Science.gov

Sample records for spectral edge frequency

  1. Behaviour of spectral entropy, spectral edge frequency 90%, and alpha and beta power parameters during low-dose propofol infusion.

    PubMed

    Mahon, P; Greene, B R; Greene, C; Boylan, G B; Shorten, G D

    2008-08-01

    In this study we analyse the behaviour, potential clinical application and optimal cortical sampling location of the spectral parameters: (i) relative alpha and beta power; (ii) spectral edge frequency 90%; and (iii) spectral entropy as monitors of moderate propofol-induced sedation. Multi-channel EEG recorded from 12 ASA 1 (American Society of Anesthesiologists physical status 1) patients during low-dose, target effect-site controlled propofol infusion was used for this analysis. The initial target effect-site concentration was 0.5 microg ml(-1) and increased at 4 min intervals in increments of 0.5 to 2 microg ml(-1). EEG parameters were calculated for 2 s epochs in the frequency ranges 0.5-32 and 0.5-47 Hz. All parameters were calculated in the channels: P4-O2, P3-O1, F4-C4, F3-C3, F3-F4, and Fp1-Fp2. Sedation was assessed clinically using the OAA/S (observer's assessment of alertness/sedation) scale. Relative beta power and spectral entropy increased with increasing propofol effect-site concentration in both the 0.5-47 Hz [F(18, 90) = 3.455, P<0.05 and F(18, 90) = 3.33, P<0.05, respectively] and 0.5-32 Hz frequency range. This effect was significant in each individual channel (P<0.05). No effect was seen of increasing effect-site concentration on relative power in the alpha band. Averaged across all channels, spectral entropy did not outperform relative beta power in either the 0.5-32 Hz [Pk=0.79 vs 0.814 (P>0.05)] or 0.5-47 Hz range [Pk=0.81 vs 0.82 (P>0.05)]. The best performing indicator in any single channel was spectral entropy in the frequency range 0.5-47 Hz in the frontal channel F3-F4 (Pk=0.85). Relative beta power and spectral entropy when considered over the propofol effect-site range studied here increase in value, and correlate well with clinical assessment of sedation.

  2. A comparison of median frequency, spectral edge frequency, a frequency band power ratio, total power, and dominance shift in the determination of depth of anesthesia.

    PubMed

    Drummond, J C; Brann, C A; Perkins, D E; Wolfe, D E

    1991-11-01

    Five numerical descriptors were derived from the electroencephalogram (EEG), recorded, and processed (Tracor Nomad) during emergence from isoflurane-nitrous oxide anesthesia. The five descriptors (median frequency, spectral edge frequency-90%, total power, a frequency band power ratio, and the ratio of frontal to occipital power) were compared for their ability to predict imminent arousal. Arousal was defined as spontaneous movement, coughing or eye opening. All of the descriptors except the frontal-occipital power ratio underwent significant (P less than 0.05) changes between the initial recordings made intraoperatively during surgical stimulus under anesthesia and later recordings in the 40 s preceding arousal. A post hoc analysis was performed to identify the threshold value for each parameter that best served to predict imminent arousal. For median frequency, spectral edge frequency-90%, total power, and the frequency band power ratio, thresholds that predicted imminent arousal with sensitivities of 90% and specificities of 82-90% could be identified. The data indicate that, even in the favorable circumstances of the present study (uniform anesthetic technique, post hoC identification of thresholds), none of several previously popularized EEG descriptors (median frequency, spectral edge frequency-90%, total power, a frequency band power ratio) can serve as a completely reliable sole predictor of imminent arousal. As presently derived, these EEG descriptors at best provide trend information to be used in concert with other clinical signs of depth of anesthesia.

  3. Fermi edge singularity and finite-frequency spectral features in a semi-infinite one-dimensional wire

    NASA Astrophysics Data System (ADS)

    Sheikhan, A.; Snyman, I.

    2012-08-01

    We theoretically study a charge qubit interacting with electrons in a semi-infinite one-dimensional wire. The system displays the physics of the Fermi edge singularity. Our results generalize known results for the Fermi edge system to the regime where excitations induced by the qubit can resolve the spatial structure of the scattering region. We find resonant features in the qubit tunneling rate as a function of the qubit level splitting. They occur at integer multiples of hvF/l. Here vF is the Fermi velocity of the electrons in the wire, and l is the distance from the tip of the wire to the point where it interacts with the qubit. These features are due to the constructive interference of the amplitudes for creating single coherent left- or right-moving charge fluctuation (plasmon) in the electron gas. As the coupling between the qubit and the wire is increased, the resonances are washed out. This is a clear signature of the increasingly violent Fermi sea shake-up, associated with the creation of many plasmons whose individual energies are too low to meet the resonance condition.

  4. Comparative study of Poincaré plot analysis using short electroencephalogram signals during anaesthesia with spectral edge frequency 95 and bispectral index.

    PubMed

    Hayashi, K; Yamada, T; Sawa, T

    2015-03-01

    The return or Poincaré plot is a non-linear analytical approach in a two-dimensional plane, where a timed signal is plotted against itself after a time delay. Its scatter pattern reflects the randomness and variability in the signals. Quantification of a Poincaré plot of the electroencephalogram has potential to determine anaesthesia depth. We quantified the degree of dispersion (i.e. standard deviation, SD) along the diagonal line of the electroencephalogram-Poincaré plot (named as SD1/SD2), and compared SD1/SD2 values with spectral edge frequency 95 (SEF95) and bispectral index values. The regression analysis showed a tight linear regression equation with a coefficient of determination (R(2) ) value of 0.904 (p < 0.0001) between the Poincaré index (SD1/SD2) and SEF95, and a moderate linear regression equation between SD1/SD2 and bispectral index (R(2)  = 0.346, p < 0.0001). Quantification of the Poincaré plot tightly correlates with SEF95, reflecting anaesthesia-dependent changes in electroencephalogram oscillation.

  5. Natural and artificial spectral edges in exoplanets

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Loeb, Abraham

    2017-09-01

    Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an 'artificial edge' that is characteristically shifted in wavelength shortwards of the 'red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.

  6. New applications of Spectral Edge image fusion

    NASA Astrophysics Data System (ADS)

    Hayes, Alex E.; Montagna, Roberto; Finlayson, Graham D.

    2016-05-01

    In this paper, we present new applications of the Spectral Edge image fusion method. The Spectral Edge image fusion algorithm creates a result which combines details from any number of multispectral input images with natural color information from a visible spectrum image. Spectral Edge image fusion is a derivative-based technique, which creates an output fused image with gradients which are an ideal combination of those of the multispectral input images and the input visible color image. This produces both maximum detail and natural colors. We present two new applications of Spectral Edge image fusion. Firstly, we fuse RGB-NIR information from a sensor with a modified Bayer pattern, which captures visible and near-infrared image information on a single CCD. We also present an example of RGB-thermal image fusion, using a thermal camera attached to a smartphone, which captures both visible and low-resolution thermal images. These new results may be useful for computational photography and surveillance applications.

  7. Spectral methods in edge-diffraction theories

    SciTech Connect

    Arnold, J.M. )

    1992-12-01

    Spectral methods for the construction of uniform asymptotic representations of the field diffracted by an aperture in a plane screen are reviewed. These are separated into contrasting approaches, roughly described as physical and geometrical. It is concluded that the geometrical methods provide a direct route to the construction of uniform representations that are formally identical to the equivalent-edge-current concept. Some interpretive and analytical difficulties that complicate the physical methods of obtaining uniform representations are analyzed. Spectral synthesis proceeds directly from the ray geometry and diffraction coefficients, without any intervening current representation, and the representation is uniform at shadow boundaries and caustics of the diffracted field. The physical theory of diffraction postulates currents on the diffracting screen that give rise to the diffracted field. The difficulties encountered in evaluating the current integrals are throughly examined, and it is concluded that the additional data provided by the physical theory of diffraction (diffraction coefficients off the Keller diffraction cone) are not actually required for obtaining uniform asymptotics at the leading order. A new diffraction representation that generalizes to arbitrary plane-convex apertures a formula given by Knott and Senior [Proc. IEEE 62, 1468 (1974)] for circular apertures is deduced. 34 refs., 1 fig.

  8. Line edge roughness frequency analysis for SAQP process

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Zhang, Xiaoxiao; Levi, Shimon; Ge, Adam; Zhou, Hua; Wang, Wenhui; Krishnan, Navaneetha; Chen, Yulu; Verduijn, Erik; Kim, Ryoung-han

    2016-03-01

    The line edge roughness (LER) and line width roughness (LWR) transfer in a self-aligned quadruple patterning (SAQP) process is shown for the first time. Three LER characterization methods, including conventional standard deviation method, power spectral density (PSD) method and frequency domain 3-sigma method, are used in the analysis. The wiggling is also quantitatively characterized for each SAQP step with a wiggling factor. This work will benefit both process optimization and process monitoring.

  9. Dynamic representation of spectral edges in guinea pig primary auditory cortex.

    PubMed

    Montejo, Noelia; Noreña, Arnaud J

    2015-04-01

    The central representation of a given acoustic motif is thought to be strongly context dependent, i.e., to rely on the spectrotemporal past and present of the acoustic mixture in which it is embedded. The present study investigated the cortical representation of spectral edges (i.e., where stimulus energy changes abruptly over frequency) and its dependence on stimulus duration and depth of the spectral contrast in guinea pig. We devised a stimulus ensemble composed of random tone pips with or without an attenuated frequency band (AFB) of variable depth. Additionally, the multitone ensemble with AFB was interleaved with periods of silence or with multitone ensembles without AFB. We have shown that the representation of the frequencies near but outside the AFB is greatly enhanced, whereas the representation of frequencies near and inside the AFB is strongly suppressed. These cortical changes depend on the depth of the AFB: although they are maximal for the largest depth of the AFB, they are also statistically significant for depths as small as 10 dB. Finally, the cortical changes are quick, occurring within a few seconds of stimulus ensemble presentation with AFB, and are very labile, disappearing within a few seconds after the presentation without AFB. Overall, this study demonstrates that the representation of spectral edges is dynamically enhanced in the auditory centers. These central changes may have important functional implications, particularly in noisy environments where they could contribute to preserving the central representation of spectral edges. Copyright © 2015 the American Physiological Society.

  10. Spectral frequency modulation in vowel identification

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Eddins, David A.

    2004-05-01

    Psychophysical and physiological studies have demonstrated selectivity for spectral envelope frequency (also termed spatial frequency) in the auditory system, suggesting that auditory perception of complex sounds might be based on spectral envelope channels. The present study investigated relative contribution of different spatial frequencies to vowel identification. Twelve naturally-spoken American-English vowels were presented at 70 dB SPL. In different conditions, vowel stimuli were subjected to various degrees of low-pass and high-pass filtering in the spatial frequency domain, in effect, altering their spectra. Identification performance for the vowels with and without spatial frequency filtering was estimated for normal-hearing listeners. Results indicated that vowel identification performance was progressively degraded as spatial-frequency components were removed. Results will be interpreted in terms of spatial frequency regions most important to specific vowel categories. The specificity and universality of spatial frequency modulations in vowel identification across different vowel categories will be discussed.

  11. Spectral Information Retrieval for Sub-Pixel Building Edge Detection

    NASA Astrophysics Data System (ADS)

    Avbelj, J.

    2012-07-01

    Building extraction from imagery has been an active research area for decades. However, the precise building detection from hyperspectral (HSI) images solely is a less often addressed research question due to the low spatial resolution of data. The building boundaries are usually represented by spectrally mixed pixels, and classical edge detector algorithms fail to detect borders with sufficient completeness. The idea of the proposed method is to use fraction of materials in mixed pixels to derive weights for adjusting building boundaries. The building regions are detected using seeded region growing and merging in a HSI image; for the initial seed point selection the digital surface model (DSM) is used. Prior to region growing, the seeds are statistically tested for outliers on the basis of their spectral characteristics. Then, the border pixels of building regions are compared in spectrum to the seed points by calculating spectral dissimilarity. From this spectral dissimilarity the weights for weighted and constrained least squares (LS) adjustment are derived. We used the Spectral Angle Mapper (SAM) for spectral similarity measure, but the proposed boundary estimation method could benefit from soft classification or spectral unmixing results. The method was tested on a HSI image with spatial resolution of 4 m, and buildings of rectangular shape. The importance of constraints to the relations between building parts, e.g. perpendicularity is shown on example with a building with inner yards. The adjusted building boundaries are compared to the laser DSM, and have a relative accuracy of boundaries 1/4 of a pixel.

  12. Red edge spectral measurements from sugar maple leaves

    NASA Technical Reports Server (NTRS)

    Vogelmann, J. E.; Rock, B. N.; Moss, D. M.

    1993-01-01

    Many sugar maple stands in the northeastern United States experienced extensive insect damage during the 1988 growing season. Chlorophyll data and high spectral resolution spectrometer laboratory reflectance data were acquired for multiple collections of single detached sugar maple leaves variously affected by the insect over the 1988 growing season. Reflectance data indicated consistent and diagnostic differences in the red edge portion (680-750 nm) of the spectrum among the various samples and populations of leaves. These included differences in the red edge inflection point (REIP), a ratio of reflectance at 740-720 nm (RE3/RE2), and a ratio of first derivative values at 715-705 nm (D715/D705). All three red edge parameters were highly correlated with variation in total chlorophyll content. Other spectral measures, including the Normalized Difference Vegetation Index (NDVI) and the Simple Vegetation Index Ratio (VI), also varied among populations and over the growing season, but did not correlate well with total chlorophyll content. Leaf stacking studies on light and dark backgrounds indicated REIP, RE3/RE2 and D715/D705 to be much less influenced by differences in green leaf biomass and background condition than either NDVI or VI.

  13. Spectral CT Using Multiple Balanced K-Edge Filters

    PubMed Central

    Rakvongthai, Yothin; Worstell, William; Fakhri, Georges El; Bian, Junguo; Lorsakul, Auranuch; Ouyang, Jinsong

    2015-01-01

    Our goal is to validate a spectral CT system design that uses a conventional X-ray source with multiple balanced K-edge filters. By performing a simultaneously synthetic reconstruction in multiple energy bins, we obtained a good agreement between measurements and model expectations for a reasonably complex phantom. We performed simulation and data acquisition on a phantom containing multiple rods of different materials using a NeuroLogica CT scanner. Five balanced K-edge filters including Molybdenum, Cerium, Dysprosium, Erbium, and Tungsten were used separately proximal to the X-ray tube. For each sinogram bin, measured filtered vector can be defined as a product of a transmission matrix, which is determined by the filters and is independent of the imaging object, and energy-binned intensity vector. The energy-binned sinograms were then obtained by inverting the transmission matrix followed by a multiplication of the filter measurement vector. For each energy bin defined by two consecutive K-edges, a synthesized energy-binned attenuation image was obtained using filtered back-projection reconstruction. The reconstructed attenuation coefficients for each rod obtained from the experiment was in good agreement with the corresponding simulated results. Furthermore, the reconstructed attenuation coefficients for a given energy bin, agreed with National Institute of Standards and Technology reference values when beam hardening within the energy bin is small. The proposed cost-effective system design using multiple balanced K-edge filters can be used to perform spectral CT imaging at clinically relevant flux rates using conventional detectors and integrating electronics. PMID:25252276

  14. Simulation of spectral stabilization of high-power broad-area edge emitting semiconductor lasers.

    PubMed

    Holly, Carlo; Hengesbach, Stefan; Traub, Martin; Hoffmann, Dieter

    2013-07-01

    The simulation of spectral stabilization of broad-area edge-emitting semiconductor diode lasers is presented in this paper. In the reported model light-, temperature- and charge carrier-distributions are solved iteratively in frequency domain for transverse slices along the semiconductor heterostructure using wide-angle finite-difference beam propagation. Depending on the operating current the laser characteristics are evaluated numerically, including near- and far-field patterns of the astigmatic laser beam, optical output power and the emission spectra, with central wavelength and spectral width. The focus of the model lies on the prediction of influences on the spectrum and power characteristics by frequency selective feedback from external optical resonators. Results for the free running and the spectrally stabilized diode are presented.

  15. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    PubMed Central

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  16. High spectral purity Kerr frequency comb radio frequency photonic oscillator.

    PubMed

    Liang, W; Eliyahu, D; Ilchenko, V S; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2015-08-11

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz(-1) at 10 Hz, -90 dBc Hz(-1) at 100 Hz and -170 dBc Hz(-1) at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10(-10) at 1-100 s integration time-orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption.

  17. Spectral characteristics of edge magnetic turbulence in COMPASS-D

    NASA Astrophysics Data System (ADS)

    Han, W. E.; Thyagaraja, A.; Fielding, S. J.; Valovic, M.

    2000-02-01

    Edge fluctuation data from both COMPASS-D and calculations with the large-eddy simulation code CUTIE have been analysed with a number of techniques, revealing coherent structures which exhibit high-frequency, standing-wave oscillations; some of those observed during edge localized modes (ELMs) have an `inverse-chirp' character and these are related to a disturbance of the plasma boundary in the lower-inboard quadrant of the poloidal plane. A `precursor' mode, seen in Ohmic discharges at about 220 kHz just before large ELMs, appears to be outward ballooning in character. Although the CUTIE calculations do not yet include ELM simulations, the results seem to correspond qualitatively with those seen between ELMs or during ELM-free periods on COMPASS-D.

  18. Multitaper and multisegment spectral estimation of line-edge roughness

    NASA Astrophysics Data System (ADS)

    Luo, Yao; Savari, Serap A.

    2017-03-01

    Line-edge roughness (LER) has important impacts on the quality of semiconductor device performance, and power spectrum estimates are useful tools in characterizing it. These estimates are often obtained by taking measurements of many lines and averaging a classical power spectrum estimate from each one. While this approach improves the variance of the estimate there are disadvantages to the collection of many measurements with current microscopy techniques. We propose techniques with widespread application in other fields which simultaneously reduce data requirements and variance of LER power spectrum estimates over current approaches at the price of computational complexity. Multitaper spectral analysis uses an orthogonal collection of data windowing functions or tapers on a set of data to obtain a set of approximately statistically independent spectrum estimates. The Welch overlapped segment averaging spectrum estimate is an earlier approach to reusing data. There are known techniques to calculate error bars for these families of spectrum estimators, and we experiment with random rough lines simulated by Mack's technique based on the Thorsos method.

  19. Joint spatio-spectral based edge detection for multispectral infrared imagery.

    SciTech Connect

    Krishna, Sanjay; Hayat, Majeed M.; Bender, Steven C.; Sharma, Yagya D.; Jang, Woo-Yong; Paskalva, Biliana S.

    2010-06-01

    Image segmentation is one of the most important and difficult tasks in digital image processing. It represents a key stage of automated image analysis and interpretation. Segmentation algorithms for gray-scale images utilize basic properties of intensity values such as discontinuity and similarity. However, it is possible to enhance edge-detection capability by means of using spectral information provided by multispectral (MS) or hyperspectral (HS) imagery. In this paper we consider image segmentation algorithms for multispectral images with particular emphasis on detection of multi-color or multispectral edges. More specifically, we report on an algorithm for joint spatio-spectral (JSS) edge detection. By joint we mean simultaneous utilization of spatial and spectral characteristics of a given MS or HS image. The JSS-based edge-detection approach, termed Spectral Ratio Contrast (SRC) edge-detection algorithm, utilizes the novel concept of matching edge signatures. The edge signature represents a combination of spectral ratios calculated using bands that enhance the spectral contrast between the two materials. In conjunction with a spatial mask, the edge signature give rise to a multispectral operator that can be viewed as a three-dimensional extension of the mask. In the extended mask, the third (spectral) dimension of each hyper-pixel can be chosen independently. The SRC is verified using MS and HS imagery from a quantum-dot in a well infrared (IR) focal plane array, and the Airborne Hyperspectral Imager.

  20. Frequency-domain optical mammography: edge effect corrections.

    PubMed

    Fantini, S; Franceschini, M A; Gaida, G; Gratton, E; Jess, H; Mantulin, W W; Moesta, K T; Schlag, P M; Kaschke, M

    1996-01-01

    We have investigated the problem of edge effects in laser-beam transillumination scanning of the human breast. Edge effects arise from tissue thickness variability along the scanned area, and from lateral photon losses through the sides of the breast. Edge effects can be effectively corrected in frequency-domain measurements by employing a two-step procedure: (1) use of the phase information to calculate an effective tissue thickness for each pixel location; (2) application of the knowledge of tissue thickness to calculate an edge-corrected optical image from the ac signal image. The measurements were conducted with a light mammography apparatus (LIMA) designed for feasibility tests in the clinical environment. Operating in the frequency-domain (110 MHz), this instrument performs a transillumination optical scan at two wavelengths (685 and 825 nm). We applied the proposed two-step procedure to data from breast phantoms and from human breasts. The processed images provide higher contrast and detectability in optical mammography with respect to raw data breast images.

  1. Alfven frequency modes at the edge of TFTR plasmas

    SciTech Connect

    Chang, Z.; Fredrickson, E.D.; Zweben, S.J.

    1995-07-01

    An Alfven frequency mode (AFM) is very often seen in TFTR neutral beam heated plasmas as well as ohmic plasmas. This quasi-coherent mode is so far only seen on the magnetic fluctuation diagnostics (Mirnov coils). A close correlation between the plasma edge density and the mode activity (frequency and amplitude) has been observed, which indicates that the AFM is an edge localized mode with r/a > 0.85. No direct impact of this mode on the plasma global performance or fast ion loss (e.g., the {alpha}-particles in DT experiments) has been observed. This mode is apparently not the conventional TAE (toroidicity-induced Alfven eigenmodes). The present TAE theory cannot explain the observation. Other possible explanations are discussed.

  2. Simultaneous spectral/spatial detection of edges for hyperspectral imagery: the HySPADE algorithm revisited

    NASA Astrophysics Data System (ADS)

    Resmini, Ronald G.

    2012-06-01

    The hyperspectral/spatial detection of edges (HySPADE) algorithm, originally published in 2004 [1], has been modified and applied to a wider diversity of hyperspectral imagery (HSI) data. As originally described in [1], HySPADE operates by converting the naturally two-dimensional edge detection process based on traditional image analysis methods into a series of one-dimensional edge detections based on spectral angle. The HySPADE algorithm: i) utilizes spectral signature information to identify edges; ii) requires only the spectral information of the HSI scene data and does not require a spectral library nor spectral matching against a library; iii) facilitates simultaneous use of all spectral information; iv) does not require endmember or training data selection; v) generates multiple, independent data points for statistical analysis of detected edges; vi) is robust in the presence of noise; and vii) may be applied to radiance, reflectance, and emissivity data--though it is applied to radiance and reflectance spectra (and their principal components transformation) in this report. HySPADE has recently been modified to use Euclidean distance values as an alternative to spectral angle. It has also been modified to use an N x N-pixel sliding window in contrast to the 2004 version which operated only on spatial subset image chips. HySPADE results are compared to those obtained using traditional (Roberts and Sobel) edge-detection methods. Spectral angle and Euclidean distance HySPADE results are superior to those obtained using the traditional edge detection methods; the best results are obtained by applying HySPADE to the first few, information-containing bands of principal components transformed data (both radiance and reflectance). However, in practice, both the Euclidean distance and spectral angle versions of HySPADE should be applied and their results compared. HySPADE results are shown; extensions of the HySPADE concept are discussed as are applications for Hy

  3. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity

    NASA Astrophysics Data System (ADS)

    Fernández-Manso, Alfonso; Fernández-Manso, Oscar; Quintano, Carmen

    2016-08-01

    Fires are a problematic and recurrent issue in Mediterranean ecosystems. Accurate discrimination between burn severity levels is essential for the rehabilitation planning of burned areas. Sentinel-2A MultiSpectral Instrument (MSI) record data in three red-edge wavelengths, spectral domain especially useful on agriculture and vegetation applications. Our objective is to find out whether Sentinel-2A MSI red-edge wavelengths are suitable for burn severity discrimination. As study area, we used the 2015 Sierra Gata wildfire (Spain) that burned approximately 80 km2. A Copernicus Emergency Management Service (EMS)-grading map with four burn severity levels was considered as reference truth. Cox and Snell, Nagelkerke and McFadde pseudo-R2 statistics obtained by Multinomial Logistic Regression showed the superiority of red-edge spectral indices (particularly, Modified Simple Ratio Red-edge, Chlorophyll Index Red-edge, Normalized Difference Vegetation Index Red-edge) over conventional spectral indices. Fisher's Least Significant Difference test confirmed that Sentinel-2A MSI red-edge spectral indices are adequate to discriminate four burn severity levels.

  4. Spectral analysis of oscillation instabilities in frequency standards

    NASA Technical Reports Server (NTRS)

    Lippincott, S.

    1970-01-01

    Phase and frequency fluctuations, inherent in oscillators used as frequency standards, are measured over spectral frequency range of 1 Hz to 5 kHz. Basic measurement system consists of electromechanical phase-locked loop that extracts phase and frequency fluctuations and error multiplier that extends threshold sensitivity.

  5. Model-based edge detector for spectral imagery using sparse spatiospectral masks.

    PubMed

    Paskaleva, Biliana S; Godoy, Sebastián E; Jang, Woo-Yong; Bender, Steven C; Krishna, Sanjay; Hayat, Majeed M

    2014-05-01

    Two model-based algorithms for edge detection in spectral imagery are developed that specifically target capturing intrinsic features such as isoluminant edges that are characterized by a jump in color but not in intensity. Given prior knowledge of the classes of reflectance or emittance spectra associated with candidate objects in a scene, a small set of spectral-band ratios, which most profoundly identify the edge between each pair of materials, are selected to define a edge signature. The bands that form the edge signature are fed into a spatial mask, producing a sparse joint spatiospectral nonlinear operator. The first algorithm achieves edge detection for every material pair by matching the response of the operator at every pixel with the edge signature for the pair of materials. The second algorithm is a classifier-enhanced extension of the first algorithm that adaptively accentuates distinctive features before applying the spatiospectral operator. Both algorithms are extensively verified using spectral imagery from the airborne hyperspectral imager and from a dots-in-a-well midinfrared imager. In both cases, the multicolor gradient (MCG) and the hyperspectral/spatial detection of edges (HySPADE) edge detectors are used as a benchmark for comparison. The results demonstrate that the proposed algorithms outperform the MCG and HySPADE edge detectors in accuracy, especially when isoluminant edges are present. By requiring only a few bands as input to the spatiospectral operator, the algorithms enable significant levels of data compression in band selection. In the presented examples, the required operations per pixel are reduced by a factor of 71 with respect to those required by the MCG edge detector.

  6. Edge or face based spectral finite elements for electromagnetic problems

    NASA Astrophysics Data System (ADS)

    Jevtic, Jovan Obrad

    This work describes the development and presents a study of a finite element method (FEM) specifically designed for vector electromagnetic wave problems. Three aspects make this formulation different from the conventional FEM, namely, the selection of the unknowns, the choice of shape functions, and the approach to field matching between the elements. First, the unknowns are closely related to the tangential field components on the boundary of a finite element, an edge of a triangle in two dimensions (2D) or a face of a tetrahedron in three- dimensions (3D). This reflects the uniqueness theorem for electromagnetic fields. Second, the unknown total fields are expanded in terms of vector eigenfunctions of the wave equation within a semi-infinite domain bounded by the exact element geometry in 2D or an approximation thereof in 3D. This leads to a low phase error across an element and allows for electrically large elements. Finally, the sole numerical part of the method consist of the enforcement of the tangential field continuity over inter-element boundaries. This reflects the natural electromagnetic field boundary conditions which allows for the discontinuity of the normal field components. The 2D formulation presented herein can be thought of as an extension to higher orders of the conventional edge elements, which are based on the low order shape functions, while at the same time preserving their advantages, such as the absence of spurious modes and the ability to handle sharp edges as well as material interfaces. Furthermore, a full advantage of the higher order absorbing boundary conditions can be made. The 3D problem proved significantly more difficult, not only in terms of the conceptual development of the novel formulation, but also in terms of the associated computational issues, such as real-time determination of the zeros of associated Legendre functions and the ambiguity of eigenfunction ordering. The resolution of these issues, therefore, occupies a

  7. PT -symmetric spectral singularity and negative-frequency resonance

    NASA Astrophysics Data System (ADS)

    Pendharker, Sarang; Guo, Yu; Khosravi, Farhad; Jacob, Zubin

    2017-03-01

    Vacuum consists of a bath of balanced and symmetric positive- and negative-frequency fluctuations. Media in relative motion or accelerated observers can break this symmetry and preferentially amplify negative-frequency modes as in quantum Cherenkov radiation and Unruh radiation. Here, we show the existence of a universal negative-frequency-momentum mirror symmetry in the relativistic Lorentzian transformation for electromagnetic waves. We show the connection of our discovered symmetry to parity-time (PT ) symmetry in moving media and the resulting spectral singularity in vacuum fluctuation-related effects. We prove that this spectral singularity can occur in the case of two metallic plates in relative motion interacting through positive- and negative-frequency plasmonic fluctuations (negative-frequency resonance). Our work paves the way for understanding the role of PT -symmetric spectral singularities in amplifying fluctuations and motivates the search for PT symmetry in novel photonic systems.

  8. Spectral distribution of infrared synchrotron radiation by an insertion device and its edges: A comparison between experimental and simulated spectra

    PubMed

    Roy; Guidi Cestelli M; Nucara; Marcouille; Calvani; Giura; Paolone; Mathis; Gerschel

    2000-01-17

    The first measurements of the spectral distribution of infrared radiation emitted by an undulator are reported. They are compared with calculations including both velocity and acceleration terms. Measurements have been performed at the beam line SIRLOIN (Spectroscopie en InfraRouge Lointain). The agreement between the observations and this first exact numerical solution shows that the inclusion of the velocity term in the submillimeter frequency range is necessary. Moreover, structures due to undulator edges are observed in the far infrared and mid-infrared range, while the interference pattern due to redshifted harmonics of the undulator is dominating in the mid-infrared to near infrared.

  9. Joint demosaicking and zooming using moderate spectral correlation and consistent edge map

    NASA Astrophysics Data System (ADS)

    Zhou, Dengwen; Dong, Weiming; Chen, Wengang

    2014-07-01

    The recently published joint demosaicking and zooming algorithms for single-sensor digital cameras all overfit the popular Kodak test images, which have been found to have higher spectral correlation than typical color images. Their performance perhaps significantly degrades on other datasets, such as the McMaster test images, which have weak spectral correlation. A new joint demosaicking and zooming algorithm is proposed for the Bayer color filter array (CFA) pattern, in which the edge direction information (edge map) extracted from the raw CFA data is consistently used in demosaicking and zooming. It also moderately utilizes the spectral correlation between color planes. The experimental results confirm that the proposed algorithm produces an excellent performance on both the Kodak and McMaster datasets in terms of both subjective and objective measures. Our algorithm also has high computational efficiency. It provides a better tradeoff among adaptability, performance, and computational cost compared to the existing algorithms.

  10. Spectral red edge parameters for winter wheat under different nitrogen support levels

    NASA Astrophysics Data System (ADS)

    Cheng, Yisong; Hu, Chunsheng; Dai, Hui; Lei, Yuping

    2005-09-01

    Hyperspectral remote sensing is not only an important technical method in observing global ecosystems and vegetation cover change, but also a main aspect of studies on precision agriculture. In order to monitor crop nutrient supply condition and to realize precision fertilization, spectral red edge parameter for winter wheat was studied. Experiments were carried out through 8 years since 1997 under four nitrogen support levels in Luancheng Station, Hebei province (e.g., 0, 100, 200 and 300 kg N ha-1). Canopy reflectance spectrum was measured by ASD HandHeld Spectroradiometer (325-1075 nm) during 2002 and 2004. The dynamics of red edge parameters for physiological stages of winter wheat canopy were calculated using first derivative curve. Analyses revealed that the red edge of the wheat canopy reflectance spectrum locates between 720-740 nm. All the different trial had distinct "red shift" trait, but higher N stress had shorter "red edge" wavelength. Position of red edge turned "blue shift" after pregnant period. Red edge swing is a first-order derivative spectrum when wavelength reached red edge position, red edge swing double peak shape showed that the pregnant period was the best stage to detect nitrogen deficiency. Red edge swing correlated with relative chlorophyll content and leaf N content. Area of red edge peak is the value of first-order derivative spectra accumulative total between 680 and 750 nm. These parameters can be used to estimate LAI and N accumulating quantities, and these results provide information needed for the development of variable-rate N application technology.

  11. On the location of spectral edges in \\ {Z}-periodic media

    NASA Astrophysics Data System (ADS)

    Exner, Pavel; Kuchment, Peter; Winn, Brian

    2010-11-01

    Periodic second-order ordinary differential operators on \\ {R} are known to have the edges of their spectra to occur only at the spectra of periodic and anti-periodic boundary value problems. The multi-dimensional analog of this property is false, as was shown in a 2007 paper by some of the authors of this paper. However, one sometimes encounters the claims that in the case of a single periodicity (i.e., with respect to the lattice \\ {Z}), the 1D property still holds, and spectral edges occur at the periodic and anti-periodic spectra only. In this work, we show that even in the simplest case of quantum graphs this is not true. It is shown that this is true if the graph consists of a 1D chain of finite graphs connected by single edges, while if the connections are formed by at least two edges, the spectral edges can already occur away from the periodic and anti-periodic spectra. This paper is dedicated to the memory of P Duclos.

  12. K-edge ratio method for identification of multiple nanoparticulate contrast agents by spectral CT imaging

    PubMed Central

    Ghadiri, H; Ay, M R; Shiran, M B; Soltanian-Zadeh, H

    2013-01-01

    Objective: Recently introduced energy-sensitive X-ray CT makes it feasible to discriminate different nanoparticulate contrast materials. The purpose of this work is to present a K-edge ratio method for differentiating multiple simultaneous contrast agents using spectral CT. Methods: The ratio of two images relevant to energy bins straddling the K-edge of the materials is calculated using an analytic CT simulator. In the resulting parametric map, the selected contrast agent regions can be identified using a thresholding algorithm. The K-edge ratio algorithm is applied to spectral images of simulated phantoms to identify and differentiate up to four simultaneous and targeted CT contrast agents. Results: We show that different combinations of simultaneous CT contrast agents can be identified by the proposed K-edge ratio method when energy-sensitive CT is used. In the K-edge parametric maps, the pixel values for biological tissues and contrast agents reach a maximum of 0.95, whereas for the selected contrast agents, the pixel values are larger than 1.10. The number of contrast agents that can be discriminated is limited owing to photon starvation. For reliable material discrimination, minimum photon counts corresponding to 140 kVp, 100 mAs and 5-mm slice thickness must be used. Conclusion: The proposed K-edge ratio method is a straightforward and fast method for identification and discrimination of multiple simultaneous CT contrast agents. Advances in knowledge: A new spectral CT-based algorithm is proposed which provides a new concept of molecular CT imaging by non-iteratively identifying multiple contrast agents when they are simultaneously targeting different organs. PMID:23934964

  13. Time frequency analysis of Jovian and Saturnian radio spectral patterns

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed Y.; Galopeau, Patrick H. M.; Al-Haddad, Emad; Lammer, Helmut

    2016-04-01

    Prominent radio spectral patterns were observed by the Cassini Radio and Plasma Wave Science experiment (RPWS) principally at Jupiter and Saturn. The spectral shapes are displayed in the usual dynamic spectra showing the flux density versus the time and the frequency. Those patterns exhibit well-organized shapes in the time-frequency plane connected with the rotation of the planet. We consider in this analysis the auroral emissions which occurred in the frequency range between 10 kHz and approximately 3 MHz. It concerns the Jovian hectometric emission (HOM) and the Saturnian kilometric radiation (SKR). We show in the case of Jupiter's HOM that the spectral patterns are well-arranged arc structures with curvatures depending on the Jovian rotation. Regarding the SKR emission, the spectral shapes exhibit generally complex patterns, and only sometimes arc structures are observed. We emphasize the curve alterations from vertex-early to vertex-late arcs (and vice versa) and we study their dependences, or not, on the planetary rotations. We also discuss the common physical process at the origin of the HOM and SKR emissions, specifically the spectral patterns created by the interaction between planetary satellites (e.g. Io or Dione) and the Jovian and Saturnian magnetospheres.

  14. Effects of relative and absolute frequency in the spectral weighting of loudnessa)

    PubMed Central

    Joshi, Suyash Narendra; Wróblewski, Marcin; Schmid, Kendra K.; Jesteadt, Walt

    2016-01-01

    The loudness of broadband sound is often modeled as a linear sum of specific loudness across frequency bands. In contrast, recent studies using molecular psychophysical methods suggest that low and high frequency components contribute more to the overall loudness than mid frequencies. In a series of experiments, the contribution of individual components to the overall loudness of a tone complex was assessed using the molecular psychophysical method as well as a loudness matching task. The stimuli were two spectrally overlapping ten-tone complexes with two equivalent rectangular bandwidth spacing between the tones, making it possible to separate effects of relative and absolute frequency. The lowest frequency components of the “low-frequency” and the “high-frequency” complexes were 208 and 808 Hz, respectively. Perceptual-weights data showed emphasis on lowest and highest frequencies of both the complexes, suggesting spectral-edge related effects. Loudness matching data in the same listeners confirmed the greater contribution of low and high frequency components to the overall loudness of the ten-tone complexes. Masked detection thresholds of the individual components within the tone complex were not correlated with perceptual weights. The results show that perceptual weights provide reliable behavioral correlates of relative contributions of the individual frequency components to overall loudness of broadband sounds. PMID:26827032

  15. Cell Edge Capacity Improvement by Using Adaptive Base Station Cooperation in Cellular Networks with Fractional Frequency Reuse

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Yamamoto, Koji; Murata, Hidekazu; Yoshida, Susumu

    The present paper focuses on the application of the base station cooperation (BSC) technique in fractional frequency reuse (FFR) networks. Fractional frequency reuse is considered to be a promising scheme for avoiding the inter-cell interference problem in OFDMA cellular systems, such as WiMAX, in which the edge mobile stations (MSs) of adjacent cells use different subchannels for separate transmission. However, the problem of FFR is that the cell edge spectral efficiency (SE) is much lower than that of the cell center. The BSC technique, in which adjacent BSs perform cooperative transmission for one cell edge MS with the same channel, may improve the cell edge SE. However, since more BSs transmit signals for one cell edge MS, the use of BSC can also increase the inter-cell interference, which might degrade the network performance. In this paper, with a focus on this tradeoff, we propose an adaptive BSC scheme in which BSC is only performed for the cell edge MSs that can achieve a significant capacity increase with only a slight increase in inter-cell interference. Moreover, a channel reallocation scheme is proposed in order to further improve the performance of the adaptive BSC scheme. The simulation results reveal that, compared to the conventional FFR scheme, the proposed schemes are effective for improving the performance of FFR networks.

  16. Multi-frequency scanning interferometry using variable spatial spectral filter

    NASA Astrophysics Data System (ADS)

    Choi, Samuel; Sato, Ryoko; Kato, Heiichi; Sasaki, Osami; Suzuki, Takamasa

    2014-04-01

    Recently, a variety of the optical comb-based interferometries has been developed for profilometry and tomography. However the interference amplitude and phase characteristics involving the center frequency and mode spacing of the optical comb have not been sufficiently studied. To investigate these multi-frequency interference characteristics, we proposed a broadband frequency variable quasi-comb generator utilizing 4-f optical system and a spatial spectral filter which can perform unrestricted scanning of the center frequency and mode spacing. By using a sinusoidal phase modulating interferometer with the quasi-comb generator, fundamental proof-of-principle experiments were successfully demonstrated. The interference phase fixation during the symmetrical varying of the mode spacing produced the interference amplitude peak envelope without fringes. On the other hand, it was confirmed that the interference phase was changed linearly without the amplitude change by the center frequency shift of the multi-frequency spectrum.

  17. [The frequency features and application of edge detection differential operators in medical image].

    PubMed

    Wu, Jian; Ding, Hui; Wang, Guangzhi; Ding, Haishu; Zhou, Yiyi

    2005-02-01

    Edge detection is an absolutely necessary step in medical image processing, and the use of differential operators to detect edge is one of the most common and effective methods. In this paper are analyzed the frequency features of the Roberts operator, Prewitt operator, Sobel operator and Laplacian operator from the viewpoint of frequency domain, and it is proposed that the frequency features of the differential operators should be considered when differential operator is being used and/or constructed. Because edge detection operator is sensitive to the edge type, the appropriate operator should be adopted in different edge type detection. Finally, the importance and necessity of selecting edge detection operator are validated in the MRI image edge processing.

  18. Assessments of SENTINEL-2 Vegetation Red-Edge Spectral Bands for Improving Land Cover Classification

    NASA Astrophysics Data System (ADS)

    Qiu, S.; He, B.; Yin, C.; Liao, Z.

    2017-09-01

    The Multi Spectral Instrument (MSI) onboard Sentinel-2 can record the information in Vegetation Red-Edge (VRE) spectral domains. In this study, the performance of the VRE bands on improving land cover classification was evaluated based on a Sentinel-2A MSI image in East Texas, USA. Two classification scenarios were designed by excluding and including the VRE bands. A Random Forest (RF) classifier was used to generate land cover maps and evaluate the contributions of different spectral bands. The combination of VRE bands increased the overall classification accuracy by 1.40 %, which was statistically significant. Both confusion matrices and land cover maps indicated that the most beneficial increase was from vegetation-related land cover types, especially agriculture. Comparison of the relative importance of each band showed that the most beneficial VRE bands were Band 5 and Band 6. These results demonstrated the value of VRE bands for land cover classification.

  19. Non-Equilibrium Allele Frequency Spectra Via Spectral Methods

    PubMed Central

    Hey, Jody; Chen, Kevin

    2011-01-01

    A major challenge in the analysis of population genomics data consists of isolating signatures of natural selection from background noise caused by random drift and gene flow. Analyses of massive amounts of data from many related populations require high-performance algorithms to determine the likelihood of different demographic scenarios that could have shaped the observed neutral single nucleotide polymorphism (SNP) allele frequency spectrum. In many areas of applied mathematics, Fourier Transforms and Spectral Methods are firmly established tools to analyze spectra of signals and model their dynamics as solutions of certain Partial Differential Equations (PDEs). When spectral methods are applicable, they have excellent error properties and are the fastest possible in high dimension; see [15]. In this paper we present an explicit numerical solution, using spectral methods, to the forward Kolmogorov equations for a Wright-Fisher process with migration of K populations, influx of mutations, and multiple population splitting events. PMID:21376069

  20. Convergence of oscillator spectral estimators for counted-frequency measurements.

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1972-01-01

    A common intermediary connecting frequency-noise calibration or testing of an oscillator to useful applications is the spectral density of the frequency-deviating process. In attempting to turn test data into predicts of performance characteristics, one is naturally led to estimation of statistical values by sample-mean and sample-variance techniques. However, sample means and sample variances themselves are statistical quantities that do not necessarily converge (in the mean-square sense) to actual ensemble-average means and variances, except perhaps for excessively large sample sizes. This is especially true for the flicker noise component of oscillators. This article shows, for the various types of noises found in oscillators, how sample averages converge (or do not converge) to their statistical counterparts. The convergence rate is shown to be the same for all oscillators of a given spectral type.

  1. Measurement of microresonator frequency comb coherence by spectral interferometry.

    PubMed

    Webb, K E; Jang, J K; Anthony, J; Coen, S; Erkintalo, M; Murdoch, S G

    2016-01-15

    We experimentally investigate the spectral coherence of microresonator optical frequency combs. Specifically, we use a spectral interference method, typically used in the context of supercontinuum generation, to explore the variation of the magnitude of the complex degree of first-order coherence across the full comb bandwidth. We measure the coherence of two different frequency combs and observe wholly different coherence characteristics. In particular, we find that the observed dynamical regimes are similar to the stable and unstable modulation instability regimes reported in previous theoretical studies. Results from numerical simulations are found to be in good agreement with experimental observations. In addition to demonstrating a new technique to assess comb stability, our results provide strong experimental support for previous theoretical analyses.

  2. Spectral Trends of Solar Bursts at Sub-THz Frequencies

    NASA Astrophysics Data System (ADS)

    Fernandes, L. O. T.; Kaufmann, P.; Correia, E.; Giménez de Castro, C. G.; Kudaka, A. S.; Marun, A.; Pereyra, P.; Raulin, J.-P.; Valio, A. B. M.

    2017-01-01

    Previous sub-THz studies were derived from single-event observations. We here analyze for the first time spectral trends for a larger collection of sub-THz bursts. The collection consists of a set of 16 moderate to small impulsive solar radio bursts observed at 0.2 and 0.4 THz by the Solar Submillimeter-wave Telescope (SST) in 2012 - 2014 at El Leoncito, in the Argentinean Andes. The peak burst spectra included data from new solar patrol radio telescopes (45 and 90 GHz), and were completed with microwave data obtained by the Radio Solar Telescope Network, when available. We critically evaluate errors and uncertainties in sub-THz flux estimates caused by calibration techniques and the corrections for atmospheric transmission, and introduce a new method to obtain a uniform flux scale criterion for all events. The sub-THz bursts were searched during reported GOES soft X-ray events of class C or larger, for periods common to SST observations. Seven out of 16 events exhibit spectral maxima in the range 5 - 40 GHz with fluxes decaying at sub-THz frequencies (three of them associated to GOES class X, and four to class M). Nine out of 16 events exhibited the sub-THz spectral component. In five of these events, the sub-THz emission fluxes increased with a separate frequency from that of the microwave spectral component (two classified as X and three as M), and four events have only been detected at sub-THz frequencies (three classified as M and one as C). The results suggest that the THz component might be present throughout, with the minimum turnover frequency increasing as a function of the energy of the emitting electrons. The peculiar nature of many sub-THz burst events requires further investigations of bursts that are examined from SST observations alone to better understand these phenomena.

  3. Noise Reduction using Frequency Sub-Band Adaptive Spectral Subtraction

    NASA Technical Reports Server (NTRS)

    Kozel, David

    2000-01-01

    A frequency sub-band based adaptive spectral subtraction algorithm is developed to remove noise from noise-corrupted speech signals. A single microphone is used to obtain both the noise-corrupted speech and the estimate of the statistics of the noise. The statistics of the noise are estimated during time frames that do not contain speech. These statistics are used to determine if future time frames contain speech. During speech time frames, the algorithm determines which frequency sub-bands contain useful speech information and which frequency sub-bands contain only noise. The frequency sub-bands, which contain only noise, are subtracted off at a larger proportion so the noise does not compete with the speech information. Simulation results are presented.

  4. Laser heterodyne interferometric signal processing method based on rising edge locking with high frequency clock signal.

    PubMed

    Zhang, Enzheng; Chen, Benyong; Yan, Liping; Yang, Tao; Hao, Qun; Dong, Wenjun; Li, Chaorong

    2013-02-25

    A novel phase measurement method composed of the rising-edge locked signal processing and the digital frequency mixing is proposed for laser heterodyne interferometer. The rising-edge locked signal processing, which employs a high frequency clock signal to lock the rising-edges of the reference and measurement signals, not only can improve the steepness of the rising-edge, but also can eliminate the error counting caused by multi-rising-edge phenomenon in fringe counting. The digital frequency mixing is realized by mixing the digital interference signal with a digital base signal that is different from conventional frequency mixing with analogue signals. These signal processing can improve the measurement accuracy and enhance anti-interference and measurement stability. The principle and implementation of the method are described in detail. An experimental setup was constructed and a series of experiments verified the feasibility of the method in large displacement measurement with high speed and nanometer resolution.

  5. A novel edge-preserving nonnegative matrix factorization method for spectral unmixing

    NASA Astrophysics Data System (ADS)

    Bao, Wenxing; Ma, Ruishi

    2015-12-01

    Spectral unmixing technique is one of the key techniques to identify and classify the material in the hyperspectral image processing. A novel robust spectral unmixing method based on nonnegative matrix factorization(NMF) is presented in this paper. This paper used an edge-preserving function as hypersurface cost function to minimize the nonnegative matrix factorization. To minimize the hypersurface cost function, we constructed the updating functions for signature matrix of end-members and abundance fraction respectively. The two functions are updated alternatively. For evaluation purpose, synthetic data and real data have been used in this paper. Synthetic data is used based on end-members from USGS digital spectral library. AVIRIS Cuprite dataset have been used as real data. The spectral angle distance (SAD) and abundance angle distance(AAD) have been used in this research for assessment the performance of proposed method. The experimental results show that this method can obtain more ideal results and good accuracy for spectral unmixing than present methods.

  6. Edge technique for measurement of laser frequency shifts including the Doppler shift

    NASA Technical Reports Server (NTRS)

    Korb, Larry (Inventor)

    1991-01-01

    A method is disclosed for determining the frequency shift in a laser system by transmitting an outgoing laser beam. An incoming laser beam having a frequency shift is received. A first signal is acquired by transmitting a portion of the incoming laser beam to an energy monitor detector. A second signal is acquired by transmitting a portion of the incoming laser beam through an edge filter to an edge detector, which derives a first normalized signal which is proportional to the transmission of the edge filter at the frequency of the incoming laser beam. A second normalized signal is acquired which is proportional to the transmission of the edge filter at the frequency of the outgoing laser beam. The frequency shift is determined by processing the first and second normalized signals.

  7. Locating edges and removing ringing artifacts in JPEG images by frequency-domain analysis.

    PubMed

    Popovici, Irina; Withers, W Douglas

    2007-05-01

    We present a method of locating edges in JPEG-coded images which operates in frequency space on the DCT coefficients. Applied to the quantized DCT coefficients of a block containing a straight edge, the method yields an equation for the edge in a fraction of the operations needed to dequantize and transform the coefficents to pixel values. As a sample application of this method, we present a technique for alleviating ringing artifacts in JPEG-coded images.

  8. Coupling an ICRF core spectral solver to an edge FEM code

    NASA Astrophysics Data System (ADS)

    Wright, J. C.; Shiraiwa, S.

    2015-12-01

    The finite element method (FEM) and the spectral approaches to simulation of ion cyclotron (IC) waves in toroidal plasmas each have strengths and weaknesses. For example, the spectral approach (eg TORIC) has a natural algebraic representation of the parallel wavenumber and hence the wave dispersion but does not easily represent complex geometries outside the last closed flux surface, whereas the FEM approach (eg LHEAF) naturally represents arbitrary geometries but does not easily represent thermal corrections to the plasma dispersion. The two domains: thermal core with flux surfaces and cold edge plasma with open field lines may be combined in such as way that each approach is used where it works naturally. Among the possible ways of doing this, we demonstrate the method of mode matching. This method provides an easy way of combining the two linear systems without significant modifications to the separate codes. We will present proof of principal cases and initial applications to minority heating.

  9. Coupling an ICRF core spectral solver to an edge FEM code

    NASA Astrophysics Data System (ADS)

    Wright, John; Shirwaiwa, Syunichi; RF SciDAC Team

    2015-11-01

    The finite element method (FEM) and the spectral approaches to simulation of ion cyclotron (IC) waves in toroidal plasmas each have strengths and weaknesses. For example, the spectral approach (eg TORIC) has a natural algebraic representation of the parallel wavenumber and hence the wave dispersion but does not easily represent complex geometries outside the last closed flux surface, whereas the FEM approach (eg LHEAF) naturally represents arbitrary geometries but does not easily represent thermal corrections to the plasma dispersion. The two domains: thermal core with flux surfaces and cold edge plasma with open field lines may be combined in such as way that each approach is used where it works naturally. Among the possible ways of doing this, we demonstrate the method of mode matching. This method provides an easy way of combining the two linear systems without significant modifications to the separate codes. We will present proof of principal cases and initial applications to minority heating.

  10. Spectral representation of high-frequency Space Shuttle data

    NASA Technical Reports Server (NTRS)

    Spanos, P. D.; Mushung, L. J.; Nelson, D. A., Jr.; Hamilton, D. A.

