Sample records for spectral density analysis

  1. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    PubMed

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.

  2. Acoustic emission spectral analysis of fiber composite failure mechanisms

    NASA Technical Reports Server (NTRS)

    Egan, D. M.; Williams, J. H., Jr.

    1978-01-01

    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.

  3. An evaluation of random analysis methods for the determination of panel damping

    NASA Technical Reports Server (NTRS)

    Bhat, W. V.; Wilby, J. F.

    1972-01-01

    An analysis is made of steady-state and non-steady-state methods for the measurement of panel damping. Particular emphasis is placed on the use of random process techniques in conjunction with digital data reduction methods. The steady-state methods considered use the response power spectral density, response autocorrelation, excitation-response crosspower spectral density, or single-sided Fourier transform (SSFT) of the response autocorrelation function. Non-steady-state methods are associated mainly with the use of rapid frequency sweep excitation. Problems associated with the practical application of each method are evaluated with specific reference to the case of a panel exposed to a turbulent airflow, and two methods, the power spectral density and the single-sided Fourier transform methods, are selected as being the most suitable. These two methods are demonstrated experimentally, and it is shown that the power spectral density method is satisfactory under most conditions, provided that appropriate corrections are applied to account for filter bandwidth and background noise errors. Thus, the response power spectral density method is recommended for the measurement of the damping of panels exposed to a moving airflow.

  4. New generation aircraft design problems relative to turbulence stability, aeroelastic loads and gust alleviation

    NASA Technical Reports Server (NTRS)

    Heimbaugh, Richard M.

    1987-01-01

    Past history, present status, and future of discrete gusts are schematically presented. It is shown that there are two approaches to the gust analysis: discrete and spectral density. The role of these two approaches to gust analysis are discussed. The idea of using power spectral density (PSD) in the analysis of gusts is especially detailed.

  5. Comparative Analysis of the Clinical Significance of Oscillatory Components in the Rhythmic Structure of Pulse Signal in the Diagnostics of Psychosomatic Disorders in School Age Children.

    PubMed

    Desova, A A; Dorofeyuk, A A; Anokhin, A M

    2017-01-01

    We performed a comparative analysis of the types of spectral density typical of various parameters of pulse signal. The experimental material was obtained during the examination of school age children with various psychosomatic disorders. We also performed a typological analysis of the spectral density functions corresponding to the time series of different parameters of a single oscillation of pulse signals; the results of their comparative analysis are presented. We determined the most significant spectral components for two disordersin children: arterial hypertension and mitral valve prolapse.

  6. Analysis of multi-layered films. [determining dye densities by applying a regression analysis to the spectral response of the composite transparency

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Voss, A. W.

    1973-01-01

    Dye densities of multi-layered films are determined by applying a regression analysis to the spectral response of the composite transparency. The amount of dye in each layer is determined by fitting the sum of the individual dye layer densities to the measured dye densities. From this, dye content constants are calculated. Methods of calculating equivalent exposures are discussed. Equivalent exposures are a constant amount of energy over a limited band-width that will give the same dye content constants as the real incident energy. Methods of using these equivalent exposures for analysis of photographic data are presented.

  7. Rocket experiments for spectral estimation of electron density fine structure in the auroral and equatorial ionosphere and preliminary results

    NASA Technical Reports Server (NTRS)

    Tomei, B. A.; Smith, L. G.

    1986-01-01

    Sounding rockets equipped to monitor electron density and its fine structure were launched into the auroral and equatorial ionosphere in 1980 and 1983, respectively. The measurement electronics are based on the Langmuir probe and are described in detail. An approach to the spectral analysis of the density irregularities is addressed and a software algorithm implementing the approach is given. Preliminary results of the analysis are presented.

  8. Spectral Discrete Probability Density Function of Measured Wind Turbine Noise in the Far Field

    PubMed Central

    Ashtiani, Payam; Denison, Adelaide

    2015-01-01

    Of interest is the spectral character of wind turbine noise at typical residential set-back distances. In this paper, a spectral statistical analysis has been applied to immission measurements conducted at three locations. This method provides discrete probability density functions for the Turbine ONLY component of the measured noise. This analysis is completed for one-third octave sound levels, at integer wind speeds, and is compared to existing metrics for measuring acoustic comfort as well as previous discussions on low-frequency noise sources. PMID:25905097

  9. Hyperspectral Biofilm Classification Analysis for Carrying Capacity of Migratory Birds in the South Bay Salt Ponds

    NASA Technical Reports Server (NTRS)

    Hsu, Wei-Chen; Kuss, Amber Jean; Ketron, Tyler; Nguyen, Andrew; Remar, Alex Covello; Newcomer, Michelle; Fleming, Erich; Debout, Leslie; Debout, Brad; Detweiler, Angela; hide

    2011-01-01

    Tidal marshes are highly productive ecosystems that support migratory birds as roosting and over-wintering habitats on the Pacific Flyway. Microphytobenthos, or more commonly 'biofilms' contribute significantly to the primary productivity of wetland ecosystems, and provide a substantial food source for macroinvertebrates and avian communities. In this study, biofilms were characterized based on taxonomic classification, density differences, and spectral signatures. These techniques were then applied to remotely sensed images to map biofilm densities and distributions in the South Bay Salt Ponds and predict the carrying capacity of these newly restored ponds for migratory birds. The GER-1500 spectroradiometer was used to obtain in situ spectral signatures for each density-class of biofilm. The spectral variation and taxonomic classification between high, medium, and low density biofilm cover types was mapped using in-situ spectral measurements and classification of EO-1 Hyperion and Landsat TM 5 images. Biofilm samples were also collected in the field to perform laboratory analyses including chlorophyll-a, taxonomic classification, and energy content. Comparison of the spectral signatures between the three density groups shows distinct variations useful for classification. Also, analysis of chlorophyll-a concentrations show statistically significant differences between each density group, using the Tukey-Kramer test at an alpha level of 0.05. The potential carrying capacity in South Bay Salt Ponds is estimated to be 250,000 birds.

  10. Electron-boson spectral density function of correlated multiband systems obtained from optical data: Ba0.6K0.4Fe2As2 and LiFeAs.

    PubMed

    Hwang, Jungseek

    2016-03-31

    We introduce an approximate method which can be used to simulate the optical conductivity data of correlated multiband systems for normal and superconducting cases by taking advantage of a reversed process in comparison to a usual optical data analysis, which has been used to extract the electron-boson spectral density function from measured optical spectra of single-band systems, like cuprates. We applied this method to optical conductivity data of two multiband pnictide systems (Ba0.6K0.4Fe2As2 and LiFeAs) and obtained the electron-boson spectral density functions. The obtained electron-boson spectral density consists of a sharp mode and a broad background. The obtained spectral density functions of the multiband systems show similar properties as those of cuprates in several aspects. We expect that our method helps to reveal the nature of strong correlations in the multiband pnictide superconductors.

  11. Prior-knowledge-based spectral mixture analysis for impervious surface mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinshui; He, Chunyang; Zhou, Yuyu

    2014-01-03

    In this study, we developed a prior-knowledge-based spectral mixture analysis (PKSMA) to map impervious surfaces by using endmembers derived separately for high- and low-density urban regions. First, an urban area was categorized into high- and low-density urban areas, using a multi-step classification method. Next, in high-density urban areas that were assumed to have only vegetation and impervious surfaces (ISs), the Vegetation-Impervious model (V-I) was used in a spectral mixture analysis (SMA) with three endmembers: vegetation, high albedo, and low albedo. In low-density urban areas, the Vegetation-Impervious-Soil model (V-I-S) was used in an SMA analysis with four endmembers: high albedo, lowmore » albedo, soil, and vegetation. The fraction of IS with high and low albedo in each pixel was combined to produce the final IS map. The root mean-square error (RMSE) of the IS map produced using PKSMA was about 11.0%, compared to 14.52% using four-endmember SMA. Particularly in high-density urban areas, PKSMA (RMSE = 6.47%) showed better performance than four-endmember (15.91%). The results indicate that PKSMA can improve IS mapping compared to traditional SMA by using appropriately selected endmembers and is particularly strong in high-density urban areas.« less

  12. Inherent length-scales of periodic solar wind number density structures

    NASA Astrophysics Data System (ADS)

    Viall, N. M.; Kepko, L.; Spence, H. E.

    2008-07-01

    We present an analysis of the radial length-scales of periodic solar wind number density structures. We converted 11 years (1995-2005) of solar wind number density data into radial length series segments and Fourier analyzed them to identify all spectral peaks with radial wavelengths between 72 (116) and 900 (900) Mm for slow (fast) wind intervals. Our window length for the spectral analysis was 9072 Mm, approximately equivalent to 7 (4) h of data for the slow (fast) solar wind. We required that spectral peaks pass both an amplitude test and a harmonic F-test at the 95% confidence level simultaneously. From the occurrence distributions of these spectral peaks for slow and fast wind, we find that periodic number density structures occur more often at certain radial length-scales than at others, and are consistently observed within each speed range over most of the 11-year interval. For the slow wind, those length-scales are L ˜ 73, 120, 136, and 180 Mm. For the fast wind, those length-scales are L ˜ 187, 270 and 400 Mm. The results argue for the existence of inherent radial length-scales in the solar wind number density.

  13. Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise

    NASA Astrophysics Data System (ADS)

    Maizia, R.; Dib, A.; Thomas, A.; Martemianov, S.

    2017-02-01

    Electrochemical noise analysis (ENA) has been performed for the diagnosis of proton-exchange membrane fuel cell (PEMFC) under various operating conditions. Its interest is related with the possibility of a non-invasive on-line diagnosis of a commercial fuel cell. A methodology of spectral analysis has been developed and an evaluation of the stationarity of the signal has been proposed. It has been revealed that the spectral signature of fuel cell, is a linear slope with a fractional power dependence 1/fα where α = 2 for different relative humidities and current densities. Experimental results reveal that the electrochemical noise is sensitive to the water management, especially under dry conditions. At RHH2 = 20% and RHair = 20%, spectral analysis shows a three linear slopes signature on the spectrum at low frequency range (f < 100 Hz). This results indicates that power spectral density, calculated thanks to FFT, can be used for the detection of an incorrect fuel cell water balance.

  14. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    NASA Astrophysics Data System (ADS)

    Bonte, M. H. A.; de Boer, A.; Liebregts, R.

    2007-04-01

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the commercial vehicle business and was implemented in combination with Finite Element software to predict and analyse fatigue failure in the frequency domain.

  15. Spectral decompositions of multiple time series: a Bayesian non-parametric approach.

    PubMed

    Macaro, Christian; Prado, Raquel

    2014-01-01

    We consider spectral decompositions of multiple time series that arise in studies where the interest lies in assessing the influence of two or more factors. We write the spectral density of each time series as a sum of the spectral densities associated to the different levels of the factors. We then use Whittle's approximation to the likelihood function and follow a Bayesian non-parametric approach to obtain posterior inference on the spectral densities based on Bernstein-Dirichlet prior distributions. The prior is strategically important as it carries identifiability conditions for the models and allows us to quantify our degree of confidence in such conditions. A Markov chain Monte Carlo (MCMC) algorithm for posterior inference within this class of frequency-domain models is presented.We illustrate the approach by analyzing simulated and real data via spectral one-way and two-way models. In particular, we present an analysis of functional magnetic resonance imaging (fMRI) brain responses measured in individuals who participated in a designed experiment to study pain perception in humans.

  16. Spectral density mapping at multiple magnetic fields suitable for 13C NMR relaxation studies

    NASA Astrophysics Data System (ADS)

    Kadeřávek, Pavel; Zapletal, Vojtěch; Fiala, Radovan; Srb, Pavel; Padrta, Petr; Přecechtělová, Jana Pavlíková; Šoltésová, Mária; Kowalewski, Jozef; Widmalm, Göran; Chmelík, Josef; Sklenář, Vladimír; Žídek, Lukáš

    2016-05-01

    Standard spectral density mapping protocols, well suited for the analysis of 15N relaxation rates, introduce significant systematic errors when applied to 13C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and 13C frequencies can be obtained from data acquired at three magnetic fields for uniformly 13C -labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.

  17. Power Spectral Density Error Analysis of Spectral Subtraction Type of Speech Enhancement Methods

    NASA Astrophysics Data System (ADS)

    Händel, Peter

    2006-12-01

    A theoretical framework for analysis of speech enhancement algorithms is introduced for performance assessment of spectral subtraction type of methods. The quality of the enhanced speech is related to physical quantities of the speech and noise (such as stationarity time and spectral flatness), as well as to design variables of the noise suppressor. The derived theoretical results are compared with the outcome of subjective listening tests as well as successful design strategies, performed by independent research groups.

  18. Processing Raman Spectra of High-Pressure Hydrogen Flames

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    The Raman Code automates the analysis of laser-Raman-spectroscopy data for diagnosis of combustion at high pressure. On the basis of the theory of molecular spectroscopy, the software calculates the rovibrational and pure rotational Raman spectra of H2, O2, N2, and H2O in hydrogen/air flames at given temperatures and pressures. Given a set of Raman spectral data from measurements on a given flame and results from the aforementioned calculations, the software calculates the thermodynamic temperature and number densities of the aforementioned species. The software accounts for collisional spectral-line-broadening effects at pressures up to 60 bar (6 MPa). The line-broadening effects increase with pressure and thereby complicate the analysis. The software also corrects for spectral interference ("cross-talk") among the various chemical species. In the absence of such correction, the cross-talk is a significant source of error in temperatures and number densities. This is the first known comprehensive computer code that, when used in conjunction with a spectral calibration database, can process Raman-scattering spectral data from high-pressure hydrogen/air flames to obtain temperatures accurate to within 10 K and chemical-species number densities accurate to within 2 percent.

  19. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    PubMed

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.

  20. UV spectral shift of benzene in sub- and supercritical water

    NASA Astrophysics Data System (ADS)

    Kometani, Noritsugu; Takemiya, Koji; Yonezawa, Yoshiro; Amita, Fujitsugu; Kajimoto, Okitsugu

    2004-08-01

    UV absorption spectra of benzene have been measured over the wide range of temperature and pressure from the ambient state to the supercritical state ( T = 400 °C and P = 40 MPa). The analysis of the spectral shift of benzene in water relative to that in the gas indicates that at T = 380 and 390 °C the local solvent density around benzene is likely to be depressed below the bulk density for densities near the critical density. It is found that π-hydrogen bond between benzene and water becomes evident with lowering temperature below T = 340 °C.

  1. Studies on spectral analysis of randomly sampled signals: Application to laser velocimetry data

    NASA Technical Reports Server (NTRS)

    Sree, David

    1992-01-01

    Spectral analysis is very useful in determining the frequency characteristics of many turbulent flows, for example, vortex flows, tail buffeting, and other pulsating flows. It is also used for obtaining turbulence spectra from which the time and length scales associated with the turbulence structure can be estimated. These estimates, in turn, can be helpful for validation of theoretical/numerical flow turbulence models. Laser velocimetry (LV) is being extensively used in the experimental investigation of different types of flows, because of its inherent advantages; nonintrusive probing, high frequency response, no calibration requirements, etc. Typically, the output of an individual realization laser velocimeter is a set of randomly sampled velocity data. Spectral analysis of such data requires special techniques to obtain reliable estimates of correlation and power spectral density functions that describe the flow characteristics. FORTRAN codes for obtaining the autocorrelation and power spectral density estimates using the correlation-based slotting technique were developed. Extensive studies have been conducted on simulated first-order spectrum and sine signals to improve the spectral estimates. A first-order spectrum was chosen because it represents the characteristics of a typical one-dimensional turbulence spectrum. Digital prefiltering techniques, to improve the spectral estimates from randomly sampled data were applied. Studies show that the spectral estimates can be increased up to about five times the mean sampling rate.

  2. Cryogenic terahertz spectrum of (+)-methamphetamine hydrochloride and assignment using solid-state density functional theory.

    PubMed

    Hakey, Patrick M; Allis, Damian G; Ouellette, Wayne; Korter, Timothy M

    2009-04-30

    The cryogenic terahertz spectrum of (+)-methamphetamine hydrochloride from 10.0 to 100.0 cm(-1) is presented, as is the complete structural analysis and vibrational assignment of the compound using solid-state density functional theory. This cryogenic investigation reveals multiple spectral features that were not previously reported in room-temperature terahertz studies of the title compound. Modeling of the compound employed eight density functionals utilizing both solid-state and isolated-molecule methods. The results clearly indicate the necessity of solid-state simulations for the accurate assignment of solid-state THz spectra. Assignment of the observed spectral features to specific atomic motions is based on the BP density functional, which provided the best-fit solid-state simulation of the experimental spectrum. The seven experimental spectral features are the result of thirteen infrared-active vibrational modes predicted at a BP/DNP level of theory with more than 90% of the total spectral intensity associated with external crystal vibrations.

  3. Breast density estimation from high spectral and spatial resolution MRI

    PubMed Central

    Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.

    2016-01-01

    Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (p<0.0001) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 (p<0.0001) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590

  4. Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alarcón, J. M.; Hiller Blin, A. N.; Vicente Vacas, M. J.

    2017-05-08

    The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. In this paper, we calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b=O(Mmore » $$-1\\atop{π}$$) using methods of relativistic chiral effective field theory (χ EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M$$2\\atop{π}$$ are calculated using relativistic χEFT including octet and decuplet baryons. The χEFT calculations are extended into the ρ meson mass region using an N/D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. Finally, the approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.« less

  5. Investigation of Techniques for Inventorying Forested Regions. Volume 1: Reflectance Modeling and Empirical Multispectral Analysis of Forest Canopy Components

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Sadowski, F. G.; Malila, W. A.

    1977-01-01

    The author has identified the following significant results. Effects of vegetation density on overall canopy reflectance differed dramatically, depending on spectral band, base material, and vegetation type. For example, reflectance changes caused by variations in vegetation density were hardly apparant for a simulated burned surface in LANDSAT band 5, while large changes occurred in band 7. When increasing densities of tree overstory were placed over understories, intermediate to dense overstories effectively masked the understories and dominated the spectral signatures. Dramatic changes in reflectance occurred for canopies placed on a number of varying topographic positions. Such changes were seen to result in the spectral overlap of some nonforested with densely forested situations.

  6. Power spectral density analysis of the electromyogram from a work task performed in a full pressure suit. Ph.D. Thesis - Houston Univ.; [for determining muscular fatigue

    NASA Technical Reports Server (NTRS)

    Lafevers, E. V.

    1974-01-01

    Surface electromyograms (EMG) taken from three upper torso muscles during a push-pull task were analyzed by a power spectral density technique to determine the utility of the spectral analysis for identifying changes in the EMG caused by muscular fatigue. The results confirmed the value of the frequency analysis for identifying fatigue producing muscular performance. Data revealed reliable differences between muscles in fatigue induced responses to various locations in the reach envelope at which the subjects were required to perform the push-pull exercise, and the differential sensitivity of individual muscles to the various reach positions; i.e., certain reach positions imposed more fatigue related shifts in EMG power than did others. It was found that a pressurized space suit changed the pattern of normal shirtsleeve muscle fatigue responses in all three of the muscles.

  7. An Investigation of the Overlap Between the Statistical Discrete Gust and the Power Spectral Density Analysis Methods

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Pototzky, Anthony S.; Woods, Jessica A.

    1989-01-01

    The results of a NASA investigation of a claimed Overlap between two gust response analysis methods: the Statistical Discrete Gust (SDG) Method and the Power Spectral Density (PSD) Method are presented. The claim is that the ratio of an SDG response to the corresponding PSD response is 10.4. Analytical results presented for several different airplanes at several different flight conditions indicate that such an Overlap does appear to exist. However, the claim was not met precisely: a scatter of up to about 10 percent about the 10.4 factor can be expected.

  8. Molecular docking and spectroscopic investigations aided by density functional theory of Parkinson's drug 2-(3,4-dihydroxyphenyl)ethylamine

    NASA Astrophysics Data System (ADS)

    Sherlin, Y. Sheeba; Vijayakumar, T.; Roy, S. D. D.; Jayakumar, V. S.

    2018-05-01

    Molecular geometry of Parkinson's drug 2-(3,4-Dihydroxyphenyl)ethylamine hydrochloride (Dopamine, DA) has been evaluated and compared with experimental XRD data. Molecular docking and vibrational spectral analysis of DA have been carried out using FT-Raman and FT-IR spectra aided by Density Functional Theory at B3LYP/6-311++G(d,p). The present investigation deals with the analysis of structural and spectral features responsible for drug activities, nature of hydrogen bonding interactions of the molecule and the correlation of Parkinson's nature with its molecular structural features.

  9. Reduced quantum dynamics with arbitrary bath spectral densities: hierarchical equations of motion based on several different bath decomposition schemes.

    PubMed

    Liu, Hao; Zhu, Lili; Bai, Shuming; Shi, Qiang

    2014-04-07

    We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly in the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.

  10. Reduced quantum dynamics with arbitrary bath spectral densities: Hierarchical equations of motion based on several different bath decomposition schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Zhu, Lili; Bai, Shuming

    2014-04-07

    We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly inmore » the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.« less

  11. Spectral analysis of variable-length coded digital signals

    NASA Astrophysics Data System (ADS)

    Cariolaro, G. L.; Pierobon, G. L.; Pupolin, S. G.

    1982-05-01

    A spectral analysis is conducted for a variable-length word sequence by an encoder driven by a stationary memoryless source. A finite-state sequential machine is considered as a model of the line encoder, and the spectral analysis of the encoded message is performed under the assumption that the sourceword sequence is composed of independent identically distributed words. Closed form expressions for both the continuous and discrete parts of the spectral density are derived in terms of the encoder law and sourceword statistics. The jump part exhibits jumps at multiple integers of per lambda(sub 0)T, where lambda(sub 0) is the greatest common divisor of the possible codeword lengths, and T is the symbol period. The derivation of the continuous part can be conveniently factorized, and the theory is applied to the spectral analysis of BnZS and HDBn codes.

  12. QEEG Spectral and Coherence Assessment of Autistic Children in Three Different Experimental Conditions

    ERIC Educational Resources Information Center

    Machado, Calixto; Estévez, Mario; Leisman, Gerry; Melillo, Robert; Rodríguez, Rafael; DeFina, Phillip; Hernández, Adrián; Pérez-Nellar, Jesús; Naranjo, Rolando; Chinchilla, Mauricio; Garófalo, Nicolás; Vargas, José; Beltrán, Carlos

    2015-01-01

    We studied autistics by quantitative EEG spectral and coherence analysis during three experimental conditions: basal, watching a cartoon with audio (V-A), and with muted audio band (VwA). Significant reductions were found for the absolute power spectral density (PSD) in the central region for delta and theta, and in the posterior region for sigma…

  13. Arbitrary-order Hilbert Spectral Analysis and Intermittency in Solar Wind Density Fluctuations

    NASA Astrophysics Data System (ADS)

    Carbone, Francesco; Sorriso-Valvo, Luca; Alberti, Tommaso; Lepreti, Fabio; Chen, Christopher H. K.; Němeček, Zdenek; Šafránková, Jana

    2018-05-01

    The properties of inertial- and kinetic-range solar wind turbulence have been investigated with the arbitrary-order Hilbert spectral analysis method, applied to high-resolution density measurements. Due to the small sample size and to the presence of strong nonstationary behavior and large-scale structures, the classical analysis in terms of structure functions may prove to be unsuccessful in detecting the power-law behavior in the inertial range, and may underestimate the scaling exponents. However, the Hilbert spectral method provides an optimal estimation of the scaling exponents, which have been found to be close to those for velocity fluctuations in fully developed hydrodynamic turbulence. At smaller scales, below the proton gyroscale, the system loses its intermittent multiscaling properties and converges to a monofractal process. The resulting scaling exponents, obtained at small scales, are in good agreement with those of classical fractional Brownian motion, indicating a long-term memory in the process, and the absence of correlations around the spectral-break scale. These results provide important constraints on models of kinetic-range turbulence in the solar wind.

  14. TU-CD-207-01: Characterization of Breast Tissue Composition Using Spectral Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, H; Cho, H; Kumar, N

    Purpose: To investigate the feasibility of characterizing the chemical composition of breast tissue, in terms of water and lipid, by using spectral mammography in simulation and postmortem studies. Methods: Analytical simulations were performed to obtain low- and high-energy signals of breast tissue based on previously reported water, lipid, and protein contents. Dual-energy decomposition was used to characterize the simulated breast tissue into water and lipid basis materials and the measured water density was compared to the known value. In experimental studies, postmortem breasts were imaged with a spectral mammography system based on a scanning multi-slit Si strip photon-counting detector. Low-more » and high-energy images were acquired simultaneously from a single exposure by sorting the recorded photons into the corresponding energy bins. Dual-energy material decomposition of the low- and high-energy images yielded individual pixel measurements of breast tissue composition in terms of water and lipid thicknesses. After imaging, each postmortem breast was chemically decomposed into water, lipid and protein. The water density calculated from chemical analysis was used as the reference gold standard. Correlation of the water density measurements between spectral mammography and chemical analysis was analyzed using linear regression. Results: Both simulation and postmortem studies showed good linear correlation between the decomposed water thickness using spectral mammography and chemical analysis. The slope of the linear fitting function in the simulation and postmortem studies were 1.15 and 1.21, respectively. Conclusion: The results indicate that breast tissue composition, in terms of water and lipid, can be accurately measured using spectral mammography. Quantitative breast tissue composition can potentially be used to stratify patients according to their breast cancer risk.« less

  15. A new approach for the calculation of response spectral density of a linear stationary random multidegree of freedom system

    NASA Astrophysics Data System (ADS)

    Sharan, A. M.; Sankar, S.; Sankar, T. S.

    1982-08-01

    A new approach for the calculation of response spectral density for a linear stationary random multidegree of freedom system is presented. The method is based on modifying the stochastic dynamic equations of the system by using a set of auxiliary variables. The response spectral density matrix obtained by using this new approach contains the spectral densities and the cross-spectral densities of the system generalized displacements and velocities. The new method requires significantly less computation time as compared to the conventional method for calculating response spectral densities. Two numerical examples are presented to compare quantitatively the computation time.

  16. Group Independent Component Analysis (gICA) and Current Source Density (CSD) in the study of EEG in ADHD adults.

    PubMed

    Ponomarev, Valery A; Mueller, Andreas; Candrian, Gian; Grin-Yatsenko, Vera A; Kropotov, Juri D

    2014-01-01

    To investigate the performance of the spectral analysis of resting EEG, Current Source Density (CSD) and group independent components (gIC) in diagnosing ADHD adults. Power spectra of resting EEG, CSD and gIC (19 channels, linked ears reference, eyes open/closed) from 96 ADHD and 376 healthy adults were compared between eyes open and eyes closed conditions, and between groups of subjects. Pattern of differences in gIC and CSD spectral power between conditions was approximately similar, whereas it was more widely spatially distributed for EEG. Size effect (Cohen's d) of differences in gIC and CSD spectral power between groups of subjects was considerably greater than in the case of EEG. Significant reduction of gIC and CSD spectral power depending on conditions was found in ADHD patients. Reducing power in a wide frequency range in the fronto-central areas is a common phenomenon regardless of whether the eyes were open or closed. Spectral power of local EEG activity isolated by gICA or CSD in the fronto-central areas may be a suitable marker for discrimination of ADHD and healthy adults. Spectral analysis of gIC and CSD provides better sensitivity to discriminate ADHD and healthy adults. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Bearing failure detection of micro wind turbine via power spectral density analysis for stator current signals spectrum

    NASA Astrophysics Data System (ADS)

    Mahmood, Faleh H.; Kadhim, Hussein T.; Resen, Ali K.; Shaban, Auday H.

    2018-05-01

    The failure such as air gap weirdness, rubbing, and scrapping between stator and rotor generator arise unavoidably and may cause extremely terrible results for a wind turbine. Therefore, we should pay more attention to detect and identify its cause-bearing failure in wind turbine to improve the operational reliability. The current paper tends to use of power spectral density analysis method of detecting internal race and external race bearing failure in micro wind turbine by estimation stator current signal of the generator. The failure detector method shows that it is well suited and effective for bearing failure detection.

  18. An investigation of the 'Overlap' between the Statistical-Discrete-Gust and the Power-Spectral-Density analysis methods

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Pototzky, Anthony S.; Woods, Jessica A.

    1989-01-01

    This paper presents the results of a NASA investigation of a claimed 'Overlap' between two gust response analysis methods: the Statistical Discrete Gust (SDG) method and the Power Spectral Density (PSD) method. The claim is that the ratio of an SDG response to the corresponding PSD response is 10.4. Analytical results presented in this paper for several different airplanes at several different flight conditions indicate that such an 'Overlap' does appear to exist. However, the claim was not met precisely: a scatter of up to about 10 percent about the 10.4 factor can be expected.

  19. Diagnosis of skin cancer using image processing

    NASA Astrophysics Data System (ADS)

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué; Coronel-Beltrán, Ángel

    2014-10-01

    In this papera methodology for classifying skin cancerin images of dermatologie spots based on spectral analysis using the K-law Fourier non-lineartechnique is presented. The image is segmented and binarized to build the function that contains the interest area. The image is divided into their respective RGB channels to obtain the spectral properties of each channel. The green channel contains more information and therefore this channel is always chosen. This information is point to point multiplied by a binary mask and to this result a Fourier transform is applied written in nonlinear form. If the real part of this spectrum is positive, the spectral density takeunit values, otherwise are zero. Finally the ratio of the sum of the unit values of the spectral density with the sum of values of the binary mask are calculated. This ratio is called spectral index. When the value calculated is in the spectral index range three types of cancer can be detected. Values found out of this range are benign injure.

  20. Individual spectral densities and molecular motion in polycrystalline hexamethylbenzene-d18

    NASA Astrophysics Data System (ADS)

    Hoatson, Gina L.; Vold, Robert L.; Tse, Tak Y.

    1994-04-01

    Methods are described for obtaining the orientation dependence of individual motional spectral densities, J1(ω0) and J2(2ω0), from deuterium spin relaxation experiments on polycrystalline materials. Spectral density measurements provide detailed information in a motional regime too fast to be studied by the two-dimensional (2D) exchange method. Their potential as a source of detailed kinetic and geometric information is illustrated for hexamethylbenzene-d18 (HMB). The relaxation behavior of HMB cannot be explained exclusively by six-site jumps around the C6v axis. Agreement between the experimentally determined spectral densities and simulations is improved if the methyl rotation is explicitly included. At ambient temperature the experimental data are best fitted with the simultaneous jump rates, k6=3.85×108 s-1 and k3=5.0×1011 s-1. This is significantly different from the rate determined using a simple six-site jump model, k6=3.9×109 s-1. Geometric distortions of the methyl rotation axes can account for the observed motionally averaged electric field gradient tensor. When these distortions are included in analysis of the spectral density data, there is a small, but significant, improvement in the fit. k3 is unchanged and the best fit k6 is reduced to 2.2×108 s-1, with distortions out of plane by δ=2.5° and in plane ɛ=ɛ'=1.202.

  1. Conceptual DFT analysis of the fragility spectra of atoms along the minimum energy reaction coordinate.

    PubMed

    Ordon, Piotr; Komorowski, Ludwik; Jedrzejewski, Mateusz

    2017-10-07

    Theoretical justification has been provided to the method for monitoring the sequence of chemical bonds' rearrangement along a reaction path, by tracing the evolution of the diagonal elements of the Hessian matrix. Relations between the divergences of Hellman-Feynman forces and the energy and electron density derivatives have been demonstrated. By the proof presented on the grounds of the conceptual density functional theory formalism, the spectral amplitude observed on the atomic fragility spectra [L. Komorowski et al., Phys. Chem. Chem. Phys. 18, 32658 (2016)] reflects selectively the electron density modifications in bonds of an atom. In fact the spectral peaks for an atom reveal changes of the electron density occurring with bonds creation, breaking, or varying with the reaction progress.

  2. Conceptual DFT analysis of the fragility spectra of atoms along the minimum energy reaction coordinate

    NASA Astrophysics Data System (ADS)

    Ordon, Piotr; Komorowski, Ludwik; Jedrzejewski, Mateusz

    2017-10-01

    Theoretical justification has been provided to the method for monitoring the sequence of chemical bonds' rearrangement along a reaction path, by tracing the evolution of the diagonal elements of the Hessian matrix. Relations between the divergences of Hellman-Feynman forces and the energy and electron density derivatives have been demonstrated. By the proof presented on the grounds of the conceptual density functional theory formalism, the spectral amplitude observed on the atomic fragility spectra [L. Komorowski et al., Phys. Chem. Chem. Phys. 18, 32658 (2016)] reflects selectively the electron density modifications in bonds of an atom. In fact the spectral peaks for an atom reveal changes of the electron density occurring with bonds creation, breaking, or varying with the reaction progress.

  3. Spectral density method to Anderson-Holstein model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chebrolu, Narasimha Raju, E-mail: narasimharaju.phy@gmail.com; Chatterjee, Ashok

    Two-parameter spectral density function of a magnetic impurity electron in a non-magnetic metal is calculated within the framework of the Anderson-Holstein model using the spectral density approximation method. The effect of electron-phonon interaction on the spectral function is investigated.

  4. GEOS-2 C-band radar system project. Spectral analysis as related to C-band radar data analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Work performed on spectral analysis of data from the C-band radars tracking GEOS-2 and on the development of a data compaction method for the GEOS-2 C-band radar data is described. The purposes of the spectral analysis study were to determine the optimum data recording and sampling rates for C-band radar data and to determine the optimum method of filtering and smoothing the data. The optimum data recording and sampling rate is defined as the rate which includes an optimum compromise between serial correlation and the effects of frequency folding. The goal in development of a data compaction method was to reduce to a minimum the amount of data stored, while maintaining all of the statistical information content of the non-compacted data. A digital computer program for computing estimates of the power spectral density function of sampled data was used to perform the spectral analysis study.

  5. Ocean wavenumber estimation from wave-resolving time series imagery

    USGS Publications Warehouse

    Plant, N.G.; Holland, K.T.; Haller, M.C.

    2008-01-01

    We review several approaches that have been used to estimate ocean surface gravity wavenumbers from wave-resolving remotely sensed image sequences. Two fundamentally different approaches that utilize these data exist. A power spectral density approach identifies wavenumbers where image intensity variance is maximized. Alternatively, a cross-spectral correlation approach identifies wavenumbers where intensity coherence is maximized. We develop a solution to the latter approach based on a tomographic analysis that utilizes a nonlinear inverse method. The solution is tolerant to noise and other forms of sampling deficiency and can be applied to arbitrary sampling patterns, as well as to full-frame imagery. The solution includes error predictions that can be used for data retrieval quality control and for evaluating sample designs. A quantitative analysis of the intrinsic resolution of the method indicates that the cross-spectral correlation fitting improves resolution by a factor of about ten times as compared to the power spectral density fitting approach. The resolution analysis also provides a rule of thumb for nearshore bathymetry retrievals-short-scale cross-shore patterns may be resolved if they are about ten times longer than the average water depth over the pattern. This guidance can be applied to sample design to constrain both the sensor array (image resolution) and the analysis array (tomographic resolution). ?? 2008 IEEE.

  6. Determining cantilever stiffness from thermal noise.

    PubMed

    Lübbe, Jannis; Temmen, Matthias; Rahe, Philipp; Kühnle, Angelika; Reichling, Michael

    2013-01-01

    We critically discuss the extraction of intrinsic cantilever properties, namely eigenfrequency f n , quality factor Q n and specifically the stiffness k n of the nth cantilever oscillation mode from thermal noise by an analysis of the power spectral density of displacement fluctuations of the cantilever in contact with a thermal bath. The practical applicability of this approach is demonstrated for several cantilevers with eigenfrequencies ranging from 50 kHz to 2 MHz. As such an analysis requires a sophisticated spectral analysis, we introduce a new method to determine k n from a spectral analysis of the demodulated oscillation signal of the excited cantilever that can be performed in the frequency range of 10 Hz to 1 kHz regardless of the eigenfrequency of the cantilever. We demonstrate that the latter method is in particular useful for noncontact atomic force microscopy (NC-AFM) where the required simple instrumentation for spectral analysis is available in most experimental systems.

  7. Highly sensitive index of sympathetic activity based on time-frequency spectral analysis of electrodermal activity.

    PubMed

    Posada-Quintero, Hugo F; Florian, John P; Orjuela-Cañón, Álvaro D; Chon, Ki H

    2016-09-01

    Time-domain indices of electrodermal activity (EDA) have been used as a marker of sympathetic tone. However, they often show high variation between subjects and low consistency, which has precluded their general use as a marker of sympathetic tone. To examine whether power spectral density analysis of EDA can provide more consistent results, we recently performed a variety of sympathetic tone-evoking experiments (43). We found significant increase in the spectral power in the frequency range of 0.045 to 0.25 Hz when sympathetic tone-evoking stimuli were induced. The sympathetic tone assessed by the power spectral density of EDA was found to have lower variation and more sensitivity for certain, but not all, stimuli compared with the time-domain analysis of EDA. We surmise that this lack of sensitivity in certain sympathetic tone-inducing conditions with time-invariant spectral analysis of EDA may lie in its inability to characterize time-varying dynamics of the sympathetic tone. To overcome the disadvantages of time-domain and time-invariant power spectral indices of EDA, we developed a highly sensitive index of sympathetic tone, based on time-frequency analysis of EDA signals. Its efficacy was tested using experiments designed to elicit sympathetic dynamics. Twelve subjects underwent four tests known to elicit sympathetic tone arousal: cold pressor, tilt table, stand test, and the Stroop task. We hypothesize that a more sensitive measure of sympathetic control can be developed using time-varying spectral analysis. Variable frequency complex demodulation, a recently developed technique for time-frequency analysis, was used to obtain spectral amplitudes associated with EDA. We found that the time-varying spectral frequency band 0.08-0.24 Hz was most responsive to stimulation. Spectral power for frequencies higher than 0.24 Hz were determined to be not related to the sympathetic dynamics because they comprised less than 5% of the total power. The mean value of time-varying spectral amplitudes in the frequency band 0.08-0.24 Hz were used as the index of sympathetic tone, termed TVSymp. TVSymp was found to be overall the most sensitive to the stimuli, as evidenced by a low coefficient of variation (0.54), and higher consistency (intra-class correlation, 0.96) and sensitivity (Youden's index > 0.75), area under the receiver operating characteristic (ROC) curve (>0.8, accuracy > 0.88) compared with time-domain and time-invariant spectral indices, including heart rate variability. Copyright © 2016 the American Physiological Society.

  8. Improving the Accuracy of Mapping Urban Vegetation Carbon Density by Combining Shadow Remove, Spectral Unmixing Analysis and Spatial Modeling

    NASA Astrophysics Data System (ADS)

    Qie, G.; Wang, G.; Wang, M.

    2016-12-01

    Mixed pixels and shadows due to buildings in urban areas impede accurate estimation and mapping of city vegetation carbon density. In most of previous studies, these factors are often ignored, which thus result in underestimation of city vegetation carbon density. In this study we presented an integrated methodology to improve the accuracy of mapping city vegetation carbon density. Firstly, we applied a linear shadow remove analysis (LSRA) on remotely sensed Landsat 8 images to reduce the shadow effects on carbon estimation. Secondly, we integrated a linear spectral unmixing analysis (LSUA) with a linear stepwise regression (LSR), a logistic model-based stepwise regression (LMSR) and k-Nearest Neighbors (kNN), and utilized and compared the integrated models on shadow-removed images to map vegetation carbon density. This methodology was examined in Shenzhen City of Southeast China. A data set from a total of 175 sample plots measured in 2013 and 2014 was used to train the models. The independent variables statistically significantly contributing to improving the fit of the models to the data and reducing the sum of squared errors were selected from a total of 608 variables derived from different image band combinations and transformations. The vegetation fraction from LSUA was then added into the models as an important independent variable. The estimates obtained were evaluated using a cross-validation method. Our results showed that higher accuracies were obtained from the integrated models compared with the ones using traditional methods which ignore the effects of mixed pixels and shadows. This study indicates that the integrated method has great potential on improving the accuracy of urban vegetation carbon density estimation. Key words: Urban vegetation carbon, shadow, spectral unmixing, spatial modeling, Landsat 8 images

  9. Spectral density of mixtures of random density matrices for qubits

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Wang, Jiamei; Chen, Zhihua

    2018-06-01

    We derive the spectral density of the equiprobable mixture of two random density matrices of a two-level quantum system. We also work out the spectral density of mixture under the so-called quantum addition rule. We use the spectral densities to calculate the average entropy of mixtures of random density matrices, and show that the average entropy of the arithmetic-mean-state of n qubit density matrices randomly chosen from the Hilbert-Schmidt ensemble is never decreasing with the number n. We also get the exact value of the average squared fidelity. Some conjectures and open problems related to von Neumann entropy are also proposed.

  10. Deep, Broadband Spectral Line Surveys of Molecule-rich Interstellar Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widicus Weaver, Susanna L.; Laas, Jacob C.; Zou, Luyao

    2017-09-01

    Spectral line surveys are an indispensable tool for exploring the physical and chemical evolution of astrophysical environments due to the vast amount of data that can be obtained in a relatively short amount of time. We present deep, broadband spectral line surveys of 30 interstellar clouds using two broadband λ  = 1.3 mm receivers at the Caltech Submillimeter Observatory. This information can be used to probe the influence of physical environment on molecular complexity. We observed a wide variety of sources to examine the relative abundances of organic molecules as they relate to the physical properties of the source (i.e., temperature,more » density, dynamics, etc.). The spectra are highly sensitive, with noise levels ≤25 mK at a velocity resolution of ∼0.35 km s{sup −1}. In the initial analysis presented here, column densities and rotational temperatures have been determined for the molecular species that contribute significantly to the spectral line density in this wavelength regime. We present these results and discuss their implications for complex molecule formation in the interstellar medium.« less

  11. Active spectroscopic measurements of the bulk deuterium properties in the DIII-D tokamak (invited).

    PubMed

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Heidbrink, W W; Muñoz Burgos, J M; Pablant, N A; Solomon, W M; Van Zeeland, M A

    2012-10-01

    The neutral-beam induced D(α) emission spectrum contains a wealth of information such as deuterium ion temperature, toroidal rotation, density, beam emission intensity, beam neutral density, and local magnetic field strength magnitude |B| from the Stark-split beam emission spectrum, and fast-ion D(α) emission (FIDA) proportional to the beam-injected fast ion density. A comprehensive spectral fitting routine which accounts for all photoemission processes is employed for the spectral analysis. Interpretation of the measurements to determine physically relevant plasma parameters is assisted by the use of an optimized viewing geometry and forward modeling of the emission spectra using a Monte-Carlo 3D simulation code.

  12. Chromophore-Dependent Intramolecular Exciton-Vibrational Coupling in the FMO Complex: Quantification and Importance for Exciton Dynamics.

    PubMed

    Padula, Daniele; Lee, Myeong H; Claridge, Kirsten; Troisi, Alessandro

    2017-11-02

    In this paper, we adopt an approach suitable for monitoring the time evolution of the intramolecular contribution to the spectral density of a set of identical chromophores embedded in their respective environments. We apply the proposed method to the Fenna-Matthews-Olson (FMO) complex, with the objective to quantify the differences among site-dependent spectral densities and the impact of such differences on the exciton dynamics of the system. Our approach takes advantage of the vertical gradient approximation to reduce the computational demands of the normal modes analysis. We show that the region of the spectral density that is believed to strongly influence the exciton dynamics changes significantly in the timescale of tens of nanoseconds. We then studied the impact of the intramolecular vibrations on the exciton dynamics by considering a model of FMO in a vibronic basis and neglecting the interaction with the environment to isolate the role of the intramolecular exciton-vibration coupling. In agreement with the assumptions in the literature, we demonstrate that high frequency modes at energy much larger than the excitonic energy splitting have negligible influence on exciton dynamics despite the large exciton-vibration coupling. We also find that the impact of including the site-dependent spectral densities on exciton dynamics is not very significant, indicating that it may be acceptable to apply the same spectral density on all sites. However, care needs to be taken for the description of the exciton-vibrational coupling in the low frequency part of intramolecular modes because exciton dynamics is more susceptible to low frequency modes despite their small Huang-Rhys factors.

  13. Verification of Loop Diagnostics

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.

    2014-01-01

    Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.

  14. Prediction Analysis for Measles Epidemics

    NASA Astrophysics Data System (ADS)

    Sumi, Ayako; Ohtomo, Norio; Tanaka, Yukio; Sawamura, Sadashi; Olsen, Lars Folke; Kobayashi, Nobumichi

    2003-12-01

    A newly devised procedure of prediction analysis, which is a linearized version of the nonlinear least squares method combined with the maximum entropy spectral analysis method, was proposed. This method was applied to time series data of measles case notification in several communities in the UK, USA and Denmark. The dominant spectral lines observed in each power spectral density (PSD) can be safely assigned as fundamental periods. The optimum least squares fitting (LSF) curve calculated using these fundamental periods can essentially reproduce the underlying variation of the measles data. An extension of the LSF curve can be used to predict measles case notification quantitatively. Some discussions including a predictability of chaotic time series are presented.

  15. On the joint spectral density of bivariate random sequences. Thesis Technical Report No. 21

    NASA Technical Reports Server (NTRS)

    Aalfs, David D.

    1995-01-01

    For univariate random sequences, the power spectral density acts like a probability density function of the frequencies present in the sequence. This dissertation extends that concept to bivariate random sequences. For this purpose, a function called the joint spectral density is defined that represents a joint probability weighing of the frequency content of pairs of random sequences. Given a pair of random sequences, the joint spectral density is not uniquely determined in the absence of any constraints. Two approaches to constraining the sequences are suggested: (1) assume the sequences are the margins of some stationary random field, (2) assume the sequences conform to a particular model that is linked to the joint spectral density. For both approaches, the properties of the resulting sequences are investigated in some detail, and simulation is used to corroborate theoretical results. It is concluded that under either of these two constraints, the joint spectral density can be computed from the non-stationary cross-correlation.

  16. Real-time spectral analysis of HRV signals: an interactive and user-friendly PC system.

    PubMed

    Basano, L; Canepa, F; Ottonello, P

    1998-01-01

    We present a real-time system, built around a PC and a low-cost data acquisition board, for the spectral analysis of the heart rate variability signal. The Windows-like operating environment on which it is based makes the computer program very user-friendly even for non-specialized personnel. The Power Spectral Density is computed through the use of a hybrid method, in which a classical FFT analysis follows an autoregressive finite-extension of data; the stationarity of the sequence is continuously checked. The use of this algorithm gives a high degree of robustness of the spectral estimation. Moreover, always in real time, the FFT of every data block is computed and displayed in order to corroborate the results as well as to allow the user to interactively choose a proper AR model order.

  17. Shell stability and conditions analyzed using a new method of extracting shell areal density maps from spectrally resolved images of direct-drive inertial confinement fusion implosions

    DOE PAGES

    Johns, H. M.; Mancini, R. C.; Nagayama, T.; ...

    2016-01-25

    In warm target direct-drive inertial confinement fusion implosion experiments performed at the OMEGA laser facility, plastic micro-balloons doped with a titanium tracer layer in the shell and filled with deuterium gas were imploded using a low-adiabat shaped laser pulse. Continuum radiation emitted in the core is transmitted through the tracer layer and the resulting spectrum recorded with a gated multi-monochromatic x-ray imager (MMI). Titanium K-shell line absorption spectra observed in the data are due to transitions in L-shell titanium ions driven by the backlighting continuum. The MMI data consist of an array of spectrally resolved images of the implosion. Thesemore » 2-D space-resolved titanium spectral features constrain the plasma conditions and areal density of the titanium doped region of the shell. The MMI data were processed to obtain narrow-band images and space resolved spectra of titanium spectral features. Shell areal density maps, ρL(x,y), extracted using a new method using both narrow-band images and space resolved spectra are confirmed to be consistent within uncertainties. We report plasma conditions in the titanium-doped region of electron temperature (Te) = 400 ± 28 eV, electron number density (N e) = 8.5 × 10 24 ± 2.5 × 10 24 cm –3, and average areal density = 86 ± 7 mg/cm 2. Fourier analysis of areal density maps reveals shell modulations caused by hydrodynamic instability growth near the fuel-shell interface in the deceleration phase. We observe significant structure in modes l = 2–9, dominated by l = 2. We extract a target breakup fraction of 7.1 ± 1.5% from our Fourier analysis. Furthermore, a new method for estimating mix width is evaluated against existing literature and our target breakup fraction. We estimate a mix width of 10.5 ±1 μm.« less

  18. New Methods of Spectral-Density Based Graph Construction and Their Application to Hyperspectral Image Analysis

    NASA Astrophysics Data System (ADS)

    Stevens, Jeffrey

    The past decade has seen the emergence of many hyperspectral image (HSI) analysis algorithms based on graph theory and derived manifold-coordinates. Yet, despite the growing number of algorithms, there has been limited study of the graphs constructed from spectral data themselves. Which graphs are appropriate for various HSI analyses--and why? This research aims to begin addressing these questions as the performance of graph-based techniques is inextricably tied to the graphical model constructed from the spectral data. We begin with a literature review providing a survey of spectral graph construction techniques currently used by the hyperspectral community, starting with simple constructs demonstrating basic concepts and then incrementally adding components to derive more complex approaches. Throughout this development, we discuss algorithm advantages and disadvantages for different types of hyperspectral analysis. A focus is provided on techniques influenced by spectral density through which the concept of community structure arises. Through the use of simulated and real HSI data, we demonstrate density-based edge allocation produces more uniform nearest neighbor lists than non-density based techniques through increasing the number of intracluster edges, facilitating higher k-nearest neighbor (k-NN) classification performance. Imposing the common mutuality constraint to symmetrify adjacency matrices is demonstrated to be beneficial in most circumstances, especially in rural (less cluttered) scenes. Many complex adaptive edge-reweighting techniques are shown to slightly degrade nearest-neighbor list characteristics. Analysis suggests this condition is possibly attributable to the validity of characterizing spectral density by a single variable representing data scale for each pixel. Additionally, it is shown that imposing mutuality hurts the performance of adaptive edge-allocation techniques or any technique that aims to assign a low number of edges (<10) to any pixel. A simple k bias addresses this problem. Many of the adaptive edge-reweighting techniques are based on the concept of codensity, so we explore codensity properties as they relate to density-based edge reweighting. We find that codensity may not be the best estimator of local scale due to variations in cluster density, so we introduce and compare two inherently density-weighted graph construction techniques from the data mining literature: shared nearest neighbors (SNN) and mutual proximity (MP). MP and SNN are not reliant upon a codensity measure, hence are not susceptible to its shortcomings. Neither has been used for hyperspectral analyses, so this presents the first study of these techniques on HSI data. We demonstrate MP and SNN can offer better performance, but in general none of the reweighting techniques improve the quality of these spectral graphs in our neighborhood structure tests. As such, these complex adaptive edge-reweighting techniques may need to be modified to increase their effectiveness. During this investigation, we probe deeper into properties of high-dimensional data and introduce the concept of concentration of measure (CoM)--the degradation in the efficacy of many common distance measures with increasing dimensionality--as it relates to spectral graph construction. CoM exists in pairwise distances between HSI pixels, but not to the degree experienced in random data of the same extrinsic dimension; a characteristic we demonstrate is due to the rich correlation and cluster structure present in HSI data. CoM can lead to hubness--a condition wherein some nodes have short distances (high similarities) to an exceptionally large number of nodes. We study hub presence in 49 HSI datasets of varying resolutions, altitudes, and spectral bands to demonstrate hubness effects are negligible in a k-NN classification example (generalized counting scenarios), but we note its impact on methods that use edge weights to derive manifold coordinates or splitting clusters based on spectral graph theory requires more investigation. Many of these new graph-related quantities can be exploited to demonstrate new techniques for HSI classification and anomaly detection. We present an initial exploration into this relatively new and exciting field based on an enhanced Schroedinger Eigenmap classification example and compare results to the current state-of-the-art approach. We produce equivalent results, but demonstrate different types of misclassifications, opening the door to combine the best of both approaches to achieve truly superior performance. A separate less mature hubness-assisted anomaly detector (HAAD) is also presented.

  19. Different techniques of multispectral data analysis for vegetation fraction retrieval

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Georgiev, Georgi

    2012-07-01

    Vegetation monitoring is one of the most important applications of remote sensing technologies. In respect to farmlands, the assessment of crop condition constitutes the basis of growth, development, and yield processes monitoring. Plant condition is defined by a set of biometric variables, such as density, height, biomass amount, leaf area index, and etc. The canopy cover fraction is closely related to these variables, and is state-indicative of the growth process. At the same time it is a defining factor of the soil-vegetation system spectral signatures. That is why spectral mixtures decomposition is a primary objective in remotely sensed data processing and interpretation, specifically in agricultural applications. The actual usefulness of the applied methods depends on their prediction reliability. The goal of this paper is to present and compare different techniques for quantitative endmember extraction from soil-crop patterns reflectance. These techniques include: linear spectral unmixing, two-dimensional spectra analysis, spectral ratio analysis (vegetation indices), spectral derivative analysis (red edge position), colorimetric analysis (tristimulus values sum, chromaticity coordinates and dominant wavelength). The objective is to reveal their potential, accuracy and robustness for plant fraction estimation from multispectral data. Regression relationships have been established between crop canopy cover and various spectral estimators.

  20. An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks

    NASA Astrophysics Data System (ADS)

    Zhao, Peng-yuan; Huang, Xiao-ping

    2018-03-01

    Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.

  1. Weld defect identification in friction stir welding using power spectral density

    NASA Astrophysics Data System (ADS)

    Das, Bipul; Pal, Sukhomay; Bag, Swarup

    2018-04-01

    Power spectral density estimates are powerful in extraction of useful information retained in signal. In the current research work classical periodogram and Welch periodogram algorithms are used for the estimation of power spectral density for vertical force signal and transverse force signal acquired during friction stir welding process. The estimated spectral densities reveal notable insight in identification of defects in friction stir welded samples. It was observed that higher spectral density against each process signals is a key indication in identifying the presence of possible internal defects in the welded samples. The developed methodology can offer preliminary information regarding presence of internal defects in friction stir welded samples can be best accepted as first level of safeguard in monitoring the friction stir welding process.

  2. Application of HF Doppler measurements for the investigation of internal atmospheric waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Petrova, I. R.; Bochkarev, V. V.; Latipov, R. R.

    2009-09-01

    We present results of the spectral analysis of data series of Doppler frequency shifted signals reflected from the ionosphere, using experimental data received at Kazan University, Russia. Spectra of variations with periods from 1 min to 60 days have been calculated and analyzed for different scales of periods. The power spectral density for spring and winter differs by a factor of 3-4. Local maxima of variation amplitude are detected, which are statistically significant. The periods of these amplitude increases range from 6 to 12 min for winter, and from 24 to 48 min for autumn. Properties of spectra for variations with the periods of 1-72 h have been analyzed. The maximum of variation intensity for all seasons and frequencies corresponds to the period of 24 h. Spectra of variations with periods from 3 to 60 days have been calculated. The maxima periods of power spectral density have been detected by the MUSIC method for the high spectral resolution. The detected periods correspond to planetary wave periods. Analysis of spectra for days with different level of geomagnetic activity shows that the intensity of variations for days with a high level of geomagnetic activity is higher.

  3. Protein Dynamics from NMR: The Slowly Relaxing Local Structure Analysis Compared with Model-Free Analysis

    PubMed Central

    Meirovitch, Eva; Shapiro, Yury E.; Polimeno, Antonino; Freed, Jack H.

    2009-01-01

    15N-1H spin relaxation is a powerful method for deriving information on protein dynamics. The traditional method of data analysis is model-free (MF), where the global and local N-H motions are independent and the local geometry is simplified. The common MF analysis consists of fitting single-field data. The results are typically field-dependent, and multi-field data cannot be fit with standard fitting schemes. Cases where known functional dynamics has not been detected by MF were identified by us and others. Recently we applied to spin relaxation in proteins the Slowly Relaxing Local Structure (SRLS) approach which accounts rigorously for mode-mixing and general features of local geometry. SRLS was shown to yield MF in appropriate asymptotic limits. We found that the experimental spectral density corresponds quite well to the SRLS spectral density. The MF formulae are often used outside of their validity ranges, allowing small data sets to be force-fitted with good statistics but inaccurate best-fit parameters. This paper focuses on the mechanism of force-fitting and its implications. It is shown that MF force-fits the experimental data because mode-mixing, the rhombic symmetry of the local ordering and general features of local geometry are not accounted for. Combined multi-field multi-temperature data analyzed by MF may lead to the detection of incorrect phenomena, while conformational entropy derived from MF order parameters may be highly inaccurate. On the other hand, fitting to more appropriate models can yield consistent physically insightful information. This requires that the complexity of the theoretical spectral densities matches the integrity of the experimental data. As shown herein, the SRLS densities comply with this requirement. PMID:16821820

  4. A comparison of digital multi-spectral imagery versus conventional photography for mapping seagrass in Indian River Lagoon, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virnstein, R.; Tepera, M.; Beazley, L.

    1997-06-01

    A pilot study is very briefly summarized in the article. The study tested the potential of multi-spectral digital imagery for discrimination of seagrass densities and species, algae, and bottom types. Imagery was obtained with the Compact Airborne Spectral Imager (casi) and two flight lines flown with hyper-spectral mode. The photogrammetric method used allowed interpretation of the highest quality product, eliminating limitations caused by outdated or poor quality base maps and the errors associated with transfer of polygons. Initial image analysis indicates that the multi-spectral imagery has several advantages, including sophisticated spectral signature recognition and classification, ease of geo-referencing, and rapidmore » mosaicking.« less

  5. On the use of the noncentral chi-square density function for the distribution of helicopter spectral estimates

    NASA Technical Reports Server (NTRS)

    Garber, Donald P.

    1993-01-01

    A probability density function for the variability of ensemble averaged spectral estimates from helicopter acoustic signals in Gaussian background noise was evaluated. Numerical methods for calculating the density function and for determining confidence limits were explored. Density functions were predicted for both synthesized and experimental data and compared with observed spectral estimate variability.

  6. Low Streamflow Forcasting using Minimum Relative Entropy

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  7. Mangrove canopy density analysis using Sentinel-2A imagery satellite data

    NASA Astrophysics Data System (ADS)

    Wachid, M. N.; Hapsara, R. P.; Cahyo, R. D.; Wahyu, G. N.; Syarif, A. M.; Umarhadi, D. A.; Fitriani, A. N.; Ramadhanningrum, D. P.; Widyatmanti, W.

    2017-06-01

    Teluk Jor has alluvium surface sediment that came from volcanic materials. Sea wave that relatively calm and the closed beach shape support the existence of mangrove forest at Teluk Jor. Sentinel-2A imagery has a good spatial and spectral resolution for mangrove density study. The regression between samples and the NDVI values of Sentinel-2A used to analyze the mangrove canopy density. Mangrove canopy density was identified using field survey with transect method. The regression analysis shows field data and NDVI value has correlation R=0.7739 and coefficient of determination R2=0.5989. The result of the analysis shows area of low density 397,900 m2, moderate density 336,200 m2, the high density has 110,300 m2 and very high density has 500 m2. This research also found that mangrove genus in Teluk Jor consists of Rhizopora, Ceriops, Aegiceras and Sonneratia.

