.; Davis, B. J.
1977-01-01
The author has identified the following significant results. The supervised ECHO processor (which utilizes class statistics for object identification) successfully exploits the redundancy of states characteristic of sampled imagery of ground scenes to achieve better classification accuracy, reduce the number of classifications required, and reduce the variability of classification results. The nonsupervised ECHO processor (which identifies objects without the benefit of class statistics) successfully reduces the number of classifications required and the variability of the classification results.
Tayebi Meybodi, Ali; Lawton, Michael T
2018-02-23
Brain arteriovenous malformations (bAVM) are challenging lesions. Part of this challenge stems from the infinite diversity of these lesions regarding shape, location, anatomy, and physiology. This diversity has called on a variety of treatment modalities for these lesions, of which microsurgical resection prevails as the mainstay of treatment. As such, outcome prediction and managing strategy mainly rely on unraveling the nature of these complex tangles and ways each lesion responds to various therapeutic modalities. This strategy needs the ability to decipher each lesion through accurate and efficient categorization. Therefore, classification schemes are essential parts of treatment planning and outcome prediction. This article summarizes different surgical classification schemes and outcome predictors proposed for bAVMs.
Spectral features of solar plasma flows
NASA Astrophysics Data System (ADS)
Barkhatov, N. A.; Revunov, S. E.
2014-11-01
Research to the identification of plasma flows in the Solar wind by spectral characteristics of solar plasma flows in the range of magnetohydrodynamics is devoted. To do this, the wavelet skeleton pattern of Solar wind parameters recorded on Earth orbit by patrol spacecraft and then executed their neural network classification differentiated by bandwidths is carry out. This analysis of spectral features of Solar plasma flows in the form of magnetic clouds (MC), corotating interaction regions (CIR), shock waves (Shocks) and highspeed streams from coronal holes (HSS) was made. The proposed data processing and the original correlation-spectral method for processing information about the Solar wind flows for further classification as online monitoring of near space can be used. This approach will allow on early stages in the Solar wind flow detect geoeffective structure to predict global geomagnetic disturbances.
Spectral classification of ASASSN-14az
NASA Astrophysics Data System (ADS)
Benetti, S.; Pastorello, A.; Elias-Rosa, N.; Cappellaro, E.; Tomasella, L.; Ochner, P.; Turatto, M.; Pedani, M.; Harutyunyan, A.
2014-05-01
We report that an optical spectrogram (range 340-800 nm; resolution 1.1 nm), obtained on May 30.19 UT with the TNG (+ DOLORES spectrograph) under the Asiago Transient Classification Program (Tomasella et al. ...
NASA Astrophysics Data System (ADS)
Judycka, U.; Jagiello, K.; Bober, L.; Błażejowski, J.; Puzyn, T.
2018-06-01
Chemometric tools were applied to investigate the biological behaviour of ampholytic substances in relation to their physicochemical and spectral properties. Results of the Principal Component Analysis suggest that size of molecules and their electronic and spectral characteristics are the key properties required to predict therapeutic relevance of the compounds examined. These properties were used for developing the structure-activity classification model. The classification model allows assessing the therapeutic behaviour of ampholytic substances on the basis of solely values of descriptors that can be obtained computationally. Thus, the prediction is possible without necessity of carrying out time-consuming and expensive laboratory tests, which is its main advantage.
Preliminary results of the comparative study between EO-1/Hyperion and ALOS/PALSAR
NASA Astrophysics Data System (ADS)
Koizumi, E.; Furuta, R.; Yamamoto, A.