    1994-01-01

    High frequency Space Shuttle liftoff data are treated by autoregressive (AR) and autoregressive-moving-average (ARMA) digital algorithms. These algorithms provide useful information on the spectral densities of the data. Further, they yield spectral models, which lend themeselves to incorporation into the concept of the random response spectrum. This concept yields a reasonably smooth power spectrum for the design of structural and mechanical systems when the available data bank is limited. Due to the nonstationary of the liftoff event, the pertinent data are split into three slices. Each of the slices is associated with a rather distinguished phase of the liftoff event, in which stationarity can be expected. The presented results are preliminary in nature; they aim to call attention to the availability of the discussed concepts and to the need to augment the Space Shuttle data bank as more flights are completed.

  11. Improving the accuracy of MTF measurement at low frequencies based on oversampled edge spread function deconvolution.

    PubMed

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin; Ren, Liqiang; Li, Zheng; Ghani, Muhammad U; Hao, Ting; Liu, Hong

    2015-01-01

    The modulation transfer function (MTF) of a radiographic system is often evaluated by measuring the system's edge spread function (ESF) using edge device. However, the numerical differentiation procedure of the traditional slanted edge method amplifies noises in the line spread function (LSF) and limits the accuracy of the MTF measurement at low frequencies. The purpose of this study is to improve the accuracy of low-frequency MTF measurement for digital x-ray imaging systems. An edge spread function (ESF) deconvolution technique was developed for MTF measurement based on the degradation model of slanted edge images. Specifically, symmetric oversampled ESFs were constructed by subtracting a shifted version of the ESF from the original one. For validation, the proposed MTF technique was compared with conventional slanted edge method through computer simulations as well as experiments on two digital radiography systems. The simulation results show that the average errors of the proposed ESF deconvolution technique were 0.11% ± 0.09% and 0.23% ± 0.14%, and they outperformed the conventional edge method (0.64% ± 0.57% and 1.04% ± 0.82% respectively) at low-frequencies. On the experimental edge images, the proposed technique achieved better uncertainty performance than the conventional method. As a result, both computer simulation and experiments have demonstrated that the accuracy of MTF measurement at low frequencies can be improved by using the proposed ESF deconvolution technique.

  12. Spectral effectiveness of engineered thermal cloaks in the frequency regime

    PubMed Central

    Petiteau, David; Guenneau, Sebastien; Bellieud, Michel; Zerrad, Myriam; Amra, Claude

    2014-01-01

    We analyse basic thermal cloaks designed via different geometric transforms applied to thermal cloaking. We evaluate quantitatively the effectiveness of these heterogeneous anisotropic thermal cloaks through the calculation of the standard deviation of the isotherms. The study addresses the frequency regime and we point out the cloak's spectral effectiveness. We find that all these cloaks have comparable effectiveness irrespective of whether or not they have singular conductivity at their inner boundary. However, approximate cloaking with multi-layered cloak critically depends upon the homogenization algorithm and it is shown that the standard deviation varies linearly with the inverse of the number of layers. PMID:25486981

  13. Spectrally narrowed edge emission from leaky waveguide modes in organic light-emitting diodes

    SciTech Connect

    Gan, Zhengqing; Tian, Yun; Lynch, David W.; Kang, Ji-hun; Park, Q-Han; and Shinar, Joseph

    2009-11-03

    A dramatic spectral line narrowing of the edge emission at room temperature from tris(quinolinolate) Al (Alq{sub 3}), N,N{prime}-diphenyl-N,N{prime}-bis(1-naphthylphenyl)-1,1{prime}-biphenyl-4,4{prime}-diamine (NPD), 4,4{prime}-bis(2,2{prime}-diphenyl-vinyl)-,1{prime}-biphenyl (DPVBi), and some guest-host small molecular organic light-emitting diodes (OLEDs), fabricated on indium tin oxide (ITO)-coated glass, is described. In all but the DPVBi OLEDs, the narrowed emission band emerges above a threshold thickness of the emitting layer, and narrows down to a full width at half maximum of only 5-10 nm. The results demonstrate that this narrowed emission is due to irregular waveguide modes that leak from the ITO to the glass substrate at a grazing angle. While measurements of variable stripe length l devices exhibit an apparent weak optical gain 0 {le} g {le} 1.86 cm{sup -1}, there is no observable threshold current or bias associated with this spectral narrowing. In addition, in the phosphorescent guest-host OLEDs, there is no decrease in the emission decay time of the narrowed edge emission relative to the broad surface emission. It is suspected that the apparent weak optical gain is due to misalignment of the axis of the waveguided mode and the axis of the collection lens of the probe.

  14. INSTRUMENTS AND METHODS OF INVESTIGATION: Spectral and spectral-frequency methods of investigating atmosphereless bodies of the Solar system

    NASA Astrophysics Data System (ADS)

    Busarev, Vladimir V.; Prokof'eva-Mikhailovskaya, Valentina V.; Bochkov, Valerii V.

    2007-06-01

    A method of reflectance spectrophotometry of atmosphereless bodies of the Solar system, its specificity, and the means of eliminating basic spectral noise are considered. As a development, joining the method of reflectance spectrophotometry with the frequency analysis of observational data series is proposed. The combined spectral-frequency method allows identification of formations with distinctive spectral features, and estimations of their sizes and distribution on the surface of atmospherelss celestial bodies. As applied to investigations of asteroids 21 Lutetia and 4 Vesta, the spectral frequency method has given us the possibility of obtaining fundamentally new information about minor planets.

  15. Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs

    SciTech Connect

    Zhengqing, Gan

    2010-01-01

    In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides a

  16. Bulk-edge correspondence, spectral flow and Atiyah-Patodi-Singer theorem for the Z2-invariant in topological insulators

    NASA Astrophysics Data System (ADS)

    Yu, Yue; Wu, Yong-Shi; Xie, Xincheng

    2017-03-01

    We study the bulk-edge correspondence in topological insulators by taking Fu-Kane spin pumping model as an example. We show that the Kane-Mele invariant in this model is Z2 invariant modulo the spectral flow of a single-parameter family of 1 + 1-dimensional Dirac operators with a global boundary condition induced by the Kramers degeneracy of the system. This spectral flow is defined as an integer which counts the difference between the number of eigenvalues of the Dirac operator family that flow from negative to non-negative and the number of eigenvalues that flow from non-negative to negative. Since the bulk states of the insulator are completely gapped and the ground state is assumed being no more degenerate except the Kramers, they do not contribute to the spectral flow and only edge states contribute to. The parity of the number of the Kramers pairs of gapless edge states is exactly the same as that of the spectral flow. This reveals the origin of the edge-bulk correspondence, i.e., why the edge states can be used to characterize the topological insulators. Furthermore, the spectral flow is related to the reduced η-invariant and thus counts both the discrete ground state degeneracy and the continuous gapless excitations, which distinguishes the topological insulator from the conventional band insulator even if the edge states open a gap due to a strong interaction between edge modes. We emphasize that these results are also valid even for a weak disordered and/or weak interacting system. The higher spectral flow to categorize the higher-dimensional topological insulators is expected.

  17. Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data

    PubMed Central

    Wang, Jia; Davis, Scott C.; Srinivasan, Subhadra; Jiang, Shudong; Pogue, Brian W.; Paulsen, Keith D.

    2010-01-01

    Near-infrared (NIR) region-based spectroscopy is examined for accuracy with spectral recovery using frequency domain data at a discrete number of wavelengths, as compared to that with broadband continuous wave data. Data with more wavelengths in the frequency domain always produce superior quantitative spectroscopy results with reduced noise and error in the chromophore concentrations. Performance of the algorithm in the situation of doing region-guided spectroscopy within the MRI is also considered, and the issue of false positive prior regions being identified is examined to see the effect of added wavelengths. The results indicate that broadband frequency domain data are required for maximal accuracy. A broadband frequency domain experimental system was used to validate the predictions, using a mode-locked Ti:sapphire laser for the source between 690- and 850-nm wavelengths. The 80-MHz pulsed signal is heterodyned with photomultiplier tube detection, to lower frequency for data acquisition. Tissue-phantom experiments with known hemoglobin absorption and tissue-like scatter values are used to validate the system, using measurements every 10 nm. More wavelengths clearly provide superior quantification of total hemoglobin values. The system and algorithms developed here should provide an optimal way to quantify regions with the goal of image-guided breast tissue spectroscopy within the MRI. PMID:19021313

  18. Application of frequency domain line edge roughness characterization methodology in lithography

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Wang, Wenhui; Beique, Genevieve; Wood, Obert; Kim, Ryoung-Han

    2015-03-01

    A frequency domain 3 sigma LER characterization methodology combining the standard deviation and power spectral density (PSD) methods is proposed. In the new method, the standard deviation is calculated in the frequency domain instead of the spatial domain as in the conventional method. The power spectrum of the LER is divided into three regions: low frequency (LF), middle frequency (MF) and high frequency (HF) regions. The frequency region definition is based on process visual comparisons. Three standard deviation numbers are used to characterize the LER in the three frequency regions. Pattern wiggling can be detected quantitatively with a wiggling factor which is also proposed in this paper.

  19. Photon counting spectral CT: improved material decomposition with K-edge-filtered x-rays

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2012-03-01

    Photon counting spectral computed tomography (PCSCT) provides material selective CT imaging at a single CT scan and fixed tube voltage. The PCSCT data are acquired in several energy ranges (bins) arranged over the x-ray spectrum. The quasi-monoenergetic CT images are acquired in these energy bins and are used for material decomposition. The PCSCT exhibits inherent limitations when material decomposition is performed using energy bins. For effective material decomposition, the energy bins used for material decomposition should be sufficiently narrow and well separated. However, when narrow bins are used, a large fraction of the detected x-ray counts is lost and statistical noise is increased. Alternatively, the x-ray spectrum can be split into a few larger bins with no gap in between and all detected x-ray photons can be used for material decomposition. However, in this case the energy bins are too wide and not well separated, which results in suboptimal material decomposition. The above contradictory requirements can be resolved if the x-ray photons are physically removed from the regions of the energy spectrum between the energy bins. Such a selective removal can be performed using filtration of the x-ray beam by high-Z filter materials with appropriate positions of K-edge energies. The K-edge filtration of x-rays can, therefore, provide necessary gaps between the energy bins with no dose penalty to the patient. In the current work, we proposed using selective K-edge filtration of x-rays in PCSCT and performed the first experimental investigation of this approach. The PCSCT system included a cadmium zinc telluride semiconductor detector with 2 × 256 pixels and 1 × 1 mm2 pixel size, and five energy bins. The CT phantom had 14 cm diameter and included contrast elements of iodine, gold and calcifications with clinically relevant concentrations. The tube voltages of 60, 90 and 120 kVp were used. K-edge filters based on Ba (Ek = 37.44 keV) were used for a 60 kVp tube

  20. Photon counting spectral CT: improved material decomposition with K-edge-filtered x-rays.

    PubMed

    Shikhaliev, Polad M

    2012-03-21

    Photon counting spectral computed tomography (PCSCT) provides material selective CT imaging at a single CT scan and fixed tube voltage. The PCSCT data are acquired in several energy ranges (bins) arranged over the x-ray spectrum. The quasi-monoenergetic CT images are acquired in these energy bins and are used for material decomposition. The PCSCT exhibits inherent limitations when material decomposition is performed using energy bins. For effective material decomposition, the energy bins used for material decomposition should be sufficiently narrow and well separated. However, when narrow bins are used, a large fraction of the detected x-ray counts is lost and statistical noise is increased. Alternatively, the x-ray spectrum can be split into a few larger bins with no gap in between and all detected x-ray photons can be used for material decomposition. However, in this case the energy bins are too wide and not well separated, which results in suboptimal material decomposition. The above contradictory requirements can be resolved if the x-ray photons are physically removed from the regions of the energy spectrum between the energy bins. Such a selective removal can be performed using filtration of the x-ray beam by high-Z filter materials with appropriate positions of K-edge energies. The K-edge filtration of x-rays can, therefore, provide necessary gaps between the energy bins with no dose penalty to the patient. In the current work, we proposed using selective K-edge filtration of x-rays in PCSCT and performed the first experimental investigation of this approach. The PCSCT system included a cadmium zinc telluride semiconductor detector with 2 × 256 pixels and 1 × 1 mm(2) pixel size, and five energy bins. The CT phantom had 14 cm diameter and included contrast elements of iodine, gold and calcifications with clinically relevant concentrations. The tube voltages of 60, 90 and 120 kVp were used. K-edge filters based on Ba (E(k) = 37.44 keV) were used for a 60 k

  1. Laser line shape and spectral density of frequency noise

    SciTech Connect

    Stephan, G.M.; Blin, S.; Besnard, P.; Tam, T.T.; Tetu, M.

    2005-04-01

    Published experimental results show that single-mode laser light is characterized in the microwave range by a frequency noise which essentially includes a white part and a 1/f (flicker) part. We theoretically show that the spectral density (the line shape) which is compatible with these results is a Voigt profile whose Lorentzian part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified that the width of the Lorentzian part varies like 1/P where P is the laser power while the width of the Gaussian part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part originates from population noise.

  2. Edge connectivity and the spectral gap of combinatorial and quantum graphs

    NASA Astrophysics Data System (ADS)

    Berkolaiko, Gregory; Kennedy, James B.; Kurasov, Pavel; Mugnolo, Delio

    2017-09-01

    We derive a number of upper and lower bounds for the first nontrivial eigenvalue of Laplacians on combinatorial and quantum graph in terms of the edge connectivity, i.e. the minimal number of edges which need to be removed to make the graph disconnected. On combinatorial graphs, one of the bounds corresponds to a well-known inequality of Fiedler, of which we give a new variational proof. On quantum graphs, the corresponding bound generalizes a recent result of Band and Lévy. All proofs are general enough to yield corresponding estimates for the p-Laplacian and allow us to identify the minimizers. Based on the Betti number of the graph, we also derive upper and lower bounds on all eigenvalues which are ‘asymptotically correct’, i.e. agree with the Weyl asymptotics for the eigenvalues of the quantum graph. In particular, the lower bounds improve the bounds of Friedlander on any given graph for all but finitely many eigenvalues, while the upper bounds improve recent results of Ariturk. Our estimates are also used to derive bounds on the eigenvalues of the normalized Laplacian matrix that improve known bounds of spectral graph theory.

  3. High resolution atomic coherent control via spectral phase manipulation of an optical frequency comb.

    PubMed

    Stowe, Matthew C; Cruz, Flavio C; Marian, Adela; Ye, Jun

    2006-04-21

    We demonstrate high resolution coherent control of cold atomic rubidium utilizing spectral phase manipulation of a femtosecond optical frequency comb. Transient coherent accumulation is directly manifested by the enhancement of signal amplitude and spectral resolution via the pulse number. The combination of frequency comb technology and spectral phase manipulation enables coherent control techniques to enter a new regime with natural linewidth resolution.

  4. High Resolution Atomic Coherent Control via Spectral Phase Manipulation of an Optical Frequency Comb

    SciTech Connect

    Stowe, Matthew C.; Cruz, Flavio C.; Marian, Adela; Ye Jun

    2006-04-21

    We demonstrate high resolution coherent control of cold atomic rubidium utilizing spectral phase manipulation of a femtosecond optical frequency comb. Transient coherent accumulation is directly manifested by the enhancement of signal amplitude and spectral resolution via the pulse number. The combination of frequency comb technology and spectral phase manipulation enables coherent control techniques to enter a new regime with natural linewidth resolution.

  5. High Broadband Spectral Resolving Transition-Edge Sensors for High Count-Rate Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Smith, Stephen

    2011-01-01

    We are developing arrays of transition-edge sensor (TES) X-ray detectors optimized for high count-rate solar astronomy applications where characterizing the high velocity motions of X-ray jets in solar flares is of particular interest. These devices are fabricated on thick Si substrates and consist of 35x35micron^2 TESs with 4.5micron thick, 60micron pitch, electroplated absorbers. We have tested devices fabricated with different geometric stem contact areas with the TES and surrounding substrate area, which allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between the stem contact area and a non-Gaussian broadening in the spectral line shape consistent with athermal phonon loss. When the contact area is minimized we have obtained remarkable board-band spectral resolving capabilities of 1.3 plus or minus 0.leV at an energy of 1.5 keV, 1.6 plus or minus 0.1 eV at 5.9 keV and 2.0 plus or minus 0.1 eV at 8 keV. This, coupled with a capability of accommodating 100's of counts per second per pixel makes these devices an exciting prospect of future x-ray astronomy applications.

  6. Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Adams, J. S.; Eckart, M. E.; Smith, Adams; Bailey, C. N.; Bandler, S. R.; Chevenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2012-01-01

    We are developing small pitch transition-edge sensor (TES) X-ray detectors optimized for solar astronomy. These devices are fabricated on thick Si substrates with embedded Cu heat-sink layer. We use 35 x 35 square micrometers Mo/Au TESs with 4.5 micrometer thick Au absorbers. We have tested devices with different geometric absorber stem contact areas with the TES and surrounding substrate area. This allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between thc stem contact area and a broadening in the spectral line shape indicative of athermal phonon loss. When the contact area is minimized we have obtained exceptional broadband spectral resolution of 1.28 plus or minus 0.03 eV at an energy of 1.5 keV, 1.58 plus or minus 0.07 eV at 5.9 keV and 1.96 plus or minus 0.08 eV at 8 keV. The linearity in the measured gain scale is understood in the context of the longitudinal proximity effect from the electrical bias leads resulting in transition characteristics that are strongly dependent upon TES size.

  7. Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Adams, J. S.; Eckart, M. E.; Smith, Adams; Bailey, C. N.; Bandler, S. R.; Chevenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.

    2012-01-01

    We are developing small pitch transition-edge sensor (TES) X-ray detectors optimized for solar astronomy. These devices are fabricated on thick Si substrates with embedded Cu heat-sink layer. We use 35 x 35 square micrometers Mo/Au TESs with 4.5 micrometer thick Au absorbers. We have tested devices with different geometric absorber stem contact areas with the TES and surrounding substrate area. This allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between thc stem contact area and a broadening in the spectral line shape indicative of athermal phonon loss. When the contact area is minimized we have obtained exceptional broadband spectral resolution of 1.28 plus or minus 0.03 eV at an energy of 1.5 keV, 1.58 plus or minus 0.07 eV at 5.9 keV and 1.96 plus or minus 0.08 eV at 8 keV. The linearity in the measured gain scale is understood in the context of the longitudinal proximity effect from the electrical bias leads resulting in transition characteristics that are strongly dependent upon TES size.

  8. Low Frequency Spectral Structure of X-shaped Radio Sources

    NASA Astrophysics Data System (ADS)

    Lal, D. V.; Rao, A. P.

    2005-12-01

    X-shaped radio galaxies are attributed to be formed by galactic mergers as the black holes of two galaxies fall into the merged system and form a bound system. Recent analysis of Giant Metrewave Radio Telescope low frequency data for an X-shaped source, 3C 223.1 has revealed an unusual result (Lal & Rao 2004). The radio morphologies of it at 240 and 610 MHz show well defined X-shape with a pair of active jets along the north-south axis and a pair of wings along the east-west axis, that pass symmetrically through the undetected radio core. The wings (or low surface brightness jets) have flatter spectral indices with respect to the high surface brightness jets, which confirms the earlier marginal result obtained at high frequency by Dennett-Thorpe et al. (2002). Although unusual, it is a valuable result which puts stringent constraints on the formation models and nature of these sources. We present preliminary results for two such sources.

  9. Line edge roughness frequency analysis during pattern transfer in semiconductor fabrication

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Wang, Wenhui; Beique, Genevieve; Sung, Min Gyu; Wood, Obert R.; Kim, Ryoung-Han

    2015-07-01

    Line edge roughness (LER) and line width roughness (LWR) are analyzed based on the frequency domain 3σ LER characterization methodology during pattern transfer in a self-aligned double patterning (SADP) process. The power spectrum of the LER/LWR is divided into three regions: low frequency, middle frequency, and high frequency regions. Three standard deviation numbers are used to characterize the LER/LWR in the three frequency regions. Pattern wiggling is also detected quantitatively during LER/LWR transfer in the SADP process.

  10. Simultaneous multi-frequency topological edge modes between one-dimensional photonic crystals.

    PubMed

    Choi, Ka Hei; Ling, C W; Lee, K F; Tsang, Y H; Fung, Kin Hung

    2016-04-01

    We show theoretically that, in the limit of weak dispersion, one-dimensional binary centrosymmetric photonic crystals can support topological edge modes in all photonic bandgaps. By analyzing their bulk band topology, these "harmonic" topological edge modes can be designed in a way that they exist at all photonic bandgaps opened at the center of the Brillouin zone, at all gaps opened at the zone boundaries, or both. The results may suggest a new approach to achieve robust multi-frequency coupled modes for applications in nonlinear photonics, such as frequency upconversion.

  11. Investigation of the mica x-ray absorption near-edge structure spectral features at the Al K-edge

    NASA Astrophysics Data System (ADS)

    Wu, Ziyu; Marcelli, A.; Cibin, G.; Mottana, A.; Della Ventura, G.

    2003-10-01

    Near-edge features of Al x-ray absorption near-edge structure (XANES) spectra in aluminosilicate compounds with mixed coordination number are usually assigned to a fourfold coordinated site contribution followed by a sixfold coordinated site contribution that is displaced towards higher energy because of the increasing ligand nucleus potentials, neglecting possible contributions due to bond distance variations and local geometrical distortion. Here we present and discuss the Al K-edge XANES spectra of synthetic micas with either fourfold coordinated Al (phlogopite), or with sixfold coordinated Al (polylithionite), as well as with mixed coordination (preiswerkite). Multiple scattering simulations of XANES spectra demonstrate that octahedral contributions may overlap the tetrahedral ones so that the lower energy structures in mixed coordination compounds may be associated with the octahedral sites. This unexpected behaviour can be described as due to the effect of a significant reduction of the ligand field strength (i.e. large local distortion and Al-O bond distances).

  12. Suppression of edge localized mode crashes by multi-spectral non-axisymmetric fields in KSTAR

    NASA Astrophysics Data System (ADS)

    Kim, Jayhyun; Park, Gunyoung; Bae, Cheonho; Yoon, Siwoo; Han, Hyunsun; Yoo, Min-Gu; Park, Young-Seok; Ko, Won-Ha; Juhn, June-Woo; Na, Yong Su; The KSTAR Team

    2017-02-01

    Among various edge localized mode (ELM) crash control methods, only non-axisymmetric magnetic perturbations (NAMPs) yield complete suppression of ELM crashes beyond their mitigation, and thus attract more attention than others. No other devices except KSTAR, DIII-D, and recently EAST have successfully achieved complete suppression with NAMPs. The underlying physics mechanisms of these successful ELM crash suppressions in a non-axisymmetric field environment, however, still remain uncertain. In this work, we investigate the ELM crash suppression characteristics of the KSTAR ELMy H-mode discharges in a controlled multi-spectral field environment, created by both n=2 middle reference and n=1 top/bottom proxy in-vessel control coils. Interestingly, the attempts have produced a set of contradictory findings, one expected (ELM crash suppression enhancement with the addition of n  =  1 to the n  =  2 field at relatively low heating discharges) and another unexpected (ELM crash suppression degradation at relatively high heating discharges) from the earlier findings in DIII-D. This contradiction indicates the dependence of the ELM crash suppression characteristics on the heating level and the associated kink-like plasma responses. Preliminary linear resistive MHD plasma response simulation shows the unexpected suppression performance degradation to be likely caused by the dominance of kink-like plasma responses over the island gap-filling effects.

  13. Edge states, Aharonov-Bohm oscillations, and thermodynamic and spectral properties in a two-dimensional electron gas with an antidot

    SciTech Connect

    Bogachek, E.N.; Landman, U.

    1995-11-15

    The thermodynamic and spectral properties of a two-dimensional electron gas with an antidot in a strong magnetic field, {ital r}{sub {ital c}}{le}{ital r}{sub 0}, where {ital r}{sub {ital c}} is the cyclotron radius and {ital r}{sub 0} is the antidot effective radius, are studied via a solvable model with the antidot confinement potential {ital U}{similar_to}1/{ital r}{sup 2}. The edge states localized at the antidot boundary result in an Aharonov-Bohm-type oscillatory dependence of the magnetization as a function of the magnetic field flux through the antidot. These oscillations are superimposed on the de Haas--van Alphen oscillations. In the strong-field limit, {h_bar}{omega}{sub {ital c}}{similar_to}{epsilon}{sub {ital F}}, where {omega}{sub {ital c}} is the cyclotron frequency and {epsilon}{sub {ital F}} is the Fermi energy, the amplitude of the Aharonov-Bohm-type oscillations of the magnetization due to the contribution of the lowest edge state is {similar_to}{mu}{sub {ital B}}{ital k}{sub {ital F}}{ital r}{sub {ital c}} ({mu}{sub {ital B}} is the Bohr magneton and {ital k}{sub {ital F}} is the Fermi wave vector). When the magnetic field is decreased, higher edge states can contribute to the magnetization, leading to the appearance of a beating pattern in the Aharonov-Bohm oscillations. The role of temperature in suppressing the oscillatory contribution due to higher edge states is analyzed. Rapid oscillations of the magnetization as a function of the Aharonov-Bohm flux, occurring on a scale of a small fraction of the flux quantum {ital hc}/{ital e}, are demonstrated. The appearance of a manifold of non- equidistant frequencies in the magneto-optical-absorption spectrum, due to transitions between electronic edge states localized near the antidot boundary, is predicted.

  14. Potential of the Sentinel-2 Red Edge Spectral Bands for Estimation of Eco-Physiological Plant Parameters

    NASA Astrophysics Data System (ADS)

    Malenovsky, Zbynek; Homolova, Lucie; Janoutova, Ruzena; Landier, Lucas; Gastellu-Etchegorry, Jean-Philippe; Berthelot, Beatrice; Huck, Alexis

    2016-08-01

    In this study we investigated importance of the space- borne instrument Sentinel-2 red edge spectral bands and reconstructed red edge position (REP) for retrieval of the three eco-physiological plant parameters, leaf and canopy chlorophyll content and leaf area index (LAI), in case of maize agricultural fields and beech and spruce forest stands. Sentinel-2 spectral bands and REP of the investigated vegetation canopies were simulated in the Discrete Anisotropic Radiative Transfer (DART) model. Their potential for estimation of the plant parameters was assessed through training support vector regressions (SVR) and examining their P-vector matrices indicating significance of each input. The trained SVR were then applied on Sentinel-2 simulated images and the acquired estimates were cross-compared with results from high spatial resolution airborne retrievals. Results showed that contribution of REP was significant for canopy chlorophyll content, but less significant for leaf chlorophyll content and insignificant for leaf area index estimations. However, the red edge spectral bands contributed strongly to the retrievals of all parameters, especially canopy and leaf chlorophyll content. Application of SVR on Sentinel-2 simulated images demonstrated, in general, an overestimation of leaf chlorophyll content and an underestimation of LAI when compared to the reciprocal airborne estimates. In the follow-up investigation, we will apply the trained SVR algorithms on real Sentinel-2 multispectral images acquired during vegetation seasons 2015 and 2016.

  15. Self-similar spectral structures and edge-locking hierarchy in open-boundary spin chains

    SciTech Connect

    Haque, Masudul

    2010-07-15

    For an anisotropic Heisenberg (XXZ) spin chain, we show that an open boundary induces a series of approximately self-similar features at different energy scales, high up in the eigenvalue spectrum. We present a nonequilibrium phenomenon related to this fractal structure, involving states in which a connected block near the edge is polarized oppositely to the rest of the chain. We show that such oppositely polarized blocks can be 'locked' to the edge of the spin chain and that there is a hierarchy of edge-locking effects at various orders of the anisotropy. The phenomenon enables dramatic control of quantum-state transmission and magnetization control.

  16. The spectral evolution of low-frequency variable radio sources

    NASA Technical Reports Server (NTRS)

    Dennison, B.; Broderick, J. J.; Odell, S. L.; Mitchell, K. J.; Altschuler, D. R.; Payne, H. E.; Condon, J. J.

    1984-01-01

    The dynamic spectra of several low frequency extragalactic radio sources are presented. The observations were made at 318, 430, 606, 880, and 1400 MHz at several different radio observatories around the U.S. Two outbursts were observed in AO 0235 + 16 at 1.4 GHz, followed by a diminished variation at the lower frequencies. The dynamic frequencies of NRAO 140, PKS 1117 + 14, DA 406, CTA 102, and 3C 454.3 do not fit the same pattern. These radio sources displayed the following characteristics: (1) departure from straight or curved spectra at the frequencies of variation; (2) no obvious frequency drifting; and (3) negligible variation at 1.4 GHz. Possible explanations for this behavior are briefly discussed.

  17. Spectral estimation of plasma fluctuations. II. Nonstationary analysis of edge localized mode spectra

    SciTech Connect

    Riedel, K.S.; Sidorenko, A. ); Bretz, N. ); Thomson, D.J. )

    1994-03-01

    Several analysis methods for nonstationary fluctuations are described and applied to the edge localized mode (ELM) instabilities of limiter H-mode plasmas. The microwave scattering diagnostic observes poloidal [ital k][sub [theta

  18. Analysis of nonlinear frequency mixing in 1D waveguides with a breathing crack using the spectral finite element method

    NASA Astrophysics Data System (ADS)

    Joglekar, D. M.; Mitra, M.

    2015-11-01

    A breathing crack, due to its bilinear stiffness characteristics, modifies the frequency spectrum of a propagating dual-frequency elastic wave, and gives rise to sidebands around the probing frequency. This paper presents an analytical-numerical method to investigate such nonlinear frequency mixing resulting from the modulation effects induced by a breathing crack in 1D waveguides, such as axial rods and the Euler-Bernoulli beams. A transverse edge-crack is assumed to be present in both the waveguides, and the local flexibility caused by the crack is modeled using an equivalent spring approach. A simultaneous treatment of both the waveguides, in the framework of the Fourier transform based spectral finite element method, is presented for analyzing their response to a dual frequency excitation applied in the form of a tone-burst signal. The intermittent contact between the crack surfaces is accounted for by introducing bilinear contact forces acting at the nodes of the damage spectral element. Subsequently, an iterative approach is outlined for solving the resulting system of nonlinear simultaneous equations. Applicability of the proposed method is demonstrated by considering several test cases. The existence of sidebands and the higher order harmonics is confirmed in the frequency domain response of both the waveguides under investigation. A qualitative comparison with the previous experimental observations accentuates the utility of the proposed solution method. Additionally, the influence of the two constituent frequencies in the dual frequency excitation is assessed by varying the relative strengths of their amplitudes. A brief parametric study is performed for bringing out the effects of the relative crack depth and crack location on the degree of modulation, which is quantified in terms of the modulation parameter. Results of the present investigation can find their potential use in providing an analytical-numerical support to the studies geared towards the

  19. Implementation of Spectral Maxima Sound Processing for Cochlear Implants by Using Bark Scale Frequency Band Partition

    DTIC Science & Technology

    2007-11-02

    1 Implementation of Spectral Maxima Sound processing for cochlear implants by using Bark scale Frequency band partition Han xianhua1 Nie...new method on the basis of Bark scale frequency-band partition was presented to improve the recognition performance of cochlear implants . In the...nature of physics, it consists with human’s cochlea filter properties. Also the mechanism of a cochlear implant and its spectral maxima sound

  20. Frequency Response of Multipoint Chemical Shift Based Spectral Decomposition

    PubMed Central

    Brodsky, Ethan K.; Chebrolu, Venkata V.; Block, Walter F.; Reeder, Scott B.

    2010-01-01

    PURPOSE To provide a framework for characterizing the frequency response of multi-point chemical shift based species separation techniques. MATERIALS AND METHODS Multi-point chemical shift based species separation techniques acquire complex images at multiple echo times and perform maximum likelihood estimation to decompose signal from different species into separate images. In general, after a non-linear process of estimating and demodulating the field map, these decomposition methods are linear transforms from the echo-time domain to the chemical-shift-frequency domain, analogous to the Discrete Fourier Transform (DFT). In this work, we describe a technique for finding the magnitude and phase of chemical shift decomposition for input signals over a range of frequencies using numerical and experimental modeling and examine several important cases of species separation. RESULTS Simple expressions can be derived to describe the response to a wide variety of input signals. Agreement between numerical modeling and experimental results is very good. CONCLUSION Chemical shift based species separation is linear, and therefore can be fully described by the magnitude and phase curves of the frequency response. The periodic nature of the frequency response has important implications for the robustness of various techniques for resolving ambiguities in field inhomogeneity. PMID:20882625

  1. Spatio-Temporal Saliency Perception via Hypercomplex Frequency Spectral Contrast

    PubMed Central

    Li, Ce; Xue, Jianru; Zheng, Nanning; Lan, Xuguang; Tian, Zhiqiang

    2013-01-01

    Salient object perception is the process of sensing the salient information from the spatio-temporal visual scenes, which is a rapid pre-attention mechanism for the target location in a visual smart sensor. In recent decades, many successful models of visual saliency perception have been proposed to simulate the pre-attention behavior. Since most of the methods usually need some ad hoc parameters or high-cost preprocessing, they are difficult to rapidly detect salient object or be implemented by computing parallelism in a smart sensor. In this paper, we propose a novel spatio-temporal saliency perception method based on spatio-temporal hypercomplex spectral contrast (HSC). Firstly, the proposed HSC algorithm represent the features in the HSV (hue, saturation and value) color space and features of motion by a hypercomplex number. Secondly, the spatio-temporal salient objects are efficiently detected by hypercomplex Fourier spectral contrast in parallel. Finally, our saliency perception model also incorporates with the non-uniform sampling, which is a common phenomenon of human vision that directs visual attention to the logarithmic center of the image/video in natural scenes. The experimental results on the public saliency perception datasets demonstrate the effectiveness of the proposed approach compared to eleven state-of-the-art approaches. In addition, we extend the proposed model to moving object extraction in dynamic scenes, and the proposed algorithm is superior to the traditional algorithms. PMID:23482090

  2. Spatio-temporal saliency perception via hypercomplex frequency spectral contrast.

    PubMed

    Li, Ce; Xue, Jianru; Zheng, Nanning; Lan, Xuguang; Tian, Zhiqiang

    2013-03-12

    Salient object perception is the process of sensing the salient information from the spatio-temporal visual scenes, which is a rapid pre-attention mechanism for the target location in a visual smart sensor. In recent decades, many successful models of visual saliency perception have been proposed to simulate the pre-attention behavior. Since most of the methods usually need some ad hoc parameters or high-cost preprocessing, they are difficult to rapidly detect salient object or be implemented by computing parallelism in a smart sensor. In this paper, we propose a novel spatio-temporal saliency perception method based on spatio-temporal hypercomplex spectral contrast (HSC). Firstly, the proposed HSC algorithm represent the features in the HSV (hue, saturation and value) color space and features of motion by a hypercomplex number. Secondly, the spatio-temporal salient objects are efficiently detected by hypercomplex Fourier spectral contrast in parallel. Finally, our saliency perception model also incorporates with the non-uniform sampling, which is a common phenomenon of human vision that directs visual attention to the logarithmic center of the image/video in natural scenes. The experimental results on the public saliency perception datasets demonstrate the effectiveness of the proposed approach compared to eleven state-of-the-art approaches. In addition, we extend the proposed model to moving object extraction in dynamic scenes, and the proposed algorithm is superior to the traditional algorithms.

  3. Operators associated with soft and hard spectral edges from unitary ensembles

    NASA Astrophysics Data System (ADS)

    Blower, Gordon

    2008-01-01

    Using Hankel operators and shift-invariant subspaces on Hilbert space, this paper develops the theory of the integrable operators associated with soft and hard edges of eigenvalue distributions of random matrices. Such Tracy-Widom operators are realized as controllability operators for linear systems, and are reproducing kernels for weighted Hardy spaces, known as Sonine spaces. Periodic solutions of Hill's equation give a new family of Tracy-Widom type operators. This paper identifies a pair of unitary groups that satisfy the von Neumann-Weyl anti-commutation relations and leave invariant the subspaces of L2 that are the ranges of projections given by the Tracy-Widom operators for the soft edge of the Gaussian unitary ensemble and hard edge of the Jacobi ensemble.

  4. Unravelling remote sensing signatures of plants contaminated with gasoline and diesel: an approach using the red edge spectral feature.

    PubMed

    Sanches, I D; Souza Filho, C R; Magalhães, L A; Quitério, G C M; Alves, M N; Oliveira, W J

    2013-03-01

    Pipeline systems used to transport petroleum products represent a potential source of soil pollution worldwide. The design of new techniques that may improve current monitoring of pipeline leakage is imperative. This paper assesses the remote detection of small leakages of liquid hydrocarbons indirectly, through the analysis of spectral features of contaminated plants. Leaf and canopy spectra of healthy plants were compared to spectra of plants contaminated with diesel and gasoline, at increasing rates of soil contamination. Contamination effects were observed both visually in the field and thorough changes in the spectral reflectance patterns of vegetation. Results indicate that the remote detection of small volumes of gasoline and diesel contaminations is feasible based on the red edge analysis of leaf and canopy spectra of plants. Brachiaria grass ranks as a favourable choice to be used as an indicator of HCs leakages along pipelines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Vegetation Red-edge Spectral Modeling for Solar-induced Chlorophyll Fluorescence Retrieval at O2-B Band

    NASA Astrophysics Data System (ADS)

    Huang, C.; Zhang, L.; Qiao, N.; Zhang, X.; Li, Y.

    2015-12-01

    Remotely sensed solar-induced chlorophyll fluorescence (SIF) has been considered an ideal probe in monitoring global vegetation photosynthesis. However, challenges in accurate estimate of faint SIF (less than 5% of the total reflected radiation in near infrared bands) from the observed apparent reflected radiation greatly limit its wide applications. Currently, the telluric O2-B (~688nm) and O2-A (~761nm) have been proved to be capable of SIF retrieval based on Fraunhofer line depth (FLD) principle. They may still work well even using conventional ground-based commercial spectrometers with typical spectral resolutions of 2~5 nm and high enough signal-to-noise ratio (e.g., the ASD spectrometer). Nevertheless, almost all current FLD based algorithms were mainly developed for O2-A, a few concentrating on the other SIF emission peak in O2-B. One of the critical reasons is that it is very difficult to model the sudden varying reflectance around O2-B band located in the red-edge spectral region (about 680-800 nm). This study investigates a new method by combining the established inverted Gaussian reflectance model (IGM) and FLD principle using diurnal canopy spectra with relative low spectral resolutions of 1 nm (FluorMOD simulations) and 3 nm (measured by ASD spectrometer) respectively. The IGM has been reported to be an objective and good method to characterize the entire vegetation red-edge reflectance. Consequently, the proposed SIF retrieval method (hereinafter called IGMFLD) could exploit all the spectral information along the whole red-edge (680-800 nm) to obtain more reasonable reflectance and fluorescence correction coefficients than traditional FLD methods such as the iFLD. Initial results show that the IGMFLD can better capture the spectrally non-linear characterization of the reflectance in 680-800 nm and thereby yields much more accurate SIFs in O2-B than typical FLD methods, including sFLD, 3FLD and iFLD (see figure 1). Finally, uncertainties and prospect

  6. Quantitative spectral K-edge imaging in preclinical photon-counting x-ray computed tomography.

    PubMed

    de Vries, Anke; Roessl, Ewald; Kneepkens, Esther; Thran, Axel; Brendel, Bernhard; Martens, Gerhard; Proska, Roland; Nicolay, Klaas; Grüll, Holger

    2015-04-01

    The objective of this study was to investigate the feasibility and the accuracy of spectral computed tomography (spectral CT) to determine the tissue concentrations and localization of high-attenuation, iodine-based contrast agents in mice. Iodine tissue concentrations determined with spectral CT are compared with concentrations measured with single-photon emission computed tomography (SPECT) and inductively coupled plasma mass spectrometry (ICP-MS). All animal procedures were performed according to the US National Institutes of Health principles of laboratory animal care and were approved by the ethical review committee of Maastricht, The Netherlands. Healthy Swiss mice (n = 4) were injected with an iodinated emulsion radiolabeled with indium as multimodal contrast agent for CT and SPECT. The CT and SPECT scans were acquired using a dedicated small-animal SPECT/CT system. Subsequently, scans were performed with a preclinical spectral CT scanner equipped with a photon-counting detector and 6 energy threshold levels. Quantitative data analysis of SPECT and spectral CT scans were obtained using 3-dimensional volumes-of-interest drawing methods. The ICP-MS on dissected organs was performed to determine iodine uptake per organ and was compared with the amounts determined from spectral CT and SPECT. Iodine concentrations obtained with image-processed spectral CT data correlated well with data obtained either with noninvasive SPECT imaging (slope = 0.96, r = 0.75) or with ICP-MS (slope = 0.99, r = 0.89) in tissue samples. This preclinical proof-of-concept study shows the in vivo quantification of iodine concentrations in tissues using spectral CT. Our multimodal imaging approach with spectral CT and SPECT using radiolabeled iodinated emulsions together with ICP-based quantification allows a direct comparison of all methods. Benchmarked against ICP-MS data, spectral CT in the present implementation shows a slight underestimation of organ iodine concentrations compared

  7. Highly sensitive index of sympathetic activity based on time-frequency spectral analysis of electrodermal activity.

    PubMed

    Posada-Quintero, Hugo F; Florian, John P; Orjuela-Cañón, Álvaro D; Chon, Ki H

    2016-09-01

    Time-domain indices of electrodermal activity (EDA) have been used as a marker of sympathetic tone. However, they often show high variation between subjects and low consistency, which has precluded their general use as a marker of sympathetic tone. To examine whether power spectral density analysis of EDA can provide more consistent results, we recently performed a variety of sympathetic tone-evoking experiments (43). We found significant increase in the spectral power in the frequency range of 0.045 to 0.25 Hz when sympathetic tone-evoking stimuli were induced. The sympathetic tone assessed by the power spectral density of EDA was found to have lower variation and more sensitivity for certain, but not all, stimuli compared with the time-domain analysis of EDA. We surmise that this lack of sensitivity in certain sympathetic tone-inducing conditions with time-invariant spectral analysis of EDA may lie in its inability to characterize time-varying dynamics of the sympathetic tone. To overcome the disadvantages of time-domain and time-invariant power spectral indices of EDA, we developed a highly sensitive index of sympathetic tone, based on time-frequency analysis of EDA signals. Its efficacy was tested using experiments designed to elicit sympathetic dynamics. Twelve subjects underwent four tests known to elicit sympathetic tone arousal: cold pressor, tilt table, stand test, and the Stroop task. We hypothesize that a more sensitive measure of sympathetic control can be developed using time-varying spectral analysis. Variable frequency complex demodulation, a recently developed technique for time-frequency analysis, was used to obtain spectral amplitudes associated with EDA. We found that the time-varying spectral frequency band 0.08-0.24 Hz was most responsive to stimulation. Spectral power for frequencies higher than 0.24 Hz were determined to be not related to the sympathetic dynamics because they comprised less than 5% of the total power. The mean value of time

  8. Precision spectral peak frequency measurement using a window leakage ratio function

    NASA Astrophysics Data System (ADS)

    Swanson, David C.

    2015-03-01

    For power spectra of signals consisting of stationary sinusoids mixed with random noise, the frequency and amplitude of a spectral peak can be estimated with greater accuracy than the nearest frequency bin of the Fourier transform by exploiting the spectral leakage characteristics for the particular data window used. Techniques such as linear interpolation or an amplitude weighted average have inadequate precision due to the nonlinear leakage into adjacent bins and the dependence on data window type. This paper offers a new general algorithm presented using the Fourier coefficients ck of the input data window to produce a function which is the ratio of the side-bin amplitudes of the window in the frequency domain. The ratio function allows one to use the amplitudes of the adjacent bins of a spectral peak to precisely estimate the peak frequency and amplitude when the frequency does not lie exactly on a frequency bin (in between the discrete bins of a Fourier transform). Examples are provided for a number of popular data windows. The ratio function can be most easily implemented using a simplified log-ratio function for the window side bin magnitudes. A statistical analysis provides a useful frequency estimation error estimate given the signal-to-noise ratio of the spectral peak based on an approximation of the ratio of non-zero mean Gaussian variables. The benefits of this technique are not just improved estimation accuracy for amplitude and frequency, but also allow large spectral data files to be accurately reduced in size for remote monitoring of vibration spectra. An example is given of a methodology for reduction of spectral data file size without the loss of important signals for analysis where the file size is reduced by 88% with only a few percent error, which is mostly confined to the background noise in the reconstructed spectrum.

  9. [Spectral analysis of nitrofurantoin in the terahertz frequency range].

    PubMed

    Kang, Xu-Sheng; Hou, Di-Bo; Zhang, Guang-Xin; Chen, Xi-Ai; Yue, Fei-Heng; Huang, Ping-Jie; Zhou, Ze-Kui

    2012-07-01

    The present article measured the absorption coefficient spectra and refractive index spectra of nitrofurantoin original drug, which is one kind of nitrofuran drugs, in the terahertz frequency range from 0.2 to 1.8 THz using terahertz time-domain spectroscopy. The results showed that there exist a number of characteristic absorption peaks of nitrofurantoin with different intensity in the range and the absorption coefficient spectra can be used to identify nitrofurantoin. The article also simulated absorption coefficient spectra of nitrofurantoin molecule within 0.2 - 1.8 THz using density functional theory by Gaussian software, and vibrational modes of some peaks in the experimental absorption coefficient spectra were analyzed and identified. The results show that the experimental absorption peaks at 1.25 and 1.60 THz correspond with the theoretical peaks at 1.30 and 1.67 THz, and these experimental peaks were caused by intramolecular vibrational modes of nitrofurantoin.

  10. Edge Detection from High Resolution Remote Sensing Images using Two-Dimensional log Gabor Filter in Frequency Domain

    NASA Astrophysics Data System (ADS)

    Wang, K.; Yu, T.; Meng, Q. Y.; Wang, G. K.; Li, S. P.; Liu, S. H.

    2014-03-01

    Edges are vital features to describe the structural information of images, especially high spatial resolution remote sensing images. Edge features can be used to define the boundaries between different ground objects in high spatial resolution remote sensing images. Thus edge detection is important in the remote sensing image processing. Even though many different edge detection algorithms have been proposed, it is difficult to extract the edge features from high spatial resolution remote sensing image including complex ground objects. This paper introduces a novel method to detect edges from the high spatial resolution remote sensing image based on frequency domain. Firstly, the high spatial resolution remote sensing images are Fourier transformed to obtain the magnitude spectrum image (frequency image) by FFT. Then, the frequency spectrum is analyzed by using the radius and angle sampling. Finally, two-dimensional log Gabor filter with optimal parameters is designed according to the result of spectrum analysis. Finally, dot product between the result of Fourier transform and the log Gabor filter is inverse Fourier transformed to obtain the detections. The experimental result shows that the proposed algorithm can detect edge features from the high resolution remote sensing image commendably.

  11. Application of spectral methods for high-frequency financial data to quantifying states of market participants

    NASA Astrophysics Data System (ADS)

    Sato, Aki-Hiro

    2008-06-01

    Empirical analysis of the foreign exchange market is conducted based on methods to quantify similarities among multi-dimensional time series with spectral distances introduced in [A.-H. Sato, Physica A 382 (2007) 258-270]. As a result it is found that the similarities among currency pairs fluctuate with the rotation of the earth, and that the similarities among best quotation rates are associated with those among quotation frequencies. Furthermore, it is shown that the Jensen-Shannon spectral divergence is proportional to a mean of the Kullback-Leibler spectral distance both empirically and numerically. It is confirmed that these spectral distances are connected with distributions for behavioural parameters of the market participants from numerical simulation. This concludes that spectral distances of representative quantities of financial markets are related into diversification of behavioural parameters of the market participants.

  12. Spectral Invariant Behavior of Zenith Radiance Around Cloud Edges Observed by ARM SWS

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.

    2009-01-01

    The ARM Shortwave Spectrometer (SWS) measures zenith radiance at 418 wavelengths between 350 and 2170 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. An important result of these discoveries is that high temporal resolution radiance measurements in the clear-to-cloud transition zone can be well approximated by lower temporal resolution measurements plus linear interpolation.

  13. Spectral Invariant Behavior of Zenith Radiance Around Cloud Edges Observed by ARM SWS

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.

    2009-01-01

    The ARM Shortwave Spectrometer (SWS) measures zenith radiance at 418 wavelengths between 350 and 2170 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. An important result of these discoveries is that high temporal resolution radiance measurements in the clear-to-cloud transition zone can be well approximated by lower temporal resolution measurements plus linear interpolation.

  14. Recognition of temporally interrupted and spectrally degraded sentences with additional unprocessed low-frequency speech

    PubMed Central

    Başkent, Deniz; Chatterjee, Monita

    2010-01-01

    Recognition of periodically interrupted sentences (with an interruption rate of 1.5 Hz, 50% duty cycle) was investigated under conditions of spectral degradation, implemented with a noiseband vocoder, with and without additional unprocessed low-pass filtered speech (cutoff frequency 500 Hz). Intelligibility of interrupted speech decreased with increasing spectral degradation. For all spectral-degradation conditions, however, adding the unprocessed low-pass filtered speech enhanced the intelligibility. The improvement at 4 and 8 channels was higher than the improvement at 16 and 32 channels: 19% and 8%, on average, respectively. The Articulation Index predicted an improvement of 0.09, in a scale from 0 to 1. Thus, the improvement at poorest spectral-degradation conditions was larger than what would be expected from additional speech information. Therefore, the results implied that the fine temporal cues from the unprocessed low-frequency speech, such as the additional voice pitch cues, helped perceptual integration of temporally interrupted and spectrally degraded speech, especially when the spectral degradations were severe. Considering the vocoder processing as a cochlear-implant simulation, where implant users’ performance is closest to 4 and 8-channel vocoder performance, the results support additional benefit of low-frequency acoustic input in combined electric-acoustic stimulation for perception of temporally degraded speech. PMID:20817081

  15. Recognition of temporally interrupted and spectrally degraded sentences with additional unprocessed low-frequency speech.

    PubMed

    Başkent, Deniz; Chatterjee, Monita

    2010-12-01

    Recognition of periodically interrupted sentences (with an interruption rate of 1.5 Hz, 50% duty cycle) was investigated under conditions of spectral degradation, implemented with a noiseband vocoder, with and without additional unprocessed low-pass filtered speech (cutoff frequency 500 Hz). Intelligibility of interrupted speech decreased with increasing spectral degradation. For all spectral degradation conditions, however, adding the unprocessed low-pass filtered speech enhanced the intelligibility. The improvement at 4 and 8 channels was higher than the improvement at 16 and 32 channels: 19% and 8%, on average, respectively. The Articulation Index predicted an improvement of 0.09, in a scale from 0 to 1. Thus, the improvement at poorest spectral degradation conditions was larger than what would be expected from additional speech information. Therefore, the results implied that the fine temporal cues from the unprocessed low-frequency speech, such as the additional voice pitch cues, helped perceptual integration of temporally interrupted and spectrally degraded speech, especially when the spectral degradations were severe. Considering the vocoder processing as a cochlear implant simulation, where implant users' performance is closest to 4 and 8-channel vocoder performance, the results support additional benefit of low-frequency acoustic input in combined electric-acoustic stimulation for perception of temporally degraded speech. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Spectral Talbot phenomena of frequency combs induced by cross-phase modulation in optical fibers.

    PubMed

    Azaña, José

    2005-02-01

    Cross-phase modulation (XPM) of a frequency comb (finite-duration optical pulse sequence) by an intense, long Gaussian pump pulse is theoretically investigated, and new effects, namely, frequency-domain self-imaging phenomena (integer and fractional Talbot effects), are reported. The conditions favorable for observing spectral self-imaging phenomena by XPM are derived and numerically confirmed. The effects of nonidealities in a practical experiment (e.g., group-delay walk-off and dispersion) are also evaluated. One can use spectral self-imaging to tune the free spectral range of a frequency comb (without affecting the shape and bandwidth of the individual passbands) simply by adjusting the pump power in a fiber XPM scheme.

  17. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight

    NASA Astrophysics Data System (ADS)

    Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.

    2017-03-01

    Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.

  18. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight.

    PubMed

    Bomphrey, Richard J; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M

    2017-04-06

    Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.