  8. Radiometric analysis of photographic data by the effective exposure method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantine, B J

    1972-04-01

    The effective exposure method provides for radiometric analysis of photographic data. A three-dimensional model, where density is a function of energy and wavelength, is postulated to represent the film response function. Calibration exposures serve to eliminate the other factors which affect image density. The effective exposure causing an image can be determined by comparing the image density with that of a calibration exposure. If the relative spectral distribution of the source is known, irradiance and/or radiance can be unfolded from the effective exposure expression.

  9. SHJAR Jet Noise Data and Power Spectral Laws

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2009-01-01

    High quality jet noise spectral data measured at the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent and convergent-divergent axisymmetric nozzles. The measured spectral data are shown in narrow band and cover 8193 equally spaced points in a typical Strouhal number range of 0.0 to 10.0. The measured data are reported as lossless (i.e., atmospheric attenuation is added to measurements), and at 24 equally spaced angles (50deg to 165deg) on a 100-diameter (200-in.) arc. Following the work of Viswanathan, velocity power factors are evaluated using a least squares fit on spectral power density as a function of jet temperature and observer angle. The goodness of the fit and the confidence margins for the two regression parameters are studied at each angle, and alternative relationships are proposed to improve the spectral collapse when certain conditions are met. As an immediate application of the velocity power laws, spectral density in shockcontaining jets are decomposed into components attributed to jet mixing noise and shock noise. From this analysis, jet noise prediction tools can be developed with different spectral components derived from different physics.

  10. Herschel observations of extraordinary sources: Analysis of the HIFI 1.2 THz wide spectral survey toward orion KL. I. method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crockett, Nathan R.; Bergin, Edwin A.; Neill, Justin L.

    2014-06-01

    We present a comprehensive analysis of a broadband spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This survey spans a frequency range from 480 to 1907 GHz at a resolution of 1.1 MHz. These observations thus encompass the largest spectral coverage ever obtained toward this high-mass star-forming region in the submillimeter with high spectral resolution and include frequencies >1 THz, where the Earth's atmosphere prevents observations from the ground. In all, we detect emission from 39 molecules (79more » isotopologues). Combining this data set with ground-based millimeter spectroscopy obtained with the IRAM 30 m telescope, we model the molecular emission from the millimeter to the far-IR using the XCLASS program, which assumes local thermodynamic equilibrium (LTE). Several molecules are also modeled with the MADEX non-LTE code. Because of the wide frequency coverage, our models are constrained by transitions over an unprecedented range in excitation energy. A reduced χ{sup 2} analysis indicates that models for most species reproduce the observed emission well. In particular, most complex organics are well fit by LTE implying gas densities are high (>10{sup 6} cm{sup –3}) and excitation temperatures and column densities are well constrained. Molecular abundances are computed using H{sub 2} column densities also derived from the HIFI survey. The distribution of rotation temperatures, T {sub rot}, for molecules detected toward the hot core is significantly wider than the compact ridge, plateau, and extended ridge T {sub rot} distributions, indicating the hot core has the most complex thermal structure.« less

  11. Cosine-Gaussian Schell-model sources.

    PubMed

    Mei, Zhangrong; Korotkova, Olga

    2013-07-15

    We introduce a new class of partially coherent sources of Schell type with cosine-Gaussian spectral degree of coherence and confirm that such sources are physically genuine. Further, we derive the expression for the cross-spectral density function of a beam generated by the novel source propagating in free space and analyze the evolution of the spectral density and the spectral degree of coherence. It is shown that at sufficiently large distances from the source the degree of coherence of the propagating beam assumes Gaussian shape while the spectral density takes on the dark-hollow profile.

  12. The difference between two random mixed quantum states: exact and asymptotic spectral analysis

    NASA Astrophysics Data System (ADS)

    Mejía, José; Zapata, Camilo; Botero, Alonso

    2017-01-01

    We investigate the spectral statistics of the difference of two density matrices, each of which is independently obtained by partially tracing a random bipartite pure quantum state. We first show how a closed-form expression for the exact joint eigenvalue probability density function for arbitrary dimensions can be obtained from the joint probability density function of the diagonal elements of the difference matrix, which is straightforward to compute. Subsequently, we use standard results from free probability theory to derive a relatively simple analytic expression for the asymptotic eigenvalue density (AED) of the difference matrix ensemble, and using Carlson’s theorem, we obtain an expression for its absolute moments. These results allow us to quantify the typical asymptotic distance between the two random mixed states using various distance measures; in particular, we obtain the almost sure asymptotic behavior of the operator norm distance and the trace distance.

  13. Artifacts Of Spectral Analysis Of Instrument Readings

    NASA Technical Reports Server (NTRS)

    Wise, James H.

    1995-01-01

    Report presents experimental and theoretical study of some of artifacts introduced by processing outputs of two nominally identical low-frequency-reading instruments; high-sensitivity servo-accelerometers mounted together and operating, in conjunction with signal-conditioning circuits, as seismometers. Processing involved analog-to-digital conversion with anti-aliasing filtering, followed by digital processing including frequency weighting and computation of different measures of power spectral density (PSD).

  14. Dynamic Power Spectral Analysis of Solar Measurements from Photospheric, Chromospheric, and Coronal Sources

    NASA Technical Reports Server (NTRS)

    Bouwer, S. D.; Pap, J.; Donnelly, R. F.

    1990-01-01

    An important aspect in the power spectral analysis of solar variability is the quasistationary and quasiperiodic nature of solar periodicities. In other words, the frequency, phase, and amplitude of solar periodicities vary on time scales ranging from active region lifetimes to solar cycle time scales. Here, researchers employ a dynamic, or running, power spectral density analysis to determine many periodicities and their time-varying nature in the projected area of active sunspot groups (S sub act). The Solar Maximum Mission/Active Cavity Radiometer Irradiance Monitor (SMM/ACRIM) total solar irradiance (S), the Nimbus-7 MgII center-to-wing ratio (R (MgII sub c/w)), the Ottawa 10.7 cm flux (F sub 10.7), and the GOES background x ray flux (X sub b) for the maximum, descending, and minimum portions of solar cycle 21 (i.e., 1980 to 1986) are used. The technique dramatically illustrates several previously unrecognized periodicities. For example, a relatively stable period at about 51 days has been found in those indices which are related to emerging magnetic fields. The majority of solar periodicities, particularly around 27, 150 and 300 days, are quasiperiodic because they vary in amplitude and frequency throughout the solar cycle. Finally, it is shown that there are clear differences between the power spectral densities of solar measurements from photospheric, chromospheric, and coronal sources.

  15. Estimation of spectral kurtosis

    NASA Astrophysics Data System (ADS)

    Sutawanir

    2017-03-01

    Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to visualize the pattern of each fault. Keywords: frequency domain Fourier transform, spectral kurtosis, bearing fault

  16. 47 CFR 90.1215 - Power limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... peak power spectral density of 21 dBm per one MHz. High power devices using channel bandwidths other than those listed above are permitted; however, they are limited to peak power spectral density of 21 d... conducted output power and the peak power spectral density should be reduced by the amount in decibels that...

  17. Herschel/HIFI spectral line survey of the Orion Bar. Temperature and density differentiation near the PDR surface

    NASA Astrophysics Data System (ADS)

    Nagy, Z.; Choi, Y.; Ossenkopf-Okada, V.; van der Tak, F. F. S.; Bergin, E. A.; Gerin, M.; Joblin, C.; Röllig, M.; Simon, R.; Stutzki, J.

    2017-03-01

    Context. Photon dominated regions (PDRs) are interfaces between the mainly ionized and mainly molecular material around young massive stars. Analysis of the physical and chemical structure of such regions traces the impact of far-ultraviolet radiation of young massive stars on their environment. Aims: We present results on the physical and chemical structure of the prototypical high UV-illumination edge-on Orion Bar PDR from an unbiased spectral line survey with a wide spectral coverage which includes lines of many important gas coolants such as [Cii], [Ci], and CO and other key molecules such as H2CO, H2O, HCN, HCO+, and SO. Methods: A spectral scan from 480-1250 GHz and 1410-1910 GHz at 1.1 MHz resolution was obtained by the HIFI instrument on board the Herschel Space Observatory. We obtained physical parameters for the observed molecules. For molecules with multiple transitions we used rotational diagrams to obtain excitation temperatures and column densities. For species with a single detected transition we used an optically thin LTE approximation. In the case of species with available collisional rates, we also performed a non-LTE analysis to obtain kinetic temperatures, H2 volume densities, and column densities. Results: About 120 lines corresponding to 29 molecules (including isotopologues) have been detected in the Herschel/HIFI line survey, including 11 transitions of CO, 7 transitions of 13CO, 6 transitions of C18O, 10 transitions of H2CO, and 6 transitions of H2O. The rotational temperatures are in the range between 22 and 146 K and the column densities are in the range between 1.8 × 1012 cm-2 and 4.5 × 1017 cm-2. For species with at least three detected transitions and available collisional excitation rates we derived a best fit kinetic temperature and H2 volume density. Most species trace kinetic temperatures in the range between 100 and 150 K and H2 volume densities in the range between 105 and 106 cm-3. The species with temperatures and/or densities outside this range include the H2CO transitions tracing a very high temperature (315 K) and density (1.4 × 106 cm-3) component and SO corresponding to the lowest temperature (56 K) measured as a part of this line survey. Conclusions: The observed lines/species reveal a range of physical conditions (gas density/temperature) involving structures at high density/high pressure, making the traditional clump/interclump picture of the Orion Bar obsolete.

  18. Diffraction of cosine-Gaussian-correlated Schell-model beams.

    PubMed

    Pan, Liuzhan; Ding, Chaoliang; Wang, Haixia

    2014-05-19

    The expression of spectral density of cosine-Gaussian-correlated Schell-model (CGSM) beams diffracted by an aperture is derived, and used to study the changes in the spectral density distribution of CGSM beams upon propagation, where the effect of aperture diffraction is emphasized. It is shown that, comparing with that of GSM beams, the spectral density distribution of CGSM beams diffracted by an aperture has dip and shows dark hollow intensity distribution when the order-parameter n is big enough. The central intensity increases with increasing truncation parameter of aperture. The comparative study of spectral density distributions of CGSM beams with aperture and that of without aperture is performed. Furthermore, the effect of order-parameter n and spatial coherence of CGSM beams on the spectral density distribution is discussed in detail. The results obtained may be useful in optical particulate manipulation.

  19. Higher-Order Spectral Analysis of F-18 Flight Flutter Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Dunn, Shane

    2005-01-01

    Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed using various techniques. The data includes high-quality measurements of forced responses and limit cycle oscillation (LCO) phenomena. Standard correlation and power spectral density (PSD) techniques are applied to the data and presented. Novel applications of experimentally-identified impulse responses and higher-order spectral techniques are also applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.

  20. Nonlinear damping model for flexible structures. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zang, Weijian

    1990-01-01

    The study of nonlinear damping problem of flexible structures is addressed. Both passive and active damping, both finite dimensional and infinite dimensional models are studied. In the first part, the spectral density and the correlation function of a single DOF nonlinear damping model is investigated. A formula for the spectral density is established with O(Gamma(sub 2)) accuracy based upon Fokker-Planck technique and perturbation. The spectral density depends upon certain first order statistics which could be obtained if the stationary density is known. A method is proposed to find the approximate stationary density explicitly. In the second part, the spectral density of a multi-DOF nonlinear damping model is investigated. In the third part, energy type nonlinear damping model in an infinite dimensional setting is studied.

  1. Canopy reflectance modelling of semiarid vegetation

    NASA Technical Reports Server (NTRS)

    Franklin, Janet

    1994-01-01

    Three different types of remote sensing algorithms for estimating vegetation amount and other land surface biophysical parameters were tested for semiarid environments. These included statistical linear models, the Li-Strahler geometric-optical canopy model, and linear spectral mixture analysis. The two study areas were the National Science Foundation's Jornada Long Term Ecological Research site near Las Cruces, NM, in the northern Chihuahuan desert, and the HAPEX-Sahel site near Niamey, Niger, in West Africa, comprising semiarid rangeland and subtropical crop land. The statistical approach (simple and multiple regression) resulted in high correlations between SPOT satellite spectral reflectance and shrub and grass cover, although these correlations varied with the spatial scale of aggregation of the measurements. The Li-Strahler model produced estimated of shrub size and density for both study sites with large standard errors. In the Jornada, the estimates were accurate enough to be useful for characterizing structural differences among three shrub strata. In Niger, the range of shrub cover and size in short-fallow shrublands is so low that the necessity of spatially distributed estimation of shrub size and density is questionable. Spectral mixture analysis of multiscale, multitemporal, multispectral radiometer data and imagery for Niger showed a positive relationship between fractions of spectral endmembers and surface parameters of interest including soil cover, vegetation cover, and leaf area index.

  2. Pulse Wave Amplitude Drops during Sleep are Reliable Surrogate Markers of Changes in Cortical Activity

    PubMed Central

    Delessert, Alexandre; Espa, Fabrice; Rossetti, Andrea; Lavigne, Gilles; Tafti, Mehdi; Heinzer, Raphael

    2010-01-01

    Background: During sleep, sudden drops in pulse wave amplitude (PWA) measured by pulse oximetry are commonly associated with simultaneous arousals and are thought to result from autonomic vasoconstriction. In the present study, we determine whether PWA drops were associated with changes in cortical activity as determined by EEG spectral analysis. Methods: A 20% decrease in PWA was chosen as a minimum for a drop. A total of 1085 PWA drops from 10 consecutive sleep recordings were analyzed. EEG spectral analysis was performed over 5 consecutive epochs of 5 seconds: 2 before, 1 during, and 2 after the PWA drop. EEG spectral analysis was performed over delta, theta, alpha, sigma, and beta frequency bands. Within each frequency band, power density was compared across the five 5-sec epochs. Presence or absence of visually scored EEG arousals were adjudicated by an investigator blinded to the PWA signal and considered associated with PWA drop if concomitant. Results: A significant increase in EEG power density in all EEG frequency bands was found during PWA drops (P < 0.001) compared to before and after drop. Even in the absence of visually scored arousals, PWA drops were associated with a significant increase in EEG power density (P < 0.001) in most frequency bands. Conclusions: Drops in PWA are associated with a significant increase in EEG power density, suggesting that these events can be used as a surrogate for changes in cortical activity during sleep. This approach may prove of value in scoring respiratory events on limited-channel (type III) portable monitors. Citation: Delessert A; Espa F; Rossetti A; Lavigne G; Tafti M; Heinzer R. Pulse wave amplitude drops during sleep are reliable surrogate markers of changes in cortical activity. SLEEP 2010;33(12):1687-1692. PMID:21120131

  3. On the Use of Principal Component and Spectral Density Analysis to Evaluate the Community Multiscale Air Quality (CMAQ) Model

    EPA Science Inventory

    A 5 year (2002-2006) simulation of CMAQ covering the eastern United States is evaluated using principle component analysis in order to identify and characterize statistically significant patterns of model bias. Such analysis is useful in that in can identify areas of poor model ...

  4. Transverse Densities of Octet Baryons from Chiral Effective Field Theory

    DOE PAGES

    Alarcón, Jose Manuel; Hiller Blin, Astrid N.; Weiss, Christian

    2017-03-24

    Transverse densities describe the distribution of charge and current at fixed light-front time and provide a frame-independent spatial representation of hadrons as relativistic systems. In this paper, we calculate the transverse densities of the octet baryons at peripheral distances b=O(M π -1) in an approach that combines chiral effective field theory (χχEFT) and dispersion analysis. The densities are represented as dispersive integrals of the imaginary parts of the baryon electromagnetic form factors in the timelike region (spectral functions). The spectral functions on the two-pion cut at t>4Mmore » $$2\\atop{π}$$ are computed using relativistic χEFT with octet and decuplet baryons in the extended on-mass-shell renormalization scheme. The calculations are extended into the ρ-meson mass region using a dispersive method that incorporates the timelike pion form-factor data. The approach allows us to construct densities at distances b>1 fm with controlled uncertainties. Finally, our results provide insight into the peripheral structure of nucleons and hyperons and can be compared with empirical densities and lattice-QCD calculations.« less

  5. Spectral Analysis of Vector Magnetic Field Profiles

    NASA Technical Reports Server (NTRS)

    Parker, Robert L.; OBrien, Michael S.

    1997-01-01

    We investigate the power spectra and cross spectra derived from the three components of the vector magnetic field measured on a straight horizontal path above a statistically stationary source. All of these spectra, which can be estimated from the recorded time series, are related to a single two-dimensional power spectral density via integrals that run in the across-track direction in the wavenumber domain. Thus the measured spectra must obey a number of strong constraints: for example, the sum of the two power spectral densities of the two horizontal field components equals the power spectral density of the vertical component at every wavenumber and the phase spectrum between the vertical and along-track components is always pi/2. These constraints provide powerful checks on the quality of the measured data; if they are violated, measurement or environmental noise should be suspected. The noise due to errors of orientation has a clear characteristic; both the power and phase spectra of the components differ from those of crustal signals, which makes orientation noise easy to detect and to quantify. The spectra of the crustal signals can be inverted to obtain information about the cross-track structure of the field. We illustrate these ideas using a high-altitude Project Magnet profile flown in the southeastern Pacific Ocean.

  6. Preliminary Analysis of AIS Spectral Data Acquired from Semi-arid Shrub Communities in the Owens Valley, California

    NASA Technical Reports Server (NTRS)

    Ustin, S. L.; Rock, B. N.

    1985-01-01

    Spectral characteristics of semic-arid plant communities using 128 channel airborne imaging spectrometer (AIS) data acquired on October 30, 1984. Both field and AIS spectra of vegetation were relatively featureless and differed from substrate spectra primarily in albedo. Unvegetated sand dunes were examined to assess spectral variation resulting from topographic irregularity. Although shrub cover as low as 10% could be detected on relatively flat surfaces, such differences were obscured in more heterogeneous terrain. Sagebrush-covered fans which had been scarred by fire were studied to determine the effect of changes in plant density on reflectance. Despite noise in the atmospherically corrected spectra, these provide better resolution of differences in plant density than spectra which are solar-corrected only. A high negative correlation was found between reflectance and plant cover in areas which had uniform substrates and vegetation types. A lower correlation was found where vegetation and substrates were more diverse.

  7. Spectral densities for Frenkel exciton dynamics in molecular crystals: A TD-DFTB approach

    NASA Astrophysics Data System (ADS)

    Plötz, Per-Arno; Megow, Jörg; Niehaus, Thomas; Kühn, Oliver

    2017-02-01

    Effects of thermal fluctuations on the electronic excitation energies and intermonomeric Coulomb couplings are investigated for a perylene-tetracarboxylic-diimide crystal. To this end, time dependent density functional theory based tight binding (TD-DFTB) in the linear response formulation is used in combination with electronic ground state classical molecular dynamics. As a result, a parametrized Frenkel exciton Hamiltonian is obtained, with the effect of exciton-vibrational coupling being described by spectral densities. Employing dynamically defined normal modes, these spectral densities are analyzed in great detail, thus providing insight into the effect of specific intramolecular motions on excitation energies and Coulomb couplings. This distinguishes the present method from approaches using fixed transition densities. The efficiency by which intramolecular contributions to the spectral density can be calculated is a clear advantage of this method as compared with standard TD-DFT.

  8. Spectral integration in primary auditory cortex attributable to temporally precise convergence of thalamocortical and intracortical input.

    PubMed

    Happel, Max F K; Jeschke, Marcus; Ohl, Frank W

    2010-08-18

    Primary sensory cortex integrates sensory information from afferent feedforward thalamocortical projection systems and convergent intracortical microcircuits. Both input systems have been demonstrated to provide different aspects of sensory information. Here we have used high-density recordings of laminar current source density (CSD) distributions in primary auditory cortex of Mongolian gerbils in combination with pharmacological silencing of cortical activity and analysis of the residual CSD, to dissociate the feedforward thalamocortical contribution and the intracortical contribution to spectral integration. We found a temporally highly precise integration of both types of inputs when the stimulation frequency was in close spectral neighborhood of the best frequency of the measurement site, in which the overlap between both inputs is maximal. Local intracortical connections provide both directly feedforward excitatory and modulatory input from adjacent cortical sites, which determine how concurrent afferent inputs are integrated. Through separate excitatory horizontal projections, terminating in cortical layers II/III, information about stimulus energy in greater spectral distance is provided even over long cortical distances. These projections effectively broaden spectral tuning width. Based on these data, we suggest a mechanism of spectral integration in primary auditory cortex that is based on temporally precise interactions of afferent thalamocortical inputs and different short- and long-range intracortical networks. The proposed conceptual framework allows integration of different and partly controversial anatomical and physiological models of spectral integration in the literature.

  9. Spatiotemporal Built-up Land Density Mapping Using Various Spectral Indices in Landsat-7 ETM+ and Landsat-8 OLI/TIRS (Case Study: Surakarta City)

    NASA Astrophysics Data System (ADS)

    Risky, Yanuar S.; Aulia, Yogi H.; Widayani, Prima

    2017-12-01

    Spectral indices variations support for rapid and accurate extracting information such as built-up density. However, the exact determination of spectral waves for built-up density extraction is lacking. This study explains and compares the capabilities of 5 variations of spectral indices in spatiotemporal built-up density mapping using Landsat-7 ETM+ and Landsat-8 OLI/TIRS in Surakarta City on 2002 and 2015. The spectral indices variations used are 3 mid-infrared (MIR) based indices such as the Normalized Difference Built-up Index (NDBI), Urban Index (UI) and Built-up and 2 visible based indices such as VrNIR-BI (visible red) and VgNIR-BI (visible green). Linear regression statistics between ground value samples from Google Earth image in 2002 and 2015 and spectral indices for determining built-up land density. Ground value used amounted to 27 samples for model and 7 samples for accuracy test. The classification of built-up density mapping is divided into 9 classes: unclassified, 0-12.5%, 12.5-25%, 25-37.5%, 37.5-50%, 50-62.5%, 62.5-75%, 75-87.5% and 87.5-100 %. Accuracy of built-up land density mapping in 2002 and 2015 using VrNIR-BI (81,823% and 73.235%), VgNIR-BI (78.934% and 69.028%), NDBI (34.870% and 74.365%), UI (43.273% and 64.398%) and Built-up (59.755% and 72.664%). Based all spectral indices, Surakarta City on 2000-2015 has increased of built-up land density. VgNIR-BI has better capabilities for built-up land density mapping on Landsat-7 ETM + and Landsat-8 OLI/TIRS.

  10. [The Spectral Analysis of Laser-Induced Plasma in Laser Welding with Various Protecting Conditions].

    PubMed

    Du, Xiao; Yang, Li-jun; Liu, Tong; Jiao, Jiao; Wang, Hui-chao

    2016-01-01

    The shielding gas plays an important role in the laser welding process and the variation of the protecting conditions has an obvious effect on the welding quality. This paper studied the influence of the change of protecting conditions on the parameters of laser-induced plasma such as electron temperature and electron density during the laser welding process by designing some experiments of reducing the shielding gas flow rate step by step and simulating the adverse conditions possibly occurring in the actual Nd : YAG laser welding process. The laser-induced plasma was detected by a fiber spectrometer to get the spectral data. So the electron temperature of laser-induced plasma was calculated by using the method of relative spectral intensity and the electron density by the Stark Broadening. The results indicated that the variation of protecting conditions had an important effect on the electron temperature and the electron density in the laser welding. When the protecting conditions were changed, the average electron temperature and the average electron density of the laser-induced plasma would change, so did their fluctuation range. When the weld was in a good protecting condition, the electron temperature, the electron density and their fluctuation were all low. Otherwise, the values would be high. These characteristics would have contribution to monitoring the process of laser welding.

  11. Dynamics of short-pulse generation via spectral filtering from intensely excited gain-switched 1.55-μm distributed-feedback laser diodes.

    PubMed

    Chen, Shaoqiang; Yoshita, Masahiro; Sato, Aya; Ito, Takashi; Akiyama, Hidefumi; Yokoyama, Hiroyuki

    2013-05-06

    Picosecond-pulse-generation dynamics and pulse-width limiting factors via spectral filtering from intensely pulse-excited gain-switched 1.55-μm distributed-feedback laser diodes were studied. The spectral and temporal characteristics of the spectrally filtered pulses indicated that the short-wavelength component stems from the initial part of the gain-switched main pulse and has a nearly linear down-chirp of 5.2 ps/nm, whereas long-wavelength components include chirped pulse-lasing components and steady-state-lasing components. Rate-equation calculations with a model of linear change in refractive index with carrier density explained the major features of the experimental results. The analysis of the expected pulse widths with optimum spectral widths was also consistent with the experimental data.

  12. Geometrical Description in Binary Composites and Spectral Density Representation

    PubMed Central

    Tuncer, Enis

    2010-01-01

    In this review, the dielectric permittivity of dielectric mixtures is discussed in view of the spectral density representation method. A distinct representation is derived for predicting the dielectric properties, permittivities ε, of mixtures. The presentation of the dielectric properties is based on a scaled permittivity approach, ξ=(εe-εm)(εi-εm)-1, where the subscripts e, m and i denote the dielectric permittivities of the effective, matrix and inclusion media, respectively [Tuncer, E. J. Phys.: Condens. Matter 2005, 17, L125]. This novel representation transforms the spectral density formalism to a form similar to the distribution of relaxation times method of dielectric relaxation. Consequently, I propose that any dielectric relaxation formula, i.e., the Havriliak-Negami empirical dielectric relaxation expression, can be adopted as a scaled permittivity. The presented scaled permittivity representation has potential to be improved and implemented into the existing data analyzing routines for dielectric relaxation; however, the information to extract would be the topological/morphological description in mixtures. To arrive at the description, one needs to know the dielectric properties of the constituents and the composite prior to the spectral analysis. To illustrate the strength of the representation and confirm the proposed hypothesis, the Landau-Lifshitz/Looyenga (LLL) [Looyenga, H. Physica 1965, 31, 401] expression is selected. The structural information of a mixture obeying LLL is extracted for different volume fractions of phases. Both an in-house computational tool based on the Monte Carlo method to solve inverse integral transforms and the proposed empirical scaled permittivity expression are employed to estimate the spectral density function of the LLL expression. The estimated spectral functions for mixtures with different inclusion concentration compositions show similarities; they are composed of a couple of bell-shaped distributions, with coinciding peak locations but different heights. It is speculated that the coincidence in the peak locations is an absolute illustration of the self-similar fractal nature of the mixture topology (structure) created with the LLL expression. Consequently, the spectra are not altered significantly with increased filler concentration level—they exhibit a self-similar spectral density function for different concentration levels. Last but not least, the estimated percolation strengths also confirm the fractal nature of the systems characterized by the LLL mixture expression. It is concluded that the LLL expression is suitable for complex composite systems that have hierarchical order in their structure. These observations confirm the finding in the literature.

  13. Preparation, crystal structure, vibrational spectral and density functional studies of bis (4-nitrophenol)-2,4,6-triamino-1,3,5-triazine monohydrate

    NASA Astrophysics Data System (ADS)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-10-01

    An organic-organic salt, bis (4-nitrophenol) 2,4,6-triamino 1,3,5-triazine monohydrate (BNPM) has been prepared by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in triclinic system with centrosymmetric space group P-1. IR and Raman spectra of BNPM have been recorded and analyzed. The study has been extended to confocal Raman spectral analysis. Band assignments have been made for the melamine and p-nitrophenol molecules. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory calculations using Firefly (PC GAMESS) Version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with the experimental one. The Mulliken charges, HOMO-LUMO orbital energies are calculated and analyzed. The chemical structure of the compound was established by 1H NMR and 13C NMR spectra.

  14. Quasi-Lagrangian measurements of density surface fluctuations and power spectra in the stratosphere

    NASA Technical Reports Server (NTRS)

    Quinn, Elizabeth P.; Holzworth, Robert H.

    1987-01-01

    Pressure and temperature data from eight superpressure balloon flights at 26 km in the southern hemisphere stratosphere are analyzed. The balloons, which float on a constant density surface, travel steadily westward during summer and eastward during winter, as expected from local climatology. Two types of fluctuations are observed: neutral buoyancy oscillations (NBO) of around 4 min, and 0.1- to 1-hour oscillations that are characterized as small-amplitude density surface fluctuations. Lapse rates and densities are calculated and found to agree well with the expected values. Examples of wave damping and simultaneous fluctuation at two nearby balloons are presented. Spectral analysis is performed clearly showing the NBO and that the majority of the power is in the mesoscale range. Spectral slopes of power versus frequency are measured to be on the average -2.18 + or - 0.24 for pressure and -1.72 + or - 0.24 for temperature. These slopes are compared to the predictions of turbulence theories and the theory of a universal gravity wave spectrum.

  15. Underwater Sound Radiation from Large Raindrops

    DTIC Science & Technology

    1991-09-01

    decreasing shape of the impact spectrum, one must pick a reference point rather that a peak value to compare one drop with another. For comparison of...34 1. Type I Bubble Spectral Density and Peak Pressure ............... 34 2. Type II Bubble Average Spectral Densities at 1 m on Axis (20 C...32 Table 4. TYPE II BUBBLE AVERAGE PEAK SPECTRAL DENSITY SU M M A RY ............................................. 39 Table 5. SUMMARY

  16. Beyond the double banana: improved recognition of temporal lobe seizures in long-term EEG.

    PubMed

    Rosenzweig, Ivana; Fogarasi, András; Johnsen, Birger; Alving, Jørgen; Fabricius, Martin Ejler; Scherg, Michael; Neufeld, Miri Y; Pressler, Ronit; Kjaer, Troels W; van Emde Boas, Walter; Beniczky, Sándor

    2014-02-01

    To investigate whether extending the 10-20 array with 6 electrodes in the inferior temporal chain and constructing computed montages increases the diagnostic value of ictal EEG activity originating in the temporal lobe. In addition, the accuracy of computer-assisted spectral source analysis was investigated. Forty EEG samples were reviewed by 7 EEG experts in various montages (longitudinal and transversal bipolar, common average, source derivation, source montage, current source density, and reference-free montages) using 2 electrode arrays (10-20 and the extended one). Spectral source analysis used source montage to calculate density spectral array, defining the earliest oscillatory onset. From this, phase maps were calculated for localization. The reference standard was the decision of the multidisciplinary epilepsy surgery team on the seizure onset zone. Clinical performance was compared with the double banana (longitudinal bipolar montage, 10-20 array). Adding the inferior temporal electrode chain, computed montages (reference free, common average, and source derivation), and voltage maps significantly increased the sensitivity. Phase maps had the highest sensitivity and identified ictal activity at earlier time-point than visual inspection. There was no significant difference concerning specificity. The findings advocate for the use of these digital EEG technology-derived analysis methods in clinical practice.

  17. The upgrade of the Thomson scattering system for measurement on the C-2/C-2U devices.

    PubMed

    Zhai, K; Schindler, T; Kinley, J; Deng, B; Thompson, M C

    2016-11-01

    The C-2/C-2U Thomson scattering system has been substantially upgraded during the latter phase of C-2/C-2U program. A Rayleigh channel has been added to each of the three polychromators of the C-2/C-2U Thomson scattering system. Onsite spectral calibration has been applied to avoid the issue of different channel responses at different spots on the photomultiplier tube surface. With the added Rayleigh channel, the absolute intensity response of the system is calibrated with Rayleigh scattering in argon gas from 0.1 to 4 Torr, where the Rayleigh scattering signal is comparable to the Thomson scattering signal at electron densities from 1 × 10 13 to 4 × 10 14 cm -3 . A new signal processing algorithm, using a maximum likelihood method and including detailed analysis of different noise contributions within the system, has been developed to obtain electron temperature and density profiles. The system setup, spectral and intensity calibration procedure and its outcome, data analysis, and the results of electron temperature/density profile measurements will be presented.

  18. A Fiber-Optic System Generating Pulses of High Spectral Density

    NASA Astrophysics Data System (ADS)

    Abramov, A. S.; Zolotovskii, I. O.; Korobko, D. A.; Fotiadi, A. A.

    2018-03-01

    A cascade fiber-optic system that generates pulses of high spectral density by using the effect of nonlinear spectral compression is proposed. It is demonstrated that the shape of the pulse envelope substantially influences the degree of compression of its spectrum. In so doing, maximum compression is achieved for parabolic pulses. The cascade system includes an optical fiber exhibiting normal dispersion that decreases along the fiber length, thereby ensuring that the pulse envelope evolves toward a parabolic shape, along with diffraction gratings and a fiber spectral compressor. Based on computer simulation, we determined parameters of cascade elements leading to maximum spectral density of radiation originating from a subpicosecond laser pulse of medium energy.

  19. Spectral calibration of EBT3 and HD-V2 radiochromic film response at high dose using 20 MeV proton beams

    NASA Astrophysics Data System (ADS)

    Feng, Yiwei; Tiedje, Henry F.; Gagnon, Katherine; Fedosejevs, Robert

    2018-04-01

    Radiochromic film is used extensively in many medical, industrial, and scientific applications. In particular, the film is used in analysis of proton generation and in high intensity laser-plasma experiments where very high dose levels can be obtained. The present study reports calibration of the dose response of Gafchromic EBT3 and HD-V2 radiochromic films up to high exposure densities. A 2D scanning confocal densitometer system is employed to carry out accurate optical density measurements up to optical density 5 on the exposed films at the peak spectral absorption wavelengths. Various wavelengths from 400 to 740 nm are also scanned to extend the practical dose range of such films by measuring the response at wavelengths removed from the peak response wavelengths. Calibration curves for the optical density versus exposure dose are determined and can be used for quantitative evaluation of measured doses based on the measured optical densities. It was found that blue and UV wavelengths allowed the largest dynamic range though at some trade-off with overall accuracy.

  20. Non-opioid analgesic drug flupirtine: Spectral analysis, DFT computations, in vitro bioactivity and molecular docking study

    NASA Astrophysics Data System (ADS)

    Leenaraj, D. R.; Hubert Joe, I.

    2017-06-01

    Spectral features of non-opioid analgesic drug flupirtine have been explored by the Fourier transform infrared, Raman and Nuclear magnetic resonance spectroscopic techniques combined with density functional theory computations. The bioactive conformer of flupirtine is stabilized by an intramolecular Csbnd H⋯N hydrogen bonding resulting by the steric strain of hydrogen atoms. Natural bond orbital and natural population analysis support this result. The charge redistribution also has been analyzed. Antimicrobial activities of flupirtine have been screened by agar well disc diffusion and molecular docking methods, which exposes the importance of triaminopyridine in flupirtine.

  1. The influence of a local wall deformation on the development of natural instabilities in a laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Burnel, S.; Gougat, P.; Martin, F.

    1981-01-01

    The natural instabilities which propagate in the laminar boundary layer of a flat plate composed of intermittent wave trains are described. A spectral analysis determines the frequency range and gives a frequency and the harmonic 2 only if there is a wall deformation. This analysis provides the amplitude modulation spectrum of the instabilities. Plots of the evolution of power spectral density are compared with the numerical results obtained from the resolve of the Orr-Sommerfeld equation, while the harmonic is related to a micro-recirculating flow near the wall deformation.

  2. Analysis of substrate and plant spectral features of semi-arid shrub communities in the Owens Valley, California

    NASA Technical Reports Server (NTRS)

    Ustin, S. L.; Rock, B. N.; Woodward, R. A.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data were analyzed to deduce plant density and species composition in three semi-arid shrub-dominated communities of Owens Valley, CA, occurring on either a sand, granite alluvium, or basalt substrate. The high-spectral resolution AIS data were related to spectra obtained with field portable spectrometers, which in turn were related to plant and soil characteristics of the communities. Many of the dominant species have unique spectral features which permit their identification in AIS pixel images. The canopy-induced shadow may be a major factor influencing substrate spectral properties during fall and winter, because of low sun angles. Moreover, changes in spectral signatures following dormancy and leaf senescence tend to decrease contrasts between the plant community and the geologic substrate, also suggesting that fall and winter are a difficult time of year for spectral analyses.

  3. Calibration and evaluation of CCD spectroradiometers for ground-based and airborne measurements of spectral actinic flux densities

    NASA Astrophysics Data System (ADS)

    Bohn, Birger; Lohse, Insa

    2017-09-01

    The properties and performance of charge-coupled device (CCD) array spectroradiometers for the measurement of atmospheric spectral actinic flux densities (280-650 nm) and photolysis frequencies were investigated. These instruments are widely used in atmospheric research and are suitable for aircraft applications because of high time resolutions and high sensitivities in the UV range. The laboratory characterization included instrument-specific properties like the wavelength accuracy, dark signal, dark noise and signal-to-noise ratio (SNR). Spectral sensitivities were derived from measurements with spectral irradiance standards. The calibration procedure is described in detail, and a straightforward method to minimize the influence of stray light on spectral sensitivities is introduced. From instrument dark noise, minimum detection limits ≈ 1 × 1010 cm-2 s-1 nm-1 were derived for spectral actinic flux densities at wavelengths around 300 nm (1 s integration time). As a prerequisite for the determination of stray light under field conditions, atmospheric cutoff wavelengths were defined using radiative transfer calculations as a function of the solar zenith angle (SZA) and total ozone column (TOC). The recommended analysis of field data relies on these cutoff wavelengths and is also described in detail taking data from a research flight on HALO (High Altitude and Long Range Research Aircraft) as an example. An evaluation of field data was performed by ground-based comparisons with a double-monochromator-based, highly sensitive reference spectroradiometer. Spectral actinic flux densities were compared as well as photolysis frequencies j(NO2) and j(O1D), representing UV-A and UV-B ranges, respectively. The spectra expectedly revealed increased daytime levels of stray-light-induced signals and noise below atmospheric cutoff wavelengths. The influence of instrument noise and stray-light-induced noise was found to be insignificant for j(NO2) and rather limited for j(O1D), resulting in estimated detection limits of 5 × 10-7 and 1 × 10-7 s-1, respectively, derived from nighttime measurements on the ground (0.3 s integration time, 10 s averages). For j(O1D) the detection limit could be further reduced by setting spectral actinic flux densities to zero below atmospheric cutoff wavelengths. The accuracies of photolysis frequencies were determined from linear regressions with data from the double-monochromator reference instrument. The agreement was typically within ±5 %. Because optical-receiver aspects are not specific for the CCD spectroradiometers, they were widely excluded in this work and will be treated in a separate paper, in particular with regard to airborne applications.

  4. UV TO FAR-IR CATALOG OF A GALAXY SAMPLE IN NEARBY CLUSTERS: SPECTRAL ENERGY DISTRIBUTIONS AND ENVIRONMENTAL TRENDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Fernandez, Jonathan D.; Iglesias-Paramo, J.; Vilchez, J. M., E-mail: jonatan@iaa.es

    2012-03-01

    In this paper, we present a sample of cluster galaxies devoted to study the environmental influence on the star formation activity. This sample of galaxies inhabits in clusters showing a rich variety in their characteristics and have been observed by the SDSS-DR6 down to M{sub B} {approx} -18, and by the Galaxy Evolution Explorer AIS throughout sky regions corresponding to several megaparsecs. We assign the broadband and emission-line fluxes from ultraviolet to far-infrared to each galaxy performing an accurate spectral energy distribution for spectral fitting analysis. The clusters follow the general X-ray luminosity versus velocity dispersion trend of L{sub X}more » {proportional_to} {sigma}{sup 4.4}{sub c}. The analysis of the distributions of galaxy density counting up to the 5th nearest neighbor {Sigma}{sub 5} shows: (1) the virial regions and the cluster outskirts share a common range in the high density part of the distribution. This can be attributed to the presence of massive galaxy structures in the surroundings of virial regions. (2) The virial regions of massive clusters ({sigma}{sub c} > 550 km s{sup -1}) present a {Sigma}{sub 5} distribution statistically distinguishable ({approx}96%) from the corresponding distribution of low-mass clusters ({sigma}{sub c} < 550 km s{sup -1}). Both massive and low-mass clusters follow a similar density-radius trend, but the low-mass clusters avoid the high density extreme. We illustrate, with ABELL 1185, the environmental trends of galaxy populations. Maps of sky projected galaxy density show how low-luminosity star-forming galaxies appear distributed along more spread structures than their giant counterparts, whereas low-luminosity passive galaxies avoid the low-density environment. Giant passive and star-forming galaxies share rather similar sky regions with passive galaxies exhibiting more concentrated distributions.« less

  5. Passive microrheology of soft materials with atomic force microscopy: A wavelet-based spectral analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Torres, C.; Streppa, L.; Arneodo, A.

    2016-01-18

    Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale methodmore » to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.« less

  6. Correlation of the earth's rotation rate and the secular change of the geomagnetic field. [power spectra/harmonic analysis

    NASA Technical Reports Server (NTRS)

    Jin, R. S.

    1975-01-01

    Power spectral density analysis using Burg's maximum entropy method was applied to the geomagnetic dipole field and its rate of change for the years 1901 to 1969. Both spectra indicate relative maxima at 0.015 cycles/year and its harmonics. These maxima correspond approximately to 66, 33, 22, 17, 13, 11, and 9-year spectral lines. The application of the same analysis techniques to the length-of-day (l.o.d) fluctuations for the period 1865 to 1961 reveal similar spectral characteristics. Although peaks were observed at higher harmonics of the fundamental frequency, the 22-year and 11-year lines are not attributed unambiguously to the solar magnetic cycle and the solar cycle. It is suggested that the similarity in the l.o.d fluctuations and the dipole field variations is related to the motion within the earth's fluid core during the past one hundred years.

  7. Simultaneous estimation of plasma parameters from spectroscopic data of neutral helium using least square fitting of CR-model

    NASA Astrophysics Data System (ADS)

    Jain, Jalaj; Prakash, Ram; Vyas, Gheesa Lal; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana; Halder, Nilanjan; Choyal, Yaduvendra

    2015-12-01

    In the present work an effort has been made to estimate the plasma parameters simultaneously like—electron density, electron temperature, ground state atom density, ground state ion density and metastable state density from the observed visible spectra of penning plasma discharge (PPD) source using least square fitting. The analysis is performed for the prominently observed neutral helium lines. The atomic data and analysis structure (ADAS) database is used to provide the required collisional-radiative (CR) photon emissivity coefficients (PECs) values under the optical thin plasma condition in the analysis. With this condition the estimated plasma temperature from the PPD is found rather high. It is seen that the inclusion of opacity in the observed spectral lines through PECs and addition of diffusion of neutrals and metastable state species in the CR-model code analysis improves the electron temperature estimation in the simultaneous measurement.

  8. 14 CFR Appendix G to Part 25 - Continuous Gust Design Criteria

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... establishing the dynamic response of the airplane to vertical and lateral continuous turbulence unless a more... determined by dynamic analysis. The power spectral density of the atmospheric turbulence must be as given by... obtained by multiplying the Ā values determined by the dynamic analysis by the following values of the gust...

  9. 14 CFR Appendix G to Part 25 - Continuous Gust Design Criteria

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... establishing the dynamic response of the airplane to vertical and lateral continuous turbulence unless a more... determined by dynamic analysis. The power spectral density of the atmospheric turbulence must be as given by... obtained by multiplying the Ā values determined by the dynamic analysis by the following values of the gust...

  10. Setting up a proper power spectral density (PSD) and autocorrelation analysis for material and process characterization

    NASA Astrophysics Data System (ADS)

    Rutigliani, Vito; Lorusso, Gian Francesco; De Simone, Danilo; Lazzarino, Frederic; Rispens, Gijsbert; Papavieros, George; Gogolides, Evangelos; Constantoudis, Vassilios; Mack, Chris A.

    2018-03-01

    Power spectral density (PSD) analysis is playing more and more a critical role in the understanding of line-edge roughness (LER) and linewidth roughness (LWR) in a variety of applications across the industry. It is an essential step to get an unbiased LWR estimate, as well as an extremely useful tool for process and material characterization. However, PSD estimate can be affected by both random to systematic artifacts caused by image acquisition and measurement settings, which could irremediably alter its information content. In this paper, we report on the impact of various setting parameters (smoothing image processing filters, pixel size, and SEM noise levels) on the PSD estimate. We discuss also the use of PSD analysis tool in a variety of cases. Looking beyond the basic roughness estimate, we use PSD and autocorrelation analysis to characterize resist blur[1], as well as low and high frequency roughness contents and we apply this technique to guide the EUV material stack selection. Our results clearly indicate that, if properly used, PSD methodology is a very sensitive tool to investigate material and process variations

  11. Stochastic response analysis, order reduction, and output feedback controllers for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Hablani, H. B.

    1985-01-01

    Real disturbances and real sensors have finite bandwidths. The first objective of this paper is to incorporate this finiteness in the 'open-loop modal cost analysis' as applied to a flexible spacecraft. Analysis based on residue calculus shows that among other factors, significance of a mode depends on the power spectral density of disturbances and the response spectral density of sensors at the modal frequency. The second objective of this article is to compare performances of an optimal and a suboptimal output feedback controller, the latter based on 'minimum error excitation' of Kosut. Both the performances are found to be nearly the same, leading us to favor the latter technique because it entails only linear computations. Our final objective is to detect an instability due to truncated modes by representing them as a multiplicative and an additive perturbation in a nominal transfer function. In an example problem it is found that this procedure leads to a narrow range of permissible controller gains, and that it labels a wrong mode as a cause of instability. A free beam is used to illustrate the analysis in this work.

  12. [The sawtooth oscillation phenomenon of visible spectral signal in HT-6M Tokamak].

    PubMed

    Xu, W; Fang, Z; Wan, B; Li, J; Luo, J; Yin, F

    1997-02-01

    The sawtooth oscillation phenomenon of visible spectral signal in HT-6M Tokamak is presented. The influences of electron temperature, electron density and atomic ground density on the spectral signal discussed. This phenomenon results mainly from the change of electron temperature at the edge.

  13. An X-Ray Spectral Model for Clumpy Tori in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Li, Xiaobo

    2014-05-01

    We construct an X-ray spectral model for the clumpy torus in an active galactic nucleus (AGN) using Geant4, which includes the physical processes of the photoelectric effect, Compton scattering, Rayleigh scattering, γ conversion, fluorescence line, and Auger process. Since the electrons in the torus are expected to be bounded instead of free, the deviation of the scattering cross section from the Klein-Nishina cross section has also been included, which changes the X-ray spectra by up to 25% below 10 keV. We have investigated the effect of the clumpiness parameters on the reflection spectra and the strength of the fluorescent line Fe Kα. The volume filling factor of the clouds in the clumpy torus only slightly influences the reflection spectra, however, the total column density and the number of clouds along the line of sight significantly change the shapes and amplitudes of the reflection spectra. The effect of column density is similar to the case of a smooth torus, while a small number of clouds along the line of sight will smooth out the anisotropy of the reflection spectra and the fluorescent line Fe Kα. The smoothing effect is mild in the low column density case (N H = 1023 cm-2), whereas it is much more evident in the high column density case (N H = 1025 cm-2). Our model provides a quantitative tool for the spectral analysis of the clumpy torus. We suggest that the joint fits of the broad band spectral energy distributions of AGNs (from X-ray to infrared) should better constrain the structure of the torus.

  14. Multiplicative point process as a model of trading activity

    NASA Astrophysics Data System (ADS)

    Gontis, V.; Kaulakys, B.

    2004-11-01

    Signals consisting of a sequence of pulses show that inherent origin of the 1/ f noise is a Brownian fluctuation of the average interevent time between subsequent pulses of the pulse sequence. In this paper, we generalize the model of interevent time to reproduce a variety of self-affine time series exhibiting power spectral density S( f) scaling as a power of the frequency f. Furthermore, we analyze the relation between the power-law correlations and the origin of the power-law probability distribution of the signal intensity. We introduce a stochastic multiplicative model for the time intervals between point events and analyze the statistical properties of the signal analytically and numerically. Such model system exhibits power-law spectral density S( f)∼1/ fβ for various values of β, including β= {1}/{2}, 1 and {3}/{2}. Explicit expressions for the power spectra in the low-frequency limit and for the distribution density of the interevent time are obtained. The counting statistics of the events is analyzed analytically and numerically, as well. The specific interest of our analysis is related with the financial markets, where long-range correlations of price fluctuations largely depend on the number of transactions. We analyze the spectral density and counting statistics of the number of transactions. The model reproduces spectral properties of the real markets and explains the mechanism of power-law distribution of trading activity. The study provides evidence that the statistical properties of the financial markets are enclosed in the statistics of the time interval between trades. A multiplicative point process serves as a consistent model generating this statistics.

  15. Spectral components in electromyograms from four regions of the human masseter, in natural dentate and edentulous subjects with removable prostheses and implants.

    PubMed

    Guzmán-Venegas, Rodrigo A; Palma, Felipe H; Biotti P, Jorge L; de la Rosa, Francisco J Berral

    2018-06-01

    To compare the frequency or spectral components between different regions of the superficial masseter in young natural dentate and total edentulous older adults rehabilitated with removable prostheses and fixed-implant support. A secondary objective was to compare these components between the three groups. 21 young natural dentate and 28 edentulous (14 with removable prostheses and 14 with fixed-implant support) were assessed. High-density surface electromyography (sEMG) was recorded in four portions of the superficial masseter during submaximal isometric bites. Spectral components were obtained through a spectral analysis of the sEMG signals. An analysis of mixed models was used to compare the spectral components. In all groups, the spectral components of the anterior portion were lower than in the posterior region (p < 0.05). Both edentulous groups showed lower spectral components and median frequency slope than the natural dentate group (p < 0.05). The removable prostheses group showed the greatest differences with natural dentate group. There were significant differences in the spectral components recorded in the different regions of the superficial masseter. The lower spectral components and fatigability of older adults rehabilitated with prostheses could be a cause of a greater loss of type II fibers, especially in the removable prostheses group. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Power-law statistics of neurophysiological processes analyzed using short signals

    NASA Astrophysics Data System (ADS)

    Pavlova, Olga N.; Runnova, Anastasiya E.; Pavlov, Alexey N.

    2018-04-01

    We discuss the problem of quantifying power-law statistics of complex processes from short signals. Based on the analysis of electroencephalograms (EEG) we compare three interrelated approaches which enable characterization of the power spectral density (PSD) and show that an application of the detrended fluctuation analysis (DFA) or the wavelet-transform modulus maxima (WTMM) method represents a useful way of indirect characterization of the PSD features from short data sets. We conclude that despite DFA- and WTMM-based measures can be obtained from the estimated PSD, these tools outperform the standard spectral analysis when characterization of the analyzed regime should be provided based on a very limited amount of data.

  17. Spectral Characteristics of VLF Sferics Associated With RHESSI TGFs

    NASA Astrophysics Data System (ADS)

    Mezentsev, Andrew; Lehtinen, Nikolai; Østgaard, Nikolai; Pérez-Invernón, F. J.; Cummer, Steven A.

    2018-01-01

    We compared the modeled energy spectral density of very low frequency (VLF) radio emissions from terrestrial gamma ray flashes (TGFs) with the energy spectral density of VLF radio sferics recorded by Duke VLF receiver simultaneously with those TGFs. In total, six events with world wide lightning location network (WWLLN) defined locations were analyzed to exhibit a good fit between the modeled and observed energy spectral densities. In VLF range the energy spectral density of the TGF source current moment is found to be dominated by the contribution of secondary low-energy electrons and independent of the relativistic electrons which play their role in low-frequency (LF) range. Additional spectral modulation by the multiplicity of TGF peaks was found and demonstrated a good fit for two TGFs whose VLF sferics consist of two overlapping pulses each. The number of seeding pulses in TGF defines the spectral shape in VLF range, which allows to retrieve this number from VLF sferics, assuming they were radiated by TGFs. For two events it was found that the number of seeding pulses is small, of the order of 10. For the rest of the events the lower boundary of the number of seeding pulses was found to be between 10 to 103.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smallwood, D.O.

    In a previous paper Smallwood and Paez (1991) showed how to generate realizations of partially coherent stationary normal time histories with a specified cross-spectral density matrix. This procedure is generalized for the case of multiple inputs with a specified cross-spectral density function and a specified marginal probability density function (pdf) for each of the inputs. The specified pdfs are not required to be Gaussian. A zero memory nonlinear (ZMNL) function is developed for each input to transform a Gaussian or normal time history into a time history with a specified non-Gaussian distribution. The transformation functions have the property that amore » transformed time history will have nearly the same auto spectral density as the original time history. A vector of Gaussian time histories are then generated with the specified cross-spectral density matrix. These waveforms are then transformed into the required time history realizations using the ZMNL function.« less

  19. Laser-induced plasma characterization through self-absorption quantification

    NASA Astrophysics Data System (ADS)

    Hou, JiaJia; Zhang, Lei; Zhao, Yang; Yan, Xingyu; Ma, Weiguang; Dong, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang

    2018-07-01

    A self-absorption quantification method is proposed to quantify the self-absorption degree of spectral lines, in which plasma characteristics including electron temperature, elemental concentration ratio, and absolute species number density can be deduced directly. Since there is no spectral intensity involved in the calculation, the analysis results are independent of the self-absorption effects and the additional spectral efficiency calibration is not required. In order to evaluate the practicality, the limitation for application and the precision of this method are also discussed. Experimental results of aluminum-lithium alloy prove that the proposed method is qualified to realize semi-quantitative measurements and fast plasma characteristics diagnostics.

  20. Adaptive detection of noise signal according to Neumann-Pearson criterion

    NASA Astrophysics Data System (ADS)

    Padiryakov, Y. A.

    1985-03-01

    Optimum detection according to the Neumann-Pearson criterion is considered in the case of a random Gaussian noise signal, stationary during measurement, and a stationary random Gaussian background interference. Detection is based on two samples, their statistics characterized by estimates of their spectral densities, it being a priori known that sample A from the signal channel is either the sum of signal and interference or interference alone and sample B from the reference interference channel is an interference with the same spectral density as that of the interference in sample A for both hypotheses. The probability of correct detection is maximized on the average, first in the 2N-dimensional space of signal spectral density and interference spectral density readings, by fixing the probability of false alarm at each point so as to stabilize it at a constant level against variation of the interference spectral density. Deterministic decision rules are established. The algorithm is then reduced to equivalent detection in the N-dimensional space of the ratio of sample A readings to sample B readings.

  1. A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Capobianco, Giuseppe; Serranti, Silvia

    2018-06-01

    The aim of this work was to recognize different polymer flakes from mixed plastic waste through an innovative hierarchical classification strategy based on hyperspectral imaging, with particular reference to low density polyethylene (LDPE) and high-density polyethylene (HDPE). A plastic waste composition assessment, including also LDPE and HDPE identification, may help to define optimal recycling strategies for product quality control. Correct handling of plastic waste is essential for its further "sustainable" recovery, maximizing the sorting performance in particular for plastics with similar characteristics as LDPE and HDPE. Five different plastic waste samples were chosen for the investigation: polypropylene (PP), LDPE, HDPE, polystyrene (PS) and polyvinyl chloride (PVC). A calibration dataset was realized utilizing the corresponding virgin polymers. Hyperspectral imaging in the short-wave infrared range (1000-2500 nm) was thus applied to evaluate the different plastic spectral attributes finalized to perform their recognition/classification. After exploring polymer spectral differences by principal component analysis (PCA), a hierarchical partial least squares discriminant analysis (PLS-DA) model was built allowing the five different polymers to be recognized. The proposed methodology, based on hierarchical classification, is very powerful and fast, allowing to recognize the five different polymers in a single step.

  2. Spectral Study of Measles Epidemics: The Dependence of Spectral Gradient on the Population Size of the Community

    NASA Astrophysics Data System (ADS)

    Sumi, Ayako; Olsen, Lars Folke; Ohtomo, Norio; Tanaka, Yukio; Sawamura, Sadashi

    2003-02-01

    We have carried out spectral analysis of measles notifications in several communities in Denmark, UK and USA. The results confirm that each power spectral density (PSD) shows exponential characteristics, which are universally observed in the PSD for time series generated from nonlinear dynamical system. The exponential gradient increases with the population size. For almost all communities, many spectral lines observed in each PSD can be fully assigned to linear combinations of several fundamental periods, suggesting that the measles data are substantially noise-free. The optimum least squares fitting curve calculated using these fundamental periods essentially reproduces an underlying variation of the measles data, and an extension of the curve can be used to predict measles epidemics. For the communities with large population sizes, some PSD patterns obtained from segment time series analysis show a close resemblance to the PSD patterns at the initial stages of a period-doubling bifurcation process for the so-called susceptible/exposed/infectious/recovered (SEIR) model with seasonal forcing. The meaning of the relationship between the exponential gradient and the population size is discussed.

  3. Random vibration analysis of space flight hardware using NASTRAN

    NASA Technical Reports Server (NTRS)

    Thampi, S. K.; Vidyasagar, S. N.

    1990-01-01

    During liftoff and ascent flight phases, the Space Transportation System (STS) and payloads are exposed to the random acoustic environment produced by engine exhaust plumes and aerodynamic disturbances. The analysis of payloads for randomly fluctuating loads is usually carried out using the Miles' relationship. This approximation technique computes an equivalent load factor as a function of the natural frequency of the structure, the power spectral density of the excitation, and the magnification factor at resonance. Due to the assumptions inherent in Miles' equation, random load factors are often over-estimated by this approach. In such cases, the estimates can be refined using alternate techniques such as time domain simulations or frequency domain spectral analysis. Described here is the use of NASTRAN to compute more realistic random load factors through spectral analysis. The procedure is illustrated using Spacelab Life Sciences (SLS-1) payloads and certain unique features of this problem are described. The solutions are compared with Miles' results in order to establish trends at over or under prediction.

  4. Spectral Density of Laser Beam Scintillation in Wind Turbulence. Part 1; Theory

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1997-01-01

    The temporal spectral density of the log-amplitude scintillation of a laser beam wave due to a spatially dependent vector-valued crosswind (deterministic as well as random) is evaluated. The path weighting functions for normalized spectral moments are derived, and offer a potential new technique for estimating the wind velocity profile. The Tatarskii-Klyatskin stochastic propagation equation for the Markov turbulence model is used with the solution approximated by the Rytov method. The Taylor 'frozen-in' hypothesis is assumed for the dependence of the refractive index on the wind velocity, and the Kolmogorov spectral density is used for the refractive index field.

  5. New Variance-Reducing Methods for the PSD Analysis of Large Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2010-01-01

    Edge data of a measured surface map of a circular optic result in large variance or "spectral leakage" behavior in the corresponding Power Spectral Density (PSD) data. In this paper we present two new, alternative methods for reducing such variance in the PSD data by replacing the zeros outside the circular area of a surface map by non-zero values either obtained from a PSD fit (method 1) or taken from the inside of the circular area (method 2).