2011-12-01
[Introduction]Hyper-spectral remote sensing images have been used for land-cover classification due to their high spectral resolutions. Synthetic Aperture Radar (SAR) remote sensing data are also useful to probe surface condition because radar image reflects surface geometry, although there are not so many reports about the land-cover detection with combination use of both hyper-spectral data and SAR data. Among SAR sensors, L-band SAR is thought to be useful tool to find physical properties because its comparatively long wave length can through small objects on surface. We are comparing the result of land cover classification and/or physical values from hyper-spectral and L-band SAR data to find the relationship between these two quite different sensors and to confirm the possibility of the combined analysis of hyper-spectral and L-band SAR data, and in this presentation we will report the preliminary result of this study. There are only few sources of both hyper-spectral and L-band SAR data from the space in this time, however, several space organizations plan to launch new satellites on which hyper-spectral or L-band SAR equipments are mounted in next few years. So, the importance of the combined analysis will increase more than ever. [Target Area]We are performing and planning analyses on the following areas in this study. (a)South of Cairo, Nile river area, Egypt, for sand, sandstone, limestone, river, crops. (b)Mount Sakurajima, Japan, for igneous rock and other related geological property. [Methods and Results]EO-1 Hyperion data are analyzed in this study as hyper-spectral data. The Hyperion equipment has 242 channels but some of them include full noise or have no data. We selected channels for analysis by checking each channel, and select about 150 channels (depend on the area). Before analysis, the atmospheric correction of ATCOR-3 was applied for the selected channels. The corrected data were analyzed by unsupervised classification or principal component analysis (PCA). We also did the unsupervised classification with the several components from PCA. According to the analysis results, several classifications can be extracted for each category (vegetation, sand and rocks, and water). One of the interesting results is that there are a few classes for sand as those of other categories, and these classes seem to reflect artificial and natural surface changes that are some result of excavation or scratching. ALOS PALSAR data are analyzed as L-band SAR data. We selected the Dual Polarization data for each target area. The data were converted to backscattered images, and then calculated some image statistic values. The topographic information also calculates with SAR interferometry technique as reference. Comparing the Hyperion classification results with the result of the calculation of statistic values from PALSAR, there are some areas where relativities seem to be confirmed. To confirm the combined analysis between hyper-spectral and L-band SAR data to detect and classify the surface material, further studies are still required. We will continue to investigate more efficient analytic methods and to examine other functions like the adopted channels, the number of class in classification, the kind of statistic information, and so on, to refine the method.
Identification of Terrestrial Reflectance From Remote Sensing
NASA Technical Reports Server (NTRS)
Alter-Gartenberg, Rachel; Nolf, Scott R.; Stacy, Kathryn (Technical Monitor)
2000-01-01
Correcting for atmospheric effects is an essential part of surface-reflectance recovery from radiance measurements. Model-based atmospheric correction techniques enable an accurate identification and classification of terrestrial reflectances from multi-spectral imagery. Successful and efficient removal of atmospheric effects from remote-sensing data is a key factor in the success of Earth observation missions. This report assesses the performance, robustness and sensitivity of two atmospheric-correction and reflectance-recovery techniques as part of an end-to-end simulation of hyper-spectral acquisition, identification and classification.
NASA Astrophysics Data System (ADS)
Wang, Jinnian; Zheng, Lanfen; Tong, Qingxi
1998-08-01
In this paper, we reported some research result in applying hyperspectral remote sensing data in identification and classification of wetland plant species and associations. Hyperspectral data were acquired by Modular Airborne Imaging Spectrometer (MAIS) over Poyang Lake wetland, China. A derivative spectral matching algorithm was used in hyperspectral vegetation analysis. The field measurement spectra were as reference for derivative spectral matching. In the study area, seven wetland plant associations were identified and classified with overall average accuracy is 84.03%.
Fesharaki, Nooshin Jafari; Pourghassem, Hossein
2013-07-01
Due to the daily mass production and the widespread variation of medical X-ray images, it is necessary to classify these for searching and retrieving proposes, especially for content-based medical image retrieval systems. In this paper, a medical X-ray image hierarchical classification structure based on a novel merging and splitting scheme and using shape and texture features is proposed. In the first level of the proposed structure, to improve the classification performance, similar classes with regard to shape contents are grouped based on merging measures and shape features into the general overlapped classes. In the next levels of this structure, the overlapped classes split in smaller classes based on the classification performance of combination of shape and texture features or texture features only. Ultimately, in the last levels, this procedure is also continued forming all the classes, separately. Moreover, to optimize the feature vector in the proposed structure, we use orthogonal forward selection algorithm according to Mahalanobis class separability measure as a feature selection and reduction algorithm. In other words, according to the complexity and inter-class distance of each class, a sub-space of the feature space is selected in each level and then a supervised merging and splitting scheme is applied to form the hierarchical classification. The proposed structure is evaluated on a database consisting of 2158 medical X-ray images of 18 classes (IMAGECLEF 2005 database) and accuracy rate of 93.6% in the last level of the hierarchical structure for an 18-class classification problem is obtained.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Wen, J.; Xiao, Q.; You, D.