  19. Odd-frequency triplet superconductivity at the helical edge of a topological insulator

    NASA Astrophysics Data System (ADS)

    Crépin, François; Burset, Pablo; Trauzettel, Björn

    2015-09-01

    Nonlocal pairing processes at the edge of a two-dimensional topological insulator in proximity to an s -wave superconductor are usually suppressed by helicity. However, the additional proximity of a ferromagnetic insulator can substantially influence the helical constraint and therefore open a new conduction channel by allowing for crossed Andreev reflection (CAR) processes. We show a one-to-one correspondence between CAR and the emergence of odd-frequency triplet superconductivity. Hence, nonlocal transport experiments that identify CAR in helical liquids yield smoking-gun evidence for unconventional superconductivity. Interestingly, we identify a setup—composed of a superconductor flanked by two ferromagnetic insulators—that allows us to favor CAR over electron cotunneling, which is known to be a difficult but essential task to be able to measure CAR.

  20. A parametric model of the spectral periodicity of stimulus frequency otoacoustic emissions

    NASA Astrophysics Data System (ADS)

    Lineton, Ben; Lutman, Mark E.

    2003-08-01

    A model for estimating the spectral period of stimulus frequency otoacoustic emissions (SFOAEs) is presented. The model characterizes the frequency spectrum of an SFOAE in terms of four parameters which can be directly related to cochlear mechanical quantities featuring in the theory of SFOAE generation proposed by Zweig and Shera [J. Acoust. Soc. Am. 98, 2018-2047 (1995)]. The results of applying the parametric model to SFOAEs generated by cochlear models suggest that it gives a sensitive measure of spectral period. It is concluded that the parametric model may be a useful tool for detecting small changes in cochlear function using SFOAE measurements.

  1. Understanding Ion Spectral Dynamics Near the Inner Edge of the Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Ferradas, Cristian P.

    The inner magnetosphere is a highly dynamic space environment in which particles strongly interact with the magnetic and electric fields. During the last few decades, several missions have recorded the presence of dynamic spectral features of energetic ions in in situ measurements, which represent the observational signatures of ion transport, acceleration, and loss in the inner magnetosphere. These ion spectral features constitute the inner extent of access of the plasma sheet to the low L values and play an important role in the dynamics of the inner magnetosphere, yet no statistical results of their species dependence are available to date. This dissertation aims to examine the species dependence and preferred conditions for the formation of one type of ion spectral feature, the so-called nose structure. To achieve this objective, the research work combines extensive data analysis of ion flux measurements and numerical modeling of the observed spectral features. The spatial distribution, and dependence on energy, geomagnetic activity, and ion species (H+, He +, and O+) are established through large-scale statistical studies of ion nose structures using measurements from the Cluster and Van Allen Probes missions. To gain physical insight into the main observational results, these are interpreted employing numerical modeling of ion drift under a steady-state convection model with losses due to charge exchange. Moreover, the characteristics of ion noses during geomagnetic storms and the exact formation mechanism of multiple-nose structures are addressed for the first time in a case study of the geomagnetic storm of 2 October 2013. Van Allen Probes observations over the storm and simulations using a time-dependent convection model reveal the cyclic pattern of the storm-time nose structures. Furthermore, a detailed examination of the drift trajectories of ions composing multiple noses shows that multiple noses are formed by ions with resonant energies and whose

  2. Distinguishing low frequency oscillations within the 1/f spectral behaviour of electromagnetic brain signals

    PubMed Central

    Demanuele, Charmaine; James, Christopher J; Sonuga-Barke, Edmund JS

    2007-01-01

    Background It has been acknowledged that the frequency spectrum of measured electromagnetic (EM) brain signals shows a decrease in power with increasing frequency. This spectral behaviour may lead to difficulty in distinguishing event-related peaks from ongoing brain activity in the electro- and magnetoencephalographic (EEG and MEG) signal spectra. This can become an issue especially in the analysis of low frequency oscillations (LFOs) – below 0.5 Hz – which are currently being observed in signal recordings linked with specific pathologies such as epileptic seizures or attention deficit hyperactivity disorder (ADHD), in sleep studies, etc. Methods In this work we propose a simple method that can be used to compensate for this 1/f trend hence achieving spectral normalisation. This method involves filtering the raw measured EM signal through a differentiator prior to further data analysis. Results Applying the proposed method to various exemplary datasets including very low frequency EEG recordings, epileptic seizure recordings, MEG data and Evoked Response data showed that this compensating procedure provides a flat spectral base onto which event related peaks can be clearly observed. Conclusion Findings suggest that the proposed filter is a useful tool for the analysis of physiological data especially in revealing very low frequency peaks which may otherwise be obscured by the 1/f spectral activity inherent in EEG/MEG recordings. PMID:18070337

  3. Frequency Calibration of Spectral Observation System of the TM65m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Juan, Li; Ya-jun, Wu; Hai-hua, Qiao; Jun-zhi, Wang; Xiu-ting, Zuo

    2016-10-01

    In order to carry out the spectral observation with the TM65m radio telescope, the frequency calibration and test of DIBAS (Digital Backend System) are performed, it is found that it has a good performance. First, by injecting the PCAL signals, the frequency resolution, frequency drift and the stability of frequency interval between two spectral lines of the DIBAS backend are measured. It is found that in one hour, the maximum frequency drift of a single spike is 0.03 channel, the maximum fluctuation of spike interval is 0.05 channel. Then, by the observations on the H2CO maser and absorbtion lines of massive star formation regions, and the comparison with the results observed by the GBT (Robert C. Byrd Green Bank Telescope), it is shown that the results of frequency calibration are correct. Finally, by the OH maser observations in more than one hour toward W3(OH), and the methanol maser observations in more than 5 hours, it is found that the spectral profiles keep consistent, and the observational noise is consistent with the theoretical value, indicating the stability and reliability of the frequency calibration program.

  4. Cutting Edge of Traumatic Maculopathy with Spectral-domain Optical Coherence Tomography – A Review

    PubMed Central

    Mendes, Sílvia; Campos, António; Campos, Joana; Neves, Arminda; Beselga, Diana; Fernandes, Cristina; Castro Sousa, João Paulo

    2015-01-01

    This article reviews clinically relevant data regarding traumatic maculopathy (TM), frequently observed in clinical practice, especially due to sport or traffic accident injuries. It is characterized by transient gray-whitish retinal coloration and reduction of visual acuity (VA) with closed, blunt object globe trauma of their prior. It may be limited to the posterior pole (Berlin’s edema), or peripheral areas of the retina. Spectral-domain optical coherence tomography (SD-OCT) provides detail insight using high resolution cross-sectional tomographs of the ocular tissue. It is a potent non-invasive tool for the clinician to follow-up. Clinicians are, thereby empowered with a tool that enables evaluation of the retinal status and allows for prediction of the prognosis. Spectral-domain optical coherence tomography supports the idea that the major site of injury is in the photoreceptor and layers of the retinal pigment epithelium (RPE). Depending on the severity of the trauma, SD-OCT may reveal differential optical densities of intraretinal spaces ranging from disappearance of the thin hyporeflective optical space in mild lesions, or areas of disruption of the inner segment/outer segment (IS/OS) junction and hyperreflectivity of the overlying retina, pigment disorders and retinal atrophy, in more severe cases. The prognosis for recovery of vision is generally good, and improvement occurs within 3-4 weeks. PMID:26060831

  5. Fourier-spectral element approximation of the ion–electron Braginskii system with application to tokamak edge plasma in divertor configuration

    SciTech Connect

    Minjeaud, Sebastian; Pasquetti, Richard

    2016-09-15

    Due to the extreme conditions required to produce energy by nuclear fusion in tokamaks, simulating the plasma behavior is an important but challenging task. We focus on the edge part of the plasma, where fluid approaches are probably the best suited, and our approach relies on the Braginskii ion–electron model. Assuming that the electric field is electrostatic, this yields a set of 10 strongly coupled and non-linear conservation equations that exhibit multiscale and anisotropy features. The computational domain is a torus of complex geometrical section, that corresponds to the divertor configuration, i.e. with an “X-point” in the magnetic surfaces. To capture the complex physics that is involved, high order methods are used: The time-discretization is based on a Strang splitting, that combines implicit and explicit high order Runge–Kutta schemes, and the space discretization makes use of the spectral element method in the poloidal plane together with Fourier expansions in the toroidal direction. The paper thoroughly describes the algorithms that have been developed, provides some numerical validations of the key algorithms and exhibits the results of preliminary numerical experiments. In particular, we point out that the highest frequency of the system is intermediate between the ion and electron cyclotron frequencies.

  6. A silicon detector in edge-on configuration for (spectral) Computed Tomography: proof of concept

    NASA Astrophysics Data System (ADS)

    Doni, M.; Visser, J.; Koffeman, E.; Herrmann, C.

    2016-12-01

    This project focuses on a hybrid silicon pixel detector for Computed Tomography. In order to improve the attenuation efficiency of silicon for high energies, the active volume per unit area is increased by using the detector in edge-on configuration. In this geometry the sensor is illuminated from the side, with the pixel matrix parallel to the X-ray beam direction. Our setup consists of a 500 μm thick silicon sensor, bump-bonded to a chip from the Medipix family. Aim of the project is to test the feasibility of this geometry, finding its benefits and limitations. In particular, in this paper we show an important advantage of this configuration: energy discrimination along the detector depth. We propose a method to exploit this information, by including the beam hardening model both in the forward and in the backprojector of an iterative reconstruction algorithm. The first results, obtained on simulated data, show convergence and prove the feasibility of such an approach.

  7. The identification of solar wind waves at discrete frequencies and the role of the spectral analysis techniques

    NASA Astrophysics Data System (ADS)

    Di Matteo, S.; Villante, U.

    2017-05-01

    The occurrence of waves at discrete frequencies in the solar wind (SW) parameters has been reported in the scientific literature with some controversial results, mostly concerning the existence (and stability) of favored sets of frequencies. On the other hand, the experimental results might be influenced by the analytical methods adopted for the spectral analysis. We focused attention on the fluctuations of the SW dynamic pressure (PSW) occurring in the leading edges of streams following interplanetary shocks and compared the results of the Welch method (WM) with those of the multitaper method (MTM). The results of a simulation analysis demonstrate that the identification of the wave occurrence and the frequency estimate might be strongly influenced by the signal characteristics and analytical methods, especially in the presence of multicomponent signals. In SW streams, PSW oscillations are routinely detected in the entire range f ≈ 1.2-5.0 mHz; nevertheless, the WM/MTM agreement in the identification and frequency estimate occurs in ≈50% of events and different sets of favored frequencies would be proposed for the same set of events by the WM and MTM analysis. The histogram of the frequency distribution of the events identified by both methods suggests more relevant percentages between f ≈ 1.7-1.9, f ≈ 2.7-3.4, and f ≈ 3.9-4.4 (with a most relevant peak at f ≈ 4.2 mHz). Extremely severe thresholds select a small number (14) of remarkable events, with a one-to-one correspondence between WM and MTM: interestingly, these events reveal a tendency for a favored occurrence in bins centered at f ≈ 2.9 and at f ≈ 4.2 mHz.

  8. Laser frequency stabilization to spectral hole burning frequency references in erbium-doped crystals: Material and device optimization

    NASA Astrophysics Data System (ADS)

    Bottger, Thomas

    2002-01-01

    Narrow spectral holes in the absorption lines of Er3+ doped crystals have been explored as references for frequency stabilizing external cavity diode lasers at the important 1.5 mum optical communication wavelength. Allan deviations of the beat signal between two independent stabilized lasers as low as 200 Hz over 10 ms integration time have been achieved using regenerative spectral holes in Er3+:Y2SiO5 and Er3+:KTP, while drift was reduced to ˜7 kHz/min by incorporating the inhomogeneous absorption line as a fixed reference. During active stabilization, the transient spectral hole was continuously regenerated as hole burning balanced relaxation. In contrast, persistent spectral holes in Er3+:D-:CaF2, with lifetimes of several weeks, provided programmable and transportable secondary frequency references that maintained sub-kilohertz stability over several seconds and enabled 6 kHz stability over 1.6 x 103 s. The error signal was derived from the spectral hole transmission using frequency modulation spectroscopy. A servo amplifier applied fast frequency corrections to the injection current of the laser diode and slower adjustments to the piezo-driven feedback prism plate. These stabilized lasers provide ideal sources for spectral hole burning applications based on optical coherent transients, where laser stability is required over the storage time of the material. Since the lifetime of the frequency reference is exactly the material storage time, this requirement is automatically met by using our technique. This was demonstrated in Er 3+:Y2SiO5 and successfully transferred to high-bandwidth signal processing applications. The material Er3+:Y2SiO5 was optimized for these applications. The 4I15/2 and 4 I13/2 crystal field levels were site-selectively determined by absorption and fluorescence spectroscopy. The excited state lifetime was measured to be 11.4 ms for site 1 and 9.2 ms for site 2. Zeeman experiments and two-pulse photon echo spectroscopy as a function of

  9. Coastline change mapping using a spectral band method and Sobel edge operator

    NASA Astrophysics Data System (ADS)

    Al-Mansoori, Saeed; Al-Marzouqi, Fatima

    2016-10-01

    Coastline extraction has become an essential activity in wake of the natural disasters taking place in some regions such as tsunami, flooding etc. Salient feature of such catastrophes is lack of reaction time available for combating emergency, thus it is the endeavor of any country to develop constant monitoring mechanism of shorelines. This is a challenging task because of the magnitude of changes taking place to the coastline regularly. Previous research findings highlight a need of formulating automation driven methodology for timely and accurate detection of alterations in the coastline impacting sustainability of mankind operating in the coastal zone. In this study, we propose a new approach for automatic extraction of the coastline using remote sensing data. This approach is composed of three main stages. Firstly, classifying pixels of the image into two categories i.e. land and water body by applying two normalized difference indices i.e. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). Then, the process of binary conversion of classified image takes place using a local threshold method. Finally, the coastline is extracted by applying Sobel edge operator with a pair of (3×3) kernels. The approach is tested using 2.5m DubaiSat-1 (DS1) and DubaiSat-2 (DS2) images captured to detect and monitor the changes occurring along Dubai coastal zone within a period of six years from 2009 till 2015. Experimental results prove that the approach is capable of extracting the coastlines from DS1 and DS2 images with moderate human interaction. The results of the study show an increase of 6% in Dubai shoreline resulting on account of numerous man-made infrastructure development projects in tourism and allied sectors.

  10. A Monte Carlo software bench for simulation of spectral k-edge CT imaging: Initial results.

    PubMed

    Nasirudin, Radin A; Penchev, Petar; Mei, Kai; Rummeny, Ernst J; Fiebich, Martin; Noël, Peter B

    2015-06-01

    Spectral Computed Tomography (SCT) systems equipped with photon counting detectors (PCD) are clinically desired, since such systems provide not only additional diagnostic information but also radiation dose reductions by a factor of two or more. The current unavailability of clinical PCDs makes a simulation of such systems necessary. In this paper, we present a Monte Carlo-based simulation of a SCT equipped with a PCD. The aim of this development is to facilitate research on potential clinical applications. Our MC simulator takes into account scattering interactions within the scanned object and has the ability to simulate scans with and without scatter and a wide variety of imaging parameters. To demonstrate the usefulness of such a MC simulator for development of SCT applications, a phantom with contrast targets covering a wide range of clinically significant iodine concentrations is simulated. With those simulations the impact of scatter and exposure on image quality and material decomposition results is investigated. Our results illustrate that scatter radiation plays a significant role in visual as well as quantitative results. Scatter radiation can reduce the accuracy of contrast agent concentration by up to 15%. We present a reliable and robust software bench for simulation of SCTs equipped with PCDs. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Spectral element method for elastic and acoustic waves in frequency domain

    NASA Astrophysics Data System (ADS)

    Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei; Liu, Na; Liu, Qing Huo

    2016-12-01

    Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.

  12. Spectral element method for elastic and acoustic waves in frequency domain

    SciTech Connect

    Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei; Liu, Na; Liu, Qing Huo

    2016-12-15

    Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.

  13. Changes in EEG mean frequency and spectral purity during spontaneous alpha blocking.

    PubMed

    Goncharova, I I; Barlow, J S

    1990-09-01

    Spontaneously occurring brief periods of lower voltage irregular activity occurring amid a background of alpha activity (i.e., alpha blocking) in eyes-closed resting occipital EEG recordings from 32 healthy human subjects have been investigated to determine the extent of changes of mean frequency and of spectral purity (degree of regularity/irregularity of the EEG activity) during such periods. New methods for determining mean frequency and spectral purity (the latter as a new measure, the Spectral Purity Index, which has a maximum value of 1.0 for a pure sine wave) permit their conjoint evaluation over a 0.5 sec window that is advanced along the EEG in 0.1 sec steps, thus permitting almost continuous feature extraction. The findings indicate that, although spectral purity invariably decreased during the periods of lower voltage irregular activity, the mean frequency remained relatively unaltered, i.e., it remained unchanged or it increased or decreased slightly but at most by 2.5 Hz. These results suggest that, at least for the periods of lower voltage irregular activity occurring spontaneously amid an alpha background during eyes-closed occipital EEG recordings, it may be inaccurate (as some authors have already suggested) to use the term 'low-voltage fast (or beta) activity.'

  14. Spectral characteristics of low-frequency plasma turbulence upstream of Comet P/Halley

    NASA Technical Reports Server (NTRS)

    Glassmeier, K.-H.; Coates, A. J.; Johnstone, A. D.; Acuna, M. H.; Goldstein, M. L.

    1989-01-01

    Two upstream regions have been identified in Giotto spacecraft magnetic field and plasma measurements subjected to cross-spectral analyses, in order to determine this cometary environment's low-frequency plasma turbulence spectral characteristics. One region's solar wind magnetic field was approximately parallel, and the other's perpendicular, to the solar wind flow velocity direction. Additional divergences relate to the regions having magnetic field lines that are either connected or disconnected to the cometary bow shock wave in either the quasi-parallel or quasi-perpendicular regions.

  15. Frequency Selective Surfaces as Near Infrared Electro-Magnetic Filters for Thermophotovoltaic Spectral Control

    SciTech Connect

    Ryan T. Kristensen; John F. Beausang; David M. DePoy

    2003-12-01

    Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1mm to 100mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

  16. Harmonic spectral modulation of an optical frequency comb to control the ultracold molecules formation

    NASA Astrophysics Data System (ADS)

    Malinovskaya, Svetlana A.; Liu, Gengyuan

    2016-11-01

    A method for creation of ultracold molecules by stepwise adiabatic passage from the Feshbach state to the fundamentally ground state using an optical frequency comb is presented within a semiclassical multilevel model. The sine modulation of the spectral phase of the comb leads to the creation of a quasi-dark dressed state. An insignificant population of the excited state manifold in this dark state provides an efficient way of mitigating decoherence in the system. In contrast, the cosine modulation does not lead to the quasi-dark state formation. The results demonstrate the importance of the parity of the spectral chirp in quantum control.

  17. Mitigating impact of thermal and rectified radio-frequency sheath potentials on edge localized modes

    SciTech Connect

    Gui, B.; Xu, X. Q.; Myra, J. R.; D'Ippolito, D. A.

    2014-11-15

    The mitigating impact of thermal and rectified radio frequency (RF) sheath potentials on the peeling-ballooning modes is studied non-linearly by employing a two-fluid three-field simulation model based on the BOUT++ framework. Additional shear flow and the Kelvin-Helmholtz effect due to the thermal and rectified RF sheath potential are induced. It is found that the shear flow increases the growth rate while the K-H effect decreases the growth rate slightly when there is a density gradient, but the energy loss of these cases is suppressed in the nonlinear phase. The stronger external electrostatic field due to the sheaths has a more significant effect on the energy loss suppression. From this study, it is found the growth rate in the linear phase mainly determines the onset of edge-localized modes, while the mode spectrum width in the nonlinear phase has an important impact on the turbulent transport. The wider mode spectrum leads to weaker turbulent transport and results in a smaller energy loss. Due to the thermal sheath and rectified RF sheath potential in the scrape-off-layer, the modified shear flow tears apart the peeling-ballooning filament and makes the mode spectrum wider, resulting in less energy loss. The perturbed electric potential and the parallel current near the sheath region is also suppressed locally due to the sheath boundary condition.

  18. Comparing origins of low-frequency quasi-periodic oscillations with spectral-timing

    NASA Astrophysics Data System (ADS)

    Stevens, Abigail L.; Uttley, Phil

    2017-08-01

    The light curves of low-mass X-ray binaries show variability on timescales from milliseconds to months. The rapid (sub-second) variability is particularly interesting because it is thought to probe the inner region of the accretion disk and the central compact object. Observations suggest that different types of low-frequency quasi-periodic oscillations (QPOs) are associated with different emitting-region geometries (e.g., disk-like or jet-like) in the innermost part of the X-ray binary, that are varying possibly due to general relativistic precession. A new way to analyze QPOs is with spectral-timing, which seeks to investigate how matter behaves in the strong gravitational field around the compact object by causally linking the variations from different spectral components. We developed a technique for phase-resolved spectroscopy of QPOs, and are applying it to two types of low-frequency QPOs from the black hole X-ray binary GX 339-4. Over a QPO “period”, we find that the energy spectrum changes not only in normalization, but also in spectral shape. We can quantify how the spectral shape changes as a function of QPO phase, and the two different QPOs show markedly different spectral changes. The "Type B" low-frequency QPO shows evidence of a large-scale-height (jet-like) power-law- emitting precessing region, while in the same outburst the "Type C" low-frequency QPO shows evidence of a small-scale-height (disk-like) power-law-emitting precessing region. These interpretations can be used to look into the evolution of matter in the strong-gravity regime.

  19. Extending the effective imaging depth in spectral domain optical coherence tomography by dual spatial frequency encoding

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Wang, Qingqing; Liu, Youwen; Wang, Jiming

    2016-03-01

    We present a spatial frequency domain multiplexing method for extending the imaging depth range of a SDOCT system without any expensive device. This method uses two reference arms with different round-trip optical delay to probe different depth regions within the sample. Two galvo scanners with different pivot-offset distances in the reference arms are used for spatial frequency modulation and multiplexing. While simultaneously driving the galvo scanners in the reference arms and the sample arm, the spatial spectrum of the acquired two-dimensional OCT spectral interferogram corresponding to the shallow and deep depth of the sample will be shifted to the different frequency bands in the spatial frequency domain. After data filtering, image reconstruction and fusion the spatial frequency multiplexing SDOCT system can provide an approximately 1.9 fold increase in the effective ranging depth compared with that of a conventional single-reference-arm full-range SDOCT system.

  20. Spectral analysis of the line-width and line-edge roughness transfer during self-aligned double patterning approach

    NASA Astrophysics Data System (ADS)

    Dupuy, E.; Pargon, E.; Fouchier, M.; Grampeix, H.; Pradelles, J.; Darnon, M.; Pimenta-Barros, P.; Barnola, S.; Joubert, O.

    2015-03-01

    We report a 20 nm half-pitch self-aligned double patterning (SADPP) process based on a resist-core approach. Line/space 20/20 nm features in silicon are successfully obtained with CDvariation, LWR and LER of 0.7 nm, 2.4 nm and 2.3 nm respectively. The LWR and LER are characterized at each technological step of the process using a power spectral density fitting method, which allows a spectral analysis of the roughness and the determination of unbiased roughness values. Although the SADP concept generates two asymmetric populations of lines, the final LLWR and LER are similar. We show that this SADP process allows to decrease significantly the LWR and the LER of about 62% and 48% compared to the initial photoresist patterns. This study also demonstrates that SADP is a very powerful concept to decrease CD uniformity and LWR especially in its low-frequency components to reach sub-20 nm node requirements. However, LER low-frequency components are still high and remain a key issue tot address for an optimized integration.

  1. The Lockman Hole project: LOFAR observations and spectral index properties of low-frequency radio sources

    NASA Astrophysics Data System (ADS)

    Mahony, E. K.; Morganti, R.; Prandoni, I.; van Bemmel, I. M.; Shimwell, T. W.; Brienza, M.; Best, P. N.; Brüggen, M.; Calistro Rivera, G.; de Gasperin, F.; Hardcastle, M. J.; Harwood, J. J.; Heald, G.; Jarvis, M. J.; Mandal, S.; Miley, G. K.; Retana-Montenegro, E.; Röttgering, H. J. A.; Sabater, J.; Tasse, C.; van Velzen, S.; van Weeren, R. J.; Williams, W. L.; White, G. J.

    2016-12-01

    The Lockman Hole is a well-studied extragalactic field with extensive multi-band ancillary data covering a wide range in frequency, essential for characterizing the physical and evolutionary properties of the various source populations detected in deep radio fields (mainly star-forming galaxies and AGNs). In this paper, we present new 150-MHz observations carried out with the LOw-Frequency ARray (LOFAR), allowing us to explore a new spectral window for the faint radio source population. This 150-MHz image covers an area of 34.7 square degrees with a resolution of 18.6 × 14.7 arcsec and reaches an rms of 160 μJy beam-1 at the centre of the field. As expected for a low-frequency selected sample, the vast majority of sources exhibit steep spectra, with a median spectral index of α _{150}^{1400}=-0.78± 0.015. The median spectral index becomes slightly flatter (increasing from α _{150}^{1400}=-0.84 to α _{150}^{1400}=-0.75) with decreasing flux density down to S150 ˜10 mJy before flattening out and remaining constant below this flux level. For a bright subset of the 150-MHz selected sample, we can trace the spectral properties down to lower frequencies using 60-MHz LOFAR observations, finding tentative evidence for sources to become flatter in spectrum between 60 and 150 MHz. Using the deep, multi-frequency data available in the Lockman Hole, we identify a sample of 100 ultra-steep-spectrum sources and 13 peaked-spectrum sources. We estimate that up to 21 per cent of these could have z > 4 and are candidate high-z radio galaxies, but further follow-up observations are required to confirm the physical nature of these objects.

  2. Influence of mesa edge capacitance on frequency behavior of millimeter-wave AlGaN/GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng; Wang, Kang; Liu, Yong; Bai, Zhiyuan; Liu, Yang; Feng, Zhihong; Dun, Shaobo; Yu, Qi

    2017-03-01

    The influence of mesa edge capacitance on the frequency characteristics of AlGaN/GaN HEMTs with 90 nm gate length was studied in this paper. To extract mesa edge capacitances, a small-signal equivalent circuit model considering mesa edge capacitances was provided. Based on the model, the intrinsic gate capacitances of AlGaN/GaN HEMTs with 2 × 20 μm, 2 × 30 μm, 2 × 40 μm, and 2 × 50 μm gate widths were extracted, respectively. Through linear fitting along gate width for the extracted results and simulations, 8.06 fF/μm2 of mesa edge capacitances at Vgs = -4.5 V and Vds = 8 V in the devices with 2 × 20 μm gate width was obtained, which can be about 33.2% of the total gate capacitance. Mesa edge capacitances results in a significant drop of current-gain cut-off frequency (fT), and the effect is more serious in the shorter gate length devices.

  3. Red-Edge Spectral Reflectance as an Indicator of Surface Moisture Content in an Alaskan Peatland Ecosystem

    NASA Astrophysics Data System (ADS)

    McPartland, M.; Kane, E. S.; Turetsky, M. R.; Douglass, T.; Falkowski, M. J.; Montgomery, R.; Edwards, J.

    2015-12-01

    Arctic and boreal peatlands serve as major reservoirs of terrestrial organic carbon (C) because Net Primary Productivity (NPP) outstrips C loss from decomposition over long periods of time. Peatland productivity varies as a function of water table position and surface moisture content, making C storage in these systems particularly vulnerable to the climate warming and drying predicted for high latitudes. Detailed spatial knowledge of how aboveground vegetation communities respond to changes in hydrology would allow for ecosystem response to environmental change to be measured at the landscape scale. This study leverages remotely sensed data along with field measurements taken at the Alaska Peatland Experiment (APEX) at the Bonanza Creek Long Term Ecological Research site to examine relationships between plant solar reflectance and surface moisture. APEX is a decade-long experiment investigating the effects of hydrologic change on peatland ecosystems using water table manipulation treatments (raised, lowered, and control). Water table levels were manipulated throughout the 2015 growing season, resulting in a maximum separation of 35 cm between raised and lowered treatment plots. Water table position, soil moisture content, depth to seasonal ice, soil temperature, photosynthetically active radiation (PAR), CO2 and CH4 fluxes were measured as predictors of C loss through decomposition and NPP. Vegetation was surveyed for percent cover of plant functional types. Remote sensing data was collected during peak growing season, when the separation between treatment plots was at maximum difference. Imagery was acquired via a SenseFly eBee airborne platform equipped with a Canon S110 red-edge camera capable of detecting spectral reflectance from plant tissue at 715 nm band center to within centimeters of spatial resolution. Here, we investigate empirical relationships between spectral reflectance, water table position, and surface moisture in relation to peat carbon balance.

  4. Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography.

    PubMed

    Chen, Liang-Yu; Pan, Min-Chun; Pan, Min-Cheng

    2012-01-01

    In this study, we first propose the use of edge-preserving regularization in optimizing an ill-conditioned problem in the reconstruction procedure for diffuse optical tomography to prevent unwanted edge smoothing, which usually degrades the attributes of images for distinguishing tumors from background tissues when using Tikhonov regularization. In the edge-preserving regularization method presented here, a potential function with edge-preserving properties is introduced as a regularized term in an objective function. With the minimization of this proposed objective function, an iterative method to solve this optimization problem is presented in which half-quadratic regularization is introduced to simplify the minimization task. Both numerical and experimental data are employed to justify the proposed technique. The reconstruction results indicate that edge-preserving regularization provides a superior performance over Tikhonov regularization. © 2012 Optical Society of America

  5. [Excitation energy and frequency of transition spectral line of electron in an asymmetry quantum dot].

    PubMed

    Xiao, Jing-Lin

    2009-03-01

    In an asymmetry quantum dot, the properties of the electron, which is strongly coupled with phonon, were investigated. The variational relations of the first internal excited state energy, the excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot with the transverse and longituainal effective confinement length of quantum dot and the electron-phonon coupling strength were studied by using a linear combination operator and the unitary transformation methods. Numerical calculations for the variational relations of the first internal excited state energy, the excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot with the transverse and longituainal effective confinement length of quantum dot and the electron-phonon coupling strength were performed and the results show that the first internal excited state energy, the excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot will strongly increase with decreasing the transverse and longitudinal effective confinement length. The first internal excited state energy of the electron which is strongly coupled with phonon in an asymmetry quantum dot will decrease with increasing the electron-phonon coupling strength. The excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot will increase with increasing the electron-phonon coupling strength.

  6. Using Spectral Methods to Quantify Changes in Temperature Variability across Frequencies

    NASA Astrophysics Data System (ADS)

    Sun, S.; McInerney, D.; Stein, M.; Leeds, W.; Poppick, A. N.; Nazarenko, L.; Schmidt, G. A.; Moyer, E. J.

    2014-12-01

    Changes in future surface temperature variability are of great scientific and societal interest. Since the impact of variability on human society depends on not only the magnitude but also the frequency of variations, shifts in the marginal distribution of temperatures do not provide enough information for impacts assessment. Leeds et al (2014) proposed a method to quantify changes in variability of temperature at distinct temporal frequencies by estimating the ratio of the spectral densities of temperature between pre-industrial and equilibrated future climates. This spectral ratio functions well as a metric to quantify temperature variability shifts in climate model output. In this study, we apply the method of Leeds et al (2014) to explore the temperature variability changes under increased radiative forcing. We compare changes in variability in higher-CO2 climates across two different climate models (CCSM3 from the National Center for Atmospheric Research and GISS-E2-R from NASA Goddard Institute for Space Studies), and changes driven by two different forcing agents (CO2 and solar radiation) within the same model (CCSM3). In all cases we use only the equilibrium stages of model runs extended several thousand years after an abrupt forcing change is imposed. We find a number of results. First, changes in temperature variability differ by frequency in most regions, confirming the need for spectral methods. Second, changes are similar regardless of forcing agents. In experiments with abruptly increased CO2 and solar forcing designed to produce the same change in global mean temperature, the distributions and magnitudes of spectral ratio changes are nearly identical. Finally, projections of variability changes differ across models. In CCSM3, temperature variability decreases in most regions and at most frequencies. Conversely, in GISS-E2-R, temperature variability tends to increase over land. The discrepancy between CCSM3 and the GISS-E-R highlights the need for

  7. Molecular Electronics for Frequency Domain Optical Storage. Persistent Spectral Hole-Burning. A Review.

    DTIC Science & Technology

    1985-03-25

    if applicable) Office of Naval Research IBM Almaden Research Center Chemistry Division, Code 1113 6c. ADDRESS (City, State, and ZIP Code) 7b...NOTATION Journal of Molecular Electronics 17. .* COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number) FIEL GRUP SB...GOUP Molecular electronics, spectral hole-burning, frequency I I domain. optical storage, solid state photo chemistry , * I photon gating. 19. ABSTRACT

  8. Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters.

    PubMed

    Xu, Chris; Liu, Xiang

    2003-06-15

    We propose a novel ultrafast photonic analog-to-digital converter that uses the soliton self-frequency shift in an optical fiber as an optical power-to-frequency conversion mechanism and a set of interleaving spectral filters as the optical comparators. Our method does all the signal processing in the optical domain and requires binary receivers in only the electronic domain. In contrast to the usual exponential scaling, the simultaneous binary search architecture that we propose results in a flash analog-to-digital converter with remarkable linear scaling between the number of comparators and the number of bits resolved.

  9. A family of repeating low-frequency earthquakes at the downdip edge of tremor and slip

    NASA Astrophysics Data System (ADS)

    Sweet, Justin R.; Creager, Kenneth C.; Houston, Heidi

    2014-09-01

    analyze an isolated low-frequency earthquake (LFE) family located at the downdip edge of the main episodic tremor and slip (ETS) zone beneath western Washington State. The 9000 individual LFEs from this repeating family cluster into 198 swarms that recur roughly every week. Cumulative LFE seismic moment for each swarm correlates strongly with the time until the next swarm, suggesting that these LFE swarms are time predictable. Precise double-difference relative locations for 700 individual LFEs within this family show a distribution that is approximately 2 km long and 500 m wide, elongated parallel to the relative plate convergence direction. The distribution of locations (<300 m vertical spread) lies within a few hundred meters of two different plate interface models and has a similar dip. Peak-to-peak LFE S wave amplitudes range from 0.2 to 18 nm. Individual LFEs exhibit a trend of increasing magnitude during swarms, with smaller events at the beginning and the largest events toward the end. The largest LFEs cluster in a small area (300 m radius) coincident with maximum LFE density. We propose that the less-concentrated smaller LFEs act to unlock this patch core, allowing it to fully rupture in the largest LFEs, usually toward the end of a swarm. We interpret the patch responsible for producing these LFEs as a subducted seamount on the downgoing Juan de Fuca (JdF) plate. LFE locking efficiency (slip estimated during 5 years from summing LFE seismic moment divided by plate-rate-determined slip) is at most 20% and is highly concentrated in two ˜50 m radius locations in the larger patch core. Estimated individual LFE stress drops range from 1 to 20 kPa, but could also be significantly larger.

  10. Enhancing the resolution of non-stationary seismic data using improved time-frequency spectral modelling

    NASA Astrophysics Data System (ADS)

    Zhou, Huai-lai; Wang, Chang-cheng; Marfurt, Kurt J.; Jiang, Yi-wei; Bi, Jian-xia

    2016-04-01

    Maximizing vertical resolution is a key objective in seismic data processing. Early deconvolution and spectral balancing algorithms assumed that the seismic source wavelet was temporally invariant, or stationary. In practice, seismic scattering and attenuation give rise to non-stationary seismic source wavelets. To address this issue, most conventional time-varying deconvolution wavelet shaping and spectral modelling techniques using the stationary polynomial fitting assume the wavelet to be locally stationary within a small number of overlapping analysis windows while the fitting coefficients are invariant with all the frequencies. In this paper, we show an improvement obtained by modelling smoothly varying spectra of the seismic wavelet using non-stationary polynomial fitting in the time-frequency domain. We first decompose each seismic trace using a generalized S-transform that provides a good time-frequency distribution for the estimation of the time-varying wavelet spectra. We then model the slowly varying source wavelet spectrum at each time sample by a smooth low-order polynomial. Finally, we spectrally balance the modelled wavelet to flatten the seismic response, thereby increasing vertical resolution. We calibrate the algorithm on a simple synthetic and then apply it to a 3-D land survey acquired in western China, showing the value on both vertical slices through seismic amplitude and attribute time slices. Our new algorithm significantly improves the vertical resolution of the seismic signal, while not increasing the noise.

  11. Spectral filtering of gradient for l2-norm frequency-domain elastic waveform inversion

    NASA Astrophysics Data System (ADS)

    Oh, Ju-Won; Min, Dong-Joo

    2013-05-01

    To enhance the robustness of the l2-norm elastic full-waveform inversion (FWI), we propose a denoise function that is incorporated into single-frequency gradients. Because field data are noisy and modelled data are noise-free, the denoise function is designed based on the ratio of modelled data to field data summed over shots and receivers. We first take the sums of the modelled data and field data over shots, then take the sums of the absolute values of the resultant modelled data and field data over the receivers. Due to the monochromatic property of wavefields at each frequency, signals in both modelled and field data tend to be cancelled out or maintained, whereas certain types of noise, particularly random noise, can be amplified in field data. As a result, the spectral distribution of the denoise function is inversely proportional to the ratio of noise to signal at each frequency, which helps prevent the noise-dominant gradients from contributing to model parameter updates. Numerical examples show that the spectral distribution of the denoise function resembles a frequency filter that is determined by the spectrum of the signal-to-noise (S/N) ratio during the inversion process, with little human intervention. The denoise function is applied to the elastic FWI of synthetic data, with three types of random noise generated by the modified version of the Marmousi-2 model: white, low-frequency and high-frequency random noises. Based on the spectrum of S/N ratios at each frequency, the denoise function mainly suppresses noise-dominant single-frequency gradients, which improves the inversion results at the cost of spatial resolution.

  12. Phase Difference Correction Method for Phase and Frequency in Spectral Analysis

    NASA Astrophysics Data System (ADS)

    Kang, D.; Ming, X.; Xiaofei, Z.

    2000-09-01

    A new method, phase difference corrections method is developed to correct the frequency and phase of spectrum peak. The continuous time-domain signal is separated into two segments and fast Fourier translation (FFT) is carried out for them, respectively. The frequency and phase are corrected using the phase difference of corresponding discrete spectral lines. Furthermore, the amplitude can also be rectified using the formula of window function spectrum. This method, with good adaptability, high speed and accuracy, is theoretically simple. It can resolve the frequency by means of phase difference directly without the formula of window function. Simulation shows that the single-component frequency, phase and amplitude of theoretical signal can be corrected satisfactorily, with frequency error less than 0.0002 frequency resolution, phase 0.1° and amplitude 0.0002. If the signal involves noise, the mean corrected errors are less than 0.001 frequency resolution, 1° for phase, and 0.01 for amplitude, respectively, and the maximum corrected errors of one segment are less than 0.01 frequency resolution, 1° and 0.03, respectively.

  13. Water-waves frequency upshift of the spectral mean due to wind forcing

    NASA Astrophysics Data System (ADS)

    Eeltink, Debbie; Chabchoub, Amin; Brunetti, Maura; Kasparian, Jerome; Kimmoun, Olivier; Branger, Hubert

    2017-04-01

    The effect of wind forcing on monochromatic modulated water waves was investigated both numerically and experimentally in the context of the Modified Non-Linear Schrödinger (MNLS) equation framework. While wind is usually associated with a frequency downshift of the dominant spectral peak, we show that it may induce an upshift of the spectral mean due to an asymmetric amplification of the spectrum. Here the weighted average spectral mean is equal to the ratio of the momentum of the envelope to its norm and it detects any asymmetries in the spectrum (Segur et al. 2005). Wind can however indirectly induce frequency downshifts, by promoting dissipative effects like wave breaking. We highlight that the definition of the up- and downshift in terms of peak frequency or average frequency is critical for a relevant discussion. In our model, the wind input consists of a leading order forcing term that amplifies all frequencies equally and induces a broadening of the spectrum, and a higher order asymmetric term (Brunetti et al. 2014; Brunetti & Kasparian 2014) that amplifies higher frequencies more than lower ones and induces a permanent upshift of the spectral mean. The effect of MNLS + wind is exactly opposite to MNLS + viscosity, where the lower order viscosity terms damp the whole spectrum, while the higher order viscosity terms damp higher frequencies more than lower ones and thus causes a permanent downshift, as evidenced by Carter & Govan (2016). We corroborated the model with wave tank experiments conducted in the IRPHE/Pytheas large wind-wave facility located in Marseille, France. Wave data analysis show the temporary downshift in the spectral peak sense caused by the wind, and the temporary upshift in the spectral mean sense characteristic of the MNLS. As the tank-length was limited, we used long-range simulations to obtain upshift in the spectral mean sense caused by the wind. The limit of the model is reached when breaking events occur. We acknowledge financial

  14. Low radio frequency observations and spectral modelling of the remnant of Supernova 1987A

    NASA Astrophysics Data System (ADS)

    Callingham, J. R.; Gaensler, B. M.; Zanardo, G.; Staveley-Smith, L.; Hancock, P. J.; Hurley-Walker, N.; Bell, M. E.; Dwarakanath, K. S.; Franzen, T. M. O.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A.; For, B.-Q.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2016-10-01

    We present Murchison Widefield Array observations of the supernova remnant (SNR) 1987A between 72 and 230 MHz, representing the lowest frequency observations of the source to date. This large lever arm in frequency space constrains the properties of the circumstellar medium created by the progenitor of SNR 1987A when it was in its red supergiant phase. As of late 2013, the radio spectrum of SNR 1987A between 72 MHz and 8.64 GHz does not show any deviation from a non-thermal power law with a spectral index of -0.74 ± 0.02. This spectral index is consistent with that derived at higher frequencies, beneath 100 GHz, and with a shock in its adiabatic phase. A spectral turnover due to free-free absorption by the circumstellar medium has to occur below 72 MHz, which places upper limits on the optical depth of ≤0.1 at a reference frequency of 72 MHz, emission measure of ≲13 000 cm-6 pc, and an electron density of ≲110 cm-3. This upper limit on the electron density is consistent with the detection of prompt radio emission and models of the X-ray emission from the supernova. The electron density upper limit implies that some hydrodynamic simulations derived a red supergiant mass-loss rate that is too high, or a wind velocity that is too low. The mass-loss rate of ˜5 × 10-6 M⊙ yr-1 and wind velocity of 10 km s-1 obtained from optical observations are consistent with our upper limits, predicting a current turnover frequency due to free-free absorption between 5 and 60 MHz.

  15. Neuroimaging of speech recognition under conditions of spectral reduction and frequency upshift

    NASA Astrophysics Data System (ADS)

    Chiu, C.-Y. Peter

    2003-04-01

    In the current study explored the cortical dynamics of speech recognition, given spectral reduction and frequency upshifts, using functional MRI. Subjects with normal hearing either rested or listened to speech under different conditions. In the 8-channel condition, natural speech was processed by an 8-channel sinewave vocoder to remove its fine spectral details [Shannon et al., J. Acoust. Soc. Am. 104, 2467 (1998)]. In the upshifted condition, the carrier center frequency of each of the 8 channels was further shifted upward in frequency from the corresponding analysis band by ``6 mm'' in cochlear frequency space [Fu and Shannon, J. Acoust. Soc. Am. 105, 1889 (1999)]. All subjects received a brief practice session with the speech stimuli prior to scanning. In Experiment 1, subjects listened to nonmonosyllabic words and pressed a key whenever they heard a concrete noun. In Experiment 2, subjects listened to high context sentences (SPIN) and pressed a key whenever they recognized all the words in a particular sentence. Preliminary data suggested that, compared to rest, all speech conditions evoked comparable activities in largely similar sets of bilateral superior temporal regions, with relatively minor differences between words and sentences. Activation appeared to be least diffuse in the natural speech condition.

  16. Spectral analysis of GEOS-3 altimeter data and frequency domain collocation. [to estimate gravity anomalies

    NASA Technical Reports Server (NTRS)

    Eren, K.

    1980-01-01

    The mathematical background in spectral analysis as applied to geodetic applications is summarized. The resolution (cut-off frequency) of the GEOS 3 altimeter data is examined by determining the shortest wavelength (corresponding to the cut-off frequency) recoverable. The data from some 18 profiles are used. The total power (variance) in the sea surface topography with respect to the reference ellipsoid as well as with respect to the GEM-9 surface is computed. A fast inversion algorithm for matrices of simple and block Toeplitz matrices and its application to least squares collocation is explained. This algorithm yields a considerable gain in computer time and storage in comparison with conventional least squares collocation. Frequency domain least squares collocation techniques are also introduced and applied to estimating gravity anomalies from GEOS 3 altimeter data. These techniques substantially reduce the computer time and requirements in storage associated with the conventional least squares collocation. Numerical examples given demonstrate the efficiency and speed of these techniques.

  17. The impact of spatial and spectral frequencies in structured light imaging of thick tissues

    NASA Astrophysics Data System (ADS)

    Weber, Jessie Ruth

    This research focuses on development of structured light imaging (SLI), a new optical imaging technique based on spatial frequency domain modulation. The goal of this method is to quantitatively measure and map tissue optical properties, absorption and scattering, to determine tissue biochemical structure and composition. The work presented here extends the technology's spatial and spectral frequency impact. First, to expand the depth sectioning capability of spatial frequency modulation, a layered tissue model was developed, validated and shown to accurately recover in vivo parameters in skin (epidermis and dermis), effectively filtering out signal from the underlying subcutaneous tissue. Next, to expand the impact of spectral frequency information, the SLI system was combined with a Computed Tomography Imaging Spectrometer (CTIS), which eliminates the need to scan through wavelengths when gathering multispectral information. A single SLI-CTIS measurement gathers 36 absorption maps and 36 scattering maps, with a resulting measurement speed ˜30 times faster than the liquid crystal tunable filter method currently employed in multispectral SLI systems. The multispectral information can be used to determine the concentrations of multiple tissue chromophores and the relative density of the tissue. This is immediately useful for monitoring the brain for signs of trauma, including monitoring of oxygen delivery across the brain, mapping of hemoglobin concentration to detect hemorrhage, mapping of water content to monitor edema, and mapping of tissue density to monitor swelling. A simple in vivo brain injury example is presented to demonstrate recovery of these parameters. Finally, to demonstrate the spatial, spectral and temporal resolution of the SLI-CTIS system, measurements were performed on in vivo mouse brain during seizure with electroencephalography (EEG) confirmation.

  18. Frequency interleaving towards spectrally efficient directly detected optical OFDM for next-generation optical access networks.

    PubMed

    Mehedy, Lenin; Bakaul, Masuduzzaman; Nirmalathas, Ampalavanapillai

    2010-10-25

    In this paper, we theoretically analyze and demonstrate that spectral efficiency of a conventional direct detection based optical OFDM system (DDO-OFDM) can be improved significantly using frequency interleaving of adjacent DDO-OFDM channels where OFDM signal band of one channel occupies the spectral gap of other channel and vice versa. We show that, at optimum operating condition, the proposed technique can effectively improve the spectral efficiency of the conventional DDO-OFDM system as much as 50%. We also show that such a frequency interleaved DDO-OFDM system, with a bit rate of 48 Gb/s within 25 GHz bandwidth, achieves sufficient power budget after transmission over 25 km single mode fiber to be used in next-generation time-division-multiplexed passive optical networks (TDM-PON). Moreover, by applying 64- quadrature amplitude modulation (QAM), the system can be further scaled up to 96 Gb/s with a power budget sufficient for 1:16 split TDM-PON.

  19. Ingested oat herb extract (Avena sativa) changes EEG spectral frequencies in healthy subjects.

    PubMed

    Dimpfel, Wilfried; Storni, Charlotte; Verbruggen, Marian

    2011-05-01

    This study aimed at using quantitative assessment of human electric brain activity during mental work for determining acute effects of ingested oat herb extract on cognitive performance. Within a double-blind, randomized, placebo-controlled crossover study, two dosages of a special oat preparation of Avena sativa herba (1250 or 2500 mg of Neuravena®) were compared to placebo. An electroencephalogram was recorded while the patient had eyes open for 6 minutes, eyes closed for 4 minutes, performance of a concentration test (d2) for 5 minutes, and performance of mental arithmetic (KLT) for 5 minutes. Source density was calculated and spectral frequency changes were averaged to give one value for each frequency range. Using quantitative brain mapping technology (CATEEM®), main effects were observed in the left frontotemporal area, known to be involved in cognitive tasks. Statistically significant differences were observed during resting (lowering of spectral δ power) and during performance of the d2-concentration test (enhancement of spectral θ power) (p < 0.01 and p < 0.05, respectively). Also, during performance of mental arithmetic, greater enhancement of θ power was observed but only at a lower error probability (p = 0.115). No effects could be seen using the P300 paradigm during presentation of a visual stimulus. These changes suggest that oat herb extract might be effective in healthy subjects, resulting in a positive impact on cognitive performance.

  20. A Spectral Finite Element Approach to Modeling Soft Solids Excited with High-Frequency Harmonic Loads

    PubMed Central

    Brigham, John C.; Aquino, Wilkins; Aguilo, Miguel A.; Diamessis, Peter J.

    2010-01-01

    An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number. PMID:21461402

  1. A Spectral Finite Element Approach to Modeling Soft Solids Excited with High-Frequency Harmonic Loads.

    PubMed

    Brigham, John C; Aquino, Wilkins; Aguilo, Miguel A; Diamessis, Peter J

    2011-01-15

    An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number.

  2. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect

    Palacio Mizrahi, J. H.

    2014-06-15

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  3. Evaluation of spectral photon counting computed tomography K-edge imaging for determination of gold nanoparticle biodistribution in vivo.

    PubMed

    Si-Mohamed, Salim; Cormode, David P; Bar-Ness, Daniel; Sigovan, Monica; Naha, Pratap C; Langlois, Jean-Baptiste; Chalabreysse, Lara; Coulon, Philippe; Blevis, Ira; Roessl, Ewald; Erhard, Klaus; Boussel, Loic; Douek, Philippe

    2017-07-20

    Spectral photon counting computed tomography (SPCCT) is an emerging medical imaging technology. SPCCT scanners record the energy of incident photons, which allows specific detection of contrast agents due to measurement of their characteristic X-ray attenuation profiles. This approach is known as K-edge imaging. Nanoparticles formed from elements such as gold, bismuth or ytterbium have been reported as potential contrast agents for SPCCT imaging. Furthermore, gold nanoparticles have many applications in medicine, such as adjuvants for radiotherapy and photothermal ablation. In particular, longitudinal imaging of the biodistribution of nanoparticles would be highly attractive for their clinical translation. We therefore studied the capabilities of a novel SPCCT scanner to quantify the biodistribution of gold nanoparticles in vivo. PEGylated gold nanoparticles were used. Phantom imaging showed that concentrations measured on gold images correlated well with known concentrations (slope = 0.94, intercept = 0.18, RMSE = 0.18, R(2) = 0.99). The SPCCT system allowed repetitive and quick acquisitions in vivo, and follow-up of changes in the AuNP biodistribution over time. Measurements performed on gold images correlated with the inductively coupled plasma-optical emission spectrometry (ICP-OES) measurements in the organs of interest (slope = 0.77, intercept = 0.47, RMSE = 0.72, R(2) = 0.93). TEM results were in agreement with the imaging and ICP-OES in that much higher concentrations of AuNPs were observed in the liver, spleen, bone marrow and lymph nodes (mainly in macrophages). In conclusion, we found that SPCCT can be used for repetitive and non-invasive determination of the biodistribution of gold nanoparticles in vivo.