  6. Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures

    NASA Astrophysics Data System (ADS)

    Liu, Zhangjun; Liu, Zenghui

    2018-06-01

    This paper develops a hybrid approach of spectral representation and random function for simulating stationary stochastic vector processes. In the proposed approach, the high-dimensional random variables, included in the original spectral representation (OSR) formula, could be effectively reduced to only two elementary random variables by introducing the random functions that serve as random constraints. Based on this, a satisfactory simulation accuracy can be guaranteed by selecting a small representative point set of the elementary random variables. The probability information of the stochastic excitations can be fully emerged through just several hundred of sample functions generated by the proposed approach. Therefore, combined with the probability density evolution method (PDEM), it could be able to implement dynamic response analysis and reliability assessment of engineering structures. For illustrative purposes, a stochastic turbulence wind velocity field acting on a frame-shear-wall structure is simulated by constructing three types of random functions to demonstrate the accuracy and efficiency of the proposed approach. Careful and in-depth studies concerning the probability density evolution analysis of the wind-induced structure have been conducted so as to better illustrate the application prospects of the proposed approach. Numerical examples also show that the proposed approach possesses a good robustness.

  7. Bottomside sinusoidal irregularities in the equatorial F region. II - Cross-correlation and spectral analysis

    NASA Technical Reports Server (NTRS)

    Cragin, B. L.; Hanson, W. B.; Mcclure, J. P.; Valladares, C. E.

    1985-01-01

    Equatorial bottomside sinusoidal (BSS) irregularities have been studied by applying techniques of cross-correlation and spectral analysis to the Atmosphere Explorer data set. The phase of the cross-correlations of the plasma number density is discussed and the two drift velocity components observed using the retarding potential analyzer and ion drift meter on the satellite are discussed. Morphology is addressed, presenting the geographical distributions of the occurrence of BSS events for the equinoxes and solstices. Physical processes including the ion Larmor flux, interhemispheric plasma flows, and variations in the lower F region Pedersen conductivity are invoked to explain the findings.

  8. Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2.

    PubMed

    Urboniene, V; Vrublevskaja, O; Trinkunas, G; Gall, A; Robert, B; Valkunas, L

    2007-09-15

    We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll (Bchl) molecules of the peripheral light-harvesting (or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850 nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments (detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature-dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires the lowest exciton states to be additionally shifted to the red, suggesting the reorganization of the exciton spectrum.

  9. Spectral analysis of the turbulent mixing of two fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinkamp, M.J.

    1996-02-01

    The authors describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used asmore » a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.« less

  10. A Review of Spectral Methods for Variable Amplitude Fatigue Prediction and New Results

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.; Irvine, Tom

    2013-01-01

    A comprehensive review of the available methods for estimating fatigue damage from variable amplitude loading is presented. The dependence of fatigue damage accumulation on power spectral density (psd) is investigated for random processes relevant to real structures such as in offshore or aerospace applications. Beginning with the Rayleigh (or narrow band) approximation, attempts at improved approximations or corrections to the Rayleigh approximation are examined by comparison to rainflow analysis of time histories simulated from psd functions representative of simple theoretical and real world applications. Spectral methods investigated include corrections by Wirsching and Light, Ortiz and Chen, the Dirlik formula, and the Single-Moment method, among other more recent proposed methods. Good agreement is obtained between the spectral methods and the time-domain rainflow identification for most cases, with some limitations. Guidelines are given for using the several spectral methods to increase confidence in the damage estimate.

  11. Feature Transformation Detection Method with Best Spectral Band Selection Process for Hyper-spectral Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike; Brickhouse, Mark

    2015-11-01

    We present a newly developed feature transformation (FT) detection method for hyper-spectral imagery (HSI) sensors. In essence, the FT method, by transforming the original features (spectral bands) to a different feature domain, may considerably increase the statistical separation between the target and background probability density functions, and thus may significantly improve the target detection and identification performance, as evidenced by the test results in this paper. We show that by differentiating the original spectral, one can completely separate targets from the background using a single spectral band, leading to perfect detection results. In addition, we have proposed an automated best spectral band selection process with a double-threshold scheme that can rank the available spectral bands from the best to the worst for target detection. Finally, we have also proposed an automated cross-spectrum fusion process to further improve the detection performance in lower spectral range (<1000 nm) by selecting the best spectral band pair with multivariate analysis. Promising detection performance has been achieved using a small background material signature library for concept-proving, and has then been further evaluated and verified using a real background HSI scene collected by a HYDICE sensor.

  12. Intermediate scale plasma density irregularities in the polar ionosphere inferred from radio occultation

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Komjathy, A.; Langley, R. B.; Verkhoglyadova, O. P.; Butala, M.; Mannucci, A. J.

    2014-12-01

    In this research, we report intermediate scale plasma density irregularities in the high-latitude ionosphere inferred from high-resolution radio occultation (RO) measurements in the CASSIOPE (CAScade Smallsat and IOnospheric Polar Explorer) - GPS (Global Positioning System) satellites radio link. The high inclination of the CASSIOPE satellite and high rate of signal receptionby the occultation antenna of the GPS Attitude, Positioning and Profiling (GAP) instrument on the Enhanced Polar Outflow Probe platform on CASSIOPE enable a high temporal and spatial resolution investigation of the dynamics of the polar ionosphere, magnetosphere-ionospherecoupling, solar wind effects, etc. with unprecedented details compared to that possible in the past. We have carried out high spatial resolution analysis in altitude and geomagnetic latitude of scintillation-producing plasma density irregularities in the polar ionosphere. Intermediate scale, scintillation-producing plasma density irregularities, which corresponds to 2 to 40 km spatial scales were inferred by applying multi-scale spectral analysis on the RO phase delay measurements. Using our multi-scale spectral analysis approach and Polar Operational Environmental Satellites (POES) and Defense Meteorological Satellite Program (DMSP) observations, we infer that the irregularity scales and phase scintillations have distinct features in the auroral oval and polar cap regions. In specific terms, we found that large length scales and and more intense phase scintillations are prevalent in the auroral oval compared to the polar cap region. Hence, the irregularity scales and phase scintillation characteristics are a function of the solar wind and the magnetospheric forcing. Multi-scale analysis may become a powerful diagnostic tool for characterizing how the ionosphere is dynamically driven by these factors.

  13. Spectral Characteristics of VLF Sferics Associated With RHESSI TGFs.

    PubMed

    Mezentsev, Andrew; Lehtinen, Nikolai; Østgaard, Nikolai; Pérez-Invernón, F J; Cummer, Steven A

    2018-01-16

    We compared the modeled energy spectral density of very low frequency (VLF) radio emissions from terrestrial gamma ray flashes (TGFs) with the energy spectral density of VLF radio sferics recorded by Duke VLF receiver simultaneously with those TGFs. In total, six events with world wide lightning location network (WWLLN) defined locations were analyzed to exhibit a good fit between the modeled and observed energy spectral densities. In VLF range the energy spectral density of the TGF source current moment is found to be dominated by the contribution of secondary low-energy electrons and independent of the relativistic electrons which play their role in low-frequency (LF) range. Additional spectral modulation by the multiplicity of TGF peaks was found and demonstrated a good fit for two TGFs whose VLF sferics consist of two overlapping pulses each. The number of seeding pulses in TGF defines the spectral shape in VLF range, which allows to retrieve this number from VLF sferics, assuming they were radiated by TGFs. For two events it was found that the number of seeding pulses is small, of the order of 10. For the rest of the events the lower boundary of the number of seeding pulses was found to be between 10 to 10 3 .

  14. The XMM deep survey in the CDF-S. X. X-ray variability of bright sources

    NASA Astrophysics Data System (ADS)

    Falocco, S.; Paolillo, M.; Comastri, A.; Carrera, F. J.; Ranalli, P.; Iwasawa, K.; Georgantopoulos, I.; Vignali, C.; Gilli, R.

    2017-12-01

    Aims: We aim to study the variability properties of bright hard X-ray selected active galactic nuclei (AGN) in the redshift range between 0.3 and 1.6 detected in the Chandra Deep Field South (XMM-CDFS) by a long ( 3 Ms) XMM observation. Methods: Taking advantage of the good count statistics in the XMM CDFS, we search for flux and spectral variability using the hardness ratio (HR) techniques. We also investigate the spectral variability of different spectral components (photon index of the power law, column density of the local absorber, and reflection intensity). The spectra were merged in six epochs (defined as adjacent observations) and in high and low flux states to understand whether the flux transitions are accompanied by spectral changes. Results: The flux variability is significant in all the sources investigated. The HRs in general are not as variable as the fluxes, in line with previous results on deep fields. Only one source displays a variable HR, anti-correlated with the flux (source 337). The spectral analysis in the available epochs confirms the steeper when brighter trend consistent with Comptonisation models only in this source at 99% confidence level. Finding this trend in one out of seven unabsorbed sources is consistent, within the statistical limits, with the 15% of unabsorbed AGN in previous deep surveys. No significant variability in the column densities, nor in the Compton reflection component, has been detected across the epochs considered. The high and low states display in general different normalisations but consistent spectral properties. Conclusions: X-ray flux fluctuations are ubiquitous in AGN, though in some cases the data quality does not allow for their detection. In general, the significant flux variations are not associated with spectral variability: photon index and column densities are not significantly variable in nine out of the ten AGN over long timescales (from three to six and a half years). Photon index variability is found only in one source (which is steeper when brighter) out of seven unabsorbed AGN. The percentage of spectrally variable objects is consistent, within the limited statistics of sources studied here, with previous deep samples.

  15. Simulation using computer-piloted point excitations of vibrations induced on a structure by an acoustic environment

    NASA Astrophysics Data System (ADS)

    Monteil, P.

    1981-11-01

    Computation of the overall levels and spectral densities of the responses measured on a launcher skin, the fairing for instance, merged into a random acoustic environment during take off, was studied. The analysis of transmission of these vibrations to the payload required the simulation of these responses by a shaker control system, using a small number of distributed shakers. Results show that this closed loop computerized digital system allows the acquisition of auto and cross spectral densities equal to those of the responses previously computed. However, wider application is sought, e.g., road and runway profiles. The problems of multiple input-output system identification, multiple true random signal generation, and real time programming are evoked. The system should allow for the control of four shakers.

  16. The power of a single trajectory

    NASA Astrophysics Data System (ADS)

    Schnellbächer, Nikolas D.; Schwarz, Ulrich S.

    2018-03-01

    Random walks are often evaluated in terms of their mean squared displacements, either for a large number of trajectories or for one very long trajectory. An alternative evaluation is based on the power spectral density, but here it is less clear which information can be extracted from a single trajectory. For continuous-time Brownian motion, Krapf et al now have mathematically proven that the one property that can be reliably extracted from a single trajectory is the frequency dependence of the ensemble-averaged power spectral density (Krapf et al 2018 New J. Phys. 20 023029). Their mathematical analysis also identifies the appropriate frequency window for this procedure and shows that the diffusion coefficient can be extracted by averaging over a small number of trajectories. The authors have verified their analytical results both by computer simulations and experiments.

  17. The upgrade of the Thomson scattering system for measurement on the C-2/C-2U devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, K.; Schindler, T.; Kinley, J.

    The C-2/C-2U Thomson scattering system has been substantially upgraded during the latter phase of C-2/C-2U program. A Rayleigh channel has been added to each of the three polychromators of the C-2/C-2U Thomson scattering system. Onsite spectral calibration has been applied to avoid the issue of different channel responses at different spots on the photomultiplier tube surface. With the added Rayleigh channel, the absolute intensity response of the system is calibrated with Rayleigh scattering in argon gas from 0.1 to 4 Torr, where the Rayleigh scattering signal is comparable to the Thomson scattering signal at electron densities from 1 × 10{supmore » 13} to 4 × 10{sup 14} cm{sup −3}. A new signal processing algorithm, using a maximum likelihood method and including detailed analysis of different noise contributions within the system, has been developed to obtain electron temperature and density profiles. The system setup, spectral and intensity calibration procedure and its outcome, data analysis, and the results of electron temperature/density profile measurements will be presented.« less

  18. Comparative study of cluster Ag17Cu2 by instantaneous normal mode analysis and by isothermal Brownian-type molecular dynamics simulation.

    PubMed

    Tang, Ping-Han; Wu, Ten-Ming; Yen, Tsung-Wen; Lai, S K; Hsu, P J

    2011-09-07

    We perform isothermal Brownian-type molecular dynamics simulations to obtain the velocity autocorrelation function and its time Fourier-transformed power spectral density for the metallic cluster Ag(17)Cu(2). The temperature dependences of these dynamical quantities from T = 0 to 1500 K were examined and across this temperature range the cluster melting temperature T(m), which we define to be the principal maximum position of the specific heat is determined. The instantaneous normal mode analysis is then used to dissect the cluster dynamics by calculating the vibrational instantaneous normal mode density of states and hence its frequency integrated value I(j) which is an ensemble average of all vibrational projection operators for the jth atom in the cluster. In addition to comparing the results with simulation data, we look more closely at the entities I(j) of all atoms using the point group symmetry and diagnose their temperature variations. We find that I(j) exhibit features that may be used to deduce T(m), which turns out to agree very well with those inferred from the power spectral density and specific heat. © 2011 American Institute of Physics

  19. The HIFI spectral survey of AFGL 2591 (CHESS). II. Summary of the survey

    NASA Astrophysics Data System (ADS)

    Kaźmierczak-Barthel, M.; van der Tak, F. F. S.; Helmich, F. P.; Chavarría, L.; Wang, K.-S.; Ceccarelli, C.

    2014-07-01

    Aims: This paper presents the richness of submillimeter spectral features in the high-mass star forming region AFGL 2591. Methods: As part of the Chemical Herschel Survey of Star Forming Regions (CHESS) key programme, AFGL 2591 was observed by the Herschel (HIFI) instrument. The spectral survey covered a frequency range from 480 to 1240 GHz as well as single lines from 1267 to 1901 GHz (i.e. CO, HCl, NH3, OH, and [CII]). Rotational and population diagram methods were used to calculate column densities, excitation temperatures, and the emission extents of the observed molecules associated with AFGL 2591. The analysis was supplemented with several lines from ground-based JCMT spectra. Results: From the HIFI spectral survey analysis a total of 32 species were identified (including isotopologues). Although the lines are mostly quite weak (∫TmbdV ~ few K km s-1), 268 emission and 16 absorption lines were found (excluding blends). Molecular column densities range from 6 × 1011 to 1 × 1019 cm-2 and excitation temperatures from 19 to 175 K. Cold (e.g. HCN, H2S, and NH3 with temperatures below 70 K) and warm species (e.g. CH3OH, SO2) in the protostellar envelope can be distinguished. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix A is available in electronic form at http://www.aanda.org

  20. Statistical analysis of modal parameters of a suspension bridge based on Bayesian spectral density approach and SHM data

    NASA Astrophysics Data System (ADS)

    Li, Zhijun; Feng, Maria Q.; Luo, Longxi; Feng, Dongming; Xu, Xiuli

    2018-01-01

    Uncertainty of modal parameters estimation appear in structural health monitoring (SHM) practice of civil engineering to quite some significant extent due to environmental influences and modeling errors. Reasonable methodologies are needed for processing the uncertainty. Bayesian inference can provide a promising and feasible identification solution for the purpose of SHM. However, there are relatively few researches on the application of Bayesian spectral method in the modal identification using SHM data sets. To extract modal parameters from large data sets collected by SHM system, the Bayesian spectral density algorithm was applied to address the uncertainty of mode extraction from output-only response of a long-span suspension bridge. The posterior most possible values of modal parameters and their uncertainties were estimated through Bayesian inference. A long-term variation and statistical analysis was performed using the sensor data sets collected from the SHM system of the suspension bridge over a one-year period. The t location-scale distribution was shown to be a better candidate function for frequencies of lower modes. On the other hand, the burr distribution provided the best fitting to the higher modes which are sensitive to the temperature. In addition, wind-induced variation of modal parameters was also investigated. It was observed that both the damping ratios and modal forces increased during the period of typhoon excitations. Meanwhile, the modal damping ratios exhibit significant correlation with the spectral intensities of the corresponding modal forces.

  1. Trade-off studies of a hyperspectral infrared sounder on a geostationary satellite.

    PubMed

    Wang, Fang; Li, Jun; Schmit, Timothy J; Ackerman, Steven A

    2007-01-10

    Trade-off studies on spectral coverage, signal-to-noise ratio (SNR), and spectral resolution for a hyperspectral infrared (IR) sounder on a geostationary satellite are summarized. The data density method is applied for the vertical resolution analysis, and the rms error between true and retrieved profiles is used to represent the retrieval accuracy. The effects of spectral coverage, SNR, and spectral resolution on vertical resolution and retrieval accuracy are investigated. The advantages of IR and microwave sounder synergy are also demonstrated. When focusing on instrument performance and data processing, the results from this study show that the preferred spectral coverage combines long-wave infrared (LWIR) with the shorter middle-wave IR (SMidW). Using the appropriate spectral coverage, a hyperspectral IR sounder with appropriate SNR can achieve the required science performance (1 km vertical resolution, 1 K temperature, and 10% relative humidity retrieval accuracy). The synergy of microwave and IR sounders can improve the vertical resolution and retrieval accuracy compared to either instrument alone.

  2. Estimating maximum instantaneous distortion from inlet total pressure rms and PSD measurements. [Root Mean Square and Power Spectral Density methods

    NASA Technical Reports Server (NTRS)

    Melick, H. C., Jr.; Ybarra, A. H.; Bencze, D. P.

    1975-01-01

    An inexpensive method is developed to determine the extreme values of instantaneous inlet distortion. This method also provides insight into the basic mechanics of unsteady inlet flow and the associated engine reaction. The analysis is based on fundamental fluid dynamics and statistical methods to provide an understanding of the turbulent inlet flow and quantitatively relate the rms level and power spectral density (PSD) function of the measured time variant total pressure fluctuations to the strength and size of the low pressure regions. The most probable extreme value of the instantaneous distortion is then synthesized from this information in conjunction with the steady state distortion. Results of the analysis show the extreme values to be dependent upon the steady state distortion, the measured turbulence rms level and PSD function, the time on point, and the engine response characteristics. Analytical projections of instantaneous distortion are presented and compared with data obtained by a conventional, highly time correlated, 40 probe instantaneous pressure measurement system.

  3. Evaluation of localized muscle fatigue using power spectral density analysis of the electromyogram

    NASA Technical Reports Server (NTRS)

    Lafevers, E. V.

    1974-01-01

    Surface electromyograms (EMGs) taken from three upper torso muscles during a push-pull task were analyzed by a power spectral density technique to determine the operational feasibility of the technique for identifying changes in the EMGs resulting from muscular fatigue. The EMGs were taken from four subjects under two conditions (1) in shirtsleeves and (2) in a pressurized space suit. This study confirmed that frequency analysis of dynamic muscle activity is capable of providing reliable data for many industrial applications where fatigue may be of practical interest. The results showed significant effects of the pressurized space suit on the pattern of shirtsleeve fatigue responses of the muscles. The data also revealed (1) reliable differences between muscles in fatigue-induced responses to various locations in the reach envelope at which the subjects were required to perform the push-pull exercise and (2) the differential sensitivity of muscles to the various reach positions in terms of fatigue-related shifts in EMG power.

  4. Spectral imaging toolbox: segmentation, hyperstack reconstruction, and batch processing of spectral images for the determination of cell and model membrane lipid order.

    PubMed

    Aron, Miles; Browning, Richard; Carugo, Dario; Sezgin, Erdinc; Bernardino de la Serna, Jorge; Eggeling, Christian; Stride, Eleanor

    2017-05-12

    Spectral imaging with polarity-sensitive fluorescent probes enables the quantification of cell and model membrane physical properties, including local hydration, fluidity, and lateral lipid packing, usually characterized by the generalized polarization (GP) parameter. With the development of commercial microscopes equipped with spectral detectors, spectral imaging has become a convenient and powerful technique for measuring GP and other membrane properties. The existing tools for spectral image processing, however, are insufficient for processing the large data sets afforded by this technological advancement, and are unsuitable for processing images acquired with rapidly internalized fluorescent probes. Here we present a MATLAB spectral imaging toolbox with the aim of overcoming these limitations. In addition to common operations, such as the calculation of distributions of GP values, generation of pseudo-colored GP maps, and spectral analysis, a key highlight of this tool is reliable membrane segmentation for probes that are rapidly internalized. Furthermore, handling for hyperstacks, 3D reconstruction and batch processing facilitates analysis of data sets generated by time series, z-stack, and area scan microscope operations. Finally, the object size distribution is determined, which can provide insight into the mechanisms underlying changes in membrane properties and is desirable for e.g. studies involving model membranes and surfactant coated particles. Analysis is demonstrated for cell membranes, cell-derived vesicles, model membranes, and microbubbles with environmentally-sensitive probes Laurdan, carboxyl-modified Laurdan (C-Laurdan), Di-4-ANEPPDHQ, and Di-4-AN(F)EPPTEA (FE), for quantification of the local lateral density of lipids or lipid packing. The Spectral Imaging Toolbox is a powerful tool for the segmentation and processing of large spectral imaging datasets with a reliable method for membrane segmentation and no ability in programming required. The Spectral Imaging Toolbox can be downloaded from https://uk.mathworks.com/matlabcentral/fileexchange/62617-spectral-imaging-toolbox .

  5. Application of multivariate autoregressive spectrum estimation to ULF waves

    NASA Technical Reports Server (NTRS)

    Ioannidis, G. A.

    1975-01-01

    The estimation of the power spectrum of a time series by fitting a finite autoregressive model to the data has recently found widespread application in the physical sciences. The extension of this method to the analysis of vector time series is presented here through its application to ULF waves observed in the magnetosphere by the ATS 6 synchronous satellite. Autoregressive spectral estimates of the power and cross-power spectra of these waves are computed with computer programs developed by the author and are compared with the corresponding Blackman-Tukey spectral estimates. The resulting spectral density matrices are then analyzed to determine the direction of propagation and polarization of the observed waves.

  6. Spectral function from Reduced Density Matrix Functional Theory

    NASA Astrophysics Data System (ADS)

    Romaniello, Pina; di Sabatino, Stefano; Berger, Jan A.; Reining, Lucia

    2015-03-01

    In this work we focus on the calculation of the spectral function, which determines, for example, photoemission spectra, from reduced density matrix functional theory. Starting from its definition in terms of the one-body Green's function we derive an expression for the spectral function that depends on the natural occupation numbers and on an effective energy which accounts for all the charged excitations. This effective energy depends on the two-body as well as higher-order density matrices. Various approximations to this expression are explored by using the exactly solvable Hubbard chains.

  7. Improving the Curie depth estimation through optimizing the spectral block dimensions of the aeromagnetic data in the Sabalan geothermal field

    NASA Astrophysics Data System (ADS)

    Akbar, Somaieh; Fathianpour, Nader

    2016-12-01

    The Curie point depth is of great importance in characterizing geothermal resources. In this study, the Curie iso-depth map was provided using the well-known method of dividing the aeromagnetic dataset into overlapping blocks and analyzing the power spectral density of each block separately. Determining the optimum block dimension is vital in improving the resolution and accuracy of estimating Curie point depth. To investigate the relation between the optimal block size and power spectral density, a forward magnetic modeling was implemented on an artificial prismatic body with specified characteristics. The top, centroid, and bottom depths of the body were estimated by the spectral analysis method for different block dimensions. The result showed that the optimal block size could be considered as the smallest possible block size whose corresponding power spectrum represents an absolute maximum in small wavenumbers. The Curie depth map of the Sabalan geothermal field and its surrounding areas, in the northwestern Iran, was produced using a grid of 37 blocks with different dimensions from 10 × 10 to 50 × 50 km2, which showed at least 50% overlapping with adjacent blocks. The Curie point depth was estimated in the range of 5 to 21 km. The promising areas with the Curie point depths less than 8.5 km are located around Mountain Sabalan encompassing more than 90% of known geothermal resources in the study area. Moreover, the Curie point depth estimated by the improved spectral analysis is in good agreement with the depth calculated from the thermal gradient data measured in one of the exploratory wells in the region.

  8. On Holo-Hilbert Spectral Analysis: A Full Informational Spectral Representation for Nonlinear and Non-Stationary Data

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Huang; Peng, Chung Kang; hide

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time- frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and nonstationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.

  9. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    PubMed Central

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities. PMID:26953180

  10. Effect of disposable infection control barriers on light output from dental curing lights.

    PubMed

    Scott, Barbara A; Felix, Corey A; Price, Richard B T

    2004-02-01

    To prevent contamination of the light guide on a dental curing light, barriers such as disposable plastic wrap or covers may be used. This study compared the effect of 3 disposable barriers on the spectral output and power density from a curing light. The hypothesis was that none of the barriers would have a significant clinical effect on the spectral output or the power density from the curing light. Three disposable barriers were tested against a control (no barrier). The spectra and power from the curing light were measured with a spectrometer attached to an integrating sphere. The measurements were repeated on 10 separate occasions in a random sequence for each barrier. Analysis of variance (ANOVA) followed by Fisher's protected least significant difference test showed that the power density was significantly less than control (by 2.4% to 6.1%) when 2 commercially available disposable barriers were used (p < 0.05). There was no significant difference in the power density when general-purpose plastic wrap was used (p > 0.05). The effect of each of the barriers on the power output was small and probably clinically insignificant. ANOVA comparisons of mean peak wavelength values indicated that none of the barriers produced a significant shift in the spectral output relative to the control ( p > 0.05). Two of the 3 disposable barriers produced a significant reduction in power density from the curing light. This drop in power was small and would probably not adversely affect the curing of composite resin. None of the barriers acted as light filters.

  11. VizieR Online Data Catalog: Gamma Ray Bursts detected by Swift (2004-2015) (Buchner+, 2017)

    NASA Astrophysics Data System (ADS)

    Buchner, J.; Schulze, S.; Bauer, F.

    2016-04-01

    Gamma Ray Bursts (GRB) typically show intrinsic LOS column densities of 1021-23cm2. We performed a thorough statistical analysis of all available X-ray spectra of Swift-detected GRBs. In the associated paper we use sub-samples to analyse the population properties of LGRB and concluded that the obscuration is due to large-scale gas inside the GRB host galaxy, due to the shape of the column density distribution and its correlation with host stellar mass. This catalogue presents X-ray spectral analysis of all Swift-detected GRBs. It includes information about the GRB (ID, Swift Trigger ID, duration, RA/Dec in J2000, galactic coordinates, Milky Way column density). Those properties are taken from the http://www.swift.ac.uk/ and http://gcn.gsfc.nasa.gov/ websites. We removed prompt emission and flares, leaving only a certain time interval for spectral extraction. We use two models to analyse X-ray spectra: TBABS and SPHERE. Both include updated abundances and cross-sections as compared to previous works. The latter includes the effects of Compton-scattering and FeKa fluorescence relevant at high column densities. Columns list the posterior mean, standard deviation, 10% and 90% quantiles. Note that the column densities are converted to hydrogen assuming local ISM abundances, but are derived primarily from photo-electric absorption of e.g. Fe and O, and therefore primarily measure metal gas. (2 data files).

  12. Parametric Power Spectral Density Analysis of Noise from Instrumentation in MALDI TOF Mass Spectrometry

    PubMed Central

    Shin, Hyunjin; Mutlu, Miray; Koomen, John M.; Markey, Mia K.

    2007-01-01

    Noise in mass spectrometry can interfere with identification of the biochemical substances in the sample. For example, the electric motors and circuits inside the mass spectrometer or in nearby equipment generate random noise that may distort the true shape of mass spectra. This paper presents a stochastic signal processing approach to analyzing noise from electrical noise sources (i.e., noise from instrumentation) in MALDI TOF mass spectrometry. Noise from instrumentation was hypothesized to be a mixture of thermal noise, 1/f noise, and electric or magnetic interference in the instrument. Parametric power spectral density estimation was conducted to derive the power distribution of noise from instrumentation with respect to frequencies. As expected, the experimental results show that noise from instrumentation contains 1/f noise and prominent periodic components in addition to thermal noise. These periodic components imply that the mass spectrometers used in this study may not be completely shielded from the internal or external electrical noise sources. However, according to a simulation study of human plasma mass spectra, noise from instrumentation does not seem to affect mass spectra significantly. In conclusion, analysis of noise from instrumentation using stochastic signal processing here provides an intuitive perspective on how to quantify noise in mass spectrometry through spectral modeling. PMID:19455245

  13. Effects of vibration and shock on the performance of gas-bearing space-power Brayton cycle turbomachinery. Part 3: Sinusoidal and random vibration data reduction and evaluation, and random vibration probability analysis

    NASA Technical Reports Server (NTRS)

    Tessarzik, J. M.; Chiang, T.; Badgley, R. H.

    1973-01-01

    The random vibration response of a gas bearing rotor support system has been experimentally and analytically investigated in the amplitude and frequency domains. The NASA Brayton Rotating Unit (BRU), a 36,000 rpm, 10 KWe turbogenerator had previously been subjected in the laboratory to external random vibrations, and the response data recorded on magnetic tape. This data has now been experimentally analyzed for amplitude distribution and magnetic tape. This data has now been experimentally analyzed for amplitude distribution and frequency content. The results of the power spectral density analysis indicate strong vibration responses for the major rotor-bearing system components at frequencies which correspond closely to their resonant frequencies obtained under periodic vibration testing. The results of amplitude analysis indicate an increasing shift towards non-Gaussian distributions as the input level of external vibrations is raised. Analysis of axial random vibration response of the BRU was performed by using a linear three-mass model. Power spectral densities, the root-mean-square value of the thrust bearing surface contact were calculated for specified input random excitation.

  14. Open Systems with Error Bounds: Spin-Boson Model with Spectral Density Variations.

    PubMed

    Mascherpa, F; Smirne, A; Huelga, S F; Plenio, M B

    2017-03-10

    In the study of open quantum systems, one of the most common ways to describe environmental effects on the reduced dynamics is through the spectral density. However, in many models this object cannot be computed from first principles and needs to be inferred on phenomenological grounds or fitted to experimental data. Consequently, some uncertainty regarding its form and parameters is unavoidable; this in turn calls into question the accuracy of any theoretical predictions based on a given spectral density. Here, we focus on the spin-boson model as a prototypical open quantum system, find two error bounds on predicted expectation values in terms of the spectral density variation considered, and state a sufficient condition for the strongest one to apply. We further demonstrate an application of our result, by bounding the error brought about by the approximations involved in the hierarchical equations of motion resolution method for spin-boson dynamics.

  15. Two-point spectral model for variable density homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Pal, Nairita; Kurien, Susan; Clark, Timothy; Aslangil, Denis; Livescu, Daniel

    2017-11-01

    We present a comparison between a two-point spectral closure model for buoyancy-driven variable density homogeneous turbulence, with Direct Numerical Simulation (DNS) data of the same system. We wish to understand how well a suitable spectral model might capture variable density effects and the transition to turbulence from an initially quiescent state. Following the BHRZ model developed by Besnard et al. (1990), the spectral model calculation computes the time evolution of two-point correlations of the density fluctuations with the momentum and the specific-volume. These spatial correlations are expressed as function of wavenumber k and denoted by a (k) and b (k) , quantifying mass flux and turbulent mixing respectively. We assess the accuracy of the model, relative to a full DNS of the complete hydrodynamical equations, using a and b as metrics. Work at LANL was performed under the auspices of the U.S. DOE Contract No. DE-AC52-06NA25396.

  16. Determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer quantum dots via spectral analysis of optical signature of the Aharanov-Bohm excitons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Haojie; Dhomkar, Siddharth; Roy, Bidisha

    2014-10-28

    For submonolayer quantum dot (QD) based photonic devices, size and density of QDs are critical parameters, the probing of which requires indirect methods. We report the determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer QDs, based on spectral analysis of the optical signature of Aharanov-Bohm (AB) excitons, complemented by photoluminescence studies, secondary-ion mass spectroscopy, and numerical calculations. Numerical calculations are employed to determine the AB transition magnetic field as a function of the type-II QD radius. The study of four samples grown with different tellurium fluxes shows that the lateral size of QDs increases by just 50%, evenmore » though tellurium concentration increases 25-fold. Detailed spectral analysis of the emission of the AB exciton shows that the QD radii take on only certain values due to vertical correlation and the stacked nature of the QDs.« less

  17. Multiple Point Dynamic Gas Density Measurements Using Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard; Panda, Jayanta

    1999-01-01

    A nonintrusive technique for measuring dynamic gas density properties is described. Molecular Rayleigh scattering is used to measure the time-history of gas density simultaneously at eight spatial locations at a 50 kHz sampling rate. The data are analyzed using the Welch method of modified periodograms to reduce measurement uncertainty. Cross-correlations, power spectral density functions, cross-spectral density functions, and coherence functions may be obtained from the data. The technique is demonstrated using low speed co-flowing jets with a heated inner jet.

  18. Recent Applications of Higher-Order Spectral Analysis to Nonlinear Aeroelastic Phenomena

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Hajj, Muhammad R.; Dunn, Shane; Strganac, Thomas W.; Powers, Edward J.; Stearman, Ronald

    2005-01-01

    Recent applications of higher-order spectral (HOS) methods to nonlinear aeroelastic phenomena are presented. Applications include the analysis of data from a simulated nonlinear pitch and plunge apparatus and from F-18 flight flutter tests. A MATLAB model of the Texas A&MUniversity s Nonlinear Aeroelastic Testbed Apparatus (NATA) is used to generate aeroelastic transients at various conditions including limit cycle oscillations (LCO). The Gaussian or non-Gaussian nature of the transients is investigated, related to HOS methods, and used to identify levels of increasing nonlinear aeroelastic response. Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed. The data includes high-quality measurements of forced responses and LCO phenomena. Standard power spectral density (PSD) techniques and HOS methods are applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.

  19. Ocean Surface Wave Optical Roughness - Analysis of Innovative Measurements

    DTIC Science & Technology

    2011-09-30

    crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our effort seeks to provide a more comprehensive description of...Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microscale breaking waves

  20. Ocean Surface Wave Optical Roughness - Analysis of Innovative Measurements

    DTIC Science & Technology

    2013-09-30

    Phillips et al., 2001] and microscale breaker crest length spectral density [e.g., Jessup and Phadnis , 2005] have been reported. Our effort seeks...16, 290-297. Jessup, A. T., and K. R. Phadnis (2005), Measurement of the geometric and kinematic properties of microsacle breaking waves from

  1. A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging.

    PubMed

    Bonifazi, Giuseppe; Capobianco, Giuseppe; Serranti, Silvia

    2018-06-05

    The aim of this work was to recognize different polymer flakes from mixed plastic waste through an innovative hierarchical classification strategy based on hyperspectral imaging, with particular reference to low density polyethylene (LDPE) and high-density polyethylene (HDPE). A plastic waste composition assessment, including also LDPE and HDPE identification, may help to define optimal recycling strategies for product quality control. Correct handling of plastic waste is essential for its further "sustainable" recovery, maximizing the sorting performance in particular for plastics with similar characteristics as LDPE and HDPE. Five different plastic waste samples were chosen for the investigation: polypropylene (PP), LDPE, HDPE, polystyrene (PS) and polyvinyl chloride (PVC). A calibration dataset was realized utilizing the corresponding virgin polymers. Hyperspectral imaging in the short-wave infrared range (1000-2500nm) was thus applied to evaluate the different plastic spectral attributes finalized to perform their recognition/classification. After exploring polymer spectral differences by principal component analysis (PCA), a hierarchical partial least squares discriminant analysis (PLS-DA) model was built allowing the five different polymers to be recognized. The proposed methodology, based on hierarchical classification, is very powerful and fast, allowing to recognize the five different polymers in a single step. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Symposium on Flow-Induced Vibrations Held in New Orleans, Louisiana on 9-14 December 1984. Volume 1. Excitation and Vibration of Bluff Bodies in Cross Flow

    DTIC Science & Technology

    1984-12-14

    VIj/D. tv, Response parameter, (I + 2 /D) ( VSt )-i; see Eq. (10). Z Cross flow displacement (m or ft). Y Cross flow displacement amplitude (mor ft). Y...pressure fluctuation spectra were increased for all values of a. The angular variation of the power spectral density (PSD) for case 12 (see Table 2) is...shedding was found. Spectral and statistical analysis indicated that different physical mecha- nisms take place at various angular positions on the

  3. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    DOE PAGES

    Hakel, Peter

    2016-10-01

    Here we report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  4. Measurements of Electron Impact Excitation Cross Sections at the Harvard-Smithsonian Center for Astrophysics

    NASA Technical Reports Server (NTRS)

    Gardner, L. D.; Kohl, J. L.

    2006-01-01

    The analysis of absolute spectral line intensities and intensity ratios with spectroscopic diagnostic techniques provides empirical determinations of chemical abundances, electron densities and temperatures in astrophysical objects. Since spectral line intensities and their ratios are controlled by the excitation rate coefficients for the electron temperature of the observed astrophysical structure, it is imperative that one have accurate values for the relevant rate coefficients. Here at the Harvard-Smithsonian Center for Astrophysics, we have been carrying out measurements of electron impact excitation (EIE) for more than 25 years.

  5. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    NASA Astrophysics Data System (ADS)

    Hakel, Peter

    2016-10-01

    We report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  6. Tropospheric Ozone Near-Nadir-Viewing IR Spectral Sensitivity and Ozone Measurements from NAST-I

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.

    2001-01-01

    Infrared ozone spectra from near nadir observations have provided atmospheric ozone information from the sensor to the Earth's surface. Simulations of the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I) from the NASA ER-2 aircraft (approximately 20 km altitude) with a spectral resolution of 0.25/cm were used for sensitivity analysis. The spectral sensitivity of ozone retrievals to uncertainties in atmospheric temperature and water vapor is assessed in order to understand the relationship between the IR emissions and the atmospheric state. In addition, ozone spectral radiance sensitivity to its ozone layer densities and radiance weighting functions reveals the limit of the ozone profile retrieval accuracy from NAST-I measurements. Statistical retrievals of ozone with temperature and moisture retrievals from NAST-I spectra have been investigated and the preliminary results from NAST-I field campaigns are presented.

  7. SIGN SINGULARITY AND FLARES IN SOLAR ACTIVE REGION NOAA 11158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorriso-Valvo, L.; De Vita, G.; Kazachenko, M. D.

    Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares and the presence of correlation with Extreme-Ultra-Violet and X-ray flux suggest that eruption of large flares can be linked to the small-scale properties of the current structures.

  8. Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures.

    PubMed

    Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi

    2013-01-01

    Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.

  9. Vibrational spectral investigation, NBO, first hyperpolarizability and UV-Vis spectral analysis of 3,5-dichlorobenzonitrile and m-bromobenzonitrile by ab initio and density functional theory methods.

    PubMed

    Senthil kumar, J; Jeyavijayan, S; Arivazhagan, M

    2015-02-05

    The FT-IR and FT-Raman spectra of 3,5-dichlorobenzonitrile and m-bromobenzonitrile have been recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The optimized geometry, wave numbers and intensity of vibrational bonds of title molecules are obtained by ab initio and DFT level of theory with complete relaxation in the potential energy surface using 6-311++G(d, p) basis set. A complete vibrational assignments aided by the theoretical harmonic frequency, analysis have been proposed. The harmonic vibrational frequencies calculated have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The UV-Vis spectral analysis of the molecules has also been done which confirms the charge transfer of the molecules. Furthermore, the first hyperpolarizability and total dipole moment of the molecules have been calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Matrix Methods for Estimating the Coherence Functions from Estimates of the Cross-Spectral Density Matrix

    DOE PAGES

    Smallwood, D. O.

    1996-01-01

    It is shown that the usual method for estimating the coherence functions (ordinary, partial, and multiple) for a general multiple-input! multiple-output problem can be expressed as a modified form of Cholesky decomposition of the cross-spectral density matrix of the input and output records. The results can be equivalently obtained using singular value decomposition (SVD) of the cross-spectral density matrix. Using SVD suggests a new form of fractional coherence. The formulation as a SVD problem also suggests a way to order the inputs when a natural physical order of the inputs is absent.

  11. Thermally induced conformational changes in polyethylene studied by two-dimensional near-infrared infrared hetero-spectral correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Noda, Isao; Ozaki, Yukihiro

    2008-07-01

    The amount of nonplanar gauche bonds was monitored as a function of increasing temperature in three different polyethylene (PE) samples by means of mid-infrared (MIR) and near-infrared (NIR) spectroscopy. The hetero-spectral two-dimensional (2D) correlation analysis was carried out between the NIR spectral region of 4365-4235 cm -1 and the well-established MIR spectral region of 1375-1265 cm -1, where bands due to nonplanar conformer are detected. This approach allowed us to identify the NIR band at 4265 cm -1, which behaves in a way similar to MIR bands originating from conformational-defect sequences. By combining the result of our current study and that of our previous report obtained on different types of PE, it is suggested that the NIR band originates from conformational-defect sequences in PE. This finding opens up a unique and useful way to study the state of conformational disorder in PE crystal by NIR spectroscopy, monitoring the intensity of the NIR band at 4265 cm -1. The use of NIR spectroscopy allows researchers to directly probe the degree in the formation of conformational-defect sequences in thick, real-world PE samples that cannot be studied by conventional MIR spectroscopy. The 2D correlation spectroscopy analysis among the MIR CH 2 wagging conformational-defect-mode bands on linear low-density PE (LLDPE) and low-density PE (LDPE) revealed the formation of nonplanar conformer represented by the band at 1368 cm -1 proceeds prior to those by other band at 1308 cm -1. This result agrees well with our previous finding on high-density PE (HDPE). We therefore propose with strong confidence that the bands at 1368 and 1308 cm -1 arise from different conformational-defect sequences, even though both of the bands have been proposed to arise from the same conformer of gtg' ( kink) + gtg sequence.

  12. Progress on a Rayleigh Scattering Mass Flux Measurement Technique

    NASA Technical Reports Server (NTRS)

    Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.; Hirt, Stefanie M.

    2010-01-01

    A Rayleigh scattering diagnostic has been developed to provide mass flux measurements in wind tunnel flows. Spectroscopic molecular Rayleigh scattering is an established flow diagnostic tool that has the ability to provide simultaneous density and velocity measurements in gaseous flows. Rayleigh scattered light from a focused 10 Watt continuous-wave laser beam is collected and fiber-optically transmitted to a solid Fabry-Perot etalon for spectral analysis. The circular interference pattern that contains the spectral information that is needed to determine the flow properties is imaged onto a CCD detector. Baseline measurements of density and velocity in the test section of the 15 cm x 15 cm Supersonic Wind Tunnel at NASA Glenn Research Center are presented as well as velocity measurements within a supersonic combustion ramjet engine isolator model installed in the tunnel test section.

  13. Phylogeny of metabolic networks: a spectral graph theoretical approach.

    PubMed

    Deyasi, Krishanu; Banerjee, Anirban; Deb, Bony

    2015-10-01

    Many methods have been developed for finding the commonalities between different organisms in order to study their phylogeny. The structure of metabolic networks also reveals valuable insights into metabolic capacity of species as well as into the habitats where they have evolved. We constructed metabolic networks of 79 fully sequenced organisms and compared their architectures. We used spectral density of normalized Laplacian matrix for comparing the structure of networks. The eigenvalues of this matrix reflect not only the global architecture of a network but also the local topologies that are produced by different graph evolutionary processes like motif duplication or joining. A divergence measure on spectral densities is used to quantify the distances between various metabolic networks, and a split network is constructed to analyse the phylogeny from these distances. In our analysis, we focused on the species that belong to different classes, but appear more related to each other in the phylogeny. We tried to explore whether they have evolved under similar environmental conditions or have similar life histories. With this focus, we have obtained interesting insights into the phylogenetic commonality between different organisms.

  14. New parameter of the right gastroepiploic arterial graft using the power spectral analysis device named MemCalc soft.

    PubMed

    Uehara, Mayuko; Takagi, Nobuyuki; Muraki, Satoshi; Yanase, Yosuke; Tabuchi, Masaki; Tachibana, Kazutoshi; Miyaki, Yasuko; Ito, Toshiro; Higami, Tetsuya

    2015-12-01

    Transit-time flow measurement (TTFM) parameters such as mean graft flow (MGF, ml/min), pulsatility index (PI) and diastolic filling (DF, %) have been extensively researched for internal mammary arterial or saphenous vein grafts. In our experience of using the right gastroepiploic arterial (GEA) graft for right coronary artery (RCA) grafting, we observed unique GEA graft flow waveforms. We analysed the GEA graft flow waveforms for their effectiveness in determining GEA graft patency by power spectral analysis. Forty-five patients underwent off-pump coronary artery bypass using the GEA graft for RCA grafting individually. The means of intraoperative MGF, PI and DF were compared between patent and non-patent grafts, postoperatively. Furthermore, the GEA flow data were output and analysed using power spectral analysis. Forty grafts were 'patent' and five were 'non-patent'. There were no significant differences in the mean TTFM parameters between the patent and non-patent grafts (MGF: 22 vs 8 ml/min, respectively, P = 0.068; PI: 3.5 vs 6.5, respectively, P = 0.155; DF: 63 vs 53%, respectively, P = 0.237). Results of the power spectral analysis presented clear differences; the power spectral density (PSD) of patent grafts presented high peaks at frequency levels of 1, 2 and 3 Hz, and the non-patent graft PSD presented high peaks that were not limited to these frequencies. The PSD had a sensitivity and specificity of 80 and 87.5%, respectively. Power spectral analysis of the GEA graft flow is useful to distinguish between non-patent and patent grafts intraoperatively. This should be used as a fourth parameter along with MGF, PI and DF. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  15. The effect of dim light at night on cerebral hemodynamic oscillations during sleep: A near-infrared spectroscopy study.

    PubMed

    Kim, Tae-Joon; Lee, Byeong Uk; Sunwoo, Jun-Sang; Byun, Jung-Ick; Moon, Jangsup; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Kim, Manho; Lim, Jong-Min; Lee, Eunil; Lee, Sang Kun; Jung, Ki-Young

    2017-01-01

    Recent studies have reported that dim light at night (dLAN) is associated with risks of cardiovascular complications, such as hypertension and carotid atherosclerosis; however, little is known about the underlying mechanism. Here, we evaluated the effect of dLAN on the cerebrovascular system by analyzing cerebral hemodynamic oscillations using near-infrared spectroscopy (NIRS). Fourteen healthy male subjects underwent polysomnography coupled with cerebral NIRS. The data collected during sleep with dim light (10 lux) were compared with those collected during sleep under the control dark conditions for the sleep structure, cerebral hemodynamic oscillations, heart rate variability (HRV), and their electroencephalographic (EEG) power spectrum. Power spectral analysis was applied to oxy-hemoglobin concentrations calculated from the NIRS signal. Spectral densities over endothelial very-low-frequency oscillations (VLFOs) (0.003-0.02 Hz), neurogenic VLFOs (0.02-0.04 Hz), myogenic low-frequency oscillations (LFOs) (0.04-0.15 Hz), and total LFOs (0.003-0.15 Hz) were obtained for each sleep stage. The polysomnographic data revealed an increase in the N2 stage under the dLAN conditions. The spectral analysis of cerebral hemodynamics showed that the total LFOs increased significantly during slow-wave sleep (SWS) and decreased during rapid eye movement (REM) sleep. Specifically, endothelial (median of normalized value, 0.46 vs. 0.72, p = 0.019) and neurogenic (median, 0.58 vs. 0.84, p = 0.019) VLFOs were enhanced during SWS, whereas endothelial VLFOs (median, 1.93 vs. 1.47, p = 0.030) were attenuated during REM sleep. HRV analysis exhibited altered spectral densities during SWS induced by dLAN, including an increase in very-low-frequency and decreases in low-frequency and high-frequency ranges. In the EEG power spectral analysis, no significant difference was detected between the control and dLAN conditions. In conclusion, dLAN can disturb cerebral hemodynamics via the endothelial and autonomic systems without cortical involvement, predominantly during SWS, which might represent an underlying mechanism of the increased cerebrovascular risk associated with light exposure during sleep.

  16. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y. H.

    1977-01-01

    Digitally implemented spectral analysis techniques were used to investigate the frequency-dependent fluctuation-induced particle transport across a toroidal magnetic field. When the electric field pointed radially inward, the transport was inward and a significant enhancement of the plasma density and confinement time resulted.

  17. Ocean Surface Wave Optical Roughness - Analysis of Innovative Measurements

    DTIC Science & Technology

    2011-09-30

    Phillips et al, 2001, Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported...Statistics of breaking waves observed as whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R

  18. Ocean Surface Wave Optical Roughness - Analysis of Innovative Measurements

    DTIC Science & Technology

    2013-09-30

    Phillips et al., 2001] and microscale breaker crest length spectral density [e.g., Jessup and Phadnis , 2005] have been reported. Our effort seeks to...open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A. T., and K. R. Phadnis (2005), Measurement of the geometric and kinematic properties

  19. [Rapid assessment of critical quality attributes of Chinese materia medica (II): strategy of NIR assignment].

    PubMed

    Pei, Yan-Ling; Wu, Zhi-Sheng; Shi, Xin-Yuan; Zhou, Lu-Wei; Qiao, Yan-Jiang

    2014-09-01

    The present paper firstly reviewed the research progress and main methods of NIR spectral assignment coupled with our research results. Principal component analysis was focused on characteristic signal extraction to reflect spectral differences. Partial least squares method was concerned with variable selection to discover characteristic absorption band. Two-dimensional correlation spectroscopy was mainly adopted for spectral assignment. Autocorrelation peaks were obtained from spectral changes, which were disturbed by external factors, such as concentration, temperature and pressure. Density functional theory was used to calculate energy from substance structure to establish the relationship between molecular energy and spectra change. Based on the above reviewed method, taking a NIR spectral assignment of chlorogenic acid as example, a reliable spectral assignment for critical quality attributes of Chinese materia medica (CMM) was established using deuterium technology and spectral variable selection. The result demonstrated the assignment consistency according to spectral features of different concentrations of chlorogenic acid and variable selection region of online NIR model in extract process. Although spectral assignment was initial using an active pharmaceutical ingredient, it is meaningful to look forward to the futurity of the complex components in CMM. Therefore, it provided methodology for NIR spectral assignment of critical quality attributes in CMM.

  20. Quantitative methods and detection techniques in hyperspectral imaging involving medical and other applications

    NASA Astrophysics Data System (ADS)

    Roy, Ankita

    2007-12-01

    This research using Hyperspectral imaging involves recognizing targets through spatial and spectral matching and spectral un-mixing of data ranging from remote sensing to medical imaging kernels for clinical studies based on Hyperspectral data-sets generated using the VFTHSI [Visible Fourier Transform Hyperspectral Imager], whose high resolution Si detector makes the analysis achievable. The research may be broadly classified into (I) A Physically Motivated Correlation Formalism (PMCF), which places both spatial and spectral data on an equivalent mathematical footing in the context of a specific Kernel and (II) An application in RF plasma specie detection during carbon nanotube growing process. (III) Hyperspectral analysis for assessing density and distribution of retinopathies like age related macular degeneration (ARMD) and error estimation enabling the early recognition of ARMD, which is treated as an ill-conditioned inverse imaging problem. The broad statistical scopes of this research are two fold-target recognition problems and spectral unmixing problems. All processes involve experimental and computational analysis of Hyperspectral data sets is presented, which is based on the principle of a Sagnac Interferometer, calibrated to obtain high SNR levels. PMCF computes spectral/spatial/cross moments and answers the question of how optimally the entire hypercube should be sampled and finds how many spatial-spectral pixels are required precisely for a particular target recognition. Spectral analysis of RF plasma radicals, typically Methane plasma and Argon plasma using VFTHSI has enabled better process monitoring during growth of vertically aligned multi-walled carbon nanotubes by instant registration of the chemical composition or density changes temporally, which is key since a significant correlation can be found between plasma state and structural properties. A vital focus of this dissertation is towards medical Hyperspectral imaging applied to retinopathies like age related macular degeneration targets taken with a Fundus imager, which is akin to the VFTHSI. Detection of the constituent components in the diseased hyper-pigmentation area is also computed. The target or reflectance matrix is treated as a highly ill-conditioned spectral un-mixing problem, to which methodologies like inverse techniques, principal component analysis (PCA) and receiver operating curves (ROC) for precise spectral recognition of infected area. The region containing ARMD was easily distinguishable from the spectral mesh plots over the entire band-pass area. Once the location was detected the PMCF coefficients were calculated by cross correlating a target of normal oxygenated retina with the deoxygenated one. The ROCs generated using PMCF shows 30% higher detection probability with improved accuracy than ROCs based on Spectral Angle Mapper (SAM). By spectral unmixing methods, the important endmembers/carotenoids of the MD pigment were found to be Xanthophyl and lutein, while beta-carotene which showed a negative correlation in the unconstrained inverse problem is a supplement given to ARMD patients to prevent the disease and does not occur in the eye. Literature also shows degeneration of meso-zeaxanthin. Ophthalmologists may assert the presence of ARMD and commence the diagnosis process if the Xanthophyl pigment have degenerated 89.9%, while the lutein has decayed almost 80%, as found deduced computationally. This piece of current research takes it to the next level of precise investigation in the continuing process of improved clinical findings by correlating the microanatomy of the diseased fovea and shows promise of an early detection of this disease.

  1. Task-oriented comparison of power spectral density estimation methods for quantifying acoustic attenuation in diagnostic ultrasound using a reference phantom method.

    PubMed

    Rosado-Mendez, Ivan M; Nam, Kibo; Hall, Timothy J; Zagzebski, James A

    2013-07-01

    Reported here is a phantom-based comparison of methods for determining the power spectral density (PSD) of ultrasound backscattered signals. Those power spectral density values are then used to estimate parameters describing α(f), the frequency dependence of the acoustic attenuation coefficient. Phantoms were scanned with a clinical system equipped with a research interface to obtain radiofrequency echo data. Attenuation, modeled as a power law α(f)= α0 f (β), was estimated using a reference phantom method. The power spectral density was estimated using the short-time Fourier transform (STFT), Welch's periodogram, and Thomson's multitaper technique, and performance was analyzed when limiting the size of the parameter-estimation region. Errors were quantified by the bias and standard deviation of the α0 and β estimates, and by the overall power-law fit error (FE). For parameter estimation regions larger than ~34 pulse lengths (~1 cm for this experiment), an overall power-law FE of 4% was achieved with all spectral estimation methods. With smaller parameter estimation regions as in parametric image formation, the bias and standard deviation of the α0 and β estimates depended on the size of the parameter estimation region. Here, the multitaper method reduced the standard deviation of the α0 and β estimates compared with those using the other techniques. The results provide guidance for choosing methods for estimating the power spectral density in quantitative ultrasound methods.

  2. Spectral and structural studies of the anti-cancer drug Flutamide by density functional theoretical method

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.

    2014-01-01

    A comprehensive screening of the more recent DFT theoretical approach to structural analysis is presented in this section of theoretical structural analysis. The chemical name of 2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide is usually called as Flutamide (In the present study it is abbreviated as FLT) and is an important and efficacious drug in the treatment of anti-cancer resistant. The molecular geometry, vibrational spectra, electronic and NMR spectral interpretation of Flutamide have been studied with the aid of density functional theory method (DFT). The vibrational assignments of the normal modes were performed on the basis of the PED calculations using the VEDA 4 program. Comparison of computational results with X-ray diffraction results of Flutamide allowed the evaluation of structure predictions and confirmed B3LYP/6-31G(d,p) as accurate for structure determination. Application of scaling factors for IR and Raman frequency predictions showed good agreement with experimental values. This is supported the assignment of the major contributors of the vibration modes of the title compound. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. The comparison of measured FTIR, FT-Raman, and UV-Visible data to calculated values allowed assignment of major spectral features of the title molecule. Besides, Frontier molecular orbital analyze was also investigated using theoretical calculations.

  3. An investigation of wing buffeting response at subsonic and transonic speeds. Phase 2: F-111A flight data analysis. Volume 3: Tabulated power spectra

    NASA Technical Reports Server (NTRS)

    Benepe, D. B.; Cunningham, A. M., Jr.; Traylor, S., Jr.; Dunmyer, W. D.

    1978-01-01

    Power spectral density (PSD) data for all of the flight points examined during the Phase 2 flight data analysis are presented in tabular form. Detailed descriptions of the aircraft, the flight instrumentation and the analysis techniques are given. Measured and calculated vibration mode frequencies are also presented to assist in further interpretation of the PSD data.

  4. Low-Frequency Components in Rat Pial Arteriolar Rhythmic Diameter Changes.

    PubMed

    Lapi, Dominga; Mastantuono, Teresa; Di Maro, Martina; Varanini, Maurizio; Colantuoni, Antonio

    2017-01-01

    This study aimed to analyze the frequency components present in spontaneous rhythmic diameter changes in rat pial arterioles. Pial microcirculation was visualized by fluorescence microscopy. Rhythmic luminal variations were evaluated via computer-assisted methods. Spectral analysis was carried out on 30-min recordings under baseline conditions and after administration of acetylcholine (Ach), papaverine (Pap), Nω-nitro-L-arginine (L-NNA) prior to Ach, indomethacin (INDO), INDO prior to Ach, charybdotoxin and apamin, and charybdotoxin and apamin prior to Ach. Under baseline conditions all arteriolar orders showed 3 frequency components in the ranges of 0.0095-0.02, 0.02-0.06, and 0.06-0.2 Hz, another 2 in the ranges of 0.2-2.0 and 2.5-4.5 Hz, and another ultra-low-frequency component in the range of 0.001-0.0095 Hz. Ach caused a significant increase in the spectral density of the frequency components in the range of 0.001-0.2 Hz. Pap was able to slightly increase spectral density in the ranges of 0.001-0.0095 and 0.0095-0.02 Hz. L-NNA mainly attenuated arteriolar responses to Ach. INDO prior to Ach did not affect the endothelial response to Ach. Charybdotoxin and apamin, suggested as endothelium-derived hyperpolarizing factor inhibitors, reduced spectral density in the range of 0.001-0.0095 Hz before and after Ach administration. In conclusion, regulation of the blood flow distribution is due to several mechanisms, one of which is affected by charibdotoxin and apamin, modulating the vascular tone. © 2017 S. Karger AG, Basel.

  5. Senegalese land surface change analysis and biophysical parameter estimation using NOAA AVHRR spectral data

    NASA Technical Reports Server (NTRS)

    Vukovich, Fred M.; Toll, David L.; Kennard, Ruth L.

    1989-01-01

    Surface biophysical estimates were derived from analysis of NOAA Advanced Very High Spectral Resolution (AVHRR) spectral data of the Senegalese area of west Africa. The parameters derived were of solar albedo, spectral visible and near-infrared band reflectance, spectral vegetative index, and ground temperature. Wet and dry linked AVHRR scenes from 1981 through 1985 in Senegal were analyzed for a semi-wet southerly site near Tambacounda and a predominantly dry northerly site near Podor. Related problems were studied to convert satellite derived radiance to biophysical estimates of the land surface. Problems studied were associated with sensor miscalibration, atmospheric and aerosol spatial variability, surface anisotropy of reflected radiation, narrow satellite band reflectance to broad solar band conversion, and ground emissivity correction. The middle-infrared reflectance was approximated with a visible AVHRR reflectance for improving solar albedo estimates. In addition, the spectral composition of solar irradiance (direct and diffuse radiation) between major spectral regions (i.e., ultraviolet, visible, near-infrared, and middle-infrared) was found to be insensitive to changes in the clear sky atmospheric optical depth in the narrow band to solar band conversion procedure. Solar albedo derived estimates for both sites were not found to change markedly with significant antecedent precipitation events or correspondingly from increases in green leaf vegetation density. The bright soil/substrate contributed to a high albedo for the dry related scenes, whereas the high internal leaf reflectance in green vegetation canopies in the near-infrared contributed to high solar albedo for the wet related scenes. The relationship between solar albedo and ground temperature was poor, indicating the solar albedo has little control of the ground temperature. The normalized difference vegetation index (NDVI) and the derived visible reflectance were more sensitive to antecedent rainfall amounts and green vegetation changes than were near-infrared changes. The information in the NDVI related to green leaf density changes primarily was from the visible reflectance. The contribution of the near-infrared reflectance to explaining green vegetation is largely reduced when there is a bright substrate.