2016-12-01
Operational algorithms for land surface BRDF/Albedo products are mainly developed from kernel-driven model, combining atmospherically corrected, multidate, multiband surface reflectance to extract BRDF parameters. The Angular and Spectral Kernel Driven model (ASK model), which incorporates the component spectra as a priori knowledge, provides a potential way to make full use of the multi-sensor data with multispectral information and accumulated observations. However, the ASK model is still not feasible for global BRDF/Albedo inversions due to the lack of sufficient field measurements of component spectra at the large scale. This research outlines a parameterization scheme on the component spectra for global scale BRDF/Albedo inversions in the frame of ASK. The parameter γ(λ) can be derived from the ratio of the leaf reflectance and soil reflectance, supported by globally distributed soil spectral library, ANGERS and LOPEX leaf optical properties database. To consider the intrinsic variability in both the land cover and spectral dimension, the mean and standard deviation of γ(λ) for 28 soil units and 4 leaf types in seven MODIS bands were calculated, with a world soil map used for global BRDF/Albedo products retrieval. Compared to the retrievals from BRF datasets simulated by the PROSAIL model, ASK model shows an acceptable accuracy on the parameterization strategy, with the RMSE 0.007 higher at most than inversion by true component spectra. The results indicate that the classification on ratio contributed to capture the spectral characteristics in BBRDF/Albedo retrieval, whereas the ratio range should be controlled within 8% in each band. Ground-based measurements in Heihe river basin were used to validate the accuracy of the improved ASK model, and the generated broadband albedo products shows good agreement with in situ data, which suggests that the improvement of the component spectra on the ASK model has potential for global scale BRDF/Albedo inversions.
NASA Astrophysics Data System (ADS)
Ribeiro, F.; Roberts, D. A.; Hess, L. L.; Davis, F. W.; Caylor, K. K.; Nackoney, J.; Antunes Daldegan, G.
2017-12-01
Savannas are heterogeneous landscapes consisting of highly mixed land cover types that lack clear distinct boundaries. The Brazilian Cerrado is a Neotropical savanna considered a biodiversity hotspot for conservation due to its biodiversity richness and rapid transformation of its landscape by crop and pasture activities. The Cerrado is one of the most threatened Brazilian biomes and only 2.2% of its original extent is strictly protected. Accurate mapping and monitoring of its ecosystems and adjacent land use are important to select areas for conservation and to improve our understanding of the dynamics in this biome. Land cover mapping of savannas is difficult due to spectral similarity between land cover types resulting from similar vegetation structure, floristically similar components, generalization of land cover classes, and heterogeneity usually expressed as small patch sizes within the natural landscape. These factors are the major contributor to misclassification and low map accuracies among remote sensing studies in savannas. Specific challenges to map the Cerrado's land cover types are related to the spectral similarity between classes of land use and natural vegetation, such as natural grassland vs. cultivated pasture, and forest ecosystem vs. crops. This study seeks to classify and evaluate the land cover patterns across an area ranked as having extremely high priority for future conservation in the Cerrado. The main objective of this study is to identify the representativeness of each vegetation type across the landscape using high to moderate spatial resolution imagery using an automated scheme. A combination of pixel-based and object-based approaches were tested using RapidEye 3A imagery (5m spatial resolution) to classify the Cerrado's major land cover types. The random forest classifier was used to map the major ecosystems present across the area, and demonstrated to have an effective result with 68% of overall accuracy. Post-classification modification was performed to refine information to the major physiognomic groups of each ecosystem type. In this step, we used segmentation in eCognition, considering the random forest classification as input as well as other environmental layers (e.g. slope, soil types), which improved the overall classification to 75%.