  4. Retrospective correction of frequency drift in spectral editing: The GABA editing example.

    PubMed

    van der Veen, Jan Willem; Marenco, Stefano; Berman, Karen F; Shen, Jun

    2017-08-01

    GABA levels can be measured using proton MRS with a two-step editing sequence. However due to the low concentration of GABA, long acquisition time is usually needed to achieve sufficient SNR to detect small differences in many psychiatric disorders. During this long scan time the frequency offset of the measured voxel can change because of magnetic field drift and patient movement. This drift will change the frequency of the editing pulse relative to that of metabolites, leading to errors in quantification. In this article we describe a retrospective method to correct for frequency drift in spectral editing. A series of reference signals for each metabolite was generated for a range of frequency offsets and then averaged together based on the history of frequency changes over the scan. These customized basis sets were used to fit the in vivo data. Our results demonstrate the effectiveness of the correction method and the remarkable robustness of a GABA editing technique with a top hat editing profile in the presence of frequency drift. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  5. High-frequency variations of hydrogen spectral lines in the B3V star η UMa

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.

    2015-09-01

    We reported the detection of high-frequency variations in the hydrogen Balmer lines in the hot star η UMa of spectral class B3V. Spectral observations of η UMa were carried out with slitless spectrograph (R˜100) installed on the 60 cm Carl Zeiss telescope in the Andrushivka Observatory. Spectra were obtained with a time resolution in the sub-second range. It has been found that the η UMa shows rapid variations in the hydrogen lines Hα, Hβ, Hγ, as well as variations in the atmospheric oxygen lines. The intensity variations in the hydrogen lines varies from 0.2% to 0.5% , and that of the oxygen lines is approximately 2%.

  6. Reconfiguration of spectral absorption features using a frequency-chirped laser pulse.

    PubMed

    Tian, Mingzhen; Chang, Tiejun; Merkel, Kristian D; Babbitt, W Randall

    2011-12-20

    A technique is proposed to manipulate atomic population in an inhomogeneously broadened medium, which can set an arbitrary absorption spectrum to a uniform transparency (erasure) or to a nearly complete inversion. These reconfigurations of atomic spectral distribution are achieved through excitation of electronic transitions using a laser pulse with chirped frequency, which precisely affects selected spectral regions while leaving the rest of the spectrum unperturbed. An erasure operation sets the final atomic population inversion to zero and the inversion operation flips the population between the ground and the excited states, regardless of the previously existing population distribution. This technique finds important applications both in optical signal processing, where fast, recursive processing and high dynamic range are desirable and in quantum memory and quantum computing, which both require high efficiency and high fidelity in quantum state preparation of atomic ensembles. Proof-of-concept demonstrations were performed in a rare-earth doped crystal.

  7. Spectrally efficient polarization multiplexed direct-detection OFDM system without frequency gap.

    PubMed

    Wei, Chia-Chien; Zeng, Wei-Siang; Lin, Chun-Ting

    2016-01-25

    We experimentally demonstrate a spectrally efficient direct-detection orthogonal frequency-division multiplexing (DD-OFDM) system. In addition to polarization-division multiplexing, removing the frequency gap further improves the spectral efficiency of the OFDM system. The frequency gap between a reference carrier and OFDM subcarriers avoids subcarrier-to-subcarrier beating interference (SSBI) in traditional DD-OFDM systems. Without dynamic polarization control, the resulting interference after square-law direct detection in the proposed gap-less system is polarization-dependent and composed of linear inter-carrier interference (ICI) and nonlinear SSBI. Thus, this work proposes an iterative multiple-input multiple-output detection scheme to remove the mixed polarization-dependent interference. Compared to the previous scheme, which only removes ICI, the proposed scheme can further eliminate SSBI to achieve the improvement of ∼ 7 dB in signal-to-noise ratio. Without the need for polarization control, we successfully utilize 7-GHz bandwidth to transmit a 39.5-Gbps polarization multiplexed OFDM signal over 100 km.

  8. Line shape of amplitude or frequency-modulated spectral profiles including resonator distortions.

    PubMed

    Suter, Martin; Quack, Martin

    2015-05-10

    We report experiments and an improved method of analysis for any harmonics of frequency-modulated spectral line shapes allowing for very precise determinations of the resonance frequency of single absorption lines for gigahertz spectroscopy in the gas phase. Resonator perturbations are implemented into the formalism of modulation spectroscopy by means of a full complex transmission function being able to model the asymmetrically distorted absorption line shapes for arbitrary modulation depths, modulation frequencies, and resonator reflectivities. Exact equations of the in-phase and the quadrature modulation signal, taking into account a full resonator transmission function, are simultaneously adjusted to two-channel lock-in measurements performed in the gigahertz regime to obtain the spectral line position. The determination of the absorption line position of the rotational transition J' = 7 ← J" = 6 of (16)O(12)C(32)S in the vibrational ground state is investigated while changing the resonator distortions. The results are subjected to the approach proposed here and compared to standard methods known from the literature.

  9. System upgrades and performance evaluation of the spectrally agile, frequency incrementing reconfigurable (SAFIRE) radar system

    NASA Astrophysics Data System (ADS)

    Phelan, Brian R.; Ranney, Kenneth I.; Ressler, Marc A.; Clark, John T.; Sherbondy, Kelly D.; Kirose, Getachew A.; Harrison, Arthur C.; Galanos, Daniel T.; Saponaro, Philip J.; Treible, Wayne R.; Narayanan, Ram M.

    2017-05-01

    The U.S. Army Research Laboratory has developed the Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) radar, which is capable of imaging concealed/buried targets using forward- and side-looking configurations. The SAFIRE radar is vehicle-mounted and operates from 300 MHz-2 GHz; the step size can be adjusted in multiples of 1 MHz. It is also spectrally agile and capable of excising frequency bands, which makes it ideal for operation in congested and/or contested radio frequency (RF) environments. Furthermore, the SAFIRE radar receiver has a super-heterodyne architecture, which was designed so that intermodulation products caused by interfering signals could be easily filtered from the desired received signal. The SAFIRE system also includes electro-optical (EO) and infrared (IR) cameras, which can be fused with radar data and displayed in a stereoscopic augmented reality user interface. In this paper, recent upgrades to the SAFIRE system are discussed and results from the SAFIRE's initial field tests are presented.

  10. Maximum entropy analytic continuation for frequency-dependent transport coefficients with nonpositive spectral weight

    NASA Astrophysics Data System (ADS)

    Reymbaut, A.; Gagnon, A.-M.; Bergeron, D.; Tremblay, A.-M. S.

    2017-03-01

    The computation of transport coefficients, even in linear response, is a major challenge for theoretical methods that rely on analytic continuation of correlation functions obtained numerically in Matsubara space. While maximum entropy methods can be used for certain correlation functions, this is not possible in general, important examples being the Seebeck, Hall, Nernst, and Reggi-Leduc coefficients. Indeed, positivity of the spectral weight on the positive real-frequency axis is not guaranteed in these cases. The spectral weight can even be complex in the presence of broken time-reversal symmetry. Various workarounds, such as the neglect of vertex corrections or the study of the infinite frequency or Kelvin limits, have been proposed. Here, we show that one can define auxiliary response functions that allow one to extract the desired real-frequency susceptibilities from maximum entropy methods in the most general multiorbital cases with no particular symmetry. As a benchmark case, we study the longitudinal thermoelectric response and corresponding Onsager coefficient in the single-band two-dimensional Hubbard model treated with dynamical mean-field theory and continuous-time quantum Monte Carlo. We thereby extend the maximum entropy analytic continuation with auxiliary functions (MaxEntAux method), developed for the study of the superconducting pairing dynamics of correlated materials, to transport coefficients.

  11. Spectral analysis to assess exposure to extremely low frequency magnetic fields in cars.

    PubMed

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Barberá, Jorge

    2017-04-15

    A type of contamination that has been little studied in cars comes from the extremely low frequency (ELF) magnetic fields generated by the vehicle's electrical devices and the magnetized metal in the tyres. The magnetic fields in cars are frequently analysed with broadband meters sensitive to a frequency range above 30Hz. This has the disadvantage that they neither detect the magnetic field of the spinning tyres nor give any information on the spectral components, which makes it impossible to adequately assess exposure. The objective of the present study was to perform spectral analyses of ELF magnetic fields in cars, to identify their frequencies, and to assess exposure based on the ICNIRP regulatory guidelines. To do this, a meter and a spectrum analyser sensitive to magnetic fields in the 5Hz-2kHz frequency range were used. Spectra were acquired for different seats, heights, and speeds, and spatially averaged exposure coefficients were calculated. The results indicated that the main emissions were detected in the 5-100Hz range, where the wheel rotation frequencies and their harmonics are found. The intensity of the rest of the emissions were negligible in comparison. The exposure quotient increases with speed, and is approximately twice as great at foot level as at head level. The magnetic field levels are lower than the reference levels (the maximum represents 3% of the ICNIRP standard), but higher than those found in residential environments and than the cut-off threshold used by the IARC to classify ELF magnetic fields in Group 2B. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. FR II radio galaxies at low frequencies - II. Spectral ageing and source dynamics

    NASA Astrophysics Data System (ADS)

    Harwood, Jeremy J.; Hardcastle, Martin J.; Morganti, Raffaella; Croston, Judith H.; Brüggen, Marcus; Brunetti, Gianfranco; Röttgering, Huub J. A.; Shulevski, Aleksander; White, Glenn J.

    2017-07-01

    In this paper, the second in a series investigating Fanaroff-Riley type II (FR II) radio galaxies at low frequencies, we use LOw Frequency ARray (LOFAR) and Very Large Array (VLA) observations between 117 and 456 MHz, in addition to archival data, to determine the dynamics and energetics of two radio galaxies, 3C 452 and 3C 223, by fitting spectral ageing models on small spatial scales. We provide improved measurements for the physical extent of the two sources, including a previously unknown low surface brightness extension to the northern lobe of 3C 223, and revised energetics based on these values. We find spectral ages of 77.05^{+9.22}_{-8.74} and 84.96^{+15.02}_{-13.83} Myr for 3C 452 and 3C 223, respectively, suggesting a characteristic advance speed for the lobes of around 1 per cent of the speed of light. For 3C 452, we show that, even for a magnetic field strength not assumed to be in equipartition, a disparity of a factor of approximately 2 exists between the spectral age and that determined from a dynamical standpoint. We confirm that the injection index of both sources (as derived from the lobe emission) remains steeper than classically assumed values, even when considered on well-resolved scales at low frequencies. However, we find an unexpected sharp discontinuity between the spectrum of the hotspots and the surrounding lobe emission. We suggest that this discrepancy is a result of the absorption of hotspot emission and/or non-homogeneous and additional acceleration mechanisms; as such, hotspots should not be used in the determination of the underlying initial electron energy distribution.

  13. Spectral linewidth preservation in parametric frequency combs seeded by dual pumps.

    PubMed

    Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Kuo, Bill P P; Alic, Nikola; Radic, Stojan

    2012-07-30

    We demonstrate new technique for generation of programmable-pitch, wideband frequency combs with low phase noise. The comb generation was achieved using cavity-less, multistage mixer driven by two tunable continuous-wave pump seeds. The approach relies on phase-correlated continuous-wave pumps in order to cancel spectral linewidth broadening inherent to parametric comb generation. Parametric combs with over 200-nm bandwidth were obtained and characterized with respect to phase noise scaling to demonstrate linewidth preservation over 100 generated tones.

  14. Low-Frequency Spectral Energy Distributions of Radio Pulsars Detected with the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Murphy, Tara; Kaplan, David L.; Bell, Martin E.; Callingham, J. R.; Croft, Steve; Johnston, Simon; Dobie, Dougal; Zic, Andrew; Hughes, Jake; Lynch, Christene; Hancock, Paul; Hurley-Walker, Natasha; Lenc, Emil; Dwarakanath, K. S.; For, B.-Q.; Gaensler, B. M.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R.; Wu, C.; Zheng, Q.

    2017-04-01

    We present low-frequency spectral energy distributions of 60 known radio pulsars observed with the Murchison Widefield Array telescope. We searched the GaLactic and Extragalactic All-sky Murchison Widefield Array survey images for 200-MHz continuum radio emission at the position of all pulsars in the Australia Telescope National Facility (ATNF) pulsar catalogue. For the 60 confirmed detections, we have measured flux densities in 20 × 8 MHz bands between 72 and 231 MHz. We compare our results to existing measurements and show that the Murchison Widefield Array flux densities are in good agreement.

  15. Spectral Analyses of High-Frequency Pn, Sn Phases from Very Shallow Focus Earthquakes.

    DTIC Science & Technology

    1983-09-01

    off at about -24 diB/octave over 1971). the range of 0.3 to 6 Is. Between 3 and 15 R . . 62 McCreary et al.: P and Noise Spectra on Wake Hydrophones...D., C. McCreary . G. Sutton, and F. western Pacific: Structure of oceanic litho- Duennebier, Spectral analyses of high-frequency sphere revealed by...received. The time, in Julian days through milliseconds, is output in parallel BCD format through 45 pins of a 50 pin connector. This connector also

  16. Measurement of the spatial frequency response (SFR) of digital still-picture cameras using a modified slanted-edge method

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Feng; Hsu, Yun C.; Chuang, Kai W.

    2000-06-01

    Spatial resolution is one of the main characteristics of electronic imaging devices such as the digital still-picture camera. It describes the capability of a device to resolve the spatial details of an image formed by the incoming optical information. The overall resolving capability is of great interest although there are various factors, contributed by camera components and signal processing algorithms, affecting the spatial resolution. The spatial frequency response (SFR), analogous to the MTF of an optical imaging system, is one of the four measurements for analysis of spatial resolution defined in ISO/FDIS 12233, and it provides a complete profile of the spatial response of digital still-picture cameras. In that document, a test chart is employed to estimate the spatial resolving capability. The calculations of SFR were conducted by using the slanted edge method in which a scene with a black-to- white or white-to-black edge tilted at a specified angle is captured. An algorithm is used to find the line spread function as well as the SFR. We will present a modified algorithm in which no prior information of the angle of the tilted black-to-white edge is needed. The tilted angle was estimated by assuming that a region around the center of the transition between black and white regions is linear. At a tilted angle of 8 degree the minimum estimation error is about 3%. The advantages of the modified slanted edge method are high accuracy, flexible use, and low cost.

  17. Single-frequency TEA CO2 laser with a bleaching spectral intracavity filter

    NASA Astrophysics Data System (ADS)

    Sorochenko, V. R.

    2017-02-01

    The regime of single-frequency operation is realised in a TEA CO2 laser with a spectral filter inside the cavity (a cell filled with SF6) on P(12)–P(24) lines of the 10P band. The minimal scatter of the peak powers of the laser pulses in a series of ‘shots’ and the maximal ratio of the output energies in the single-frequency and free running regimes (greater than 0.84) are obtained on the P(16) line at an optimal SF6 pressure in the cell. Experimental results qualitatively agree with the absorption spectrum of SF6 calculated from the SPECTRA information-analytical system. It is shown that the high ratio of energies in two regimes is achived due to gas bleaching in the cell.

  18. A generalization of the double-corner-frequency source spectral model and its use in the SCEC BBP validation exercise

    USGS Publications Warehouse

    Boore, David M.; Di Alessandro, Carola; Abrahamson, Norman A.

    2014-01-01

    The stochastic method of simulating ground motions requires the specification of the shape and scaling with magnitude of the source spectrum. The spectral models commonly used are either single-corner-frequency or double-corner-frequency models, but the latter have no flexibility to vary the high-frequency spectral levels for a specified seismic moment. Two generalized double-corner-frequency ω2 source spectral models are introduced, one in which two spectra are multiplied together, and another where they are added. Both models have a low-frequency dependence controlled by the seismic moment, and a high-frequency spectral level controlled by the seismic moment and a stress parameter. A wide range of spectral shapes can be obtained from these generalized spectral models, which makes them suitable for inversions of data to obtain spectral models that can be used in ground-motion simulations in situations where adequate data are not available for purely empirical determinations of ground motions, as in stable continental regions. As an example of the use of the generalized source spectral models, data from up to 40 stations from seven events, plus response spectra at two distances and two magnitudes from recent ground-motion prediction equations, were inverted to obtain the parameters controlling the spectral shapes, as well as a finite-fault factor that is used in point-source, stochastic-method simulations of ground motion. The fits to the data are comparable to or even better than those from finite-fault simulations, even for sites close to large earthquakes.

  19. Numerical 3D analysis of cloud cavitation shedding frequency on a circular leading edge hydrofoil with a barotropic cavitation model

    NASA Astrophysics Data System (ADS)

    Blume, M.; Skoda, R.

    2015-12-01

    A compressible density-based time-explicit low Mach number consistent viscous flow solver is utilised in combination with a barotropic cavitation model for the analysis of cloud cavitation on a circular leading edge (CLE) hydrofoil. For 5° angle of attack, cloud structure and shedding frequency for different cavitation numbers are compared to experimental data. A strong grid sensitivity is found in particular for high cavitation numbers. On a fine grid, a very good agreement with validation data is achieved even without explicit turbulence model. The neglect of viscous effects as well as a two-dimensional set-up lead to a less realistic prediction of cloud structures and frequencies. Comparative simulations with the Sauer-Schnerr cavitation model and modified pre-factors of the mass transfer terms underestimate the measured shedding frequency.

  20. Synchronization to metrical levels in music depends on low-frequency spectral components and tempo.

    PubMed

    Burger, Birgitta; London, Justin; Thompson, Marc R; Toiviainen, Petri

    2017-07-15

    Previous studies have found relationships between music-induced movement and musical characteristics on more general levels, such as tempo or pulse clarity. This study focused on synchronization abilities to music of finely-varying tempi and varying degrees of low-frequency spectral change/flux. Excerpts from six classic Motown/R&B songs at three different tempos (105, 115, and 130 BPM) were used as stimuli in this experiment. Each was then time-stretched by a factor of 5% with regard to the original tempo, yielding a total of 12 stimuli that were presented to 30 participants. Participants were asked to move along with the stimuli while being recorded with an optical motion capture system. Synchronization analysis was performed relative to the beat and the bar level of the music and four body parts. Results suggest that participants synchronized different body parts to specific metrical levels; in particular, vertical movements of hip and feet were synchronized to the beat level when the music contained large amounts of low-frequency spectral flux and had a slower tempo, while synchronization of head and hands was more tightly coupled to the weak flux stimuli at the bar level. Synchronization was generally more tightly coupled to the slower versions of the same stimuli, while synchronization showed an inverted u-shape effect at the bar level as tempo increased. These results indicate complex relationships between musical characteristics, in particular regarding metrical and temporal structure, and our ability to synchronize and entrain to such musical stimuli.

  1. Extracting the frequencies of the pinna spectral notches in measured head related impulse responses

    NASA Astrophysics Data System (ADS)

    Raykar, Vikas C.; Duraiswami, Ramani; Yegnanarayana, B.

    2005-07-01

    The head related impulse response (HRIR) characterizes the auditory cues created by scattering of sound off a person's anatomy. The experimentally measured HRIR depends on several factors such as reflections from body parts (torso, shoulder, and knees), head diffraction, and reflection/diffraction effects due to the pinna. Structural models (Algazi et al., 2002; Brown and Duda, 1998) seek to establish direct relationships between the features in the HRIR and the anatomy. While there is evidence that particular features in the HRIR can be explained by anthropometry, the creation of such models from experimental data is hampered by the fact that the extraction of the features in the HRIR is not automatic. One of the prominent features observed in the HRIR, and one that has been shown to be important for elevation perception, are the deep spectral notches attributed to the pinna. In this paper we propose a method to robustly extract the frequencies of the pinna spectral notches from the measured HRIR, distinguishing them from other confounding features. The method also extracts the resonances described by Shaw (1997). The techniques are applied to the publicly available CIPIC HRIR database (Algazi et al., 2001c). The extracted notch frequencies are related to the physical dimensions and shape of the pinna.

  2. Spectral signal space projection algorithm for frequency domain MEG and EEG denoising, whitening, and source imaging.

    PubMed

    Ramírez, Rey R; Kopell, Brian H; Butson, Christopher R; Hiner, Bradley C; Baillet, Sylvain

    2011-05-01

    MEG and EEG data contain additive correlated noise generated by environmental and physiological sources. To suppress this type of spatially coloured noise, source estimation is often performed with spatial whitening based on a measured or estimated noise covariance matrix. However, artifacts that span relatively small noise subspaces, such as cardiac, ocular, and muscle artifacts, are often explicitly removed by a variety of denoising methods (e.g., signal space projection) before source imaging. Here, we introduce a new approach, the spectral signal space projection (S(3)P) algorithm, in which time-frequency (TF)-specific spatial projectors are designed and applied to the noisy TF-transformed data, and whitened source estimation is performed in the TF domain. The approach can be used to derive spectral variants of all linear time domain whitened source estimation algorithms. The denoised sensor and source time series are obtained by the corresponding inverse TF-transform. The method is evaluated and compared with existing subspace projection and signal separation techniques using experimental data. Altogether, S(3)P provides an expanded framework for MEG/EEG data denoising and whitened source imaging in both the time and frequency/scale domains. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Spectral line shapes of U M2 - and As K -edge resonant x-ray scattering in the two antiferromagnetic phases of UAs

    NASA Astrophysics Data System (ADS)

    Normile, P. S.; Wilkins, S. B.; Detlefs, B.; Mannix, D.; Blackburn, E.; Bouchenoire, L.; Bernhoeft, N.; Lander, G. H.

    2007-05-01

    We present resonant x-ray scattering measurements on uranium arsenide at the U M2 and As K absorption edges. The studies at both edges relate to aspects of the hybridization (involving the 5f states) in UAs. At the U M2 edge, the spectral line shapes are found to differ between the two antiferromagnetic phases of UAs. In the “type-I” phase, the line shapes may be fitted using a single resonant component, whereas in the “type-IA” phase, a second resonant component, 3.5eV above the first component, is required to fit the line shapes in the rotated polarization (σ→π) scattering channel. The possibility that the single (first) component in the type-I (type-IA) phase corresponds to E2 scattering due to the ordered 5f magnetic-dipole moments and that in the type-IA phase the second component represents an E1 process involving polarized 6d (U) states is considered. Similar line shapes are observed for the two antiferromagnetic phases at the As K edge, a result which is in discordance with a recent theoretical prediction. The experimentally observed As K -edge line shape has an asymmetrical form in both phases, which possibly relates to As 4p -band effects unaccounted for in the theory.

  4. The distribution of spectral index of magnetic field and ion velocity in Pi2 frequency band in BBFs: THEMIS statistics

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Du, A. M.; Volwerk, M.; Wang, G. Q.

    2016-09-01

    A statistical study of the THEMIS FGM and ESA data is performed on turbulence of magnetic field and velocity for 218 selected 12 min intervals in BBFs. The spectral index α in the frequency range of 0.005-0.06 Hz are Gaussian distributions. The peaks indexes of total ion velocity Vi and parallel velocity V‖ are 1.95 and 2.07 nearly the spectral index of intermittent low frequency turbulence with large amplitude. However, most probable α of perpendicular velocity V⊥ is about 1.75. It is a little bigger than 5/3 of Kolmogorov (1941). The peak indexes of total magnetic field BT is 1.70 similar to V⊥. Compression magnetic field B‖ are 1.85 which is smaller than 2 and bigger than 5/3 of Kolmogorov (1941). The most probable spectral index of shear B⊥ is about 1.44 which is close to 3/2 of Kraichnan (1965). Max V⊥ have little effect on the power magnitude of VT and V‖ but is positively correlated to spectral index of V⊥. The spectral power of BT, B‖ and B⊥ increase with max perpendicular velocity but spectral indexes of them are negatively correlated to V⊥. The spectral index and the spectral power of magnetic field over the frequency interval 0.005-0.06 Hz is very different from that over 0.08-1 Hz.

  5. Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies

    NASA Astrophysics Data System (ADS)

    Kapińska, A. D.; Staveley-Smith, L.; Crocker, R.; Meurer, G. R.; Bhandari, S.; Hurley-Walker, N.; Offringa, A. R.; Hanish, D. J.; Seymour, N.; Ekers, R. D.; Bell, M. E.; Callingham, J. R.; Dwarakanath, K. S.; For, B.-Q.; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Johnston-Hollitt, M.; Lenc, E.; McKinley, B.; Morgan, J.; Procopio, P.; Wayth, R. B.; Wu, C.; Zheng, Q.; Barry, N.; Beardsley, A. P.; Bowman, J. D.; Briggs, F.; Carroll, P.; Dillon, J. S.; Ewall-Wice, A.; Feng, L.; Greenhill, L. J.; Hazelton, B. J.; Hewitt, J. N.; Jacobs, D. J.; Kim, H.-S.; Kittiwisit, P.; Line, J.; Loeb, A.; Mitchell, D. A.; Morales, M. F.; Neben, A. R.; Paul, S.; Pindor, B.; Pober, J. C.; Riding, J.; Sethi, S. K.; Udaya Shankar, N.; Subrahmanyan, R.; Sullivan, I. S.; Tegmark, M.; Thyagarajan, N.; Tingay, S. J.; Trott, C. M.; Webster, R. L.; Wyithe, S. B.; Cappallo, R. J.; Deshpande, A. A.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Srivani, K. S.; Williams, A.; Williams, C. L.

    2017-03-01

    We present new radio continuum observations of NGC 253 from the Murchison Widefield Array at frequencies between 76 and 227 MHz. We model the broadband radio spectral energy distribution for the total flux density of NGC 253 between 76 MHz and 11 GHz. The spectrum is best described as a sum of a central starburst and extended emission. The central component, corresponding to the inner 500 pc of the starburst region of the galaxy, is best modeled as an internally free-free absorbed synchrotron plasma, with a turnover frequency around 230 MHz. The extended emission component of the spectrum of NGC 253 is best described as a synchrotron emission flattening at low radio frequencies. We find that 34% of the extended emission (outside the central starburst region) at 1 GHz becomes partially absorbed at low radio frequencies. Most of this flattening occurs in the western region of the southeast halo, and may be indicative of synchrotron self-absorption of shock-reaccelerated electrons or an intrinsic low-energy cutoff of the electron distribution. Furthermore, we detect the large-scale synchrotron radio halo of NGC 253 in our radio images. At 154-231 MHz the halo displays the well known X-shaped/horn-like structure, and extends out to ˜8 kpc in the z-direction (from the major axis).

  6. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation

    NASA Astrophysics Data System (ADS)

    Wan, W. J.; Li, H.; Zhou, T.; Cao, J. C.

    2017-03-01

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.

  7. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.

    PubMed

    Wan, W J; Li, H; Zhou, T; Cao, J C

    2017-03-08

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.

  8. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation

    PubMed Central

    Wan, W. J.; Li, H.; Zhou, T.; Cao, J. C.

    2017-01-01

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification. PMID:28272492

  9. High frequency pacing of edge localized modes by injection of lithium granules in DIII-D H-mode discharges

    DOE PAGES

    Bortolon, A.; Maingi, R.; Mansfield, D. K.; ...

    2016-04-08

    A newly installed Lithium Granule Injector (LGI) was used to pace edge localized modes (ELM) in DIII-D. ELM pacing efficiency was studied injecting lithium granules of nominal diameter 0.3–0.9mm, speed of 50–120 m s-1 and average injection rates up to 100 Hz for 0.9mm granules and up to 700 Hz for 0.3mm granules. The efficiency of ELM triggering was found to depend strongly on size of the injected granules, with triggering efficiency close to 100% obtained with 0.9mm diameter granules, lower with smaller sizes, and weakly depending on granule velocity. Robust ELM pacing was demonstrated in ITER-like plasmas for themore » entire shot length, at ELM frequencies 3–5 times larger than the ‘natural’ ELM frequency observed in reference discharges. Within the range of ELM frequencies obtained, the peak ELM heat flux at the outer strike point was reduced with increasing pacing frequency. The peak heat flux reduction at the inner strike point appears to saturate at high pacing frequency. Lithium was found in the plasma core, with a concurrent reduction of metallic impurities and carbon. Altogether, high frequency ELM pacing using the lithium granule injection appears to be compatible with both H-mode energy confinement and attractive H-mode pedestal characteristics, but further assessment is need« less

  10. High frequency pacing of edge localized modes by injection of lithium granules in DIII-D H-mode discharges

    SciTech Connect

    Bortolon, A.; Maingi, R.; Mansfield, D. K.; Nagy, A.; Roquemore, A. L.; Baylor, L. R.; Commaux, N.; Jackson, G. L.; Gilson, E. P.; Lunsford, R.; Parks, P. B.; Chrystal, C.; Grierson, B. A.; Groebner, R.; Haskey, S. R.; Makowski, M. J.; Lasnier, C. J.; Nazikian, R.; Osborne, T.; Shiraki, D.; Van Zeeland, M. A.

    2016-04-08

    A newly installed Lithium Granule Injector (LGI) was used to pace edge localized modes (ELM) in DIII-D. ELM pacing efficiency was studied injecting lithium granules of nominal diameter 0.3–0.9mm, speed of 50–120 m s-1 and average injection rates up to 100 Hz for 0.9mm granules and up to 700 Hz for 0.3mm granules. The efficiency of ELM triggering was found to depend strongly on size of the injected granules, with triggering efficiency close to 100% obtained with 0.9mm diameter granules, lower with smaller sizes, and weakly depending on granule velocity. Robust ELM pacing was demonstrated in ITER-like plasmas for the entire shot length, at ELM frequencies 3–5 times larger than the ‘natural’ ELM frequency observed in reference discharges. Within the range of ELM frequencies obtained, the peak ELM heat flux at the outer strike point was reduced with increasing pacing frequency. The peak heat flux reduction at the inner strike point appears to saturate at high pacing frequency. Lithium was found in the plasma core, with a concurrent reduction of metallic impurities and carbon. Altogether, high frequency ELM pacing using the lithium granule injection appears to be compatible with both H-mode energy confinement and attractive H-mode pedestal characteristics, but further assessment is need

  11. High frequency pacing of edge localized modes by injection of lithium granules in DIII-D H-mode discharges

    NASA Astrophysics Data System (ADS)

    Bortolon, A.; Maingi, R.; Mansfield, D. K.; Nagy, A.; Roquemore, A. L.; Baylor, L. R.; Commaux, N.; Jackson, G. L.; Gilson, E. P.; Lunsford, R.; Parks, P. B.; Chrystal, C.; Grierson, B. A.; Groebner, R.; Haskey, S. R.; Makowski, M. J.; Lasnier, C. J.; Nazikian, R.; Osborne, T.; Shiraki, D.; Van Zeeland, M. A.

    2016-05-01

    A newly installed Lithium Granule Injector (LGI) was used to pace edge localized modes (ELM) in DIII-D. ELM pacing efficiency was studied injecting lithium granules of nominal diameter 0.3-0.9 mm, speed of 50-120 m s-1 and average injection rates up to 100 Hz for 0.9 mm granules and up to 700 Hz for 0.3 mm granules. The efficiency of ELM triggering was found to depend strongly on size of the injected granules, with triggering efficiency close to 100% obtained with 0.9 mm diameter granules, lower with smaller sizes, and weakly depending on granule velocity. Robust ELM pacing was demonstrated in ITER-like plasmas for the entire shot length, at ELM frequencies 3-5 times larger than the ‘natural’ ELM frequency observed in reference discharges. Within the range of ELM frequencies obtained, the peak ELM heat flux at the outer strike point was reduced with increasing pacing frequency. The peak heat flux reduction at the inner strike point appears to saturate at high pacing frequency. Lithium was found in the plasma core, with a concurrent reduction of metallic impurities and carbon. Overall, high frequency ELM pacing using the lithium granule injection appears to be compatible with both H-mode energy confinement and attractive H-mode pedestal characteristics, but further assessment is needed to determine whether the projected heat flux reduction required for ITER can be met.

  12. Assessing the high frequency behavior of non-polarizable electrodes for spectral induced polarization measurements

    NASA Astrophysics Data System (ADS)

    Abdulsamad, Feras; Florsch, Nicolas; Schmutz, Myriam; Camerlynck, Christian

    2016-12-01

    During the last decades, the usage of spectral induced polarization (SIP) measurements in hydrogeology and detecting environmental problems has been extensively increased. However, the physical mechanisms which are responsible for the induced polarization response over the usual frequency range (typically 1 mHz to 10-20 kHz) require better understanding. The phase shift observed at high frequencies is sometimes attributed to the so-called Maxwell-Wagner polarization which takes place when charges cross an interface. However, SIP measurements of tap water show a phase shift at frequencies higher than 1 kHz, where no Maxwell-Wagner polarization may occur. In this paper, we enlighten the possible origin of this phase shift and deduce its likely relationship with the types of the measuring electrodes. SIP Laboratory measurements of tap water using different types of measuring electrodes (polarizable and non-polarizable electrodes) are carried out to detect the origin of the phase shift at high frequencies and the influence of the measuring electrodes types on the observed complex resistivity. Sodium chloride is used to change the conductivity of the medium in order to quantify the solution conductivity role. The results of these measurements are clearly showing the impact of the measuring electrodes type on the measured phase spectrum while the influence on the amplitude spectrum is negligible. The phenomenon appearing on the phase spectrum at high frequency (> 1 kHz) whatever the electrode type is, the phase shows an increase compared to the theoretical response, and the discrepancy (at least in absolute value) increases with frequency, but it is less severe when medium conductivity is larger. Additionally, the frequency corner is shifted upward in frequency. The dependence of this phenomenon on the conductivity and the measuring electrodes type (electrode-electrolyte interface) seems to be due to some dielectric effects (as an electrical double layer of small

  13. Co-analysis of Solar Microwave and Hard X-Ray Spectral Evolutions. I. In Two Frequency or Energy Ranges

    NASA Astrophysics Data System (ADS)

    Song, Qiwu; Huang, Guangli; Nakajima, Hiroshi

    2011-06-01

    Solar microwave and hard X-ray spectral evolutions are co-analyzed in the 2000 June 10 and 2002 April 10 flares, and are simultaneously observed by the Owens-Valley Solar Array in the microwave band and by Yohkoh/Hard X-ray Telescope or RHESSI in the hard X-ray band, with multiple subpeaks in their light curves. The microwave and hard X-ray spectra are fitted by a power law in two frequency ranges of the optical thin part and two photon energy ranges, respectively. Similar to an earlier event in Shao & Huang, the well-known soft-hard-soft pattern of the lower energy range changed to the hard-soft-hard (HSH) pattern of the higher energy range during the spectral evolution of each subpeak in both hard X-ray flares. This energy dependence is actually supported by a positive correlation between the overall light curves and spectral evolution in the lower energy range, while it becomes an anti-correlation in the higher energy range. Regarding microwave data, the HSH pattern appears in the spectral evolution of each subpeak in the lower frequency range, which is somewhat similar to Huang & Nakajima. However, it returns back to the well-known pattern of soft-hard-harder for the overall spectral evolution in the higher frequency range of both events. This frequency dependence is confirmed by an anti-correlation between the overall light curves and spectral evolution in the lower frequency range, but it becomes a positive correlation in the higher frequency range. The possible mechanisms are discussed, respectively, for reasons why hard X-ray and microwave spectral evolutions have different patterns in different energy and frequency intervals.

  14. Polarization control efficiency manipulation in resonance-mediated two-photon absorption by femtosecond spectral frequency modulation

    NASA Astrophysics Data System (ADS)

    Yao, Yunhua; Cheng, Wenjing; Zheng, Ye; Xu, Cheng; Liu, Pei; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong; Zhang, Shian

    2017-04-01

    The femtosecond laser polarization modulation is considered as a very simple and efficient method to control the multi-photon absorption process. In this work, we theoretically and experimentally show that the polarization control efficiency in the resonance-mediated two-photon absorption can be artificially manipulated by modulating the femtosecond spectral frequency components. We theoretically demonstrate that the on- and near-resonant parts in the resonance-mediated two-photon absorption process depend on the different femtosecond spectral frequency components, and therefore their contributions in the whole excitation process can be controlled by properly designing the femtosecond spectral frequency components. The near-resonant two-photon absorption is correlated with the femtosecond laser polarization while the on-resonant two-photon absorption is independent of it, and thus the polarization control efficiency in the resonance-mediated two-photon absorption can be manipulated by the femtosecond spectral frequency modulation. We experimentally verify these theoretical results by performing the laser polarization control experiment in the Dy3+-doped glass sample under the modulated femtosecond spectral frequency components, and the experimental results show that the polarization control efficiency can be increased when the central spectral frequency components are cut off, while it is decreased when both the low and high spectral frequency components are cut off, which is in good agreement with the theoretical predictions. Our works can provide a feasible pathway to understand and control the resonance-mediated multi-photon absorption process under the femtosecond laser field excitation, and also may open a new opportunity to the related application areas.

  15. Real-time frequency-to-time mapping based on spectrally-discrete chromatic dispersion.

    PubMed

    Dai, Yitang; Li, Jilong; Zhang, Ziping; Yin, Feifei; Li, Wangzhe; Xu, Kun

    2017-07-10

    Traditional photonics-assisted real-time Fourier transform (RTFT) usually suffers from limited chromatic dispersion, huge volume, or large time delay and attendant loss. In this paper we propose frequency-to-time mapping (FTM) by spectrally-discrete dispersion to increase frequency sensitivity greatly. The novel media has periodic ON/OFF intensity frequency response while quadratic phase distribution along disconnected channels, which de-chirps matched optical input to repeated Fourier-transform-limited output. Real-time FTM is then obtained within each period. Since only discrete phase retardation rather than continuously-changed true time delay is required, huge equivalent dispersion is then available by compact device. Such FTM is theoretically analyzed, and implementation by cascaded optical ring resonators is proposed. After a numerical example, our theory is demonstrated by a proof-of-concept experiment, where a single loop containing 0.5-meters-long fiber is used. FTM under 400-MHz unambiguous bandwidth and 25-MHz resolution is reported. Highly-sensitive and linear mapping is achieved with 6.25 ps/MHz, equivalent to ~4.6 × 10(4)-km standard single mode fiber. Extended instantaneous bandwidth is expected by ring cascading. Our proposal may provide a promising method for real-time, low-latency Fourier transform.

  16. Characteristics of high-frequency precursors to edge-localized activity in the PBX-M tokamak

    SciTech Connect

    Kaye, S.M.; Manickam, J.; Bell, R.; LeBlanc, B.; Kessel, C.; Kugel, H.; Paul, S.; Sesnic, S.; Takahashi, H. . Plasma Physics Lab.); Asakura, N. ); Lau, Y.T. )

    1990-03-01

    High {beta}{sub pol} H-mode plasmas in the PBX-M tokamak often exhibit periods of Edge Localized Mode (ELM) activity, with each ELM preceded by a short duration ({le} 350 {mu}sec) burst of high frequency (200 to 250 kHz) magnetic activity. The burst grows on a time scale of 10 {mu}sec, and disappears just prior to the rapid increase in the D{sub {alpha}} emission that is characteristic of the ELM. The burst of activity is observed at all poloidal locations, with the largest amplitudes seen on the coils on the inner major radius side, indicating that the mode is not outward ballooning in character. Stability calculations indicate that a likely candidate for this high frequency ELM precursor is the pressure-driven ideal kink. 12 refs., 4 figs.

  17. Spectral line shapes in linear absorption and two-dimensional spectroscopy with skewed frequency distributions

    NASA Astrophysics Data System (ADS)

    Farag, Marwa H.; Hoenders, Bernhard J.; Knoester, Jasper; Jansen, Thomas L. C.

    2017-06-01

    The effect of Gaussian dynamics on the line shapes in linear absorption and two-dimensional correlation spectroscopy is well understood as the second-order cumulant expansion provides exact spectra. Gaussian solvent dynamics can be well analyzed using slope line analysis of two-dimensional correlation spectra as a function of the waiting time between pump and probe fields. Non-Gaussian effects are not as well understood, even though these effects are common in nature. The interpretation of the spectra, thus far, relies on complex case to case analysis. We investigate spectra resulting from two physical mechanisms for non-Gaussian dynamics, one relying on the anharmonicity of the bath and the other on non-linear couplings between bath coordinates. These results are compared with outcomes from a simpler log-normal dynamics model. We find that the skewed spectral line shapes in all cases can be analyzed in terms of the log-normal model, with a minimal number of free parameters. The effect of log-normal dynamics on the spectral line shapes is analyzed in terms of frequency correlation functions, maxline slope analysis, and anti-diagonal linewidths. A triangular line shape is a telltale signature of the skewness induced by log-normal dynamics. We find that maxline slope analysis, as for Gaussian dynamics, is a good measure of the solvent dynamics for log-normal dynamics.

  18. A spectral study of a radio-frequency plasma-generated flux of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Batten, Carmen E.; Brown, Kenneth G.; Lewis, Beverley W.

    1994-01-01

    The active environment of a radio-frequency (RF) plasma generator, with and without low-pressure oxygen, has been characterized through the identification of emission lines in the spectral region from 250 to 900 nm. The environment is shown to be dependent on the partial pressure of oxygen and the power applied to the RF generator. Atomic oxygen has been found in significant amounts as well as atomic hydrogen and the molecular oxygen species O2((sup 1)Sigma). The only charged species observed was the singly charged molecular ion O2(+). With a polymer specimen in the plasma chamber, carbon monoxide was also observed. The significance of these observations with respect to previous studies using this type of generator to stimulate material degradation in space is discussed. The possibility of using these generators as atomic oxygen sources in the development of oxygen atom fluorescence sensors is explored.

  19. Spectral and angular characteristics of dielectric resonator metasurface at optical frequencies

    SciTech Connect

    Zou, Longfang; López-García, Martin; Oulton, Ruth; Klemm, Maciej; Withayachumnankul, Withawat; Fumeaux, Christophe; Shah, Charan M.; Mitchell, Arnan; Bhaskaran, Madhu; Sriram, Sharath

    2014-11-10

    The capability of manipulating light at subwavelength scale has fostered the applications of flat metasurfaces in various fields. Compared to metallic structure, metasurfaces made of high permittivity low-loss dielectric resonators hold the promise of high efficiency by avoiding high conductive losses of metals at optical frequencies. This letter investigates the spectral and angular characteristics of a dielectric resonator metasurface composed of periodic sub-arrays of resonators with a linearly varying phase response. The far-field response of the metasurface can be decomposed into the response of a single grating element (sub-array) and the grating arrangement response. The analysis also reveals that coupling between resonators has a non-negligible impact on the angular response. Over a wide wavelength range, the simulated and measured angular characteristics of the metasurface provide a definite illustration of how different grating diffraction orders can be selectively suppressed or enhanced through antenna sub-array design.

  20. Cross-spectral coherence between geomagnetic disturbance and human cardiovascular variables at non-societal frequencies.

    PubMed

    Watanabe, Y; Hillman, D C; Otsuka, K; Bingham, C; Breus, T K; Cornélissen, G; Halberg, F

    1994-01-01

    A 35-year-old cardiologist monitored himself with an automatic ABPM-630 (Colin Electronics) monitor, mostly at 15-minute intervals around-the-clock for three years with a few interruptions. In this subject with a family history of high blood pressure and stroke, a cross-spectral analysis revealed a statistically significant coherence at 27.7 days between systolic and diastolic blood pressure and heart rate vs. the geomagnetic disturbance index, Kp. A lesser peak in coherence was found for systolic blood pressure with Kp at a trial period of 4.16 days (P = 0.046). These results suggest that changes in geomagnetism may influence the human circulation, at least in the presence of familial cardiovascular disease risk, and they may do so at frequencies that have no precise human-made cyclic worldwide match.

  1. Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).

  2. Commissioning of a multiple-frequency modulation smoothing by spectral dispersion demonstration system on OMEGA EP

    NASA Astrophysics Data System (ADS)

    Kruschwitz, B. E.; Kelly, J. H.; Dorrer, C.; Okishev, A. V.; Waxer, L. J.; Balonek, G.; Begishev, I. A.; Bittle, W.; Consentino, A.; Cuffney, R.; Hill, E.; Marozas, J. A.; Moore, M.; Roides, R. G.; Zuegel, J. D.

    2013-02-01

    A one-dimensional smoothing by spectral dispersion (SSD) demonstration system for smoothing focal-spot nonuniformities using multiple modulation frequencies (multi-FM SSD) was commissioned on one long-pulse beamline of OMEGA EP—the first use of such a system in a high-energy laser. System models of frequency modulation-to-amplitude modulation (FM-to-AM) conversion in the OMEGA EP beamline and final optics were used to develop an AM budget. The AM budget in turn provided a UV power limit of 0.85 TW, based on accumulation of B-integral in the final optics. The front end of the demonstration system utilized a National Ignition Facility preamplifier module (PAM) with a custom SSD grating inserted into the PAM's multipass amplifier section. The dispersion of the SSD grating was selected to cleanly propagate the dispersed SSD bandwidth through various pinholes in the system while maintaining sufficient focal-spot smoothing performance. A commissioning plan was executed that systematically introduced the new features of the demonstration system into OMEGA EP. Ultimately, the OMEGA EP beamline was ramped to the UV power limit with various pulse shapes. The front-end system was designed to provide flexibility in pulse shaping. Various combinations of pickets and nanosecond-scale drive pulses were demonstrated, with multi-FM SSD selectively applied to portions of the pulse. Analysis of the dispersion measured by the far-field diagnostics at the outputs of the infrared beamline and the frequency-conversion crystals indicated that the SSD modulation spectrum was maintained through both the beamline and the frequency-conversion process. At the completion of the plan, a series of equivalent-target-plane measurements with distributed phase plates installed were conducted that confirmed the expected timeintegrated smoothing of the focal spot.

  3. The Features of the Frequency-Modulation Method When Studying the Shapes of the Spectral Lines of Nonlinear Absorption

    NASA Astrophysics Data System (ADS)

    Golubiatnikov, G. Yu.; Belov, S. P.; Lapinov, A. V.

    2017-01-01

    We briefly consider the method of the frequency (phase) modulation and signal detection at the second harmonic of the modulation frequency for recording and analyzing the spectral-line shapes. The precision sub-Doppler spectrometer in the millimeter- and submillimeter-wave ranges, which operated in the regime of nonlinear saturation of the spectral transitions in a standing wave (the Lamb-dip method), was used during the measurements. The influence of the saturation degree on the value and shape of the recorded frequency-modulated signals in the quadrature channels during the synchronous detection is demonstrated. Variation in the relationships among the signals determined by dispersion and absorption was observed. The necessity of allowance for the influence of the group-velocity dispersion and coherent effects on the shape of the recorded spectral lines is experimentally shown.

  4. Learning to recognize speech that is spectrally reduced and frequency upshifted

    NASA Astrophysics Data System (ADS)

    McCabe, Marie E.; Chiu, Peter

    2003-04-01

    The current study explored to what extent training could ameliorate the deleterious effect of large frequency upshifts in spectrally reduced speech. During each training session, subjects attempted recognition of IEEE sentences spoken by a single talker once and received feedback for their responses. Training sentences were processed to simulate an 8-channel CIS cochlear implant processor with a ``6 mm frequency upshift'' [Fu and Shannon, J. Acoust. Soc. Am. 105, 1889 (1999)]. Three test sessions were administered to all subjects to assess recognition of sentences (IEEE and HINT), consonants (/aCa/), and vowels (in /hVd/ and /bVt/ contexts) pre-, post-, as well as at the mid-point of training. Four processing conditions (i.e., unprocessed, 8-channel-unshifted, 8-channel-upshifted, and 8-channel-upshifted-and-compressed) were tested for each type of materials. Preliminary data suggest that performance improved for most subjects during training, but there were substantial individual differences in learning rates and asymptotic performance levels. Vowels were more difficult to recognize and showed smaller training-related gains when compared to consonants and sentences. The rank ordering of recognition performance was consistent among the four processing conditions (unshifted best; upshifted-and-compressed intermediate; upshifted worst) for all measures. Data comparing the efficacy of an alternative training method will also be presented.

  5. Signal generation and mixing electronics for frequency-domain lifetime and spectral fluorometry

    NASA Technical Reports Server (NTRS)

    Cruce, Tommy C. (Inventor); Hallidy, William H. (Inventor); Chin, Robert C. (Inventor)

    1999-01-01

    The present invention additionally comprises a method and apparatus for generating and mixing signals for frequency-domain lifetime and spectral fluorometry. The present invention comprises a plurality of signal generators that generate a plurality of signals where the signal generators modulate the amplitude and/or the frequency of the signals. The present invention uses one of these signals to drive an excitation signal that the present invention then directs and transmits at a target mixture, which absorbs the energy from the excitation signal. The property of fluorescence causes the target mixture to emit an emitted signal that the present invention detects with a signal detector. The present invention uses a plurality of mixers to produce a processor reference signal and a data signal. The present invention then uses a processor to compare the processor reference signal with the data signal by analyzing the differences in the phase and the differences in the amplitude between the two signals. The processor then extracts the fluorescence lifetime and fluorescence spectrum of the emitted signal from the phase and amplitude information using a chemometric analysis.

  6. Effects of speech noise on vocal fundamental frequency using power spectral analysis.

    PubMed

    Lee, Guo-She; Hsiao, Tzu-Yu; Yang, Cheryl C H; Kuo, Terry B J

    2007-06-01

    To investigate the relationship between auditory function and vocal fundamental frequency (F0) using binaural masking with speech noise during sustained vowel vocalization. Eight healthy subjects were instructed to vocalize the sustained vowel /a/ at the intensities of 65 to 75 dBA and 90 to 100 dBA as steadily as possible. The phonations without noise masking were compared with the phonations under masking with 85-dBA speech noise presented to both ears through headphones. The F0s were obtained by using autocorrelation of the voice signals and were converted to cents to form a F0 sequence. The power spectrum of the F0 sequence was then acquired using fast Fourier transformation. A significant increase in the power spectrum in the frequency range of <3 Hz (p < 0.05, paired Student t-test) appeared under noise masking. A negative feedback control of the auditory system on F0 is suggested regarding F0 modulations of <3 Hz. The auditory system helps control a stable F0 during sustained vowel production by decreasing F0 modulation at <3 Hz. Power spectral analysis of F0 may be used to assess the interaction between F0 production and auditory feedback.

  7. Applications of spectral analysis and filter design in laser frequency locking for Na Doppler lidars

    NASA Astrophysics Data System (ADS)

    Smith, John A.; Chu, Xinzhao; Huang, Wentao; Tan, Bo

    2009-10-01

    A dye ring laser is stabilized to a D2a Doppler-free feature of sodium vapor using a LabVIEW®-based, phase-sensitive servo. Locking precision and stability, at better than +/-1 MHz, are suitable for Na lidar applications. This performance was achieved with improved digital filtering and new approaches to the problem. The inverse (type II) Chebyshev discrete filter employed demonstrates superior filtering and computational efficiency plus improved flexibility. New approaches include the determination of optimum modulation frequency, laser-tuning sensitivity, and bandwidth requirements via spectral analyses of the noise spectrum, derivative scan, and modulated spectrum. This practice guides a user in selecting the system operation parameters and negotiating the trade-offs involved when expanding the filter's passband. Allan deviation plots provide a quantitative description of the short- and long-term frequency excursions. A comparison of Allan deviation plots before and after locking shows a substantial improvement in stability throughout time scales from 0.10 to 10 s.

  8. Spectral analysis of temperature and Brunt-Vaisala frequency fluctuations observed by radiosondes

    NASA Technical Reports Server (NTRS)

    Tsuda, T.; Vanzandt, T. E.; Kato, S.; Fukao, S.; Sato, T.

    1989-01-01

    Recent studies have revealed that vertical wave number spectra of wind velocity and temperture fluctuations in the troposphere and the lower stratosphere are fairly well explained by a saturated gravity wave spectrum. But N(2) (N:Brunt-Vaisala (BV) frequency) spectra seem to be better for testing the scaling of the vertical wave number spectra in layers with different stratifications, beause its energy density is proportional only to the background value of N(2), while that for temperature depends on both the BV frequency and the potential temperature. From temperature profiles observed in June to August 1987 over the MU Observatory, Japan, by using a radiosonde with 30 m height resolution, N(2) spectra are determined in the 2 to 8.5 km (troposphere) and 18.5 to 25 km (lower stratosphere) ranges. Although individual spectra show fairly large day-by-day variability, the slope of the median of 34 spectra agrees reasonably with the theoretical value of -1 in the wave number range of 6 x 10(-4) similar to 3 x 10(-3) (c/m). The ratio of the spectral energy between these two height regions is about equal to the ratio of N(2), consistent with the prediction of saturated gravity wave theory.