  6. A Novel Quantitative Method for Diabetic Cardiac Autonomic Neuropathy Assessment in Type 1 Diabetic Mice

    PubMed Central

    Yang, Bufan; Posada-Quintero, Hugo F.; Siu, Kin L.; Rolle, Marsha; Brink, Peter; Birzgalis, Aija; Moore, Leon C.

    2014-01-01

    In this work, we used a sensitive and noninvasive computational method to assess diabetic cardiovascular autonomic neuropathy (DCAN) from pulse oximeter (photoplethysmographic; PPG) recordings from mice. The method, which could be easily applied to humans, is based on principal dynamic mode (PDM) analysis of heart rate variability (HRV). Unlike the power spectral density, PDM has been shown to be able to separately identify the activities of the parasympathetic and sympathetic nervous systems without pharmacological intervention. HRV parameters were measured by processing PPG signals from conscious 1.5- to 5-month-old C57/BL6 control mice and in Akita mice, a model of insulin-dependent type 1 diabetes, and compared with the gold-standard Western blot and immunohistochemical analyses. The PDM results indicate significant cardiac autonomic impairment in the diabetic mice in comparison to the controls. When tail-cuff PPG recordings were collected and analyzed starting from 1.5 months of age in both C57/Bl6 controls and Akita mice, onset of DCAN was seen at 3 months in the Akita mice, which persisted up to the termination of the recording at 5 months. Western blot and immunohistochemical analyses also showed a reduction in nerve density in Akita mice at 3 and 4 months as compared to the control mice, thus, corroborating our PDM data analysis of HRV records. Western blot analysis of autonomic nerve proteins corroborated the PPG-based HRV analysis via the PDM approach. In contrast, traditional HRV analysis (based on either the power spectral density or time-domain measures) failed to detect the nerve rarefaction. PMID:25097056

  7. Stark width and shift for electron number density diagnostics of low temperature plasma: Application to silicon Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ivković, M.; Konjević, N.

    2017-05-01

    In this work we summarize, analyze and critically evaluate experimental procedures and results of LIBS electron number density plasma characterization using as examples Stark broadened Si I and Si II line profiles. Selected publications are covering the time period from very beginning of silicon LIBS studies until the end of the year 2015. To perform the analysis of experimental LIBS data, the testing of available semiclassical theoretical Stark broadening parameters for Si I and Si II lines was accomplished first. This is followed by the description of experimental setups, results and details of experimental procedure relevant for the line shape analysis of spectral lines used for plasma characterization. Although most of results and conclusions of this analysis are related to the application of silicon lines for LIBS characterization they are of general importance and may be applied to other elements and different low-temperature plasma sources. The analysis of experimental procedures used for LIBS diagnostics from emission profiles of non-hydrogenic spectral lines is carried out in the following order: the influence of laser ablation and crater formation, spatial and temporal plasma observation, line self-absorption and experimental profile deconvolution, the contribution of ion broadening in comparison with electron impacts contributions to the line width in case of neutral atom line and some other aspects of line shape analysis are considered. The application of Stark shift for LIBS diagnostics is demonstrated and discussed. Finally, the recommendations for an improvement of experimental procedures for LIBS electron number density plasma characterization are offered.

  8. Dynamic measurement of temperature, velocity, and density in hot jets using Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Mielke, Amy F.; Elam, Kristie A.

    2009-10-01

    A molecular Rayleigh scattering technique is utilized to measure gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz, providing fluctuation information up to 5 kHz based on the Nyquist theorem. A high-power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to a Fabry-Perot interferometer for spectral analysis. Photomultiplier tubes operated in the photon counting mode allow high-frequency sampling of the total signal level and the circular interference pattern to provide dynamic density, temperature, and velocity measurements. Mean and root mean square velocity, temperature, and density, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA John H. Glenn Research Center at Lewis Field. The Rayleigh measurements are compared with particle image velocimetry data and computational fluid dynamics predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.

  9. Temporal scaling of groundwater level fluctuations near a stream

    USGS Publications Warehouse

    Schilling, K.E.; Zhang, Y.-K.

    2012-01-01

    Temporal scaling in stream discharge and hydraulic heads in riparian wells was evaluated to determine the feasibility of using spectral analysis to identify potential surface and groundwater interaction. In floodplains where groundwater levels respond rapidly to precipitation recharge, potential interaction is established if the hydraulic head (h) spectrum of riparian groundwater has a power spectral density similar to stream discharge (Q), exhibiting a characteristic breakpoint between high and low frequencies. At a field site in Walnut Creek watershed in central Iowa, spectral analysis of h in wells located 1 m from the channel edge showed a breakpoint in scaling very similar to the spectrum of Q (~20 h), whereas h in wells located 20 and 40 m from the channel showed temporal scaling from 1 to 10,000 h without a well-defined breakpoint. The spectral exponent (??) in the riparian zone decreased systematically from the channel into the floodplain as groundwater levels were increasingly dominated by white noise groundwater recharge. The scaling pattern of hydraulic head was not affected by land cover type, although the number of analyses was limited and site conditions were variable among sites. Spectral analysis would not replace quantitative tracer or modeling studies, but the method may provide a simple means of confirming potential interaction at some sites. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  10. Temporal scaling of groundwater level fluctuations near a stream.

    PubMed

    Schilling, Keith E; Zhang, You-Kuan

    2012-01-01

    Temporal scaling in stream discharge and hydraulic heads in riparian wells was evaluated to determine the feasibility of using spectral analysis to identify potential surface and groundwater interaction. In floodplains where groundwater levels respond rapidly to precipitation recharge, potential interaction is established if the hydraulic head (h) spectrum of riparian groundwater has a power spectral density similar to stream discharge (Q), exhibiting a characteristic breakpoint between high and low frequencies. At a field site in Walnut Creek watershed in central Iowa, spectral analysis of h in wells located 1 m from the channel edge showed a breakpoint in scaling very similar to the spectrum of Q (∼20 h), whereas h in wells located 20 and 40 m from the channel showed temporal scaling from 1 to 10,000 h without a well-defined breakpoint. The spectral exponent (β) in the riparian zone decreased systematically from the channel into the floodplain as groundwater levels were increasingly dominated by white noise groundwater recharge. The scaling pattern of hydraulic head was not affected by land cover type, although the number of analyses was limited and site conditions were variable among sites. Spectral analysis would not replace quantitative tracer or modeling studies, but the method may provide a simple means of confirming potential interaction at some sites. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  11. EEGgui: a program used to detect electroencephalogram anomalies after traumatic brain injury.

    PubMed

    Sick, Justin; Bray, Eric; Bregy, Amade; Dietrich, W Dalton; Bramlett, Helen M; Sick, Thomas

    2013-05-21

    Identifying and quantifying pathological changes in brain electrical activity is important for investigations of brain injury and neurological disease. An example is the development of epilepsy, a secondary consequence of traumatic brain injury. While certain epileptiform events can be identified visually from electroencephalographic (EEG) or electrocorticographic (ECoG) records, quantification of these pathological events has proved to be more difficult. In this study we developed MATLAB-based software that would assist detection of pathological brain electrical activity following traumatic brain injury (TBI) and present our MATLAB code used for the analysis of the ECoG. Software was developed using MATLAB(™) and features of the open access EEGLAB. EEGgui is a graphical user interface in the MATLAB programming platform that allows scientists who are not proficient in computer programming to perform a number of elaborate analyses on ECoG signals. The different analyses include Power Spectral Density (PSD), Short Time Fourier analysis and Spectral Entropy (SE). ECoG records used for demonstration of this software were derived from rats that had undergone traumatic brain injury one year earlier. The software provided in this report provides a graphical user interface for displaying ECoG activity and calculating normalized power density using fast fourier transform of the major brain wave frequencies (Delta, Theta, Alpha, Beta1, Beta2 and Gamma). The software further detects events in which power density for these frequency bands exceeds normal ECoG by more than 4 standard deviations. We found that epileptic events could be identified and distinguished from a variety of ECoG phenomena associated with normal changes in behavior. We further found that analysis of spectral entropy was less effective in distinguishing epileptic from normal changes in ECoG activity. The software presented here was a successful modification of EEGLAB in the Matlab environment that allows detection of epileptiform ECoG signals in animals after TBI. The code allows import of large EEG or ECoG data records as standard text files and uses fast fourier transform as a basis for detection of abnormal events. The software can also be used to monitor injury-induced changes in spectral entropy if required. We hope that the software will be useful for other investigators in the field of traumatic brain injury and will stimulate future advances of quantitative analysis of brain electrical activity after neurological injury or disease.

  12. Analysis of the Herschel/HIFI 1.2 THz Wide Spectral Survey of the Orion Kleinmann-Low Nebula

    NASA Astrophysics Data System (ADS)

    Crockett, Nathan R.

    This dissertation presents a comprehensive analysis of a broad band spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This survey spans a frequency range from 480 to 1907 GHz at a resolution of 1.1 MHz. These observations thus encompass the largest spectral coverage ever obtained toward this massive star forming region in the sub-mm with high spectral resolution, and include frequencies >1 THz where the Earth's atmosphere prevents observations from the ground. In all, we detect emission from 36 molecules (76 isotopologues). Combining this dataset with ground based mm spectroscopy obtained with the IRAM 30 m telescope, we model the molecular emission assuming local thermodynamic equilibrium (LTE). Because of the wide frequency coverage, our models are constrained over an unprecedented range in excitation energy, including states at or close to ground up to energies where emission is no longer detected. A χ2 analysis indicates that most of our models reproduce the observed emission well. In particular complex organics, some with thousands of transitions, are well fit by LTE models implying that gas densities are high (>10^6 cm^-3) and excitation temperatures and column densities are well constrained. Molecular abundances are computed using H2 column densities also derived from the HIFI survey. The rotation temperature distribution of molecules detected toward the hot core is much wider relative to the compact ridge, plateau, and extended ridge. We find that complex N-bearing species, cyanides in particular, systematically probe hotter gas than complex O-bearing species. This indicates complex N-bearing molecules may be more difficult to remove from grain surfaces or that hot gas phase formation routes are important for these species. We also present a detailed non-LTE analysis of H2S emission toward the hot core which suggests this light hydride may probe heavily embedded gas in close proximity to a hidden self-luminous source (or sources), conceivably responsible for OrionKL's high luminosity. The abundances derived here, along with the publicly available data and molecular fits, represent a legacy for comparison to other sources and chemical models.

  13. Monitoring of Water Spectral Pattern Reveals Differences in Probiotics Growth When Used for Rapid Bacteria Selection.

    PubMed

    Slavchev, Aleksandar; Kovacs, Zoltan; Koshiba, Haruki; Nagai, Airi; Bázár, György; Krastanov, Albert; Kubota, Yousuke; Tsenkova, Roumiana

    2015-01-01

    Development of efficient screening method coupled with cell functionality evaluation is highly needed in contemporary microbiology. The presented novel concept and fast non-destructive method brings in to play the water spectral pattern of the solution as a molecular fingerprint of the cell culture system. To elucidate the concept, NIR spectroscopy with Aquaphotomics were applied to monitor the growth of sixteen Lactobacillus bulgaricus one Lactobacillus pentosus and one Lactobacillus gasseri bacteria strains. Their growth rate, maximal optical density, low pH and bile tolerances were measured and further used as a reference data for analysis of the simultaneously acquired spectral data. The acquired spectral data in the region of 1100-1850nm was subjected to various multivariate data analyses - PCA, OPLS-DA, PLSR. The results showed high accuracy of bacteria strains classification according to their probiotic strength. Most informative spectral fingerprints covered the first overtone of water, emphasizing the relation of water molecular system to cell functionality.

  14. Dynamic Measurement of Temperature, Velocity, and Density in Hot Jets Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.

    2008-01-01

    A molecular Rayleigh scattering technique was utilized to measure time-resolved gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz. A high power continuous-wave (cw) laser beam was focused at a point in an air flow field and Rayleigh scattered light was collected and fiber-optically transmitted to a Fabry-Perot interferometer for spectral analysis. Photomultipler tubes operated in the photon counting mode allowed high frequency sampling of the total signal level and the circular interference pattern to provide time-resolved density, temperature, and velocity measurements. Mean and rms velocity and temperature, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at the NASA Glenn Research Center (GRC). The Rayleigh measurements are compared with particle image velocimetry data and CFD predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.

  15. INTERPRETATION OF THE STRUCTURE FUNCTION OF ROTATION MEASURE IN THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Siyao; Zhang, Bing, E-mail: syxu@pku.edu.cn, E-mail: zhang@physics.unlv.edu

    2016-06-20

    The observed structure function (SF) of rotation measure (RM) varies as a broken power-law function of angular scales. The systematic shallowness of its spectral slope is inconsistent with the standard Kolmogorov scaling. This motivates us to examine the statistical analysis on RM fluctuations. The correlations of RM constructed by Lazarian and Pogosyan are demonstrated to be adequate in explaining the observed features of RM SFs through a direct comparison between the theoretically obtained and observationally measured SF results. By segregating the density and magnetic field fluctuations and adopting arbitrary indices for their respective power spectra, we find that when themore » SFs of RM and emission measure have a similar form over the same range of angular scales, the statistics of the RM fluctuations reflect the properties of density fluctuations. RM SFs can be used to evaluate the mean magnetic field along the line of sight, but cannot serve as an informative source on the properties of turbulent magnetic field in the interstellar medium. We identify the spectral break of RM SFs as the inner scale of a shallow spectrum of electron density fluctuations, which characterizes the typical size of discrete electron density structures in the observed region.« less

  16. Pervasive randomness in physics: an introduction to its modelling and spectral characterisation

    NASA Astrophysics Data System (ADS)

    Howard, Roy

    2017-10-01

    An introduction to the modelling and spectral characterisation of random phenomena is detailed at a level consistent with a first exposure to the subject at an undergraduate level. A signal framework for defining a random process is provided and this underpins an introduction to common random processes including the Poisson point process, the random walk, the random telegraph signal, shot noise, information signalling random processes, jittered pulse trains, birth-death random processes and Markov chains. An introduction to the spectral characterisation of signals and random processes, via either an energy spectral density or a power spectral density, is detailed. The important case of defining a white noise random process concludes the paper.

  17. Atmospheric turbulence profiling with unknown power spectral density

    NASA Astrophysics Data System (ADS)

    Helin, Tapio; Kindermann, Stefan; Lehtonen, Jonatan; Ramlau, Ronny

    2018-04-01

    Adaptive optics (AO) is a technology in modern ground-based optical telescopes to compensate for the wavefront distortions caused by atmospheric turbulence. One method that allows to retrieve information about the atmosphere from telescope data is so-called SLODAR, where the atmospheric turbulence profile is estimated based on correlation data of Shack-Hartmann wavefront measurements. This approach relies on a layered Kolmogorov turbulence model. In this article, we propose a novel extension of the SLODAR concept by including a general non-Kolmogorov turbulence layer close to the ground with an unknown power spectral density. We prove that the joint estimation problem of the turbulence profile above ground simultaneously with the unknown power spectral density at the ground is ill-posed and propose three numerical reconstruction methods. We demonstrate by numerical simulations that our methods lead to substantial improvements in the turbulence profile reconstruction compared to the standard SLODAR-type approach. Also, our methods can accurately locate local perturbations in non-Kolmogorov power spectral densities.

  18. Characterization of electrical noise limits in ultra-stable laser systems.

    PubMed

    Zhang, J; Shi, X H; Zeng, X Y; Lü, X L; Deng, K; Lu, Z H

    2016-12-01

    We demonstrate thermal noise limited and shot noise limited performance of ultra-stable diode laser systems. The measured heterodyne beat linewidth between such two independent diode lasers reaches 0.74 Hz. The frequency instability of one single laser approaches 1.0 × 10 -15 for averaging time between 0.3 s and 10 s, which is close to the thermal noise limit of the reference cavity. Taking advantage of these two ultra-stable laser systems, we systematically investigate the ultimate electrical noise contributions, and derive expressions for the closed-loop spectral density of laser frequency noise. The measured power spectral density of the beat frequency is compared with the theoretically calculated closed-loop spectral density of the laser frequency noise, and they agree very well. It illustrates the power and generality of the derived closed-loop spectral density formula of the laser frequency noise. Our result demonstrates that a 10 -17 level locking in a wide frequency range is feasible with careful design.

  19. PFS/Mars Express first results: water vapour and carbon monoxide global distribution

    NASA Astrophysics Data System (ADS)

    Ignatiev, N. I.; Titov, D. V.; Formisano, V.; Moroz, V. I.; Lellouch, E.; Encrenaz, Th.; Fouchet, T.; Grassi, D.; Giuranna, M.; Atreya, S.; Pfs Team

    Planetary Fourier Spectrometer onboard Mars Express, with its wide spectral range (1.2--45 um) and high spectral resolution (1.4 cm-1), makes it possible to study in a self-consistent manner the Martian atmosphere by means of simultaneous analysis of spectral features in several spectral regions. As concerned small species, we observe 30--50, 6.3, 2.56, 1.87 and 1.38 μ m H2O bands, and 4.7 and 2.35 μ m CO bands. The most favourable, with respect to the instrument performance, 2.56 μ m H2O and 4.7 μ m CO bands, are used to study the variations of column abundance of water vapour and carbon monoxide on a global scale from pole to pole. All necessary atmospheric parameters, namely temperature profiles, surface pressure, and dust density are obtained from the same spectra, whenever possible.

  20. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism.

    PubMed

    Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio

    2010-11-01

    STUDY OBJECTIVIES: several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. the specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined.

  1. Random laser illumination: an ideal source for biomedical polarization imaging?

    NASA Astrophysics Data System (ADS)

    Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.

    2016-03-01

    Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.

  2. Vibrational Spectra and Density functional calculation of Organic Nonlinear Optic Crystal p-Amino Acetanilide

    NASA Astrophysics Data System (ADS)

    Saja, D.; Joe, I. Hubert; Jayakumar, V. S.

    2006-01-01

    The NIR-FT Raman, FT-IR spectral analysis of potential NLO material P-Amino Acetanilide is carried out by density functional computations. The optimized geometry shows that NH2 and NHCOCH3 groups substituted in para position of phenyl ring are non-planar which predicts maximum conjugation of molecule with donor and acceptor groups. Vibrational analysis reveals that simultaneous IR and Raman activation of the phenyl ring modes also provide evidence for the charge transfer interaction between the donors and the acceptor can make the molecule highly polarized and the intra molecular charge transfer interaction must be responsible for the NLO properties of PAA.

  3. Enrichment of plasma membrane proteins using nanoparticle pellicles: comparison between silica and higher density nanoparticles

    PubMed Central

    Choksawangkarn, Waeowalee; Kim, Sung-Kyoung; Cannon, Joe R.; Edwards, Nathan J.; Lee, Sang Bok; Fenselau, Catherine

    2013-01-01

    Proteomic and other characterization of plasma membrane proteins is made difficult by their low abundance, hydrophobicity, frequent carboxylation and dynamic population. We and others have proposed that underrepresentation in LC-MS/MS analysis can be partially compensated by enriching the plasma membrane and its proteins using cationic nanoparticle pellicles. The nanoparticles increase the density of plasma membrane sheets and thus enhance separation by centrifugation from other lysed cellular components. Herein we test the hypothesis that the use of nanoparticles with increased densities can provide enhanced enrichment of plasma membrane proteins for proteomic analysis. Multiple myeloma cells were grown and coated in suspension with three different pellicles of three different densities and both pellicle coated and uncoated suspensions analyzed by high-throughput LC-MS/MS. Enrichment was evaluated by the total number and the spectral counts of identified plasma membrane proteins. PMID:23289353

  4. Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling

    DTIC Science & Technology

    2007-09-30

    whitecap crest length spectral density (Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (Jessup and Phadnis ...open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of

  5. Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling

    DTIC Science & Technology

    2006-09-30

    length spectral density (eg. Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (eg. Jessup and Phadnis , 2005...Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from

  6. Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling

    DTIC Science & Technology

    2006-09-30

    crest length spectral density (eg. Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (eg. Jessup and Phadnis ...Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from infrared imagery using a

  7. Pulsational mode fluctuations and their basic conservation laws

    NASA Astrophysics Data System (ADS)

    Borah, B.; Karmakar, P. K.

    2015-01-01

    We propose a theoretical hydrodynamic model for investigating the basic features of nonlinear pulsational mode stability in a partially charged dust molecular cloud within the framework of the Jeans homogenization assumption. The inhomogeneous cloud is modeled as a quasi-neutral multifluid consisting of the warm electrons, warm ions, and identical inertial cold dust grains with partial ionization in a neutral gaseous background. The grain-charge is assumed not to vary in the fluctuation evolution time scale. The active inertial roles of the thermal species are included. We apply a standard multiple scaling technique centered on the gravito-electrostatic equilibrium to understand the fluctuations on the astrophysical scales of space and time. This is found that electrostatic and self-gravitational eigenmodes co-exist as diverse solitary spectral patterns governed by a pair of Korteweg-de Vries (KdV) equations. In addition, all the relevant classical conserved quantities associated with the KdV system under translational invariance are methodologically derived and numerically analyzed. A full numerical shape-analysis of the fluctuations, scale lengths and perturbed densities with multi-parameter variation of judicious plasma conditions is carried out. A correlation of the perturbed densities and gravito-electrostatic spectral patterns is also graphically indicated. It is demonstrated that the solitary mass, momentum and energy densities also evolve like solitary spectral patterns which remain conserved throughout the spatiotemporal scales of the fluctuation dynamics. Astrophysical and space environments significant to our results are briefly highlighted.

  8. A novel approach to detect respiratory phases from pulmonary acoustic signals using normalised power spectral density and fuzzy inference system.

    PubMed

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian; Huliraj, N; Revadi, S S

    2016-07-01

    Monitoring respiration is important in several medical applications. One such application is respiratory rate monitoring in patients with sleep apnoea. The respiratory rate in patients with sleep apnoea disorder is irregular compared with the controls. Respiratory phase detection is required for a proper monitoring of respiration in patients with sleep apnoea. To develop a model to detect the respiratory phases present in the pulmonary acoustic signals and to evaluate the performance of the model in detecting the respiratory phases. Normalised averaged power spectral density for each frame and change in normalised averaged power spectral density between the adjacent frames were fuzzified and fuzzy rules were formulated. The fuzzy inference system (FIS) was developed with both Mamdani and Sugeno methods. To evaluate the performance of both Mamdani and Sugeno methods, correlation coefficient and root mean square error (RMSE) were calculated. In the correlation coefficient analysis in evaluating the fuzzy model using Mamdani and Sugeno method, the strength of the correlation was found to be r = 0.9892 and r = 0.9964, respectively. The RMSE for Mamdani and Sugeno methods are RMSE = 0.0853 and RMSE = 0.0817, respectively. The correlation coefficient and the RMSE of the proposed fuzzy models in detecting the respiratory phases reveals that Sugeno method performs better compared with the Mamdani method. © 2014 John Wiley & Sons Ltd.

  9. A Parameter Study for Modeling Mg ii h and k Emission during Solar Flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio da Costa, Fatima; Kleint, Lucia, E-mail: frubio@stanford.edu

    2017-06-20

    Solar flares show highly unusual spectra in which the thermodynamic conditions of the solar atmosphere are encoded. Current models are unable to fully reproduce the spectroscopic flare observations, especially the single-peaked spectral profiles of the Mg ii h and k lines. We aim to understand the formation of the chromospheric and optically thick Mg ii h and k lines in flares through radiative transfer calculations. We take a flare atmosphere obtained from a simulation with the radiative hydrodynamic code RADYN as input for a radiative transfer modeling with the RH code. By iteratively changing this model atmosphere and varying thermodynamicmore » parameters such as temperature, electron density, and velocity, we study their effects on the emergent intensity spectra. We reproduce the typical single-peaked Mg ii h and k flare spectral shape and approximate the intensity ratios to the subordinate Mg ii lines by increasing either densities, temperatures, or velocities at the line core formation height range. Additionally, by combining unresolved upflows and downflows up to ∼250 km s{sup −1} within one resolution element, we reproduce the widely broadened line wings. While we cannot unambiguously determine which mechanism dominates in flares, future modeling efforts should investigate unresolved components, additional heat dissipation, larger velocities, and higher densities and combine the analysis of multiple spectral lines.« less

  10. Computed lateral rate and acceleration power spectral response of conventional and STOL airplanes to atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Lichtenstein, J. H.

    1975-01-01

    Power-spectral-density calculations were made of the lateral responses to atmospheric turbulence for several conventional and short take-off and landing (STOL) airplanes. The turbulence was modeled as three orthogonal velocity components, which were uncorrelated, and each was represented with a one-dimensional power spectrum. Power spectral densities were computed for displacements, rates, and accelerations in roll, yaw, and sideslip. In addition, the power spectral density of the transverse acceleration was computed. Evaluation of ride quality based on a specific ride quality criterion was also made. The results show that the STOL airplanes generally had larger values for the rate and acceleration power spectra (and, consequently, larger corresponding root-mean-square values) than the conventional airplanes. The ride quality criterion gave poorer ratings to the STOL airplanes than to the conventional airplanes.

  11. M.S.L.A.P. Modular Spectral Line Analysis Program documentation

    NASA Technical Reports Server (NTRS)

    Joseph, Charles L.; Jenkins, Edward B.

    1991-01-01

    MSLAP is a software for analyzing spectra, providing the basic structure to identify spectral features, to make quantitative measurements of this features, and to store the measurements for convenient access. MSLAP can be used to measure not only the zeroth moment (equivalent width) of a profile, but also the first and second moments. Optical depths and the corresponding column densities across the profile can be measured as well for sufficiently high resolution data. The software was developed for an interactive, graphical analysis where the computer carries most of the computational and data organizational burden and the investigator is responsible only for all judgement decisions. It employs sophisticated statistical techniques for determining the best polynomial fit to the continuum and for calculating the uncertainties.

  12. Breast density evaluation using spectral mammography, radiologist reader assessment and segmentation techniques: a retrospective study based on left and right breast comparison

    PubMed Central

    Molloi, Sabee; Ding, Huanjun; Feig, Stephen

    2015-01-01

    Purpose The purpose of this study was to compare the precision of mammographic breast density measurement using radiologist reader assessment, histogram threshold segmentation, fuzzy C-mean segmentation and spectral material decomposition. Materials and Methods Spectral mammography images from a total of 92 consecutive asymptomatic women (50–69 years old) who presented for annual screening mammography were retrospectively analyzed for this study. Breast density was estimated using 10 radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm and spectral material decomposition. The breast density correlation between left and right breasts was used to assess the precision of these techniques to measure breast composition relative to dual-energy material decomposition. Results In comparison to the other techniques, the results of breast density measurements using dual-energy material decomposition showed the highest correlation. The relative standard error of estimate for breast density measurements from left and right breasts using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm and dual-energy material decomposition was calculated to be 1.95, 2.87, 2.07 and 1.00, respectively. Conclusion The results indicate that the precision of dual-energy material decomposition was approximately factor of two higher than the other techniques with regard to better correlation of breast density measurements from right and left breasts. PMID:26031229

  13. Accelerometer Data Analysis and Presentation Techniques

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; Moskowitz, Milton E.; Reckart, Timothy

    1997-01-01

    The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for principal investigators of microgravity experiments. Principal investigators need a thorough understanding of data analysis techniques so that they can request appropriate analyses to best interpret accelerometer data. Accelerometer data sampling and filtering is introduced along with the related topics of resolution and aliasing. Specific information about the Orbital Acceleration Research Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time domain data analysis techniques are discussed and example environment interpretations are made using plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms, and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory and windowing is provided along with specific analysis techniques and data interpretations. The frequency domain analyses discussed are power spectral density versus frequency, cumulative root-mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third octave band root-mean-square acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center accelerometer data and related information using the internet are provided.

  14. Distribution of CO2 in Saturn's Atmosphere from Cassini/cirs Infrared Observations

    NASA Astrophysics Data System (ADS)

    Abbas, M. M.; LeClair, A.; Woodard, E.; Young, M.; Stanbro, M.; Flasar, F. M.; Kunde, V. G.; Achterberg, R. K.; Bjoraker, G.; Brasunas, J.; Jennings, D. E.; the Cassini/CIRS Team

    2013-10-01

    This paper focuses on the CO2 distribution in Saturn's atmosphere based on analysis of infrared spectral observations of Saturn made by the Composite Infrared Spectrometer aboard the Cassini spacecraft. The Cassini spacecraft was launched in 1997 October, inserted in Saturn's orbit in 2004 July, and has been successfully making infrared observations of Saturn, its rings, Titan, and other icy satellites during well-planned orbital tours. The infrared observations, made with a dual Fourier transform spectrometer in both nadir- and limb-viewing modes, cover spectral regions of 10-1400 cm-1, with the option of variable apodized spectral resolutions from 0.53 to 15 cm-1. An analysis of the observed spectra with well-developed radiative transfer models and spectral inversion techniques has the potential to provide knowledge of Saturn's thermal structure and composition with global distributions of a series of gases. In this paper, we present an analysis of a large observational data set for retrieval of Saturn's CO2 distribution utilizing spectral features of CO2 in the Q-branch of the ν2 band, and discuss its possible relationship to the influx of interstellar dust grains. With limited spectral regions available for analysis, due to low densities of CO2 and interference from other gases, the retrieved CO2 profile is obtained as a function of a model photochemical profile, with the retrieved values at atmospheric pressures in the region of ~1-10 mbar levels. The retrieved CO2 profile is found to be in good agreement with the model profile based on Infrared Space Observatory measurements with mixing ratios of ~4.9 × 10-10 at atmospheric pressures of ~1 mbar.

  15. Optical constants of ammonium sulfate in the infrared. [stratospheric aerosol refractive and absorption indices

    NASA Technical Reports Server (NTRS)

    Downing, H. D.; Pinkley, L. W.; Sethna, P. P.; Williams, D.

    1977-01-01

    The infrared spectral reflectance at near normal incidence has been measured for 3.2 M, 2.4 M, and 1.6 M solutions of ammonium sulfate, an aerosol abundant in the stratosphere and also present in the troposphere. Kramers-Kronig analysis was used to determine values of the refractive and absorption indices from the measured spectral reflectance. A synthetic spectrum of crystalline ammonium sulfate was obtained by extrapolation of the absorption index obtained for the solution to the absorber number densities of the NH4 and SO4 ions characteristic of the crystal.

  16. Data analysis and noise prediction for the QF-1B experimental fan stage

    NASA Technical Reports Server (NTRS)

    Bliss, D. B.; Chandiramani, K. L.; Piersol, A. G.

    1976-01-01

    The results of a fan noise data analysis and prediction effort using experimental data obtained from tests on the QF-1B research fan are described. Surface pressure measurements were made with flush mounted sensors installed on selected rotor blades and stator vanes and noise measurements were made by microphones located at the far field. Power spectral density analysis, time history studies, and calculation of coherence functions were made. The emphasis of these studies was on the characteristics of tones in the spectra. The amplitude behavior of spectral tones was found to have a large, often predominant, random component, suggesting that turbulent processes play an important role in the generation of tonal as well as broadband noise. Inputs from the data analysis were used in a prediction method which assumes that acoustic dipoles, produced by unsteady blade and van forces, are the important source of fan noise.

  17. Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling

    DTIC Science & Technology

    2006-01-01

    spectral density (eg. Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (eg. Jessup and Phadnis , 2005) have...observed as whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric

  18. High level white noise generator

    DOEpatents

    Borkowski, Casimer J.; Blalock, Theron V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  19. [Research on the identification method of LTE condition in the laser-induced plasma].

    PubMed

    Fan, Juan-juan; Huang, Dan; Wang, Xin; Zhang, Lei; Ma, Wei-guang; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang

    2014-12-01

    Because of the poor accuracy of the commonly used Boltzmann plot method and double-line method, the Boltzmann-Maxwell distribution combined with the Saha-Eggert formula is proposed to improve the measurement accuracy of the plasma temperature; the simple algorithm for determining the linewidth of the emission line was established according to the relationship between the area and the peak value of the Gaussian formula, and the plasma electron density was calculated through the Stark broadening of the spectral lines; the method for identifying the plasma local thermal equilibrium (LTE) condition was established based on the McWhirter criterion. The experimental results show that with the increase in laser energy, the plasma temperature and electron density increase linearly; when the laser energy changes within 127~510 mJ, the plasma electron density changes in the range of 1.30532X10(17)~1.87322X10(17) cm(-3), the plasma temperature changes in the range of 12586~12957 K, and all the plasma generated in this experiment meets the LTE condition threshold according to the McWhirter criterion. For element Al, there exist relatively few observable lines at the same ionization state in the spectral region of the spectrometer, thus it is unable to use the Boltzmann plane method to calculate temperature. One hundred sets of Al plasma spectra were used for temperature measurement by employing the Saha-Boltzmann method and the relative standard deviation (RSD) value is 0.4%, and compared with 1.3% of the double line method, the accuracy has been substantially increased. The methods proposed can be used for rapid plasma temperature and electron density calculation, the LTE condition identification, and are valuable in studies such as free calibration, spectral effectiveness analysis, spectral temperature correction, the best collection location determination, LTE condition distribution in plasma, and so on.

  20. Overlapping communities detection based on spectral analysis of line graphs

    NASA Astrophysics Data System (ADS)

    Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan

    2018-05-01

    Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.

  1. A two dimensional power spectral estimate for some nonstationary processes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Smith, Gregory L.

    1989-01-01

    A two dimensional estimate for the power spectral density of a nonstationary process is being developed. The estimate will be applied to helicopter noise data which is clearly nonstationary. The acoustic pressure from the isolated main rotor and isolated tail rotor is known to be periodically correlated (PC) and the combined noise from the main and tail rotors is assumed to be correlation autoregressive (CAR). The results of this nonstationary analysis will be compared with the current method of assuming that the data is stationary and analyzing it as such. Another method of analysis is to introduce a random phase shift into the data as shown by Papoulis to produce a time history which can then be accurately modeled as stationary. This method will also be investigated for the helicopter data. A method used to determine the period of a PC process when the period is not know is discussed. The period of a PC process must be known in order to produce an accurate spectral representation for the process. The spectral estimate is developed. The bias and variability of the estimate are also discussed. Finally, the current method for analyzing nonstationary data is compared to that of using a two dimensional spectral representation. In addition, the method of phase shifting the data is examined.

  2. Vibrational study and Natural Bond Orbital analysis of serotonin in monomer and dimer states by density functional theory

    NASA Astrophysics Data System (ADS)

    Borah, Mukunda Madhab; Devi, Th. Gomti

    2018-06-01

    The vibrational spectral analysis of Serotonin and its dimer were carried out using the Fourier Transform Infrared (FTIR) and Raman techniques. The equilibrium geometrical parameters, harmonic vibrational wavenumbers, Frontier orbitals, Mulliken atomic charges, Natural Bond orbitals, first order hyperpolarizability and some optimized energy parameters were computed by density functional theory with 6-31G(d,p) basis set. The detailed analysis of the vibrational spectra have been carried out by computing Potential Energy Distribution (PED, %) with the help of Vibrational Energy Distribution Analysis (VEDA) program. The second order delocalization energies E(2) confirms the occurrence of intramolecular Charge Transfer (ICT) within the molecule. The computed wavenumbers of Serotonin monomer and dimer were found in good agreement with the experimental Raman and IR values.

  3. A Skew-t space-varying regression model for the spectral analysis of resting state brain activity.

    PubMed

    Ismail, Salimah; Sun, Wenqi; Nathoo, Farouk S; Babul, Arif; Moiseev, Alexader; Beg, Mirza Faisal; Virji-Babul, Naznin

    2013-08-01

    It is known that in many neurological disorders such as Down syndrome, main brain rhythms shift their frequencies slightly, and characterizing the spatial distribution of these shifts is of interest. This article reports on the development of a Skew-t mixed model for the spatial analysis of resting state brain activity in healthy controls and individuals with Down syndrome. Time series of oscillatory brain activity are recorded using magnetoencephalography, and spectral summaries are examined at multiple sensor locations across the scalp. We focus on the mean frequency of the power spectral density, and use space-varying regression to examine associations with age, gender and Down syndrome across several scalp regions. Spatial smoothing priors are incorporated based on a multivariate Markov random field, and the markedly non-Gaussian nature of the spectral response variable is accommodated by the use of a Skew-t distribution. A range of models representing different assumptions on the association structure and response distribution are examined, and we conduct model selection using the deviance information criterion. (1) Our analysis suggests region-specific differences between healthy controls and individuals with Down syndrome, particularly in the left and right temporal regions, and produces smoothed maps indicating the scalp topography of the estimated differences.

  4. The Seismic Tool-Kit (STK): an open source software for seismology and signal processing.

    NASA Astrophysics Data System (ADS)

    Reymond, Dominique

    2016-04-01

    We present an open source software project (GNU public license), named STK: Seismic ToolKit, that is dedicated mainly for seismology and signal processing. The STK project that started in 2007, is hosted by SourceForge.net, and count more than 19 500 downloads at the date of writing. The STK project is composed of two main branches: First, a graphical interface dedicated to signal processing (in the SAC format (SAC_ASCII and SAC_BIN): where the signal can be plotted, zoomed, filtered, integrated, derivated, ... etc. (a large variety of IFR and FIR filter is proposed). The estimation of spectral density of the signal are performed via the Fourier transform, with visualization of the Power Spectral Density (PSD) in linear or log scale, and also the evolutive time-frequency representation (or sonagram). The 3-components signals can be also processed for estimating their polarization properties, either for a given window, or either for evolutive windows along the time. This polarization analysis is useful for extracting the polarized noises, differentiating P waves, Rayleigh waves, Love waves, ... etc. Secondly, a panel of Utilities-Program are proposed for working in a terminal mode, with basic programs for computing azimuth and distance in spherical geometry, inter/auto-correlation, spectral density, time-frequency for an entire directory of signals, focal planes, and main components axis, radiation pattern of P waves, Polarization analysis of different waves (including noize), under/over-sampling the signals, cubic-spline smoothing, and linear/non linear regression analysis of data set. A MINimum library of Linear AlGebra (MIN-LINAG) is also provided for computing the main matrix process like: QR/QL decomposition, Cholesky solve of linear system, finding eigen value/eigen vectors, QR-solve/Eigen-solve of linear equations systems ... etc. STK is developed in C/C++, mainly under Linux OS, and it has been also partially implemented under MS-Windows. Usefull links: http://sourceforge.net/projects/seismic-toolkit/ http://sourceforge.net/p/seismic-toolkit/wiki/browse_pages/

  5. Joint spatial-spectral hyperspectral image clustering using block-diagonal amplified affinity matrix

    NASA Astrophysics Data System (ADS)

    Fan, Lei; Messinger, David W.

    2018-03-01

    The large number of spectral channels in a hyperspectral image (HSI) produces a fine spectral resolution to differentiate between materials in a scene. However, difficult classes that have similar spectral signatures are often confused while merely exploiting information in the spectral domain. Therefore, in addition to spectral characteristics, the spatial relationships inherent in HSIs should also be considered for incorporation into classifiers. The growing availability of high spectral and spatial resolution of remote sensors provides rich information for image clustering. Besides the discriminating power in the rich spectrum, contextual information can be extracted from the spatial domain, such as the size and the shape of the structure to which one pixel belongs. In recent years, spectral clustering has gained popularity compared to other clustering methods due to the difficulty of accurate statistical modeling of data in high dimensional space. The joint spatial-spectral information could be effectively incorporated into the proximity graph for spectral clustering approach, which provides a better data representation by discovering the inherent lower dimensionality from the input space. We embedded both spectral and spatial information into our proposed local density adaptive affinity matrix, which is able to handle multiscale data by automatically selecting the scale of analysis for every pixel according to its neighborhood of the correlated pixels. Furthermore, we explored the "conductivity method," which aims at amplifying the block diagonal structure of the affinity matrix to further improve the performance of spectral clustering on HSI datasets.

  6. 47 CFR 25.212 - Narrowband analog transmissions and digital transmissions in the GSO Fixed Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... kHz if the maximum input power spectral density into the antenna does not exceed −8 dBW/4 kHz and the maximum transmitted satellite carrier EIRP density does not exceed 17 dBW/4 kHz. (2) In the 14.0... services, if the maximum input spectral power density into the antenna does not exceed −14 dBW/4 kHz, and...

  7. Children with Heavy Prenatal Alcohol Exposure have Different Frequency Domain Signal Characteristics when Producing Isometric Force

    PubMed Central

    Nguyen, Tanya T.; Ashrafi, Ashkan; Thomas, Jennifer D.; Riley, Edward P.; Simmons, Roger W.

    2013-01-01

    To extend our current understanding of the teratogenic effects of prenatal alcohol exposure on the control of isometric force, the present study investigated the signal characteristics of power spectral density functions resulting from sustained control of isometric force by children with and without heavy prenatal exposure to alcohol. It was predicted that the functions associated with the force signals would be fundamentally different for the two groups. Twenty-five children aged between 7 and 17 years with heavy prenatal alcohol exposure and 21 non-alcohol exposed control children attempted to duplicate a visually represented target force by pressing on a load cell. The level of target force (5 and 20% of maximum voluntary contraction) and the time interval between visual feedback (20ms, 320ms and 740ms) were manipulated. A multivariate spectral estimation method with sinusoidal windows was applied to individual isometric force-time signals. Analysis of the resulting power spectral density functions revealed that the alcohol-exposed children had a lower mean frequency, less spectral variability, greater peak power and a lower frequency at which peak power occurred. Furthermore, mean frequency and spectral variability produced by the alcohol-exposed group remained constant across target load and visual feedback interval, suggesting that these children were limited to making long-time scale corrections to the force signal. In contrast, the control group produced decreased mean frequency and spectral variability as target force and the interval between visual feedback increased, indicating that when feedback was frequently presented these children used the information to make short-time scale adjustments to the ongoing force signal. Knowledge of these differences could facilitate the design of motor rehabilitation exercises that specifically target isometric force control deficits in alcohol-exposed children. PMID:23238099

  8. Peculiarities of the statistics of spectrally selected fluorescence radiation in laser-pumped dye-doped random media

    NASA Astrophysics Data System (ADS)

    Yuvchenko, S. A.; Ushakova, E. V.; Pavlova, M. V.; Alonova, M. V.; Zimnyakov, D. A.

    2018-04-01

    We consider the practical realization of a new optical probe method of the random media which is defined as the reference-free path length interferometry with the intensity moments analysis. A peculiarity in the statistics of the spectrally selected fluorescence radiation in laser-pumped dye-doped random medium is discussed. Previously established correlations between the second- and the third-order moments of the intensity fluctuations in the random interference patterns, the coherence function of the probe radiation, and the path difference probability density for the interfering partial waves in the medium are confirmed. The correlations were verified using the statistical analysis of the spectrally selected fluorescence radiation emitted by a laser-pumped dye-doped random medium. Water solution of Rhodamine 6G was applied as the doping fluorescent agent for the ensembles of the densely packed silica grains, which were pumped by the 532 nm radiation of a solid state laser. The spectrum of the mean path length for a random medium was reconstructed.

  9. Single-particle spectral density of the unitary Fermi gas: Novel approach based on the operator product expansion, sum rules and the maximum entropy method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubler, Philipp, E-mail: pgubler@riken.jp; RIKEN Nishina Center, Wako, Saitama 351-0198; Yamamoto, Naoki

    2015-05-15

    Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.

  10. Road simulation for four-wheel vehicle whole input power spectral density

    NASA Astrophysics Data System (ADS)

    Wang, Jiangbo; Qiang, Baomin

    2017-05-01

    As the vibration of running vehicle mainly comes from road and influence vehicle ride performance. So the road roughness power spectral density simulation has great significance to analyze automobile suspension vibration system parameters and evaluate ride comfort. Firstly, this paper based on the mathematical model of road roughness power spectral density, established the integral white noise road random method. Then in the MATLAB/Simulink environment, according to the research method of automobile suspension frame from simple two degree of freedom single-wheel vehicle model to complex multiple degrees of freedom vehicle model, this paper built the simple single incentive input simulation model. Finally the spectrum matrix was used to build whole vehicle incentive input simulation model. This simulation method based on reliable and accurate mathematical theory and can be applied to the random road simulation of any specified spectral which provides pavement incentive model and foundation to vehicle ride performance research and vibration simulation.

  11. Eastern US crustal thickness estimates from spectral analysis and inversion of onshore Bouguer gravity anaomalies

    NASA Astrophysics Data System (ADS)

    Dybus, W.; Benoit, M. H.; Ebinger, C. J.

    2011-12-01

    The crustal thickness beneath much of the eastern half of the US is largely unconstrained. Though there have been several controlled source seismic surveys of the region, many of these studies suffer from rays that turn in the crust above the Moho, resulting in somewhat ambiguous crustal thickness values. Furthermore, the broadband seismic station coverage east of the Mississippi has been limited, and most of the region remains largely understudied. In this study, we estimated the depth to the Moho using both spectral analysis and inversion of Bouguer gravity anomalies. We systematically estimated depths to lithospheric density contrasts from radial power spectra of Bouguer gravity within 100 km X 100 km windows eastward from the Mississippi River to the Atlantic Coast, and northward from North Carolina to Maine. The slopes and slope breaks in the radial power spectra were computed using an automated algorithm. The slope values for each window were visually inspected and then used to estimate the depth to the Moho and other lithospheric density contrasts beneath each windowed region. Additionally, we performed a standard Oldenburg-Parker inversion for lithospheric density contrasts using various reference depths and density contrasts that are realistic for the different physiographic provinces in the Eastern US. Our preliminary results suggest that the gravity-derived Moho depths are similar to those found using seismic data, and that the crust is relatively thinner (~28-33 km) than expected in beneath the Piedmont region (~35-40 km). Given the relative paucity of seismic data in the eastern US, analysis of onshore gravity data is a valuable tool for interpolating between seismic stations.

  12. Spectral and structural studies of the anti-cancer drug Flutamide by density functional theoretical method.

    PubMed

    Mariappan, G; Sundaraganesan, N

    2014-01-03

    A comprehensive screening of the more recent DFT theoretical approach to structural analysis is presented in this section of theoretical structural analysis. The chemical name of 2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide is usually called as Flutamide (In the present study it is abbreviated as FLT) and is an important and efficacious drug in the treatment of anti-cancer resistant. The molecular geometry, vibrational spectra, electronic and NMR spectral interpretation of Flutamide have been studied with the aid of density functional theory method (DFT). The vibrational assignments of the normal modes were performed on the basis of the PED calculations using the VEDA 4 program. Comparison of computational results with X-ray diffraction results of Flutamide allowed the evaluation of structure predictions and confirmed B3LYP/6-31G(d,p) as accurate for structure determination. Application of scaling factors for IR and Raman frequency predictions showed good agreement with experimental values. This is supported the assignment of the major contributors of the vibration modes of the title compound. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. The comparison of measured FTIR, FT-Raman, and UV-Visible data to calculated values allowed assignment of major spectral features of the title molecule. Besides, Frontier molecular orbital analyze was also investigated using theoretical calculations. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Arti; Stawarz, Łukasz; Ostrowski, Michał

    We present the results of our power spectral analysis for the BL Lac object PKS 0735+178, utilizing the Fermi -LAT survey at high-energy γ -rays, several ground-based optical telescopes, and single-dish radio telescopes operating at GHz frequencies. The novelty of our approach is that, by combining long-term and densely sampled intra-night light curves in the optical regime, we were able to construct for the first time the optical power spectrum of the blazar for a time domain extending from 23 years down to minutes. Our analysis reveals that: (1) the optical variability is consistent with a pure red noise, formore » which the power spectral density can be well approximated by a single power law throughout the entire time domain probed; (2) the slope of power spectral density at high-energy γ -rays (∼1) is significantly flatter than that found at radio and optical frequencies (∼2) within the corresponding time variability range; (3) for the derived power spectra, we did not detect any low-frequency flattening, nor do we see any evidence for cutoffs at the highest frequencies down to the noise floor levels due to measurement uncertainties. We interpret our findings in terms of a model where the blazar variability is generated by the underlying single stochastic process (at radio and optical frequencies), or a linear superposition of such processes (in the γ -ray regime). Along with the detailed PSD analysis, we also present the results of our extended (1998–2015) intra-night optical monitoring program and newly acquired optical photo-polarimetric data for the source.« less

  14. The Power Spectrum of Ionic Nanopore Currents: The Role of Ion Correlations.

    PubMed

    Zorkot, Mira; Golestanian, Ramin; Bonthuis, Douwe Jan

    2016-04-13

    We calculate the power spectrum of electric-field-driven ion transport through nanometer-scale membrane pores using both linearized mean-field theory and Langevin dynamics simulations. Remarkably, the linearized mean-field theory predicts a plateau in the power spectral density at low frequency ω, which is confirmed by the simulations at low ion concentration. At high ion concentration, however, the power spectral density follows a power law that is reminiscent of the 1/ω(α) dependence found experimentally at low frequency. On the basis of simulations with and without ion-ion interactions, we attribute the low-frequency power-law dependence to ion-ion correlations. We show that neither a static surface charge density, nor an increased pore length, nor an increased ion valency have a significant effect on the shape of the power spectral density at low frequency.

  15. Quantitative spectroscopy of extreme helium stars Model atmospheres and a non-LTE abundance analysis of BD+10°2179

    NASA Astrophysics Data System (ADS)

    Kupfer, T.; Przybilla, N.; Heber, U.; Jeffery, C. S.; Behara, N. T.; Butler, K.

    2017-10-01

    Extreme helium stars (EHe stars) are hydrogen-deficient supergiants of spectral type A and B. They are believed to result from mergers in double degenerate systems. In this paper, we present a detailed quantitative non-LTE spectral analysis for BD+10°2179, a prototype of this rare class of stars, using UV-Visual Echelle Spectrograph and Fiber-fed Extended Range Optical Spectrograph spectra covering the range from ˜3100 to 10 000 Å. Atmosphere model computations were improved in two ways. First, since the UV metal line blanketing has a strong impact on the temperature-density stratification, we used the atlas12 code. Additionally, We tested atlas12 against the benchmark code sterne3, and found only small differences in the temperature and density stratifications, and good agreement with the spectral energy distributions. Secondly, 12 chemical species were treated in non-LTE. Pronounced non-LTE effects occur in individual spectral lines but, for the majority, the effects are moderate to small. The spectroscopic parameters give Teff =17 300±300 K and log g = 2.80±0.10, and an evolutionary mass of 0.55±0.05 M⊙. The star is thus slightly hotter, more compact and less massive than found in previous studies. The kinematic properties imply a thick-disc membership, which is consistent with the metallicity [Fe/H] ≈ -1 and α-enhancement. The refined light-element abundances are consistent with the white dwarf merger scenario. We further discuss the observed helium spectrum in an appendix, detecting dipole-allowed transitions from about 150 multiplets plus the most comprehensive set of known/predicted isolated forbidden components to date. Moreover, a so far unreported series of pronounced forbidden He I components is detected in the optical-UV.

  16. Sound Transmission through Cylindrical Shell Structures Excited by Boundary Layer Pressure Fluctuations

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper examines sound transmission into two concentric cylindrical sandwich shells subject to turbulent flow on the exterior surface of the outer shell. The interior of the shells is filled with fluid medium and there is an airgap between the shells in the annular space. The description of the pressure field is based on the cross-spectral density formulation of Corcos, Maestrello, and Efimtsov models of the turbulent boundary layer. The classical thin shell theory and the first-order shear deformation theory are applied for the inner and outer shells, respectively. Modal expansion and the Galerkin approach are used to obtain closed-form solutions for the shell displacements and the radiation and transmission pressures in the cavities including both the annular space and the interior. The average spectral density of the structural responses and the transmitted interior pressures are expressed explicitly in terms of the summation of the cross-spectral density of generalized force induced by the boundary layer turbulence. The effects of acoustic and hydrodynamic coincidences on the spectral density are observed. Numerical examples are presented to illustrate the method for both subsonic and supersonic flows.

  17. Parallel, confocal, and complete spectrum imager for fluorescent detection of high-density microarray

    NASA Astrophysics Data System (ADS)

    Bogdanov, Valery L.; Boyce-Jacino, Michael

    1999-05-01

    Confined arrays of biochemical probes deposited on a solid support surface (analytical microarray or 'chip') provide an opportunity to analysis multiple reactions simultaneously. Microarrays are increasingly used in genetics, medicine and environment scanning as research and analytical instruments. A power of microarray technology comes from its parallelism which grows with array miniaturization, minimization of reagent volume per reaction site and reaction multiplexing. An optical detector of microarray signals should combine high sensitivity, spatial and spectral resolution. Additionally, low-cost and a high processing rate are needed to transfer microarray technology into biomedical practice. We designed an imager that provides confocal and complete spectrum detection of entire fluorescently-labeled microarray in parallel. Imager uses microlens array, non-slit spectral decomposer, and high- sensitive detector (cooled CCD). Two imaging channels provide a simultaneous detection of localization, integrated and spectral intensities for each reaction site in microarray. A dimensional matching between microarray and imager's optics eliminates all in moving parts in instrumentation, enabling highly informative, fast and low-cost microarray detection. We report theory of confocal hyperspectral imaging with microlenses array and experimental data for implementation of developed imager to detect fluorescently labeled microarray with a density approximately 103 sites per cm2.

  18. X-Ray Wind Tomography of IGR J17252-3616

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland

    2010-07-01

    IGR J17252-3616, a highly absorbed High Mass X-ray Binary (HMXB) with Hydrogen column density NH~(2-4)×1023 cm-2, has been observed with XMM-Newton for about one month. Observations were scheduled in order to cover the orbital-phase space as much as possible. IGR J17252-3616 shows a varying column density NH and Fe Kα line when fit with simple phenomenological models. A refined orbital solution can be derived. Spectral timing analysis allows derivation of the wind properties of the massive star.

  19. DFT analysis and spectral characteristics of Celecoxib a potent COX-2 inhibitor

    NASA Astrophysics Data System (ADS)

    Vijayakumar, B.; Kannappan, V.; Sathyanarayanamoorthi, V.

    2016-10-01

    Extensive quantum mechanical studies are carried out on Celecoxib (CXB), a new generation drug to understand the vibrational and electronic spectral characteristics of the molecule. The vibrational frequencies of CXB are computed by HF and B3LYP methods with 6-311++G (d, p) basis set. The theoretical scaled vibrational frequencies have been assigned and they agreed satisfactorily with experimental FT-IR and Raman frequencies. The theoretical maximum wavelength of absorption of CXB are calculated in water and ethanol by TD-DFT method and these values are compared with experimentally determined λmax values. The spectral and Natural bonds orbital (NBO) analysis in conjunction with spectral data established the presence of intra molecular interactions such as mesomeric, hyperconjugative and steric effects in CXB. The electron density at various positions and reactivity descriptors of CXB indicate that the compound functions as a nucleophile and establish that aromatic ring system present in the molecule is the site of drug action. Electronic distribution and HOMO - LUMO energy values of CXB are discussed in terms of intra-molecular interactions. Computed values of Mulliken charges and thermodynamic properties of CXB are reported.

  20. Bearing defect signature analysis using advanced nonlinear signal analysis in a controlled environment

    NASA Technical Reports Server (NTRS)

    Zoladz, T.; Earhart, E.; Fiorucci, T.

    1995-01-01

    Utilizing high-frequency data from a highly instrumented rotor assembly, seeded bearing defect signatures are characterized using both conventional linear approaches, such as power spectral density analysis, and recently developed nonlinear techniques such as bicoherence analysis. Traditional low-frequency (less than 20 kHz) analysis and high-frequency envelope analysis of both accelerometer and acoustic emission data are used to recover characteristic bearing distress information buried deeply in acquired data. The successful coupling of newly developed nonlinear signal analysis with recovered wideband envelope data from accelerometers and acoustic emission sensors is the innovative focus of this research.

  1. X-ray wind tomography of IGR J17252-3616

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland

    IGR J17252-3616 is an heavily absorbed and eclipsing High Mass X-ray Binary with an ab-sorbing hydrogen column density >1023 cm-2 . We have observed it with XMM-Newton to understand the geometry of the absorbing material. Observations were scheduled in order to cover as many orbital phases as possible. Timing analysis is constraining the orbital solution and the physical parameters of the system. Spectral analysis reveals remarkable variations of the absorbing column density and of the Iron Kα fluorescence line around the eclipse. These variations allow to map the geometry of the absorbing and reflection material. Very large accretion structures could be imaged for the first time.

  2. Crustal structure of the Dabie orogenic belt (eastern China) inferred from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Yang, Yu-shan; Li, Yuan-yuan

    2018-01-01

    In order to better characterize the crustal structure of the Dabie orogen and its tectonic history, we present a crustal structure along a 500 km long profile across the Dabie orogenic belt using various data processing and interpretation of the gravity and magnetic data. Source depth estimations from the spectral analysis by continuous wavelet transform (CWT) provide better constraints for constructing the initial density model. The calculated gravity effects from the initial model show great discrepancy with the observed data, especially at the center of the profile. More practical factors are then incorporated into the gravity modeling. First, we add a high density body right beneath the high pressure metamorphic (HPM) and ultrahigh pressure metamorphic (UHPM) belt considering the exposed HPM and UHPM rocks in the mid of our profile. Then, the anomalous bodies A, B, and C inferred from the CWT-based spectral analysis results are fixed in the model geometry. In the final crustal density structure, two anomalous bodies B and C with high density and low magnetization could possibly be attributed to metasomatised mantle materials by SiO2-rich melt derived from the foundering subducted mafic lower crust. Under the extensional environment in the early Cretaceous, the upwelling metasomatised mantle was partially melted to produce the parental magma of the post-collisional mafic-ultramafic intrusive rocks. As for the low density body A with strong magnetization located in the lower crust right beneath the HP and UHP metamorphic belt, it is more likely to be composed of serpentinized mantle peridotite (SMP). This serpentinized mantle peridotite body (SMPB) represents the emplacement of mantle-derived peridotites in the crust, accompanying the exhumation of the UHP metamorphic rocks.

  3. Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions.

    PubMed

    Lei, Youming; Zheng, Fan

    2016-12-01

    Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.

  4. Some characteristics of the international space channel

    NASA Technical Reports Server (NTRS)

    Noack, T. L.; Poland, W. B., Jr.