Ecosystem classifications based on summer and winter conditions.
Andrew, Margaret E; Nelson, Trisalyn A; Wulder, Michael A; Hobart, George W; Coops, Nicholas C; Farmer, Carson J Q
2013-04-01
Ecosystem classifications map an area into relatively homogenous units for environmental research, monitoring, and management. However, their effectiveness is rarely tested. Here, three classifications are (1) defined and characterized for Canada along summertime productivity (moderate-resolution imaging spectrometer fraction of absorbed photosynthetically active radiation) and wintertime snow conditions (special sensor microwave/imager snow water equivalent), independently and in combination, and (2) comparatively evaluated to determine the ability of each classification to represent the spatial and environmental patterns of alternative schemes, including the Canadian ecozone framework. All classifications depicted similar patterns across Canada, but detailed class distributions differed. Class spatial characteristics varied with environmental conditions within classifications, but were comparable between classifications. There was moderate correspondence between classifications. The strongest association was between productivity classes and ecozones. The classification along both productivity and snow balanced these two sets of variables, yielding intermediate levels of association in all pairwise comparisons. Despite relatively low spatial agreement between classifications, they successfully captured patterns of the environmental conditions underlying alternate schemes (e.g., snow classes explained variation in productivity and vice versa). The performance of ecosystem classifications and the relevance of their input variables depend on the environmental patterns and processes used for applications and evaluation. Productivity or snow regimes, as constructed here, may be desirable when summarizing patterns controlled by summer- or wintertime conditions, respectively, or of climate change responses. General purpose ecosystem classifications should include both sets of drivers. Classifications should be carefully, quantitatively, and comparatively evaluated relative to a particular application prior to their implementation as monitoring and assessment frameworks.
A Visual Basic program to classify sediments based on gravel-sand-silt-clay ratios
Poppe, L.J.; Eliason, A.H.; Hastings, M.E.
2003-01-01
Nomenclature describing size distributions is important to geologists because grain size is the most basic attribute of sediments. Traditionally, geologists have divided sediments into four size fractions that include gravel, sand, silt, and clay, and classified these sediments based on ratios of the various proportions of the fractions. Definitions of these fractions have long been standardized to the grade scale described by Wentworth (1922), and two main classification schemes have been adopted to describe the approximate relationship between the size fractions.Specifically, according to the Wentworth grade scale gravel-sized particles have a nominal diameter of ⩾2.0 mm; sand-sized particles have nominal diameters from <2.0 mm to ⩾62.5 μm; silt-sized particles have nominal diameters from <62.5 to ⩾4.0 μm; and clay is <4.0 μm. As for sediment classification, most sedimentologists use one of the systems described either by Shepard (1954) or Folk (1954, 1974). The original scheme devised by Shepard (1954) utilized a single ternary diagram with sand, silt, and clay in the corners to graphically show the relative proportions among these three grades within a sample. This scheme, however, does not allow for sediments with significant amounts of gravel. Therefore, Shepard's classification scheme (Fig. 1) was subsequently modified by the addition of a second ternary diagram to account for the gravel fraction (Schlee, 1973). The system devised by Folk (1954, 1974) is also based on two triangular diagrams (Fig. 2), but it has 23 major categories, and uses the term mud (defined as silt plus clay). The patterns within the triangles of both systems differ, as does the emphasis placed on gravel. For example, in the system described by Shepard, gravelly sediments have more than 10% gravel; in Folk's system, slightly gravelly sediments have as little as 0.01% gravel. Folk's classification scheme stresses gravel because its concentration is a function of the highest current velocity at the time of deposition, together with the maximum grain size of the detritus that is available; Shepard's classification scheme emphasizes the ratios of sand, silt, and clay because they reflect sorting and reworking (Poppe et al., 2000).