  9. Signal generation and mixing electronics for frequency-domain lifetime and spectral fluorometry

    NASA Technical Reports Server (NTRS)

    Cruce, Tommy Clay (Inventor); Hallidy, William H. (Inventor); Chin, Robert C. (Inventor)

    2007-01-01

    The present invention additionally comprises a method and apparatus for generating and mixing signals for frequency-domain lifetime and spectral fluorometry. The present invention comprises a plurality of signal generators that generate a plurality of signals where the signal generators modulate the amplitude and/or the frequency of the signals. The present invention uses one of these signals to drive an excitation signal that the present invention then directs and transmits at a target mixture, which absorbs the energy from the excitation signal. The property of fluorescence causes the target mixture to emit an emitted signal that the present invention detects with a signal detector. The present invention uses a plurality of mixers to produce a processor reference signal and a data signal. The present invention then uses a processor to compare the processor reference signal with the data signal by analyzing the differences in the phase and the differences in the amplitude between the two signals. The processor then extracts the fluorescence lifetime and fluorescence spectrum of the emitted signal from the phase and amplitude information using a chemometric analysis.

  10. Effects of Torsion Frequencies on Rotor Performance and Structural Loads with Trailing Edge Flap

    DTIC Science & Technology

    2012-07-24

    Introduction Next generation rotorcraft require a significant increase in speed , range, and payload capabilities. Active rotor control technologies [1...0.0826 Blade tip sweep, aft, deg. 20 Airfoils SC1095/SC1094R8 Nominal rotor speed , , rpm 258 First torsional frequency, /rev 4.53 Pre-twist, deg. −18...Jacklin S A and Sheikman A 2002 Low - speed wind tunnel investigation of a full-scale UH-60 rotor system American Helicopter Society 58th Annual Forum Proc

  11. Collision frequencies in density-matrix kinetic equations describing nonlinear effects in the wings of spectral lines

    SciTech Connect

    Parkhomenko, A I; Shalagin, Anatolii M

    2011-11-30

    Using the eikonal approximation, we have calculated effective collision frequencies in density-matrix kinetic equations describing nonlinear effects in the wings of spectral lines. We have established the relation between the probabilities of absorption and stimulated emission and the characteristics of the radiation and elementary scattering event. The example of the power interaction potential shows that quantum mechanical calculation of the collision frequencies in the eikonal approximation and previously known spectral line wing theory give similar results for the probability of radiation absorption.

  12. Centaur feedline dynamics study using power spectral methods. [fundamental mode resonant frequencies of RL-10 oxygen and hydrogen feed lines

    NASA Technical Reports Server (NTRS)

    Lorenzo, C. F.

    1974-01-01

    Tests were conducted to determine the dynamic characteristics of the Centaur/RL-10 oxygen and hydrogen feedlines. The fundamental-mode resonant frequencies were determined by applying power spectral methods to noise-generated data from hot firings of the RL-10 engine. The effect of net positive suction pressure of the main feed pumps on resonant frequency characteristics was determined to be a straight-line relation. Power spectral methods were also used to determine the dynamic characteristics of the boost pumps.

  13. Power spectral density and scaling exponent of high frequency global solar radiation sequences

    NASA Astrophysics Data System (ADS)

    Calif, Rudy; Schmitt, François G.; Huang, Yongxiang

    2013-04-01

    The part of the solar power production from photovlotaïcs systems is constantly increasing in the electric grids. Solar energy converter devices such as photovoltaic cells are very sensitive to instantaneous solar radiation fluctuations. Thus rapid variation of solar radiation due to changes in the local meteorological condition can induce large amplitude fluctuations of the produced electrical power and reduce the overall efficiency of the system. When large amount of photovoltaic electricity is send into a weak or small electricity network such as island network, the electric grid security can be in jeopardy due to these power fluctuations. The integration of this energy in the electrical network remains a major challenge, due to the high variability of solar radiation in time and space. To palliate these difficulties, it is essential to identify the characteristic of these fluctuations in order to anticipate the eventuality of power shortage or power surge. The objective of this study is to present an approach based on Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) to highlight the scaling properties of global solar irradiance data G(t). The scale of invariance is detected on this dataset using the Empirical Mode Decomposition in association with arbitrary-order Hilbert spectral analysis, a generalization of (HHT) or Hilbert Spectral Analysis (HSA). The first step is the EMD, consists in decomposing the normalized global solar radiation data G'(t) into several Intrinsic Mode Functions (IMF) Ci(t) without giving an a priori basis. Consequently, the normalized original solar radiation sequence G'(t) can be written as a sum of Ci(t) with a residual rn. From all IMF modes, a joint PDF P(f,A) of locally and instantaneous frequency f and amplitude A, is estimated. To characterize the scaling behavior in amplitude-frequency space, an arbitrary-order Hilbert marginal spectrum is defined to: Iq(f) = 0 P (f,A)A dA (1) with q × 0 In case of scale

  14. Comprehensive Analysis of RXTE Data from Cyg X-1. Spectral Index-Quasi-Periodic Oscillation Frequency-Luminosity Correlations

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, Nickolai; Titarchuk, Lev

    2006-01-01

    We present timing and spectral analysis of approx. 2.2 Ms of Rossi X-ray Time Explorer (RXTE) archival data from Cyg X-1. Using the generic Comptonization model we reveal that the spectrum of Cyg X-1 consists of three components: a thermal seed photon spectrum, a Comptonized part of the seed photon spectrum and the iron line. We find a strong correlation between 0.1-20 Hz frequencies of quasiperiodic oscillations (QPOs) and the spectral power-law index. Presence of two spectral phases (states) are clearly seen in the data when the spectral indices saturate at low and high values of QPO frequencies. This saturation effect was discovered earlier in a number of black hole candidate (BHC) sources and now we strongly confirm this phenomenon in Cyg X-1. In the soft state this index- QPO frequency correlation shows a saturation of the photon index Gamma approx. 2.1 at high values of the low frequency upsilon(sub L). The saturation level of Gamma approx. 2.1 is the lowest value found yet in BHCs. The bolometric luminosity does not show clear correlation with the index. We also show that Fe K(sub alpha) emission line strength (equivalent width, EW) correlates with the QPO frequency. EW increases from 200 eV in the low/hard state to 1.5 keV in the high/soft state. The revealed observational correlations allow us to propose a scenario for the spectral transition and iron line formation which occur in BHC sources. We also present the spectral state (the power-law index) evolution for eight years of Cyg X-1 observations by RXTE.

  15. The Effects of High Frequency ULF Wave Activity on the Spectral Characteristics of Coherent HF Radar Returns

    NASA Astrophysics Data System (ADS)

    Wright, D. M.; Yeoman, T. K.; Woodfield, E. E.

    2003-12-01

    It is now a common practice to employ ground-based radars in order to distinguish between those regions of the Earth's upper atmosphere which are magnetically conjugate to open and closed field lines. Radar returns from ionospheric irregularities inside the polar cap and cusp regions generally exhibit large spectral widths in contrast to those which exist on closed field lines at lower latitudes. It has been suggested that the so-called Spectral Width Boundary (SWB) might act as a proxy for the open-closed field line boundary (OCFLB), which would then be an invaluable tool for investigating reconnection rates in the magnetosphere. The exact cause of the increased spectral widths observed at very high latitudes is still subject to considerable debate. Several mechanisms have been proposed. This paper compares a dusk-sector interval of coherent HF radar data with measurements made by an induction coil magnetometer located at Tromso, Norway (66° N geomagnetic). On this occasion, a series of transient regions of radar backscatter exhibiting large spectral widths are accompanied by increases in spectral power of ULF waves in the Pc1-2 frequency band. These observations would then, seem to support the possibility that high frequency magnetospheric wave activity at least contribute to the observed spectral characteristics and that such wave activity might play a significant role in the cusp and polar cap ionospheres.

  16. Frequency-specific adaptation in human auditory cortex depends on the spectral variance in the acoustic stimulation.

    PubMed

    Herrmann, Björn; Henry, Molly J; Obleser, Jonas

    2013-04-01

    In auditory cortex, activation and subsequent adaptation is strongest for regions responding best to a stimulated tone frequency and less for regions responding best to other frequencies. Previous attempts to characterize the spread of neural adaptation in humans investigated the auditory cortex N1 component of the event-related potentials. Importantly, however, more recent studies in animals show that neural response properties are not independent of the stimulation context. To link these findings in animals to human scalp potentials, we investigated whether contextual factors of the acoustic stimulation, namely, spectral variance, affect the spread of neural adaptation. Electroencephalograms were recorded while human participants listened to random tone sequences varying in spectral variance (narrow vs. wide). Spread of adaptation was investigated by modeling single-trial neural adaptation and subsequent recovery based on the spectro-temporal stimulation history. Frequency-specific neural responses were largest on the N1 component, and the modeled neural adaptation indices were strongly predictive of trial-by-trial amplitude variations. Yet the spread of adaption varied depending on the spectral variance in the stimulation, such that adaptation spread was broadened for tone sequences with wide spectral variance. Thus the present findings reveal context-dependent auditory cortex adaptation and point toward a flexibly adjusting auditory system that changes its response properties with the spectral requirements of the acoustic environment.

  17. Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS)

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-12-14

    The emergence of sub-wavenumber high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BBSFG-VS) [Velarde et al., J. Chem. Phys., 2011, 135, 241102] has offered new opportunities in obtaining and understanding the spectral lineshape and temporal effects on the surface vibrational spectroscopy. Particularly, the high accuracy in the HR-BBSFG-VS spectral lineshape measurement provides detailed information on the complex coherent vibrational dynamics through spectral measurement. Here we present a unified formalism of the theoretical and experimental approaches for obtaining the accurate lineshape of the SFG response, and then present a analysis on the higher and lower spectral resolution SFG spectra as well as their temporal effects of the cholesterol molecules at the air/water interface. With the high spectral resolution and accurate lineshape, it is shown that the parameters from the sub-wavenumber resolution SFG spectra can be used not only to understand but also to quantitatively reproduce the temporal effects in the lower resolution SFG measurement. These not only provide a unified picture in understanding both the frequency-domain and the time-domain SFG response of the complex molecular interface, but also provide novel experimental approaches that can directly measure them.

  18. Spectral line decomposition and frequency shifts in Al Heα group emission from laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Renner, O.; Adámek, P.; Angelo, P.; Dalimier, E.; Förster, E.; Krousky, E.; Rosmej, F. B.; Schott, R.

    2006-05-01

    Precise spectroscopic observations of K-shell emission from highly stripped Al ions immersed in dense, constrained-flow laser-produced plasma is reported. By using a vertical dispersion Johann spectrometer, the time-integrated spectra of the Al Heα group were measured with a high spectral and spatial resolution. The complex spectral profiles modified by the satellite formation, line broadening and frequency shifts were decomposed into individual pseudo-Voigt components by using a code GASPED based on a problem-dependent genetic algorithm. The method uses eight operators tailored to the problem of spectral decomposition and variable-size genomes to fit the data with a varying number of spectral lines. The spectra fitting was based on anticipatory theoretical knowledge of the satellite structure simulated by the multilevel collisional-radiative code MARIA and on an assumption of the aggregate plasma-induced shift of the parent lines and their satellites. The analysis of the spectral profiles revealed systematic red shifts of the resonance and the intercombination lines. Their magnitude is commensurate with predictions of the atomic data and spectral line shape codes combined with the 1D hydrodynamic modeling of the plasma conditions and independent electron density measurements. The results obtained corroborate the feasibility of an accurate decomposition of the spectral profiles encompassing optically thick and thin lines overlapped by a strong satellite emission.

  19. Optimal spectral filtering in soliton self-frequency shift for deep-tissue multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Qiu, Ping

    2015-05-01

    Tunable optical solitons generated by soliton self-frequency shift (SSFS) have become valuable tools for multiphoton microscopy (MPM). Recent progress in MPM using 1700 nm excitation enabled visualizing subcortical structures in mouse brain in vivo for the first time. Such an excitation source can be readily obtained by SSFS in a large effective-mode-area photonic crystal rod with a 1550-nm fiber femtosecond laser. A longpass filter was typically used to isolate the soliton from the residual in order to avoid excessive energy deposit on the sample, which ultimately leads to optical damage. However, since the soliton was not cleanly separated from the residual, the criterion for choosing the optimal filtering wavelength is lacking. Here, we propose maximizing the ratio between the multiphoton signal and the n'th power of the excitation pulse energy as a criterion for optimal spectral filtering in SSFS when the soliton shows dramatic overlapping with the residual. This optimization is based on the most efficient signal generation and entirely depends on physical quantities that can be easily measured experimentally. Its application to MPM may reduce tissue damage, while maintaining high signal levels for efficient deep penetration.

  20. Combined spectrally encoded confocal microscopy and optical frequency domain imaging system

    NASA Astrophysics Data System (ADS)

    Kang, DongKyun; Suter, Melissa J.; Boudoux, Caroline; Yachimski, Patrick S.; Bouma, Brett E.; Nishioka, Norman S.; Tearney, Guillermo J.

    2009-02-01

    Spectrally encoded confocal microscopy (SECM) and optical frequency domain imaging (OFDI) are two reflectancebased imaging technologies that may be utilized for high-resolution microscopic screening of internal organs. SECM provides en face images of tissues with a high lateral resolution of 1-2 μm, and a penetration depth of up to 300 μm. OFDI generates cross-sectional images of tissue architecture with a resolution of 10-20 μm and a penetration depth of 1- 2 mm. Since the two technologies yield complementary microscopic information on two different size scales (SECM-cellular and OFDI-architectural) that are commonly used for histopathologic evaluation, their combination may allow for more accurate optical diagnosis. Here, we report the integration of these two imaging modalities in a single bench top system. SECM images of swine small intestine showed the presence of goblet cells, and OFDI images revealed the finger-shaped villous architecture. In clinical study of 9 gastroesophageal biopsies from 8 patients, a diverse set of architectural and cellular features was observed, including squamous mucosa with mild hyperplasia and gastric antral mucosa with gastric pits and crypts. The capability of this multimodality device to enable the visualization of microscopic features on these two size scales supports our hypothesis that improved diagnostic accuracy may be obtained by merging these two technologies into a single instrument.

  1. Optimal spectral filtering in soliton self-frequency shift for deep-tissue multiphoton microscopy.

    PubMed

    Wang, Ke; Qiu, Ping

    2015-05-01

    Tunable optical solitons generated by soliton self-frequency shift (SSFS) have become valuable tools for multiphoton microscopy (MPM). Recent progress in MPM using 1700 nm excitation enabled visualizing subcortical structures in mouse brain in vivo for the first time. Such an excitation source can be readily obtained by SSFS in a large effective-mode-area photonic crystal rod with a 1550-nm fiber femtosecond laser. A longpass filter was typically used to isolate the soliton from the residual in order to avoid excessive energy deposit on the sample, which ultimately leads to optical damage. However, since the soliton was not cleanly separated from the residual, the criterion for choosing the optimal filtering wavelength is lacking. Here, we propose maximizing the ratio between the multiphoton signal and the n'th power of the excitation pulse energy as a criterion for optimal spectral filtering in SSFS when the soliton shows dramatic overlapping with the residual. This optimization is based on the most efficient signal generation and entirely depends on physical quantities that can be easily measured experimentally. Its application to MPM may reduce tissue damage, while maintaining high signal levels for efficient deep penetration.

  2. Low-frequency electromagnetic plasma waves at comet P/Grigg-Skjellerup: Overview and spectral characteristics

    NASA Technical Reports Server (NTRS)

    Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1993-01-01

    Large-amplitude electromagnetic plasma waves are one of the dominant features of the solar wind-comet interaction. Wave characteristics strongly depend on parameters such as the solar wind flow and Alfven velocities and the angle between flow and interplanetary magnetic field as well as the production rate. With respect to the latter the flyby of the spacecraft Giotto at comet P/Griff-Skjellerup provides a unique possibility to study such waves in further detail. Pickup ion-related wave signatures have been observed up to a distance of 600,000 km from the nucleus. Peak spectral power in the spacecraft frame of reference occurs at frequencies mainly somewhat below the water group ion gyrofrequency. From this the waves are determined to be mainly left-hand polarized waves, causing one-sided pitch angle diffusion outbound. The wave activity strongly increases close to the comet; upstream it exhibits a quadratic dependence on the water group pickup ion free energy. Furthermore, a phenomenological study of the wave characteristics provides a unique description of the fine-structure of the interaction region. Indications of steepened magnetosonic waves have been found in the outbound magnetosheath region.

  3. Frequency-Poloidal Wave Number Spectral Analysis of Turbulence in QH-mode plasmas Measured with BES on DIII-D

    NASA Astrophysics Data System (ADS)

    Ono, M.; Ida, K.; Kobayashi, T.; Yoshinuma, M.; McKee, G. R.; Yan, Z.; Burrell, K. H.; Chen, X.

    2016-10-01

    Quiescent H-mode (QH) is an ELM-free scenario with good energy confinement, constant density, and radiated power, with a pedestal localized electromagnetic mode (edge harmonic oscillation, EHO) providing continuous particle transport. The features and characteristics of QH-mode plasma turbulence in the wavenumber-frequency domain are crucial to understanding the mechanisms and dynamics of the enhanced particle transport. Frequency-wavenumber spectral analysis was applied to localized density fluctuation data measured with BES on DIII-D in the region of 0.8 < ρ < 1.0 . In the analysis, a Maximum Entropy Method is applied in the space domain, instead of an FFT, to estimate a well resolved k-spectrum spectrum from truncated data. The fundamental frequency of the EHO was typically 10 kHz with long poloidal wavelength (kθ 0.02cm-1), while broadband turbulence was observed in the range of 50-200 kHz with correlation lengths of a few cm. The broadband turbulence measured at ρ 0.9 was found to have poloidal phase velocity of 10 km/s, which corresponds to the E ×B velocity. Work supported by US DOE Grant DE-FC02-04ER54698.

  4. Generation of blue light by sum-frequency generation of a spectrally combined broad-area diode laser array.

    PubMed

    Zhu, Zhanda; Jiang, Menghua; Yu, Haoyang; Hui, Yongling; Lei, Hong; Li, Qiang

    2016-10-15

    We present the first demonstration of a spectrally beam combined diode laser array with subsequent sum-frequency generation (SFG). The combined beam of the diode laser array with 19 emitters has the same beam quality as a single emitter, and the wavelength of each emitter is different. The blue light is generated by sum-frequency mixing of pairs of emitters in the diode laser array. About 93 mW of blue light power is produced using a PPLN crystal. Compared with the SFG of two emitters, this approach can increase the number of lasers participating in nonlinear frequency conversion. Thus, it can enhance the available power.

  5. Mode-Selective Photon Counting Via Quantum Frequency Conversion Using Spectrally-Engineered Pump Pulses

    NASA Astrophysics Data System (ADS)

    Manurkar, Paritosh

    phase of each spectral frequency from an optical frequency comb. The latter is generated using a cascaded configuration of phase and amplitude modulators. We characterize the mode selectivity using classical signals by arranging the six TMs into two orthogonal signal sets. Furthermore, we also demonstrate that mode selectivity is preserved if we use sub-photon signals (weak coherent light). Thus, this work supports the idea that QFC has the basic properties needed for advanced multi-dimensional quantum measurements given that we have demonstrated for the first time the ability to move to high dimensions (d=4), measure coherent superposition modes, and measure sub-photon signal levels. In addition to mode-selective photon counting, we also experimentally demonstrate a method of reshaping optical pulses based on QFC. Such a method has the potential to serve as the interface between quantum memories and the existing fiber infrastructure. At the same time, it can be employed in all-optical systems for optical signal regeneration.

  6. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    DOE PAGES

    Zhang, Libing; Lu, Zhou; Velarde, Luis; ...

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signaturesmore » in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.« less

  7. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.

  8. Evaluation of frequency and time-frequency spectral analysis of heart rate variability as a diagnostic marker of the sleep apnoea syndrome.

    PubMed

    Hilton, M F; Bates, R A; Godfrey, K R; Chappell, M J; Cayton, R M

    1999-11-01

    The sleep apnoea/hypopnoea syndrome (SAHS) elicits a unique heart rate rhythm that may provide the basis for an effective screening tool. The study uses the receiver operator characteristic (ROC) to assess the diagnostic potential of spectral analysis of heart rate variability (HRV) using two methods, the discrete Fourier transform (DFT) and the discrete harmonic wavelet transform (DHWT). These two methods are compared over different sleep stages and spectral frequency bands. The HRV results are subsequently compared with those of the current screening method of oximetry. For both the DFT and the DHWT, the most diagnostically accurate frequency range for HRV spectral power calculations is found to be 0.019-0.036 Hz (denoted by AB2). Using AB2, 15 min sections of non-REM sleep data in 40 subjects produce ROC areas, for the DFT, DHWT and oximetry, of 0.94, 0.97 and 0.67, respectively. In REM sleep, ROC areas are 0.78, 0.79 and 0.71, respectively. In non-REM sleep, spectral analysis of HRV appears to be a significantly better indicator of the SAHS than the current screening method of oximetry, and, in REM sleep, it is comparable with oximetry. The advantage of the DHWT over the DFT is that it produces a greater time resolution and is computationally more efficient. The DHWT does not require the precondition of stationarity or interpolation of raw HRV data.

  9. Drift paths of ions composing multiple-nose spectral structures near the inner edge of the plasma sheet

    SciTech Connect

    Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; Kistler, L. M.; Larsen, Brian Arthur; Reeves, Geoffrey D.; Skoug, Ruth M.; Funsten, Herbert O.

    2016-11-05

    Here in this paper, we present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of these ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.

  10. Drift paths of ions composing multiple-nose spectral structures near the inner edge of the plasma sheet

    DOE PAGES

    Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; ...

    2016-11-05

    Here in this paper, we present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of these ions; i.e., multiplemore » noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.« less

  11. Drift paths of ions composing multiple-nose spectral structures near the inner edge of the plasma sheet

    NASA Astrophysics Data System (ADS)

    Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G.; Skoug, R.; Funsten, H.

    2016-11-01

    We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of these ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.

  12. Spatially-dense, multi-spectral, frequency-domain diffuse optical tomography of breast cancer

    NASA Astrophysics Data System (ADS)

    Ban, Han Yong

    Diffuse optical tomography (DOT) employs near-infrared light to image the concentration of chromophores and cell organelles in tissue and thereby providing access to functional parameters that can differentiate cancerous from normal tissues. This thesis describes research at the bench and in the clinic that explores and identifies the potential of DOT breast cancer imaging. The bench and clinic instrumentation differ but share important features: they utilize a very large, spatially dense, set of source-detector pairs (10 7) for imaging in the parallel-plate geometry. The bench experiments explored three-dimensional (3D) image resolution and fidelity as a function of numerous parameters and also ascertained the effects of a chest wall phantom. The chest wall is always present but is typically ignored in breast DOT. My experiments clarified chest wall influences and developed schemes to mitigate these effects. Mostly, these schemes involved selective data exclusion, but their efficacy also depended on reconstruction approach. Reconstruction algorithms based on analytic (fast) Fourier inversion and linear algebraic techniques were explored. The clinical experiments centered around a DOT instrument that I designed, constructed, and have begun to test (in-vitro and in-vivo). This instrumentation offers many features new to the field. Specifically, the imager employs spatially-dense, multi-spectral, frequency-domain data; it possesses the world's largest optical source-detector density yet reported, facilitated by highly-parallel CCD-based frequency-domain imaging based on gain-modulation heterodyne detection. The instrument thus measures both phase and amplitude of the diffusive light waves. Other features include both frontal and sagittal breast imaging capabilities, ancillary cameras for measurement of breast boundary profiles, real-time data normalization, and mechanical improvements for patient comfort. The instrument design and construction is my most significant

  13. Three-dimensional dominant frequency mapping using autoregressive spectral analysis of atrial electrograms of patients in persistent atrial fibrillation.

    PubMed

    Salinet, João L; Masca, Nicholas; Stafford, Peter J; Ng, G André; Schlindwein, Fernando S

    2016-03-08

    Areas with high frequency activity within the atrium are thought to be 'drivers' of the rhythm in patients with atrial fibrillation (AF) and ablation of these areas seems to be an effective therapy in eliminating DF gradient and restoring sinus rhythm. Clinical groups have applied the traditional FFT-based approach to generate the three-dimensional dominant frequency (3D DF) maps during electrophysiology (EP) procedures but literature is restricted on using alternative spectral estimation techniques that can have a better frequency resolution that FFT-based spectral estimation. Autoregressive (AR) model-based spectral estimation techniques, with emphasis on selection of appropriate sampling rate and AR model order, were implemented to generate high-density 3D DF maps of atrial electrograms (AEGs) in persistent atrial fibrillation (persAF). For each patient, 2048 simultaneous AEGs were recorded for 20.478 s-long segments in the left atrium (LA) and exported for analysis, together with their anatomical locations. After the DFs were identified using AR-based spectral estimation, they were colour coded to produce sequential 3D DF maps. These maps were systematically compared with maps found using the Fourier-based approach. 3D DF maps can be obtained using AR-based spectral estimation after AEGs downsampling (DS) and the resulting maps are very similar to those obtained using FFT-based spectral estimation (mean 90.23 %). There were no significant differences between AR techniques (p = 0.62). The processing time for AR-based approach was considerably shorter (from 5.44 to 5.05 s) when lower sampling frequencies and model order values were used. Higher levels of DS presented higher rates of DF agreement (sampling frequency of 37.5 Hz). We have demonstrated the feasibility of using AR spectral estimation methods for producing 3D DF maps and characterised their differences to the maps produced using the FFT technique, offering an alternative approach for 3D DF computation

  14. Spectral two-dimensional inversion of frequency-domain induced polarization data from a mining slag heap

    NASA Astrophysics Data System (ADS)

    Günther, Thomas; Martin, Tina

    2016-12-01

    Abandoned mining waste dumps may become potential resources for mineral reuse. For evaluating such structures, their spatial extension, the mineral content and predominating grain size needs to be determined. Amongst geophysical prospection methods, induced polarization (IP) is particularly suited since ore minerals show significant polarization characteristics. From laboratory measurements it is known that there is a relation between mineral concentration and chargeability, whereas the frequency content is mainly dominated by grain size. Spectral IP (SIP) field data using a range of measuring frequencies can potentially map these quantities spatially. Instead of inverting the individual frequencies independently, we introduce a scheme where adjacent frequencies are constrained to each other. We test it using a synthetic model based on the Cole-Cole model with a body containing two parts of differing time constants. The inversion approach is able to reliably recover the Cole-Cole parameters. We apply the method to a field data set from a slag dump containing melting residuals from different minerals. The resulting models exhibit distinct zones of decreased conductivity and increased polarization that are not fully coincident. Furthermore, we observe a significant change in the spectral content. Taking into account recent laboratory investigations, the obtained chargeabilities hint to the occurrence of sufficient mineral concentration. In comparison with direct current resistivity, there is a clear benefit from using SIP field data in general and spectral analysis in particular.

  15. High Sensitivity of Stark-Shift Voltage-Sensing Dyes by One- or Two-Photon Excitation Near the Red Spectral Edge

    PubMed Central

    Kuhn, Bernd; Fromherz, Peter; Denk, Winfried

    2004-01-01

    Sensitivity spectra of Stark-shift voltage sensitive dyes, such as ANNINE-6, suggest the use of the extreme red edges of the excitation spectrum to achieve large fractional fluorescence changes with membrane voltage. This was tested in cultured HEK293 cells. Cells were illuminated with light at the very red edge of the dye's excitation spectrum, where the absorption cross section is as much as 100 times smaller than at its peak. The small-signal fractional fluorescence changes were −0.17%/mV, −0.28%/mV, and −0.35%/mV for one-photon excitation at 458 nm, 488 nm, and 514 nm, respectively, and −0.29%/mV, −0.43%/mV, and −0.52%/mV for two-photon excitation at 960 nm, 1000 nm, and 1040 nm, respectively. For large voltage swings the fluorescence changes became nonlinear, reaching 50% and −28% for 100 mV hyper- and depolarization, respectively, at 514 nm and 70% and −40% at 1040 nm. Such fractional sensitivities are ∼5 times larger than what is commonly found with other voltage-sensing dyes and approach the theoretical limit given by the spectral Boltzmann tail. PMID:15240496

  16. Source-size effects on high-frequency spectral decay of seismic ground motions: Observations from an earthquake cluster

    NASA Astrophysics Data System (ADS)

    Lee, C.; Hirata, N.; Huang, B.; Huang, W.; Tsai, Y.

    2009-12-01

    The causes of high-frequency spectral decay of seismic ground motions are of scientific and engineering interest. Some studies proposed an ω2 source model suggesting that the Fourier amplitude spectrum of S waves would be inversely proportional to ω2 at high frequencies (Aki, 1967; Brune, 1970). Some studies attributed path and site effects for causing the high-frequency falloff through analysis of the empirical spectral decay parameter κ (Anderson and Hough, 1984; Anderson, 1986). Yet other studies suggested that the high-cut process may be due to both source and site effects (Tsai and Chen, 2000). Presently, there is still no consensus as to the causes of seismic spectral decay. In this study the spectral decay parameter κ is investigated by using high-quality seismic data of a linear seismic array across southern Taiwan recorded from an earthquake cluster. The observed Fourier amplitude spectra of S waves are fitted with theoretical spectra based on the ω2 model to determine the spectral decay parameter κ which is supposed to represent the combined path and site effects. The variations of κ among stations along the linear seismic array from the same cluster of events should show lateral variations of attenuation structure along the propagation paths, after site effects on seismic attenuation are corrected. Surprisingly, we have found a positive correlation between κ and earthquake magnitude, suggesting a source-size effect on κ. We further measure the percentage contribution for the path, site, and source effects on seismic attenuation. These percentages change with different source, site, and path conditions. Our results can be used to eliminate source effects beyond the ω2 model. With additional correction of site effects, the resulting κ will represent mainly the path effects of seismic attenuation which can then be related to regional seismic attenuation structures. Proper regional attenuation structures are crucial for reliable prediction of

  17. Magnetic Fe stripes created by self-organized MnAs template: Stripe edge pinning and high-frequency properties

    NASA Astrophysics Data System (ADS)

    Tacchi, S.; Madami, M.; Carlotti, G.; Gubbiotti, G.; Marangolo, M.; Milano, J.; Breitwieser, R.; Etgens, V. H.; Stamps, R. L.; Pini, M. G.

    2009-10-01

    Self-organization is an interesting route to the fabrication of nanostructured magnetic materials. Here we show that, near room temperature, an ultrathin Fe film deposited on a suitable MnAs template spontaneously breaks into a “lateral” superlattice of magnetic stripes. The magnetic superstructure originates from the temperature-dependent morphological change in the substrate: an epitaxially grown MnAs/GaAs(001) film, whose groove-ridge structure was investigated by scanning tunneling microscopy. Owing to the stray magnetic fields produced by the underlying MnAs template, the Fe stripe domains have opposite magnetizations, and behave essentially as independent magnetic entities because of strong stripe edge pinning. This is shown dramatically in terms of a split microwave resonance that can be controlled with an external magnetic field, as proved by Brillouin light-scattering data and analysis of the Fe spin-wave frequencies. Additionally, the potential for device applications of such lateral magnetic superlattices, displaying an “inverse” exchange-spring behavior, is discussed.

  18. Vibrational Spectral Signatures of Crystalline Cellulose Using High Resolution Broadband Sum Frequency Generation Vibrational Spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde Ruiz Esparza, Luis A.; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Art J.; Wang, Hongfei; Yang, Bin

    2015-03-03

    Here we reported the first sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) study on both the C-H and O-H region spectra of crystalline cellulose. HR-BB-SFG-VS has about 10 times better resolution than the conventional scanning SFG-VS and is known to be able to measure the intrinsic spectral lineshape and to resolve much more spectral details. With HR-BB-SFG-VS, we found that in cellulose from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the OH regions were unique for different allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C-H regions varied in all samples examined. Even though the origin of the different behaviors of the crystalline cellulose in the O-H and C-H vibrational frequency regions is yet to be correlated to the structure of cellulose, these results provided new spectroscopic methods and opportunities to classify and understand the basic crystalline structure, as well as variations, in polymorphism of the crystalline cellulose structure.

  19. Spectral linewidth and resonant frequency characteristics of InGaAsP/InP multiquantum well lasers

    SciTech Connect

    Sasai, Y.; Ohya, J.; Ogura, M.

    1989-04-01

    The spectral linewidth and resonant frequency characteristics of 1.3 ..mu..m InGaAsP/InP multiquantum well (MQW) lasers grown by liquid phase epitaxy (LPE) were investigated, compared to those of the conventional double heterostructure (DH) lasers. The result showed a decrease in spectral linewidth and an increase in resonant frequency f/sub r/ with decreasing well thickness. Moreover, it was recognized that the linewidth enhancement factor became smaller in well thicknesses of less than -- 200 A, namely, the factor ..cap alpha.. reduced to -- 2, while that of the DH laser was -- 6. The f/sub r/ of 9 GHz, which is about twice as large as that of conventional DH lasers, was achieved at an optical power of 5.3 mW/facet.

  20. The optical properties and spectral features of malignant skin melanocytes in the terahertz frequency range

    NASA Astrophysics Data System (ADS)

    Goryachuk, A. A.; Begaeva, V. A.; Khodzitsky, M. K.; Truloff, A. S.

    2016-08-01

    The samples of cells of mice's melanocytes have been investigated. Their optical properties and spectral features were investigated by terahertz time-domain spectroscopy (TDS) in transmission mode. It was found that the optical properties of oncological melanocytes and normal cells are different and oncological cells have spectral features of absorption coefficient so it can be concluded that it is easy to discriminate mice's oncological skin melanocytes by using THz TDS.

  1. LASERS: Low-frequency power and pointing noises of a spectrally-selective external-cavity diode laser

    NASA Astrophysics Data System (ADS)

    Bruevich, V. V.; Elizarov, S. G.; Parashchuk, D. Yu

    2006-05-01

    The spectral density of low-frequency power noise and pointing noises of an external cavity AlGaAs/GaAs laser in Littman—Metcalf configuration is studied in the frequency region up to 1 kHz. The relative level of the power and pointing noises in the laser operating on a single longitudinal mode of the external resonator was ~10-6 Hz-1/2 and did not change substantially when the feedback was switched off. Long-term intensity fluctuations caused by intermode switchings did not exceed 2%.

  2. Low-frequency power and pointing noises of a spectrally-selective external-cavity diode laser

    SciTech Connect

    Bruevich, V V; Elizarov, S G; Parashchuk, D Yu

    2006-05-31

    The spectral density of low-frequency power noise and pointing noises of an external cavity AlGaAs/GaAs laser in Littman-Metcalf configuration is studied in the frequency region up to 1 kHz. The relative level of the power and pointing noises in the laser operating on a single longitudinal mode of the external resonator was {approx}10{sup -6} Hz{sup -1/2} and did not change substantially when the feedback was switched off. Long-term intensity fluctuations caused by intermode switchings did not exceed 2%. (lasers)

  3. Frequency analysis of tick quotes on the foreign exchange market and agent-based modeling: A spectral distance approach

    NASA Astrophysics Data System (ADS)

    Sato, Aki-Hiro

    2007-08-01

    High-frequency financial data of the foreign exchange market (EUR/CHF, EUR/GBP, EUR/JPY, EUR/NOK, EUR/SEK, EUR/USD, NZD/USD, USD/CAD, USD/CHF, USD/JPY, USD/NOK, and USD/SEK) are analyzed by utilizing the Kullback-Leibler divergence between two normalized spectrograms of the tick frequency and the generalized Jensen-Shannon divergence among them. The temporal structure variations of the similarity between currency pairs is detected and characterized. A simple agent-based model in which N market participants exchange M currency pairs is proposed. The equation for the tick frequency is approximately derived theoretically. Based on the analysis of this model, the spectral distance of the tick frequency is associated with the similarity of the behavior (perception and decision) of the market participants in exchanging these currency pairs.

  4. Low-frequency oscillations in black holes: a spectral-timing approach to the case of GX 339-4

    NASA Astrophysics Data System (ADS)

    Motta, S.; Muñoz-Darias, T.; Casella, P.; Belloni, T.; Homan, J.

    2011-12-01

    We analysed Rossi X-ray Timing Explorer (RXTE)/PCA and HEXTE data of the transient black hole binary GX 339-4, collected over a time-span of 8 years. We studied the properties and the behaviour of low-frequency quasi-periodic oscillations (QPOs) as a function of the integrated broad-band variability and the spectral parameters during four outbursts (2002, 2004, 2007 and 2010). Most of the QPOs could be classified following the ABC classification which has been proposed before. Our results show that the ABC classification can be extended to include spectral dependencies and that the three QPO types have indeed intrinsically different properties. In terms of the relation between QPO frequency and power-law flux, types A and C QPOs may follow the same relation, whereas the type B QPOs trace out a very different relation. Type B QPO frequencies clearly correlate with the power-law flux and are connected to local increases of the count rate. The frequencies of all QPOs observed in the rising phase of the 2002, 2007 and 2010 outbursts correlate with the disc flux. Our results can be interpreted within the framework of the recently proposed QPO models involving Lense-Thirring precession. We suggest that types C and A QPOs might be connected and could be interpreted as being the result of the same phenomenon observed at different stages of the outburst evolution, while a different physical process produces type B QPOs.

  5. Edge-filter technique and dominant frequency analysis for high-speed railway monitoring with fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Kouroussis, Georges; Kinet, Damien; Mendoza, Edgar; Dupuy, Julien; Moeyaert, Véronique; Caucheteur, Christophe

    2016-07-01

    Structural health and operation monitoring are of growing interest in the development of railway networks. Conventional systems of infrastructure monitoring already exist (e.g. axle counters, track circuits) but present some drawbacks. Alternative solutions are therefore studied and developed. In this field, optical fiber sensors, and more particularly fiber Bragg grating (FBG) sensors, are particularly relevant due to their immunity to electromagnetic fields and simple wavelength-division-multiplexing capability. Field trials conducted up to now have demonstrated that FBG sensors provide useful information about train composition, positioning, speed, acceleration and weigh-in-motion estimations. Nevertheless, for practical deployment, cost-effectiveness should be ensured, specifically at the interrogator side that has also to be fast (>1 kHz repetition rate), accurate (∼1 pm wavelength shift) and reliable. To reach this objective, we propose in this paper to associate a low cost and high-speed interrogator coupled with an adequate signal-processing algorithm to dynamically monitor cascaded wavelength-multiplexed FBGs and to accurately capture the parameters of interest for railway traffic monitoring. This method has been field-tested with a Redondo Optics Inc. interrogator based on the well-known edge-filter demodulation technique. To determine the train speed from the raw data, a dominant frequency analysis has been implemented. Using this original method, we show that we can retrieve the speed of the trains, even when the time history strain signature is strongly affected by the measurement noise. The results are assessed by complimentary data obtained from a spectrometer-based FBG interrogator.

  6. The influence of fundamental frequency on perceived duration in spectrally comparable sounds.

    PubMed

    Dawson, Caitlin; Aalto, Daniel; Simko, Juraj; Vainio, Martti

    2017-01-01

    The perceived duration of a sound is affected by its fundamental frequency and intensity: higher sounds are judged to be longer, as are sounds with greater intensity. Since increasing intensity lengthens the perceived duration of the auditory object, and increasing the fundamental frequency increases the sound's perceived loudness (up to ca. 3 kHz), frequency modulation of duration could be potentially explained by a confounding effect where the primary cause of the modulation would be variations in intensity. Here, a series of experiments are described that were designed to disentangle the contributions of fundamental frequency, intensity, and duration to perceived loudness and duration. In two forced-choice tasks, participants judged duration and intensity differences between two sounds varying simultaneously in intensity, fundamental frequency, fundamental frequency gliding range, and duration. The results suggest that fundamental frequency and intensity each have an impact on duration judgments, while frequency gliding range did not influence the present results. We also demonstrate that the modulation of perceived duration by sound fundamental frequency cannot be fully explained by the confounding relationship between frequency and intensity.

  7. Drug Treated Schizophrenia, Schizoaffective and Bipolar Disorder Patients Evaluated by qEEG Absolute Spectral Power and Mean Frequency Analysis

    PubMed Central

    Wix-Ramos, Richard; Moreno, Xiomara; Capote, Eduardo; González, Gilbert; Uribe, Ezequiel

    2014-01-01

    Objective Research of electroencephalograph (EEG) power spectrum and mean frequency has shown inconsistent results in patients with schizophrenic, schizoaffective and bipolar disorders during medication when compared to normal subjects thus; the characterization of these parameters is an important task. Methods We applied quantitative EEG (qEEG) to investigate 38 control, 15 schizophrenic, 7 schizoaffective and 11 bipolar disorder subjects which remaine under the administration of psychotropic drugs (except control group). Absolute spectral power (ASP), mean frequency and hemispheric electrical asymmetry were measured by 19 derivation qEEG. Group mean values were compared with non parametrical Mann-Whitney test and spectral EEG maps with z-score method at p < 0.05. Results Most frequent drug treatments for schizophrenic patients were neuroleptic+antiepileptic (40% of cases) or 2 neuroleptics (33.3%). Schizoaffective patients received neuroleptic+benzodiazepine (71.4%) and for bipolar disorder patients neuroleptic+antiepileptic (81.8%). Schizophrenic (at all derivations except for Fp1, Fp2, F8 and T6) and schizoaffective (only at C3) show higher values of ASP (+57.7% and +86.1% respectively) compared to control group. ASP of bipolar disorder patients did not show differences against control group. The mean frequency was higher at Fp1 (+14.2%) and Fp2 (+17.4%) in bipolar disorder patients than control group, but no differences were found in frequencies between schizophrenic or schizoaffective patients against the control group. Majority of spectral differences were found at the left hemisphere in schizophrenic and schizoaffective but not in bipolar disorder subjects. Conclusion The present report contributes to characterize quantitatively the qEEG in drug treated schizophrenic, schizoaffective or bipolar disorder patients. PMID:24851121

  8. High-frequency ultrasound detection of cell death: Spectral differentiation of different forms of cell death in vitro

    PubMed Central

    Pasternak, Maurice M.; Sadeghi-Naini, Ali; Ranieri, Shawn M.; Giles, Anoja; Oelze, Michael L.; Kolios, Michael C.; Czarnota, Gregory J.

    2016-01-01

    High frequency quantitative ultrasound techniques were investigated to characterize different forms of cell death in vitro. Suspension-grown acute myeloid leukemia cells were treated to cause apoptosis, oncosis, mitotic arrest, and heat-induced death. Samples were scanned with 20 and 40 MHz ultrasound and assessed histologically in terms of cellular structure. Frequency-domain analysis of 20 MHz ultrasound data demonstrated midband fit changes of 6.0 ± 0.7 dBr, 6.2 ± 1.8 dBr, 4.0 ± 1.0 dBr and −4.6 ± 1.7 dBr after 48-hour cisplatinum-induced apoptosis, 48-hour oncotic decay, 36-hour colchicine-induced mitotic arrest, and heat treatment compared to control, respectively. Trends from 40 MHz ultrasound were similar. Spectral slope changes obtained from 40 MHz ultrasound data were reflective of alterations in cell and nucleus size. Chromatin pyknosis or lysis trends suggested that the density of nuclear material may be responsible for observed changes in ultrasound backscatter. Flow cytometry analysis confirmed the modes of cell death and supported midband fit trends in ultrasound data. Scatterer-size and concentration estimates obtained from a fluid-filled sphere form factor model further corresponded with spectral analysis and histology. Results indicate quantitative ultrasound spectral analysis may be used for probing anti-cancer response and distinguishing various modes of cell death in vitro. PMID:28050578

  9. Spectral Analysis and Sonification of Simulation Data Generated in a Frequency Domain Experiment

    DTIC Science & Technology

    2002-09-01

    multiples of the fundamental frequencies in the sound. Fundamental frequencies are similar to notes on the musical scale. Fundamental frequencies are...Perceptually, we consider the complexity of a sound as timbre . 45 For example, the timbre of a violin is different than the timbre of a flute, even...two sounds that have the same intensity and timbre for the human ear to distinguish the two sounds as different 50 percent of the time. Similarly

  10. Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Yu, Wen; Chai, Tianyou; Liu, Zhuo; Zhou, Xiaojie

    2016-01-01

    It is difficult to model multi-frequency signal, such as mechanical vibration and acoustic signals of wet ball mill in the mineral grinding process. In this paper, these signals are decomposed into multi-scale intrinsic mode functions (IMFs) by the empirical mode decomposition (EMD) technique. A new adaptive multi-scale spectral features selection approach based on sphere criterion (SC) is applied to these IMFs frequency spectra. The candidate sub-models are constructed by the partial least squares (PLS) with the selected features. Finally, the branch and bound based selective ensemble (BBSEN) algorithm is applied to select and combine these ensemble sub-models. This method can be easily extended to regression and classification problems with multi-time scale signal. We successfully apply this approach to a laboratory-scale ball mill. The shell vibration and acoustic signals are used to model mill load parameters. The experimental results demonstrate that this novel approach is more effective than the other modeling methods based on multi-scale frequency spectral features.

  11. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz

    PubMed Central

    Zhang, Ge; Li, Weichen; Fu, Feng; Shi, Xuetao; Dong, Xiuzhen

    2017-01-01

    Frequency-difference electrical impedance tomography (fdEIT) reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz). In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects’ heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz) significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz) also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection. PMID:28107524

  12. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz.

    PubMed

    Yang, Lin; Dai, Meng; Xu, Canhua; Zhang, Ge; Li, Weichen; Fu, Feng; Shi, Xuetao; Dong, Xiuzhen

    2017-01-01

    Frequency-difference electrical impedance tomography (fdEIT) reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz). In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects' heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz) significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz) also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection.

  13. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography

    NASA Astrophysics Data System (ADS)

    Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.

    2016-10-01

    Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and

  14. An online algorithm for least-square spectral analysis: Applied to time-frequency analysis of heart rate.

    PubMed

    Zhang, Zhe; Leong, Philip H W

    2015-08-01

    We propose a novel online algorithm for computing least-square based periodograms, otherwise known as the Lomb-Scargle Periodogram. Our spectral analysis technique has been shown to be superior to traditional discrete Fourier transform (DFT) based methods, and we introduce an algorithm which has O(N) time complexity per input sample. The technique is suitable for real-time embedded implementations and its utility is demonstrated through an application to the high resolution time-frequency domain analysis of heart rate variability (HRV).

  15. Efficient spectral hole-burning and atomic frequency comb storage in Nd3+:YLiF4

    PubMed Central

    Zhou, Zong-Quan; Wang, Jian; Li, Chuan-Feng; Guo, Guang-Can

    2013-01-01

    We present spectral hole-burning measurements of the 4I9/2 → 4F3/2 transition in Nd3+:YLiF4. The isotope shifts of Nd3+ can be directly resolved in the optical absorption spectrum. We report atomic frequency comb storage with an echo efficiency of up to 35% and a memory bandwidth of 60 MHz in this material. The interesting properties show the potential of this material for use in both quantum and classical information processing. PMID:24067549

  16. Spectral broadening and inhibition of amplitude and frequency modulation in Nd: glass regenerative amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Yuqi; Pan, Xue; Wang, Jiangfeng; Li, Xuechun

    2014-11-01

    In order to broaden the spectrum of laser pulse and reduce the gain narrowing effect in Nd:glass regenerative amplifier to realize the ambition of inhibiting amplitude and frequency modulation, proper quartz birefringence crystal plate is inserted into the cavity. The influence factors of central wavelength, depth of modulation and range of modulation are obtained theoretically. The width of the spectrum is broadened by controlling all the factors. Two kinds of thickness, 5mm and 6mm, are inserted into the regenerative amplifier cavity. The results of theoretical calculation and experiment both show that the effect of spectrum widening is evident, which reduces the gain narrowing effect to some extent. The amplitude and frequency modulation resulted from gain narrowing effect is inhibited when the central wavelength deflects. The simulated results show that inhibited effect of amplitude and frequency modulation is remarkable. And the method is a potential effective technique for amplitude and frequency modulation inhibition.

  17. On-chip multi spectral frequency standard replication by stabilizing a microring resonator to a molecular line

    NASA Astrophysics Data System (ADS)

    Zektzer, Roy; Stern, Liron; Mazurski, Noa; Levy, Uriel

    2016-07-01

    Stabilized laser lines are highly desired for myriad of applications ranging from precise measurements to optical communications. While stabilization can be obtained by using molecular or atomic absorption references, these are limited to specific frequencies. On the other hand, resonators can be used as wide band frequency references. Unfortunately, such resonators are unstable and inaccurate. Here, we propose and experimentally demonstrate a chip-scale multispectral frequency standard replication operating in the spectral range of the near IR. This is obtained by frequency locking a microring resonator (MRR) to an acetylene absorption line. The MRR consists of a Si3N4 waveguides with microheater on top of it. The thermo-optic effect is utilized to lock one of the MRR resonances to an acetylene line. This locked MRR is then used to stabilize other laser sources at 980 nm and 1550 nm wavelength. By beating the stabilized laser to another stabilized laser, we obtained frequency instability floor of 4 ×10-9 at around 100 s in terms of Allan deviation. Such stable and accurate chip scale sources are expected to serve as important building block in diverse fields such as communication and metrology.

  18. Twin peak high-frequency quasi-periodic oscillations as a spectral imprint of dual oscillation modes of accretion tori

    NASA Astrophysics Data System (ADS)

    Bakala, P.; Goluchová, K.; Török, G.; Šrámková, E.; Abramowicz, M. A.; Vincent, F. H.; Mazur, G. P.

    2015-09-01

    Context. High-frequency (millisecond) quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra of several microquasars and low-mass X-ray binaries. Two distinct QPO peaks, so-called twin peak QPOs, are often detected simultaneously exhibiting their frequency ratio close or equal to 3:2. A widely discussed class of proposed QPOs models is based on oscillations of accretion toroidal structures orbiting in the close vicinity of black holes or neutron stars. Aims: Following the analytic theory and previous studies of observable spectral signatures, we aim to model the twin peak QPOs as a spectral imprint of specific dual oscillation regime defined by a combination of the lowest radial and vertical oscillation mode of slender tori. We consider the model of an optically thick slender accretion torus with constant specific angular momentum. We examined power spectra and fluorescent Kα iron line profiles for two different simulation setups with the mode frequency relations corresponding to the epicyclic resonance HF QPOs model and modified relativistic precession QPOs model. Methods: We used relativistic ray-tracing implemented in the parallel simulation code LSDplus. In the background of the Kerr spacetime geometry, we analyzed the influence of the distant observer inclination and the spin of the central compact object. Relativistic optical projection of the oscillating slender torus is illustrated by images in false colours related to the frequency shift. Results: We show that performed simulations yield power spectra with the pair of dominant peaks that correspond to the frequencies of radial and vertical oscillation modes and with the peak frequency ratio equal to the proper value 3:2 on a wide range of inclinations and spin values. We also discuss exceptional cases of a very low and very high inclination, as well as unstable high spin relativistic precession-like configurations that predict a constant frequency ratio equal to 1:2. We

  19. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    SciTech Connect

    Charles Reece, Hui Tian, Michael Kelley, Chen Xu

    2012-04-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  20. Power spectral density estimation by spline smoothing in the frequency domain.

    NASA Technical Reports Server (NTRS)

    De Figueiredo, R. J. P.; Thompson, J. R.

    1972-01-01

    An approach, based on a global averaging procedure, is presented for estimating the power spectrum of a second order stationary zero-mean ergodic stochastic process from a finite length record. This estimate is derived by smoothing, with a cubic smoothing spline, the naive estimate of the spectrum obtained by applying Fast Fourier Transform techniques to the raw data. By means of digital computer simulated results, a comparison is made between the features of the present approach and those of more classical techniques of spectral estimation.-

  1. Power spectral density estimation by spline smoothing in the frequency domain

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R. J. P.; Thompson, J. R.