    1975-01-01

    Some physical characteristics of radio transmission links and the technology of PCM modulation combine with the Radio Regulations of the International Telecommunications Union to define a communications channel having a determinable channel capacity, error rate, and sensitivity to interference. These characteristics and the corresponding limitations on EIRP, power flux density, and power spectral density for space service applications are described. The ITU regulations create a critical height of 1027 km where some parameters of the limitation rules change. The nature of restraints on power spectral density are discussed and an approach to a standardized representation of Necessary Bandwidth for the Space Services is described. It is shown that, given the PFD (power flux density) and PSD (power spectral density) limitations of radio regulations, the channel performance is determined by the ratio of effective receiving antenna aperture to system noise temperature. Based on this approach, the method for a quantitative trade-off between spectrum spreading and system performance is presented. Finally, the effects of radio frequency interference between standard systems is analyzed.

  5. Jet Mixing Noise Scaling Laws SHJAR Data Vs. Predictions

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2008-01-01

    High quality jet noise spectral data measured at the anechoic dome at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent as well as convergent-divergent axisymmetric nozzles. The spectral measurements are shown in narrow band and cover 8193 equally spaced points in a typical Strouhal number range of (0.01 10.0). Measurements are reported as lossless (i.e. atmospheric attenuation is added to as-measured data), and at 24 equally spaced angles (50deg to 165deg) on a 100-diameter arc. Following the work of Viswanathan [Ref. 1], velocity power laws are derived using a least square fit on spectral power density as a function of jet temperature and observer angle. The goodness of the fit is studied at each angle, and alternative relationships are proposed to improve the spectral collapse when certain conditions are met. On the application side, power laws are extremely useful in identifying components from various noise generation mechanisms. From this analysis, jet noise prediction tools can be developed with physics derived from the different spectral components.

  6. Analytical approaches to modelling panspermia - beyond the mean-field paradigm

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi

    2016-01-01

    We model the process of panspermia by adopting two different approaches. The first method conceives it as a self-replication process, endowed with non-local creation and extinction. We show that some features suggestive of universal behaviour emerge, such as exponential decay or growth, and a power spectral density that displays a power-law behaviour in a particular regime. We also present a special case wherein the number density of the planets seeded through panspermia approaches a finite asymptotic distribution. The power spectral density for the independent and spontaneous emergence of life is investigated in conjunction with its counterpart for panspermia. The former exhibits attributes characteristic of a noise spectrum, including the resemblance to white noise in a certain regime. These features are absent in panspermia, suggesting that the power spectral density could be utilized as a future tool for differentiating between the two processes. Our second approach adopts the machinery of Markov processes and diffusion, and we show that the power spectral density exhibits a power-law tail in some domains, as earlier, suggesting that this behaviour may be fairly robust. We comment on a generalization of the diffusive model, and also indicate how the methods and results developed herein could be used to analyse other phenomena.

  7. Nonlinear GARCH model and 1 / f noise

    NASA Astrophysics Data System (ADS)

    Kononovicius, A.; Ruseckas, J.

    2015-06-01

    Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.

  8. Evans hole and non linear optical activity in Bis(melaminium) sulphate dihydrate: A vibrational spectral study.

    PubMed

    Suresh Kumar, V R; Binoy, J; Dawn Dharma Roy, S; Marchewka, M K; Jayakumar, V S

    2015-01-01

    Bis(melaminium) sulphate dihydrate (BMSD), an interesting melaminium derivative for nonlinear optical activity, has been subjected to vibrational spectral analysis using FT IR and FT Raman spectra. The analysis has been aided by the Potential Energy Distribution (PED) of vibrational spectral bands, derived using density functional theory (DFT) at B3LYP/6-31G(d) level. The geometry is found to correlate well with the XRD structure and the band profiles for certain vibrations in the finger print region have been theoretically explained using Evans hole. The detailed Natural Bond Orbital (NBO) analysis of the hydrogen bonding in BMSD has also been carried out to understand the correlation between the stabilization energy of hyperconjugation of the lone pair of donor with the σ(∗) orbital of hydrogen-acceptor bond and the strength of hydrogen bond. The theoretical calculation shows that BMSD has NLO efficiency, 2.66 times that of urea. The frontier molecular orbital analysis points to a charge transfer, which contributes to NLO activity, through N-H…O intermolecular hydrogen bonding between the melaminium ring and the sulphate. The molecular electrostatic potential (MEP) mapping has also been performed for the detailed analysis of the mutual interactions between melaminium ring and sulphate ion. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Asymmetries in the spectral density of an interaction-quenched Luttinger liquid

    NASA Astrophysics Data System (ADS)

    Calzona, A.; Gambetta, F. M.; Carrega, M.; Cavaliere, F.; Sassetti, M.

    2018-03-01

    The spectral density of an interaction-quenched one-dimensional system is investigated. Both direct and inverse quench protocols are considered and it is found that the former leads to stronger effects on the spectral density with respect to the latter. Such asymmetry is directly reflected on transport properties of the system, namely the charge and energy current flowing to the system from a tunnel coupled biased probe. In particular, the injection of particles from the probe to the right-moving channel of the system is considered. The resulting fractionalization phenomena are strongly affected by the quench protocol and display asymmetries in the case of direct and inverse quench. Transport properties therefore emerge as natural probes for the observation of this quench-induced behavior.

  10. Detecting leafy spurge in native grassland using hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Kloppenburg, Catherine

    Leafy spurge (Euphoria esula L.) is a perennial noxious weed that has been encroaches on the native grassland regions of North America resulting in biological and economic impacts. Leafy spurge growth is most prevalent along river banks and in pasture areas. Due to poor accessibility and the cost and labour associated with data collection, estimates of number and size of leafy spurge infestations is poor. Remote sensing has the ability to cover large areas, providing an alternate means to ground surveys and will allow for the capability to create an accurate baseline of infestations. Airborne hyperspectral data were collected over the two test sites selected on the Blood Reserve in Southern Alberta using a combined Airborne Imaging Spectrometer for different Applications (AISA) Eagle and Hawk sensor systems in July, 2010. This study used advanced analysis tools, including spectral mixture analysis, spectral angle mapper and mixture-tuned matched filter techniques to evaluate the ability to detect leafy spurge patches. The results show that patches of leafy spurge with flowering stem density >40 stems m-2 were identified with 85 % accuracy while identification of lower density stems were less accurate (10 - 40 %). The results are promising with respect to quantifying areas of significant leafy spurge infestation and targeting biological control and potential insect release sites.

  11. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.

    PubMed

    Bascil, M Serdar; Tesneli, Ahmet Y; Temurtas, Feyzullah

    2016-09-01

    Brain computer interface (BCI) is a new communication way between man and machine. It identifies mental task patterns stored in electroencephalogram (EEG). So, it extracts brain electrical activities recorded by EEG and transforms them machine control commands. The main goal of BCI is to make available assistive environmental devices for paralyzed people such as computers and makes their life easier. This study deals with feature extraction and mental task pattern recognition on 2-D cursor control from EEG as offline analysis approach. The hemispherical power density changes are computed and compared on alpha-beta frequency bands with only mental imagination of cursor movements. First of all, power spectral density (PSD) features of EEG signals are extracted and high dimensional data reduced by principle component analysis (PCA) and independent component analysis (ICA) which are statistical algorithms. In the last stage, all features are classified with two types of support vector machine (SVM) which are linear and least squares (LS-SVM) and three different artificial neural network (ANN) structures which are learning vector quantization (LVQ), multilayer neural network (MLNN) and probabilistic neural network (PNN) and mental task patterns are successfully identified via k-fold cross validation technique.

  12. Resolution Measurement from a Single Reconstructed Cryo-EM Density Map with Multiscale Spectral Analysis.

    PubMed

    Yang, Yu-Jiao; Wang, Shuai; Zhang, Biao; Shen, Hong-Bin

    2018-06-25

    As a relatively new technology to solve the three-dimensional (3D) structure of a protein or protein complex, single-particle reconstruction (SPR) of cryogenic electron microscopy (cryo-EM) images shows much superiority and is in a rapidly developing stage. Resolution measurement in SPR, which evaluates the quality of a reconstructed 3D density map, plays a critical role in promoting methodology development of SPR and structural biology. Because there is no benchmark map in the generation of a new structure, how to realize the resolution estimation of a new map is still an open problem. Existing approaches try to generate a hypothetical benchmark map by reconstructing two 3D models from two halves of the original 2D images for cross-reference, which may result in a premature estimation with a half-data model. In this paper, we report a new self-reference-based resolution estimation protocol, called SRes, that requires only a single reconstructed 3D map. The core idea of SRes is to perform a multiscale spectral analysis (MSSA) on the map through multiple size-variable masks segmenting the map. The MSSA-derived multiscale spectral signal-to-noise ratios (mSSNRs) reveal that their corresponding estimated resolutions will show a cliff jump phenomenon, indicating a significant change in the SSNR properties. The critical point on the cliff borderline is demonstrated to be the right estimator for the resolution of the map.

  13. Analysis of optical and magnetooptical spectra of Fe{sub 5}Si{sub 3} and Fe{sub 3}Si magnetic silicides using spectral magnetoellipsometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyashchenko, S. A., E-mail: lsa@iph.krasn.ru; Popov, Z. I.; Varnakov, S. N.

    The optical, magnetooptical, and magnetic properties of polycrystalline (Fe{sub 5}Si{sub 3}/SiO{sub 2}/Si(100)) and epitaxial Fe{sub 3}Si/Si(111) films are investigated by spectral magnetoellipsometry. The dispersion of the complex refractive index of Fe{sub 5}Si{sub 3} is measured using multiangle spectral ellipsometry in the range of 250–1000 nm. The dispersion of complex Voigt magnetooptical parameters Q is determined for Fe{sub 5}Si{sub 3} and Fe{sub 3}Si in the range of 1.6–4.9 eV. The spectral dependence of magnetic circular dichroism for both silicides has revealed a series of resonance peaks. The energies of the detected peaks correspond to interband electron transitions for spin-polarized densities ofmore » electron states (DOS) calculated from first principles for bulk Fe{sub 5}Si{sub 3} and Fe{sub 3}Si crystals.« less

  14. Estimations of Mo X-pinch plasma parameters on QiangGuang-1 facility by L-shell spectral analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jian; Qiu, Aici; State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    2013-08-15

    Plasma parameters of molybdenum (Mo) X-pinches on the 1-MA QiangGuang-1 facility were estimated by L-shell spectral analysis. X-ray radiation from X-pinches had a pulsed width of 1 ns, and its spectra in 2–3 keV were measured with a time-integrated X-ray spectrometer. Relative intensities of spectral features were derived by correcting for the spectral sensitivity of the spectrometer. With an open source, atomic code FAC (flexible atomic code), ion structures, and various atomic radiative-collisional rates for O-, F-, Ne-, Na-, Mg-, and Al-like ionization stages were calculated, and synthetic spectra were constructed at given plasma parameters. By fitting the measured spectramore » with the modeled, Mo X-pinch plasmas on the QiangGuang-1 facility had an electron density of about 10{sup 21} cm{sup −3} and the electron temperature of about 1.2 keV.« less

  15. Experimental applications of multispectral data to natural resource inventory and survey

    NASA Technical Reports Server (NTRS)

    Mallon, H. J.

    1970-01-01

    The feasibility of using multispectral, color, color infrared, thermal infrared imagery and related ground data to recognize, identify, determine and monitor the status of mineral ore and metals stockpiles is studied. An attempt was made to identify valid, unique spectral signatures of such materials for possible use under a wide variety of environmental circumstances. Research emphasis was upon the analysis of the multiband imagery from the various film-filter combinations, using density analysis techniques.

  16. Analysis of Slow-Wave Activity and Slow-Wave Oscillations Prior to Somnambulism

    PubMed Central

    Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio

    2010-01-01

    Study Objectivies: Several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. Participants: Twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. Results: Analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. Conclusions: The specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined. Citation: Jaar O; Pilon M; Carrier J; Montplaisir J; Zadra A. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism. SLEEP 2010;33(11):1511-1516. PMID:21102993

  17. VizieR Online Data Catalog: Spectral properties of 441 radio pulsars (Jankowski+, 2018)

    NASA Astrophysics Data System (ADS)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-03-01

    We present spectral parameters for 441 radio pulsars. These were obtained from observations centred at 728, 1382 and 3100MHz using the 10-50cm and the 20cm multibeam receiver at the Parkes radio telescope. In particular, we list the pulsar names (J2000), the calibrated, band-integrated flux densities at 728, 1382 and 3100MHz, the spectral classifications, the frequency ranges the spectral classifications were performed over, the spectral indices for pulsars with simple power-law spectra and the robust modulation indices at all three centre frequencies for pulsars of which we have at least six measurement epochs. The flux density uncertainties include scintillation and a systematic contribution, in addition to the statistical uncertainty. Upper limits are reported at the 3σ level and all other uncertainties at the 1σ level. (1 data file).

  18. The Litho-Density tool calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, D.; Flaum, C.; Marienbach, E.

    1983-10-01

    The Litho-Density tool (LDT) uses a gamma ray source and two NaI scintillator detectors for borehole measurement of electron density, p/SUB e/, and a quantity, P/SUB e/, which is related to the photoelectric cross section at 60 keV and therefore to the lithology of the formation. An active stabilization system controls the gains of the two detectors which permits selective gamma-ray detection. Spectral analysis is performed in the near detector (2 energy windows) and in the detector farther away from the source (3 energy windows). This paper describes the results of laboratory measurements undertaken to define the basic tool response.more » The tool is shown to provide reliable measurements of formation density and lithology under a variety of environmental conditions.« less

  19. A combined experimental and DFT investigation of disazo dye having pyrazole skeleton

    NASA Astrophysics Data System (ADS)

    Şener, Nesrin; Bayrakdar, Alpaslan; Kart, Hasan Hüseyin; Şener, İzzet

    2017-02-01

    Disazo dye containing pyrazole skeleton has been synthesized. The structure of the dye has been confirmed by using FT-IR, 1H NMR, 13C NMR, HRMS spectral technique and elemental analysis. The molecular geometry and infrared spectrum are also calculated by the Density Functional Theory (DFT) employing B3LYP level with 6-311G (d,p) basis set. The chemical shifts calculation for 1H NMR of the title molecule is done by using by Gauge-Invariant Atomic Orbital (GIAO) method by utilizing the same basis sets. The total density of state, the partial density of state and the overlap population density of state diagram analysis are done via Gauss Sum 3.0 program. Frontier molecular orbitals such as highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and molecular electrostatic potential surface on the title molecule are predicted for various intramolecular interactions that are responsible for the stabilization of the molecule. The experimental results and theoretical values have been compared.

  20. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Liang; Zhao, Yiqing; Hu, Xiaoyan

    2014-07-15

    Experiments about the observations of stimulated Raman backscatter (SRS) and stimulated Brillouin backscatter (SBS) in Hohlraum were performed on Shenguang-III (SG-III) prototype facility for the first time in 2011. In this paper, relevant experimental results are analyzed for the first time with a one-dimension spectral analysis code, which is developed to study the coexistent process of SRS and SBS in Hohlraum plasma condition. Spectral features of the backscattered light are discussed with different plasma parameters. In the case of empty Hohlraum experiments, simulation results indicate that SBS, which grows fast at the energy deposition region near the Hohlraum wall, ismore » the dominant instability process. The time resolved spectra of SRS and SBS are numerically obtained, which agree with the experimental observations. For the gas-filled Hohlraum experiments, simulation results show that SBS grows fastest in Au plasma and amplifies convectively in C{sub 5}H{sub 12} gas, whereas SRS mainly grows in the high density region of the C{sub 5}H{sub 12} gas. Gain spectra and the spectra of backscattered light are simulated along the ray path, which clearly show the location where the intensity of scattered light with a certain wavelength increases. This work is helpful to comprehend the observed spectral features of SRS and SBS. The experiments and relevant analysis provide references for the ignition target design in future.« less

  1. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis

    NASA Astrophysics Data System (ADS)

    Tonannavar, J.; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B.; Patil, Nikhil A.; Mulimani, B. G.

    2016-02-01

    We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400 cm- 1) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH.

  2. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis.

    PubMed

    Tonannavar, J; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B; Patil, Nikhil A; Mulimani, B G

    2016-02-05

    We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400c m(-1)) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Identification of natural frequencies and modal damping ratios of aerospace structures from response data

    NASA Technical Reports Server (NTRS)

    Michalopoulos, C. D.

    1976-01-01

    An analysis of one and multidegree of freedom systems with classical damping is presented. Definition and minimization of error functions for each system are discussed. Systems with classical and nonclassical normal modes are studied, and results for first order perturbation are given. An alternative method of matching power spectral densities is provided, and numerical results are reviewed.

  4. Browns Ferry Unit-3 cavity neutron spectral analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, G.C.

    1981-08-01

    This report describes neutron dosimetry measurements performed in the Browns Ferry Unit-3 reactor cavity using multiple dosimeter and spectrum unfolding techniques to assess radiation-induced degradation of nuclear plant pressure vessels. Test results and conclusions indicating the feasibility of determining neutron flux spectra and the densities in the pressure vessel cavity region via dosimetric measurements are presented.

  5. Equatorial Density Irregularity Structures at Intermediate Scales and Their Temporal Evolution

    NASA Technical Reports Server (NTRS)

    Kil, Hyosub; Heelis, R. A.

    1998-01-01

    We examine high resolution measurements of ion density in the equatorial ionosphere from the AE-E satellite during the years 1977-1981. Structure over spatial scales from 18 km to 200 m is characterized by the spectrum of irregularities at larger and smaller scales and at altitudes above 350 km and below 300 km. In the low-altitude region, only small amplitude large-scale (lambda greater than 5 km) density modulations are often observed, and thus the power spectrum of these density structures exhibits a steep spectral slope at kilometer scales. In the high-altitude region, sinusoidal density fluctuations, characterized by enhanced power near 1-km scale, are frequently observed during 2000-0200 LT. However, such fluctuations are confined to regions at the edges of larger bubble structures where the average background density is high. Small amplitude irregularity structures, observed at early local time hours, grow rapidly to high-intensity structures in about 90 min. Fully developed structures, which are observed at late local time hours, decay very slowly producing only-small differences in spectral characteristics even 4 hours later. The local time evolution of irregularity structure is investigated by using average statistics for low-(1% less than sigma less than 5%) and high-intensity (sigma greater than 10%) structures. At lower altitudes, little chance in the spectral slope is seen as a function of local time, while at higher attitudes the growth and maintenance of structures near 1 km scales dramatically affects the spectral slope.

  6. Interplanetary density models as inferred from solar Type III bursts

    NASA Astrophysics Data System (ADS)

    Oppeneiger, Lucas; Boudjada, Mohammed Y.; Lammer, Helmut; Lichtenegger, Herbert

    2016-04-01

    We report on the density models derived from spectral features of solar Type III bursts. They are generated by beams of electrons travelling outward from the Sun along open magnetic field lines. Electrons generate Langmuir waves at the plasma frequency along their ray paths through the corona and the interplanetary medium. A large frequency band is covered by the Type III bursts from several MHz down to few kHz. In this analysis, we consider the previous empirical density models proposed to describe the electron density in the interplanetary medium. We show that those models are mainly based on the analysis of Type III bursts generated in the interplanetary medium and observed by satellites (e.g. RAE, HELIOS, VOYAGER, ULYSSES,WIND). Those models are confronted to stereoscopic observations of Type III bursts recorded by WIND, ULYSSES and CASSINI spacecraft. We discuss the spatial evolution of the electron beam along the interplanetary medium where the trajectory is an Archimedean spiral. We show that the electron beams and the source locations are depending on the choose of the empirical density models.

  7. Effects of the density and homogeneity in NIRS crop moisture estimation

    NASA Astrophysics Data System (ADS)

    Lenzini, Nicola; Rovati, Luigi; Ferrari, Luca

    2017-06-01

    Near-infrared spectroscopy (NIRS) is widely used in fruits and vegetables quality evaluation. This technique is also used for the analysis of alfalfa, a crop that occupies a position of great importance in the agricultural field. In particular for the storage, moisture content is a key parameter for the crops and for this reason its monitoring is very important during the harvesting phase. Usually optical methods like NIRS are well suitable in laboratory frameworks where the specimen is properly prepared, while their application during the harvesting phase presents several diffculties. A lot of influencing factors, such as density and degree of homogeneity can affect the moisture evaluation. In this paper we present the NIRS analysis of alfalfa specimens with different values of moisture and density, as well as the obtained results. To study scattering and absorption phenomena, the forward and backward scattered light from the sample have been spectrally analyzed.

  8. Spectral likelihood expansions for Bayesian inference

    NASA Astrophysics Data System (ADS)

    Nagel, Joseph B.; Sudret, Bruno

    2016-03-01

    A spectral approach to Bayesian inference is presented. It pursues the emulation of the posterior probability density. The starting point is a series expansion of the likelihood function in terms of orthogonal polynomials. From this spectral likelihood expansion all statistical quantities of interest can be calculated semi-analytically. The posterior is formally represented as the product of a reference density and a linear combination of polynomial basis functions. Both the model evidence and the posterior moments are related to the expansion coefficients. This formulation avoids Markov chain Monte Carlo simulation and allows one to make use of linear least squares instead. The pros and cons of spectral Bayesian inference are discussed and demonstrated on the basis of simple applications from classical statistics and inverse modeling.

  9. Influence of Laser Radiation Power Density on the Intensity of Spectral Lines for Main Components in a Clay Laser-Induced Plasma

    NASA Astrophysics Data System (ADS)

    Anufrik, S. S.; Kurian, N. N.; Znosko, K. F.; Belkov, M. V.

    2018-05-01

    We have studied the intensity of the spectral lines for the main components in clay: Al I 309.4 nm, Al II 358.7 nm, Mg II 279.6 nm, Ti II 323.6 nm vs. the position of the object relative to the focus of the optical system when the samples are exposed to single laser pulses from a YAG:Nd3+ laser. We have determined the permissible ranges for positioning the object relative to the focus of the optical system (positive and negative defocusing) for which there is practically no change in the reproducibility of the intensity for the spectral lines for red and white clay samples. We show that the position of the object relative to the focus of the optical system should be within the range ΔZ ±1.5 mm for optimal laser pulse energies for the analyte spectral lines. We have calculated the radiation flux density for different laser pulse energies and different distances from the focus to the object. We have shown experimentally that reducing the radiation flux density leads to a decrease in the intensity of the analyte spectral lines.

  10. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  11. Experimental and density functional theory study of Raman and SERS spectra of 5-amino-2-mercaptobenzimidazole

    NASA Astrophysics Data System (ADS)

    Chen, Yufeng; Yang, Jin; Li, Zonglong; Li, Ran; Ruan, Weidong; Zhuang, Zhiping; Zhao, Bing

    2016-01-01

    Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) simulations were employed to study 5-amino-2-mercaptobenzimidazole (5-A-2MBI) molecules. Ag colloids were used as SERS substrates which were prepared by using hydroxylamine hydrochloride as reducing agent. Raman vibration modes and SERS characteristic peaks of 5-A-2MBI were assigned with the aid of DFT calculations. The molecular electrostatic potential (MEP) of 5-A-2MBI was used to discuss the possible adsorption behavior of 5-A-2MBI on Ag colloids. The spectral analysis showed that 5-A-2MBI molecules were slightly titled via the sulfur atoms adhering to the surfaces of Ag substrates. The obtained SERS spectral intensity decreased when lowering the 5-A-2MBI concentrations. A final detection limit on the concentration of 5 × 10- 7 mol · L- 1 was gained. SERS proved to be a simple, fast and reliable method for the detection and characterization of 5-A-2MBI molecules.

  12. Quick analysis of optical spectra to quantify epidermal melanin and papillary dermal blood content of skin.

    PubMed

    Jacques, Steven L

    2015-04-01

    This paper presents a practical approach for assessing the melanin and blood content of the skin from total diffuse reflectance spectra, R(λ), where λ is wavelength. A quick spectral analysis using just three wavelengths (585 nm, 700 nm and 800 nm) is presented, based on the 1985 work of Kollias and Baquer who documented epidermal melanin of skin using the slope of optical density (OD) between 620 nm and 720 nm. The paper describes the non-rectilinear character of such a quick analysis, and shows that almost any choice of two wavelengths in the 600-900 range can achieve the characterization of melanin. The extrapolation of the melanin slope to 585 nm serves as a baseline for subtraction from the OD (585 nm) to yield a blood perfusion score. Monte Carlo simulations created spectral data for a skin model with epidermis, papillary dermis and reticular dermis to illustrate the analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. ERTS evaluation for land use inventory

    NASA Technical Reports Server (NTRS)

    Hardy, E. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The feasibility of accomplishing a general inventory of any given region based on spectral categories from satellite data has been demonstrated in a pilot study for an area of 6300 square kilometers in central New York State. This was accomplished by developing special processing techniques to improve and balance contrast and density for each spectral band of an image scene to compare with a standard range of density and contrast found to be acceptable for interpretation of the scene. Diazo film transparencies were made from enlarged black and white transparencies of each spectral band. Color composites were constructed from these diazo films in combinations of hue and spectral bands to enhance different spectral features in the scene. Interpretation and data takeoff was accomplished manually by translating interpreted areas onto an overlay to construct a spectral map. The minimum area interpreted was 25 hectares. The minimum area geographically referenced was one square kilometer. The interpretation and referencing of data from ERTS-1 was found to be about 88% accurate for eight primary spectral categories.

  14. Rocket observation of electron density irregularities in the lower E region

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuzo; Nakamura, Yoshiharu; Amemiya, Hiroshi

    Results are presented on measurements of local ionospheric electron density irregularities, in the size range 3-300 km, observed by a Langmuir probe on board the S-310-16 sounding rocket launched on February 1, 1986 from Kagoshima Space Center (Japan). Results of a frequency analysis of data indicates that the spectral index of the irregularities is 0.9 to 1.8 and the irregularity amplitude is 1 to 15 percent. The amplitude reaches its maximum at the 88 km altitude. The mechanism involved in the generation of these irregularities is explained in the framework of the neutral turbulence theory.

  15. Scintillation statistics measured in an earth-space-earth retroreflector link

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.

    1977-01-01

    Scintillation was measured in a vertical path from a ground-based laser transmitter to the Geos 3 satellite and back to a ground-based receiver telescope and, the experimental results were compared with analytical results presented in a companion paper (Bufton, 1977). The normalized variance, the probability density function and the power spectral density of scintillation were all measured. Moments of the satellite scintillation data in terms of normalized variance were lower than expected. The power spectrum analysis suggests that there were scintillation components at frequencies higher than the 250 Hz bandwidth available in the experiment.

  16. Twenty-five years of maximum-entropy principle

    NASA Astrophysics Data System (ADS)

    Kapur, J. N.

    1983-04-01

    The strengths and weaknesses of the maximum entropy principle (MEP) are examined and some challenging problems that remain outstanding at the end of the first quarter century of the principle are discussed. The original formalism of the MEP is presented and its relationship to statistical mechanics is set forth. The use of MEP for characterizing statistical distributions, in statistical inference, nonlinear spectral analysis, transportation models, population density models, models for brand-switching in marketing and vote-switching in elections is discussed. Its application to finance, insurance, image reconstruction, pattern recognition, operations research and engineering, biology and medicine, and nonparametric density estimation is considered.

  17. Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density

    DOE PAGES

    Smallwood, David O.

    1997-01-01

    The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs) of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power) spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general casemore » of matching a target probability density function using a zero memory nonlinear (ZMNL) function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV) are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.« less

  18. Fine Structures of Solar Radio Type III Bursts and Their Possible Relationship with Coronal Density Turbulence

    NASA Astrophysics Data System (ADS)

    Chen, Xingyao; Kontar, Eduard P.; Yu, Sijie; Yan, Yihua; Huang, Jing; Tan, Baolin

    2018-03-01

    Solar radio type III bursts are believed to be the most sensitive signatures of near-relativistic electron beam propagation in the corona. A solar radio type IIIb-III pair burst with fine frequency structures, observed by the Low Frequency Array (LOFAR) with high temporal (∼10 ms) and spectral (12.5 kHz) resolutions at 30–80 MHz, is presented. The observations show that the type III burst consists of many striae, which have a frequency scale of about 0.1 MHz in both the fundamental (plasma) and the harmonic (double plasma) emission. We investigate the effects of background density fluctuations based on the observation of striae structure to estimate the density perturbation in the solar corona. It is found that the spectral index of the density fluctuation spectrum is about ‑1.7, and the characteristic spatial scale of the density perturbation is around 700 km. This spectral index is very close to a Kolmogorov turbulence spectral index of ‑5/3, consistent with a turbulent cascade. This fact indicates that the coronal turbulence may play the important role of modulating the time structures of solar radio type III bursts, and the fine structure of radio type III bursts could provide a useful and unique tool to diagnose the turbulence in the solar corona.

  19. Contribution of strong discontinuities to the power spectrum of the solar wind.

    PubMed

    Borovsky, Joseph E

    2010-09-10

    Eight and a half years of magnetic field measurements (2(22) samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the "inertial subrange" with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this "inertial subrange." Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.

  20. VLA Radio Observations of the HST Frontier Fields Cluster Abell 2744: The Discovery of New Radio Relics

    NASA Astrophysics Data System (ADS)

    Pearce, C. J. J.; van Weeren, R. J.; Andrade-Santos, F.; Jones, C.; Forman, W. R.; Brüggen, M.; Bulbul, E.; Clarke, T. E.; Kraft, R. P.; Medezinski, E.; Mroczkowski, T.; Nonino, M.; Nulsen, P. E. J.; Randall, S. W.; Umetsu, K.

    2017-08-01

    Cluster mergers leave distinct signatures in the intracluster medium (ICM) in the form of shocks and diffuse cluster radio sources that provide evidence for the acceleration of relativistic particles. However, the physics of particle acceleration in the ICM is still not fully understood. Here we present new 1-4 GHz Jansky Very Large Array (VLA) and archival Chandra observations of the HST Frontier Fields Cluster Abell 2744. In our new VLA images, we detect the previously known ˜2.1 Mpc radio halo and ˜1.5 Mpc radio relic. We carry out a radio spectral analysis from which we determine the relic’s injection spectral index to be {α }{inj}=-1.12+/- 0.19. This corresponds to a shock Mach number of { M }={2.05}-0.19+0.31 under the assumption of diffusive shock acceleration. We also find evidence for spectral steepening in the post-shock region. We do not find evidence for a significant correlation between the radio halo’s spectral index and ICM temperature. In addition, we observe three new polarized diffuse sources and determine two of these to be newly discovered giant radio relics. These two relics are located in the southeastern and northwestern outskirts of the cluster. The corresponding integrated spectral indices measure -1.81 ± 0.26 and -0.63 ± 0.21 for the SE and NW relics, respectively. From an X-ray surface brightness profile we also detect a possible density jump of R={1.39}-0.22+0.34 co-located with the newly discovered SE relic. This density jump would correspond to a shock front Mach number of { M }={1.26}-0.15+0.25.

  1. AGARD Flight Test Techniques Series. Volume 14. Introduction to Flight Test Engineering (Introduction a la Technique d’essais en vol)

    DTIC Science & Technology

    1995-09-01

    path and aircraft attitude and other flight or aircraft parameters • Calculations in the frequency domain ( Fast Fourier Transform) • Data analysis...Signal filtering Image processing of video and radar data Parameter identification Statistical analysis Power spectral density Fast Fourier Transform...airspeeds both fast and slow, altitude, load factor both above and below 1g, centers of gravity (fore and aft), and with system/subsystem failures. Whether

  2. High-performance broad-band spectroscopy for breast cancer risk assessment

    NASA Astrophysics Data System (ADS)

    Pawluczyk, Olga; Blackmore, Kristina; Dick, Samantha; Lilge, Lothar

    2005-09-01

    Medical diagnostics and screening are becoming increasingly demanding applications for spectroscopy. Although for many years the demand was satisfied with traditional spectrometers, analysis of complex biological samples has created a need for instruments capable of detecting small differences between samples. One such application is the measurement of absorbance of broad spectrum illumination by breast tissue, in order to quantify the breast tissue density. Studies have shown that breast cancer risk is closely associated with the measurement of radiographic breast density measurement. Using signal attenuation in transillumination spectroscopy in the 550-1100nm spectral range to measure breast density, has the potential to reduce the frequency of ionizing radiation, or making the test accessible to younger women; lower the cost and make the procedure more comfortable for the patient. In order to determine breast density, small spectral variances over a total attenuation of up to 8 OD have to be detected with the spectrophotometer. For this, a high performance system has been developed. The system uses Volume Phase Holographic (VPH) transmission grating, a 2D detector array for simultaneous registration of the whole spectrum with high signal to noise ratio, dedicated optical system specifically optimized for spectroscopic applications and many other improvements. The signal to noise ratio exceeding 50,000 for a single data acquisition eliminates the need for nitrogen cooled detectors and provides sufficient information to predict breast tissue density. Current studies employing transillumination breast spectroscopy (TIBS) relating to breast cancer risk assessment and monitoring are described.

  3. 47 CFR 25.223 - Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... feeder link earth stations in the 17/24 GHz BSS. 25.223 Section 25.223 Telecommunication FEDERAL....223 Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. (a) This section applies to all applications for earth station licenses in the 17/24 GHz BSS frequency...

  4. 47 CFR 25.223 - Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... feeder link earth stations in the 17/24 GHz BSS. 25.223 Section 25.223 Telecommunication FEDERAL....223 Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. (a) This section applies to all applications for earth station licenses in the 17/24 GHz BSS frequency...

  5. 47 CFR 25.223 - Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... feeder link earth stations in the 17/24 GHz BSS. 25.223 Section 25.223 Telecommunication FEDERAL....223 Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. (a) This section applies to all applications for earth station licenses in the 17/24 GHz BSS frequency...

  6. 47 CFR 25.223 - Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... feeder link earth stations in the 17/24 GHz BSS. 25.223 Section 25.223 Telecommunication FEDERAL....223 Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. (a) This section applies to all applications for earth station licenses in the 17/24 GHz BSS frequency...

  7. Optical constants of SrF 2 thin films in the 25-780-eV spectral range

    DOE PAGES

    Rodriguez-de Marcos, Luis; Larraguert, Juan I.; Aznarez, Jose A.; ...

    2013-04-08

    The transmittance and the optical constants of SrF 2 thin films, a candidate material for multilayer coatings operating in the extreme ultraviolet and soft x-rays, have been determined in the spectral range of 25–780 eV, in most of which no experimental data were previously available. SrF 2 films of various thicknesses were deposited by evaporation onto room-temperature, thin Al support films, and their transmittance was measured with synchrotron radiation. The transmittance as a function of film thickness was used to calculate the extinction coefficient k at each photon energy. A decrease in density with increasing SrF 2 film thickness wasmore » observed. In the calculation of k, this effect was circumvented by fitting the transmittance versus the product of thickness and density. The real part of the refractive index of SrF 2 films was calculated from k with Kramers-Krönig analysis, for which the measured spectral range was extended both to lower and to higher photon energies with data in the literature combined with interpolations and extrapolations. In conclusion, with the application of f- and inertial sum rules, the consistency of the compiled data was found to be excellent.« less

  8. Soil salinity detection. [Starr and Cameron Counties, Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Richardson, A. J.; Gausman, H. W.; Leamer, R. W.; Gerbermann, A. H.; Everitt, J. H.; Cuellar, J. A. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Growth forms and herbage biomass production varied considerably among saline and nonsaline soil range sites in Starr County. Grasses on saline soil sites were shallow-rooted and short whereas on nonsaline sites there was an intermixture of short and midgrass species. Differentiation between primarily undisturbed saline and nonsaline rangelands, in Starr County, is partially possible using film optical density readings from Skylab imagery. Differentiation among eight saline and nonsaline soil sites in Cameron County, using black and white and color film was not possible according to statistical results from both DMRT and correlation analysis. Linear analysis showed that Bendix 24-band MSS data (aircraft) collected at 1700 m and 4800 m, as well as Skylab and LANDSAT-1 MSS data, were significantly correlated to electrical conductivity readings. In Starr County, the best spectral band for detection of saline soil levels, using black and white SO-022 film, was in the 0.6 to 0.7 micron spectral region. In Cameron County, the best spectral bands for detection of saline soil levels were the 2.3 to 2.43 micron, 0.72 to 0.76 micron, 0.69 to 1.75 micron, and 0.7 to 1.1 micron spectral regions.

  9. Spatial Variations of Spectral Properties of (21) Lutetia as Observed by OSIRIS/Rosetta

    NASA Astrophysics Data System (ADS)

    Leyrat, Cedric; Sierks, H.; Barbieri, C.; Barucci, A.; Da Deppo, V.; De Leon, J.; Fulchignoni, M.; Fornasier, S.; Groussin, O.; Hviid, S. F.; Jorda, L.; Keller, H. U.; La Forgia, F.; Lara, L.; Lazzarin, M.; Magrin, S.; Marchi, S.; Thomas, N.; Schroder, S. E.; OSIRIS Team

    2010-10-01

    On July 10, 2010, the Rosetta ESA/NASA spacecraft successfully flew by the asteroid (21) Lutetia, which becomes the largest asteroid observed by a space probe. The closest approach occurred at 15H45 UTC at a relative speed of 15km/s and a relative distance of 3160 km. The Narrow Angle Camera (NAC) and the Wide Angle Camera (WAC) of the OSIRIS instrument onboard Rosetta acquired images at different phase angles ranging from almost zero to more than 150 degrees. The best spatial resolution (60 m/pixel) allowed to reveal a very complex topography with several features and different crater's surface densities. Spectrophotometric analysis of the data could suggest spatial variations of the albedo and spectral properties at the surface of the asteroid, at least in the northern hemisphere. Numerous sets of data have been obtained at different wavelengths from 270nm to 980nm. We will first present a color-color analysis of data in order to locate landscapes where surface variegation is present. We will also present a more accurate study of spectral properties using the shape model and different statistical methods. Possible variations of the surface spectral properties with the slope of the ground and the gravity field orientation will be discussed as well.

  10. Grain growth in Class I protostar Per-emb-50: a dust continuum analysis with NOEMA & SMA .

    NASA Astrophysics Data System (ADS)

    Agurto-Gangas, C.; Pineda, J. E.; Testi, L.; Caselli, P.; Szucs, L.; Tazzari, M.; Dunham, M.; Stephens, I. W.; Miotello, A.

    A good understanding of when dust grains grow from sub-micrometer to millimeter sizes occurs is crucial for models of planet formation. This provides the first step towards the production of pebbles and planetesimals in protoplanetary disks. Thanks to detailed studies of the spectral index in Class II disks, it is well established that Class II objects have already dust grains of millimetres sizes, however, it is not clear when in the star formation process this grain growth occurs. Here, we present interferometric data from NOEMA at 3 mm and SMA at 1.3 mm of the Class I protostar, Per-emb-50, to determine the flux density spectral index at mm-wavelengths of the unresolved disk and the surrounding envelope. We find a spectral index in the unresolved disk 30% smaller than the envelope, alpha env=2.18, comparable to values obtained toward Class 0 sources.

  11. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product

    NASA Technical Reports Server (NTRS)

    Vermote, Eric; Justice, Chris; Claverie, Martin; Franch, Belen

    2016-01-01

    The surface reflectance, i.e., satellite derived top of atmosphere (TOA) reflectance corrected for the temporally, spatially and spectrally varying scattering and absorbing effects of atmospheric gases and aerosols, is needed to monitor the land surface reliably. For this reason, the surface reflectance, and not TOA reflectance, is used to generate the greater majority of global land products, for example, from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors. Even if atmospheric effects are minimized by sensor design, atmospheric effects are still challenging to correct. In particular, the strong impact of aerosols in the visible and near infrared spectral range can be difficult to correct, because they can be highly discrete in space and time (e.g., smoke plumes) and because of the complex scattering and absorbing properties of aerosols that vary spectrally and with aerosol size, shape, chemistry and density.

  12. Rate equation modeling of the frequency noise and the intrinsic spectral linewidth in quantum cascade lasers.

    PubMed

    Wang, Xing-Guang; Grillot, Frédéric; Wang, Cheng

    2018-02-05

    This work theoretically investigates the frequency noise (FN) characteristics of quantum cascade lasers (QCLs) through a three-level rate equation model, which takes into account both the carrier noise and the spontaneous emission noise through the Langevin approach. It is found that the power spectral density of the FN exhibits a broad peak due to the carrier noise induced carrier variation in the upper laser level, which is enhanced by the stimulated emission process. The peak amplitude is strongly dependent on the gain stage number and the linewidth broadening factor. In addition, an analytical formula of the intrinsic spectral linewidth of QCLs is derived based on the FN analysis. It is demonstrated that the laser linewidth can be narrowed by reducing the gain coefficient and/or accelerating the carrier scattering rates of the upper and the lower laser levels.

  13. Magnetic field power density spectra during 'scatter-free' solar particle events

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.

    1993-01-01

    We have examined interplanetary magnetic field power spectral density during four previously identified 3He-rich flare periods when the about 1 MeV nucleon-1 particles exhibited nearly scatter-free transport from the sun to 1 AU. Since the scattering mean free path A was large, it might be expected that interplanetary turbulence was low, yet the spectral density value was low only for one of the four periods. For the other three, however, the spectral index q of the power density spectrum was near 2.0, a value at which quasi-linear theories predict an increase in the scattering mean free path. Comparing the lambda values from the energetic particles with that computed from a recent quasi-linear theory which includes helicity and the propagation direction of waves, we find lambda(QLT)/lambda(SEP) = 0.08 +/- 0.03 for the four events. Thus, the theory fits the q-dependence of lambda; however, as found for previous quasi-linear theories, the absolute value is low.

  14. Spectral Index Properties of millijansky Radio Sources in ATLAS

    NASA Astrophysics Data System (ADS)

    Randall, Kate; Hopkins, A. M.; Norris, R. P.; Zinn, P.; Middelberg, E.; Mao, M. Y.; Sharp, R. G.

    2012-01-01

    At the faintest radio flux densities (S1.4GHz < 10 milliJansky (mJy)), the spectral index properties of radio sources are not well constrained. The bright radio source population (S1.4GHz > 10 mJy) is well studied and is predominantly comprised of AGN. At fainter flux densities, particularly into the microJansky regime, star-forming galaxies begin to dominate the radio source population. Understanding these faint radio source populations is essential for understanding galaxy evolution, and the link between AGN and star formation. Conflicting results have recently arisen regarding whether there is a flattening of the average spectral index between a low radio frequency (325 or 610 MHz) and 1.4 GHz at these faint flux densities. To explore this issue, we have investigated the spectral index properties of a new catalogue of 843 MHz radio sources in the ELAIS-S1 (the European Large Area ISO Survey - South 1 Region) field. Our results support previous work showing a tendency towards flatter radio spectra at fainter flux densities. This catalogue is cross-matched to the Australia Telescope Large Area Survey (ATLAS), the widest deep radio survey to date at 1.4 GHz, with complementary 2.3 GHz, optical and infrared Spitzer Wide-area Infra-Red Extragalactic data. The variation of spectral index properties have been explored as a function of redshift, luminosity and flux density. [These new measurements have been used to identify a population of faint Compact Steep Spectrum sources, thought to be one of the earliest stages of the AGN life-cycle. Exploring this population will aid us in understanding the evolution of AGN as a whole.

  15. True resolution enhancement for optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Cooper, Justin T.; Oleske, Jeffrey B.

    2018-02-01

    Resolving spectrally adjacent peaks is important for techniques, such as tracking small shifts in Raman or fluorescence spectra, quantifying pharmaceutical polymorph ratios, or molecular orientation studies. Thus, suitable spectral resolution is a vital consideration when designing most spectroscopic systems. Most parameters that influence spectral resolution are fixed for a given system (spectrometer length, grating groove density, excitation source, CCD pixel size, etc.). Inflexible systems are non-problematic if the spectrometer is dedicated for a single purpose; however, these specifications cannot be optimized for different applications with wider range resolution requirements. Data processing techniques, including peak fitting, partial least squares, or principal component analysis, are typically used to achieve sub-optical resolution information. These techniques can be plagued by spectral artifacts introduced by post-processing as well as the subjective implementation of statistical parameters. TruRes™, from Andor Technology, uses an innovative optical means to greatly improve and expand the range of spectral resolutions accessible on a single setup. True spectral resolution enhancement of >30% is achieved without mathematical spectral alteration, dataprocessing, or spectrometer component changes. Discreet characteristic spectral lines from Laser-Induced Breakdown Spectroscopy (LIBS) and atomic calibration sources are now fully resolved from spectrally-adjacent peaks under otherwise identical configuration. TruRes™ has added advantage of increasing the spectral resolution without sacrificing bandpass. Using TruRes™ the Kymera 328i resolution can approach that of a 500 mm focal spectrometer. Furthermore, the bandpass of a 500 mm spectrograph with would be 50% narrower than the Kymera 328i with all other spectrometer components constant. However, the Kymera 328i with TruRes™ is able to preserve a 50% wider bandpass.

  16. The Seismic Tool-Kit (STK): An Open Source Software For Learning the Basis of Signal Processing and Seismology.

    NASA Astrophysics Data System (ADS)

    Reymond, D.

    2016-12-01

    We present an open source software project (GNU public license), named STK: Seismic Tool-Kit, that is dedicated mainly for learning signal processing and seismology. The STK project that started in 2007, is hosted by SourceForge.net, and count more than 20000 downloads at the date of writing.The STK project is composed of two main branches:First, a graphical interface dedicated to signal processing (in the SAC format (SAC_ASCII and SAC_BIN): where the signal can be plotted, zoomed, filtered, integrated, derivated, ... etc. (a large variety of IFR and FIR filter is proposed). The passage in the frequency domain via the Fourier transform is used to introduce the estimation of spectral density of the signal , with visualization of the Power Spectral Density (PSD) in linear or log scale, and also the evolutive time-frequency representation (or sonagram). The 3-components signals can be also processed for estimating their polarization properties, either for a given window, or either for evolutive windows along the time. This polarization analysis is useful for extracting the polarized noises, differentiating P waves, Rayleigh waves, Love waves, ... etc. Secondly, a panel of Utilities-Program are proposed for working in a terminal mode, with basic programs for computing azimuth and distance in spherical geometry, inter/auto-correlation, spectral density, time-frequency for an entire directory of signals, focal planes, and main components axis, radiation pattern of P waves, Polarization analysis of different waves (including noise), under/over-sampling the signals, cubic-spline smoothing, and linear/non linear regression analysis of data set. STK is developed in C/C++, mainly under Linux OS, and it has been also partially implemented under MS-Windows. STK has been used in some schools for viewing and plotting seismic records provided by IRIS, and it has been used as a practical support for teaching the basis of signal processing. Useful links:http://sourceforge.net/projects/seismic-toolkit/http://sourceforge.net/p/seismic-toolkit/wiki/browse_pages/

  17. Finite entanglement entropy and spectral dimension in quantum gravity

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Calcagni, Gianluca

    2017-12-01

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations.

  18. Multivariate Granger causality: an estimation framework based on factorization of the spectral density matrix

    PubMed Central

    Wen, Xiaotong; Rangarajan, Govindan; Ding, Mingzhou

    2013-01-01

    Granger causality is increasingly being applied to multi-electrode neurophysiological and functional imaging data to characterize directional interactions between neurons and brain regions. For a multivariate dataset, one might be interested in different subsets of the recorded neurons or brain regions. According to the current estimation framework, for each subset, one conducts a separate autoregressive model fitting process, introducing the potential for unwanted variability and uncertainty. In this paper, we propose a multivariate framework for estimating Granger causality. It is based on spectral density matrix factorization and offers the advantage that the estimation of such a matrix needs to be done only once for the entire multivariate dataset. For any subset of recorded data, Granger causality can be calculated through factorizing the appropriate submatrix of the overall spectral density matrix. PMID:23858479

  19. The puzzling spectrum of HD 94509. Sounding out the extremes of Be shell star spectral morphology

    NASA Astrophysics Data System (ADS)

    Cowley, C. R.; Przybilla, N.; Hubrig, S.

    2015-06-01

    Context. The spectral features of HD 94509 are highly unusual, adding an extreme to the zoo of Be and shell stars. The shell dominates the spectrum, showing lines typical for spectral types mid-A to early-F, while the presence of a late/mid B-type central star is indicated by photospheric hydrogen line wings and helium lines. Numerous metallic absorption lines have broad wings but taper to narrow cores. They cannot be fit by Voigt profiles. Aims: We describe and illustrate unusual spectral features of this star, and make rough calculations to estimate physical conditions and abundances in the shell. Furthermore, the central star is characterized. Methods: We assume mean conditions for the shell. An electron density estimate is made from the Inglis-Teller formula. Excitation temperatures and column densities for Fe i and Fe ii are derived from curves of growth. The neutral H column density is estimated from high Paschen members. The column densities are compared with calculations made with the photoionization code Cloudy. Atmospheric parameters of the central star are constrained employing non-LTE spectrum synthesis. Results: Overall chemical abundances are close to solar. Column densities of the dominant ions of several elements, as well as excitation temperatures and the mean electron density are well accounted for by a simple model. Several features, including the degree of ionization, are less well described. Conclusions: HD 94509 is a Be star with a stable shell, close to the terminal-age main sequence. The dynamical state of the shell and the unusually shaped, but symmetric line profiles, require a separate study.

  20. Granger causality revisited

    PubMed Central

    Friston, Karl J.; Bastos, André M.; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir

    2014-01-01

    This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality — providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes — as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling. PMID:25003817

  1. The 1.5 Ms Observing Campaign on IRAS 13224-3809: X-ray Spectral Analysis I.

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Parker, M. L.; Fabian, A. C.; Alston, W. N.; Buisson, D. J. K.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; Gallo, L. C.; García, J. A.; Harrison, F. A.; Lohfink, A. M.; De Marco, B.; Kara, E.; Miller, J. M.; Miniutti, G.; Pinto, C.; Walton, D. J.; Wilkins, D. R.

    2018-03-01

    We present a detailed spectral analysis of the recent 1.5 Ms XMM-Newton observing campaign on the narrow line Seyfert 1 galaxy IRAS 13224-3809, taken simultaneously with 500 ks of NuSTAR data. The X-ray lightcurve shows three flux peaks, registering at about 100 times the minimum flux seen during the campaign, and rapid variability with a time scale of kiloseconds. The spectra are well fit with a primary powerlaw continuum, two relativistic-blurred reflection components from the inner accretion disk with very high iron abundance, and a simple blackbody-shaped model for the remaining soft excess. The spectral variability is dominated by the power law continuum from a corona region within a few gravitational radii from the black hole. Additionally, blueshifted Ne X, Mg XII, Si XIV and S XVI absorption lines are identified in the stacked low-flux spectrum, confirming the presence of a highly ionized outflow with velocity up to v = 0.263 and 0.229 c. We fit the absorption features with xstar models and find a relatively constant velocity outflow through the whole observation. Finally, we replace the bbody and supersolar abundance reflection models by fitting the soft excess successfully with the extended reflection model relxillD, which allows for higher densities than the standard relxill model. This returns a disk electron density ne > 1018.7 cm-3 and lowers the iron abundance from Z_Fe=24^{+3}_{-4}Z_⊙ with ne ≡ 1015 cm-3 to Z_Fe=6.6^{+0.8}_{-2.1}Z_⊙.

  2. The 1.5 Ms observing campaign on IRAS 13224-3809 - I. X-ray spectral analysis

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Parker, M. L.; Fabian, A. C.; Alston, W. N.; Buisson, D. J. K.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; Gallo, L. C.; García, J. A.; Harrison, F. A.; Lohfink, A. M.; De Marco, B.; Kara, E.; Miller, J. M.; Miniutti, G.; Pinto, C.; Walton, D. J.; Wilkins, D. R.

    2018-07-01

    We present a detailed spectral analysis of the recent 1.5 Ms XMM-Newton observing campaign on the narrow-line Seyfert 1 galaxy IRAS 13224-3809, taken simultaneously with 500 ks of NuSTAR data. The X-ray light curve shows three flux peaks, registering at about 100 times the minimum flux seen during the campaign, and rapid variability with a time-scale of kiloseconds. The spectra are well fit with a primary power-law continuum, two relativistic-blurred reflection components from the inner accretion disc with very high iron abundance, and a simple blackbody-shaped model for the remaining soft excess. The spectral variability is dominated by the power-law continuum from a corona region within a few gravitational radii from the black hole. Additionally, blueshifted Ne X, Mg XII, Si XIV, and S XVI absorption lines are identified in the stacked low-flux spectrum, confirming the presence of a highly ionized outflow with velocity up to v = 0.267 and 0.225 c. We fit the absorption features with xstar models and find a relatively constant velocity outflow through the whole observation. Finally, we replace the bbody and supersolar abundance reflection models by fitting the soft excess successfully with the extended reflection model relxillD, which allows for higher densities than the standard relxill model. This returns a disc electron density ne > 1018.7 cm-3 and lowers the iron abundance from Z_Fe = 24^{+3}_{-4} Z_{⊙} with ne ≡ 1015 cm-3 to Z_Fe = 6.6^{+0.8}_{-2.1} Z_{⊙}.

  3. A method for the estimation of the significance of cross-correlations in unevenly sampled red-noise time series

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, W.; Richards, J. L.; Hovatta, T.; Pavlidou, V.; Pearson, T. J.; Readhead, A. C. S.

    2014-11-01

    We present a practical implementation of a Monte Carlo method to estimate the significance of cross-correlations in unevenly sampled time series of data, whose statistical properties are modelled with a simple power-law power spectral density. This implementation builds on published methods; we introduce a number of improvements in the normalization of the cross-correlation function estimate and a bootstrap method for estimating the significance of the cross-correlations. A closely related matter is the estimation of a model for the light curves, which is critical for the significance estimates. We present a graphical and quantitative demonstration that uses simulations to show how common it is to get high cross-correlations for unrelated light curves with steep power spectral densities. This demonstration highlights the dangers of interpreting them as signs of a physical connection. We show that by using interpolation and the Hanning sampling window function we are able to reduce the effects of red-noise leakage and to recover steep simple power-law power spectral densities. We also introduce the use of a Neyman construction for the estimation of the errors in the power-law index of the power spectral density. This method provides a consistent way to estimate the significance of cross-correlations in unevenly sampled time series of data.

  4. Conventional and power spectrum analysis of the effects of zolpidem on sleep EEG in patients with chronic primary insomnia.

    PubMed

    Monti, J M; Alvariño, F; Monti, D

    2000-12-15

    The purpose of this study was 1) to assess the effect of zolpidem or a placebo on sleep in two groups of insomniac patients with a diagnosis of moderate-to-severe chronic primary insomnia and 2) to determine the effect of zolpidem on sleep structure using spectral analysis. A randomized, double-blind, placebo-controlled trial. Sleep laboratory of the Department of Pharmacology and Therapeutics at the Clinics Hospital. 12 female outpatients with chronic primary insomnia. Zolpidem was given at a daily dose of 10 mg for 15 nights. The hypnotic drug reduced sleep latency and waking time after sleep onset, and increased total sleep time and sleep efficiency. Values corresponding to visually scored slow wave sleep (stage 3 and 4) showed no significant changes. All-night spectral analysis of the EEG revealed that power density in NREM sleep was significantly increased in the low frequency band (0.25-1.0 Hz) in the zolpidem group during the first 2-h interval. In agreement with previous findings obtained in patients with chronic primary insomnia, zolpidem significantly improved sleep induction and maintenance. Moreover, zolpidem increased power density in the 0.25-1.0 Hz band during short-term and intermediate-term treatment. Nevertheless, other frequency bands in the delta range showed a relative decrease which was not statistically significant.

  5. Clinical evaluation of melanomas and common nevi by spectral imaging

    PubMed Central

    Diebele, Ilze; Kuzmina, Ilona; Lihachev, Alexey; Kapostinsh, Janis; Derjabo, Alexander; Valeine, Lauma; Spigulis, Janis

    2012-01-01

    A clinical trial on multi-spectral imaging of malignant and non-malignant skin pathologies comprising 17 melanomas and 65 pigmented common nevi was performed. Optical density data of skin pathologies were obtained in the spectral range 450–950 nm using the multispectral camera Nuance EX. An image parameter and maps capable of distinguishing melanoma from pigmented nevi were proposed. The diagnostic criterion is based on skin optical density differences at three fixed wavelengths: 540nm, 650nm and 950nm. The sensitivity and specificity of this method were estimated to be 94% and 89%, respectively. The proposed methodology and potential clinical applications are discussed. PMID:22435095

  6. Distributions and motions of nearby stars defined by objective prism surveys and Hipparcos data

    NASA Technical Reports Server (NTRS)

    Hemenway, P. D.; Lee, J. T.; Upgren, A. R.

    1997-01-01

    Material and objective prism spectral classification work is used to determine the space density distribution of nearby common stars to the limits of objective prism spectral surveys. The aim is to extend the knowledge of the local densities of specific spectral types from a radius of 25 pc from the sun, as limited in the Gliese catalog of nearby stars, to 50 pc or more. Future plans for the application of these results to studies of the kinematic and dynamical properties of stars in the solar neighborhood as a function of their physical properties and ages are described.

  7. Combined process automation for large-scale EEG analysis.

    PubMed

    Sfondouris, John L; Quebedeaux, Tabitha M; Holdgraf, Chris; Musto, Alberto E

    2012-01-01

    Epileptogenesis is a dynamic process producing increased seizure susceptibility. Electroencephalography (EEG) data provides information critical in understanding the evolution of epileptiform changes throughout epileptic foci. We designed an algorithm to facilitate efficient large-scale EEG analysis via linked automation of multiple data processing steps. Using EEG recordings obtained from electrical stimulation studies, the following steps of EEG analysis were automated: (1) alignment and isolation of pre- and post-stimulation intervals, (2) generation of user-defined band frequency waveforms, (3) spike-sorting, (4) quantification of spike and burst data and (5) power spectral density analysis. This algorithm allows for quicker, more efficient EEG analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  9. Gas temperature and density measurements based on spectrally resolved Rayleigh-Brillouin scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Lock, James A.

    1992-01-01

    The use of molecular Rayleigh scattering for measurements of gas density and temperature is evaluated. The technique used is based on the measurement of the spectrum of the scattered light, where both temperature and density are determined from the spectral shape. Planar imaging of Rayleigh scattering from air using a laser light sheet is evaluated for ambient conditions. The Cramer-Rao lower bounds for the shot-noise limited density and temperature measurement uncertainties are calculated for an ideal optical spectrum analyzer and for a planar mirror Fabry-Perot interferometer used in a static, imaging mode. With this technique, a single image of the Rayleigh scattered light can be analyzed to obtain density (or pressure) and temperature. Experimental results are presented for planar measurements taken in a heated air stream.

  10. Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal

    NASA Astrophysics Data System (ADS)

    Polak, Mark L.; Hall, Jeffrey L.; Herr, Kenneth C.

    1995-08-01

    We present a ratioing algorithm for quantitative analysis of the passive Fourier-transform infrared spectrum of a chemical plume. We show that the transmission of a near-field plume is given by tau plume = (Lobsd - Lbb-plume)/(Lbkgd - Lbb-plume), where tau plume is the frequency-dependent transmission of the plume, L obsd is the spectral radiance of the scene that contains the plume, Lbkgd is the spectral radiance of the same scene without the plume, and Lbb-plume is the spectral radiance of a blackbody at the plume temperature. The algorithm simultaneously achieves background removal, elimination of the spectrometer internal signature, and quantification of the plume spectral transmission. It has applications to both real-time processing for plume visualization and quantitative measurements of plume column densities. The plume temperature (Lbb-plume ), which is not always precisely known, can have a profound effect on the quantitative interpretation of the algorithm and is discussed in detail. Finally, we provide an illustrative example of the use of the algorithm on a trichloroethylene and acetone plume.

  11. Spectral weight of excitations in Bose Hubbard model

    NASA Astrophysics Data System (ADS)

    Alavani, Bhargav K.; Pai, Ramesh V.

    2017-05-01

    We obtain excitation spectra in the superfluid and the Mott Insulator phases of Bose Hubbard model near unit filling within Random Phase Approximation (RPA) and calculate its spectral weight. This gives a transparent description of contribution of each excitation towards the total Density of States (DOS) which we calculate from these spectral weights.

  12. Fluorescent Fe K Emission from High Density Accretion Disks

    NASA Astrophysics Data System (ADS)

    Bautista, Manuel; Mendoza, Claudio; Garcia, Javier; Kallman, Timothy R.; Palmeri, Patrick; Deprince, Jerome; Quinet, Pascal

    2018-06-01

    Iron K-shell lines emitted by gas closely orbiting black holes are observed to be grossly broadened and skewed by Doppler effects and gravitational redshift. Accordingly, models for line profiles are widely used to measure the spin (i.e., the angular momentum) of astrophysical black holes. The accuracy of these spin estimates is called into question because fitting the data requires very high iron abundances, several times the solar value. Meanwhile, no plausible physical explanation has been proffered for why these black hole systems should be so iron rich. The most likely explanation for the super-solar iron abundances is a deficiency in the models, and the leading candidate cause is that current models are inapplicable at densities above 1018 cm-3. We study the effects of high densities on the atomic parameters and on the spectral models for iron ions. At high densities, Debye plasma can affect the effective atomic potential of the ions, leading to observable changes in energy levels and atomic rates with respect to the low density case. High densities also have the effec of lowering energy the atomic continuum and reducing the recombination rate coefficients. On the spectral modeling side, high densities drive level populations toward a Boltzman distribution and very large numbers of excited atomic levels, typically accounted for in theoretical spectral models, may contribute to the K-shell spectrum.

  13. Revealing the ultrafast outflow in IRAS 13224-3809 through spectral variability

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Alston, W. N.; Buisson, D. J. K.; Fabian, A. C.; Jiang, J.; Kara, E.; Lohfink, A.; Pinto, C.; Reynolds, C. S.

    2017-08-01

    We present an analysis of the long-term X-ray variability of the extreme narrow-line Seyfert 1 galaxy IRAS 13224-3809 using principal component analysis (PCA) and fractional excess variability (Fvar) spectra to identify model-independent spectral components. We identify a series of variability peaks in both the first PCA component and Fvar spectrum which correspond to the strongest predicted absorption lines from the ultrafast outflow (UFO) discovered by Parker et al. (2017). We also find higher order PCA components, which correspond to variability of the soft excess and reflection features. The subtle differences between RMS and PCA results argue that the observed flux-dependence of the absorption is due to increased ionization of the gas, rather than changes in column density or covering fraction. This result demonstrates that we can detect outflows from variability alone and that variability studies of UFOs are an extremely promising avenue for future research.

  14. N-propyl nitrate vibrational spectrum analysis using DFT B3LYP quantum-chemical method

    NASA Astrophysics Data System (ADS)

    Shaikhullina, R. M.; Hrapkovsky, G. M.; Shaikhullina, M. M.

    2018-05-01

    Calculation of a molecular structure, conformation and related vibrational spectra of the n- propyl nitrate C3H7NO3 was carried out by means of density functional theory (DFT) by employing the Gaussian 03 package. The molecular geometries were fully optimized by using the Becker's three-parameter hybrid exchange functional combined with the Lee–Yang–Parr correlation functional (B3LYP) and using the 6-31G(d) basis set. By scanning the dihedral angles around C-O and C-C bonds, five energetically most favorable conformers of n-propyl nitrate - TG, TT, GT, GG and G´G forms were found. Vibrational spectra of the most energetically favorable conformers were calculated. The comparative analysis of calculated and experimental spectra is carried out, the spectral features of the conformational state of n-propyl nitrate and the spectral effects of formation of intramolecular hydrogen bonds are established.

  15. Calculation of Thomson scattering spectral fits for interpenetrating flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F., E-mail: george.swadling@imperial.ac.uk; Lebedev, S. V., E-mail: george.swadling@imperial.ac.uk; Burdiak, G. C.

    2014-12-15

    Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accruedmore » around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.« less

  16. Image enhancement by spectral-error correction for dual-energy computed tomography.

    PubMed

    Park, Kyung-Kook; Oh, Chang-Hyun; Akay, Metin

    2011-01-01

    Dual-energy CT (DECT) was reintroduced recently to use the additional spectral information of X-ray attenuation and aims for accurate density measurement and material differentiation. However, the spectral information lies in the difference between low and high energy images or measurements, so that it is difficult to acquire accurate spectral information due to amplification of high pixel noise in the resulting difference image. In this work, an image enhancement technique for DECT is proposed, based on the fact that the attenuation of a higher density material decreases more rapidly as X-ray energy increases. We define as spectral error the case when a pixel pair of low and high energy images deviates far from the expected attenuation trend. After analyzing the spectral-error sources of DECT images, we propose a DECT image enhancement method, which consists of three steps: water-reference offset correction, spectral-error correction, and anti-correlated noise reduction. It is the main idea of this work that makes spectral errors distributed like random noise over the true attenuation and suppressed by the well-known anti-correlated noise reduction. The proposed method suppressed noise of liver lesions and improved contrast between liver lesions and liver parenchyma in DECT contrast-enhanced abdominal images and their two-material decomposition.

  17. Optimal methodologies for terahertz time-domain spectroscopic analysis of traditional pigments in powder form

    NASA Astrophysics Data System (ADS)

    Ha, Taewoo; Lee, Howon; Sim, Kyung Ik; Kim, Jonghyeon; Jo, Young Chan; Kim, Jae Hoon; Baek, Na Yeon; Kang, Dai-ill; Lee, Han Hyoung

    2017-05-01

    We have established optimal methods for terahertz time-domain spectroscopic analysis of highly absorbing pigments in powder form based on our investigation of representative traditional Chinese pigments, such as azurite [blue-based color pigment], Chinese vermilion [red-based color pigment], and arsenic yellow [yellow-based color pigment]. To accurately extract the optical constants in the terahertz region of 0.1 - 3 THz, we carried out transmission measurements in such a way that intense absorption peaks did not completely suppress the transmission level. This required preparation of pellet samples with optimized thicknesses and material densities. In some cases, mixing the pigments with polyethylene powder was required to minimize absorption due to certain peak features. The resulting distortion-free terahertz spectra of the investigated set of pigment species exhibited well-defined unique spectral fingerprints. Our study will be useful to future efforts to establish non-destructive analysis methods of traditional pigments, to construct their spectral databases, and to apply these tools to restoration of cultural heritage materials.

  18. Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite

    NASA Technical Reports Server (NTRS)

    Gullahorn, G. E.

    1984-01-01

    The effects of a tethered satellite system's internal dynamics on the subsatellite were calculated including both overall motions (libration and attitude oscillations) and internal tether oscillations. The SKYHOOK tether simulation program was modified to operate with atmospheric density variations and to output quantities of interest. Techniques and software for analyzing the results were developed including noise spectral analysis. A program was begun for computing a stable configuration of a tether system subject to air drag. These configurations will be of use as initial conditions for SKYHOOK and, through linearized analysis, directly for stability and dynamical studies. A case study in which the subsatellite traverses an atmospheric density enhancement confirmed some theoretical calculations, and pointed out some aspects of the interaction with the tether system dynamics.

  19. A high-order 3-D spectral-element method for the forward modelling and inversion of gravimetric data—Application to the western Pyrenees

    NASA Astrophysics Data System (ADS)

    Martin, Roland; Chevrot, Sébastien; Komatitsch, Dimitri; Seoane, Lucia; Spangenberg, Hannah; Wang, Yi; Dufréchou, Grégory; Bonvalot, Sylvain; Bruinsma, Sean

    2017-04-01

    We image the internal density structure of the Pyrenees by inverting gravity data using an a priori density model derived by scaling a Vp model obtained by full waveform inversion of teleseismic P-waves. Gravity anomalies are computed via a 3-D high-order finite-element integration in the same high-order spectral-element grid as the one used to solve the wave equation and thus to obtain the velocity model. The curvature of the Earth and surface topography are taken into account in order to obtain a density model as accurate as possible. The method is validated through comparisons with exact semi-analytical solutions. We show that the spectral-element method drastically accelerates the computations when compared to other more classical methods. Different scaling relations between compressional velocity and density are tested, and the Nafe-Drake relation is the one that leads to the best agreement between computed and observed gravity anomalies. Gravity data inversion is then performed and the results allow us to put more constraints on the density structure of the shallow crust and on the deep architecture of the mountain range.

  20. Diffusion spectral imaging modules correlate with EEG LORETA neuroimaging modules.

    PubMed

    Thatcher, Robert W; North, Duane M; Biver, Carl J

    2012-05-01

    The purpose of this study was to test the hypothesis that the highest temporal correlations between 3-dimensional EEG current source density corresponds to anatomical Modules of high synaptic connectivity. Eyes closed and eyes open EEG was recorded from 19 scalp locations with a linked ears reference from 71 subjects age 13-42 years. LORETA was computed from 1 to 30 Hz in 2,394 cortical gray matter voxels that were grouped into six anatomical Modules corresponding to the ROIs in the Hagmann et al.'s [2008] diffusion spectral imaging (DSI) study. All possible cross-correlations between voxels within a DSI Module were compared with the correlations between Modules. The Hagmann et al. [ 2008] Module correlation structure was replicated in the correlation structure of EEG three-dimensional current source density. EEG Temporal correlation between brain regions is related to synaptic density as measured by diffusion spectral imaging. Copyright © 2011 Wiley-Liss, Inc.

  1. High-Energy Density science at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.

    2016-03-01

    The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. In recent experiments we have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on a scattering length comparable to the screening length. This technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.

  2. Low frequency noise in p-InAsSbP/n-InAs infrared photodiodes

    NASA Astrophysics Data System (ADS)

    Dyakonova, N.; Karandashev, S. A.; Levinshtein, M. E.; Matveev, B. A.; Remennyi, M. A.

    2018-06-01

    We report the first experimental study of low-frequency noise in p-InAsSbP/n-InAs infrared photodiodes. For forward bias, experiments have been carried out at 300 and 77 K, in the photovoltaic regime the measurements have been done at 300 K. At room temperature the current noise spectral density, SI , exhibits the ∼1/f frequency dependence. For low currents, I ≤ I 0 ∼ 4 × 10‑5 A, S I is proportional to I 2, at higher currents this dependence changes to S I ∼ I. At 77 K the noise spectral density is significantly higher than at 300 K, and Lorentzian contributions to noise are observed. The current dependences of spectral noise density can be approximately described as S I ∼ I 1.5 and show particularities suggesting the contribution of defects.

  3. Analytical minimization of synchronicity errors in stochastic identification

    NASA Astrophysics Data System (ADS)

    Bernal, D.

    2018-01-01

    An approach to minimize error due to synchronicity faults in stochastic system identification is presented. The scheme is based on shifting the time domain signals so the phases of the fundamental eigenvector estimated from the spectral density are zero. A threshold on the mean of the amplitude-weighted absolute value of these phases, above which signal shifting is deemed justified, is derived and found to be proportional to the first mode damping ratio. It is shown that synchronicity faults do not map precisely to phasor multiplications in subspace identification and that the accuracy of spectral density estimated eigenvectors, for inputs with arbitrary spectral density, decrease with increasing mode number. Selection of a corrective strategy based on signal alignment, instead of eigenvector adjustment using phasors, is shown to be the product of the foregoing observations. Simulations that include noise and non-classical damping suggest that the scheme can provide sufficient accuracy to be of practical value.

  4. High-Energy Density science at the Linac Coherent Light Source

    DOE PAGES

    Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.

    2016-04-01

    The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. Recently, our experiments have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on amore » scattering length comparable to the screening length. Moreover, this technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.« less

  5. Scaling within the spectral function approach

    NASA Astrophysics Data System (ADS)

    Sobczyk, J. E.; Rocco, N.; Lovato, A.; Nieves, J.

    2018-03-01

    Scaling features of the nuclear electromagnetic response functions unveil aspects of nuclear dynamics that are crucial for interpreting neutrino- and electron-scattering data. In the large momentum-transfer regime, the nucleon-density response function defines a universal scaling function, which is independent of the nature of the probe. In this work, we analyze the nucleon-density response function of 12C, neglecting collective excitations. We employ particle and hole spectral functions obtained within two distinct many-body methods, both widely used to describe electroweak reactions in nuclei. We show that the two approaches provide compatible nucleon-density scaling functions that for large momentum transfers satisfy first-kind scaling. Both methods yield scaling functions characterized by an asymmetric shape, although less pronounced than that of experimental scaling functions. This asymmetry, only mildly affected by final state interactions, is mostly due to nucleon-nucleon correlations, encoded in the continuum component of the hole spectral function.

  6. Three-dimensional dominant frequency mapping using autoregressive spectral analysis of atrial electrograms of patients in persistent atrial fibrillation.

    PubMed

    Salinet, João L; Masca, Nicholas; Stafford, Peter J; Ng, G André; Schlindwein, Fernando S

    2016-03-08

    Areas with high frequency activity within the atrium are thought to be 'drivers' of the rhythm in patients with atrial fibrillation (AF) and ablation of these areas seems to be an effective therapy in eliminating DF gradient and restoring sinus rhythm. Clinical groups have applied the traditional FFT-based approach to generate the three-dimensional dominant frequency (3D DF) maps during electrophysiology (EP) procedures but literature is restricted on using alternative spectral estimation techniques that can have a better frequency resolution that FFT-based spectral estimation. Autoregressive (AR) model-based spectral estimation techniques, with emphasis on selection of appropriate sampling rate and AR model order, were implemented to generate high-density 3D DF maps of atrial electrograms (AEGs) in persistent atrial fibrillation (persAF). For each patient, 2048 simultaneous AEGs were recorded for 20.478 s-long segments in the left atrium (LA) and exported for analysis, together with their anatomical locations. After the DFs were identified using AR-based spectral estimation, they were colour coded to produce sequential 3D DF maps. These maps were systematically compared with maps found using the Fourier-based approach. 3D DF maps can be obtained using AR-based spectral estimation after AEGs downsampling (DS) and the resulting maps are very similar to those obtained using FFT-based spectral estimation (mean 90.23 %). There were no significant differences between AR techniques (p = 0.62). The processing time for AR-based approach was considerably shorter (from 5.44 to 5.05 s) when lower sampling frequencies and model order values were used. Higher levels of DS presented higher rates of DF agreement (sampling frequency of 37.5 Hz). We have demonstrated the feasibility of using AR spectral estimation methods for producing 3D DF maps and characterised their differences to the maps produced using the FFT technique, offering an alternative approach for 3D DF computation in human persAF studies.

  7. Demonstration of imaging X-ray Thomson scattering on OMEGA EP.

    PubMed

    Belancourt, Patrick X; Theobald, Wolfgang; Keiter, Paul A; Collins, Tim J B; Bonino, Mark J; Kozlowski, Pawel M; Regan, Sean P; Drake, R Paul

    2016-11-01

    Foams are a common material for high-energy-density physics experiments because of low, tunable densities, and being machinable. Simulating these experiments can be difficult because the equation of state is largely unknown for shocked foams. The focus of this experiment was to develop an x-ray scattering platform for measuring the equation of state of shocked foams on OMEGA EP. The foam used in this experiment is resorcinol formaldehyde with an initial density of 0.34 g/cm 3 . One long-pulse (10 ns) beam drives a shock into the foam, while the remaining three UV beams with a 2 ns square pulse irradiate a nickel foil to create the x-ray backlighter. The primary diagnostic for this platform, the imaging x-ray Thomson spectrometer, spectrally resolves the scattered x-ray beam while imaging in one spatial dimension. Ray tracing analysis of the density profile gives a compression of 3 ± 1 with a shock speed of 39 ± 6 km/s. Analysis of the scattered x-ray spectra gives an upper bound temperature of 20 eV.

  8. Irreducible Green's functions method for a quantum dot coupled to metallic and superconducting leads

    NASA Astrophysics Data System (ADS)

    Górski, Grzegorz; Kucab, Krzysztof

    2017-05-01

    Using irreducible Green's functions (IGF) method we analyse the Coulomb interaction dependence of the spectral functions and the transport properties of a quantum dot coupled to isotropic superconductor and metallic leads (SC-QD-N). The irreducible Green's functions method is the modification of classical equation of motion technique. The IGF scheme is based on differentiation of double-time Green's functions, both over the primary and secondary times. The IGF method allows to obtain the spectral functions for equilibrium and non-equilibrium impurity Anderson model used for SC-QD-N system. By the numerical computations, we show the change of spectral and the anomalous densities under the influence of the Coulomb interactions. The observed sign change of the anomalous spectral density can be used as the criterion of the SC singlet-Kondo singlet transition.

  9. Spectrotemporal modulation sensitivity for hearing-impaired listeners: dependence on carrier center frequency and the relationship to speech intelligibility.

    PubMed

    Mehraei, Golbarg; Gallun, Frederick J; Leek, Marjorie R; Bernstein, Joshua G W

    2014-07-01

    Poor speech understanding in noise by hearing-impaired (HI) listeners is only partly explained by elevated audiometric thresholds. Suprathreshold-processing impairments such as reduced temporal or spectral resolution or temporal fine-structure (TFS) processing ability might also contribute. Although speech contains dynamic combinations of temporal and spectral modulation and TFS content, these capabilities are often treated separately. Modulation-depth detection thresholds for spectrotemporal modulation (STM) applied to octave-band noise were measured for normal-hearing and HI listeners as a function of temporal modulation rate (4-32 Hz), spectral ripple density [0.5-4 cycles/octave (c/o)] and carrier center frequency (500-4000 Hz). STM sensitivity was worse than normal for HI listeners only for a low-frequency carrier (1000 Hz) at low temporal modulation rates (4-12 Hz) and a spectral ripple density of 2 c/o, and for a high-frequency carrier (4000 Hz) at a high spectral ripple density (4 c/o). STM sensitivity for the 4-Hz, 4-c/o condition for a 4000-Hz carrier and for the 4-Hz, 2-c/o condition for a 1000-Hz carrier were correlated with speech-recognition performance in noise after partialling out the audiogram-based speech-intelligibility index. Poor speech-reception and STM-detection performance for HI listeners may be related to a combination of reduced frequency selectivity and a TFS-processing deficit limiting the ability to track spectral-peak movements.

  10. Analysis of radiometric signal in sedimentating suspension flow in open channel

    NASA Astrophysics Data System (ADS)

    Zych, Marcin; Hanus, Robert; Petryka, Leszek; Świsulski, Dariusz; Doktor, Marek; Mastej, Wojciech

    2015-05-01

    The article discusses issues related to the estimation of the sedimentating solid particles average flow velocity in an open channel using radiometric methods. Due to the composition of the compound, which formed water and diatomite, received data have a very weak signal to noise ratio. In the process analysis the known determining of the solid phase transportation time delay the classical cross-correlation function is the most reliable method. The use of advanced frequency analysis based on mutual spectral density function and wavelet transform of recorded signals allows a reduction of the noise contribution.

  11. EEG sleep activities react topographically different to GABAergic sleep modulation by flunitrazepam: relationship to regional distribution of benzodiazepine receptor subtypes?

    PubMed

    Scheuler, W

    Spectral analysis was performed to study the response of various EEG sleep activities to a modification of GABAergic sleep regulation by flunitrazepam. We observed sleep stage- and sleep cycle-dependent differences in the topographic distribution of the reactions. An increase in power density was found in the frontal regions for the alpha 2 and sigma 1 frequency band whereas a decrease in power density was emphasized in the posterior regions for the delta and alpha 1 frequency band. These topographic differences might be related to the regional distribution of benzodiazepine receptor subtypes.

  12. The role of fluctuation-induced transport in a toroidal plasma with strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J. Y.; Kim, Y. C.

    1981-01-01

    Previous work employing digitally implemented spectral analysis techniques is extended to demonstrate that radial fluctuation-induced transport is the dominant ion transport mechanism in an electric field dominated toroidal plasma. Such transport can be made to occur against a density gradient, and hence may have a very beneficial effect on confinement in toroidal plasmas of fusion interest. It is shown that Bohm or classical diffusion down a density gradient, the collisional Pedersen-current mechanism, and the collisionless electric field gradient mechanism described by Cole (1976) all played a minor role, if any, in the radial transport of this plasma.

  13. Electron-density-sensitive Line Ratios of Fe XIII– XVI from Laboratory Sources Compared to CHIANTI

    NASA Astrophysics Data System (ADS)

    Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.; Scotti, F.; LeBlanc, B. P.

    2018-02-01

    We present electron-density-sensitive line ratios for Fe XIII– XVI measured in the spectral wavelength range of 200–440 Å and an electron density range of (1–4) × 1013 cm‑3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrument was relatively calibrated using spectroscopic techniques in order to improve accuracy. The line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.

  14. Uncertainties in Forecasting Streamflow using Entropy Theory

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.

    2017-12-01

    Streamflow forecasting is essential in river restoration, reservoir operation, power generation, irrigation, navigation, and water management. However, there is always uncertainties accompanied in forecast, which may affect the forecasting results and lead to large variations. Therefore, uncertainties must be considered and be assessed properly when forecasting streamflow for water management. The aim of our work is to quantify the uncertainties involved in forecasting streamflow and provide reliable streamflow forecast. Despite that streamflow time series are stochastic, they exhibit seasonal and periodic patterns. Therefore, streamflow forecasting entails modeling seasonality, periodicity, and its correlation structure, and assessing uncertainties. This study applies entropy theory to forecast streamflow and measure uncertainties during the forecasting process. To apply entropy theory for streamflow forecasting, spectral analysis is combined to time series analysis, as spectral analysis can be employed to characterize patterns of streamflow variation and identify the periodicity of streamflow. That is, it permits to extract significant information for understanding the streamflow process and prediction thereof. Application of entropy theory for streamflow forecasting involves determination of spectral density, determination of parameters, and extension of autocorrelation function. The uncertainties brought by precipitation input, forecasting model and forecasted results are measured separately using entropy. With information theory, how these uncertainties transported and aggregated during these processes will be described.

  15. Many-Body Spectral Functions from Steady State Density Functional Theory.

    PubMed

    Jacob, David; Kurth, Stefan

    2018-03-14

    We propose a scheme to extract the many-body spectral function of an interacting many-electron system from an equilibrium density functional theory (DFT) calculation. To this end we devise an ideal scanning tunneling microscope (STM) setup and employ the recently proposed steady-state DFT formalism (i-DFT) which allows one to calculate the steady current through a nanoscopic region coupled to two biased electrodes. In our setup, one of the electrodes serves as a probe ("STM tip"), which is weakly coupled to the system we want to measure. In the ideal STM limit of vanishing coupling to the tip, the system is restored to quasi-equilibrium and the normalized differential conductance yields the exact equilibrium many-body spectral function. Calculating this quantity from i-DFT, we derive an exact relation expressing the interacting spectral function in terms of the Kohn-Sham one. As illustrative examples, we apply our scheme to calculate the spectral functions of two nontrivial model systems, namely the single Anderson impurity model and the Constant Interaction Model.

  16. Natural bond orbital analysis, electronic structure, non-linear properties and vibrational spectral analysis of L-histidinium bromide monohydrate: a density functional theory.

    PubMed

    Sajan, D; Joseph, Lynnette; Vijayan, N; Karabacak, M

    2011-10-15

    The spectroscopic properties of the crystallized nonlinear optical molecule L-histidinium bromide monohydrate (abbreviated as L-HBr-mh) have been recorded and analyzed by FT-IR, FT-Raman and UV techniques. The equilibrium geometry, vibrational wavenumbers and the first order hyperpolarizability of the crystal were calculated with the help of density functional theory computations. The optimized geometric bond lengths and bond angles obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The natural bond orbital (NBO) analysis confirms the occurrence of strong intra and intermolecular N-H⋯O hydrogen bonding. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Rapid quantitation of atorvastatin in process pharmaceutical powder sample using Raman spectroscopy and evaluation of parameters related to accuracy of analysis.

    PubMed

    Lim, Young-Il; Han, Janghee; Woo, Young-Ah; Kim, Jaejin; Kang, Myung Joo

    2018-07-05

    The purpose of this study was to determine the atorvastatin (ATV) content in process pharmaceutical powder sample using Raman spectroscopy. To establish the analysis method, the influence of the type of Raman measurements (back-scattering or transmission mode), preparation of calibration sample (simple admixing or granulation), sample pre-treatment (pelletization), and spectral pretreatment on the Raman spectra was investigated. The characteristic peak of the active compound was more distinctively detected in transmission Raman mode with a laser spot size of 4mm than in the back-scattering method. Preparation of calibration samples by wet granulation, identical to the actual manufacturing process, provided unchanged spectral patterns for the in process sample, with no changes and/or shifts in the spectrum. Pelletization before Raman analysis remarkably improved spectral reproducibility by decreasing the difference in density between the samples. Probabilistic quotient normalization led to accurate and consistent quantification of the ATV content in the calibration samples (standard error of cross validation: 1.21%). Moreover, the drug content in the granules obtained from five commercial batches were reliably quantified, with no statistical difference (p=0.09) with that obtained by HPLC assay. From these findings, we suggest that transmission Raman analysis may be a fast and non-invasive method for the quantification of ATV in actual manufacturing processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Rapid quantitation of atorvastatin in process pharmaceutical powder sample using Raman spectroscopy and evaluation of parameters related to accuracy of analysis

    NASA Astrophysics Data System (ADS)

    Lim, Young-Il; Han, Janghee; Woo, Young-Ah; Kim, Jaejin; Kang, Myung Joo

    2018-07-01

    The purpose of this study was to determine the atorvastatin (ATV) content in process pharmaceutical powder sample using Raman spectroscopy. To establish the analysis method, the influence of the type of Raman measurements (back-scattering or transmission mode), preparation of calibration sample (simple admixing or granulation), sample pre-treatment (pelletization), and spectral pretreatment on the Raman spectra was investigated. The characteristic peak of the active compound was more distinctively detected in transmission Raman mode with a laser spot size of 4 mm than in the back-scattering method. Preparation of calibration samples by wet granulation, identical to the actual manufacturing process, provided unchanged spectral patterns for the in process sample, with no changes and/or shifts in the spectrum. Pelletization before Raman analysis remarkably improved spectral reproducibility by decreasing the difference in density between the samples. Probabilistic quotient normalization led to accurate and consistent quantification of the ATV content in the calibration samples (standard error of cross validation: 1.21%). Moreover, the drug content in the granules obtained from five commercial batches were reliably quantified, with no statistical difference (p = 0.09) with that obtained by HPLC assay. From these findings, we suggest that transmission Raman analysis may be a fast and non-invasive method for the quantification of ATV in actual manufacturing processes.

  19. Spectral Entropy Can Predict Changes of Working Memory Performance Reduced by Short-Time Training in the Delayed-Match-to-Sample Task

    PubMed Central

    Tian, Yin; Zhang, Huiling; Xu, Wei; Zhang, Haiyong; Yang, Li; Zheng, Shuxing; Shi, Yupan

    2017-01-01

    Spectral entropy, which was generated by applying the Shannon entropy concept to the power distribution of the Fourier-transformed electroencephalograph (EEG), was utilized to measure the uniformity of power spectral density underlying EEG when subjects performed the working memory tasks twice, i.e., before and after training. According to Signed Residual Time (SRT) scores based on response speed and accuracy trade-off, 20 subjects were divided into two groups, namely high-performance and low-performance groups, to undertake working memory (WM) tasks. We found that spectral entropy derived from the retention period of WM on channel FC4 exhibited a high correlation with SRT scores. To this end, spectral entropy was used in support vector machine classifier with linear kernel to differentiate these two groups. Receiver operating characteristics analysis and leave-one out cross-validation (LOOCV) demonstrated that the averaged classification accuracy (CA) was 90.0 and 92.5% for intra-session and inter-session, respectively, indicating that spectral entropy could be used to distinguish these two different WM performance groups successfully. Furthermore, the support vector regression prediction model with radial basis function kernel and the root-mean-square error of prediction revealed that spectral entropy could be utilized to predict SRT scores on individual WM performance. After testing the changes in SRT scores and spectral entropy for each subject by short-time training, we found that 16 in 20 subjects’ SRT scores were clearly promoted after training and 15 in 20 subjects’ SRT scores showed consistent changes with spectral entropy before and after training. The findings revealed that spectral entropy could be a promising indicator to predict individual’s WM changes by training and further provide a novel application about WM for brain–computer interfaces. PMID:28912701

  20. Effect of electron-phonon coupling on energy and density of states renormalizations of dynamically screened graphene

    NASA Astrophysics Data System (ADS)

    Leblanc, J. P. F.; Carbotte, J. P.; Nicol, E. J.

    2012-02-01

    Motivated by recent tunneling and angle-resolved photoemission (ARPES) work [1,2], we explore the combined effect of electron-electron and electron-phonon couplings on the renormalized energy dispersion, the spectral function, and the density of states of doped graphene. We find that the plasmarons seen in ARPES are also observable in the density of states and appear as structures with quadratic dependence on energy about the minima. Further, we illustrate how knowledge of the slopes of both the density of states and the renormalized dispersion near the Fermi level can allow for the separation of momentum and frequency dependent renormalizations to the Fermi velocity. This analysis should allow for the isolation of the renormalization due to the electron-phonon interaction from that of the electron-electron interaction. [4pt] [1] Brar et al. Phys. Rev. Lett. 104, 036805 (2010) [2] Bostwick et al. Science 328, p.999 (2010)

  1. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  2. The stationary non-equilibrium plasma of cosmic-ray electrons and positrons

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2016-06-01

    The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.

  3. X-ray imaging spectroscopic diagnostics on Nike

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.; Ralchenko, Yu.

    2017-10-01

    Electron temperature and density diagnostics of the laser plasma produced within the focal spot of the NRL's Nike laser are being explored with the help of X-ray imaging spectroscopy. Spectra of He-like and H-like ions were taken by Nike focusing spectrometers in a range of lower (1.8 kev, Si XIV) and higher (6.7 kev, Fe XXV) x-ray energies. Data that were obtained with spatial resolution were translated into the temperature and density as functions of distance from the target. As an example electron density was determined from He-like satellites to Ly-alpha in Si XIV. The dielectronic satellites with intensity ratios that are sensitive to collisional transfer of population between different triplet groups of double-excited states 2l2l' in Si XIII were observed with high spatial and spectral resolution Lineouts taken at different axial distances from the planar Si target show changing spectral shapes due to the different electron densities as determined by supporting non-LTE simulations. These shapes are relatively insensitive to the plasma temperature which was measured using different spectral lines. This work was supported by the US DOE/NNSA.

  4. Rocketdyne automated dynamics data analysis and management system

    NASA Technical Reports Server (NTRS)

    Tarn, Robert B.

    1988-01-01

    An automated dynamics data analysis and management systems implemented on a DEC VAX minicomputer cluster is described. Multichannel acquisition, Fast Fourier Transformation analysis, and an online database have significantly improved the analysis of wideband transducer responses from Space Shuttle Main Engine testing. Leakage error correction to recover sinusoid amplitudes and correct for frequency slewing is described. The phase errors caused by FM recorder/playback head misalignment are automatically measured and used to correct the data. Data compression methods are described and compared. The system hardware is described. Applications using the data base are introduced, including software for power spectral density, instantaneous time history, amplitude histogram, fatigue analysis, and rotordynamics expert system analysis.

  5. Structural analysis of vibroacoustical processes

    NASA Technical Reports Server (NTRS)

    Gromov, A. P.; Myasnikov, L. L.; Myasnikova, Y. N.; Finagin, B. A.

    1973-01-01

    The method of automatic identification of acoustical signals, by means of the segmentation was used to investigate noises and vibrations in machines and mechanisms, for cybernetic diagnostics. The structural analysis consists of presentation of a noise or vibroacoustical signal as a sequence of segments, determined by the time quantization, in which each segment is characterized by specific spectral characteristics. The structural spectrum is plotted as a histogram of the segments, also as a relation of the probability density of appearance of a segment to the segment type. It is assumed that the conditions of ergodic processes are maintained.

  6. Spectral composition of inhomogeneities of intensity of laser beam translucent the supersonic jet near the nozzle

    NASA Astrophysics Data System (ADS)

    Marakasov, Dmitri A.; Melnikov, Nikolai G.; Sazanovich, Valentina M.; Tsvyk, Ruvim Sh.; Shesternin, Andrei N.

    2014-11-01

    The analysis of results of experiments on laser transillumination of the flooded supersonic jet on the wind tunnel of Institute of theoretical and applied mechanics SB RAS is fulfilled. The time spectra of fluctuations of the received power at different values of pressure in the chamber as well as the transformation of the spectra for the initial part of the jet with increasing distance from the nozzle are discussed. The change in the slope of the high-frequency part of the spectrum when lifting beam above the nozzle is demonstrated. Local maxima of the spectral density at frequencies corresponding to the discrete frequencies of acoustic tones generated by the stream are found.

  7. X-ray flaring from Sagittarius A*: exploring the Milky Way black hole through its brightest flares

    NASA Astrophysics Data System (ADS)

    Nynka, Melania; Haggard, Daryl

    2017-08-01

    Sagittarius A* is the supermassive black hole at the center of our own Milky Way galaxy. Ambitious monitoring campaigns have yielded rich multiwavelength, time-resolved data, which have the power to probe the physical processes that underlie Sgr A*'s quiescent and flare emission. In 2013 and 2014 the Chandra X-ray Observatory captured two extremely luminous flares from Sgr A*, the two brightest ever detected in X-ray. I will describe the spectral and temporal properties of these flares, how they compare to previous analysis, and the possible physical processes driving the Sgr A* variability. I will also discuss the power spectral densities of the flares which may contain information about the black hole's ISCO and spin.

  8. Vector magnetic fields in sunspots. I - Stokes profile analysis using the Marshall Space Flight Center magnetograph

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, K. S.; West, E. A.

    1991-01-01

    The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.

  9. Analysis of soft x-ray emission spectra of laser-produced dysprosium, erbium and thulium plasmas

    NASA Astrophysics Data System (ADS)

    Sheil, John; Dunne, Padraig; Higashiguchi, Takeshi; Kos, Domagoj; Long, Elaine; Miyazaki, Takanori; O'Reilly, Fergal; O'Sullivan, Gerard; Sheridan, Paul; Suzuki, Chihiro; Sokell, Emma; White, Elgiva; Kilbane, Deirdre

    2017-03-01

    Soft x-ray emission spectra of dysprosium, erbium and thulium ions created in laser-produced plasmas were recorded with a flat-field grazing-incidence spectrometer in the 2.5-8 nm spectral range. The ions were produced using an Nd:YAG laser of 7 ns pulse duration and the spectra were recorded at various power densities. The experimental spectra were interpreted with the aid of the Cowan suite of atomic structure codes and the flexible atomic code. At wavelengths above 5.5 nm the spectra are dominated by overlapping n = 4 - n = 4 unresolved transition arrays from adjacent ion stages. Below 6 nm, n = 4 - n = 5 transitions also give rise to a series of interesting overlapping spectral features.

  10. Simulating the effect of high column density absorbers on the one-dimensional Lyman α forest flux power spectrum

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-03-01

    We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.

  11. Experimental and DFT studies of (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline: electronic and vibrational properties.

    PubMed

    Sun, Wenqi; Yuan, Guozan; Liu, Jingxin; Ma, Li; Liu, Chengbu

    2013-04-01

    The title molecule (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline (DPEQ) was synthesized and characterized by FT-IR, UV-vis, NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results indicate that the theoretical vibrational frequencies, 1H and 13C NMR chemical shift values show good agreement with experimental data. The electronic properties like UV-vis spectral analysis and HOMO-LUMO analysis of DPEQ have been reported and compared with experimental data. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Experimental and DFT studies of (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline: Electronic and vibrational properties

    NASA Astrophysics Data System (ADS)

    Sun, Wenqi; Yuan, Guozan; Liu, Jingxin; Ma, Li; Liu, Chengbu

    2013-04-01

    The title molecule (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline (DPEQ) was synthesized and characterized by FT-IR, UV-vis, NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results indicate that the theoretical vibrational frequencies, 1H and 13C NMR chemical shift values show good agreement with experimental data. The electronic properties like UV-vis spectral analysis and HOMO-LUMO analysis of DPEQ have been reported and compared with experimental data. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP).

  13. Catching the radio flare in CTA 102. I. Light curve analysis

    NASA Astrophysics Data System (ADS)

    Fromm, C. M.; Perucho, M.; Ros, E.; Savolainen, T.; Lobanov, A. P.; Zensus, J. A.; Aller, M. F.; Aller, H. D.; Gurwell, M. A.; Lähteenmäki, A.

    2011-07-01

    Context. The blazar CTA 102 (z = 1.037) underwent a historical radio outburst in April 2006. This event offered a unique chance to study the physical properties of the jet. Aims: We used multifrequency radio and mm observations to analyze the evolution of the spectral parameters during the flare as a test of the shock-in-jet model under these extreme conditions. Methods: For the analysis of the flare we took into account that the flaring spectrum is superimposed on a quiescent spectrum. We reconstructed the latter from archival data and fitted a synchrotron self-absorbed distribution of emission. The uncertainties of the derived spectral parameters were calculated using Monte Carlo simulations. The spectral evolution is modeled by the shock-in-jet model, and the derived results are discussed in the context of a geometrical model (varying viewing angle) and shock-shock interaction Results: The evolution of the flare in the turnover frequency-turnover flux density (νm - Sm) plane shows a double peak structure. The nature of this evolution is dicussed in the frame of shock-in-jet models. We discard the generation of the double peak structure in the νm - Sm plane purely based on geometrical changes (variation of the Doppler factor). The detailed modeling of the spectral evolution favors a shock-shock interaction as a possible physical mechanism behind the deviations from the standard shock-in-jet model.

  14. Investigation of multimodal forward scatter phenotyping from bacterial colonies

    NASA Astrophysics Data System (ADS)

    Kim, Huisung

    A rapid, label-free, and elastic light scattering (ELS) based bacterial colony phenotyping technology, bacterial rapid detection using optical scattering technology (BARDOT) provides a successful classification of several bacterial genus and species. For a thorough understanding of the phenomena and overcoming the limitations of the previous design, five additional modalities from a bacterial colony: 3D morphology, spatial optical density (OD) distribution, spectral forward scattering pattern, spectral OD, and surface backward reflection pattern are proposed to enhance the classification/identification ratio, and the feasibilities of each modality are verified. For the verification, three different instruments: integrated colony morphology analyzer (ICMA), multi-spectral BARDOT (MS-BARDOT) , and multi-modal BARDOT (MM-BARDOT) are proposed and developed. The ICMA can measure 3D morphology and spatial OD distribution of the colony simultaneously. A commercialized confocal displacement meter is used to measure the profiles of the bacterial colonies, together with a custom built optical density measurement unit to interrogate the biophysics behind the collective behavior of a bacterial colony. The system delivers essential information related to the quantitative growth dynamics (height, diameter, aspect ratio, optical density) of the bacterial colony, as well as, a relationship in between the morphological characteristics of the bacterial colony and its forward scattering pattern. Two different genera: Escherichia coli O157:H7 EDL933, and Staphylococcus aureus ATCC 25923 are selected for the analysis of the spatially resolved growth dynamics, while, Bacillus spp. such as B. subtilis ATCC 6633, B. cereus ATCC 14579, B. thuringiensis DUP6044, B. polymyxa B719W, and B. megaterium DSP 81319, are interrogated since some of the Bacillus spp. provides strikingly different characteristics of ELS patterns, and the origin of the speckle patterns are successfully correlated with the 2-D spatial density map from the ICMA. The MS-BARDOT can measure multispectral elastic-light-scatter patterns of the bacterial colony and its spectral OD to overcome the inherent limits of the single-wavelength BARDOT. A theoretical model for spectral forward scatter patterns from a bacterial colony based on elastic light scatter is presented. The spectral forward scatter patterns are computed by scalar diffraction theory, and compared with experimental results of three discrete wavelengths (405 nm, 635 nm, and 904 nm). Both model and experiment results show an excellent agreement; a longer wavelength induces a wider ring width, a wider ring gap, a smaller pattern size, and smaller numbers of rings. Further analysis using spatial fast Fourier transform (SFFT) shows a good agreement; the spatial frequencies are increasing towards the inward direction, and the slope is inversely proportional to the incoming wavelength. Four major pathogenic bacterial genera (Escherichia coli O157:H7 EDL933, Listeria monocytogenes F4244, Salmonella enterica serovar Enteritidis PT21, and Staphylococcus aureus ATCC 25923) and the seven major Escherichia coli serovar (O26, O45, O103, O111, O121, O145, and O157) with 3-4 strains each are measured and analyzed with the proposed instrument and algorithm. The MM-BARDOT can measure six different modalities: 1) light microscopy, 2) 3D morphology map from confocal microscopy, 3) 3D optical density map, 4) spectral forward scattering pattern, 5) spectral OD, 6) surface backward reflection pattern, and 7) fluorescence of a bacterial colony without moving the specimen. A custom-built confocal microscope with a controller which can be easily attached to an infinity-corrected commercial microscope is designed and built. Since the current BARDOT needs additional information from a bacterial colony to enhance the identification/classification ratio for a lower hierarchy of bacterial taxonomy such as serovar or strain level, the approach can offer a series of coordinates matched and correlated bio-optical characteristics of a colony and enhance the classification accuracy of the previously introduced BARDOT system. Four major pathogenic bacterial genera: Escherichia coli O157:H7 EDL933, Listeria monocytogenes F4244, Salmonella enterica serovar Enteritidis PT21, and Staphylococcus aureus ATCC 25923 are measured and analyzed with the proposed instrument and algorithm. Also, a feasibility test for a smaller colony (up to 500 mum) classification utilizing a surface backward reflection pattern from the measurement is done, and shows a potential as an additional modality for the bacterial phenotyping.

  15. Acoustic detection, tracking, and characterization of three tornadoes.

    PubMed

    Frazier, William Garth; Talmadge, Carrick; Park, Joseph; Waxler, Roger; Assink, Jelle

    2014-04-01

    Acoustic data recorded at 1000 samples per second by two sensor arrays located at ranges of 1-113 km from three tornadoes that occurred on 24 May 2011 in Oklahoma are analyzed. Accurate bearings to the tornadoes have been obtained using beamforming methods applied to the data at infrasonic frequencies. Beamforming was not viable at audio frequencies, but the data demonstrate the ability to detect significant changes in the shape of the estimated power spectral density in the band encompassing 10 Hz to approximately 100 Hz at distances of practical value from the sensors. This suggests that arrays of more closely spaced sensors might provide better bearing accuracy at practically useful distances from a tornado. Additionally, a mathematical model, based on established relationships of aeroacoustic turbulence, is demonstrated to provide good agreement to the estimated power spectra produced by the tornadoes at different times and distances from the sensors. The results of this analysis indicate that, qualitatively, an inverse relationship appears to exist between the frequency of an observed peak of the power spectral density and the reported tornado intensity.

  16. Surface enhanced Raman spectral studies of 2-bromo-1,4-naphthoquinone.

    PubMed

    Geetha, K; Umadevi, M; Sathe, G V; Vanelle, P; Terme, T; Khoumeri, O

    2015-03-05

    Silver nanoparticles have been synthesized by a simple and inexpensive solution combustion method with urea as fuel. The structural and morphology of the silver nanoparticles were investigated through X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersion Spectra (EDS) techniques. Structural and morphological results confirmed the nanocrystalline nature of the silver nanoparticles. Density Functional Theory (DFT) calculations were also performed to study the ground and excited state behavior of 2-bromo-1,4-naphthoquinone (2-BrNQ) and 2-BrNQ on silver nanoparticles. Surface-Enhanced Raman Scattering (SERS) spectra of 2-BrNQ adsorbed on silver nanoparticles were investigated. The CO, CH in-plane bending and CBr stretching modes were enhanced in SERS spectrum with respect to normal Raman spectrum. The spectral analysis reveals that the 2-BrNQ adsorbed 'stand-on' orientation on the silver surface. Density Functional Theory (DFT) calculations are also performed to study the vibrational features of 2-BrNQ molecule and 2-BrNQ molecule on silver surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Interior Noise Predictions in the Preliminary Design of the Large Civil Tiltrotor (LCTR2)

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Cabell, Randolph H.; Boyd, David D.

    2013-01-01

    A prediction scheme was established to compute sound pressure levels in the interior of a simplified cabin model of the second generation Large Civil Tiltrotor (LCTR2) during cruise conditions, while being excited by turbulent boundary layer flow over the fuselage, or by tiltrotor blade loading and thickness noise. Finite element models of the cabin structure, interior acoustic space, and acoustically absorbent (poro-elastic) materials in the fuselage were generated and combined into a coupled structural-acoustic model. Fluctuating power spectral densities were computed according to the Efimtsov turbulent boundary layer excitation model. Noise associated with the tiltrotor blades was predicted in the time domain as fluctuating surface pressures and converted to power spectral densities at the fuselage skin finite element nodes. A hybrid finite element (FE) approach was used to compute the low frequency acoustic cabin response over the frequency range 6-141 Hz with a 1 Hz bandwidth, and the Statistical Energy Analysis (SEA) approach was used to predict the interior noise for the 125-8000 Hz one-third octave bands.

  18. A search for two types of transverse excitations in liquid polyvalent metals at ambient pressure: An ab initio molecular dynamics study of collective excitations in liquid Al, Tl and Ni

    NASA Astrophysics Data System (ADS)

    Bryk, Taras; Demchuk, Taras; Jakse, Noël; Wax, Jean-François

    2018-02-01

    Recent findings of pressure-induced emergence of unusual high-frequency contribution to transverse current spectral functions in several simple liquid metals at high pressures raised a question whether similar features can be observed in liquid metals at ambient conditions. We report here analysis of ab initio molecular dynamics-derived longitudinal (L) and transverse (T) current spectral functions and corresponding dispersions of collective excitations in liquid polyvalent metals Al, Tl, Ni. We have not found evidences of the second branch of high-frequency transverse modes in liquid Al and Ni, while in the case of liquid Tl they were clearly present in transverse dynamics. The vibrational density of states for liquid Tl has a pronounced high-frequency shoulder, which is located right in the frequency range of the second high-frequency transverse branch, while for liquid Al and Ni the vibrational density of states has only a weak indication of possible high-frequency shoulder. The origin of specific behavior of transverse excitations in liquid Tl is discussed.

  19. The role of temperature in reported chickenpox cases from 2000 to 2011 in Japan.

    PubMed

    Harigane, K; Sumi, A; Mise, K; Kobayashi, N

    2015-09-01

    Annual periodicities of reported chickenpox cases have been observed in several countries. Of these, Japan has reported a two-peaked, bimodal annual cycle of reported chickenpox cases. This study investigated the possible underlying association of the bimodal cycle observed in the surveillance data of reported chickenpox cases with the meteorological factors of temperature, relative humidity and rainfall. A time-series analysis consisting of the maximum entropy method spectral analysis and the least squares method was applied to the chickenpox data and meteorological data of 47 prefectures in Japan. In all of the power spectral densities for the 47 prefectures, the spectral lines were observed at the frequency positions corresponding to the 1-year and 6-month cycles. The optimum least squares fitting (LSF) curves calculated with the 1-year and 6-month cycles explained the underlying variation of the chickenpox data. The LSF curves reproduced the bimodal and unimodal cycles that were clearly observed in northern and southern Japan, respectively. The data suggest that the second peaks in the bimodal cycles in the reported chickenpox cases in Japan occurred at a temperature of approximately 8·5 °C.

  20. Cyclical Changes in the Pleistocene Climate from an Analysis of Biogenic Silica in a Bottom Sediment Core Sample of Lake Baikal

    NASA Astrophysics Data System (ADS)

    Dergachev, V. A.; Dmitriev, P. B.

    2017-12-01

    An inhomogeneous time series of measurements of the percentage content of biogenic silica in the samples of joint cores BDP-96-1 and BDP-96-2 from the bottom of Lake Baikal drilled at a depth of 321 m under water has been analyzed. The composite depth of cores is 77 m, which covers the Pleistocene Epoch to 1.8 Ma. The time series was reduced to a regular form with a time step of 1 kyr, which allowed 16 distinct quasi-periodic components with periods from 19 to 251 kyr to be revealed in this series at a significance level of their amplitudes exceeding 4σ. For this, the combined spectral periodogram (a modification of the spectral analysis method) was used. Some of the revealed quasi-harmonics are related to the characteristic cyclical oscillations of the Earth's orbital parameters. Special focus was payed to the temporal change in the parameters of the revealed quasi-harmonic components over the Pleistocene Epoch, which was studied by constructing the spectral density of the analyzed data in the running window of 201 and 701 kyr.

  1. Raman spectroscopic imaging as complementary tool for histopathologic assessment of brain tumors

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Bergner, Norbert; Romeike, Bernd; Reichart, Rupert; Kalff, Rolf; Geiger, Kathrin; Kirsch, Matthias; Schackert, Gabriele; Popp, Jürgen

    2012-02-01

    Raman spectroscopy enables label-free assessment of brain tissues and tumors based on their biochemical composition. Combination of the Raman spectra with the lateral information allows grading of tumors, determining the primary tumor of brain metastases and delineating tumor margins - even during surgery after coupling with fiber optic probes. This contribution presents exemplary Raman spectra and images collected from low grade and high grade regions of astrocytic gliomas and brain metastases. A region of interest in dried tissue sections encompassed slightly increased cell density. Spectral unmixing by vertex component analysis (VCA) and N-FINDR resolved cell nuclei in score plots and revealed the spectral contributions of nucleic acids, cholesterol, cholesterol ester and proteins in endmember signatures. The results correlated with the histopathological analysis after staining the specimens by hematoxylin and eosin. For a region of interest in non-dried, buffer immersed tissue sections image processing was not affected by drying artifacts such as denaturation of biomolecules and crystallization of cholesterol. Consequently, the results correspond better to in vivo situations. Raman spectroscopic imaging of a brain metastases from renal cell carcinoma showed an endmember with spectral contributions of glycogen which can be considered as a marker for this primary tumor.

  2. Power spectral density of a single Brownian trajectory: what one can and cannot learn from it

    NASA Astrophysics Data System (ADS)

    Krapf, Diego; Marinari, Enzo; Metzler, Ralf; Oshanin, Gleb; Xu, Xinran; Squarcini, Alessio

    2018-02-01

    The power spectral density (PSD) of any time-dependent stochastic process X t is a meaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of X t over an infinitely large observation time T, that is, it is defined as an ensemble-averaged property taken in the limit T\\to ∞ . A legitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation time T. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is a fluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.

  3. Interpreting spectral unmixing coefficients: From spectral weights to mass fractions

    NASA Astrophysics Data System (ADS)

    Grumpe, Arne; Mengewein, Natascha; Rommel, Daniela; Mall, Urs; Wöhler, Christian

    2018-01-01

    It is well known that many common planetary minerals exhibit prominent absorption features. Consequently, the analysis of spectral reflectance measurements has become a major tool of remote sensing. Quantifying the mineral abundances, however, is not a trivial task. The interaction between the incident light rays and particulate surfaces, e.g., the lunar regolith, leads to a non-linear relationship between the reflectance spectra of the pure minerals, the so-called ;endmembers;, and the surface's reflectance spectrum. It is, however, possible to transform the non-linear reflectance mixture into a linear mixture of single-scattering albedos of the Hapke model. The abundances obtained by inverting the linear single-scattering albedo mixture may be interpreted as volume fractions which are weighted by the endmember's extinction coefficient. Commonly, identical extinction coefficients are assumed throughout all endmembers and the obtained volume fractions are converted to mass fractions using either measured or assumed densities. In theory, the proposed method may cover different grain sizes if each grain size range of a mineral is treated as a distinct endmember. Here, we present a method to transform the mixing coefficients to mass fractions for arbitrary combinations of extinction coefficients and densities. The required parameters are computed from reflectance measurements of well defined endmember mixtures. Consequently, additional measurements, e.g., the endmember density, are no longer required. We evaluate the method based on laboratory measurements and various results presented in the literature, respectively. It is shown that the procedure transforms the mixing coefficients to mass fractions yielding an accuracy comparable to carefully calibrated laboratory measurements without additional knowledge. For our laboratory measurements, the square root of the mean squared error is less than 4.82 wt%. In addition, the method corrects for systematic effects originating from mixtures of endmembers showing a highly varying albedo, e.g., plagioclase and pyroxene.

  4. Raman spectral signatures as conformational probes of gas phase flexible molecules

    NASA Astrophysics Data System (ADS)

    Golan, Amir; Mayorkas, Nitzan; Rosenwaks, Salman; Bar, Ilana

    2009-07-01

    A novel application of ionization-loss stimulated Raman spectroscopy (ILSRS) for monitoring the spectral features of four conformers of a gas phase flexible molecule is reported. The Raman spectral signatures of four conformers of 2-phenylethylamine are well matched by the results of density functional theory calculations, showing bands uniquely identifying the structures. The measurement of spectral signatures by ILSRS in an extended spectral range, with a conventional laser source, is instrumental in facilitating the unraveling of intra- and intermolecular interactions that are significant in biological structure and activity.

  5. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal

    PubMed Central

    Silva, F.; Austin, D.R.; Thai, A.; Baudisch, M.; Hemmer, M.; Faccio, D.; Couairon, A.; Biegert, J.

    2012-01-01

    In supercontinuum generation, various propagation effects combine to produce a dramatic spectral broadening of intense ultrashort optical pulses. With a host of applications, supercontinuum sources are often required to possess a range of properties such as spectral coverage from the ultraviolet across the visible and into the infrared, shot-to-shot repeatability, high spectral energy density and an absence of complicated pulse splitting. Here we present an all-in-one solution, the first supercontinuum in a bulk homogeneous material extending from 450 nm into the mid-infrared. The spectrum spans 3.3 octaves and carries high spectral energy density (2 pJ nm−1–10 nJ nm−1), and the generation process has high shot-to-shot reproducibility and preserves the carrier-to-envelope phase. Our method, based on filamentation of femtosecond mid-infrared pulses in the anomalous dispersion regime, allows for compact new supercontinuum sources. PMID:22549836

  6. Daniell method for power spectral density estimation in atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labuda, Aleksander

    An alternative method for power spectral density (PSD) estimation—the Daniell method—is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion—the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to amore » more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum.« less

  7. Differential color space analysis for investigating nutrient content in a puréed food dilution-flavor matrix: a step toward objective malnutrition risk assessment

    NASA Astrophysics Data System (ADS)

    Pfisterer, Kaylen J.; Amelard, Robert; Wong, Alexander

    2018-02-01

    Dysphagia (swallowing difficulty) increases risk for malnutrition and affects at least 15% of American older adults, and 590 million people worldwide. Malnutrition is associated with increased mortality, increased morbidity, decreased quality of life, and accounts for over $15 billion (USD) health-care related costs each year. While modified texture diets (e.g., puréed food) reduce the risk of choking, quality assurance is necessary for monitoring nutrient density to ensure food meets nutritional requirements. However, current methods are subjective and time consuming. The purpose of this study was to investigate the feasibility of optical techniques for an objective assessment of food nutrient density in puréed samples. Motivated by a theoretical optical dilution model, broadband spectral images of commercially prepared purée samples were acquired. Specifically, 13 flavors at five dilutions relative to initial concentration, each with six replicates, were acquired for a total of 390 samples. Purée samples were prepared and loaded onto a white reflectance back plane to maximize photon traversal path length through the purée. The sample was illuminated with a tungsten-halogen illumination source fitted with a front glass fabric diffuser for spatially homogeneous illumination. This broadband illuminant was chosen to observe as many food-light spectral absorbance interactions as possible. Flavor-stratified correlation analysis was performed on this food image dataset to investigate the relationship between nutritional information and color space transformations. A special case of blueberry is presented as the effect of anthocyanins was quantitatively observed through normalized spectral trends in response to pH perturbations across dilutions.

  8. High Frequency Radio Observations of the Reactivated Magnetar PSR J1622-4950

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron B.; Majid, Walid A.; Prince, Thomas A.; Horiuchi, Shinji; Kocz, Jonathon; Lazio, T. J. W.; Naudet, Charles J.

    2017-07-01

    Radio emission from the magnetar PSR J1622-4950 was recently reported to have resumed (Camilo et al., ATel #10346). We have carried out Target of Opportunity (ToO) radio observations of PSR J1622-4950 at S-band (2.3 GHz) and X-band (8.4 GHz) using the 70-m diameter Deep Space Network (DSN) radio dish (DSS-43) in Canberra, Australia. We report on our single polarization mode observations of PSR J1622-4950 spanning 5 hours on 23 May 2017 starting at 16:03:32 UTC. Pulsations were detected at a period of 4.327308(1) s. We measure a mean flux density of 3.8(8)/0.41(8) mJy at S/X-band, from which we derive a spectral index of -1.7(2). We note that PSR J1622-4950's spectral behavior is now consistent with the majority of pulsars, which have a mean spectral index of -1.8(2) (Maron et al. (2000)). The result by Maron et al. (2000) is used here because they included more high frequency pulsar spectra than other studies to characterize the underlying spectral index distribution over a wide frequency range. The mean flux density at S-band has now increased by an order of magnitude compared to previous flux density measurements by Scholz et al. (2017) during the magnetar's quiescent state. Furthermore, the spectral index has steepened compared to a nearly flat spectral index from flux density measurements between 1.4 and 24 GHz prior to the disappearance of the radio emission (Levin et al. (2010); Keith et al. (2011); Levin et al. (2012); Anderson et al. (2012); Scholz et al. (2017)). We are continuing to monitor changes in PSR J1622-4950's radio spectrum at both S-band and X-band. We thank the DSN (Deep Space Network) and Canberra Deep Space Communication Complex (CDSCC) teams for scheduling these observations.

  9. Parameter Identification

    DTIC Science & Technology

    1979-11-01

    Science Aeronautique, Vol. 6, pp. 38-49, 1950. 9. Anon.: "Methods of testing at constant attitude", ICAO Circular 16-AN/13, 1951. 10. H.L. Jonkers...spectral density analysis, it was determined that a notch filter at 17.7 hertz and a third-order Butterworth low-pass filter with a break frequency of 20...of the effects of specific errors, they are circular in nature and do not address the basic theoretical problem. Therefore, the Cramer-Rao bound

  10. Spectrotemporal modulation sensitivity for hearing-impaired listeners: Dependence on carrier center frequency and the relationship to speech intelligibility

    PubMed Central

    Mehraei, Golbarg; Gallun, Frederick J.; Leek, Marjorie R.; Bernstein, Joshua G. W.