    1972-01-01

    An approach, based on a global averaging procedure, is presented for estimating the power spectrum of a second order stationary zero-mean ergodic stochastic process from a finite length record. This estimate is derived by smoothing, with a cubic smoothing spline, the naive estimate of the spectrum obtained by applying FFT techniques to the raw data. By means of digital computer simulated results, a comparison is made between the features of the present approach and those of more classical techniques of spectral estimation.

  2. Real-time automatic small infrared target detection using local spectral filtering in the frequency

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Zhang, Hong; Li, Jiafeng; Yuan, Ding; Sun, Mingui

    2014-11-01

    Accurate and fast detection of small infrared target has very important meaning for infrared precise guidance, early warning, video surveillance, etc. Based on human visual attention mechanism, an automatic detection algorithm for small infrared target is presented. In this paper, instead of searching for infrared targets, we model regular patches that do not attract much attention by our visual system. This is inspired by the property that the regular patches in spatial domain turn out to correspond to the spikes in the amplitude spectrum. Unlike recent approaches using global spectral filtering, we define the concept of local maxima suppression using local spectral filtering to smooth the spikes in the amplitude spectrum, thereby producing the pop-out of the infrared targets. In the proposed method, we firstly compute the amplitude spectrum of an input infrared image. Second, we find the local maxima of the amplitude spectrum using cubic facet model. Third, we suppress the local maxima using the convolution of the local spectrum with a low-pass Gaussian kernel of an appropriate scale. At last, the detection result in spatial domain is obtained by reconstructing the 2D signal using the original phase and the log amplitude spectrum by suppressing local maxima. The experiments are performed for some real-life IR images, and the results prove that the proposed method has satisfying detection effectiveness and robustness. Meanwhile, it has high detection efficiency and can be further used for real-time detection and tracking.

  3. Fully automated dual-frequency three-pulse-echo 2DIR spectrometer accessing spectral range from 800 to 4000 wavenumbers.

    PubMed

    Leger, Joel D; Nyby, Clara M; Varner, Clyde; Tang, Jianan; Rubtsova, Natalia I; Yue, Yuankai; Kireev, Victor V; Burtsev, Viacheslav D; Qasim, Layla N; Rubtsov, Grigory I; Rubtsov, Igor V

    2014-08-01

    A novel dual-frequency two-dimensional infrared instrument is designed and built that permits three-pulse heterodyned echo measurements of any cross-peak within a spectral range from 800 to 4000 cm(-1) to be performed in a fully automated fashion. The superior sensitivity of the instrument is achieved by a combination of spectral interferometry, phase cycling, and closed-loop phase stabilization accurate to ~70 as. The anharmonicity of smaller than 10(-4) cm(-1) was recorded for strong carbonyl stretching modes using 800 laser shot accumulations. The novel design of the phase stabilization scheme permits tuning polarizations of the mid-infrared (m-IR) pulses, thus supporting measurements of the angles between vibrational transition dipoles. The automatic frequency tuning is achieved by implementing beam direction stabilization schemes for each m-IR beam, providing better than 50 μrad beam stability, and novel scheme for setting the phase-matching geometry for the m-IR beams at the sample. The errors in the cross-peak amplitudes associated with imperfect phase matching conditions and alignment are found to be at the level of 20%. The instrument can be used by non-specialists in ultrafast spectroscopy.

  4. Fully automated dual-frequency three-pulse-echo 2DIR spectrometer accessing spectral range from 800 to 4000 wavenumbers

    SciTech Connect

    Leger, Joel D.; Nyby, Clara M.; Varner, Clyde; Tang, Jianan; Rubtsova, Natalia I.; Yue, Yuankai; Kireev, Victor V.; Burtsev, Viacheslav D.; Qasim, Layla N.; Rubtsov, Igor V.; Rubtsov, Grigory I.

    2014-08-15

    A novel dual-frequency two-dimensional infrared instrument is designed and built that permits three-pulse heterodyned echo measurements of any cross-peak within a spectral range from 800 to 4000 cm{sup −1} to be performed in a fully automated fashion. The superior sensitivity of the instrument is achieved by a combination of spectral interferometry, phase cycling, and closed-loop phase stabilization accurate to ∼70 as. The anharmonicity of smaller than 10{sup −4} cm{sup −1} was recorded for strong carbonyl stretching modes using 800 laser shot accumulations. The novel design of the phase stabilization scheme permits tuning polarizations of the mid-infrared (m-IR) pulses, thus supporting measurements of the angles between vibrational transition dipoles. The automatic frequency tuning is achieved by implementing beam direction stabilization schemes for each m-IR beam, providing better than 50 μrad beam stability, and novel scheme for setting the phase-matching geometry for the m-IR beams at the sample. The errors in the cross-peak amplitudes associated with imperfect phase matching conditions and alignment are found to be at the level of 20%. The instrument can be used by non-specialists in ultrafast spectroscopy.

  5. Ultimate Limit in the Spectral Resolution of Extreme Ultraviolet Frequency Combs

    NASA Astrophysics Data System (ADS)

    Corsi, C.; Liontos, I.; Bellini, M.; Cavalieri, S.; Cancio Pastor, P.; Siciliani de Cumis, M.; Eramo, R.

    2017-04-01

    We present the results of direct interferometric measurements on the pulse-to-pulse phase jitter of a metrological, fiber-based, infrared (IR) frequency comb. We show that the short-time evolution of such phase fluctuations, which cannot be actively controlled by any feedback system, imposes a stringent limit on the tooth linewidth of extreme ultraviolet (XUV) combs produced by high-order harmonic conversion, thus explaining the difference of 9 orders of magnitude between the coherence times of state-of-the-art IR and XUV frequency combs.

  6. Deep multi-frequency radio imaging in the Lockman Hole - II. The spectral index of submillimetre galaxies

    NASA Astrophysics Data System (ADS)

    Ibar, Edo; Ivison, R. J.; Best, P. N.; Coppin, K.; Pope, A.; Smail, Ian; Dunlop, J. S.

    2010-01-01

    We have employed the Giant Metre-wave Radio Telescope and the Very Large Array to map the Lockman Hole. At 610 and 1400MHz, we reach noise levels of 15 and 6μJybeam-1, respectively, with well-matched resolutions (~5arcsec). At this depth, we obtained reliable detections for about half of the known sub-mm galaxies (SMGs) in the field. For radio-identified SMGs, which are typically at z ~ 2, we measure a mean radio spectral index of α1400610 = -0.75 +/- 0.06 (where Sν ~ να) and standard deviation of 0.29, between approximate rest-frame frequencies of 1.8 and 4.2GHz. The slope of their continuum emission is indistinguishable from that of local star-forming galaxies and suggests that extended optically thin synchrotron emission dominates the radio output of SMGs. Cooling effects by synchrotron emission and Inverse Compton scattering off the cosmic microwave background do not seem to affect their radio spectral energy distributions. For those SMGs judged by Spitzer mid-infrared colours and spectroscopy to host obscured active galactic nuclei (AGN), we find a clear deviation from the rest of the sample - they typically have steeper radio spectral indices, α1400610 <~ -1.0. These findings suggest these mid-IR-/AGN-selected SMGs may have an intrinsically different injection mechanism for relativistic particles, or they might reside in denser environments. This work provides a reliable spectral template for the estimation of far-IR/radio photometric redshifts, and will enable accurate statistical K-corrections for the large samples of SMGs expected with SCUBA-2 and Herschel.

  7. Sensitivity of a frequency-selective electrode based on spatial spectral properties of the extracellular AP of myelinated nerve fibers.

    PubMed

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Cathébras, Guy

    2011-01-01

    In the context of functional electrical stimulation, neural recording is one of the main issues. For instance, the control of the limbs in people with motor deficiencies needs information about the muscle lengths and speeds that can be extracted from electroneurograms (ENG) carried on afferent peripheral nerves. The aim of this study is to propose an non-invasive and spatial-selective electrode (because specific informations are carried into different fascicles). To do so, we investigate the spatial properties of an extracellular action potential (AP). This properties are described qualitatively and quantitatively using analytical study on an inhomogeneous an anisotropic nerve model. Then, a spectral analysis on this spatial signal discriminates the different frequency components. Low spatial frequencies represent the global shape of the signal, whereas high frequencies are related to the type of fibers. We show that the latter is rapidly attenuated with the distance and thus, being a local phenomenon, can be used as a selective measurement. Finally, we propose a spatial filtering based on electrode design and an electronic architecture to extract this high frequencies.

  8. Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation

    PubMed Central

    Consolino, Luigi; Jung, Seungyong; Campa, Annamaria; De Regis, Michele; Pal, Shovon; Kim, Jae Hyun; Fujita, Kazuue; Ito, Akio; Hitaka, Masahiro; Bartalini, Saverio; De Natale, Paolo; Belkin, Mikhail A.; Vitiello, Miriam Serena

    2017-01-01

    Terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers (THz DFG-QCLs) have recently emerged as the first monolithic electrically pumped semiconductor sources capable of operating at room temperature across the 1- to 6-THz range. Despite tremendous progress in power output, which now exceeds 1 mW in pulsed and 10 μW in continuous-wave regimes at room temperature, knowledge of the major figure of merits of these devices for high-precision spectroscopy, such as spectral purity and absolute frequency tunability, is still lacking. By exploiting a metrological grade system comprising a terahertz frequency comb synthesizer, we measure, for the first time, the free-running emission linewidth (LW), the tuning characteristics, and the absolute center frequency of individual emission lines of these sources with an uncertainty of 4 × 10−10. The unveiled emission LW (400 kHz at 1-ms integration time) indicates that DFG-QCLs are well suited to operate as local oscillators and to be used for a variety of metrological, spectroscopic, communication, and imaging applications that require narrow-LW THz sources. PMID:28879235

  9. [Study on spectral gain characterization of FWM processes with multi-frequency pumps in photonic crystal fiber].

    PubMed

    Hui, Zhan-Qiang

    2011-10-01

    Spectral gain induced by four-wave-mixing with multi-frequency pump was investigated by exploiting the data signal and continue lights co-propagation in dispersion flattened high nonlinear photonic crystal fiber (PCF). The effects of wavelength drift of pump lights, polarization state of orthogonal or parallel of pump lights, polarization mismatch of signal light versus orthogonal pump lights, total power of signal and probe light on the spectrum gain were analyzed. The results show that good FWM gain effects with multi-frequency pump can be obtained in 36.4 nm wavelength range when power ratio of pump to probe light is appropriate and with identical polarization. Furthermore, the gain of FWM with multi-frequency pump is very sensitive to polarization fluctuation and the different idle waves obtain different gain with the variation in signal polarization state. Moreover, the impact of pump numbers was investigated. The obtained results would be helpful for further research on ultrahigh-speed all optical signal processing devices exploiting the FWM with multi-frequency pump in PCF for future photonics network.

  10. Frequency spectral analysis of GPR data over a crude oil spill

    USGS Publications Warehouse

    Burton, B.L.; Olhoeft, G.R.; Powers, M.H.; ,

    2004-01-01

    A multi-offset ground penetrating radar (GPR) dataset was acquired by the U.S. Geological Survey (USGS) at a crude oil spill site near Bemidji, Minnesota, USA. The dataset consists of two, parallel profiles, each with 17 transmitter-receiver offsets ranging from 0.60 to 5.15m. One profile was acquired over a known oil pool floating on the water table, and the other profile was acquired over an uncontaminated area. The data appear to be more attenuated, or at least exhibit less reflectivity, in the area over the oil pool. In an attempt to determine the frequency dependence of this apparent attenuation, several attributes of the frequency spectra of the data were analyzed after accounting for the effects on amplitude of the radar system (radiation pattern), changes in antenna-ground coupling, and spherical divergence. The attributes analyzed were amplitude spectra peak frequency, 6 dB down, or half-amplitude, spectrum width, and the low and high frequency slopes between the 3 and 9 dB down points. The most consistent trend was observed for Fourier transformed full traces at offsets 0.81, 1.01, and 1.21m which displayed steeper low frequency slopes over the area corresponding to the oil pool. The Fourier-transformed time-windowed traces, where each window was equal to twice the airwave wavelet length, exhibited weakly consistent attribute trends from offset to offset and from window to window. The fact that strong, consistent oil indicators are not seen in this analysis indicates that another mechanism due to the presence of the oil, such as a gradient in the electromagnetic properties, may simply suppress reflections over the contaminated zone.

  11. Determining the Optimal Spectral Sampling Frequency and Uncertainty Thresholds for Hyperspectral Remote Sensing of Ocean Color

    NASA Technical Reports Server (NTRS)

    Vandermeulen, Ryan A.; Mannino, Antonio; Neeley, Aimee; Werdell, Jeremy; Arnone, Robert

    2017-01-01

    Using a modified geostatistical technique, empirical variograms were constructed from the first derivative of several diverse remote sensing reflectance and phytoplankton absorbance spectra to describe how data points are correlated with distance across the spectra. The maximum rate of information gain is measured as a function of the kurtosis associated with the Gaussian structure of the output, and is determined for discrete segments of spectra obtained from a variety of water types (turbid river filaments, coastal waters, shelf waters, a dense Microcystis bloom, and oligotrophic waters), as well as individual and mixed phytoplankton functional types (PFTs; diatoms, chlorophytes, cyanobacteria, coccolithophores). Results show that a continuous spectrum of 5 to 7 nm spectral resolution is optimal to resolve the variability across mixed reflectance and absorbance spectra. In addition, the impact of uncertainty on subsequent derivative analysis is assessed, showing that a limit of 3 Gaussian noise (SNR 66) is tolerated without smoothing the spectrum, and 13 (SNR 15) noise is tolerated with smoothing.

  12. Long-term, high-frequency water quality monitoring in an agricultural catchment: insights from spectral analysis

    NASA Astrophysics Data System (ADS)

    Aubert, Alice; Kirchner, James; Faucheux, Mikael; Merot, Philippe; Gascuel-Odoux, Chantal

    2013-04-01

    The choice of sampling frequency is a key issue in the design and operation of environmental observatories. The choice of sampling frequency creates a spectral window (or temporal filter) that highlights some timescales and processes, and de-emphasizes others (1). New online measurement technologies can monitor surface water quality almost continuously, allowing the creation of very rich time series. The question of how best to analyze such detailed temporal datasets is an important issue in environmental monitoring. In the present work, we studied water quality data from the AgrHys long-term hydrological observatory (located at Kervidy-Naizin, Western France) sampled at daily and 20-minute time scales. Manual sampling has provided 12 years of daily measurements of nitrate, dissolved organic carbon (DOC), chloride and sulfate (2), and 3 years of daily measurements of about 30 other solutes. In addition, a UV-spectrometry probe (Spectrolyser) provides one year of 20-minute measurements for nitrate and DOC. Spectral analysis of the daily water quality time series reveals that our intensively farmed catchment exhibits universal 1/f scaling (power spectrum slope of -1) for a large number of solutes, confirming and extending the earlier discovery of universal 1/f scaling in the relatively pristine Plynlimon catchment (3). 1/f time series confound conventional methods for assessing the statistical significance of trends. Indeed, conventional methods assume that there is a clear separation of scales between the signal (the trend line) and the noise (the scatter around the line). This is not true for 1/f noise, since it overestimates the occurrence of significant trends. Our results raise the possibility that 1/f scaling is widespread in water quality time series, thus posing fundamental challenges to water quality trend analysis. Power spectra of the 20-minute nitrate and DOC time series show 1/f scaling at frequencies below 1/day, consistent with the longer-term daily

  13. Spectral characteristics and linear-nonlinear synchronization changes of different EEG frequency bands during the CNV.

    PubMed

    Molnár, Márk; Csuhaj, Roland; Gaál, Zsófia Anna; Czigler, Balázs; Ulbert, István; Boha, Roland; Kondákor, István

    2008-05-01

    During the CNV recorded in a simple auditory working memory task, task-specific decrease of the relative delta band and a transient increase of the absolute theta band were seen, accompanied by an increase of the absolute alpha1 and alpha2 bands in the posterior region. The decreased delta power probably corresponds to increased task-evoked arousal, whereas the transient theta power increase corresponds to working memory demand and possibly to the orienting response. The increased alpha1 and alpha2 power may be a manifestation of a top-down mechanism revealing control over the execution of a response. The area-specific, task-related, and frequency-dependent changes of EEG complexity measures indicate frontally increasing complexity during the early part of the CNV in the beta frequency bands, which underscores the importance of this region in the mechanisms of anticipatory behavior.

  14. Frequency-fluctuation model applied to Stark-Zeeman spectral line shapes in plasmas

    SciTech Connect

    Ferri, S.; Calisti, A.; Mosse, C.; Mouret, L.; Talin, B.; Gigosos, M. A.; Gonzalez, M. A.; Lisitsa, V.

    2011-08-15

    A very fast method for calculating line shapes in the presence of an external magnetic field accounting for charge particle dynamics is proposed. It is based on a reformulation of the frequency fluctuation model, which provides an expression of the dynamic line shape as a functional of the static distribution function of frequencies. In the presence of an external magnetic field, the distribution of intensity and polarization of the emission depends on the angle between the observation line and the magnetic field's direction. Comparisons with numerical simulations and experimental results for various plasma conditions show very good agreement. Results on hydrogen lines in the context of magnetic fusion and the Lyman-{alpha} line, accounting for fine structure, emitted by argon in the context of inertial fusion, are also presented.

  15. High-frequency poly(vinylidene fluoride) copolymer transducers used for spectral characterization of settled microparticles

    NASA Astrophysics Data System (ADS)

    Melandsø, Frank; Wagle, Sanat; Decharat, Adit; Habib, Anowarul; Ahluwalia, Balpreet S.

    2016-07-01

    High-frequency ultrasonic polymer transducers are used to investigate backscattering from spherical microparticles. These microspheres are immersed in water and allowed to settle on a polymer substrate acting as an ultrasonic contact material between the immersion fluid and the transducer. The experimental study is complemented with a three-dimensional (3D) numerical investigation; both yield rather long scattered waveforms in the time domain for the largest microparticles. The corresponding frequency spectra typically contain a number of minima values arising from wave resonances in the microparticles. The locations of these resonances, or eigenvalues, correlate strongly to the particle size. Good agreement is obtained between the experiment and the numerical model, which will help to identify the wave mode responsible for the extended scattering.

  16. Development of Chip-Based Frequency Combs for Spectral and Timing Applications

    DTIC Science & Technology

    2011-12-01

    surrounding the pump wavelength. In our experiment, we amplify a tunable single-frequency laser centered at 1064 nm with a ytterbium- doped fiber ...with an erbium - doped fiber amplifier and inject it into a nanowaveguide, which is coupled to the microring resonator. The input polarization is...highly nonlinear fiber cavity pumped by a cw laser ," Phys. Rev. Lett. 102, 193902 (2009). 17. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S

  17. Near-field investigation of the effect of the array edge on the resonance of loop frequency selective surface elements at mid-infrared wavelengths.

    PubMed

    Tucker, Eric; D' Archangel, Jeffrey; Raschke, Markus B; Boreman, Glenn

    2015-05-04

    Mid-infrared scattering scanning near-field optical microscopy, in combination with far-field infrared spectroscopy, and simulations, was employed to investigate the effect of mutual-element coupling towards the edge of arrays of loop elements acting as frequency selective surfaces (FSSs). Two different square loop arrays on ZnS over a ground plane, resonant at 10.3 µm, were investigated. One array had elements that were closely spaced while the other array had elements with greater inter-element spacing. In addition to the dipolar resonance, we observed a new emergent resonance associated with the edge of the closely-spaced array as a finite size effect, due to the broken translational invariance.

  18. An additional source of uncertainty and bias in digital spectral estimates near the Nyquist frequency. [in clear air turbulence time series analysis

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1986-01-01

    An additional source of bias and uncertainty in digital spectral estimates near the Nyquist frequency is discovered which is produced by the fact that the finite width main lobe of the spectral window is periodic with period of 2(omega sub c), equal to 4pi times the Nyquist frequency. For estimates near omega sub c, contributions from frequencies near -(omega sub c) are found to appear even for a sufficiently sampled bandlimited time history. In real-world applications, this source should be significant if the number of data points is small, and it should be of even more importance if the signal is not strictly bandlimited.

  19. Dual-frequency radar Doppler spectral retrieval of rain drop size distributions and entangled dynamics variables

    NASA Astrophysics Data System (ADS)

    Tridon, F.; Battaglia, A.

    2015-06-01

    A novel technique based on Ka-W band dual-wavelength Doppler spectra has been developed for the simultaneous retrieval of binned rain drop size distributions (DSD) and air state parameters like vertical wind and air broadening caused by turbulence and wind shear. The rationale underpinning the method consists in exploiting the peculiar features observed in Doppler spectra caused by the wavelength dependence of scattering and absorption properties. A notional study based on a large data set of DSDs measured by a two-dimensional video disdrometer demonstrates that the retrieval performs best for small/moderate air broadening spectral width and when mean volume diameters exceed at least 1 mm. The retrieval is also limited to ranges below cloud base and where the signal-to-noise ratio of both radars exceed 10 dB, which rules out regions affected by strong attenuation. Broadly speaking, it is applicable to rain rates comprised between roughly 1 and 30 mm h-1. Preliminary retrieval for observations at the Atmospheric Radiation Measurement Southern Great Plains site shows very good agreement with independent reflectivity measurements from a 0.915 GHz wind profiler. The proposed methodology shows great potential in linking microphysics to dynamics in rainfall studies.

  20. Edge measurements during ICRF (ion cyclotron range of frequency) heating on the PLT (Princeton Large Torus) tokamak

    SciTech Connect

    Lehrman, I.S.; Colestock, P.L.; McNeill, D.H.; Greene, G.J.; Bernabei, S.; Hosea, J.C.; Ono, M.; Shohet, J.L.; Wilson, J.R.

    1989-04-01

    Edge measurements have been conducted on the PLT tokamak under a variety of operating conditions in order to ascertain the relevant processes at work in coupling rf power to plasmas. The edge density is found to increase significantly with the application of ICRF, and electron heating occurs in the vicinity of the Faraday shield surrounding the antenna. Spectroscopic measurements indicate that the energized antenna is a significant particle source. The relative increase of metallic impurities was found to be /approximately/2.7 times larger than the corresponding increase in deuterium. In addition, the relative increase of deuterium and impurities was /approximately/3--4 times greater at the energized antenna than at other locations around the torus. Model calculations show that for deuterium released from the Faraday shield, the D/sub ..cap alpha../ emission is localized radially to a region within 4 cm of the antenna. A correlation was found between the edge density and the D/sub ..cap alpha../ intensity that justifies its use as a measure of the particle source rate. 26 refs., 14 figs.

  1. Radio frequency spectral characterization and model parameters extraction of high Q optical resonators

    PubMed Central

    Abdallah, Zeina; Boucher, Yann G.; Fernandez, Arnaud; Balac, Stéphane; Llopis, Olivier

    2016-01-01

    A microwave domain characterization approach is proposed to determine the properties of high quality factor optical resonators. This approach features a very high precision in frequency and aims to acquire a full knowledge of the complex transfer function (amplitude and phase) characterizing an optical resonator using a microwave vector network analyzer. It is able to discriminate between the different coupling regimes, from the under-coupling to the selective amplification, and it is used together with a model from which the main resonator parameters are extracted, i.e. coupling factor, intrinsic losses, phase slope, intrinsic and external quality factor. PMID:27251460

  2. Control of Four-Level Quantum Coherence via Discrete Spectral Shaping of an Optical Frequency Comb

    SciTech Connect

    Stowe, Matthew C.; Peer, Avi; Ye Jun

    2008-05-23

    We present experiments demonstrating high-resolution and wide-bandwidth coherent control of a four-level atomic system in a diamond configuration. A femtosecond frequency comb is used to excite a specific pair of two-photon transitions in cold {sup 87}Rb. The optical-phase-sensitive response of the closed-loop diamond system is studied by controlling the phase of the comb modes with a pulse shaper. Finally, the pulse shape is optimized resulting in a 256% increase in the two-photon transition rate by forcing constructive interference between the mode pairs detuned from an intermediate resonance.

  3. Generation of Low-Frequency Electromagnetic Waves by Spectrally Broad Intense Laser Pulses in a Plasma

    NASA Astrophysics Data System (ADS)

    Tsintsadze, L. N.; Tajima, T.; Nishikawa, K.; Koga, J. K.; Nakagawa, K.; Kishimoto, Y.

    A new mechanism for the emission of low-frequency electromagnetic (EM) waves, including the generation of a quasistatic magnetic field, by a relativistically intense laser pulse with a wide spectrum is presented. The emission is due to modulational and filamentational instabilities of the photon gas in a plasma. The generation of the magnetic field is associated with a significant change in the laser pulse shape during the propagation. This process is identified in our 2D particle-in-cell (PIC) simulations with a high intensity (1019

  4. Spectral comb of highly chirped pulses generated via cascaded FWM of two frequency-shifted dissipative solitons.

    PubMed

    Podivilov, Evgeniy V; Kharenko, Denis S; Bednyakova, Anastasia E; Fedoruk, Mikhail P; Babin, Sergey A

    2017-06-06

    Dissipative solitons generated in normal-dispersion mode-locked lasers are stable localized coherent structures with a mostly linear frequency modulation (chirp). The soliton energy in fiber lasers is limited by the Raman effect, but implementation of the intracavity feedback at the Stokes-shifted wavelength enables synchronous generation of a coherent Raman dissipative soliton. Here we demonstrate a new approach for generating chirped pulses at new wavelengths by mixing in a highly-nonlinear fiber of these two frequency-shifted dissipative solitons, as well as cascaded generation of their clones forming in the spectral domain a comb of highly chirped pulses. We observed up to eight equidistant components in the interval of more than 300 nm, which demonstrate compressibility from ~10 ps to ~300 fs. This approach, being different from traditional frequency combs, can inspire new developments in fundamental science and applications such as few-cycle/arbitrary-waveform pulse synthesis, comb spectroscopy, coherent communications and bio-imaging.

  5. Nine years of multi-frequency monitoring of the blazar PKS 0048-097: spectral and temporal variability

    NASA Astrophysics Data System (ADS)

    Wierzcholska, Alicja

    2015-08-01

    Context. Blazars are highly variable, radio-loud active galactic nuclei with jets oriented at a small angle to the line of sight. The observed emission of these sources covers the whole electromagnetic spectrum from radio frequencies up to the high or even very high energy gamma-ray range. To understand the complex physics of these objects, multi-wavelength observations and studies on the variability and correlations between different wavelengths are therefore essential. Aims: The long-term multi-frequency observations of PKS 0048-097 are analysed here to investigate its spectral and temporal features. The studies includes nine years of observations of the blazar, which is well studied in the optical and radio domain, but not in the other frequencies. Methods: Multi-wavelength data collected with OVRO, KAIT, Catalina, Swift/UVOT, Swift/XRT, and Fermi/LAT were studied. Results: The performed analysis revealed strong variability in all wavelengths that is most clearly manifested in the X-ray range. The correlation studies do not exhibit any relation between different wavelengths, except for the very strong positive correlation between the optical emission in V and R bands.

  6. A scheme for noise suppression and spectral enhancement of speech to alleviate speech reception problems from loss of frequency selectivity

    NASA Astrophysics Data System (ADS)

    Lyzenga, Johannes; Festen, Joost M.; Houtgast, Tammo

    2002-05-01

    Even after sufficient amplification, hearing-impaired listeners often experience problems in understanding speech under noisy conditions. This may be caused by suprathreshold deficits such as loss of compression and reduced frequency selectivity. In this project we investigate a scheme in which speech and noise are processed before presentation to try and alleviate intelligibility problems caused by reduced frequency selectivity. The scheme contains three strategies, one in which the peak-to-valley ratios of selected modulations in the speech spectrum are enlarged, a second in which the overall speech spectrum is modified, and a third in which noise is suppressed before the two enhancement steps. An overlap-and-add (OLA) algorithm is used in the implementation. The effect of the speech processing is evaluated by measuring speech-reception thresholds (SRT) for sentences in speech noise, estimating the signal-to-noise ratio at which listeners can correctly reproduce 50% of presented sentences. Hearing-impaired and normal-hearing listeners were used. To simulate the hearing impairment resulting from a loss of frequency selectivity, we spectrally smeared the stimuli presented to the normal-hearing listeners. We found that the preprocessing scheme achieved a modest improvement of nearly 2 dB in the SRT for normal-hearing listeners. Data for hearing-impaired listeners are presently being collected.

  7. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band.

    PubMed

    Zaske, Sebastian; Lenhard, Andreas; Becher, Christoph

    2011-06-20

    We report on single photon frequency downconversion from the red part of the spectrum (738 nm) to the telecommunications C-band. By mixing attenuated laser pulses with an average photon number per pulse < 1 with a strong continuous light field at 1403 nm in a periodically poled Zn:LiNbO3 ridge waveguide an internal conversion efficiency of ∼ 73% is achieved. We further investigate the noise properties of the process by measuring the output spectrum. Our results indicate that by narrow spectral filtering a quantum interface should be feasible which bridges the wavelength gap between quantum emitters like color centers in diamond emitting in the red part of the spectrum and low-loss fiber-optic telecommunications wavelengths.

  8. Recognition of normal-abnormal phonocardiographic signals using deep convolutional neural networks and mel-frequency spectral coefficients.

    PubMed

    Maknickas, Vykintas; Maknickas, Algirdas

    2017-07-31

    Intensive care unit patients are heavily monitored, and several clinically-relevant parameters are routinely extracted from high resolution signals. The goal of the 2016 PhysioNet/CinC Challenge was to encourage the creation of an intelligent system that fused information from different phonocardiographic signals to create a robust set of normal/abnormal signal detections. Deep convolutional neural networks and mel-frequency spectral coefficients were used for recognition of normal-abnormal phonocardiographic signals of the human heart. This technique was developed using the PhysioNet.org Heart Sound database and was submitted for scoring on the challenge test set. The current entry for the proposed approach obtained an overall score of 84.15% in the last phase of the challenge, which provided the sixth official score and differs from the best score of 86.02% by just 1.87%.

  9. Broadband frequency-domain near-infrared spectral tomography using a mode-locked Ti:sapphire laser

    PubMed Central

    Wang, Jia; Jiang, Shudong; Paulsen, Keith D.; Pogue, Brian W.

    2009-01-01

    Frequency-domain near-infrared (NIR) diffuse spectral tomography with a mode-locked Ti:sapphire laser is presented, providing tunable multiwavelength quantitative spectroscopy with maximal power for thick tissue imaging. The system was developed to show that intrinsically high stability can be achieved with many wavelengths in the NIR range, using a mode-locked signal of 80 MHz with heterodyned lock-in detection. The effect of cumulative noise from multiple wavelengths of data on the reconstruction process was studied, and it was shown that inclusion of more wavelengths can reduce skew in the noise distribution. This normalization of the data variance then minimizes errors in estimation of chromophore concentrations. Simulations and tissue phantom experiments were used to quantify this improvement in image accuracy for recovery of tissue hemoglobin and oxygen saturation. PMID:19340109

  10. Relative velocity measurement from the spectral phase of a match-filtered linear frequency modulated pulse.

    PubMed

    Pinson, Samuel; Holland, Charles W

    2016-08-01

    Linear frequency modulated signals are commonly used to perform underwater acoustic measurements since they can achieve high signal-to-noise ratios with relatively low source levels. However, such signals present a drawback if the source or receiver or target is moving. The Doppler effect affects signal amplitude, delay, and resolution. To perform a correct match filtering that includes the Doppler shift requires prior knowledge of the relative velocity. In this paper, the relative velocity is extracted directly from the Doppler cross-power spectrum. More precisely, the quadratic coefficient of the Doppler cross-power-spectrum phase is proportional to the relative velocity. The proposed method achieves velocity estimates that compare favorably with Global Positioning System ground truth and the ambiguity method.

  11. Auditory Time-Frequency Masking for Spectrally and Temporally Maximally-Compact Stimuli

    PubMed Central

    Laback, Bernhard; Savel, Sophie; Ystad, Sølvi; Balazs, Peter; Meunier, Sabine; Kronland-Martinet, Richard

    2016-01-01

    Many audio applications perform perception-based time-frequency (TF) analysis by decomposing sounds into a set of functions with good TF localization (i.e. with a small essential support in the TF domain) using TF transforms and applying psychoacoustic models of auditory masking to the transform coefficients. To accurately predict masking interactions between coefficients, the TF properties of the model should match those of the transform. This involves having masking data for stimuli with good TF localization. However, little is known about TF masking for mathematically well-localized signals. Most existing masking studies used stimuli that are broad in time and/or frequency and few studies involved TF conditions. Consequently, the present study had two goals. The first was to collect TF masking data for well-localized stimuli in humans. Masker and target were 10-ms Gaussian-shaped sinusoids with a bandwidth of approximately one critical band. The overall pattern of results is qualitatively similar to existing data for long maskers. To facilitate implementation in audio processing algorithms, a dataset provides the measured TF masking function. The second goal was to assess the potential effect of auditory efferents on TF masking using a modeling approach. The temporal window model of masking was used to predict present and existing data in two configurations: (1) with standard model parameters (i.e. without efferents), (2) with cochlear gain reduction to simulate the activation of efferents. The ability of the model to predict the present data was quite good with the standard configuration but highly degraded with gain reduction. Conversely, the ability of the model to predict existing data for long maskers was better with than without gain reduction. Overall, the model predictions suggest that TF masking can be affected by efferent (or other) effects that reduce cochlear gain. Such effects were avoided in the experiment of this study by using maximally

  12. Time-frequency analysis of movement-related spectral power in EEG during repetitive movements: a comparison of methods.

    PubMed

    Allen, David P; MacKinnon, Colum D

    2010-01-30

    During dynamic voluntary movements, power in the alpha- and beta-bands resulting from synchronized neuronal activity is modulated in a manner that is time-locked to movement onset. These signals can be readily recorded from the scalp surface using electroencephalography. Abnormalities in the magnitude and timing of these oscillations are present in a wide variety of movement disorders including Parkinson's disease and dystonia. Most studies have examined movement-related oscillations in the context of single discrete movements, yet marked impairments are often seen during the performance of repetitive movements. For this reason, there is considerable need for analysis methods that can resolve the modulation of these oscillations in both the frequency and time domains. Presently, there is little consensus on which is the most appropriate method for this purpose. In this paper, a comparison of commonly used time-frequency methods is presented for the analysis of movement-related power in the alpha- and beta-bands during repetitive movements. The same principles hold, however, for any form of repetitive or rhythmic input-output processes in the brain. In particular, methods based on band-pass filtering, the short-time Fourier transform (STFT), continuous wavelet transform and reduced interference distributions are discussed. The relative merits and limitations in terms of spectral or temporal resolution of each method are shown with the use of simulated and experimental data. It is shown that the STFT provides the best compromise between spectral and temporal resolution and thus is the most appropriate approach for the analysis and interpretation of repetitive movement-related oscillations in health and disease. (c) 2009 Elsevier B.V. All rights reserved.

  13. Blue light generated by intra-cavity frequency doubling of an edge-emitting diode laser with a periodically poled LiNbO3 crystal.

    PubMed

    Li, Kang; Yao, Aiyun; Copner, N J; Gawith, C B E; Knight, Ian G; Pfeiffer, Hans-Ulrich; Musk, Bob

    2009-11-23

    We demonstrate for the first time to our knowledge intra-cavity frequency doubling (ICFD) of an edge-emitter diode laser using a 10 mm-long 5.0 microm periodically poled LiNbO(3) (PPLN) crystal. An optical output power of 33 mW second harmonic blue light at 490.5 nm is generated at 1.0 A injection current, equivalent to an overall wall-plug efficiency of 1.8%. The measured M(2) values of blue beam are 1.7 and 2.4 along the fast and slow axis.

  14. Determination of Black Hole Mass in Cyg X-1 by Scaling of Spectral Index-QPO Frequency Correlation

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, Nickolai; Titarchuk, Lev

    2007-01-01

    It is well established that timing and spectral properties of Galactic Black Hole (BH) X-ray binaries (XRB) are strongly correlated. In particular, it has been shown that low frequency Quasi-Periodic Oscillation (QPO) nu(sub low) - photon index GAMMA correlation curves have a specific pattern. In a number of the sources studied the shape of the index-low frequency QPO correlations are self-similar with a position offset in the nu(sub low) - GAMMA plane determined by a BH mass M(sub BH). Specifically, Titarchuk & Fiorito (2004) gave strong theoretical and observational arguments that the QPO frequency values in this nu(sub low) - GAMMA correlation should be inversely proportional to M(sub BH). A simple translation of the correlation for a given source along frequency axis leads to the observed correlation for another source. As a result of this translation one can obtain a scaling factor which is simply a BH mass ratio for these particular sources. This property of the correlations offers a fundamentally new method for BH mass determination in XRBs. Here we use the observed QPO-index correlations observed in three BH sources: GRO J1655-40, GRS 1915+105 and Cyg X-1. The BH mass of (6.3 plus or minus 0.5) solar mass in GRO J1655-40 is obtained using optical observations. RXTE observations during the recent 2005 outburst yielded sufficient data to establish the correlation pattern during both rise and decay of the event. We use GRO J1655-40 as a standard reference source to measure the BH mass in Cyg X-1. We also revisit the GRS 1915+105 data as a further test of our scaling method. We obtain the BH mass in Cyg X-1 in the range 7.6-9.9.

  15. Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation.

    PubMed

    Miyata, Kazuki; Tracey, John; Miyazawa, Keisuke; Haapasilta, Ville; Spijker, Peter; Kawagoe, Yuta; Foster, Adam S; Tsukamoto, Katsuo; Fukuma, Takeshi

    2017-07-12

    The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH)2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.

  16. Health State Monitoring of Bladed Machinery with Crack Growth Detection in BFG Power Plant Using an Active Frequency Shift Spectral Correction Method.

    PubMed

    Sun, Weifang; Yao, Bin; He, Yuchao; Chen, Binqiang; Zeng, Nianyin; He, Wangpeng

    2017-08-09

    Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information) belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages.

  17. Health State Monitoring of Bladed Machinery with Crack Growth Detection in BFG Power Plant Using an Active Frequency Shift Spectral Correction Method

    PubMed Central

    Sun, Weifang; Yao, Bin; He, Yuchao; Zeng, Nianyin; He, Wangpeng

    2017-01-01

    Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information) belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages. PMID:28792453

  18. Time-Resolved Frequency Comb Spectroscopy of Transient Free Radicals in the Mid-Infrared Spectral Region

    NASA Astrophysics Data System (ADS)

    Bjork, Bryce J.; Fleisher, Adam J.; Changala, Bryan; Bui, Thinh Quoc; Cossel, Kevin; Okumura, Mitchio; Ye, Jun

    2014-06-01

    The chemical kinetics of transient free radicals, such as HOCO and Criegee intermediates, play important roles in combustion and atmospheric processes. Establishing accurate kinetics models for these complex systems require knowledge of the reaction rates and lifetimes of all molecules along a particular reaction pathway. However, standard spectroscopic techniques lack a combination of sensitivity, frequency resolution, and adequate temporal resolution to survey these reactions on the μs timescale. To answer this challenge, we have developed time-resolved frequency comb spectroscopy (TRFCS). This novel technique allows for the detection of transient intermediates with high time-resolution and sensitivity while also permitting the direct determination of rotational state distributions of all relevant molecules. We demonstrate this technique in the mid-infrared spectral region, at 3.7 μm, by studying the photolysis of deuterated acrylic acid. We simultaneously observe the time-dependent concentrations of photoproducts trans-DOCO, HOD, and D_2O, identified through their unique rovibrational structure, with 5 × 1010 molecules cm-3 sensitivity, and with a time resolution of 25 μs. We aim to apply this technique to detect directly the formation of the DOCO intermediate in the OD + CO chemical reaction at atmospherically relevant pressures, in order to validate statistical rate models of this reaction.

  19. Spectral analysis of air and ground temperatures at Fargo, North Dakota: conduction dominated propagation of the annual frequency signal

    NASA Astrophysics Data System (ADS)

    Smerdon, J. E.; Lewis, M. J.; Pollack, H. N.; Enz, J. W.

    2002-12-01

    Surface air temperature (SAT) and ground temperature at various depths from 1 cm down to 1170 cm have been observed hourly for approximately the last twenty years at the North Dakota State University (NDSU) Microclimate Research Station (46° 54' N, 96° 48' W, elevation 273 m) in Fargo, North Dakota. Here we aggregate the NDSU SAT data and ground temperature data at each depth into time-series of daily means. We spectrally decompose each temperature time-series into Fourier components and then determine the phase and amplitude of the annual frequency component at each depth. The observed phase and amplitude of the annual signal versus depth are compared to expectations from a model of conductive heat transport in a homogeneous medium. A harmonic temperature signal propagating conductively through a homogeneous medium will display a linear phase shift and an exponential amplitude attenuation with depth. We show that the behavior of the annual frequency signal within the ground is clearly conductive: linear regression of the phase shift and natural logarithm of the amplitude yield fits within R2 values of 0.996 and 0.999, respectively. We use the best-fit regression coefficients from the amplitude and phase shift data to determine an average thermal diffusivity of the soil of 3.7 \\pm 0.1 \\times 10-7 m2/s, and an average wave velocity of the propagating annual signal of 3.3 \\pm 0.5 cm/day.

  20. Rapid frequency control of sonar sounds by the FM bat, Miniopterus fuliginosus, in response to spectral overlap.

    PubMed

    Hase, Kazuma; Miyamoto, Takara; Kobayasi, Kohta I; Hiryu, Shizuko

    2016-07-01

    In the presence of multiple flying conspecifics, echolocating bats avoid jamming by adjusting the spectral and/or temporal features of their vocalizations. However, little is known about how bats alter their pulse acoustic characteristics to adapt to an acoustically jamming situation during flight. We investigated echolocation behavior in a bat (Miniopterus fuliginosus) during free flight under acoustic jamming conditions created by downward FM jamming sounds mimicking bat echolocation sounds. In an experimental chamber, the flying bat was exposed to FM jamming sounds with different terminal frequencies (TFs) from loudspeakers. Echolocation pulses emitted by the flying bat were recorded using a telemetry microphone (Telemike) mounted on the back of the bat. The bats immediately (within 150ms) shifted the TFs of emitted pulses upward when FM jamming sounds were presented. Moreover, the amount of upward TF shift differed depending on the TF ranges of the jamming sounds presented. When the TF range was lower than or overlapped the bat's mean TF, the bat TF shifted significantly upward (by 1-2kHz, Student's t-test, P<0.05), corresponding to 3-5% of the total bandwidth of their emitted pulses. These findings indicate that bats actively avoid overlap of the narrow frequency band around the TF. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Spectral EEG features for evaluating cognitive load.

    PubMed

    Zarjam, Pega; Epps, Julien; Chen, Fang

    2011-01-01

    This study was undertaken to investigate spectral features derived from EEG signals for measuring cognitive load. Measurements of this kind have important commercial and clinical applications for optimizing the performance of users working under high mental load conditions, or as cognitive tests. Based on EEG recordings for a reading task in which three different levels of cognitive load were induced, it is shown that a set of spectral features--the spectral entropy, weighted mean frequency and its bandwidth, and spectral edge frequency--are all able to discriminate the three load levels effectively. An interesting result is that spectral entropy, which reflects the distribution of spectral energy rather than its magnitude, provides very good discrimination between cognitive load levels. We also report those EEG channels for which statistical significance between load levels was achieved. The effect of frequency bands on the spectral features is also investigated here. The results indicate that the choice of optimal frequency band can be dependent on the spectral feature extracted.

  2. Evolution of temporal and spectral dynamics of pathological high-frequency oscillations (pHFOs) during epileptogenesis

    PubMed Central

    Jones, Ryan T.; Barth, Albert M.; Ormiston, Laurel D.; Mody, Istvan

    2015-01-01

    Objective In temporal lobe epilepsy (TLE) pathological high frequency oscillations (pHFOs, 200–600 Hz) are present in the hippocampus, especially the dentate gyrus (DG). The pHFOs emerge during a latent period prior to the onset of spontaneous generalized seizures. We used a unilateral suprahippocampal injection of kainic acid (KA) mouse model of TLE to characterize the properties of hippocampal pHFOs during epileptogenesis. Methods In awake head-fixed mice, 4–14 days after KA-induced status epilepticus (SE), we recorded local field potentials (LFP) with 64-channel silicon probes spanning from CA1 alveus to the DG hilus, or with glass pipettes in the DC mode in the CA1 str radiatum. Results The pHFOs, are observed simultaneously in the CA1 and the DG, or in the DG alone, as early as 4 days post-SE. The pHFOs ride on top of DC deflections, occur during motionless periods, persist through the onset of TLE, and are generated in bursts. Burst parameters remain remarkably constant during epileptogenesis, with a random number of pHFOs generated per burst. In contrast, pHFO duration and spectral dynamics evolve from short events at 4 days post-SE to prolonged discharges with complex spectral characteristics by 14 days post-SE. Simultaneous dural EEG recordings were exceedingly unreliable for detecting hippocampal pHFOs, hence such recordings may deceptively indicate a “silent” period even when massive hippocampal activity is present. Significance Our results demonstrate that hippocampal pHFOs exhibit a dynamic evolution during the epileptogenic period following SE, consistent with their role in transitioning to the chronic stage of TLE. PMID:26514993

  3. A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges.

    PubMed

    Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla

    2010-02-01

    Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.

  4. Third order spectral analysis robust to mixing artifacts for mapping cross-frequency interactions in EEG/MEG.

    PubMed

    Chella, F; Marzetti, L; Pizzella, V; Zappasodi, F; Nolte, G

    2014-05-01

    We present a novel approach to the third order spectral analysis, commonly called bispectral analysis, of electroencephalographic (EEG) and magnetoencephalographic (MEG) data for studying cross-frequency functional brain connectivity. The main obstacle in estimating functional connectivity from EEG and MEG measurements lies in the signals being a largely unknown mixture of the activities of the underlying brain sources. This often constitutes a severe confounder and heavily affects the detection of brain source interactions. To overcome this problem, we previously developed metrics based on the properties of the imaginary part of coherency. Here, we generalize these properties from the linear to the nonlinear case. Specifically, we propose a metric based on an antisymmetric combination of cross-bispectra, which we demonstrate to be robust to mixing artifacts. Moreover, our metric provides complex-valued quantities that give the opportunity to study phase relationships between brain sources. The effectiveness of the method is first demonstrated on simulated EEG data. The proposed approach shows a reduced sensitivity to mixing artifacts when compared with a traditional bispectral metric. It also exhibits a better performance in extracting phase relationships between sources than the imaginary part of the cross-spectrum for delayed interactions. The method is then applied to real EEG data recorded during resting state. A cross-frequency interaction is observed between brain sources at 10Hz and 20Hz, i.e., for alpha and beta rhythms. This interaction is then projected from signal to source level by using a fit-based procedure. This approach highlights a 10-20Hz dominant interaction localized in an occipito-parieto-central network.

  5. Third order spectral analysis robust to mixing artifacts for mapping cross-frequency interactions in EEG/MEG

    PubMed Central

    Chella, F.; Marzetti, L.; Pizzella, V.; Zappasodi, F.; Nolte, G.

    2014-01-01

    We present a novel approach to the third order spectral analysis, commonly called bispectral analysis, of electroencephalographic (EEG) and magnetoencephalographic (MEG) data for studying cross-frequency functional brain connectivity. The main obstacle in estimating functional connectivity from EEG and MEG measurements lies in the signals being a largely unknown mixture of the activities of the underlying brain sources. This often constitutes a severe confounder and heavily affects the detection of brain source interactions. To overcome this problem, we previously developed metrics based on the properties of the imaginary part of coherency. Here, we generalize these properties from the linear to the nonlinear case. Specifically, we propose a metric based on an antisymmetric combination of cross-bispectra, which we demonstrate to be robust to mixing artifacts. Moreover, our metric provides complex-valued quantities that give the opportunity to study phase relationships between brain sources. The effectiveness of the method is first demonstrated on simulated EEG data. The proposed approach shows a reduced sensitivity to mixing artifacts when compared with a traditional bispectral metric. It also exhibits a better performance in extracting phase relationships between sources than the imaginary part of cross-spectrum for delayed interactions. The method is then applied to real EEG data recorded during resting state. A cross-frequency interaction is observed between brain sources at 10 Hz and 20 Hz, i.e., for alpha and beta rhythms. This interaction is then projected from signal to source level by using a fit-based procedure. This approach highlights a 10–20 Hz dominant interaction localized in an occipito-parieto-central network. PMID:24418509

  6. Comparison of Very High-Frequency Ultrasound and Spectral-Domain Optical Coherence Tomography Corneal and Epithelial Thickness Maps

    PubMed Central

    Urs, Raksha; Lloyd, Harriet O.; Reinstein, Dan Z.; Silverman, Ronald H.

    2015-01-01

    Purpose To compare measurements of corneal thickness (CT) and epithelial thickness (ET) in maps obtained by the RTVue spectral domain optical coherence tomography (SD-OCT) system with those obtained from the Artemis 2 immersion arc-scanning very high-frequency ultrasound system. Setting Department of Ophthalmology of the Columbia University Medical Center Design A method-comparison study design to examine the agreement between two systems for measurement and mapping of CT and ET. Methods Both eyes of 12 normal volunteers were scanned with RTVue followed by Artemis and then by repeated RTVue. For each map, the minimum CT and mean values of CT and ET in the 3 mm radius zone and in 0.5 mm-wide concentric annuli of up to 3 mm radius around the corneal vertex were determined. Results The CT values from both devices were highly correlated and in the 3-mm radius zone (R>0.96) they were not statistically significantly different. There was no statistically significant change in ET or CT in RTVue measurements made before versus after immersion ultrasound. While highly correlated (R>0.76), RTVue ET values were systematically thinner (1.7 ± 2.1 µm) than Artemis 2 measurements (p<0.01) in the 3 mm radius zone. Conclusions Artemis and RTVue CT measurements in the 3 mm radius zone are equivalent in normal eyes. While correlated, Artemis ET measurements were systemically thicker than RTVue values. PMID:26948783

  7. Calculation of near-edge x-ray-absorption fine structure at finite temperatures: spectral signatures of hydrogen bond breaking in liquid water.

    PubMed

    Hetényi, Balázs; De Angelis, Filippo; Giannozzi, Paolo; Car, Roberto

    2004-05-08

    We calculate the near-edge x-ray-absorption fine structure of H(2)O in the gas, hexagonal ice, and liquid phases using heuristic density-functional based methods. We present a detailed comparison of our results with experiment. The differences between the ice and water spectra can be rationalized in terms of the breaking of hydrogen bonds around the absorbing molecule. In particular the increase in the pre-edge absorption feature from ice to water is shown to be due to the breaking of a donor hydrogen bond. We also find that in water approximately 19% of hydrogen bonds are broken. (c) 2004 American Institute of Physics.

  8. Reduction of edge localized mode intensity on DIII-D by on-demand triggering with high frequency pellet injection and implications for ITER

    SciTech Connect

    Baylor, L. R.; Commaux, N.; Jernigan, T. C.; Meitner, S. J.; Combs, S. K.; Isler, R. C.; Unterberg, E. A.; Brooks, N. H.; Evans, T. E.; Leonard, A. W.; Osborne, T. H.; Parks, P. B.; Snyder, P. B.; Strait, E. J.; Fenstermacher, M. E.; Lasnier, C. J.; Moyer, R. A.; Loarte, A.; Huijsmans, G. T. A.; Futatani, S.

    2013-08-15

    The injection of small deuterium pellets at high repetition rates up to 12× the natural edge localized mode (ELM) frequency has been used to trigger high-frequency ELMs in otherwise low natural ELM frequency H-mode deuterium discharges in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)]. The resulting pellet-triggered ELMs result in up to 12× lower energy and particle fluxes to the divertor than the natural ELMs. The plasma global energy confinement and density are not strongly affected by the pellet perturbations. The plasma core impurity density is strongly reduced with the application of the pellets. These experiments were performed with pellets injected from the low field side pellet in plasmas designed to match the ITER baseline configuration in shape and normalized β operation with input heating power just above the H-mode power threshold. Nonlinear MHD simulations of the injected pellets show that destabilization of ballooning modes by a local pressure perturbation is responsible for the pellet ELM triggering. This strongly reduced ELM intensity shows promise for exploitation in ITER to control ELM size while maintaining high plasma purity and performance.