    2014-01-01

    Poor speech understanding in noise by hearing-impaired (HI) listeners is only partly explained by elevated audiometric thresholds. Suprathreshold-processing impairments such as reduced temporal or spectral resolution or temporal fine-structure (TFS) processing ability might also contribute. Although speech contains dynamic combinations of temporal and spectral modulation and TFS content, these capabilities are often treated separately. Modulation-depth detection thresholds for spectrotemporal modulation (STM) applied to octave-band noise were measured for normal-hearing and HI listeners as a function of temporal modulation rate (4–32 Hz), spectral ripple density [0.5–4 cycles/octave (c/o)] and carrier center frequency (500–4000 Hz). STM sensitivity was worse than normal for HI listeners only for a low-frequency carrier (1000 Hz) at low temporal modulation rates (4–12 Hz) and a spectral ripple density of 2 c/o, and for a high-frequency carrier (4000 Hz) at a high spectral ripple density (4 c/o). STM sensitivity for the 4-Hz, 4-c/o condition for a 4000-Hz carrier and for the 4-Hz, 2-c/o condition for a 1000-Hz carrier were correlated with speech-recognition performance in noise after partialling out the audiogram-based speech-intelligibility index. Poor speech-reception and STM-detection performance for HI listeners may be related to a combination of reduced frequency selectivity and a TFS-processing deficit limiting the ability to track spectral-peak movements. PMID:24993215

  11. Dynamics of a spin-boson model with structured spectral density

    NASA Astrophysics Data System (ADS)

    Kurt, Arzu; Eryigit, Resul

    2018-05-01

    We report the results of a study of the dynamics of a two-state system coupled to an environment with peaked spectral density. An exact analytical expression for the bath correlation function is obtained. Validity range of various approximations to the correlation function for calculating the population difference of the system is discussed as function of tunneling splitting, oscillator frequency, coupling constant, damping rate and the temperature of the bath. An exact expression for the population difference, for a limited range of parameters, is derived.

  12. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko

    PubMed Central

    Saroka, Kevin S.; Vares, David E.; Persinger, Michael A.

    2016-01-01

    In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m) and magnetic field (pT) components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6–16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV) obtained by whole brain quantitative electroencephalography (QEEG) between rostral-caudal and left-right (hemispheric) comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7–8 Hz), second (13–14 Hz) and third (19–20 Hz) harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the ‘best-of-fitness’ of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity. PMID:26785376

  13. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko.

    PubMed

    Saroka, Kevin S; Vares, David E; Persinger, Michael A

    2016-01-01

    In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m) and magnetic field (pT) components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6-16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV) obtained by whole brain quantitative electroencephalography (QEEG) between rostral-caudal and left-right (hemispheric) comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7-8 Hz), second (13-14 Hz) and third (19-20 Hz) harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the 'best-of-fitness' of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity.

  14. Height Dependence of Plasma Properties of a Dark Lane and a Cool Loop in a Solar Limb Active Region Observed by Hinode/EIS

    NASA Astrophysics Data System (ADS)

    Lee, K.; Imada, S.; Moon, Y.; Lee, J.

    2013-12-01

    We investigate spectral properties of a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in coronal spectral lines and rooted on a bright point. We determine their electron densities, Doppler velocities, and non-thermal velocities with height over the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Fe XII and the scale height temperatures of the dark lane from each spectral lines are much lower than their peak formation temperatures. The non-thermal velocity in the cool loop slightly decreases along the loop while that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.

  15. HENDRICS: High ENergy Data Reduction Interface from the Command Shell

    NASA Astrophysics Data System (ADS)

    Bachetti, Matteo

    2018-05-01

    HENDRICS, a rewrite and update to MaLTPyNT (ascl:1502.021), contains command-line scripts based on Stingray (ascl:1608.001) to perform a quick-look (spectral-)timing analysis of X-ray data, treating the gaps in the data due, e.g., to occultation from the Earth or passages through the SAA, properly. Despite its original main focus on NuSTAR, HENDRICS can perform standard aperiodic timing analysis on X-ray data from, in principle, any other satellite, and its features include power density and cross spectra, time lags, pulsar searches with the Epoch folding and the Z_n^2 statistics, color-color and color-intensity diagrams. The periodograms produced by HENDRICS (such as a power density spectrum or a cospectrum) can be saved in a format compatible with XSPEC (ascl:9910.005) or ISIS (ascl:1302.002)

  16. Spectral characterization of laser-accelerated protons with CR-39 nuclear track detector.

    PubMed

    Seimetz, M; Bellido, P; García, P; Mur, P; Iborra, A; Soriano, A; Hülber, T; García López, J; Jiménez-Ramos, M C; Lera, R; Ruiz-de la Cruz, A; Sánchez, I; Zaffino, R; Roso, L; Benlloch, J M

    2018-02-01

    CR-39 nuclear track material is frequently used for the detection of protons accelerated in laser-plasma interactions. The measurement of track densities allows for determination of particle angular distributions, and information on the kinetic energy can be obtained by the use of passive absorbers. We present a precise method of measuring spectral distributions of laser-accelerated protons in a single etching and analysis process. We make use of a one-to-one relation between proton energy and track size and present a precise calibration based on monoenergetic particle beams. While this relation is limited to proton energies below 1 MeV, we show that the range of spectral measurements can be significantly extended by simultaneous use of absorbers of suitable thicknesses. Examples from laser-plasma interactions are presented, and quantitative results on proton energies and particle numbers are compared to those obtained from a time-of-flight detector. The spectrum end points of continuous energy distributions have been determined with both detector types and coincide within 50-100 keV.

  17. Theoretical analysis of the performance of code division multiple access communications over multimode optical fiber channels. Part 1: Transmission and detection

    NASA Astrophysics Data System (ADS)

    Walker, Ernest L.

    1994-05-01

    This paper presents results of a theoretical investigation to evaluate the performance of code division multiple access communications over multimode optical fiber channels in an asynchronous, multiuser communication network environment. The system is evaluated using Gold sequences for spectral spreading of the baseband signal from each user employing direct-sequence biphase shift keying and intensity modulation techniques. The transmission channel model employed is a lossless linear system approximation of the field transfer function for the alpha -profile multimode optical fiber. Due to channel model complexity, a correlation receiver model employing a suboptimal receive filter was used in calculating the peak output signal at the ith receiver. In Part 1, the performance measures for the system, i.e., signal-to-noise ratio and bit error probability for the ith receiver, are derived as functions of channel characteristics, spectral spreading, number of active users, and the bit energy to noise (white) spectral density ratio. In Part 2, the overall system performance is evaluated.

  18. Numerical investigation of the spreading of self-excited stratified jets

    NASA Technical Reports Server (NTRS)

    Batcho, P. F.; Karniadakis, G. E.; Orszag, S. A.

    1990-01-01

    The structure and evolution of self-excited subsonic periodic arrays of jets of constant and variable density are studied using spectral-element direct numerical simulations. The governing equation of motion is presented, and a method based on spectral element discretizations appropriate for simulating arbitrarily complex geometry jets and large density variations for subsonic flows is developed. Variable density fields are found to be more unstable than the corresponding uniform density fields with much higher rms values; as a result, their spreading is also considerably larger. There is a dramatic increase in spreading after a few pairings occur. Findings presented for low and high side-momentum flux reveal a shifting of the origin of instability from the near-field to the far-field, respectively, and suggest possible routes of stabilization.

  19. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy.

    PubMed

    Zelyak, O; Fallone, B G; St-Aubin, J

    2017-12-14

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation.

  20. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Zelyak, O.; Fallone, B. G.; St-Aubin, J.

    2018-01-01

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation.

  1. Corrigendum to "Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy".

    PubMed

    Zelyak, Oleksandr; Fallone, B Gino; St-Aubin, Joel

    2018-03-12

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation. © 2018 Institute of Physics and Engineering in Medicine.

  2. A Weak Solar Burst Submillimeter Only Spectral Component During a GOES M Class Flare: Implications for its Emission Mechanisms

    NASA Astrophysics Data System (ADS)

    Cristiani, G. D.; Giménez de Castro, C. G.; Mandrini, C. H.; et al.

    2008-09-01

    Since the installation of the Submillimeter Solar Radio Telescope, a new spectral burst component was discovered at frequencies above 100 GHz, creating the THz bursts category. In all the reported cases, the events were X class flares and the THz component was increasing with frequency. We report for the first time an M class flare which shows a submillimeter radio spectral component different from the one in microwave classical bursts. Two successive flares of 2 minute duration occurred in active region NOAA 10226 with 2 minutes delay. They started at around 13:15 UT and had an M 6.8 maximum intensity in soft X-rays. The submillimeter flux density from the Solar Submillimeter Telescope (SST) is used in addition to microwave total Sun patrol telescope observations. Images with H filters from the H-alpha Solar Telescope for Argentina (HASTA) and in the extreme UV from the Extreme-ultraviolet Imaging Telescope (EIT) are used to characterize the flaring region. An extensive analysis of the magnetic topology evolution is derived from Michelson Doppler Imager (MDI) magnetograms and used to constrain the space of solutions for the possible emission mechanisms. The submillimeter component is observed at 212 GHz only. We have upper limits for the emission at 89.4and 405 GHz which are smaller than the observed flux density at 212 GHz. The analysis of the magnetic topology reveals a very compact and complex system of arches that reconnects at a low height, while from the soft X-ray observations we deduce that the flaring area is compact and dense (n=1e12 cm-3). The finding of a submillimeter only burst component in a medium size flare indicates that the phenomenon is more universal than shown until now. The multiwavelength analysis reveals that neither positron synchrotron nor free-free emission could produce the submillimeter component, which is explained here by synchrotron of accelerated electrons in a rather complex and compact magnetic configuration.

  3. QEEG and LORETA in Teenagers With Conduct Disorder and Psychopathic Traits.

    PubMed

    Calzada-Reyes, Ana; Alvarez-Amador, Alfredo; Galán-García, Lídice; Valdés-Sosa, Mitchell

    2017-05-01

    Few studies have investigated the impact of the psychopathic traits on the EEG of teenagers with conduct disorder (CD). To date, there is no other research studying low-resolution brain electromagnetic tomography (LORETA) technique using quantitative EEG (QEEG) analysis in adolescents with CD and psychopathic traits. To find electrophysiological differences specifically related to the psychopathic traits. The current investigation compares the QEEG and the current source density measures between adolescents with CD and psychopathic traits and adolescents with CD without psychopathic traits. The resting EEG activity and LORETA for the EEG fast spectral bands were evaluated in 42 teenagers with CD, 25 with and 17 without psychopathic traits according to the Antisocial Process Screening Device. All adolescents were assessed using the DSM-IV-TR criteria. The EEG visual inspection characteristics and the use of frequency domain quantitative analysis techniques (narrow band spectral parameters) are described. QEEG analysis showed a pattern of beta activity excess on the bilateral frontal-temporal regions and decreases of alpha band power on the left central-temporal and right frontal-central-temporal regions in the psychopathic traits group. Current source density calculated at 17.18 Hz showed an increase within fronto-temporo-striatal regions in the psychopathic relative to the nonpsychopathic traits group. These findings indicate that QEEG analysis and techniques of source localization may reveal differences in brain electrical activity among teenagers with CD and psychopathic traits, which was not obvious to visual inspection. Taken together, these results suggest that abnormalities in a fronto-temporo-striatal network play a relevant role in the neurobiological basis of psychopathic behavior.

  4. Power spectral analysis of heart rate in hyperthyroidism.

    PubMed

    Cacciatori, V; Bellavere, F; Pezzarossa, A; Dellera, A; Gemma, M L; Thomaseth, K; Castello, R; Moghetti, P; Muggeo, M

    1996-08-01

    The aim of the present study was to evaluate the impact of hyperthyroidism on the cardiovascular system by separately analyzing the sympathetic and parasympathetic influences on heart rate. Heart rate variability was evaluated by autoregressive power spectral analysis. This method allows a reliable quantification of the low frequency (LF) and high frequency (HF) components of the heart rate power spectral density; these are considered to be under mainly sympathetic and pure parasympathetic control, respectively. In 10 newly diagnosed untreated hyperthyroid patients with Graves' disease, we analyzed power spectral density of heart rate cyclic variations at rest, while lying, and while standing. In addition, heart rate variations during deep breathing, lying and standing, and Valsalva's maneuver were analyzed. The results were compared to those obtained from 10 age-, sex-, and body mass index-matched control subjects. In 8 hyperthyroid patients, the same evaluation was repeated after the induction of stable euthyroidism by methimazole. Heart rate power spectral analysis showed a sharp reduction of HF components in hyperthyroid subjects compared to controls [lying, 13.3 +/- 4.1 vs. 32.0 +/- 5.6 normalized units (NU; P < 0.01); standing, 6.0 +/- 2.7 vs. 15.0 +/- 4.0 NU (P < 0.01); mean +/- SEM]. On the other hand components were comparable in the 2 groups (lying, 64.0 +/- 6.9 vs. 62.0 +/- 6.5 NU; standing, 77.0 +/- 6.5 vs. 78.0 +/- 5.4 NU). Hence, the LF/HF ratio, which is considered an index of sympathovagal balance, was increased in hyperthyroid subjects while both lying (11.3 +/- 4.5 vs. 3.5 +/- 1.1; P < 0.05) and standing (54.0 +/- 12.6 vs. 9.8 +/- 2.6; P < 0.02). This parameter was positively correlated with both T3 (r = 0.61; P < 0.05) and free T4 (r = 0.63; P < 0.05) serum levels. Among traditional cardiovascular autonomic tests, the reflex response of heart rate during lying to standing was significantly lower in hyperthyroid patients than in controls (1.12 +/- 0.03 vs. 1.31 +/- 0.04; P < 0.002). No statistically significant difference in reflex responses between the two groups was found in deep breathing or Valsalva's maneuver. In the 8 patients reexamined after methimazole treatment, we observed complete normalization of altered cardiovascular parameters, with slight predominance of the vagal component compared with controls. These results suggest that thyroid hormone excess may determine reduced parasympathetic activity and, thus, a relative hypersympathetic tone.

  5. Time domain simulation of the response of geometrically nonlinear panels subjected to random loading

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.

    1988-01-01

    The response of composite panels subjected to random pressure loads large enough to cause geometrically nonlinear responses is studied. A time domain simulation is employed to solve the equations of motion. An adaptive time stepping algorithm is employed to minimize intermittent transients. A modified algorithm for the prediction of response spectral density is presented which predicts smooth spectral peaks for discrete time histories. Results are presented for a number of input pressure levels and damping coefficients. Response distributions are calculated and compared with the analytical solution of the Fokker-Planck equations. RMS response is reported as a function of input pressure level and damping coefficient. Spectral densities are calculated for a number of examples.

  6. Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust

    NASA Astrophysics Data System (ADS)

    Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.

    2018-05-01

    Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.

  7. Background noise in piezoresistive, electret condenser, and ceramic microphones.

    PubMed

    Zuckerwar, Allan J; Kuhn, Theodore R; Serbyn, Roman M

    2003-06-01

    Background noise studies have been extended from air condenser microphones to piezoresistive, electret condenser, and ceramic microphones. Theoretical models of the respective noise sources within each microphone are developed and are used to derive analytical expressions for the noise power spectral density for each type. Several additional noise sources for the piezoresistive and electret microphones, beyond what had previously been considered, were applied to the models and were found to contribute significantly to the total noise power spectral density. Experimental background noise measurements were taken using an upgraded acoustic isolation vessel and data acquisition system, and the results were compared to the theoretically obtained expressions. The models were found to yield power spectral densities consistent with the experimental results. The measurements reveal that the 1/f noise coefficient is strongly correlated with the diaphragm damping resistance, irrespective of the detection technology, i.e., air condenser, piezoresistive, etc. This conclusion has profound implications upon the expected 1/f noise component of micromachined (MEMS) microphones.

  8. Electron-density-sensitive Line Ratios of Fe xiii– xvi from Laboratory Sources Compared to CHIANTI

    DOE PAGES

    Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.; ...

    2018-02-15

    We present electron-density-sensitive line ratios for Fe xiii– xvi measured in the spectral wavelength range of 200–440 Å and an electron density range of (1-4) × 10 13 cm -3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrumentmore » was relatively calibrated using spectroscopic techniques in order to improve accuracy. Lastly, the line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.« less

  9. Electron-density-sensitive Line Ratios of Fe xiii– xvi from Laboratory Sources Compared to CHIANTI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.

    We present electron-density-sensitive line ratios for Fe xiii– xvi measured in the spectral wavelength range of 200–440 Å and an electron density range of (1-4) × 10 13 cm -3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrumentmore » was relatively calibrated using spectroscopic techniques in order to improve accuracy. Lastly, the line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.« less

  10. Automated spectral and timing analysis of AGNs

    NASA Astrophysics Data System (ADS)

    Munz, F.; Karas, V.; Guainazzi, M.

    2006-12-01

    % We have developed an autonomous script that helps the user to automate the XMM-Newton data analysis for the purposes of extensive statistical investigations. We test this approach by examining X-ray spectra of bright AGNs pre-selected from the public database. The event lists extracted in this process were studied further by constructing their energy-resolved Fourier power-spectrum density. This analysis combines energy distributions, light-curves, and their power-spectra and it proves useful to assess the variability patterns present is the data. As another example, an automated search was based on the XSPEC package to reveal the emission features in 2-8 keV range.

  11. Detailed spectral and morphological analysis of the shell type supernova remnant RCW 86

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lorentz, M.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2018-04-01

    Aim. We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW 86 and for insights into the production mechanism leading to the RCW 86 very high-energy γ-ray emission. Methods: We analyzed High Energy Spectroscopic System (H.E.S.S.) data that had increased sensitivity compared to the observations presented in the RCW 86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5-1 keV X-ray band, the 2-5 keV X-ray band, radio, and γ-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results: We present the first conclusive evidence that the TeV γ-ray emission region is shell-like based on our morphological studies. The comparison with 2-5 keV X-ray data reveals a correlation with the 0.4-50 TeV γ-ray emission. The spectrum of RCW 86 is best described by a power law with an exponential cutoff at Ecut = (3.5 ± 1.2stat) TeV and a spectral index of Γ ≈ 1.6 ± 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW 86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to 0.1% of the initial kinetic energy of a Type Ia supernova explosion (1051 erg). When using a hadronic model, a magnetic field of B ≈ 100 μG is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E-2 spectrum for the proton distribution cannot describe the γ-ray data. Instead, a spectral index of Γp ≈ 1.7 would be required, which implies that ˜7 × 1049/ncm-3 has been transferred into high-energy protons with the effective density ncm-3 = n/1 cm-3. This is about 10% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1 cm-3.

  12. Spectral Evolution of Intensive Microwave Bursts at Centimeter-Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Melnikov, V. F.; Magun, A.

    The dynamics of the frequency spectrum of intensive broad band microwave bursts with one spectral maximum and simple time profiles are investigated. The aim of the study is to correlate the temporal evolution of the microwave burst spectrum above and below the spectral peak frequency f_p, as well as to compare these features with theoretical expectations. The analysis was carried out by using the data from the patrol instruments of IAP, Bern University and NIRFI, Nizhnii Novgorod (10 fixed frequencies in the range 1-50 GHz). It has been found for the majority of these bursts that: a) during the rise phase of the burst flux there is an anticorrelation of the absolute values of the spectral indices above and below peak frequency whereas a good correlation during the decay phase was found; b) time delays between flux profiles at neighbouring frequencies change sign under the transition from low to high frequencies. As a rule the lower frequency emission is delayed at frequencies below f_p whereas at high frequencies (f>f_p) the higher frequency emission is delayed (see also Melnikov and Magun, 1998). Qualitatively these results fit well the calculated spectral evolution of the gyrosynchrotron if one takes into account the flattening of the electron energy spectrum in a flare loop (Melnikov and Magun, 1996) due to Coulomb collisions (Vilmer et al., 1982), and uses values for the background plasma density derived from hard X-ray data (Aschwanden et al., 1997). For some of the bursts, however, quantitative discrepancies with the predictions of the homogeneous model have been found. For these bursts the absolute value of the spectral index at low frequencies is remarkably smaller, and the time delay remarkably higher than expected. We have investigated several possibilities to obtain an agremeent between theory and observations. Special attention is paid to model calculations taking into account the dynamics of energetic electrons in flare loops with an inhomogeneous magnetic field and plasma density. In this context the capabilities of the models for the diagnostics of the physical conditions in flare loops using observations with high spatial

  13. Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets

    NASA Astrophysics Data System (ADS)

    Santos, Vinicius Rafael N. dos; Al-Nuaimy, Waleed; Porsani, Jorge Luís; Hirata, Nina S. Tomita; Alzubi, Hamzah S.

    2014-01-01

    The accuracy of detecting buried targets using ground penetrating radar (GPR) depends mainly on features that are extracted from the data. The objective of this study is to test three spectral features and evaluate the quality to provide a good discrimination among three types of materials (concrete, metallic and plastic) using the 200 MHz GPR system. The spectral features which were selected to check the interaction of the electromagnetic wave with the type of material are: the power spectral density (PSD), short-time Fourier transform (STFT) and the Wigner-Ville distribution (WVD). The analyses were performed with simulated data varying the sizes of the targets and the electrical properties (relative dielectric permittivity and electrical conductivity) of the soil. To check if the simulated data are in accordance with the real data, the same approach was applied on the data obtained in the IAG/USP test site. A noticeable difference was found in the amplitude of the studies' features in the frequency domain and these results show the strength of the signal processing to try to differentiate buried materials using GPR, and so can be used in urban planning and geotechnical studies.

  14. The Global Signature of Ocean Wave Spectra

    NASA Astrophysics Data System (ADS)

    Portilla-Yandún, Jesús

    2018-01-01

    A global atlas of ocean wave spectra is developed and presented. The development is based on a new technique for deriving wave spectral statistics, which is applied to the extensive ERA-Interim database from European Centre of Medium-Range Weather Forecasts. Spectral statistics is based on the idea of long-term wave systems, which are unique and distinct at every geographical point. The identification of those wave systems allows their separation from the overall spectrum using the partition technique. Their further characterization is made using standard integrated parameters, which turn out much more meaningful when applied to the individual components than to the total spectrum. The parameters developed include the density distribution of spectral partitions, which is the main descriptor; the identified wave systems; the individual distribution of the characteristic frequencies, directions, wave height, wave age, seasonal variability of wind and waves; return periods derived from extreme value analysis; and crossing-sea probabilities. This information is made available in web format for public use at http://www.modemat.epn.edu.ec/#/nereo. It is found that wave spectral statistics offers the possibility to synthesize data while providing a direct and comprehensive view of the local and regional wave conditions.

  15. Tracing the Pathway from Drift-Wave Turbulence with Broken Symmetry to the Production of Sheared Axial Mean Flow

    NASA Astrophysics Data System (ADS)

    Hong, R.; Li, J. C.; Chakraborty Thakur, S.; Hajjar, R.; Diamond, P. H.; Tynan, G. R.

    2018-05-01

    This study traces the emergence of sheared axial flow from collisional drift-wave turbulence with broken symmetry in a linear plasma device—the controlled shear decorrelation experiment. As the density profile steepens, the axial Reynolds stress develops and drives a radially sheared axial flow that is parallel to the magnetic field. Results show that the nondiffusive piece of the Reynolds stress is driven by the density gradient, results from spectral asymmetry of the turbulence, and, thus, is dynamical in origin. Taken together, these findings constitute the first simultaneous demonstration of the causal link between the density gradient, turbulence, and stress with broken spectral symmetry and the mean axial flow.

  16. Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.

  17. Assuring the required spectroradiometric characteristics of the Fragment multispectral system

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. A.; Kuzmin, V. I.; Mosevnina, L. G.; Popkov, A. V.; Sychev, A. G.; Tarnopolskii, V. I.

    The paper examines methods and equipment for assuring the required spectroradiometric characteristics of the satellite-borne Fragment multispectral scanning system during development, fabrication, and autonomous and complex testing. These characteristics comprise: (1) the integrated sensitivity of the measuring channels to the spectral density of brightness (SDB): (2) the relative spectral sensitivity of the channels; (3) the effective spectral width of the sensitivity intervals and their position in the spectral range; (4) maximum values of SDB measured by the system in each spectral interval of sensitivity; (5) the SNR in each measuring channel; and (6) the relative rms of SDB measurements.

  18. Fault Detection of Rotating Machinery using the Spectral Distribution Function

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    1997-01-01

    The spectral distribution function is introduced to characterize the process leading to faults in rotating machinery. It is shown to be a more robust indicator than conventional power spectral density estimates, but requires only slightly more computational effort. The method is illustrated with examples from seeded gearbox transmission faults and an analytical model of a defective bearing. Procedures are suggested for implementation in realistic environments.

  19. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

    PubMed Central

    Lübbe, Jannis; Temmen, Matthias; Rode, Sebastian; Rahe, Philipp; Kühnle, Angelika

    2013-01-01

    Summary The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip–surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d z at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d Δ f at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip–surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured d z, we predict d Δ f for specific filter settings, a given level of detection-system noise spectral density d z ds and the cantilever-thermal-noise spectral density d z th. We find an excellent agreement between the calculated and measured values for d Δ f. Furthermore, we demonstrate that thermal noise in d Δ f, defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth. PMID:23400758

  20. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy.

    PubMed

    Lübbe, Jannis; Temmen, Matthias; Rode, Sebastian; Rahe, Philipp; Kühnle, Angelika; Reichling, Michael

    2013-01-01

    The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip-surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d(z) at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d(Δ) (f) at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip-surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured d(z), we predict d(Δ) (f) for specific filter settings, a given level of detection-system noise spectral density d(z) (ds) and the cantilever-thermal-noise spectral density d(z) (th). We find an excellent agreement between the calculated and measured values for d(Δ) (f). Furthermore, we demonstrate that thermal noise in d(Δ) (f), defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth.

  1. Détection des transitions lithologiques par l'analyse de la composante fractale des diagraphies par transformée continue en ondelettes

    NASA Astrophysics Data System (ADS)

    Zaourar, Naima; Hamoudi, Mohamed; Briqueu, Louis

    2006-06-01

    The frequency analysis of many log data permits to verify that their stochastic component show 'power-law-type' spectral densities, characteristic of 1/f noise. They can be modelled by fractional Brownian motions. Continuous Wavelet Transformation (CWT) provides us with very efficient methods to determine the local spectral exponents of these scaling laws. These new attributes are related to the local fractality of these signals. We first present some theoretical results and an application to a fractional Brownian motion. The second application concerns a dataset recorded in the MAR203 borehole. We show that clustering of these new pseudo-logs leads to a good resolution between different lithofacies. To cite this article: N. Zaourar et al., C. R. Geoscience 338 (2006).

  2. The use and misuse of statistical analyses. [in geophysics and space physics

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.

    1983-01-01

    The statistical techniques most often used in space physics include Fourier analysis, linear correlation, auto- and cross-correlation, power spectral density, and superposed epoch analysis. Tests are presented which can evaluate the significance of the results obtained through each of these. Data presented without some form of error analysis are frequently useless, since they offer no way of assessing whether a bump on a spectrum or on a superposed epoch analysis is real or merely a statistical fluctuation. Among many of the published linear correlations, for instance, the uncertainty in the intercept and slope is not given, so that the significance of the fitted parameters cannot be assessed.

  3. A novel linear physical model for remote sensing of snow wetness and snow density using the visible and infrared bands

    NASA Astrophysics Data System (ADS)

    Varade, D. M.; Dikshit, O.

    2017-12-01

    Modeling and forecasting of snowmelt runoff are significant for understanding the hydrological processes in the cryosphere which requires timely information regarding snow physical properties such as liquid water content and density of snow in the topmost layer of the snowpack. Both the seasonal runoffs and avalanche forecasting are vastly dependent on the inherent physical characteristics of the snowpack which are conventionally measured by field surveys in difficult terrains at larger impending costs and manpower. With advances in remote sensing technology and the increase in the availability of satellite data, the frequency and extent of these surveys could see a declining trend in future. In this study, we present a novel approach for estimating snow wetness and snow density using visible and infrared bands that are available with most multi-spectral sensors. We define a trapezoidal feature space based on the spectral reflectance in the near infrared band and the Normalized Differenced Snow Index (NDSI), referred to as NIR-NDSI space, where dry snow and wet snow are observed in the left diagonal upper and lower right corners, respectively. The corresponding pixels are extracted by approximating the dry and wet edges which are used to develop a linear physical model to estimate snow wetness. Snow density is then estimated using the modeled snow wetness. Although the proposed approach has used Sentinel-2 data, it can be extended to incorporate data from other multi-spectral sensors. The estimated values for snow wetness and snow density show a high correlation with respect to in-situ measurements. The proposed model opens a new avenue for remote sensing of snow physical properties using multi-spectral data, which were limited in the literature.

  4. Spectral Analysis and Computation of Effective Diffusivities for Steady Random Flows

    DTIC Science & Technology

    2016-04-28

    even in the motion of sea ice floes influenced by winds and ocean currents. The long time, large scale behavior of such systems is equivalent to an...flow plays a key role in many important processes in the global climate system [55] and Earth’s ecosys- tems [14]. Advection of geophysical fluids...HOMOGENIZATION OF THE ADVECTION-DIFFUSION EQUATION The dispersion of a cloud of passive scalars with density φ diffusing with molecular dif- fusivity ε and

  5. Vibrational spectroscopy of resveratrol

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  6. Computational and spectral studies of 6-phenylazo-3-(p-tolyl)-2H-chromen-2-one

    NASA Astrophysics Data System (ADS)

    Manimekalai, A.; Vijayalakshmi, N.

    2015-02-01

    6-Phenylazo-3-(p-tolyl)-2H-chromen-2-one 4 was prepared and characterized by IR, 1H, and 13C NMR spectral studies. The optimized structure of the chromen-2-one 4 was investigated by the Gaussian 03 B3LYP density functional method calculations at 6-31G(d,p) basis set. The gauge-independent atomic orbital (GIAO) 13C and 1H chemical shift calculations for the synthesized chromen-2-one in CDCl3 were also made by the same method. The computed IR frequencies of the chromen-2-one and the corresponding vibrational assignments were analyzed by means of potential energy distribution (PED%) calculation using vibrational energy distribution analysis (VEDA) program. The first order hyperpolarizability (βtot), polarizability (α) and dipole moment (μ) were calculated using 6-311G(d,p) basis set and the nonlinear optical (NLO) properties are also addressed theoretically. Stability of the chromen-2-one 4 molecule has been analyzed by calculating the intramolecular charge transfer using natural bond order (NBO) analysis. The molecular electrostatic potentials, HOMO-LUMO energy gap and geometrical parameters were also computed. Topological properties of the electronic charge density in chromen-2-one 4 were analyzed employing the Bader's Atoms in Molecule (AIM) theory which indicated the presence of intramolecular hydrogen bond in the molecule.

  7. Computational and spectral studies of 6-phenylazo-3-(p-tolyl)-2H-chromen-2-one.

    PubMed

    Manimekalai, A; Vijayalakshmi, N

    2015-02-05

    6-Phenylazo-3-(p-tolyl)-2H-chromen-2-one 4 was prepared and characterized by IR, (1)H, and (13)C NMR spectral studies. The optimized structure of the chromen-2-one 4 was investigated by the Gaussian 03 B3LYP density functional method calculations at 6-31G(d,p) basis set. The gauge-independent atomic orbital (GIAO) (13)C and (1)H chemical shift calculations for the synthesized chromen-2-one in CDCl3 were also made by the same method. The computed IR frequencies of the chromen-2-one and the corresponding vibrational assignments were analyzed by means of potential energy distribution (PED%) calculation using vibrational energy distribution analysis (VEDA) program. The first order hyperpolarizability (βtot), polarizability (α) and dipole moment (μ) were calculated using 6-311G(d,p) basis set and the nonlinear optical (NLO) properties are also addressed theoretically. Stability of the chromen-2-one 4 molecule has been analyzed by calculating the intramolecular charge transfer using natural bond order (NBO) analysis. The molecular electrostatic potentials, HOMO-LUMO energy gap and geometrical parameters were also computed. Topological properties of the electronic charge density in chromen-2-one 4 were analyzed employing the Bader's Atoms in Molecule (AIM) theory which indicated the presence of intramolecular hydrogen bond in the molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Clustering the Orion B giant molecular cloud based on its molecular emission.

    PubMed

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. A clustering analysis based only on the J = 1 - 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes ( n H ~ 100 cm -3 , ~ 500 cm -3 , and > 1000 cm -3 ), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 - 0 line of HCO + and the N = 1 - 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO + and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO + intensity ratio in UV-illuminated regions. Finer distinctions in density classes ( n H ~ 7 × 10 3 cm -3 ~ 4 × 10 4 cm -3 ) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO + (1 - 0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers.

  9. UAV hyperspectral and lidar data analysis for vegetation applications

    NASA Astrophysics Data System (ADS)

    Sankey, Temuulen; Sankey, Joel; Donager, Jonathon

    2017-04-01

    High spatial and spectral resolution remote sensing data are critically needed to classify forest vegetation and measure their structure at the level of individual species and canopies. Here we test high-resolution lidar and hyperspectral data from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone with a gradient of vegetation and topography in northern Arizona, USA. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signature, but different canopy sizes. The lidar data provides estimates of individual tree height (R2=0.90; RMSE=2.3m) and crown diameter (R2=0.72; RMSE=0.71m) as well as total tree canopy cover (R2=0.87; RMSE=9.5%) and tree density (R2=0.77; RMSE=0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22-50% and 1-3.5 trees/cell, respectively. The lidar data also produces high accuracy DEM (R2=0.95; RMSE=0.43m). The lidar and hyperspectral sensors and methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring ecosystem changes.

  10. Flame analysis using image processing techniques

    NASA Astrophysics Data System (ADS)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  11. Quantification of fibre polymerization through Fourier space image analysis

    PubMed Central

    Nekouzadeh, Ali; Genin, Guy M.

    2011-01-01

    Quantification of changes in the total length of randomly oriented and possibly curved lines appearing in an image is a necessity in a wide variety of biological applications. Here, we present an automated approach based upon Fourier space analysis. Scaled, band-pass filtered power spectral densities of greyscale images are integrated to provide a quantitative measurement of the total length of lines of a particular range of thicknesses appearing in an image. A procedure is presented to correct for changes in image intensity. The method is most accurate for two-dimensional processes with fibres that do not occlude one another. PMID:24959096

  12. Using color as a proxy for symbiont density to assess health in the facultatively symbiotic northern coral, Astrangia poculata

    NASA Astrophysics Data System (ADS)

    Seballos, R.; Burmester, E. M.; Rotjan, R. D.

    2016-02-01

    Unlike most tropical corals, the northern star coral, Astrangia poculata, can survive and thrive with and without its photosynthetic endosymbionts, Symbiodinium psygmophilum. The degree of symbiosis is dependent on symbiont cell density, but the measurement of cell density is de facto destructive. We therefore explored the use of color (RGB) as a non-destructive proxy for symbiont state, building on the methods of Dimond and Carrington (2008). RGB color values, derived from a custom image analysis tool built in Matlab, were used to determine the inferred chlorophyll density of corals throughout an 8 week period. We found that non-destructive color analysis was a good metric to describe symbiotic state. To explore this method in an experimental context, we manipulated the impact of host condition (fed vs. starved) on the likelihood of wound healing in both symbiotic and aposymbiotic states. No difference was observed between either wounding or nutrition treatments, indicating that symbiotic state is likely controlled by other factors. In tropical corals, assessing the breakdown of symbiosis is an important predictor of holobiont stress, and colorimetric methods have been used to assess the extent of bleaching. Our method instead explores the spectral quality and extent of pigmentation to infer chlorophyll densities and symbiont cell densities, thereby extending the use of nondestructive methods to explore the strength of symbiosis.

  13. Temporal studies of black hole X-ray transients during outburst decay

    NASA Astrophysics Data System (ADS)

    Kalemci, Emrah

    Galactic black holes (GBH) are a class of astrophysical sources with X-ray emission that is powered by accretion from a companion star. An important goal of GBH research is to understand the accretion structure and the nature of the variability of these systems. The GBHs sometimes show significant changes in the X-ray emission properties, and these changes are called state transitions. The transitions are believed to be caused by variation of the mass accretion rate and changes in accretion geometry. Thus, their study provides valuable information on the nature of the accretion structure. In this thesis work, I present results from studying the spectral and temporal evolution of all GBH transients that have been observed with NASA's Rossi X-ray Timing Explorer during outburst decay. I explore the physical conditions before, during and after the state transition, characterize the quasi-periodic oscillations (QPO) and continuum of power spectral density (PSD) in different energy bands, and study the correlations between spectral and temporal fit parameters. I also analyze the evolution of the cross- spectral parameters during and after the transition. I show that the appearance of the broad band variability is coincident with an increase of power-law flux. The evolution of the characteristic frequencies and the spectral parameters after the transition are consistent with retreating of the inner accretion disk. The energy dependent PSD analysis shows that the level of variability increases with energy when there is significant soft flux from the optically thick accretion disk. The variability level also increases with energy if the absorption column density to the source is high. This may be a result of small angle scatterings of lower energy X-ray photons with the ISM dust around these sources. I find global correlations between the spectral index and three temporal fit parameters: the QPO frequency, the overall level of variability and the integrated time lag. The relation between the spectral index and the time lags are interpreted within the context of the average number of Compton scatterings and the temperature of the scattering medium. During the transitions, the average lag is higher and average coherence is lower. I discuss whether a hybrid accretion model, for which the hot electron corona is the base of an optically thin outflow or a jet, can explain the physical properties during the transition.

  14. Spectral analysis of extinguished sunlight

    NASA Astrophysics Data System (ADS)

    Zagury, Frédéric; Goutail, Florence

    2003-08-01

    SAOZ (Système d'Analyse par Observation Zénitale) is a balloon-borne experiment which determines the column density of several molecular species from the visible spectrum of sunlight. We will use sequence of spectra collected during a sunset to discuss atmospheric extinction, and the nature of the radiation field in the atmosphere. The radiation field in the atmosphere is, from daylight to sunset, and with a clear sky, dominated by light coming from the direction of the sun. This light is composed of direct sunlight (extinguished by the gas), and of sunlight forward-scattered by aerosols. As the sun sets, aerosol scattering is first perceived towards the UV. It progressively replaces direct sunlight over all of the spectrum. Our analysis permits fixing the main parameters of each component of the radiation field at any time. The fits we find for the extinction of sunlight in the atmosphere must also apply to starlight. Thus, the present work can be used in astronomy to correct ground-based spectral observations for extinction in the atmosphere.

  15. Synthesis, spectral characterization and density functional theory exploration of 1-(quinolin-3-yl)piperidin-2-ol

    NASA Astrophysics Data System (ADS)

    Suresh, M.; Syed Ali Padusha, M.; Bharanidharan, S.; Saleem, H.; Dhandapani, A.; Manivarman, S.

    2015-06-01

    The experimental and theoretical vibrational frequencies of a newly synthesized compound, namely 1-(quinolin-3-yl)piperidin-2-ol (QPPO) are analyzed. The experimental FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) of the molecule in solid phase have been recorded. The optimized molecular structure, vibrational assignments of QPPO have been investigated experimentally and theoretically using Gaussian03W software package. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The first order hyperpolarizability (β0) is calculated to find its character in non-linear optics. Gauge including atomic orbital (GIAO) method is used to calculate 1H NMR chemical shift calculations were carried out and compared with experimental data. The electronic properties like UV-Visible spectral analysis and HOMO-LUMO energies were reported. The energy gap shows that the charge transfer occurs within the molecule. Thermodynamic parameters of the title compound were calculated at various temperatures.

  16. Simulation of UV atomic radiation for application in exhaust plume spectrometry

    NASA Astrophysics Data System (ADS)

    Wallace, T. L.; Powers, W. T.; Cooper, A. E.

    1993-06-01

    Quantitative analysis of exhaust plume spectral data has long been a goal of developers of advanced engine health monitoring systems which incorporate optical measurements of rocket exhaust constituents. Discussed herein is the status of present efforts to model and predict atomic radiation spectra and infer free-atom densities from emission/absorption measurements as part of the Optical Plume Anomaly Detection (OPAD) program at Marshall Space Flight Center (MSFC). A brief examination of the mathematical formalism is provided in the context of predicting radiation from the Mach disk region of the SSME exhaust flow at nominal conditions during ground level testing at MSFC. Computational results are provided for Chromium and Copper at selected transitions which indicate a strong dependence upon broadening parameter values determining the absorption-emission line shape. Representative plots of recent spectral data from the Stennis Space Center (SSC) Diagnostic Test Facility (DTF) rocket engine are presented and compared to numerical results from the present self-absorbing model; a comprehensive quantitative analysis will be reported at a later date.

  17. Spectral analysis of Chinese language: Co-occurrence networks from four literary genres

    NASA Astrophysics Data System (ADS)

    Liang, Wei; Chen, Guanrong

    2016-05-01

    The eigenvalues and eigenvectors of the adjacency matrix of a network contain essential information about its topology. For each of the Chinese language co-occurrence networks constructed from four literary genres, i.e., essay, popular science article, news report, and novel, it is found that the largest eigenvalue depends on the network size N, the number of edges, the average shortest path length, and the clustering coefficient. Moreover, it is found that their node-degree distributions all follow a power-law. The number of different eigenvalues, Nλ, is found numerically to increase in the manner of Nλ ∝ log N for novel and Nλ ∝ N for the other three literary genres. An ;M; shape or a triangle-like distribution appears in their spectral densities. The eigenvector corresponding to the largest eigenvalue is mostly localized to a node with the largest degree. For the above observed phenomena, mathematical analysis is provided with interpretation from a linguistic perspective.

  18. Classification of the Correct Quranic Letters Pronunciation of Male and Female Reciters

    NASA Astrophysics Data System (ADS)

    Khairuddin, Safiah; Ahmad, Salmiah; Embong, Abdul Halim; Nur Wahidah Nik Hashim, Nik; Altamas, Tareq M. K.; Nuratikah Syd Badaruddin, Syarifah; Shahbudin Hassan, Surul

    2017-11-01

    Recitation of the Holy Quran with the correct Tajweed is essential for every Muslim. Islam has encouraged Quranic education since early age as the recitation of the Quran correctly will represent the correct meaning of the words of Allah. It is important to recite the Quranic verses according to its characteristics (sifaat) and from its point of articulations (makhraj). This paper presents the identification and classification analysis of Quranic letters pronunciation for both male and female reciters, to obtain the unique representation of each letter by male as compared to female expert reciters. Linear Discriminant Analysis (LDA) was used as the classifier to classify the data with Formants and Power Spectral Density (PSD) as the acoustic features. The result shows that linear classifier of PSD with band 1 and band 2 power spectral combinations gives a high percentage of classification accuracy for most of the Quranic letters. It is also shown that the pronunciation by male reciters gives better result in the classification of the Quranic letters.

  19. Unveiling the X-ray/UV properties of disk winds in active galactic nuclei using broad and mini-broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Giustini, M.

    2016-05-01

    We present the results of the uniform analysis of 46 XMM-Newton observations of six BAL and seven mini-BAL QSOs belonging to the Palomar-Green Quasar catalogue. Moderate-quality X-ray spectroscopy was performed with the EPIC-pn, and allowed to characterise the general source spectral shape to be complex, significantly deviating from a power law emission. A simple power law analysis in different energy bands strongly suggests absorption to be more significant than reflection in shaping the spectra. If allowing for the absorbing gas to be either partially covering the continuum emission source or to be ionised, large column densities of the order of 1022-1024 cm-2 are inferred. When the statistics was high enough, virtually every source was found to vary in spectral shape on various time scales, from years to hours. All in all these observational results are compatible with radiation driven accretion disk winds shaping the spectra of these intriguing cosmic sources.

  20. Spectral algorithm for non-destructive damage localisation: Application to an ancient masonry arch model

    NASA Astrophysics Data System (ADS)

    Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello

    2017-02-01

    Structural monitoring and vibration-based damage identification methods are fundamental tools for condition assessment and early-stage damage identification, especially when dealing with the conservation of historical constructions and the maintenance of strategic civil structures. However, although the substantial advances in the field, several issues must still be addressed to broaden the application range of such tools and to assert their reliability. This study deals with the experimental validation of a novel method for non-destructive damage identification purposes. This method is based on the use of spectral output signals and has been recently validated by the authors through a numerical simulation. After a brief insight into the basic principles of the proposed approach, the spectral-based technique is applied to identify the experimental damage induced on a masonry arch through statically increasing loading. Once the direct and cross spectral density functions of the nodal response processes are estimated, the system's output power spectrum matrix is built and decomposed in eigenvalues and eigenvectors. The present study points out how the extracted spectral eigenparameters contribute to the damage analysis allowing to detect the occurrence of damage and to locate the target points where the cracks appear during the experimental tests. The sensitivity of the spectral formulation to the level of noise in the modal data is investigated and discussed. As a final evaluation criterion, the results from the spectrum-driven method are compared with the ones obtained from existing non-model based damage identification methods.

  1. A clumpy stellar wind and luminosity-dependent cyclotron line revealed by the first Suzaku observation of the high-mass X-ray binary 4U 1538–522

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemphill, Paul B.; Rothschild, Richard E.; Markowitz, Alex

    2014-09-01

    We present results from the first Suzaku observation of the high-mass X-ray binary 4U 1538–522. The broadband spectral coverage of Suzaku allows for a detailed spectral analysis, characterizing the cyclotron resonance scattering feature at 23.0 ± 0.4 keV and the iron Kα line at 6.426 ± 0.008 keV, as well as placing limits on the strengths of the iron Kβ line and the iron K edge. We track the evolution of the spectral parameters both in time and in luminosity, notably finding a significant positive correlation between cyclotron line energy and luminosity. A dip and spike in the light curvemore » is shown to be associated with an order-of-magnitude increase in column density along the line of sight, as well as significant variation in the underlying continuum, implying the accretion of a overdense region of a clumpy stellar wind. We also present a phase-resolved analysis, with most spectral parameters of interest showing significant variation with phase. Notably, both the cyclotron line energy and the iron Kα line intensity vary significantly with phase, with the iron line intensity significantly out of phase with the pulse profile. We discuss the implications of these findings in the context of recent work in the areas of accretion column physics and cyclotron resonance scattering feature formation.« less

  2. Fine structure of the low-frequency spectra of heart rate and blood pressure

    PubMed Central

    Kuusela, Tom A; Kaila, Timo J; Kähönen, Mika

    2003-01-01

    Background The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R–R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time–frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order – the most crucial factor when using this method – with the help of FFT and WVD methods. Results Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 ± 0.003 (mean ± SD) Hz, 0.076 ± 0.012 Hz, and 0.117 ± 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP–RRI phase relationship was found. Conclusion The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04–0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological and computational questions regarding the usability and validity of the low-frequency spectral band when estimating sympathetic activity and baroreflex gain. PMID:14552660

  3. Fine structure of the low-frequency spectra of heart rate and blood pressure.

    PubMed

    Kuusela, Tom A; Kaila, Timo J; Kähönen, Mika

    2003-10-13

    The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R-R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time-frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order--the most crucial factor when using this method--with the help of FFT and WVD methods. Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 +/- 0.003 (mean +/- SD) Hz, 0.076 +/- 0.012 Hz, and 0.117 +/- 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP-RRI phase relationship was found. The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04-0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological and computational questions regarding the usability and validity of the low-frequency spectral band when estimating sympathetic activity and baroreflex gain.

  4. Absolute Power Spectral Density Changes in the Magnetoencephalographic Activity During the Transition from Childhood to Adulthood.

    PubMed

    Gómez, Carlos M; Rodríguez-Martínez, Elena I; Fernández, Alberto; Maestú, Fernando; Poza, Jesús; Gómez, Carlos

    2017-01-01

    The aim of this study was to define the pattern of reduction in absolute power spectral density (PSD) of magnetoencephalography (MEG) signals throughout development. Specifically, we wanted to explore whether the human skull's high permeability for electromagnetic fields would allow us to question whether the pattern of absolute PSD reduction observed in the human electroencephalogram is due to an increase in the skull's resistive properties with age. Furthermore, the topography of the MEG signals during maturation was explored, providing additional insights about the areas and brain rhythms related to late maturation in the human brain. To attain these goals, spontaneous MEG activity was recorded from 148 sensors in a sample of 59 subjects divided into three age groups: children/adolescents (7-14 years), young adults (17-20 years) and adults (21-26 years). Statistical testing was carried out by means of an analysis of variance (ANOVA), with "age group" as between-subject factor and "sensor group" as within-subject factor. Additionally, correlations of absolute PSD with age were computed to assess the influence of age on the spectral content of MEG signals. Results showed a broadband PSD decrease in frontal areas, which suggests the late maturation of this region, but also a mild increase in high frequency PSD with age in posterior areas. These findings suggest that the intensity of the neural sources during spontaneous brain activity decreases with age, which may be related to synaptic pruning.

  5. Spectroscopic studies (FT-IR, FT-Raman, UV-Visible), normal co-ordinate analysis, first-order hyperpolarizability and HOMO, LUMO studies of 3,4-dichlorobenzophenone by using Density Functional Methods.

    PubMed

    Venkata Prasad, K; Samatha, K; Jagadeeswara Rao, D; Santhamma, C; Muthu, S; Mark Heron, B

    2015-01-01

    The vibrational frequencies of 3,4-dichlorobenzophenone (DCLBP) were obtained from the FT-IR and Raman spectral data, and evaluated based on the Density Functional Theory using the standard method B3LYP with 6-311+G(d,p) as the basis set. On the basis of potential energy distribution together with the normal-co-ordinate analysis and following the scaled quantum mechanical force methodology, the assignments for the various frequencies were described. The values of the electric dipole moment (μ) and the first-order hyperpolarizability (β) of the molecule were computed. The UV-absorption spectrum was also recorded to study the electronic transitions. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The NBO analysis, to study the intramolecular hyperconjugative interactions, was carried out. Mulliken's net charges were evaluated. The MEP and thermodynamic properties were also calculated. The electron density-based local reactivity descriptor, such as Fukui functions, was calculated to explain the chemical selectivity or reactivity site in 3,4-dichlorobenzophenone. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Forecasting and Hindcasting Waves In and Near the Marginal Ice Zone: Wave Modeling and the ONR Sea State Field Experiment

    DTIC Science & Technology

    2018-04-12

    non-directional) wave spectra, but we consider the energy at high frequencies to be unreliable, so we only use significant waveheight Hs and dominant...spectral density, N=E/s), which is a function of wavenumber or frequency (k or s), direction (θ), space (x,y), and time (t), with spectral density...Elgar 1987). As the spectra are now co-located in time, space , and frequency , the inversion is simply a minimization process for |logVR(6jvH>w(9

  7. Optical spectrum of proflavine and its ions

    NASA Astrophysics Data System (ADS)

    Bonaca, A.; Bilalbegović, G.

    2010-06-01

    Motivated by possible astrophysical and biological applications we calculate visible and near UV spectral lines of proflavine (C13H11N3, 3,6-diaminoacridine) in vacuum, as well as its anion, cation, and dication. The pseudopotential density functional and time-dependent density functional methods are used. We find a good agreement in spectral line positions calculated by two real-time propagation methods and the Lanczos chain method. Spectra of proflavine and its ions show characteristic UV lines which are good candidates for a detection of these molecules in interstellar space and various biological processes.

  8. Non-equilibrium quantum phase transition via entanglement decoherence dynamics.

    PubMed

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-10-07

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.

  9. Measurement of wave-front aberration in a small telescope remote imaging system using scene-based wave-front sensing

    DOEpatents

    Poyneer, Lisa A; Bauman, Brian J

    2015-03-31

    Reference-free compensated imaging makes an estimation of the Fourier phase of a series of images of a target. The Fourier magnitude of the series of images is obtained by dividing the power spectral density of the series of images by an estimate of the power spectral density of atmospheric turbulence from a series of scene based wave front sensor (SBWFS) measurements of the target. A high-resolution image of the target is recovered from the Fourier phase and the Fourier magnitude.

  10. Investigating the Role of Gravity Wave on Equatorial Ionospheric Irregularities using SABER and C/NOFS Satellites Observations

    NASA Astrophysics Data System (ADS)

    Nigussie, M.; Damtie, B.; Moldwin, M.; Yizengaw, E.; Tesema, F.; Tebabal, A.

    2017-12-01

    Theoretical simulations have shown that gravity wave (GW) seeded perturbations amplified by Rayleigh-Taylor Instability (RTI) results in ESF (equatorial spread F); however, there have been limited observational studies using simultaneous observations of GW and ionospheric parameters. In this paper, for the fist time, simultaneous atmospheric temperature perturbation profiles that are due to GWs obtained from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on-board the TIMED satellite and equatorial in -situ ion density and vertical plasma drift velocity observations with and without ESF activity obtained from C/NOFS satellites are used to investigate the effect of GW on the generation of ESF. The horizontal and vertical wavelengths of ionospheric oscillations and GWs respectively have been estimated applying wavelet transforms. Cross wavelet analysis has also been applied between two closely observed profiles of temperature perturbations to estimate the horizontal wavelength of the GWs. Moreover, vertically propagating GWs that dissipate energy at the upper atmosphere have been investigated using spectral analysis compared with theoretical results. The analysis show that when the ion density shows strong post sunset irregularity between 20 and 24 LT, vertically upward drift velocities increase between 17 and 19 LT, but it becomes vertically downward when the ion density shows smooth variation. The horizontal wavelengths estimated from C/NOFS and SABER observations show excellent agreement when ion density observations show strong fluctuations; otherwise, they have poor agreement. It is also found that altitude profiles of potential energy of GW increases up to 90 km and then decreases significantly. It is found that the vertical wavelength of GW, corresponding to the dominant spectral power, ranges from about 7 km to 20 km regardless of the situation of the ionosphere; however, GWs with vertical wavelengths between 100 m to 1 km are found to be saturated between 90 and 110 km whether the ionosphere exhibits irregularity or not. The above results imply that ESF is due to the amplification of perturbations as a result of energy dissipation from GW with vertical wavelength 100 m to 1 km by the RTI that is mainly controlled by Pre-Reversal Enhancement of the zonal electric field.

  11. Studying the location of SACs and DACs regions in the environment of hot emission stars

    NASA Astrophysics Data System (ADS)

    Antoniou, A.; Danezis, E.; Lyratzi, E.; Popović, L. Č.; Dimitrijević, M. S.; Theodossiou, E.

    Hot emission stars (Oe and Be stars) present complex spectral line profiles, which are formed by a number of DACs and/or SACs. In order to explain and reproduce theoretically these complex line profiles we use the GR model (Gauss-Rotation model). This model presupposes that the regions, where the spectral lines are created, consist of a number of independent and successive absorbing or emitting density regions of matter. Here we are testing a new approach of the GR model, which supposes that the independent density regions are not successive. We use this new approach in the spectral lines of some Oe and Be stars and we compare the results of this method with the results deriving from the classical GR model that supposes successive regions.

  12. Spectroscopy peculiarities of thermal plasma of electric arc discharge between electrodes with Zn admixtures

    NASA Astrophysics Data System (ADS)

    Semenyshyn, R. V.; Veklich, A. N.; Babich, I. L.; Boretskij, V. F.

    2014-10-01

    Plasma of the free burning electric arc between Ag-SnO2-ZnO composite electrodes as well as brass electrodes were investigated. The plasma temperature distributions were obtained by Boltzmann plot method involving Cu I, Ag I or Zn I spectral line emissions. The electron density distributions were obtained from the width and from absolute intensity of spectral lines. The laser absorption spectroscopy was used for measurement of copper atom concentration in plasma. Plasma equilibrium composition was calculated using two independent groups of experimental values (temperature and copper atom concentration, temperature and electron density). It was found that plasma of the free burning electric arc between brass electrodes is in local thermodynamical equilibrium. The experimental verification of the spectroscopic data of Zn I spectral lines was carried out.

  13. Broadband and tunable optical parametric generator for remote detection of gas molecules in the short and mid-infrared.

    PubMed

    Lambert-Girard, Simon; Allard, Martin; Piché, Michel; Babin, François

    2015-04-01

    The development of a novel broadband and tunable optical parametric generator (OPG) is presented. The OPG properties are studied numerically and experimentally in order to optimize the generator's use in a broadband spectroscopic LIDAR operating in the short and mid-infrared. This paper discusses trade-offs to be made on the properties of the pump, crystal, and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse-to-pulse stability and optimize the pulse spectral density. A numerical model shows excellent agreement with output power measurements; the model predicts that a pump having a large number of longitudinal modes improves conversion efficiency and pulse stability.

  14. Modified Spectral Fatigue Methods for S-N Curves With MIL-HDBK-5J Coefficients

    NASA Technical Reports Server (NTRS)

    Irvine, Tom; Larsen, Curtis

    2016-01-01

    The rainflow method is used for counting fatigue cycles from a stress response time history, where the fatigue cycles are stress-reversals. The rainflow method allows the application of Palmgren-Miner's rule in order to assess the fatigue life of a structure subject to complex loading. The fatigue damage may also be calculated from a stress response power spectral density (PSD) using the semi-empirical Dirlik, Single Moment, Zhao-Baker and other spectral methods. These methods effectively assume that the PSD has a corresponding time history which is stationary with a normal distribution. This paper shows how the probability density function for rainflow stress cycles can be extracted from each of the spectral methods. This extraction allows for the application of the MIL-HDBK-5J fatigue coefficients in the cumulative damage summation. A numerical example is given in this paper for the stress response of a beam undergoing random base excitation, where the excitation is applied separately by a time history and by its corresponding PSD. The fatigue calculation is performed in the time domain, as well as in the frequency domain via the modified spectral methods. The result comparison shows that the modified spectral methods give comparable results to the time domain rainflow counting method.

  15. Imaging the density distributions at the regional scale using full waveform and gravity data inversion - Application to the Pyrenees

    NASA Astrophysics Data System (ADS)

    Martin, Roland; Chevrot, Sébastien; Wang, Yi; Spangenberg, Hannah; Goubet, Marie; Monteiller, Vadim; Komatitsch, Dimitri; Seoane, Lucia; Dufréchou, Grégory

    2017-04-01

    We present a hybrid inversion method that allows us to image density distributions at the regional scale using both seismic and gravity data. One main goal is to obtain densities and seismic wave velocities (P and S) in the lithosphere with a fine resolution to get important constraints on the mineralogic composition and thermal state of the lithosphere. In the context of the Pyrenees (located between Spain and France), accurate Vp and Vs seismic velocity models are computed first on a 3D spectral element grid at the scale of the Pyrenees by inverting teleseismic full waveforms. In a second step, Vp velocities are mapped to densities using empirical relations to build an a priori density model. BGI and BRGM Bouguer gravity anomaly data sets are then inverted on the same 3D spectral element grid as the Vp model at a resolution of 1-2 km by using high-order numerical integration formulae. Solutions are compared to those obtained using classical semi-analytical techniques. This procedure opens the possibility to invert both teleseismic and gravity data on the same finite-element grid. It can handle topography of the free surface in the same spectral-element distorted mesh that is used to solve the wave equation, without performing extra interpolations between different grids and models. WGS84 curvature, SRTM or ETOPO1 topographies are used.