  9. Reduction of Edge Localized Mode Intensity on DIII-D by On-demand triggering with High Frequency Pellet Injection and Implications for ITER

    SciTech Connect

    Baylor, Larry R; Commaux, Nicolas JC; Jernigan, T. C.; Meitner, Steven J; Combs, Stephen Kirk; Isler, Ralph C; Unterberg, Ezekial A; Brooks, N. H.; Evans, T. E.; Leonard, A. W.; Osborne, T. H.; Parks, P. B.; Snyder, P. B.; Strait, E. J.; Fenstermacher, M. E.; Lasnier, C. J.; Moyer, R. A.; Loarte, A.; Huijsmans, G. T.A.; Futantani, S.

    2013-01-01

    The injection of small deuterium pellets at high repetition rates up to 12 the natural edge localized mode (ELM) frequency has been used to trigger high-frequency ELMs in otherwise low natural ELM frequency H-mode deuterium discharges in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)]. The resulting pellet-triggered ELMs result in up to 12 lower energy and particle fluxes to the divertor than the natural ELMs. The plasma global energy confinement and density are not strongly affected by the pellet perturbations. The plasma core impurity density is strongly reduced with the application of the pellets. These experiments were performed with pellets injected from the low field side pellet in plasmas designed to match the ITER baseline configuration in shape and normalized operation with input heating power just above the H-mode power threshold. Nonlinear MHD simulations of the injected pellets show that destabilization of ballooning modes by a local pressure perturbation is responsible for the pellet ELM triggering. This strongly reduced ELM intensity shows promise for exploitation in ITER to control ELM size while maintaining high plasma purity and performance.

  10. Scaling of the frequencies of the type one edge localized modes and their effect on the tungsten source in JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Devynck, P.; Fedorczak, N.; Meyer, O.; Contributors, JET

    2016-12-01

    A database of 250 pulses taken randomly during the experimental campaigns of JET with the ITER-like wall (ILW) is used to study the frequency dependences of the type I edge localized modes (ELM). A scaling of the ELM frequency is presented as a function of the pedestal density drop dN ped and a very simple model to interpret this scaling is discussed. In this model, the frequency of the ELMs is governed by the time needed by the neutral flux to refill the density of the pedestal. The filling rate is the result of a small imbalance between the neutral flux filling the pedestal and the outward flux that expels the particles to the SOL. The ELM frequency can be governed by such a mechanism if the recovery time of the temperature of the pedestal in JET occurs before or at the same time as the one of the density. This is observed to be the case. An effect of the fuelling is measured when the number of injected particles is less than 1  ×  1022 particles s-1. In that case an increase of the inter-ELM time is observed which is related to the slower recovery of the density pedestal. Additionally, a scaling is found for the source of tungsten during the ELMs. The number of tungsten atoms eroded by the ELMs per second is proportional to dN ped multiplied by the ELM frequency. This is possible only if the tungsten sputtering yield is independent of the energy of the impinging particle hitting the divertor. This result is in agreement with Guillemault et al (2015 Plasma Phys. Control. Fusion 57 085006) and is compatible with the D+  ions hitting the divertor having energies above 2 keV. Finally, by plotting the Wcontent/Wsource ratio during ELM crash, a global decreasing behaviour with the ELM frequency is found. However at frequencies below 40 Hz a scatter towards upper values is found. This scatter is found to correlate with the gas injection level. In a narrow ELM frequency band around 20 Hz, it is found that both the ratio Wcontent/Wsource and Wsource

  11. a Phase-Coherent Link Between the Visible and Infrared Spectral Ranges Using a Combination of CW Opo and Femtosecond Laser Frequency Comb

    NASA Astrophysics Data System (ADS)

    Kovalchuk, E. V.; Peters, A.

    2009-04-01

    We report on the realization of a new technique for a phase-coherent link between the visible and infrared spectral ranges provided by a continuous-wave OPO in combination with a Ti:Sapphire femtosecond laser comb. We have developed a CH4-based infrared molecular clock by phase locking the repetition rate frequency of a Ti:Sapphire femtosecond laser comb to the optical frequency of a He-Ne/CH4 standard. We also performed a direct absolute frequency comparisons between an iodine stabilized laser at 532 nm and a methane stabilized laser at 3.39 μm.

  12. Sub-Doppler resolution mid-infrared spectroscopy using a difference-frequency-generation source spectrally narrowed by laser linewidth transfer.

    PubMed

    Sera, Hideyuki; Abe, Masashi; Iwakuni, Kana; Okubo, Sho; Inaba, Hajime; Hong, Feng-Lei; Sasada, Hiroyuki

    2015-12-01

    The spectral linewidth of a 3.28 μm difference-frequency-generation source has been reduced to 3.5 kHz using a laser linewidth transfer technique [Opt. Express21, 7891 (2013)]. We use an optical frequency comb with a broad servo bandwidth to transfer a narrow linewidth of a pump laser, a 1.06 μm Nd:YAG laser, to a signal laser, a 1.57 μm external-cavity laser diode. This source enables us to record the Lamb dip of the ν3 band R(2) E transition of methane with a molecular spectral linewidth of 21 kHz while the frequency axis is absolutely calibrated.

  13. Short-delayed self-heterodyne interferometer combined with time-frequency analysis for measuring dynamic spectral properties of tunable lasers

    NASA Astrophysics Data System (ADS)

    Luo, Gang; An, Ying; Li, Jinyi; Du, Zhenhui

    2016-10-01

    The dynamic spectral properties of Continuous Wave (CW) semiconductor lasers during continuous wavelength current tuning process (i.e. slope efficiency, dynamic wavelength current tuning rate and dynamic linewidth) are of utmost significance to high resolution molecular spectroscopy and trace gas detection. In this paper, a system for measuring dynamic spectral properties was setup based on a short-delayed self-heterodyne interferometry with different Optical Path Difference (OPD). And the dynamic spectral properties of different Distributed Feedback (DFB) semiconductor lasers were tested respectively by the system combined with a special time-frequency analysis method. The dynamic slope efficiency unveils nonlinear optical intensity that can't be neglected in dealing with Residual Amplitude Modulation (RAM). The dynamic wavelength current tuning rate can be used to calibrate laser wavelength. The dynamic linewidth of a laser can be used to evaluate the spectral resolution in gas detecting. The system was demonstrated to simultaneously measure the dynamic spectral properties of different types of tunable lasers with a wavelength range in 2 μm 8 μm during the tuning process. These dynamic spectral properties were distinctly different with the properties while the laser operates at a stable state, which may lay a foundation for deep research and enrichment the highly-precise spectrum database in gas sensing fields.

  14. Influence of muscle fibre shortening on estimates of conduction velocity and spectral frequencies from surface electromyographic signals.

    PubMed

    Schulte, E; Farina, D; Merletti, R; Rau, G; Disselhorst-Klug, C

    2004-07-01

    The study of surface electromyographic (EMG) signals under dynamic contractions is becoming increasingly important. However, knowledge of the methodological issues that may affect such analysis is still limited. The aim of the study was to analyse the effect of fibre shortening on estimates of conduction velocity (CV) and mean power spectral frequency (MNF) from surface EMG signals. Single fibre action potentials were simulated, as detected by commonly used spatial filters, for different fibre lengths. No physiological modifications were included with changes in fibre length, and thus only geometrical artifacts related to fibre shortening were investigated. The simulation results showed that the dependence of CV and MNF on fibre shortening is affected by the fibre location, electrode position and the spatial filter applied. With shortening of up to 50% for a fibre of 50 mm semi-length, the variations in CV and MNF estimates with shortening in bipolar recordings were 0.5% (CV) and 0.7% (MNF) for superficial fibres, and 3.6% and 5.1% for deeper fibres. Using the longitudinal double differential filter, under the same conditions, the percent variation was 0% and 0.2%, and 24.7% and 15.8%, respectively. The main conclusions were, first, muscle fibre shortening can significantly affect estimates of CV and MNF, especially for short fibre lengths. However, for long (semi-length >50 mm) and superficial fibres, this effect is limited for shortenings of up to 50% of the initial fibre length. Secondly, CV and MNF are almost equally affected by changes in muscle length; and, thirdly, sensitivity to fibre shortening depends on the spatial filter applied for signal detection.

  15. Comparison of very-high-frequency ultrasound and spectral-domain optical coherence tomography corneal and epithelial thickness maps.

    PubMed

    Urs, Raksha; Lloyd, Harriet O; Reinstein, Dan Z; Silverman, Ronald H

    2016-01-01

    To compare corneal thickness and epithelial thickness measurements in maps obtained using the RTVue spectral domain optical coherence tomography (SD-OCT) system and the Artemis 2 immersion arc-scanning very-high-frequency ultrasound (VHF-US) system. Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA. Comparative study. Eyes of normal volunteers were scanned with the SD-OCT system followed by the VHF-US system and then again by the SD-OCT system. On each map, the minimum corneal thickness and mean values of corneal thickness and epithelial thickness in the 3.0 mm radius zone and in 0.5 mm wide concentric annuli of up to a 3.0 mm radius around the corneal vertex were determined. Both eyes of 12 normal volunteers were scanned. The corneal thickness values from both devices were highly correlated (R > 0.96); in the 3.0 mm radius zone, they were not statistically significantly different. There was no statistically significant change in epithelial thickness or corneal thickness in SD-OCT measurements taken before versus after immersion US. Although highly correlated (R > 0.76), the SD-OCT epithelial thickness values were systematically thinner (1.7 ± 2.1 μm) than the VHF-US measurements in the 3.0 mm radius zone (P < .01). The corneal thickness measurements in the 3.0 mm radius zone in normal eyes were equivalent between the 2 systems. Although correlated, the VHF-US epithelial thickness measurements were systemically thicker than the SD-OCT values. Drs. Silverman and Reinstein have a commercial interest in Arcscan, Inc. Dr. Reinstein is a consultant to Carl Zeiss Meditec. None of the other authors has a financial or proprietary interest in any material or method presented. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. Research and application of spectral inversion technique in frequency domain to improve resolution of converted PS-wave

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; He, Zhen-Hua; Li, Ya-Lin; Li, Rui; He, Guamg-Ming; Li, Zhong

    2017-06-01

    Multi-wave exploration is an effective means for improving precision in the exploration and development of complex oil and gas reservoirs that are dense and have low permeability. However, converted wave data is characterized by a low signal-to-noise ratio and low resolution, because the conventional deconvolution technology is easily affected by the frequency range limits, and there is limited scope for improving its resolution. The spectral inversion techniques is used to identify λ/8 thin layers and its breakthrough regarding band range limits has greatly improved the seismic resolution. The difficulty associated with this technology is how to use the stable inversion algorithm to obtain a high-precision reflection coefficient, and then to use this reflection coefficient to reconstruct broadband data for processing. In this paper, we focus on how to improve the vertical resolution of the converted PS-wave for multi-wave data processing. Based on previous research, we propose a least squares inversion algorithm with a total variation constraint, in which we uses the total variance as a priori information to solve under-determined problems, thereby improving the accuracy and stability of the inversion. Here, we simulate the Gaussian fitting amplitude spectrum to obtain broadband wavelet data, which we then process to obtain a higher resolution converted wave. We successfully apply the proposed inversion technology in the processing of high-resolution data from the Penglai region to obtain higher resolution converted wave data, which we then verify in a theoretical test. Improving the resolution of converted PS-wave data will provide more accurate data for subsequent velocity inversion and the extraction of reservoir reflection information.

  17. A valence state evaluation of a positive electrode material in an Li-ion battery with first-principles K- and L-edge XANES spectral simulations and resonance photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Kubobuchi, Kei; Mogi, Masato; Matsumoto, Masashi; Baba, Teruhisa; Yogi, Chihiro; Sato, Chikai; Yamamoto, Tomoyuki; Mizoguchi, Teruyasu; Imai, Hideto

    2016-10-01

    X-ray absorption near edge structure (XANES) analysis is an element-specific method for proving electronic state mostly in the field of applied physics, such as battery and catalysis reactions, where the valence change plays an important role. In particular, many results have been reported for the analysis of positive electrode materials of Li-ion batteries, where multiple transition materials contribute to the reactions. However, XANES analysis has been limited to identifying the valence state simply in comparison with reference materials. When the shape of XANES spectra shows complicated changes, we were not able to identify the valence states or estimate the valence quantitatively, resulting in insufficient reaction analysis. To overcome such issues, we propose a valence state evaluation method using K- and L-edge XANES analysis with first-principles simulations. By using this method, we demonstrated that the complicated reaction mechanism of Li(Ni1/3Co1/3Mn1/3)O2 can be successfully analyzed for distinguishing each contribution of Ni, Co, Mn, and O to the redox reactions during charge operation. In addition to the XANES analysis, we applied resonant photoelectron spectroscopy (RPES) and diffraction anomalous fine structure spectroscopy (DAFS) with first-principles calculations to the reaction analysis of Co and Mn, which shows no or very little contribution to the redox. The combination of RPES and first-principles calculations successfully enables us to confirm the contribution of Co at high potential regions by electively observing Co 3d orbitals. Through the DAFS analysis, we deeply analyzed the spectral features of Mn K-edges and concluded that the observed spectral shape change for Mn does not originate from the valence change but from the change in distribution of wave functions around Mn upon Li extraction.

  18. Modelling the spectral induced polarization response of water-saturated sands in the intermediate frequency range (102-105 Hz) using mechanistic and empirical approaches

    NASA Astrophysics Data System (ADS)

    Kremer, Thomas; Schmutz, Myriam; Leroy, Philippe; Agrinier, Pierre; Maineult, Alexis

    2016-11-01

    The intermediate frequency range 102-105 Hz forms the transition range between the spectral induced polarization frequency domain and the dielectric spectroscopy frequency domain. Available experimental data showed that the spectral induced polarization response of sands fully saturated with water was particularly sensitive to variations of the saturating water electrical conductivity value in the intermediate frequency range. An empirical and a mechanistic model have been developed and confronted to this experimental data. This confrontation showed that the Maxwell Wagner polarization alone is not sufficient to explain the observed signal in the intermediate frequency range. The SIP response of the media was modelled by assigning relatively high dielectric permittivity values to the sand particle or high effective permittivity values to the media. Such high values are commonly observed in the dielectric spectroscopy literature when entering the intermediate frequency range. The physical origin of these high dielectric permittivity values is discussed (grain shape, electromagnetic coupling), and a preliminary study is presented which suggests that the high impedance values of the non-polarizable electrodes might play a significant role in the observed behaviour.

  19. Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar.

    PubMed

    Huang, Wentao; Chu, Xinzhao; Wiig, Johannes; Tan, Bo; Yamashita, Chihoko; Yuan, T; Yue, J; Harrell, S D; She, C-Y; Williams, B P; Friedman, J S; Hardesty, R M

    2009-05-15

    We report the first (to our knowledge) field demonstration of simultaneous wind and temperature measurements with a Na double-edge magneto-optic filter implemented in the receiver of a three-frequency Na Doppler lidar. Reliable winds and temperatures were obtained in the altitude range of 10-45 km with 1 km resolution and 60 min integration under the conditions of 0.4 W lidar power and 75 cm telescope aperture. This edge filter with a multi-frequency lidar concept can be applied to other direct-detection Doppler lidars for profiling both wind and temperature simultaneously from the lower to the upper atmosphere.

  20. Illuminating the Transition Between Steady Sliding and Episodic Tremor and Slow Slip Using Low Frequency Earthquakes at the Downdip Edge

    NASA Astrophysics Data System (ADS)

    Creager, K. C.; Sweet, J.; Vidale, J. E.; Houston, H.

    2012-12-01

    Using data from the Array of Arrays and CAFE experiments, we have identified eight Low-Frequency Earthquake (LFE) families on the subduction plate interface, under the Olympic Peninsula, Washington State. We analyze the time history of each during the time interval 2007-2012. The updip-most family (LFE1) only lights up during the well-known northern Cascadia Episodic Tremor and Slip (ETS) events that recur every 15 months. The recurrence intervals shorten from updip LFE1 to the downdip-most family (LFE4), which repeats every 14 days; 30 times more frequently. This presentation focuses on the downdip family. See the Sweet presentation, this session, for an analysis of the updip-most LFE family. LFEs from family 4 typically have durations of about one hour, with as many as 100 repeats during that time. Unlike their updip counterparts, they occur as discrete events without other LFEs or tremor visible during that time. They are strongly modulated by tidal shear stress. Twice as many LFEs occur during encouraging shear stress as during discouraging times. In contrast, these same LFEs occur when tidal normal stress is compressive which should inhibit slip. To reconcile LFE occurrence with favorable tidal Coulomb stress requires that the friction coefficient be less than 0.2 .This extreme sensitivity to very small shear stresses also suggests near lithostatic pore fluid pressures. We propose that the bursts of LFEs in this family correspond to discrete slow-slip events that occur with remarkable regularity. To add up to plate rates, each burst would correspond to a little more than 1 mm of slip, and each individual LFE to a little less than 0.1 mm, assuming all the slip occurs in the form of LFE activity and each LFE ruptures the same spot. One of these event sequences was captured by our 1-km aperture 80-element Big Skidder Array in 2008. Careful stacked correlation functions from 32 LFEs relative to a reference event showed S-P times varied only up to 0.02s, which

  1. Estimation of basis line-integrals in a spectral distortion-modeled photon counting detector using low-rank approximation-based x-ray transmittance modeling: K-edge imaging application.

    PubMed

    Lee, Okkyun; Kappler, Steffen; Polster, Christoph; Taguchi, Katsuyuki

    2017-08-29

    Photon counting detectors (PCD) provide multiple energy-dependent measurements for estimating basis lineintegrals. However, the measured spectrum is distorted from the spectral response effect (SRE) via charge sharing, K-fluorescence emission, etc. Thus, in order to avoid bias and artifacts in images, the SRE needs to be compensated. For this purpose, we recently developed a computationally efficient three-step algorithm for PCD-CT without contrast agents by approximating smooth x-ray transmittance using low-order polynomial bases. It compensated the SRE by incorporating the SRE model in a linearized estimation process and achieved nearly the minimum variance and unbiased (MVU) estimator. In this paper, we extend the three-step algorithm to K-edge imaging applications by designing optimal bases using a low-rank approximation to model x-ray transmittances with arbitrary shapes (i.e., smooth without the K-edge or discontinuous with the K-edge). The bases can be used to approximate the x-ray transmittance and to linearize the PCD measurement modeling and then the three-step estimator can be derived as in the previous approach: Estimating the xray transmittance in the first step, estimating basis line-integrals including that of the contrast agent in the second step, and correcting for a bias in the third step. We demonstrate that the proposed method is more accurate and stable than the low-order polynomial-based approaches with extensive simulation studies using gadolinium for the K-edge imaging application. We also demonstrate that the proposed method achieves nearly MVU estimator, and is more stable than the conventional maximum likelihood estimator in high attenuation cases with fewer photon counts.

  2. Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene Interfaces: Spectral Signatures with Interference Chiral Sum-Frequency Generation Vibrational Spectroscopy

    SciTech Connect

    Fu, Li; Zhang, Yun; Wei, Zhehao; Wang, Hongfei

    2014-06-04

    We report in this work detailed measurements on the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050cm-1) of the air/liquid interfaces of R-limonene and S-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the equal amount (50/50) racemic mixture show that the enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit spectral signature from chiral response of the Cα-H stretching mode, and spectral signature from prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-limonene to S-limonene, and disappears for the 50/50 racemic mixture. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-limonene and S-limonene, and also surprisingly remains the same for the 50/50 racemic mixture. These results provided detail information in understanding the structure and chirality of molecular interfaces, and demonstrated the sensitivity and potential of SFG-VS as unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface.

  3. Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing.

    PubMed

    Supradeepa, V R; Weiner, Andrew M

    2012-08-01

    We introduce a new cascaded four-wave mixing technique that scales up the bandwidth of frequency combs generated by phase modulation of a continuous-wave (CW) laser while simultaneously enhancing the spectral flatness. As a result, we demonstrate a 10 GHz frequency comb with over 100 lines in a 10 dB bandwidth in which a record 75 lines are within a flatness of 1 dB. The cascaded four-wave mixing process increases the bandwidth of the initial comb generated by the modulation of a CW laser by a factor of five. The broadband comb has approximately quadratic spectral phase, which is compensated upon propagation in single-mode fiber, resulting in a 10 GHz train of 940 fs pulses.

  4. Spectral characteristics of a laser emitter designed for pumping and detecting a reference quantum transition of a caesium frequency standard

    SciTech Connect

    Ivanov, A V; Kurnosov, V D; Kurnosov, K V; Romantsevich, V I; Chernov, Roman V; Marmalyuk, Aleksandr A; Volkov, N A; Zholnerov, V S

    2011-08-31

    Experimental and calculated spectral characteristics of a diode laser with a Bragg grating soldered on a thermoelectric cooler are presented. A model of the laser is developed, which takes into account the pressure arising after soldering the Bragg grating on the thermoelectric cooler, as well as temperature and dispersion. Theoretical and experimental spectral characteristics of the laser are compared and their satisfactory agreement is shown. (control of radiation parameters)

  5. Dichotic presentation to overcome the effect of increased spectral masking and frequency dependent hearing threshold shifts in persons with bilateral sensorineural impairment

    NASA Astrophysics Data System (ADS)

    Cheeran, Alice N.; Pandey, Prem C.

    2003-10-01

    A binaural dichotic presentation scheme for reducing the effect of increased spectral masking in persons with bilateral sensorineural loss, using spectral splitting with complementary comb filters based on auditory critical bands, has been earlier reported [Cheeran et al., J. Acoust. Soc. Am. 110, 2705 (2001)]. The 256-coefficient linear phase FIR filters designed using frequency sampling technique had transition crossovers adjusted within -6 to -4 dB for perceptual balance, and had 78-117 Hz transition, 1 dB passband ripple, and 30 dB stopband attenuation. We evaluated the scheme by conducting listening tests on 5 normal hearing subjects with simulated loss, using a closed set identification of 12 vowel-consonant-vowel syllables. Based on significant improvement, further tests were conducted on 5 hearing-impaired persons with moderate bilateral sensorineural loss. Significant improvement in response time, recognition scores, and transmission of consonantal features, particularly place and duration, was obtained, indicating reduction in the effect of spectral masking. In order to partly compensate for frequency dependent hearing threshold shifts, a pair of filters with frequency response adjusted within a 6 dB range, based on the audiogram for the corresponding ear, was cascaded with the comb filters. These filters resulted in additional improvement, particularly for persons with relatively uniform loss.

  6. Improved EDGE2D-EIRENE simulations of JET ITER-like wall L-mode discharges utilising poloidal VUV/visible spectral emission profiles

    NASA Astrophysics Data System (ADS)

    Lawson, K. D.; Groth, M.; Belo, P.; Brezinsek, S.; Corrigan, G.; Czarnecka, A.; Delabie, E.; Drewelow, P.; Harting, D.; Książek, I.; Maggi, C. F.; Marchetto, C.; Meigs, A. G.; Menmuir, S.; Stamp, M. F.; Wiesen, S.

    2015-08-01

    A discrepancy in the divertor radiated powers between EDGE2D-EIRENE simulations, both with and without drifts, and JET-ILW experiments employing a set of NBI-heated L-mode discharges with step-wise density variation is investigated. Results from a VUV/visible poloidally scanning spectrometer are used together with bolometric measurements to determine the radiated power and its composition. The analysis shows the importance of D line radiation in contributing to the divertor radiated power, while contributions from D radiative recombination are smaller than expected. Simulations with W divertor plates underestimate the Be content in the divertor, since no allowance is made for Be previously deposited on the plates being re-eroded. An improved version of EDGE2D-EIRENE is used to test the importance of the deposited layer in which the sputtering yield from supposed pure Be divertor plates is reduced to match the spectroscopic signals, while keeping the sputtering yield for the Be main chamber walls unchanged.

  7. Time-varying spectral power of resting-state fMRI networks reveal cross-frequency dependence in dynamic connectivity

    PubMed Central

    Yaesoubi, Maziar; Miller, Robyn L.; Calhoun, Vince D.

    2017-01-01

    Brain oscillations and synchronicity among brain regions (brain connectivity) have been studied in resting-state (RS) and task-induced settings. RS-connectivity which captures brain functional integration during an unconstrained state is shown to vary with the frequency of oscillations. Indeed, high temporal resolution modalities have demonstrated both between and cross-frequency connectivity spanning across frequency bands such as theta and gamma. Despite high spatial resolution, functional magnetic resonance imaging (fMRI) suffers from low temporal resolution due to modulation with slow-varying hemodynamic response function (HRF) and also relatively low sampling rate. This limits the range of detectable frequency bands in fMRI and consequently there has been no evidence of cross-frequency dependence in fMRI data. In the present work we uncover recurring patterns of spectral power in network timecourses which provides new insight on the actual nature of frequency variation in fMRI network activations. Moreover, we introduce a new measure of dependence between pairs of rs-fMRI networks which reveals significant cross-frequency dependence between functional brain networks specifically default-mode, cerebellar and visual networks. This is the first strong evidence of cross-frequency dependence between functional networks in fMRI and our subject group analysis based on age and gender supports usefulness of this observation for future clinical applications. PMID:28192457

  8. Time-varying spectral power of resting-state fMRI networks reveal cross-frequency dependence in dynamic connectivity.

    PubMed

    Yaesoubi, Maziar; Miller, Robyn L; Calhoun, Vince D

    2017-01-01

    Brain oscillations and synchronicity among brain regions (brain connectivity) have been studied in resting-state (RS) and task-induced settings. RS-connectivity which captures brain functional integration during an unconstrained state is shown to vary with the frequency of oscillations. Indeed, high temporal resolution modalities have demonstrated both between and cross-frequency connectivity spanning across frequency bands such as theta and gamma. Despite high spatial resolution, functional magnetic resonance imaging (fMRI) suffers from low temporal resolution due to modulation with slow-varying hemodynamic response function (HRF) and also relatively low sampling rate. This limits the range of detectable frequency bands in fMRI and consequently there has been no evidence of cross-frequency dependence in fMRI data. In the present work we uncover recurring patterns of spectral power in network timecourses which provides new insight on the actual nature of frequency variation in fMRI network activations. Moreover, we introduce a new measure of dependence between pairs of rs-fMRI networks which reveals significant cross-frequency dependence between functional brain networks specifically default-mode, cerebellar and visual networks. This is the first strong evidence of cross-frequency dependence between functional networks in fMRI and our subject group analysis based on age and gender supports usefulness of this observation for future clinical applications.

  9. Probing the Orientation of Electrostatically Immobilized Protein G B1 by Time of Flight Secondary Ion Spectrometry, Sum Frequency Generation and Near-edge X-Ray Adsorption Fine Structure Spectroscopy

    PubMed Central

    Baio, Joe E.; Weidner, Tobias; Baugh, Loren; Gamble, Lara J.; Stayton, Patrick S.; Castner, David G.

    2011-01-01

    To fully develop techniques that provide an accurate description of protein structure at a surface, we must start with a relatively simple model system before moving on to increasingly complex systems. In this study, x-ray photoelectron spectroscopy (XPS), sum frequency generation spectroscopy (SFG), near-edge x-ray adsorption fine structure (NEXAFS) spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to probe the orientation of Protein G B1 (6 kDa) immobilized onto both amine (NH3+) and carboxyl (COO−) functionalized gold. Previously, we have shown that we could successful control orientation of a similar Protein G fragment via a cysteine-maleimide bond. In this investigation, to induce opposite end-on orientations, a charge distribution was created within the Protein G B1 fragment by first substituting specific negatively charged amino acids with neutral amino acids and then immobilizing the protein onto two oppositely charged self-assembled monolayer (SAM) surfaces (NH3+ and COO−). Protein coverage, on both surfaces, was monitored by the change in the atomic % N, as determined by XPS. Spectral features within the SFG spectra, acquired for the protein adsorbed onto a NH3+-SAM surface, indicates that this electrostatic interaction does induce the protein to form an oriented monolayer on the SAM substrate. This corresponded to the polarization dependence of the spectral feature related to the NEXAFS N1s to π* transition of the β-sheet peptide bonds within the protein layer. ToF-SIMS data demonstrated a clear separation between the two samples based on the intensity differences of secondary ions stemming from amino acids located asymmetrically within Protein G B1 (Methionine: 62 and 105 m/z; Tyrosine: 107 and 137 m/z; Leucine: 86 m/z). For a more quantitative examination of orientation, we developed a ratio comparing the sum of the intensities of secondary-ions stemming from the amino acid residues at either end of the protein

  10. The risk for immediate postoperative complications after pancreaticoduodenectomy is increased by high frequency of acinar cells and decreased by prevalent fibrosis of the cut edge of pancreas.

    PubMed

    Laaninen, Matias; Bläuer, Merja; Vasama, Kaija; Jin, Haitao; Räty, Sari; Sand, Juhani; Nordback, Isto; Laukkarinen, Johanna

    2012-08-01

    Soft pancreas is considered as a factor for pancreatitis after pancreaticoduodenectomy, which in turn constitutes a high risk for local complications. The aim was to analyze the proportion of different cell types in the cut edge of pancreas (CEP) in relation to postoperative pancreatitis and other complications after pancreaticoduodenectomy. Data from postoperative follow-up was collected on 40 patients who had undergone pancreaticoduodenectomy. Positive urine trypsinogen-2, an early detector of pancreatitis, was checked on days 1 to 6 after operation. Drain amylase was measured on postoperative day 3. Anastomotic leakages, delayed gastric emptying, and other complications were registered. The areas of different cell types were calculated from the entire hematoxylin-eosin-stained section of CEP. High frequency of acinar cells in the CEP significantly increased positive urine trypsinogen-2 days, drain amylase values, and delayed gastric emptying. In a subgroup of patients with more than 40% acini in the CEP, there were significantly more postoperative complications. Increased fibrosis correlated with a small number of positive urine trypsinogen-2 days and postoperative complications. A large number of acinar cells in the CEP increases, whereas extensive fibrosis in the CEP decreases, the risk for postoperative complications after pancreaticoduodenectomy. These results emphasize the importance of acini in the development of postoperative complications.

  11. Close-packed arrays of transition-edge x-ray microcalorimeters with high spectral resolution at 5.9 keV

    SciTech Connect

    Iyomoto, N.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Figueroa-Feliciano, E.

    2008-01-07

    We present measurements of high fill-factor arrays of superconducting transition-edge x-ray microcalorimeters designed to provide rapid thermalization of the x-ray energy. We designed an x-ray absorber that is cantilevered over the sensitive part of the thermometer itself, making contact only at normal-metal features. With absorbers made of electroplated gold, we have demonstrated an energy resolution between 2.4 and 3.1 eV at 5.9 keV on 13 separate pixels. We have determined the thermal and electrical parameters of the devices throughout the superconducting transition and, using these parameters, have modeled all aspects of the detector performance.

  12. Close-packed Arrays of Transition-edge X-ray Microcalorimeters with High Spectral Resolution at 5.9 keV

    NASA Technical Reports Server (NTRS)

    Iyomoto, N.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; hide

    2007-01-01

    We present measurements of high fill-factor arrays of superconducting transition-edge x-ray microcalorimeters designed to provide rapid thermalization of the x-ray energy. We designed an x-ray absorber that is cantilevered over the sensitive part of the thermometer itself, making contact only at normal metal-features. With absorbers made of electroplated gold, we have demonstrated an energy resolution between 2.4 and 3.1 eV at 5.9 keV on 13 separate pixels. We have determined the thermal and electrical parameters of the devices throughout the superconducting transition, and, using these parameters, have modeled all aspects of the detector performance.

  13. Persistent Spectral Hole Burning Materials for Time-and- Frequency-Domain Optical Memories and Signal Processing

    DTIC Science & Technology

    2007-11-02

    spectral hole burning, optical material, rare earth , photon echo, optical correlator, laser, optical, spectroscopy, coherent transient 17. SECURITY...that determine material performance, emphasizing parameters relevant to device development. Attention was focused on rare earth and transition metal...Er3+ ions and optimized their hole burning and coherent transient properties. Crystal composition and rare earth ion concentration were tailored to

  14. Intrinsic chirality and prochirality at Air/R-(+)- and S-(-)-limonene interfaces: spectral signatures with interference chiral sum-frequency generation vibrational spectroscopy.

    PubMed

    Fu, Li; Zhang, Yun; Wei, Zhe-Hao; Wang, Hong-Fei

    2014-09-01

    We report in this work detailed measurements of the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050 cm(-1)) of the air/liquid interfaces of R-(+)-limonene and S-(-)-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the RS racemic mixture (50/50 equal amount mixture), show that the corresponding molecular groups of the R and S enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit a spectral signature from the chiral response of the Cα-H stretching mode, and a spectral signature from the prochiral response of the CH(2) asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-(+)-limonene to S-(-)-limonene surfaces, and disappears for the RS racemic mixture surface. While the prochiral spectral feature of the CH(2) asymmetric stretching mode is the same for R-(+)-limonene and S-(-)-limonene surfaces, and also surprisingly remains the same for the RS racemic mixture surface. Therefore, the structures of the R-(+)-limonene and the S-(-)-limonene at the liquid interfaces are nevertheless not mirror images to each other, even though the corresponding groups have the same tilt angle from the interfacial normal, i.e., the R-(+)-limonene and the S-(-)-limonene at the surface are diastereomeric instead of enantiomeric. These results provide detailed information in understanding the structure and chirality of molecular interfaces and demonstrate the sensitivity and potential of SFG-VS as a unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface.

  15. Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples.

    PubMed

    Schimpf, Damian; Seise, Enrico; Limpert, Jens; Tünnermann, Andreas

    2008-06-09

    It is analytically shown that weak initial spectral phase modulations cause a pulse-contrast degradation at the output of nonlinear chirped-pulse amplification systems. The Kerr-nonlinearity causes an energy-transfer from the main pulse to side-pulses during nonlinear amplification. The relative intensities of these side-pulses can be described in terms of Bessel-functions. It is shown that the intensities of the pulses are dependent on the magnitude of the accumulated nonlinear phase-shift (i.e., the B-integral), the depth and period of the initial spectral phase-modulation and the slope of the linear stretching chirp. The results are applicable to any type of laser amplifier that is based on the technique of chirped-pulse amplification. The analytical results presented in this paper are of particular importance for high peak-power laser applications requiring high pulse-contrasts, e.g. high field physics.

  16. Spectral anomalies of the light-induced drift of rubidium atoms caused by the velocity dependence of transport collision frequencies

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. I.; Shalagin, A. M.

    2014-02-01

    The spectral features of the light-induced drift (LID) velocity for rubidium atoms (85Rb and 87Rb) in an argon buffer medium and in binary buffer mixtures of noble gases (Ne + Ar, Ne + Kr, Ne + Xe, He + Ar, He + Kr, and He + Xe) have been investigated theoretically. A strong temperature dependence of the spectral shape of the LID signal for Rb atoms in an Ar atmosphere is predicted in the temperature range 450 K < T < 800 K. It is shown that the anomalous LID of Rb atoms in binary buffer mixtures of noble gases can be observed at almost any temperature (including the room one) depending on the fractions of neon or helium in these mixtures. The results obtained enable a highly accurate testing of the interatomic interaction potentials used to calculate the drift velocity for anomalous LID in LID experiments.

  17. Fibre laser system providing generation of frequency-modulated pulses with a spectral width exceeding the gain linewidth

    NASA Astrophysics Data System (ADS)

    Zolotovskii, I. O.; Korobko, D. A.; Stoliarov, D. A.

    2016-12-01

    We propose an improved scheme of an amplifier similariton laser with a spectral width of the output significantly exceeding the gain linewidth. In the system, an additional dispersion element is inserted into the cavity to provide a local increase in the peak pulse power. The proposed scheme allows a reduction of pulse duration and an increase in peak power of the output pulse after compression.

  18. Use of the characteristic Raman lines of toluene (C7 H8) as a precise frequency reference on the spectral analysis of gasoline-ethanol blends

    NASA Astrophysics Data System (ADS)

    Ortega Clavero, Valentin; Javahiraly, Nicolas; Weber, Andreas; Schröder, Werner; Curticapean, Dan; Meyrueis, Patrick P.

    2014-09-01

    In order to reduce some of the toxic emissions produced by internal combustion engines, the fossil-based fuels have been combined with less harmful materials in recent years. However, the fuels used in the automotive industry generally contain different additives, such as toluene, as anti-shock agents and as octane number enhancers. These materials can cause certain negative impact, besides the high volatility implied, on public health or environment due to its chemical composition. Toluene, among several other chemical compounds, is an additive widely used in the commercially-available gasoline-ethanol blends. Despite the negative aspects in terms of toxicity that this material might have, the Raman spectral information of toluene can be used to achieve certain level of frequency calibration without using any additional chemical marker in the sample or any other external device. Moreover, the characteristic and well-defined Raman line of this chemical compound at 1003 cm-1 (even at low v/v content) can be used to quantitatively determine certain aspects of the gasoline-ethanol blend under observation. By using an own-designed Fourier-Transform Raman spectrometer (FT-Raman), we have collected and analyzed different commercially-available and laboratory-prepared gasoline-ethanol blends. By carefully observing the main Raman peaks of toluene in these fuel blends, we have determined the frequency accuracy of the Raman spectra obtained. The spectral information has been obtained in the range of 0 cm-1 to 3500 cm-1 with a spectral resolution of 1.66 cm-1. The Raman spectra obtained presented only reduced frequency deviations in comparison to the standard Raman spectrum of toluene provided by the American Society for Testing and Materials (ASTM).

  19. Variation in high-frequency wave radiation from small repeating earthquakes as revealed by cross-spectral analysis

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Norishige; Uchida, Naoki; Matsuzawa, Toru; Okada, Tomomi; Nakajima, Junichi; Matsushima, Takeshi; Kono, Toshio; Hirahara, Satoshi; Nakayama, Takashi

    2016-11-01

    We examined the variation in the high-frequency wave radiation for three repeating earthquake sequences (M = 3.1-4.1) in the northeastern Japan subduction zone by waveform analyses. Earthquakes in each repeating sequence are located at almost the same place and show low-angle thrust type focal mechanisms, indicating that they represent repeated ruptures of a seismic patch on the plate boundary. We calculated cross-spectra of the waveforms and obtained the phases and coherences for pairs of events in the respective repeating sequences in order to investigate the waveform differences. We used waveform data sampled at 1 kHz that were obtained from temporary seismic observations we conducted immediately after the 2011 Tohoku earthquake near the source area. For two repeating sequences, we found that the interevent delay times for the two waveforms in a frequency band higher than the corner frequencies are different from those in a lower frequency band for particular event pairs. The phases and coherences show that there are coherent high-frequency waves for almost all the repeaters regardless of the high-frequency delays. These results indicate that high-frequency waves are always radiated from the same vicinity (subpatch) for these events but the time intervals between the ruptures of the subpatch and the centroid times can vary. We classified events in the sequence into two subgroups according to the high-frequency band interevent delays relative to the low-frequency band. For one sequence, we found that all the events that occurred just after (within 11 days) larger nearby earthquakes belong to one subgroup while other events belong to the other subgroup. This suggests that the high-frequency wave differences were caused by stress perturbations due to the nearby earthquakes. In summary, our observations suggest that high-frequency waves from the repeating sequence are radiated not from everywhere but from a long-duration subpatch within the seismic slip area. The

  20. Spectral observations of Venus in the frequency interval 18.5-24.0 GHz - 1964 and 1967-68.

    NASA Technical Reports Server (NTRS)

    Jones, D. E.; Wrathall, D. M.; Meredith, B. L.

    1972-01-01

    During July 1964, Venus was observed with a tunable radiometer at eight frequencies in the interval 20.6-24.0 GHz and again at six frequencies in the interval 18.5-24.0 GHz during an eight-month period beginning approximately one month after the inferior conjunction of 1967. Microwave spectra for these frequency intervals were computed using the results from Mariner 5 and Veneras 4-7 and compared to these data. One block of data suggests a lower percentage of H2O than that reported by the Venera probes, while other blocks may be consistent with the probe data. These data therefore suggest that the distribution of water vapor down to atmospheric levels probed at these frequencies may vary with time or else the Venera probes may have detected localized enhancements in water vapor.

  1. Low PAPR space frequency block coding for multiuser MIMO SC-FDMA systems: specific issues for users with different spectral allocations

    NASA Astrophysics Data System (ADS)

    Ciochina, Cristina; Mottier, David; Castelain, Damien

    2011-12-01

    Single-carrier space frequency block coding (SC-SFBC) is an innovative mapping scheme suitable for implementing transmit diversity in single-carrier frequency division multiple access (SC-FDMA) systems. The main advantage of SC-SFBC is that it preserves the low envelope variations of SC-FDMA, which is particularly interesting for the uplink of wireless communications systems. In this article, we apply the SC-SFBC concept in a multiuser multiple-input multiple-output (MU-MIMO) scenario. We introduce a novel algorithm allowing the optimization of the parameters of SC-SFBC to enable low-complexity decoding at the receiver side and to maximize the overall spectral occupancy in MU-MIMO SC-FDMA systems, and we show the good performance of the proposed MU scheme.

  2. How to Distinguish Neutron Star and Black Hole X-ray Binaries? Spectral Index and Quasi-Periodic Oscillation Frequency Correlation

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shaposhnikov, Nickolai

    2005-01-01

    Recent studies have revealed strong correlations between 1-10 Hz frequencies of quasiperiodic oscillations (QPOs) and the spectral power law index of several Black Hole (BH) candidate sources when seen in the low/hard state, the steep power-law (soft) state, and in transition between these states. In the soft state these index-QPO frequency correlations show a saturation of the photon index GAMMA approximately equal to 2.7 at high values of the low frequency nu(sub L). This saturation effect was previously identified as a black hole signature. In this paper we argue that this saturation does not occur, at least for one neutron star (NS) source 4U 1728-34, for which the index GAMMA monotonically increases with nu(sub L) to the values of 6 and higher. We base this conclusion on our analysis of approximately 1.5 Msec of RXTE archival data for 4U 1728-34. We reveal the spectral evolution of the Comptonized blackbody spectra when the source transitions from the hard to soft states. The hard state spectrum is a typical thermal Comptonization spectrum of the soft photons which originate in the disk and the NS outer photospheric layers. The hard state photon index is GAMMA approximately 2. The soft state spectrum consists of two blackbody components which are only slightly Comptonized. Thus we can claim (as expected from theory) that in NS sources thermal equilibrium is established for the soft state. To the contrary in BH sources, the equilibrium is never established due to the presence of the BH horizon. The emergent BH spectrum, even in the high/soft state, has a power law component. We also identify the low QPO frequency nu(sub L) as a fundamental frequency of the quasi-spherical component of the transition layer (presumably related to the corona and the NS and disk magnetic closed field lines). The lower frequency nu(sub SL) is identified as the frequency of oscillations of a quasi-cylindrical configuration of the TL (presumably related to the NS and disk magnetic

  3. Spectral Index and Quasi-Periodic Oscillation Frequency Correlation in Black Hole (BH) Sources: Observational Evidence of Two Phases and Phase Transition in BHs

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Fiorito, Ralph

    2004-01-01

    Recent studies have shown that strong correlations are observed between the low frequencies (1-10 Hz) of quasiperiodic oscillations (QPOs) and the spectral power law index of several Black Hole (BH) candidate sources, in low hard states, steep power-law (soft) states and in transition between these states. The observations indicate that the X-ray spectrum of such state (phases) show the presence of a power-law component and are sometimes related to simultaneous radio emission indicated the probable presence of a jet. Strong QPOs (less than 20% rms) are present in the power density spectrum in the spectral range where the power-law component is dominant ( i.e. 60-90% ). This evidence contradicts the dominant long standing interpretation of QPOs as a signature of the thermal accretion disk. We present the data from the literature and our own data to illustrate the dominance of power-law index-QPO frequency correlations. We provide a model, that identifies and explains the origin of the QPOs and how they are imprinted on the properties of power-law flux component. We argue the existence of a bounded compact coronal region which is a natural consequence of the adjustment of Keplerian disk flow to the innermost sub-Keplerian boundary conditions near the central object and that ultimately leads to the formation of a transition layer (TL) between the adjustment radius and the innermost boundary. The model predicts two phases or states dictated by the photon upscattering produced in the TL: (1) hard state, in which the TL is optically thin and very hot (kT approx. greater than 50 keV) producing photon upscattering via thermal Componization; the photon spectrum index Gamma appprox.1.5 for this state is dictated by gravitational energy release and Compton cooling in an optically thin shock near the adjustment radius; (2) a soft state which is optically thick and relatively cold (approx. less than 5 keV); the index for this state, Gamma approx. 2.8 is determined by soft

  4. Spectral characterization of human EHG frequency components based on the extraction and reconstruction of the ridges in the scalogram.

    PubMed

    Terrien, J; Marque, C; Karlsson, B

    2007-01-01

    Numerous studies have observed and analyzed the external electrical activity of the uterus, the so-called electrohysterogram (EHG), associated with contractions during pregnancy and labor. The EHG is mainly composed of two distinct frequency components, FWL (Fast Wave Low, low frequency component) and FWH (Fast Wave High, high frequency component). It has been suggested that FWH is mainly associated with uterine cell excitability and FWL with the propagation of this activity. This hypothesis is still unproven. We compared two procedures for ridge extraction/reconstruction of the EHG scalogram, with the objective of analyzing the propagation of the EHG on FWH and FWL separately. The performance of the methods under investigation was tested on both synthetic and real signals. The results indicate that the EHG can be characterized by two distinct continuous ridges, supposed to be FWH and FWL, with a low reconstruction error. We have also shown that the extracted ridges have different energy, temporal characteristics and bandwidths.

  5. Multi-Frequency Synthesis

    NASA Astrophysics Data System (ADS)

    Conway, J. E.; Sault, R. J.

    Introduction; Image Fidelity; Multi-Frequency Synthesis; Spectral Effects; The Spectral Expansion; Spectral Dirty Beams; First Order Spectral Errors; Second Order Spectral Errors; The MFS Deconvolution Problem; Nature of The Problem; Map and Stack; Direct Assault; Data Weighting Methods; Double Deconvolution; The Sault Algorithm; Multi-Frequency Self-Calibration; Practical MFS; Conclusions

  6. Single-sided deafness and directional hearing: contribution of spectral cues and high-frequency hearing loss in the hearing ear

    PubMed Central

    Agterberg, Martijn J. H.; Hol, Myrthe K. S.; Van Wanrooij, Marc M.; Van Opstal, A. John; Snik, Ad F. M.

    2014-01-01

    Direction-specific interactions of sound waves with the head, torso, and pinna provide unique spectral-shape cues that are used for the localization of sounds in the vertical plane, whereas horizontal sound localization is based primarily on the processing of binaural acoustic differences in arrival time (interaural time differences, or ITDs) and sound level (interaural level differences, or ILDs). Because the binaural sound-localization cues are absent in listeners with total single-sided deafness (SSD), their ability to localize sound is heavily impaired. However, some studies have reported that SSD listeners are able, to some extent, to localize sound sources in azimuth, although the underlying mechanisms used for localization are unclear. To investigate whether SSD listeners rely on monaural pinna-induced spectral-shape cues of their hearing ear for directional hearing, we investigated localization performance for low-pass filtered (LP, <1.5 kHz), high-pass filtered (HP, >3kHz), and broadband (BB, 0.5–20 kHz) noises in the two-dimensional frontal hemifield. We tested whether localization performance of SSD listeners further deteriorated when the pinna cavities of their hearing ear were filled with a mold that disrupted their spectral-shape cues. To remove the potential use of perceived sound level as an invalid azimuth cue, we randomly varied stimulus presentation levels over a broad range (45–65 dB SPL). Several listeners with SSD could localize HP and BB sound sources in the horizontal plane, but inter-subject variability was considerable. Localization performance of these listeners strongly reduced after diminishing of their spectral pinna-cues. We further show that inter-subject variability of SSD can be explained to a large extent by the severity of high-frequency hearing loss in their hearing ear. PMID:25071433

  7. More systematic errors in the measurement of power spectral density

    NASA Astrophysics Data System (ADS)

    Mack, Chris A.

    2015-07-01

    Power spectral density (PSD) analysis is an important part of understanding line-edge and linewidth roughness in lithography. But uncertainty in the measured PSD, both random and systematic, complicates interpretation. It is essential to understand and quantify the sources of the measured PSD's uncertainty and to develop mitigation strategies. Both analytical derivations and simulations of rough features are used to evaluate data window functions for reducing spectral leakage and to understand the impact of data detrending on biases in PSD, autocovariance function (ACF), and height-to-height covariance function measurement. A generalized Welch window was found to be best among the windows tested. Linear detrending for line-edge roughness measurement results in underestimation of the low-frequency PSD and errors in the ACF and height-to-height covariance function. Measuring multiple edges per scanning electron microscope image reduces this detrending bias.

  8. Time-frequency spectral analysis of TMS-evoked EEG oscillations by means of Hilbert-Huang transform.

    PubMed

    Pigorini, Andrea; Casali, Adenauer G; Casarotto, Silvia; Ferrarelli, Fabio; Baselli, Giuseppe; Mariotti, Maurizio; Massimini, Marcello; Rosanova, Mario

    2011-06-15

    A single pulse of Transcranial Magnetic Stimulation (TMS) generates electroencephalogram (EEG) oscillations that are thought to reflect intrinsic properties of the stimulated cortical area and its fast interactions with other cortical areas. Thus, a tool to decompose TMS-evoked oscillations in the time-frequency domain on a millisecond timescale and on a broadband frequency range may help to understand information transfer across cortical oscillators. Some recent studies have employed algorithms based on the Wavelet Transform (WT) to study TMS-evoked EEG oscillations in healthy and pathological conditions. However, these methods do not allow to describe TMS-evoked EEG oscillations with high resolution in time and frequency domains simultaneously. Here, we first develop an algorithm based on Hilbert-Huang Transform (HHT) to compute statistically significant time-frequency spectra of TMS-evoked EEG oscillations on a single trial basis. Then, we compared the performances of the HHT-based algorithm with the WT-based one by applying both of them to a set of simulated signals. Finally, we applied both algorithms to real TMS-evoked potentials recorded in healthy or schizophrenic subjects. We found that the HHT-based algorithm outperforms the WT-based one in detecting the time onset of TMS-evoked oscillations in the classical EEG bands. These results suggest that the HHT-based algorithm may be used to study the communication between different cortical oscillators on a fine time scale.

  9. Relevance of different spectral techniques to describe estuarine suspended sediment dynamics based on a high-frequency, long-term turbidity dataset

    NASA Astrophysics Data System (ADS)

    Jalón Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo

    2015-04-01

    Sediment dynamics in estuaries are complex and strongly variable over time scales ranging from seconds to years. Various forcings (turbulence, tides, river inflow, wind waves, morphological and climatic changes) may cause the temporal and spatial variability of suspended sediment (SS) concentrations. The evaluation of these SS dynamics by in-situ measurements have traditionally faced three difficulties: (1) the quantification of low-frequency variability that requires continuous measures over long time periods; (2) inevitable gaps in data limiting the post-processing; (3) the need for recording other environmental variables in the same period and at a coherent sampling frequency. To record a high-frequency and long-term turbidity dataset, an automatic monitoring network (MAGEST) has been implemented in the Gironde estuary, a macrotidal and highly turbid system in the South-West France, in 2004. This 10-year turbidity time series is rather unique in European estuaries, enabling the evaluation of SS dynamics at all the significant time scales in one single analysis of the dataset. To achieve this, several methodologies of data analysis using different approaches are available, but their relevance, especially for the more recently developed ones, is almost unexplored. In this work, we present the test of four spectral techniques to the analysis of a high-frequency turbidity time series of an estuary such as the Gironde, to discuss advantages and limitations of each method. We compare the Power Spectral Analysis (PSA), the Singular Spectral Analysis (SSA), the Wavelet Transform (WT) and the Empirical Mode Decomposition (EMD). Advantages and limitations of each method are evaluated on the basis of five criteria: efficiency for incomplete time series, appropriateness for time-varying analysis, ability to recognize processes without the need of complementary environmental variables, capacity to calculate the relative importance of processes, and capacity to identify long

  10. Spectral Features of the Interaction of Femtosecond Light Pulses of Different Frequencies near the Boundary of a Kerr Medium

    SciTech Connect

    Krylov, V.N.; Bespalov, V.G.; Stasel'ko, D.I.; Lobanov, S.A.; Miloglyadov, E.V.; Seyfang, G.