  16. Spectroscopic Study of a Dark Lane and a Cool Loop in a Solar Limb Active Region by Hinode/EIS

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Sun; Imada, S.; Moon, Y.-J.; Lee, Jin-Yi

    2014-01-01

    We investigated a cool loop and a dark lane over a limb active region on 2007 March 14 using the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in the coronal spectral lines and is rooted on a bright point. We examined their electron densities, Doppler velocities, and nonthermal velocities as a function of distance from the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII, and Fe XIV spectra. We also compared the observed density scale heights with the calculated scale heights from each peak formation temperatures of the spectral lines under the hydrostatic equilibrium. We noted that the observed density scale heights of the cool loop are consistent with the calculated heights, with the exception of one observed cooler temperature; we also found that the observed scale heights of the dark lane are much lower than their calculated scale heights. The nonthermal velocity in the cool loop slightly decreases along the loop, while nonthermal velocity in the dark lane sharply falls off with height. Such a decrease in the nonthermal velocity may be explained by wave damping near the solar surface or by turbulence due to magnetic reconnection near the bright point.

  17. A numerical spectral approach to solve the dislocation density transport equation

    NASA Astrophysics Data System (ADS)

    Djaka, K. S.; Taupin, V.; Berbenni, S.; Fressengeas, C.

    2015-09-01

    A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme.

  18. Development of Jet Noise Power Spectral Laws Using SHJAR Data

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2009-01-01

    High quality jet noise spectral data measured at the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent and convergent-divergent axisymmetric nozzles. Following the work of Viswanathan, velocity power factors are estimated using a least squares fit on spectral power density as a function of jet temperature and observer angle. The regression parameters are scrutinized for their uncertainty within the desired confidence margins. As an immediate application of the velocity power laws, spectral density in supersonic jets are decomposed into their respective components attributed to the jet mixing noise and broadband shock associated noise. Subsequent application of the least squares method on the shock power intensity shows that the latter also scales with some power of the shock parameter. A modified shock parameter is defined in order to reduce the dependency of the regression factors on the nozzle design point within the uncertainty margins of the least squares method.

  19. Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb

    NASA Astrophysics Data System (ADS)

    Geng, Yong; Huang, Xiatao; Cui, Wenwen; Ling, Yun; Xu, Bo; Zhang, Jin; Yi, Xingwen; Wu, Baojian; Huang, Shu-Wei; Qiu, Kun; Wong, Chee Wei; Zhou, Heng

    2018-05-01

    We demonstrate seamless channel multiplexing and high bitrate superchannel transmission of coherent optical orthogonal-frequency-division-multiplexing (CO-OFDM) data signals utilizing a dissipative Kerr soliton (DKS) frequency comb generated in an on-chip microcavity. Aided by comb line multiplication through Nyquist pulse modulation, the high stability and mutual coherence among mode-locked Kerr comb lines are exploited for the first time to eliminate the guard intervals between communication channels and achieve full spectral density bandwidth utilization. Spectral efficiency as high as 2.625 bit/Hz/s is obtained for 180 CO-OFDM bands encoded with 12.75 Gbaud 8-QAM data, adding up to total bitrate of 6.885 Tb/s within 2.295 THz frequency comb bandwidth. Our study confirms that high coherence is the key superiority of Kerr soliton frequency combs over independent laser diodes, as a multi-spectral coherent laser source for high-bandwidth high-spectral-density transmission networks.

  20. Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study

    NASA Astrophysics Data System (ADS)

    Szabo, A.; Koval, A.; Merka, J.; Narock, T. W.

    2010-12-01

    The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the ~2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions . The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed.

  1. Measurement of the aerothermodynamic state in a high enthalpy plasma wind-tunnel flow

    NASA Astrophysics Data System (ADS)

    Hermann, Tobias; Löhle, Stefan; Zander, Fabian; Fasoulas, Stefanos

    2017-11-01

    This paper presents spatially resolved measurements of absolute particle densities of N2, N2+, N, O, N+ , O+ , e- and excitation temperatures of electronic, rotational and vibrational modes of an air plasma free stream. All results are based on optical emission spectroscopy data. The measured parameters are combined to determine the local mass-specific enthalpy of the free stream. The analysis of the radiative transport, relative and absolute intensities, and spectral shape is used to determine various thermochemical parameters. The model uncertainty of each analysis method is assessed. The plasma flow is shown to be close to equilibrium. The strongest deviations from equilibrium occur for N, N+ and N2+ number densities in the free stream. Additional measurements of the local mass-specific enthalpy are conducted using a mass injection probe as well as a heat flux and total pressure probe. The agreement between all methods of enthalpy determination is good.

  2. Molecular structure, vibrational spectra and DFT molecular orbital calculations (TD-DFT and NMR) of the antiproliferative drug Methotrexate

    NASA Astrophysics Data System (ADS)

    Ayyappan, S.; Sundaraganesan, N.; Aroulmoji, V.; Murano, E.; Sebastian, S.

    2010-09-01

    The FT-IR and FT-Raman spectral studies of the Methotrexate (MTX) were carried out. The equilibrium geometry, various bonding features and harmonic vibrational frequencies of MTX have been investigated with the help of B3LYP density functional theory (DFT) using 6-31G(d) as basis set. Detailed analysis of the vibrational spectra has been made with the aid of theoretically predicted vibrational frequencies. The vibrational analysis confirms the differently acting ring modes, steric repulsion, conjugation and back-donation. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complement with the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Good correlations between the experimental 1H and 13C NMR chemical shifts in DMSO solution and calculated GIAO shielding tensors were found.

  3. Short-Term Variability and Power Spectral Density Analysis of the Radio-Loud Active Galactic Nucleus 3C 390.3

    NASA Astrophysics Data System (ADS)

    Gliozzi, Mario; Papadakis, Iossif E.; Eracleous, Michael; Sambruna, Rita M.; Ballantyne, David R.; Braito, Valentina; Reeves, James N.

    2009-09-01

    We investigate the short-term variability properties and the power spectral density (PSD) of the broad-line radio galaxy (BLRG) 3C 390.3 using observations made by XMM-Newton, RXTE, and Suzaku on several occasions between 2004 October and 2006 December. The main aim of this work is to derive model-independent constraints on the origin of the X-ray emission and on the nature of the central engine in 3C 390.3. On timescales of the order of few hours, probed by uninterrupted XMM-Newton light curves, the flux of 3C 390.3 is consistent with being constant in all energy bands. On longer timescales, probed by the 2-day RXTE and Suzaku observations, the flux variability becomes significant. The latter observation confirms that the spectral variability behavior of 3C 390.3 is consistent with the spectral evolution observed in (radio-quiet) Seyfert galaxies: the spectrum softens as the source brightens. The correlated variability between soft and hard X-rays, observed during the Suzaku exposure and between the two XMM-Newton pointings, taken 1 week apart, argues against scenarios characterized by the presence of two distinct variable components in the 0.5-10 keV X-ray band. A detailed PSD analysis carried out over five decades in frequency suggests the presence of a break at T br = 43+34 -25 days at a 92% confidence level. This is the second tentative detection of a PSD break in a radio-loud, non-jet dominated active galactic nucleus (AGN), after the BLRG 3C 120, and appears to be in general agreement with the relation between T br, M BH, and L bol, followed by Seyfert galaxies. Our results indicate that the X-ray variability properties of 3C 390.3 are broadly consistent with those of radio-quiet AGN, suggesting that the X-ray emission mechanism in 3C 390.3 is similar to that of nearby Seyfert galaxies without any significant contribution from a jet component.

  4. Identification and modification of dominant noise sources in diesel engines

    NASA Astrophysics Data System (ADS)

    Hayward, Michael D.

    Determination of dominant noise sources in diesel engines is an integral step in the creation of quiet engines, but is a process which can involve an extensive series of expensive, time-consuming fired and motored tests. The goal of this research is to determine dominant noise source characteristics of a diesel engine in the near and far-fields with data from fewer tests than is currently required. Pre-conditioning and use of numerically robust methods to solve a set of cross-spectral density equations results in accurate calculation of the transfer paths between the near- and far-field measurement points. Application of singular value decomposition to an input cross-spectral matrix determines the spectral characteristics of a set of independent virtual sources, that, when scaled and added, result in the input cross spectral matrix. Each virtual source power spectral density is a singular value resulting from the decomposition performed over a range of frequencies. The complex relationship between virtual and physical sources is estimated through determination of virtual source contributions to each input measurement power spectral density. The method is made more user-friendly through use of a percentage contribution color plotting technique, where different normalizations can be used to help determine the presence of sources and the strengths of their contributions. Convolution of input measurements with the estimated path impulse responses results in a set of far-field components, to which the same singular value contribution plotting technique can be applied, thus allowing dominant noise source characteristics in the far-field to also be examined. Application of the methods presented results in determination of the spectral characteristics of dominant noise sources both in the near- and far-fields from one fired test, which significantly reduces the need for extensive fired and motored testing. Finally, it is shown that the far-field noise time history of a physically altered engine can be simulated through modification of singular values and recalculation of transfer paths between input and output measurements of previously recorded data.

  5. Analysis of ASTER data for mapping bauxite rich pockets within high altitude lateritic bauxite, Jharkhand, India

    NASA Astrophysics Data System (ADS)

    Guha, Arindam; Singh, Vivek Kr.; Parveen, Reshma; Kumar, K. Vinod; Jeyaseelan, A. T.; Dhanamjaya Rao, E. N.

    2013-04-01

    Bauxite deposits of Jharkhand in India are resulted from the lateritization process and therefore are often associated with the laterites. In the present study, ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) image is processed to delineate bauxite rich pockets within the laterites. In this regard, spectral signatures of lateritic bauxite samples are analyzed in the laboratory with reference to the spectral features of gibbsite (main mineral constituent of bauxite) and goethite (main mineral constituent of laterite) in VNIR-SWIR (visible-near infrared and short wave infrared) electromagnetic domain. The analysis of spectral signatures of lateritic bauxite samples helps in understanding the differences in the spectral features of bauxites and laterites. Based on these differences; ASTER data based relative band depth and simple ratio images are derived for spatial mapping of the bauxites developed within the lateritic province. In order to integrate the complementary information of different index image, an index based principal component (IPC) image is derived to incorporate the correlative information of these indices to delineate bauxite rich pockets. The occurrences of bauxite rich pockets derived from density sliced IPC image are further delimited by the topographic controls as it has been observed that the major bauxite occurrences of the area are controlled by slope and altitude. In addition to above, IPC image is draped over the digital elevation model (DEM) to illustrate how bauxite rich pockets are distributed with reference to the topographic variability of the terrain. Bauxite rich pockets delineated in the IPC image are also validated based on the known mine occurrences and existing geological map of the bauxite. It is also conceptually validated based on the spectral similarity of the bauxite pixels delineated in the IPC image with the ASTER convolved laboratory spectra of bauxite samples.

  6. Development of starch-gelatin complex microspheres as sustained release delivery system

    PubMed Central

    Hari, B. N. Vedha; Praneetha, T.; Prathyusha, T.; Mounika, K.; Devi, D. Ramya

    2012-01-01

    The starch was isolated from jackfruit seeds and evaluated for its preformulation properties, like tapped density, bulk density, and particle size. The fourier transform infrared (FTIR) analysis was done and compared with that of the commercially available starch which confirmed the properties. Using the various concentrations of jackfruit seed starch, the microspheres were prepared, combining with gelatin by ionotropic gelation technique. The developed microspheres were subjected to analysis of particle size, drug content, entrapment efficiency, and percentage yield. The spectral analysis confirmed the presence of drug and absence of interactions. Scanning electron microscope image showed that the particles were in spherical shape with a rough surface. The in vitro drug release in water for 12 hours proved to be in the range of 89 to 100%. The various kinetic models were applied using release data to confirm the mechanism of drug. It was concluded that the jackfruit starch-gelatin microspheres gave satisfactory results and met pharmacopieal limits. PMID:23057005

  7. Characterization of bone microstructure using photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Feng, Ting; Kozloff, Kenneth M.; Xu, Guan; Du, Sidan; Yuan, Jie; Deng, Cheri X.; Wang, Xueding

    2015-03-01

    Osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and deterioration in microarchitecture. This study investigates the feasibility of characterizing bone microstructure by analyzing the frequency spectrum of the photoacoustic signals from the bone. Modeling and numerical simulation of photoacoustic signals and their frequency-domain analysis were performed on trabecular bones with different mineral densities. The resulting quasilinear photoacoustic spectra were fit by linear regression, from which spectral parameter slope can be quantified. The modeling demonstrates that, at an optical wavelength of 685 nm, bone specimens with lower mineral densities have higher slope. Preliminary experiment on osteoporosis rat tibia bones with different mineral contents has also been conducted. The finding from the experiment has a good agreement with the modeling, both demonstrating that the frequency-domain analysis of photoacoustic signals can provide objective assessment of bone microstructure and deterioration. Considering that photoacoustic measurement is non-ionizing, non-invasive, and has sufficient penetration in both calcified and noncalcified tissues, this new technology holds unique potential for clinical translation.

  8. Mid-Infrared Spectroscopy Analysis of the Effects of Erbium, Chromium:Yattrium-Scandium-Gallium-Garnet (Er,Cr:YSGG) Laser Irradiation on Bone Mineral and Organic Components.

    PubMed

    Benetti, Carolina; Ana, Patricia Aparecida; Bachmann, Luciano; Zezell, Denise Maria

    2015-12-01

    The effects of varying the energy density of a high-intensity erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser on the mineral and organic components of bone tissue were evaluated using Fourier transform infrared spectroscopy. Bone samples obtained from the tibias of rabbits were irradiated with five energy densities (3, 6, 8, 12, and 15 J/cm(2)), and the effects on the carbonate to phosphate ratio and in the organic components were compared with those of nonirradiated samples. The increased temperature during the laser irradiation was also measured using infrared thermography to relate the observed spectral changes to the laser thermal effects. The analyses of the infrared spectra suggests that the irradiation with Er,Cr:YSGG promoted changes in bone tissue in both the mineral and organic components that depend on the laser energy density, pointing to the importance of using the proper energy density in clinical procedures.

  9. Raman Spectral Signatures as Conformational Probes of Biomolecules

    NASA Astrophysics Data System (ADS)

    Golan, Amir; Mayorkas, Nitzan; Rosenwaks, Salman; Bar, Ilana

    2009-06-01

    A first application of ionization-loss stimulated Raman spectroscopy (ILSRS) for monitoring the spectral features of four conformers of a gas phase neurotransmitter (2-phenylethylamine) is reported. The Raman spectra of the conformers show bands that uniquely identify the conformational structure of the molecule and are well matched by density functional theory calculations. The measurement of spectral signatures by ILSRS in an extended spectral range, with a relatively convenient laser source, is extremely important, allowing enhanced accessibility to intra- and inter-molecular forces, which are significant in biological structure and activity.

  10. Raman Spectral Signatures as Conformational Probes of Biomolecules

    NASA Astrophysics Data System (ADS)

    Bar, Ilana; Golan, Amir; Mayorkas, Nitzan; Rosenwaks, Salman

    2009-03-01

    A first application of ionization-loss stimulated Raman spectroscopy (ILSRS) monitoring the spectral features of four conformers of a gas phase neurotransmitter (2-phenylethylamine) is reported. The Raman spectra of the conformers show bands that uniquely identify the conformational structure of the molecule and are well matched by density functional theory calculations. The measurement of spectral signatures by ILSRS in an extended spectral range, with a relatively convenient laser source, is extremely important, allowing enhanced accessibility to intra- and inter-molecular forces, which are significant in biological structure and activity.

  11. Modal analysis of 2-D sedimentary basin from frequency domain decomposition of ambient vibration array recordings

    NASA Astrophysics Data System (ADS)

    Poggi, Valerio; Ermert, Laura; Burjanek, Jan; Michel, Clotaire; Fäh, Donat

    2015-01-01

    Frequency domain decomposition (FDD) is a well-established spectral technique used in civil engineering to analyse and monitor the modal response of buildings and structures. The method is based on singular value decomposition of the cross-power spectral density matrix from simultaneous array recordings of ambient vibrations. This method is advantageous to retrieve not only the resonance frequencies of the investigated structure, but also the corresponding modal shapes without the need for an absolute reference. This is an important piece of information, which can be used to validate the consistency of numerical models and analytical solutions. We apply this approach using advanced signal processing to evaluate the resonance characteristics of 2-D Alpine sedimentary valleys. In this study, we present the results obtained at Martigny, in the Rhône valley (Switzerland). For the analysis, we use 2 hr of ambient vibration recordings from a linear seismic array deployed perpendicularly to the valley axis. Only the horizontal-axial direction (SH) of the ground motion is considered. Using the FDD method, six separate resonant frequencies are retrieved together with their corresponding modal shapes. We compare the mode shapes with results from classical standard spectral ratios and numerical simulations of ambient vibration recordings.

  12. [Preparation and spectral analysis of a new type of blue light-emitting material delta-Alq3].

    PubMed

    Wang, Hua; Hao, Yu-ying; Gao, Zhi-xiang; Zhou, He-feng; Xu, Bing-she

    2006-10-01

    In the present article, delta-Alq3, a new type of blue light-emitting material, was synthesized and investigated by IR spectra, XRD spectra, UV-Vis absorption spectra, photoluminescence (PL) spectra, and electroluminescence (EL) spectra. The relationship between molecular spatial structure and spectral characteristics was studied by the spectral analysis of delta-Alq3 and alpha-Alq3. Results show that a new phase of Alq3 (delta-Alq3) can be obtained by vacuum heating alpha-Alq3, and the molecular spatial structure of alpha-Alq3 changes during the vacuum heating. The molecular spatial structure of delta-Alq3 lacks symmetry compared to alpha-Alq3. This transformation can reduce the electron cloud density on phenoxide of Alq3 and weaken the intermolecular conjugated interaction between adjacent Alq3 molecules. Hence, the pi--pi* electron transition absorption peak of delta-Alq3 shifts toward short wavelength in UV-Vis absorption spectra, and the maximum emission peak of delta-Alq3 (lamda max = 480 nm) blue-shifts by 35 nm compared with that of alpha-Alq3 (lamda max = 515 nm) in PL spectra. The maximum emission peaks of delta-Alq3 and alpha-Alq3 are all at 520 nm in EL spectra.

  13. Uniform high order spectral methods for one and two dimensional Euler equations

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Shu, Chi-Wang

    1991-01-01

    Uniform high order spectral methods to solve multi-dimensional Euler equations for gas dynamics are discussed. Uniform high order spectral approximations with spectral accuracy in smooth regions of solutions are constructed by introducing the idea of the Essentially Non-Oscillatory (ENO) polynomial interpolations into the spectral methods. The authors present numerical results for the inviscid Burgers' equation, and for the one dimensional Euler equations including the interactions between a shock wave and density disturbance, Sod's and Lax's shock tube problems, and the blast wave problem. The interaction between a Mach 3 two dimensional shock wave and a rotating vortex is simulated.

  14. Hierarchy of forward-backward stochastic Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Ke, Yaling; Zhao, Yi

    2016-07-01

    Driven by the impetus to simulate quantum dynamics in photosynthetic complexes or even larger molecular aggregates, we have established a hierarchy of forward-backward stochastic Schrödinger equation in the light of stochastic unravelling of the symmetric part of the influence functional in the path-integral formalism of reduced density operator. The method is numerically exact and is suited for Debye-Drude spectral density, Ohmic spectral density with an algebraic or exponential cutoff, as well as discrete vibrational modes. The power of this method is verified by performing the calculations of time-dependent population differences in the valuable spin-boson model from zero to high temperatures. By simulating excitation energy transfer dynamics of the realistic full FMO trimer, some important features are revealed.

  15. Thermal and active fluctuations of a compressible bilayer vesicle

    NASA Astrophysics Data System (ADS)

    Sachin Krishnan, T. V.; Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki

    2018-05-01

    We discuss thermal and active fluctuations of a compressible bilayer vesicle by using the results of hydrodynamic theory for vesicles. Coupled Langevin equations for the membrane deformation and the density fields are employed to calculate the power spectral density matrix of membrane fluctuations. Thermal contribution is obtained by means of the fluctuation dissipation theorem, whereas active contribution is calculated from exponentially decaying time correlation functions of active random forces. We obtain the total power spectral density as a sum of thermal and active contributions. An apparent response function is further calculated in order to compare with the recent microrheology experiment on red blood cells. An enhanced response is predicted in the low-frequency regime for non-thermal active fluctuations.

  16. Bose-Einstein condensation in diamond hierarchical lattices.

    PubMed

    Lyra, M L; de Moura, F A B F; de Oliveira, I N; Serva, M

    2014-05-01

    The Bose-Einstein condensation of noninteracting particles restricted to move on the sites of hierarchical diamond lattices is investigated. Using a tight-binding single-particle Hamiltonian with properly rescaled hopping amplitudes, we are able to employ an orthogonal basis transformation to exactly map it on a set of decoupled linear chains with sizes and degeneracies written in terms of the network branching parameter q and generation number n. The integrated density of states is shown to have a fractal structure of gaps and degeneracies with a power-law decay at the band bottom. The spectral dimension d(s) coincides with the network topological dimension d(f) = ln(2q)/ln(2). We perform a finite-size scaling analysis of the fraction of condensed particles and specific heat to characterize the critical behavior of the BEC transition that occurs for q > 2 (d(s) > 2). The critical exponents are shown to follow those for lattices with a pure power-law spectral density, with non-mean-field values for q < 8 (d(s) < 4). The transition temperature is shown to grow monotonically with the branching parameter, obeying the relation 1/T(c) = a + b/(q - 2).

  17. Quantitative Spectroscopy of Supergiants in the Local Group Dwarf Galaxy IC 1613: Metallicity and Distance

    NASA Astrophysics Data System (ADS)

    Berger, Travis A.; Kudritzki, Rolf-Peter; Urbaneja, Miguel A.; Bresolin, Fabio; Gieren, Wolfgang; Pietrzyński, Grzegorz; Przybilla, Norbert

    2018-06-01

    We present a spectral analysis of 21 blue supergiant stars of spectral types late B to early A within the Local Group dwarf galaxy IC 1613, based on VLT Focal Reducer and Low Dispersion Spectrograph 2 low-resolution spectra. Combining our results with studies of early B-type blue supergiants, we report a wide bimodal distribution of metallicities with two peaks around [Z] ∼ ‑0.50 dex and [Z] ∼ ‑0.85 dex. The bimodal distribution correlates with spatial location, when compared with column densities of neutral hydrogen in IC 1613. While the low [Z] objects appear in regions of relatively high ISM H I column densities or close to them, the high [Z] supergiants are found in the central H I hole that is almost devoid of hydrogen. This suggests there are varied chemical evolution histories for the young stellar populations in IC 1613. Utilizing the flux-weighted gravity–luminosity relation, we determine IC 1613's distance modulus as m ‑ M = 24.39 ± 0.11 mag. This value is in agreement within previous distance measurements using the near-infrared period–luminosity relationship of Cepheids and the tip of the red giant branch.

  18. [Non-invasive, spatially resolved determination of tissue properties of the crystalline lens with regard to rheology, refractive index, density and protein concentration by using Brillouin spectroscopy].

    PubMed

    Reiss, S; Stachs, O; Guthoff, R; Stolz, H

    2011-12-01

    The confocal Brillouin spectroscopy is an innovative measurement method that allows the non-invasive determination of the rheological properties of materials. Its application in ophthalmology can offer the possibility to determine in-vivo the deformation properties of sections of transparent biological tissue such as the cornea or eye lens with spatial resolution. This seems to be a promising approach concerning current presbyopia research. Due to the spatially resolved detection of the viscoelastic lens properties, a better understanding of the natural aging process of the lens and the influences of different lens opacities on the stiffness is expected. From the obtained spectral data the relative protein levels, the relative refractive index profile and the relative density profile within the lens tissue can be derived in addition. A measurement set-up for confocal Brillouin microscopy based on spectral analysis of spontaneous Brillouin scattering signals by using a high-resolution dispersive device is presented. First in-vitro test results on animal and human lenses are presented and evaluated concerning their rheological significance. These data are compared with known research results. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Influences of optical-spectrum errors on excess relative intensity noise in a fiber-optic gyroscope

    NASA Astrophysics Data System (ADS)

    Zheng, Yue; Zhang, Chunxi; Li, Lijing

    2018-03-01

    The excess relative intensity noise (RIN) generated from broadband sources degrades the angular-random-walk performance of a fiber-optic gyroscope dramatically. Many methods have been proposed and managed to suppress the excess RIN. However, the properties of the excess RIN under the influences of different optical errors in the fiber-optic gyroscope have not been systematically investigated. Therefore, it is difficult for the existing RIN-suppression methods to achieve the optimal results in practice. In this work, the influences of different optical-spectrum errors on the power spectral density of the excess RIN are theoretically analyzed. In particular, the properties of the excess RIN affected by the raised-cosine-type ripples in the optical spectrum are elaborately investigated. Experimental measurements of the excess RIN corresponding to different optical-spectrum errors are in good agreement with our theoretical analysis, demonstrating its validity. This work provides a comprehensive understanding of the properties of the excess RIN under the influences of different optical-spectrum errors. Potentially, it can be utilized to optimize the configurations of the existing RIN-suppression methods by accurately evaluating the power spectral density of the excess RIN.

  20. Influence of the electron density on the characteristics of terahertz waves generated under laser–cluster interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, A. A., E-mail: frolov@ihed.ras.ru

    2016-12-15

    A theory of generation of terahertz radiation under laser–cluster interaction, developed earlier for an overdense cluster plasma [A. A. Frolov, Plasma Phys. Rep. 42. 637 (2016)], is generalized for the case of arbitrary electron density. The spectral composition of radiation is shown to substantially depend on the density of free electrons in the cluster. For an underdense cluster plasma, there is a sharp peak in the terahertz spectrum at the frequency of the quadrupole mode of a plasma sphere. As the electron density increases to supercritical values, this spectral line vanishes and a broad maximum at the frequency comparable withmore » the reciprocal of the laser pulse duration appears in the spectrum. The dependence of the total energy of terahertz radiation on the density of free electrons is analyzed. The radiation yield is shown to increase significantly under resonance conditions, when the laser frequency is close to the eigenfrequency of the dipole or quadrupole mode of a plasma sphere.« less

  1. Spectral Analysis and Metastable Absorption Measurements of High Pressure Capacitively and Inductively Coupled Radio-Frequency Argon-Helium Discharges

    DTIC Science & Technology

    2013-06-01

    density of the s5 and s3 metastable states for different discharge parameters. The absorption data was fit to an approximated Voigt profile from which...pressures are required in order to have enough spin-orbit relaxation to maintain CW lasing without significant bottlenecking. There are many methods to...for just that [(5),(12)]. This method allows for a wide study of energy levels since the limiting factor is the sensitivity of the detector and modern

  2. The influence of low frequency sound on the changes of EEG signal morphology

    NASA Astrophysics Data System (ADS)

    Damijan, Z.; Wiciak, J.

    2006-11-01

    The effects of low frequency sound on the changes of morphology of the spectral power density function of EEG signals were studied as a part of the research program f = 40 Hz, Lp = 110 dB HP. The research program involved 33 experiments. A quantitative analysis was conducted of the driving response effect for the fundamental frequency and its harmonics to find the frequency of the driving response effect occurrence depending on the sex of participants.

  3. An investigation of wing buffeting response at subsonic and transonic speeds. Phase 1: F-111A flight data analysis. Volume 2: Plotted power spectra

    NASA Technical Reports Server (NTRS)

    Benepe, D. B.; Cunningham, A. M., Jr.; Dunmyer, W. D.

    1978-01-01

    Volume 2 of this three volume report is presented. This volume presents plotted variations of power spectral density data with frequency for each structural response item for each data sampled and analyzed during the course of the investigation. Some of the information contained in Volume 1 are repeated to allow the reader to identify the specific conditions appropriate to each plot presented and to interpret the data.

  4. A comparison of three regions of Puppis A

    NASA Technical Reports Server (NTRS)

    Fischbach, K. F.; Bateman, L. M.; Canizares, C. R.; Markert, T. H.; Saez, P. J.

    1990-01-01

    High resolution X-ray spectral observations of Puppis A were performed with the FPCS on the Einstein Observatory at three regions of the remnant: the shock front, the bright eastern knot, and the interior. Plasma diagnostics of lines from OVII and OVIII constrain the values of electron temperature, ionization timescale, and hydrogen column density. Results of the diagnostics for these three regions are compared. A nonequilibrium analysis of previously published fluxes of oxygen lines shows that the interior has not yet reached ionization equilibrium.

  5. HIghZ: A search for HI absorption in high-redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    Allison, J.; Callingham, J.; Sadler, E.; Wayth, R.; Curran, S.; Mahoney, E.

    2017-01-01

    We will use the unique low-frequency spectral capability of the MWA to carry out a pilot survey for neutral gas in the interstellar medium of the most distant (z>5) radio galaxies in the Universe. Through detection of the HI 21-cm line in absorption we aim to place stringent lower limits on the source redshift, confirming its location in the early Universe. Our sample makes use of the excellent wide-band spectral information available from the recently completed MWA GLEAM survey, from which we have selected a sample of ultra-steep peaked-spectrum radio sources that have a spectral turnover below 300 MHz. These sources should be ideal candidates for high-redshift compact radio galaxies since they have (a) spectral peaks that turnover below 1GHz and (b) very steep (alpha < -1.0) spectral indices that are consistent with the high density environments expected for radio galaxies in the early Universe. Using the MWA, we aim to verify this hypothesis through the detection of significant column densities of cold HI. This pathfinder project will provide important technical information that will inform future absorption surveys both with the MWA and, ultimately, the SKA-LOW telescope.

  6. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-01

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  7. Heavily Obscured AGN: An Ideal Laboratory To Study The Early Co-Evolution of Galaxies And Black Holes

    NASA Astrophysics Data System (ADS)

    Circosta, Chiara; Vignali, C.; Gilli, R.; Feltre, A.; Vito, F.

    2016-10-01

    Obscured AGN are a crucial ingredient to understand the full growth history of super massive black holes and the coevolution with their host galaxies, since they constitute the bulk of the BH accretion. In the distant Universe, many of them are hosted by submillimeter galaxies (SMGs), characterized by a high production of stars and a very fast consumption of gas. Therefore, the analysis of this class of objects is fundamental to investigate the role of the ISM in the early coevolution of galaxies and black holesWe collected a sample of six obscured X-ray selected AGN at z>2.5 in the CDF-S, detected in the far-IR/submm bands. We performed a multiwavelength analysis in order to characterize their physical properties, as well as those of their host galaxies (e.g. column density, accretion luminosity, stellar mass, SFR, dust and gas mass). I will present the results of the X-ray spectral analysis of these sources based on the 7Ms Chandra data - the deepest X-ray observation ever carried out on any field - along with their broad-band spectral energy distributions (SEDs), built up using the public UV to far-IR photometry from the CANDELS and Herschel catalogs. By comparing the column density associated with the ISM (estimated measuring the size of the system) with that obtained from the X-ray data, it is possible to understand whether the ISM in the host galaxy may be able to produce a substantial part of the observed nuclear obscuration.

  8. The Analysis of Emission Lines; A Meeting in Honour of the 70th Birthdays of D. E. Osterbrock and M. J. Seaton

    NASA Technical Reports Server (NTRS)

    Williams, Robert (Editor); Livio, Mario (Editor); Dufour, Reginald J.

    1994-01-01

    A review of the field of astronomical spectroscopy with emphasis on emission lines in astrophysical plasmas is presented. A brief history of UV spectroscopy instruments is given, following by a discussion and tabulation of major atlases of UV emission-line objects to date (mid-1994). A discussion of the major diagnostic UV emission lines in the approx. 912-3200 A spectral region that are useful for determining electron densities, temperatures, abundances, and extinction in low- to moderate density plasmas is given, with examples of applications to selected objects. The review concludes by presenting some recent results from HST, HUT, and IUE on UV emission-line spectroscopy of nebulae and active galaxies.

  9. Magnetic vortex excitation as spin torque oscillator and its unusual trajectories

    NASA Astrophysics Data System (ADS)

    Natarajan, Kanimozhi; Muthuraj, Ponsudana; Rajamani, Amuda; Arumugam, Brinda

    2018-05-01

    We report an interesting observation of unusual trajectories of vortex core oscillations in a spin valve pillar. Micromagnetic simulation in the composite free layer spin valve nano-pillar shows magnetic vortex excitation under critical current density. When current density is slightly increased and wave vector is properly tuned, for the first time we observe a star like and square gyration. Surprisingly this star like and square gyration also leads to steady, coherent and sustained oscillations. Moreover, the frequency of gyration is also very high for this unusual trajectories. The power spectral analysis reveals that there is a marked increase in output power and frequency with less distortions. Our investigation explores the possibility of these unusual trajectories to exhibit spin torque oscillations.

  10. Rayleigh Scattering Diagnostic for Measurement of Temperature, Velocity, and Density Fluctuation Spectra

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen; Panda, Jayanta

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 10 kHz. A high power CW laser beam is focused at a point in a heated air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature, velocity, and density of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. Power spectral density calculations of temperature, velocity, and density fluctuations, as well as mean and fluctuating quantities are demonstrated for various radial locations in the jet flow at a fixed axial distance from the jet exit plane. Results are compared with constant current anemometry and pitot probe measurements at the same locations.

  11. The effects of temperature dependent recombination rates on performance of InGaN/GaN blue superluminescent light emitting diodes

    NASA Astrophysics Data System (ADS)

    Moslehi Milani, N.; Mohadesi, V.; Asgari, A.

    2015-07-01

    The effects of temperature dependent radiative and nonradiative recombination (Shockley-Read-Hall, spontaneous radiative, and Auger coefficients) on the spectral and power characteristics of a blue multiple quantum well (MQW) superluminescent light emitting diode (SLD or SLED) have been studied. The study is based on the rate equations model, where three rate equations corresponding to MQW active region, separate confinement heterostructure (SCH) layer, and spectral density of optical power are solved self-consistently with no k-selection energy dependent gain and quasi-Fermi level functions at steady state. We have taken into account the temperature effects on Shockley-Read-Hall (SRH), spontaneous radiative, and Auger recombination in the rate equations and have investigated the effects of temperature rising from 300 K to 375 K at a fixed current density. We examine this procedure for a moderate current density and interpret the spectral radiation power and light output power diagrams. The investigation reveals that the main loss due to temperature is related to Auger coefficient.

  12. On the power spectral density of quadrature modulated signals. [satellite communication

    NASA Technical Reports Server (NTRS)

    Yan, T. Y.

    1981-01-01

    The conventional (no-offset) quadriphase modulation technique suffers from the fact that hardlimiting will restore the frequency sidelobes removed by proper filtering. Thus, offset keyed quadriphase modulation techniques are often proposed for satellite communication with bandpass hardlimiting. A unified theory is developed which is capable of describing the power spectral density before and after the hardlimiting process. Using the in-phase and the quadrature phase channel with arbitrary pulse shaping, analytical results are established for generalized quadriphase modulation. In particular MSK, OPSK or the recently introduced overlapped raised cosine keying all fall into this general category. It is shown that for a linear communication channel, the power spectral density of the modulated signal remains unchanged regardless of the offset delay. Furthermore, if the in phase and the quadrature phase channel have identical pulse shapes without offset, the spectrum after bandpass hardlimiting will be identical to that of the conventional QPSK modulation. Numerical examples are given for various modulation techniques. A case of different pulse shapes in the in phase and the quadrature phase channel is also considered.

  13. Allan deviation computations of a linear frequency synthesizer system using frequency domain techniques

    NASA Technical Reports Server (NTRS)

    Wu, Andy

    1995-01-01

    Allan Deviation computations of linear frequency synthesizer systems have been reported previously using real-time simulations. Even though it takes less time compared with the actual measurement, it is still very time consuming to compute the Allan Deviation for long sample times with the desired confidence level. Also noises, such as flicker phase noise and flicker frequency noise, can not be simulated precisely. The use of frequency domain techniques can overcome these drawbacks. In this paper the system error model of a fictitious linear frequency synthesizer is developed and its performance using a Cesium (Cs) atomic frequency standard (AFS) as a reference is evaluated using frequency domain techniques. For a linear timing system, the power spectral density at the system output can be computed with known system transfer functions and known power spectral densities from the input noise sources. The resulting power spectral density can then be used to compute the Allan Variance at the system output. Sensitivities of the Allan Variance at the system output to each of its independent input noises are obtained, and they are valuable for design trade-off and trouble-shooting.

  14. Time-dependent analysis of visible helium line-ratios for electron temperature and density diagnostic using synthetic simulations on NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muñoz Burgos, J. M.; Barbui, T.; Schmitz, O.

    Helium line-ratios for electron temperature (T e) and density (n e) plasma diagnostic in the Scrape-Off-Layer (SOL) and Edge regions of tokamaks are widely used. Due to their intensities and proximity of wavelengths, the singlet 667.8 and 728.1 nm, and triplet 706.5 nm visible lines have been typically preferred. Time-dependency of the triplet line (706.5 nm) has been previously analyzed in detail by including transient effects on line-ratios during gas-puff diagnostic applications. In this work, several line-ratio combinations within each of the two spin systems are analyzed with the purpose of eliminating transient effects to extend the application of thismore » powerful diagnostic to high temporal resolution characterization of plasmas. The analysis is done using synthetic emission modeling and diagnostic for low electron density NSTX SOL plasma conditions by several visible lines. Quasi-static equilibrium, and time-dependent models are employed to evaluate transient effects of the atomic population levels that may affect the derived electron temperatures and densities as the helium gas-puff penetrates the plasma. Ultimately, the analysis of a wider range of spectral lines will help to extend this powerful diagnostic to experiments where the wavelength range of the measured spectra may be constrained either by limitations of the spectrometer, or by other conflicting lines from different ions.« less

  15. Time-dependent analysis of visible helium line-ratios for electron temperature and density diagnostic using synthetic simulations on NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muñoz Burgos, J. M., E-mail: jmunozbu@pppl.gov; Stutman, D.; Tritz, K.

    Helium line-ratios for electron temperature (T{sub e}) and density (n{sub e}) plasma diagnostic in the Scrape-Off-Layer (SOL) and edge regions of tokamaks are widely used. Due to their intensities and proximity of wavelengths, the singlet, 667.8 and 728.1 nm, and triplet, 706.5 nm, visible lines have been typically preferred. Time-dependency of the triplet line (706.5 nm) has been previously analyzed in detail by including transient effects on line-ratios during gas-puff diagnostic applications. In this work, several line-ratio combinations within each of the two spin systems are analyzed with the purpose of eliminating transient effects to extend the application of thismore » powerful diagnostic to high temporal resolution characterization of plasmas. The analysis is done using synthetic emission modeling and diagnostic for low electron density NSTX SOL plasma conditions by several visible lines. Quasi-static equilibrium and time-dependent models are employed to evaluate transient effects of the atomic population levels that may affect the derived electron temperatures and densities as the helium gas-puff penetrates the plasma. The analysis of a wider range of spectral lines will help to extend this powerful diagnostic to experiments where the wavelength range of the measured spectra may be constrained either by limitations of the spectrometer or by other conflicting lines from different ions.« less

  16. Time-dependent analysis of visible helium line-ratios for electron temperature and density diagnostic using synthetic simulations on NSTX-U

    DOE PAGES

    Muñoz Burgos, J. M.; Barbui, T.; Schmitz, O.; ...

    2016-07-11

    Helium line-ratios for electron temperature (T e) and density (n e) plasma diagnostic in the Scrape-Off-Layer (SOL) and Edge regions of tokamaks are widely used. Due to their intensities and proximity of wavelengths, the singlet 667.8 and 728.1 nm, and triplet 706.5 nm visible lines have been typically preferred. Time-dependency of the triplet line (706.5 nm) has been previously analyzed in detail by including transient effects on line-ratios during gas-puff diagnostic applications. In this work, several line-ratio combinations within each of the two spin systems are analyzed with the purpose of eliminating transient effects to extend the application of thismore » powerful diagnostic to high temporal resolution characterization of plasmas. The analysis is done using synthetic emission modeling and diagnostic for low electron density NSTX SOL plasma conditions by several visible lines. Quasi-static equilibrium, and time-dependent models are employed to evaluate transient effects of the atomic population levels that may affect the derived electron temperatures and densities as the helium gas-puff penetrates the plasma. Ultimately, the analysis of a wider range of spectral lines will help to extend this powerful diagnostic to experiments where the wavelength range of the measured spectra may be constrained either by limitations of the spectrometer, or by other conflicting lines from different ions.« less

  17. Periodicity of the density wake past a vortex ring in a stratified liquid

    NASA Astrophysics Data System (ADS)

    Prokhorov, V.

    2009-04-01

    Spatial coherent structure of the density wake past a vortex ring moving horizontally in viscid stratified liquid is experimentally revealed. It follows from analysis that repetition period of the structure is determined by rotation radial frequency (or mean vorticity) of the vortex core and toward speed of the vortex ring. The wake formation of the ring is considered in respect to vorticity shedding which produces velocity disturbances in ambient medium. In case of stratified liquid velocity fluctuations, in their turn, cause density field distortion. This process is superimposed by vortex core oscillations, and, in result, vorticity shedding will be not monotonous but modulated at some frequency. So, the density wake is periodically structured, and the spatial period is defined by intrinsic frequency of the core and forward speed of the ring. To support analysis, experiments were conducted in which vortex rings excited by spring-piston generator were observed with high-sensitive Schlieren instrument and computer-controlled camera. Experimental tank was filled with salt-stratified water of constant buoyancy period, vortex ring velocities range from 3 to 16 cm/s. Spatial period is derived from schlieren image using two independent methods, both 2D spectral analysis and geometry calculations of the vortex core. Spatial periods and vortex intrinsic frequencies calculated by both algorithms are in good agreement; they vary in power lows depending on vortex speed

  18. Simplified model of statistically stationary spacecraft rotation and associated induced gravity environments

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Holland, R. L.

    1978-01-01

    A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.

  19. Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnosis technique

    NASA Astrophysics Data System (ADS)

    Liu, Liming; Hao, Xinfeng

    2008-10-01

    In order to study the effect of laser pulses on arc plasma and target metal in the hybrid welding process, the spectra of the plasmas in the welding process of magnesium alloys are analysed in this paper. The acquisition system of plasma spectra is set up and the spectral lines of welding plasma are acquired. Compared with tungsten-inert gas (TIG) welding, the intensities of the spectral lines of magnesium increase sharply while those of Ar decrease for strong evaporation and ionization of magnesium alloys in low-power laser/arc hybrid welding. The electron temperature and density are estimated by the Boltzmann plot method and the Stark broadening effect. The result shows that the electron temperature of arc plasma in the hybrid welding process is much lower than that in TIG welding, especially in the laser beam-affected zone. In contrast, the electron density of the plasma is enhanced. The influences of laser parameters on electron temperature are also studied. The changes in electron temperature and density indicate that the effect of laser pulse on the target metal is the dominant factor influencing the electron temperature and density in low-power laser/arc hybrid welding.

  20. Environmental Electrometry with Luminescent Carbon Nanotubes.

    PubMed

    Noé, Jonathan C; Nutz, Manuel; Reschauer, Jonathan; Morell, Nicolas; Tsioutsios, Ioannis; Reserbat-Plantey, Antoine; Watanabe, Kenji; Taniguchi, Takashi; Bachtold, Adrian; Högele, Alexander

    2018-06-25

    We demonstrate that localized excitons in luminescent carbon nanotubes can be utilized to study electrostatic fluctuations in the nanotube environment with sensitivity down to the elementary charge. By monitoring the temporal evolution of the cryogenic photoluminescence from individual carbon nanotubes grown on silicon oxide and hexagonal boron nitride, we characterize the dynamics of charge trap defects for both dielectric supports. We find a one order of magnitude reduction in the photoluminescence spectral wandering for nanotubes on extended atomically flat terraces of hexagonal boron nitride. For nanotubes on hexagonal boron nitride with pronounced spectral fluctuations, our analysis suggests proximity to terrace ridges where charge fluctuators agglomerate to exhibit areal densities exceeding those of silicon oxide. Our results establish carbon nanotubes as sensitive probes of environmental charge fluctuations and highlight their potential for applications in electrometric nanodevices with all-optical readout.

  1. In situ characterization of natural pyrite bioleaching using electrochemical noise technique

    NASA Astrophysics Data System (ADS)

    Chen, Guo-bao; Yang, Hong-ying; Li, Hai-jun

    2016-02-01

    An in situ characterization technique called electrochemical noise (ECN) was used to investigate the bioleaching of natural pyrite. ECN experiments were conducted in four active systems (sulfuric acid, ferric-ion, 9k culture medium, and bioleaching solutions). The ECN data were analyzed in both the time and frequency domains. Spectral noise impedance spectra obtained from power spectral density (PSD) plots for different systems were compared. A reaction mechanism was also proposed on the basis of the experimental data analysis. The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ. The bioleaching of natural pyrite is considered to be a bio-battery reaction, which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium (9k) solutions. The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching.

  2. Response of spectral reflectances and vegetation indices on varying Juniper cone densities

    USDA-ARS?s Scientific Manuscript database

    Juniper trees are widely distributed throughout the world and are common sources of allergies when microscopic pollen grains are transported by wind and inhaled. In this study, we investigated the spectral influences of pollen discharging male juniper cones within a juniper canopy. This was done thr...

  3. Calibrated simulations of Z opacity experiments that reproduce the experimentally measured plasma conditions

    DOE PAGES

    Nagayama, T.; Bailey, J. E.; Loisel, G.; ...

    2016-02-05

    Recently, frequency-resolved iron opacity measurements at electron temperatures of 170–200 eV and electron densities of (0.7 – 4.0) × 10 22 cm –3 revealed a 30–400% disagreement with the calculated opacities [J. E. Bailey et al., Nature (London) 517, 56 (2015)]. The discrepancies have a high impact on astrophysics, atomic physics, and high-energy density physics, and it is important to verify our understanding of the experimental platform with simulations. Reliable simulations are challenging because the temporal and spatial evolution of the source radiation and of the sample plasma are both complex and incompletely diagnosed. In this article, we describe simulationsmore » that reproduce the measured temperature and density in recent iron opacity experiments performed at the Sandia National Laboratories Z facility. The time-dependent spectral irradiance at the sample is estimated using the measured time- and space-dependent source radiation distribution, in situ source-to-sample distance measurements, and a three-dimensional (3D) view-factor code. The inferred spectral irradiance is used to drive 1D sample radiation hydrodynamics simulations. The images recorded by slit-imaged space-resolved spectrometers are modeled by solving radiation transport of the source radiation through the sample. We find that the same drive radiation time history successfully reproduces the measured plasma conditions for eight different opacity experiments. These results provide a quantitative physical explanation for the observed dependence of both temperature and density on the sample configuration. Simulated spectral images for the experiments without the FeMg sample show quantitative agreement with the measured spectral images. The agreement in spectral profile, spatial profile, and brightness provides further confidence in our understanding of the backlight-radiation time history and image formation. Furthermore, these simulations bridge the static-uniform picture of the data interpretation and the dynamic-gradient reality of the experiments, and they will allow us to quantitatively assess the impact of effects neglected in the data interpretation.« less

  4. Double Fourier analysis for Emotion Identification in Voiced Speech

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, D.; Bastidas, M.; Ortiz P., D.; Quintero, O. L.

    2016-04-01

    We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented.

  5. Temporal variations of electron density and temperature in Kr/Ne/H2 photoionized plasma induced by nanosecond pulses from extreme ultraviolet source

    NASA Astrophysics Data System (ADS)

    Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.

    2017-06-01

    Spectral investigations of low-temperature photoionized plasmas created in a Kr/Ne/H2 gas mixture were performed. The low-temperature plasmas were generated by gas mixture irradiation using extreme ultraviolet pulses from a laser-plasma source. Emission spectra in the ultraviolet/visible range from the photoionized plasmas contained lines that mainly corresponded to neutral atoms and singly charged ions. Temporal variations in the plasma electron temperature and electron density were studied using different characteristic emission lines at various delay times. Results, based on Kr II lines, showed that the electron temperature decreased from 1.7 to 0.9 eV. The electron densities were estimated using different spectral lines at each delay time. In general, except for the Hβ line, in which the electron density decreased from 3.78 × 1016 cm-3 at 200 ns to 5.77 × 1015 cm-3 at 2000 ns, most of the electron density values measured from the different lines were of the order of 1015 cm-3 and decreased slightly while maintaining the same order when the delay time increased. The time dependences of the measured and simulated intensities of a spectral line of interest were also investigated. The validity of the partial or full local thermodynamic equilibrium (LTE) conditions in plasma was explained based on time-resolved electron density measurements. The partial LTE condition was satisfied for delay times in the 200 ns to 1500 ns range. The results are summarized, and the dominant basic atomic processes in the gas mixture photoionized plasma are discussed.

  6. Noise modeling and analysis of an IMU-based attitude sensor: improvement of performance by filtering and sensor fusion

    NASA Astrophysics Data System (ADS)

    K., Nirmal; A. G., Sreejith; Mathew, Joice; Sarpotdar, Mayuresh; Suresh, Ambily; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2016-07-01

    We describe the characterization and removal of noises present in the Inertial Measurement Unit (IMU) MPU- 6050, which was initially used in an attitude sensor, and later used in the development of a pointing system for small balloon-borne astronomical payloads. We found that the performance of the IMU degraded with time because of the accumulation of different errors. Using Allan variance analysis method, we identified the different components of noise present in the IMU, and verified the results by the power spectral density analysis (PSD). We tried to remove the high-frequency noise using smooth filters such as moving average filter and then Savitzky Golay (SG) filter. Even though we managed to filter some high-frequency noise, these filters performance wasn't satisfactory for our application. We found the distribution of the random noise present in IMU using probability density analysis and identified that the noise in our IMU was white Gaussian in nature. Hence, we used a Kalman filter to remove the noise and which gave us good performance real time.

  7. Patterns of vegetation in the Owens Valley, California

    NASA Technical Reports Server (NTRS)

    Ustin, S. L.; Rock, B. N.; Woodward, R. A.

    1986-01-01

    Spectral characteristics of semi-arid shrub communities were examined using Airborne Imaging Spectrometer (AIS) data collected in the tree mode on 23 May 1985. Mesic sites with relatively high vegetation density and distinct zonation patterns exhibited greater spectral signature variations than sites with more xeric shrub communities. Spectral signature patterns were not directly related to vegetation density or physiognomy, although spatial maps derived from an 8-channel maximum likelihood classification were supported by photo-interpreted surface features. In AIS data, the principal detected effect of shrub vegetation on the alluvial fans is to lower reflectance across the spectrum. These results are similar to those reported during a period of minimal physiological activity in autumn, indicating that shadows cast by vegetation canopies are an important element of soil-vegetation interaction under conditions of relatively low canopy cover.

  8. Multimodal hyperspectral optical microscopy

    DOE PAGES

    Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu; ...

    2017-09-02

    We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less

  9. Glimpses of Kolmogorov's spectral energy dynamics in nonlinear acoustic waves

    NASA Astrophysics Data System (ADS)

    Gupta, Prateek; Scalo, Carlo

    2017-11-01

    Gupta, Lodato, and Scalo (AIAA 2017) have demonstrated the existence of an equilibrium spectral energy cascade in shock waves formed as a result of continued modal thermoacoustic amplification consistent with Kolmogorov's theory for high-Reynolds-number hydrodynamic turbulence. In this talk we discuss the derivation of a perturbation energy density norm that guarantees energy conservation during the nonlinear wave steepening process, analogous to inertial subrange turbulent energy cascade dynamics. The energy cascade is investigated via a bi-spectral analysis limited to wave-numbers and frequencies lower than the ones associated with the shock, analogous to the viscous dissipation length scale in turbulence. The proposed norm is derived by recombining second-order nonlinear acoustic equations and is positive definite; moreover, it decays to zero in the presence of viscous dissipation and is hence classifiable as a Lyapunov function of acoustic perturbation variables. The cumulative energy spectrum wavenumber distribution demonstrates a -3/2 decay law in the inertial range. The governing equation for the thus-derived energy norm highlights terms responsible for energy cascade towards higher harmonics, analogous to vortex stretching terms in hydrodynamic turbulence.

  10. Raman spectral evidence of methyl rotation in liquid toluene.

    PubMed

    Kapitán, Josef; Hecht, Lutz; Bour, Petr

    2008-02-21

    In order to rationalize subtle details in the liquid phase toluene Raman backscattering spectra, an analysis was performed based on a quantum-mechanical Hamiltonian operator comprising rotation of the methyl group and the angular dependence of vibrational frequencies and polarizability derivatives. The separation of the methyl torsion from the other vibrational motions appears to be necessary in order to explain relative intensity ratios of several bands and an anomalous broadening of spectral intensity observed at 1440 cm(-1). These results suggest that the CH3 group in the liquid phase rotates almost freely, similarly as in the gaseous phase, and that the molecule consequently exhibits effectively C(2v) point group symmetry. A classical description and an adiabatic separation of the methyl rotation from other molecular motion previously used in peptide models is not applicable to toluene because of a strong coupling with other vibrational motions. Density functional computations, particularly the BPW91 functional, provide reasonable estimates of harmonic frequencies and spectral intensities, as well as qualitatively correct fourth-order anharmonic corrections to the vibrational potential.

  11. Multimodal hyperspectral optical microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu

    We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less

  12. Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study.

    PubMed

    Ding, Huanjun; Molloi, Sabee

    2012-08-07

    A simple and accurate measurement of breast density is crucial for the understanding of its impact in breast cancer risk models. The feasibility to quantify volumetric breast density with a photon-counting spectral mammography system has been investigated using both computer simulations and physical phantom studies. A computer simulation model involved polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector has been evaluated for breast density quantification. The figure-of-merit (FOM), which was defined as the signal-to-noise ratio of the dual energy image with respect to the square root of mean glandular dose, was chosen to optimize the imaging protocols, in terms of tube voltage and splitting energy. A scanning multi-slit photon-counting spectral mammography system has been employed in the experimental study to quantitatively measure breast density using dual energy decomposition with glandular and adipose equivalent phantoms of uniform thickness. Four different phantom studies were designed to evaluate the accuracy of the technique, each of which addressed one specific variable in the phantom configurations, including thickness, density, area and shape. In addition to the standard calibration fitting function used for dual energy decomposition, a modified fitting function has been proposed, which brought the tube voltages used in the imaging tasks as the third variable in dual energy decomposition. For an average sized 4.5 cm thick breast, the FOM was maximized with a tube voltage of 46 kVp and a splitting energy of 24 keV. To be consistent with the tube voltage used in current clinical screening exam (∼32 kVp), the optimal splitting energy was proposed to be 22 keV, which offered a FOM greater than 90% of the optimal value. In the experimental investigation, the root-mean-square (RMS) error in breast density quantification for all four phantom studies was estimated to be approximately 1.54% using standard calibration function. The results from the modified fitting function, which integrated the tube voltage as a variable in the calibration, indicated a RMS error of approximately 1.35% for all four studies. The results of the current study suggest that photon-counting spectral mammography systems may potentially be implemented for an accurate quantification of volumetric breast density, with an RMS error of less than 2%, using the proposed dual energy imaging technique.

  13. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach

    2017-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs < 0.14 , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.

  14. Poster — Thur Eve — 15: Improvements in the stability of the tomotherapy imaging beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belec, J

    2014-08-15

    Use of helical TomoTherapy based MVCT imaging for adaptive planning requires the image values (HU) to remain stable over the course of treatment. In the past, the image value stability was suboptimal, which required frequent change to the image value to density calibration curve to avoid dose errors on the order of 2–4%. The stability of the image values at our center was recently improved by stabilizing the dose rate of the machine (dose control servo) and performing daily MVCT calibration corrections. In this work, we quantify the stability of the image values over treatment time by comparing patient treatmentmore » image density derived using MVCT and KVCT. The analysis includes 1) MVCT - KVCT density difference histogram, 2) MVCT vs KVCT density spectrum, 3) multiple average profile density comparison and 4) density difference in homogeneous locations. Over two months, the imaging beam stability was compromised several times due to a combination of target wobbling, spectral calibration, target change and magnetron issues. The stability of the image values were analyzed over the same period. Results show that the impact on the patient dose calculation is 0.7% +− 0.6%.« less

  15. Non-equilibrium quantum phase transition via entanglement decoherence dynamics

    PubMed Central

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-01-01

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556

  16. Supervised segmentation of microelectrode recording artifacts using power spectral density.

    PubMed

    Bakstein, Eduard; Schneider, Jakub; Sieger, Tomas; Novak, Daniel; Wild, Jiri; Jech, Robert

    2015-08-01

    Appropriate detection of clean signal segments in extracellular microelectrode recordings (MER) is vital for maintaining high signal-to-noise ratio in MER studies. Existing alternatives to manual signal inspection are based on unsupervised change-point detection. We present a method of supervised MER artifact classification, based on power spectral density (PSD) and evaluate its performance on a database of 95 labelled MER signals. The proposed method yielded test-set accuracy of 90%, which was close to the accuracy of annotation (94%). The unsupervised methods achieved accuracy of about 77% on both training and testing data.

  17. Optimal positions and parameters of translational and rotational mass dampers in beams subjected to random excitation

    NASA Astrophysics Data System (ADS)

    Łatas, Waldemar

    2018-01-01

    The problem of vibrations of the beam with the attached system of translational and rotational dynamic mass dampers subjected to random excitations with peaked power spectral densities, is presented in the hereby paper. The Euler-Bernoulli beam model is applied, while for solving the equation of motion the Galerkin method and the Laplace time transform are used. The obtained transfer functions allow to determine power spectral densities of the beam deflection and other dependent variables. Numerical examples present simple optimization problems of mass dampers parameters for local and global objective functions.

  18. Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions.

    PubMed

    Yura, Harold T; Hanson, Steen G

    2012-04-01

    Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.

  19. Spectral flux from low-density photospheres - Numerical results

    NASA Technical Reports Server (NTRS)

    Hershkowitz, S.; Linder, E.; Wagoner, R. V.

    1986-01-01

    Radiative transfer through sharp, quasi-static atmospheres whose opacity is dominated by hydrogen is considered at densities low enough that scattering usually dominates absorption and radiative excitations usually dominate collisional excitations. Numerical results for the continuum spectral flux are obtained for effective temperatures T(e) = 6000-16,000 K and scale heights Delta-R = 10 to the 10th - 10 to the 14th cm. Spectra are significantly different than if LTE level populations were assumed. Comparison with observations of the Type II supernova 1980k tends to increase the value of the Hubble constant previously obtained by the Baade (1926) method.

  20. [Features of control of electromagnetic radiation emitted by personal computers].

    PubMed

    Pal'tsev, Iu P; Buzov, A L; Kol'chugin, Iu I

    1996-01-01

    Measurements of PC electromagnetic irradiation show that the main sources are PC blocks emitting the waves of certain frequencies. Use of wide-range detectors measuring field intensity in assessment of PC electromagnetic irradiation gives unreliable results. More precise measurements by selective devices are required. Thus, it is expedient to introduce a term "spectral density of field intensity" and its maximal allowable level. In this case a frequency spectrum of PC electromagnetic irradiation is divided into 4 ranges, one of which is subjected to calculation of field intensity for each harmonic frequency, and others undergo assessment of spectral density of field intensity.

Top