    2005-11-15

    The interaction of probe ultraviolet (UV) and intense infrared (IR) pump pulses with a duration of 150 fs in a thin 2-mm-long sample of fused silica has been studied theoretically and experimentally. The spectra of UV radiation at the output of the sample have been measured depending on the time delay between the pulses at the sample input. The maximum shifts of the spectrum, attaining up to 0.22 nm for an IR power density of 3 x 10{sup 11} W/cm{sup 2}, have been observed under conditions of coincidence of the pulses at the sample input and output, which corresponds to a predominant interaction of the probe radiation with the leading and trailing edges of the pump pulse near the boundary of the medium. The observed dependences are interpreted as a manifestation of the cross-phase modulation due to the Kerr nonlinearity of the medium and the dispersion of the group velocities of the UV and IR pulses. The numerical simulations performed taking into account these effects agree well with the experimental data.

  11. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  12. NONLINEAR-OPTICS PHENOMENA: Formation of optical pulses by modulating the resonant quantum transition frequency in a spectrally inhomogeneous medium

    NASA Astrophysics Data System (ADS)

    Polovinkin, V. A.; Radionychev, E. V.

    2010-02-01

    We consider the conversion of monochromatic radiation in the case of resonant interaction with a quantum system under the condition of harmonic modulation of the quantum transition frequency by the action of additional nonresonant radiation due to the Stark or Zeeman effect, taking into account the inhomogeneous broadening of the quantum transition line. It is shown analytically and numerically that resonant radiation can be converted in a train of ultrashort pulses with a peak intensity exceeding manifold the incident wave intensity. The possibility of the additional compression of the produced pulses is studied by compensating the inherent frequency modulation in a medium with a quadratic or programmable dispersion. The optimal values of the radiation — matter interaction parameters are found numerically. It is shown that generation of femtosecond optical pulses of radiation quasi-resonant to the δ transition of the atomic hydrogen Balmer series is possible.

  13. Edge Bioinformatics

    SciTech Connect

    Lo, Chien-Chi

    2015-08-03

    Edge Bioinformatics is a developmental bioinformatics and data management platform which seeks to supply laboratories with bioinformatics pipelines for analyzing data associated with common samples case goals. Edge Bioinformatics enables sequencing as a solution and forward-deployed situations where human-resources, space, bandwidth, and time are limited. The Edge bioinformatics pipeline was designed based on following USE CASES and specific to illumina sequencing reads. 1. Assay performance adjudication (PCR): Analysis of an existing PCR assay in a genomic context, and automated design of a new assay to resolve conflicting results; 2. Clinical presentation with extreme symptoms: Characterization of a known pathogen or co-infection with a. Novel emerging disease outbreak or b. Environmental surveillance

  14. Effects of spatial and spectral frequencies on wide-field functional imaging (wifi) characterization of preclinical breast cancer models

    NASA Astrophysics Data System (ADS)

    Moy, Austin; Kim, Jae G.; Lee, Eva Y. H. P.; Choi, Bernard

    2010-02-01

    A common strategy to study breast cancer is the use of the preclinical model. These models provide a physiologically relevant and controlled environment in which to study both response to novel treatments and the biology of the cancer. Preclinical models, including the spontaneous tumor model and mammary window chamber model, are very amenable to optical imaging and to this end, we have developed a wide-field functional imaging (WiFI) instrument that is perfectly suited to studying tumor metabolism in preclinical models. WiFI combines two optical imaging modalities, spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI). Our current WiFI imaging protocol consists of multispectral imaging in the near infrared (650-980 nm) spectrum, over a wide (7 cm x 5 cm) field of view. Using SFDI, the spatially-resolved reflectance of sinusoidal patterns projected onto the tissue is assessed, and optical properties of the tissue are determined, which are then used to extract tissue chromophore concentrations in the form of oxy-, deoxy-, and total hemoglobin concentrations, and percentage of lipid and water. In the current study, we employ Monte Carlo simulations of SFDI light propagation in order to characterize the penetration depth of light in both the spontaneous tumor model and mammary window chamber model. Preliminary results suggest that different spatial frequency and wavelength combinations have different penetration depths, suggesting the potential depth sectioning capability of the SFDI component of WiFI.

  15. Topologically universal spectral hierarchies of quasiperiodic systems

    NASA Astrophysics Data System (ADS)

    Dana, Itzhack

    2014-05-01

    Topological properties of energy spectra of general one-dimensional quasiperiodic systems, describing also Bloch electrons in magnetic fields, are studied for an infinity of irrational modulation frequencies corresponding to irrational numbers of flux quanta per unit cell. These frequencies include well-known ones considered in works on Fibonacci quasicrystals. It is shown that the spectrum for any such frequency exhibits a self-similar hierarchy of clusters characterized by universal (system-independent) values of Chern topological integers which are exactly determined. The cluster hierarchy provides a simple and systematic organization of all the spectral gaps, labeled by universal topological numbers which are exactly determinable, thus avoiding their numerical evaluation using rational approximants of the irrational frequency. These numbers give both the quantum Hall conductance of the system and the winding number of the edge-state energy traversing a gap as a Bloch quasimomentum is varied.

  16. Programmable broadband radio-frequency transversal filter with compact fiber-optics and digital microelectromechanical system-based optical spectral control.

    PubMed

    Riza, Nabeel A; Arain, Muzammil A

    2004-05-20

    To the best of our knowledge, for the first time a programmable broadband rf transversal filter is proposed that operates on the principle of broadband optical spectral control implemented with a spatial light modulator input rf signal time delay and weight selection over a near-continuous signal space. Specifically, the filter uses a chirped fiber Bragg grating in combination with a two-dimensional digital micromirror device to enable a programmable rf filter. As a first step, a two-tap rf notch filter is demonstrated with a tuning range of 0.563-6.032 GHz with a 25-dB notch depth at test notch frequencies of 845 and 905 MHz. The proposed filter can find applications in diverse fields such as radar, communications, medicine, and test and measurement.

  17. Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues

    SciTech Connect

    Wang, Hong-Fei

    2016-12-01

    Sum-frequency generation vibrational spectroscopy (SFG-VS) was first developed in the 1980s and it has been proven a uniquely sensitive and surface/interface selective spectroscopic probe for characterization of the structure, conformation and dynamics of molecular surfaces and interfaces. In recent years, there has been significant progress in the development of methodology and instrumentation in the SFG-VS toolbox that has significantly broadened the application to complex molecular surfaces and interfaces. In this review, after presenting a unified view on the theory and methodology focusing on the SFG-VS spectral lineshape, as well as the new opportunities in SFG-VS applications with such developments, some of the controversial issues that have been puzzling the community are to be discussed. The aim of this review is to present to the researchers and students interested in molecular surfaces and interfacial sciences up-to-date perspectives complementary to the existing textbooks and reviews on SFG-VS.

  18. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers.

    PubMed

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2012-09-15

    In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power significantly. By combining two distributed Bragg reflector tapered diode lasers we achieve a 2.5-3.2 fold increase in power and a maximum of 3.9 W of diffraction-limited green light. At this power level, green diode laser systems have a high application potential, e.g., within the biomedical field. Our concept can be expanded combining multiple diode lasers to increase the power even further.

  19. Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Fei

    2016-12-01

    Sum-frequency generation vibrational spectroscopy (SFG-VS) was first developed in the 1980s and it has been proven a uniquely sensitive and surface/interface selective spectroscopic probe for characterization of the structure, conformation and dynamics of molecular surfaces and interfaces. In recent years, there have been many progresses in the development of methodology and instrumentation in the SFG-VS toolbox that have significantly broadened the application to complex molecular surfaces and interfaces. In this review, after presenting a unified view on the theory and methodology focusing on the SFG-VS spectral lineshape, as well as the new opportunities in SFG-VS applications with such developments, some of the controversial issues that have been puzzling the community are discussed. The aim of this review is to present to the researchers and students interested in molecular surfaces and interfacial sciences up-to-date perspectives complementary to the existing textbooks and reviews on SFG-VS.

  20. High-Frequency X-Ray Oscillations and X-Ray Spectral Evolution in Galactic Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Remillard, R. A.; Morgan, E. H.; Muno, M.

    2002-12-01

    There are now 5 Galactic black hole candidates that have exhibited quasi-periodic oscillations (QPO) in X-rays in the range of 67 to 300 Hz. The rms amplitudes are near 1 % of the average flux, and in two cases there are significant changes in the QPO frequency. The short timescales and origin in X-rays suggest that these QPOs signify inner accretion disk oscillations rooted in General Relativity, but the particular mechanism is uncertain. For two of these cases, GRO J1655-40 and GRS 1915+105, we trace the conditions under which these QPOs appear in terms of the division of luminosity between the X-ray components due to the accretion disk and the hard X-ray power law. In this context, the fast QPOs are most likely to occur when there is high luminosity in both the disk and the X-ray power-law component. On the other hand, the QPOs are not seen when the X-ray spectrum resembles either a pure disk or a dominant power-law component associated with a radio jet. The results imply a closer kinship for these QPOs than might be concluded from considerations of the gross shape of the X-ray spectrum.

  1. Spectral Index and Quasi-Periodic Oscillation Frequency Correlation in Black Hole Sources: Observational Evidence of Two Phases and Phase Transition in Black Holes

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Fiorito, Ralph

    2004-01-01

    Recent studies have shown that strong correlations are observed between the low frequencies (1-10 Hz) of quasi-periodic oscillations (QPOs) and the spectral power law index of several black hole (BH) candidate sources, in low (hard) states, steep power law (soft) states, and transitions between these states. The observations indicate that the X-ray spectra of such state (phases) show the presence of a power-law component and are sometimes related to simultaneous radio emission, indicating the probable presence of a jet. Strong QPOs (>20% rms) are present in the power density spectrum in the spectral range where the power-law component is dominant (i.e., 60%90%). This evidence contradicts the dominant, long-standing interpretation of QPOs as a signature of the thermal accretion disk. We present the data from the literature and our own data to illustrate the dominance of power-law index-QPO frequency correlations. We provide a model that identifies and explains the origin of the QPOs and how they are imprinted on the properties of the power-law flux component. We argue for the existence of a bounded compact coronal region that is a natural consequence of the adjustment of the Keplerian disk flow to the innermost sub-Keplerian boundary conditions near the central object and that ultimately leads to the formation of a transition layer (TL) between the adjustment radius and the innermost boundary. The model predicts two phases or states dictated by the photon upscattering produced in the TL: (1) a hard state, in which the TL is optically thin and very hot (kT approximately greater than 50 keV), producing photon upscattering via thermal Comptonization (the photon spectrum index Gamma approximates 1.7 for this state is dictated by gravitational energy release and Compton cooling in an optically thin shock near the adjustment radius), and (2) a soft state that is optically thick and relatively cold (kT approximately less than 5 keV the index for this state, Gamma

  2. Effect of high-frequency spectral components in computer recognition of dysarthric speech based on a Mel-cepstral stochastic model.

    PubMed

    Polur, Prasad D; Miller, Gerald E

    2005-01-01

    Computer speech recognition of individuals with dysarthria, such as cerebral palsy patients, requires a robust technique that can handle conditions of very high variability and limited training data. In this study, a hidden Markov model (HMM) was constructed and conditions investigated that would provide improved performance for a dysarthric speech (isolated word) recognition system intended to act as an assistive/control tool. In particular, we investigated the effect of high-frequency spectral components on the recognition rate of the system to determine if they contributed useful additional information to the system. A small-size vocabulary spoken by three cerebral palsy subjects was chosen. Mel-frequency cepstral coefficients extracted with the use of 15 ms frames served as training input to an ergodic HMM setup. Subsequent results demonstrated that no significant useful information was available to the system for enhancing its ability to discriminate dysarthric speech above 5.5 kHz in the current set of dysarthric data. The level of variability in input dysarthric speech patterns limits the reliability of the system. However, its application as a rehabilitation/control tool to assist dysarthric motor-impaired individuals such as cerebral palsy subjects holds sufficient promise.

  3. Estimation of Mass of Compact Object in H 1743-322 from 2010 and 2011 Outbursts using TCAF Solution and Spectral Index-QPO Frequency Correlation

    NASA Astrophysics Data System (ADS)

    Molla, Aslam Ali; Chakrabarti, Sandip K.; Debnath, Dipak; Mondal, Santanu

    2017-01-01

    The well-known black hole candidate (BHC) H 1743-322 exhibited temporal and spectral variabilities during several outbursts. The variation of the accretion rates and flow geometry that change on a daily basis during each of the outbursts can be very well understood using the recent implementation of the two-component advective flow solution of the viscous transonic flow equations as an additive table model in XSPEC. This has dramatically improved our understanding of accretion flow dynamics. Most interestingly, the solution allows us to treat the mass of the BHC as a free parameter and its mass could be estimated from spectral fits. In this paper, we fitted the data of two successive outbursts of H 1743-322 in 2010 and 2011 and studied the evolution of accretion flow parameters, such as two-component (Keplerian and sub-Keplerian) accretion rates, shock location (i.e., size of the Compton cloud), etc. We assume that the model normalization remains the same across the states in both these outbursts. We used this to estimate the mass of the black hole and found that it comes out in the range of 9.25{--}12.86 {M}⊙ . For the sake of comparison, we also estimated mass using the Photon index versus Quasi Periodic Oscillation frequency correlation method, which turns out to be 11.65+/- 0.67 {M}⊙ using GRO J1655-40 as a reference source. Combining these two estimates, the most probable mass of the compact object becomes {11.21}-1.96+1.65 {M}⊙ .

  4. Magnetohydrodynamic interference with the edge pedestal motional Stark effect diagnostic on DIII-D

    SciTech Connect

    King, J. D.; Makowski, M. A.; Holcomb, C. T.; Allen, S. L.; Hill, D. N.; Meyer, W. H.; Geer, R.; La Haye, R. J.; Petty, C. C.; Van Zeeland, M. A.; Turco, F.; Rhodes, T. L.; Morse, E. C.

    2011-03-15

    Accurate measurement of internal magnetic field direction using motional Stark effect (MSE) polarimetry in the edge pedestal is desired for nearly all tokamak scenario work. A newly installed 500 kHz 32-channel digitizer on the MSE diagnostic of DIII-D allows full spectral information of the polarimeter signal to be recovered for the first time. Fourier analysis of this data has revealed magnetohydrodynamic (MHD) fluctuations in the plasma edge pedestal at {rho}{>=} 0.92. By correlating edge localized mode fluctuations seen on lock-in amplifier outputs with MSE spectrograms, it has been shown that edge pedestal tearing mode fluctuations cause interference with MSE second harmonic instrument frequencies. This interference results in unrecoverable errors in the real-time polarization angle measurement that are more than an order of magnitude larger than typical polarimeter uncertainties. These errors can cause as much as a 38% difference in local q. By using a redundant measure of the linear polarization found at the fourth harmonic photo-elastic modulator (PEM) frequency, MHD interference can be avoided. However, because of poorer signal-to-noise the fourth harmonic signal computed polarization angle shows no improvement over the MHD polluted second harmonics. MHD interference could be avoided in future edge pedestal tokamak polarimeters by utilizing PEMs with higher fundamental frequencies and a greater separation between their frequencies.

  5. Edge Detection,

    DTIC Science & Technology

    1985-09-01

    PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE

  6. Performance evaluation of a sub-millimetre spectrally resolved CT system on high- and low-frequency imaging tasks: a simulation.

    PubMed

    Yveborg, Moa; Danielsson, Mats; Bornefalk, Hans

    2012-04-21

    We are developing a photon-counting silicon strip detector with 0.4 × 0.5 mm² detector elements for clinical CT applications. Except for the limited detection efficiency of approximately 0.8 for a spectrum of 80 kVp, the largest discrepancies from ideal spectral behaviour have been shown to be Compton interactions in the detector and electronic noise. Using the framework of cascaded system analysis, we reconstruct the 3D MTF and NPS of a silicon strip detector including the influence of scatter and charge sharing inside the detector. We compare the reconstructed noise and signal characteristics with a reconstructed 3D MTF and NPS of an ideal energy-integrating detector system with unity detection efficiency, no scatter or charge sharing inside the detector, unity presampling MTF and 1 × 1 mm² detector elements. The comparison is done by calculating the dose-normalized detectability index for some clinically relevant imaging tasks and spectra. This work demonstrates that although the detection efficiency of the silicon detector rapidly drops for the acceleration voltages encountered in clinical computed tomography practice, and despite the high fraction of Compton interactions due to the low atomic number, silicon detectors can perform on a par with ideal energy-integrating detectors for routine imaging tasks containing low-frequency components. For imaging tasks containing high-frequency components, the proposed silicon detector system can perform approximately 1.1-1.3 times better than a fully ideal energy-integrating system.

  7. Microwave spectral line listing

    NASA Technical Reports Server (NTRS)

    White, W. F., Jr.

    1975-01-01

    The frequency, intensity, and identification of 9615 spectral lines belonging to 75 molecules are tabulated in order of increasing frequency. Measurements for all 75 molecules were made in the frequency range from 26500 to 40000 MHz by a computer controlled spectrometer. Measurements were also made in the 18000 to 26500 MHz range for some of the molecules.

  8. Efficient edge-guided full-waveform inversion by Canny edge detection and bilateral filtering algorithms

    NASA Astrophysics Data System (ADS)

    Xiang, Shiming; Zhang, Haijiang

    2016-11-01

    It is known full-waveform inversion (FWI) is generally ill-conditioned and various strategies including pre-conditioning and regularizing the inversion system have been proposed to obtain a reliable estimation of the velocity model. Here, we propose a new edge-guided strategy for FWI in frequency domain to efficiently and reliably estimate velocity models with structures of the size similar to the seismic wavelength. The edges of the velocity model at the current iteration are first detected by the Canny edge detection algorithm that is widely used in image processing. Then, the detected edges are used for guiding the calculation of FWI gradient as well as enforcing edge-preserving total variation (TV) regularization for next iteration of FWI. Bilateral filtering is further applied to remove noise but keep edges of the FWI gradient. The proposed edge-guided FWI in the frequency domain with edge-guided TV regularization and bilateral filtering is designed to preserve model edges that are recovered from previous iterations as well as from lower frequency waveforms when FWI is conducted from lower to higher frequencies. The new FWI method is validated using the complex Marmousi model that contains several steeply dipping fault zones and hundreds of horizons. Compared to FWI without edge guidance, our proposed edge-guided FWI recovers velocity model anomalies and edges much better. Unlike previous image-guided FWI or edge-guided TV regularization strategies, our method does not require migrating seismic data, thus is more efficient for real applications.

  9. FT-IR, FT-Raman and UV spectral investigation; computed frequency estimation analysis and electronic structure calculations on 4-hydroxypteridine

    NASA Astrophysics Data System (ADS)

    Govindarajan, M.; Karabacak, M.

    2013-04-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 100-4000 cm-1 and 400-4000 cm-1 respectively, for 4-hydroxypteridine (C6H4N4O, 4HDPETN) molecule. The potential energy curve shows that 4HDPETN molecule has two stable structures. The computational results diagnose the most stable conformer of the 4HDPETN as the S1 structure. The molecular structure, fundamental vibrational frequencies and intensities of the vibrational bands were interpreted with the aid of structure optimizations and normal coordinate force field calculations based density functional theory (DFT) and ab initio HF methods and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other method. The energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) complements with the experimental findings. In addition, molecular electrostatic potential, nonlinear optical and thermodynamic properties of the title compound were performed. Mulliken and natural charges of the title molecule were also calculated and interpreted.

  10. Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity.

    PubMed

    Ismail, Nur; Kores, Cristine Calil; Geskus, Dimitri; Pollnau, Markus

    2016-07-25

    We systematically characterize the Fabry-Pérot resonator. We derive the generic Airy distribution of a Fabry-Pérot resonator, which equals the internal resonance enhancement factor, and show that all related Airy distributions are obtained by simple scaling factors. We analyze the textbook approaches to the Fabry-Pérot resonator and point out various misconceptions. We verify that the sum of the mode profiles of all longitudinal modes is the fundamental physical function that characterizes the Fabry-Pérot resonator and generates the Airy distribution. Consequently, the resonator losses are quantified by the linewidths of the underlying Lorentzian lines and not by the measured Airy linewidth. Therefore, we introduce the Lorentzian finesse which provides the spectral resolution of the Lorentzian lines, whereas the usually considered Airy finesse only quantifies the performance of the Fabry-Pérot resonator as a scanning spectrometer. We also point out that the concepts of linewidth and finesse of the Airy distribution of a Fabry-Pérot resonator break down at low reflectivity. Furthermore, we show that a Fabry-Pérot resonator has no cut-off resonance wavelength. Finally, we investigate the influence of frequency-dependent mirror reflectivities, allowing for the direct calculation of its deformed mode profiles.

  11. A frequency domain Ritz-method-based spectral finite element methodology for the computation of band structure of the pentamode metamaterials

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sushovan; Gopalakrishnan, S.

    2016-04-01

    The class of fabricated materials known as metamaterials, with its promises for unconventional material properties or characteristics, has opened up a whole new paradigm of possibilities and challenges. The primary enablers have been capabilities at the very low length scale and novel design configurations. Pentamode metamaterials, having fluid like properties, is one such idea to have been realized in recent past. This type of fabricated materials show high bulk modulus but low shear modulus. The fundamental constituent element is a rod like structure tapered down on both ends. Four of such elements meet at any joint, two of which in a plane orthogonal to that of the other two. The dynamics and wave propagation characteristics of such structures have been studied with an aim to obtain band structures formed because of their periodic nature. Here, a methodology has been developed to compute the wave propagation characteristics of such pentamode structures using spectrally formulated finite elements based on frequency domain Ritz method. Bloch theory has also been used to represent the dynamics of an infinite structure through that of a unit cell. The proposed method is computationally more efficient compared to one using conventional finite element. A few variants of pentamodes are also analyzed to arrive at configurations with superior wave propagation characteristics.

  12. Pulsed laser spectral measurement using a Fabry-Perot interferometer: Limits to resolution

    NASA Technical Reports Server (NTRS)

    Notari, Anthony; Gentry, Bruce M.

    1992-01-01

    We are developing a Doppler lidar system using the edge technique to measure atmospheric wind profiles. The edge technique requires a laser with a narrow spectral bandwidth and a high resolution optical filter. The lidar system will use a Nd:YAG laser operating at 1.064 microns and a high resolution Fabry-Perot interferometer for the edge filter. The Doppler shift measurement is made by locating the laser on the edge of the filter's spectral response function. Due to the steep slope on the edge, large changes in the filter transmission will be observed for small changes in frequency. The Doppler shift can be determined from a measurement of this change in filter transmission if the filter spectral response function in the region of the measurement is well known. Recently developed injection seeded solid state lasers have made near transform limited laser output readily available for lidar work. Injection-seeded Nd:YAG laser exhibit single mode output with smooth Gaussian temporal pulse shapes. Results of an experiment we conducted to evaluate the effects of a short Gaussian temporal input pulse on the spectral response of a high resolution Fabry-Perot interferometer are presented.

  13. An estimation of the influence of force decrease on the mean power spectral frequency shift of the EMG during repetitive maximum dynamic knee extensions.

    PubMed

    Karlsson, J S; Ostlund, N; Larsson, B; Gerdle, B

    2003-10-01

    Frequency analysis of myoelectric (ME) signals, using the mean power spectral frequency (MNF), has been widely used to characterize peripheral muscle fatigue during isometric contractions assuming constant force. However, during repetitive isokinetic contractions performed with maximum effort, output (force or torque) will decrease markedly during the initial 40-60 contractions, followed by a phase with little or no change. MNF shows a similar pattern. In situations where there exist a significant relationship between MNF and output, part of the decrease in MNF may per se be related to the decrease in force during dynamic contractions. This study estimated force effects on the MNF shifts during repetitive dynamic knee extensions. Twenty healthy volunteers participated in the study and both surface ME signals (from the right vastus lateralis, vastus medialis, and rectus femoris muscles) and the biomechanical signals (force, position, and velocity) of an isokinetic dynamometer were measured. Two tests were performed: (i) 100 repetitive maximum isokinetic contractions of the right knee extensors, and (ii) five gradually increasing static knee extensions before and after (i). The corresponding ME signal time-frequency representations were calculated using the continuous wavelet transform. Compensation of the MNF variables of the repetitive contractions was performed with respect to the individual MNF-force relation based on an average of five gradually increasing contractions. Whether or not compensation was necessary was based on the shape of the MNF-force relationship. A significant compensation of the MNF was found for the repetitive isokinetic contractions. In conclusion, when investigating maximum dynamic contractions, decreases in MNF can be due to mechanisms similar to those found during sustained static contractions (force-independent component of fatigue) and in some subjects due to a direct effect of the change in force (force-dependent component of fatigue

  14. Estimation of spectral kurtosis

    NASA Astrophysics Data System (ADS)

    Sutawanir

    2017-03-01

    Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to

  15. Triatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 117 Triatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 55 triatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  16. Diatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 114 Diatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 121 diatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty, and reference are given for each transition reported.

  17. Hydrocarbon Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  18. Reduction of airfoil trailing edge noise by trailing edge blowing

    NASA Astrophysics Data System (ADS)

    Gerhard, T.; Erbslöh, S.; Carolus, T.

    2014-06-01

    The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length.

  19. Cascade trailing-edge noise modeling using a mode-matching technique and the edge-dipole theory

    NASA Astrophysics Data System (ADS)

    Roger, Michel; François, Benjamin; Moreau, Stéphane

    2016-11-01

    An original analytical approach is proposed to model the broadband trailing-edge noise produced by high-solidity outlet guide vanes in an axial turbomachine. The model is formulated in the frequency domain and first in two dimensions for a preliminary assessment of the method. In a first step the trailing-edge noise sources of a single vane are shown to be equivalent to the onset of a so-called edge dipole, the direct field of which is expanded in a series of plane-wave modes. A criterion for the distance of the dipole to the trailing-edge and a scaling of its amplitude is defined to yield a robust model. In a second step the diffraction of each plane-wave mode is derived considering the cascade as an array of bifurcated waveguides and using a mode-matching technique. The cascade response is finally synthesized by summing the diffracted fields of all cut-on modes to yield upstream and downstream sound power spectral densities. The obtained spectral shapes are physically consistent and the present results show that upstream radiation is typically 3 dB higher than downstream radiation, which has been experimentally observed previously. Even though the trailing-edge noise sources are not vane-to-vane correlated their radiation is strongly determined by a cascade effect that consequently must be accounted for. The interest of the approach is that it can be extended to a three-dimensional annular configuration without resorting to a strip theory approach. As such it is a promising and versatile alternative to previously published methods.

  20. Edge-based correlation image registration for multispectral imaging

    DOEpatents

    Nandy, Prabal

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  1. Scaling relationship between corner frequencies and seismic moments of ultra micro earthquakes estimated with coda-wave spectral ratio -the Mponeng mine in South Africa

    NASA Astrophysics Data System (ADS)

    Wada, N.; Kawakata, H.; Murakami, O.; Doi, I.; Yoshimitsu, N.; Nakatani, M.; Yabe, Y.; Naoi, M. M.; Miyakawa, K.; Miyake, H.; Ide, S.; Igarashi, T.; Morema, G.; Pinder, E.; Ogasawara, H.

    2011-12-01

    Scaling relationship between corner frequencies, fc, and seismic moments, Mo is an important clue to understand the seismic source characteristics. Aki (1967) showed that Mo is proportional to fc-3 for large earthquakes (cubic law). Iio (1986) claimed breakdown of the cubic law between fc and Mo for smaller earthquakes (Mw < 2), and Gibowicz et al. (1991) also showed the breakdown for the ultra micro and small earthquakes (Mw < -2). However, it has been reported that the cubic law holds even for micro earthquakes (-1 < Mw > 4) by using high quality data observed at a deep borehole (Abercrombie, 1995; Ogasawara et al., 2001; Hiramatsu et al., 2002; Yamada et al., 2007). In order to clarify the scaling relationship for smaller earthquakes (Mw < -1), we analyzed ultra micro earthquakes using very high sampling records (48 kHz) of borehole seismometers installed within a hard rock at the Mponeng mine in South Africa. We used 4 tri-axial accelerometers of three-component that have a flat response up to 25 kHz. They were installed to be 10 to 30 meters apart from each other at 3,300 meters deep. During the period from 2008/10/14 to 2008/10/30 (17 days), 8,927 events were recorded. We estimated fc and Mo for 60 events (-3 < Mw < -1) within 200 meters from the seismometers. Assuming the Brune's source model, we estimated fc and Mo from spectral ratios. Common practice is using direct waves from adjacent events. However, there were only 5 event pairs with the distance between them less than 20 meters and Mw difference over one. In addition, the observation array is very small (radius less than 30 m), which means that effects of directivity and radiation pattern on direct waves are similar at all stations. Hence, we used spectral ratio of coda waves, since these effects are averaged and will be effectively reduced (Mayeda et al., 2007; Somei et al., 2010). Coda analysis was attempted only for relatively large 20 events (we call "coda events" hereafter) that have coda energy

  2. Ultralow-frequency Raman system down to 10 cm{sup −1} with longpass edge filters and its application to the interface coupling in t(2+2)LGs

    SciTech Connect

    Lin, M.-L.; Qiao, X.-F.; Wu, J.-B.; Shi, W.; Tan, P.-H.; Ran, F.-R.; Li, H.; Zhang, Z.-H.; Xu, X.-Z.; Liu, K.-H.

    2016-05-15

    Ultralow-frequency (ULF) Raman spectroscopy becomes increasingly important in the area of two-dimensional (2D) layered materials; however, such measurement usually requires expensive and nonstandard equipment. Here, the measurement of ULF Raman signal down to 10 cm{sup −1} has been realized with high throughput by combining a kind of longpass edge filters with a single monochromator, which are verified by the Raman spectrum of L-cystine using three laser excitations. Fine adjustment of the angle of incident laser beam from normal of the longpass edge filters and selection of polarization geometry are demonstrated how to probe ULF Raman signal with high signal-to-noise. Davydov splitting of the shear mode in twisted (2+2) layer graphenes (t(2+2)LG) has been observed by such system in both exfoliated and transferred samples. We provide a direct evidence of twist-angle dependent softening of the shear coupling in t(2+2)LG, while the layer-breathing coupling at twisted interfaces is found to be almost identical to that in bulk graphite. This suggests that the exfoliation and transferring techniques are enough good to make a good 2D heterostructures to demonstrate potential device application. This Raman system will be potentially applied to the research field of ULF Raman spectroscopy.

  3. HIGH-FREQUENCY-PEAKED BL LACERTAE OBJECTS AS SPECTRAL CANDLES TO MEASURE THE EXTRAGALACTIC BACKGROUND LIGHT IN THE FERMI AND AIR CHERENKOV TELESCOPES ERA

    SciTech Connect

    Mankuzhiyil, Nijil; Persic, Massimo; Tavecchio, Fabrizio

    2010-05-20

    The extragalactic background light (EBL) is the integrated light from all the stars that have ever formed, and spans the IR-UV range. The interaction of very high-energy (VHE: E > 100 GeV) {gamma}-rays, emitted by sources located at cosmological distances, with the intervening EBL results in e {sup -} e {sup +} pair production that leads to energy-dependent attenuation of the observed VHE flux. This introduces a fundamental ambiguity into the interpretation of measured VHE {gamma}-ray spectra: neither the intrinsic spectrum nor the EBL are separately known-only their combination is. In this Letter, we propose a method to measure the EBL photon number density. It relies on using simultaneous observations of BL Lac objects in the optical, X-ray, high-energy (HE: E > 100 MeV) {gamma}-ray (from the Fermi telescope), and VHE {gamma}-ray (from Cherenkov telescopes) bands. For each source, the method involves best-fitting the spectral energy distribution from optical through HE {gamma}-rays (the latter being largely unaffected by EBL attenuation as long as z {approx_lt} 1) with a synchrotron self-Compton model. We extrapolate such best-fitting models into the VHE regime and assume they represent the BL Lacs' intrinsic emission. Contrasting measured versus intrinsic emission leads to a determination of the {gamma}{gamma} opacity to VHE photons. Using, for each given source, different states of emission will only improve the accuracy of the proposed method. We demonstrate this method using recent simultaneous multifrequency observations of the high-frequency-peaked BL Lac object PKS 2155-304 and discuss how similar observations can more accurately probe the EBL.

  4. The Edge

    NASA Technical Reports Server (NTRS)

    2006-01-01

    6 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the edge (running diagonally from the lower left to the upper right) of a trough, which is part of a large pit crater complex in Noachis Terra. This type of trough forms through the collapse of surface materials into the subsurface, and often begins as a series of individual pit craters. Over time, continued collapse increases the diameter of individual pits until finally, adjacent pits merge to form a trough such as the one captured in this image. The deep shadowed area is caused in part by an overhang; layered rock beneath this overhang is less resistant to erosion, and thus has retreated tens of meters backward, beneath the overhang. A person could walk up inside this 'cave' formed by the overhanging layered material.

    Location near: 47.0oS, 355.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  5. Turbulence Measurements on a Flap-Edge Model

    NASA Technical Reports Server (NTRS)

    Moriarty, Patrick; Bradshaw, Peter; Cantwell, Brian; Ross, James

    1998-01-01

    Turbulence measurements have been made on a flap-edge and leading-edge slat model using hot-wire anemometry, and, later, particle image velocimetry. The properties of hot-wire anemometry were studied using facilities at NASA Ames Research Center. Hot-film probes were used because of their durability, but cross-films were limited by non-linear end effects. As a warm-up exercise, hot-film probes were used to measure velocities in the farfield wake of a cylinder with an airfoil in the near-field wake. The airfoil reduced the drag coefficient of the system by 10%. A single-wire hot-film probe was used to measure velocity profiles over the top of a NACA 63(sub 2)-215 Mod. B wing with a Fowler flap and leading,-edge slat. Results showed the size of slat wake was dependent upon the slat deflection angle. Velocity increased through the slat gap with increased deflection. The acoustically modified slat decreased the chance of separation. Measurements were taken at the flap edge with a single hot-film. Trends in the data indicate velocity and turbulence levels increase at the flap edge. The acoustically modified flap modifies the mean flow near the flap edge. Correlations were made between the hot-film signal and the unsteady pressure transducers on the wing which were published in a NASA CDTM. The principles of Particle Image Velocimetry (PIV) were studied at Florida State University. Spectral PIV was used to measure the spectra of a subsonic jet. Measured frequencies were close to the predicted frequency of jet shedding. Spectral PIV will be used to measure the spectra of the slat flow in the second 7 x lO-ft. wind tunnel test. PIV has an advantage that it can measure velocity and spectra of the entire flowfield instantaneously. However, problems arise when trying, to store this massive amount of PIV data. Support for this research has continued through a NASA Graduate Student Program Fellowship which will end in June 1999. The thesis should be completed by this time.

  6. Tunable two-mode Cr{sup 2+} : ZnSe laser with a frequency-noise spectral density of 0.03 Hz Hz{sup -1/2}

    SciTech Connect

    Gubin, Mikhail A; Kireev, A N; Kozlovskii, Vladimir I; Korostelin, Yurii V; Pnev, A B; Podmar'kov, Yu P; Tyurikov, D A; Frolov, M P; Shelestov, D A; Shelkovnikov, Aleksandr S

    2012-06-30

    An optically pumped cw laser on a Cr{sup 2+} : ZnSe crystal with a tunable (in the range of 2.3 - 2 .6 mm) wavelength, operating with generation of two axial modes, has been developed. It is shown that the minimum laser frequency-noise spectral density does not exceed 0.03 Hz Hz{sup -1/2}. Application of this laser in problems of Doppler and Doppler-free spectroscopy makes it possible to detect spectral absorption lines of gases with sensitivities of 5 Multiplication-Sign 10{sup -12} and 2 Multiplication-Sign 10{sup -10} cm{sup -1}, respectively (averaging time {tau} = 1 s). Having stabilised this laser with respect to the Doppler-free resonances of saturated dispersion of methane molecule, one can obtain a short-term frequency stability of 10{sup -15} - 10{sup -16} ({tau} = 1 s).

  7. Multi-dimensional edge detection operators

    NASA Astrophysics Data System (ADS)

    Youn, Sungwook; Lee, Chulhee

    2014-05-01

    In remote sensing, modern sensors produce multi-dimensional images. For example, hyperspectral images contain hundreds of spectral images. In many image processing applications, segmentation is an important step. Traditionally, most image segmentation and edge detection methods have been developed for one-dimensional images. For multidimensional images, the output images of spectral band images are typically combined under certain rules or using decision fusions. In this paper, we proposed a new edge detection algorithm for multi-dimensional images using secondorder statistics. First, we reduce the dimension of input images using the principal component analysis. Then we applied multi-dimensional edge detection operators that utilize second-order statistics. Experimental results show promising results compared to conventional one-dimensional edge detectors such as Sobel filter.

  8. Comparison of edges detected at different polarisations in MAESTRO data

    NASA Technical Reports Server (NTRS)

    Caves, Ronald G.; Harley, Peter J.; Quegan, Shaun

    1992-01-01

    Edge detection would appear to be a crucial tool for analyzing multi-polarized, multi-frequency, and multi-temporal Synthetic Aperture Radar (SAR) images. Edge structure provides a simple means for comparing different polarizations and frequencies, and for detecting changes over time. Due to the fact that edges and segments (homogeneous regions) are dual concepts, edge detection has an important role to play in identifying segments within which mean backscatter measurements for use in image classification can be made. As part of a general investigation into edge detection in SAR imagery, an initial investigation was carried out into the detectability and nature of edges in multi-polarized and multi-frequency SAR images. The contrast ratio (CR) operator was used to detect edges. This operator was previously shown to perform well at detecting edges in single-polarized and single-frequency SAR images.

  9. Liquid-Crystal Light Valve Enhances Edges In Images

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1991-01-01

    Experiments show liquid-crystal light valve (LCLV) exhibits operating mode in which it enhances edges in images projected on it. Operates in edge-enhancing mode (or in combination of edge-enhancing and normal modes) by suitably adjusting bias voltage and frequency. Enhancement of edges one of most important preprocessing steps in optical pattern-recognition systems. Incorporated into image-processing system to enhance edges without introducing excessive optical noise.

  10. Maturational changes in automated EEG spectral power analysis in preterm infants.

    PubMed

    Niemarkt, Hendrik J; Jennekens, Ward; Pasman, Jaco W; Katgert, Titia; Van Pul, Carola; Gavilanes, Antonio W D; Kramer, Boris W; Zimmermann, Luc J; Bambang Oetomo, Sidarto; Andriessen, Peter

    2011-11-01

    Our study aimed at automated power spectral analysis of the EEG in preterm infants to identify changes of spectral measures with maturation. Weekly (10-20 montage) 4-h EEG recordings were performed in 18 preterm infants with GA <32 wk and normal neurological follow-up at 2 y, resulting in 79 recordings studied from 27(+4) to 36(+3) wk of postmenstrual age (PMA, GA + postnatal age). Automated spectral analysis was performed on 4-h EEG recordings. The frequency spectrum was divided in delta 1 (0.5-1 Hz), delta 2 (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz) band. Absolute and relative power of each frequency band and spectral edge frequency were calculated. Maturational changes in spectral measures were observed most clearly in the centrotemporal channels. With advancing PMA, absolute powers of delta 1 to 2 and theta decreased. With advancing PMA, relative power of delta 1 decreased and relative powers of alpha and beta increased, respectively. In conclusion, with maturation, spectral analysis of the EEG showed a significant shift from the lower to the higher frequencies. Computer analysis of EEG will allow an objective and reproducible analysis for long-term prognosis and/or stratification of clinical treatment.

  11. Spectral anomalies of the effect of light-induced drift of caesium atoms caused by the velocity dependence of transport collision frequencies

    SciTech Connect

    Parkhomenko, A I; Shalagin, A M

    2014-10-31

    The spectral features of the light-induced drift (LID) velocity of caesium atoms in inert buffer gases are studied theoretically. A strong temperature dependence of the spectral LID line shape of Cs atoms in Ar or Kr atmosphere in the vicinity of T ∼ 1000 K is predicted. It is shown that the anomalous LID of Cs atoms in binary buffer mixtures of two different inert gases can be observed at virtually any (including ambient) temperature, depending on the content of the components in these mixtures. The results obtained make it possible to precisely test the interatomic interaction potentials in the experiments on the anomalous LID. (quantum optics)

  12. Spectral anomalies of the effect of light-induced drift of caesium atoms caused by the velocity dependence of transport collision frequencies

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. I.; Shalagin, A. M.

    2014-10-01

    The spectral features of the light-induced drift (LID) velocity of caesium atoms in inert buffer gases are studied theoretically. A strong temperature dependence of the spectral LID line shape of Cs atoms in Ar or Kr atmosphere in the vicinity of T ~ 1000 K is predicted. It is shown that the anomalous LID of Cs atoms in binary buffer mixtures of two different inert gases can be observed at virtually any (including ambient) temperature, depending on the content of the components in these mixtures. The results obtained make it possible to precisely test the interatomic interaction potentials in the experiments on the anomalous LID.

  13. Transient renormalization of the Josephson plasma frequency

    NASA Astrophysics Data System (ADS)

    Krasniqi, F. S.

    2017-03-01

    Layered superconductors are emerging as compact sources of intense, continuous and coherent terahertz (THz) waves [Welp et al., Nat. Photonics 7, 702 (2013)]. Apart from that, they also represent nonlinear media that can exhibit a host of nonlinear optical effects such as odd harmonic generation, slowing down of THz waves, self-focusing and self-induced transparency [Savel'ev et al., Nat. Phys. 2, 521 (2006)] that further widen their range of applications. In the linear regime, electromagnetic waves can penetrate them only if their frequency is larger than a gap-frequency, the so-called Josephson plasma frequency, whose signature is characterized by an edge in the THz reflectivity spectrum. In this work, transient renormalization of the Josephson plasma frequency in THz-perturbed La1.84Sr0.16CuO4 has been experimentally observed using the time-resolved THz time-domain spectroscopy. As the perturbing THz field evolves in time, the reflectivity edge measured from the raw-reflectivity data is found to exhibit a red shift, thus implying a reduction in the Josephson plasma frequency. This is a nonlinear effect that renders the layered superconductor transparent over a narrow spectral range close to the Josephson plasma frequency—THz waves with frequencies smaller than the unperturbed Josephson plasma frequency can penetrate the sample. The results presented in this paper should stimulate the development of nonlinear physics in layered superconductors and contribute in developing new concepts for well-controllable THz devices.

  14. Frequency Comb Cooling Project

    DTIC Science & Technology

    2014-03-18

    frequency combs ). Recently the power and spectral coverage of frequency combs have grown considerably with projected 1. REPORT DATE (DD-MM-YYYY) 4. TITLE...Aug-2011 18-May-2012 Approved for Public Release; Distribution Unlimited Final report on frequency comb cooling project The views, opinions and/or... frequency combs ). Recently the power and spectral coverage of frequency combs have grown considerably with projected average powers above 10 kW. We

  15. Spatial-spectral characterization of focused spatially chirped broadband laser beams.

    PubMed

    Greco, Michael J; Block, Erica; Meier, Amanda K; Beaman, Alex; Cooper, Samuel; Iliev, Marin; Squier, Jeff A; Durfee, Charles G

    2015-11-20

    Proper alignment is critical to obtain the desired performance from focused spatially chirped beams, for example in simultaneous spatial and temporal focusing (SSTF). We present a simple technique for inspecting the beam paths and focusing conditions for the spectral components of a broadband beam. We spectrally resolve the light transmitted past a knife edge as it was scanned across the beam at several axial positions. The measurement yields information about spot size, M2, and the propagation paths of different frequency components. We also present calculations to illustrate the effects of defocus aberration on SSTF beams.

  16. 3D basin-shape ratio effects on frequency content and spectral amplitudes of basin-generated surface waves and associated spatial ground motion amplification and differential ground motion

    NASA Astrophysics Data System (ADS)

    Kamal; Narayan, J. P.

    2015-04-01

    This paper presents the effects of basin-shape ratio (BSR) on the frequency content and spectral amplitudes of the basin-generated surface (BGS) waves and the associated spatial variation of ground motion amplification and differential ground motion (DGM) in a 3D semi-spherical (SS) basin. Seismic responses were computed using a recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on the parsimonious staggered-grid approximation of the 3D viscoelastic wave equations. The simulated results revealed the decrease of both the frequency content and the spectral amplitudes of the BGS waves and the duration of ground motion in the SS basin with the decrease of BSR. An increase of the average spectral amplification (ASA), DGM and the average aggravation factor (AAF) towards the centre of the SS basin was obtained due to the focusing of the surface waves. A decrease of ASA, DGM and AAF with the decrease of BSR was also obtained.

  17. Widely tunable edge emitters

    NASA Astrophysics Data System (ADS)

    Sarlet, Gert; Wesstrom, Jan-Olof; Rigole, Pierre-Jean; Broberg, Bjoern

    2001-11-01

    We will present the current state-of-the-art in widely tunable edge emitting lasers for WDM applications. Typical applications for a tunable laser will be discussed, and the different types of tunable lasers available today will be compared with respect to the requirements posed by these applications. We will focus on the DBR-type tunable lasers - DBR, SG-DBR and GCSR - which at present seem to be the only tunable lasers mature enough for real-life applications. Their main advantages are that they are all monolithic, with no moving parts, and can be switched from one frequency to the other very rapidly since the tuning is based on carrier injection and not on thermal or mechanical changes. We will briefly discuss the working principle of each of these devices, and present typical performance characteristics. From a manufacturing point of view, rapid characterization of the lasers is crucial; therefore an overview will be given of different characterization schemes that have recently been proposed. For the end user, reliability is the prime issue. We will show results of degradation studies on these lasers and outline how the control electronics that drive the laser can compensate for any frequency drift. Finally, we will also discuss the impact of the requirement for rapid frequency switching on the design of the control electronics.

  18. Spectral characterization of the LANDSAT thematic mapper sensors

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Barker, J. L.

    1983-01-01

    Data collected on the spectral characteristics of the LANDSAT-4 and LANDSAT-4 backup thematic mapper instruments, the protoflight (TM/PF) and flight (TM/F) models, respectively, are presented and analyzed. Tests were conducted on the instruments and their components to determine compliance with two sets of spectral specifications: band-by-band spectral coverage and channel-by-channel within-band spectral matching. Spectral coverage specifications were placed on: (1) band edges--points at 50% of peak response, (2) band edge slopes--steepness of rise and fall-off of response, (3) spectral flatness--evenness of response between edges, and (4) spurious system response--ratio of out-of-band response to in-band response. Compliance with the spectral coverage specifications was determined by analysis of spectral measurements on the individual components contributing to the overall spectral response: filters, detectors, and optical surfaces.

  19. Edge current in a small chiral superconductor

    NASA Astrophysics Data System (ADS)

    Suzuki, Shu-Ichiro; Asano, Yasuhiro

    2016-10-01

    We discuss a theoretical description of the edge current in a chiral superconductor. On the basis of the quasiclassical Green function formalism, we derive a useful expression of the chiral edge current which enable us to understand how Cooper pairs contribute to the electric current. We will show that the chiral edge current is carried by the combinations of two Cooper pairs belonging to different pairing symmetries. One Cooper pair belongs to the usual even-frequency pairing symmetry class. However, the other belongs to the odd-frequency symmetry class.

  20. Comparison of fractal and power spectral EEG features: effects of topography and sleep stages.

    PubMed

    Weiss, Béla; Clemens, Zsófia; Bódizs, Róbert; Halász, Péter

    2011-04-05

    Fractal nature of the human sleep EEG was revealed recently. In the literature there are some attempts to relate fractal features to spectral properties. However, a comprehensive assessment of the relationship between fractal and power spectral measures is still missing. Therefore, in the present study we investigated the relationship of monofractal and multifractal EEG measures (H and ΔD) with relative band powers and spectral edge frequency across different sleep stages and topographic locations. In addition we tested sleep stage classification capability of these measures according to different channels. We found that cross-correlations between fractal and spectral measures as well as between H and ΔD exhibit specific topographic and sleep stage-related characteristics. Best sleep stage classifications were achieved by estimating measure ΔD in temporal EEG channels both at group and individual levels, suggesting that assessing multifractality might be an adequate approach for compact modeling of brain activities.

  1. Randomized SUSAN edge detector

    NASA Astrophysics Data System (ADS)

    Qu, Zhi-Guo; Wang, Ping; Gao, Ying-Hui; Wang, Peng

    2011-11-01

    A speed up technique for the SUSAN edge detector based on random sampling is proposed. Instead of sliding the mask pixel by pixel on an image as the SUSAN edge detector does, the proposed scheme places the mask randomly on pixels to find edges in the image; we hereby name it randomized SUSAN edge detector (R-SUSAN). Specifically, the R-SUSAN edge detector adopts three approaches in the framework of random sampling to accelerate a SUSAN edge detector: procedure integration of response computation and nonmaxima suppression, reduction of unnecessary processing for obvious nonedge pixels, and early termination. Experimental results demonstrate the effectiveness of the proposed method.

  2. Spectral and Spread Spectral Teleportation

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state is teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of a teleported waveform can be controllably and coherently dilated using a spread spectral variant of teleportation. We present analytical fidelities for spectral and spread spectral teleportation when complex-valued Gaussian states are prepared using a proposed experimental approach, and we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  3. Coherent quantum frequency bridge: phase preserving, nearly noiseless parametric frequency converter

    NASA Astrophysics Data System (ADS)

    Burenkov, Ivan A.; Cheng, Y.-H.; Thomay, Tim; Solomon, Glenn S.; Migdall, Alan L.; Gerrits, Thomas; Lita, Adriana; Nam, Sae Woo; Shalm, L. Krister; Polyakov, Sergey V.

    2017-05-01

    We characterize an efficient and nearly-noiseless parametric frequency upconverter. The ultra-low noise regime is reached by the wide spectral separation between the input and pump frequencies and the low pump frequency relative to the input photons. The background of only ≍100 photons per hour is demonstrated. We demonstrate phase preservation in a frequency upconversion process at the single-photon level. We summarize our efforts to measure this ultra-low noise level, and discuss both single-photon avalanche photodiode measurements and a photon-counting transition edge sensor (TES) measurements. To reach the required accuracy, we supplemented our TES with a dark count reduction algorithm. The preservation of the coherence was demonstrated by simultaneously upconverting the input of each arm of a Mach-Zehnder interferometer through high interference fringe contrast. We observe fringe visibilities of >=0.97 with faint coherent input.

  4. Effect of amino acid dopants on the spectral, optical, mechanical and thermal properties of potassium acid phthalate crystals for possible optoelectronic and frequency doubling applications

    NASA Astrophysics Data System (ADS)

    Prakash, J. Thomas Joseph; Gnanaraj, J. Martin Sam; Dhavud, S. Shek; Ekadevasena, S.

    2015-09-01

    Undoped and amino acid (L-Arginine and L-Valine) doped KAP crystals were grown by slow evaporation solution growth technique. The changes in the structural, spectral, optical, mechanical and thermal properties were observed. The sharp prominent peaks in the indexed powder XRD pattern confirms the crystalline nature of the sample. Optical studies reveal that the crystal is transparent in the entire visible light region. Thermal stability was checked by TG/DTA analysis. The mechanical stability was evaluated from Vicker's microhardness test. The SHG efficiency for the title materials was tested with different particle sizes by the Kurtz and Perry powder method, which established the existence of phase matching.

  5. Parametric Explosion Spectral Model

    SciTech Connect

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  6. Nanoindentation near the edge

    Treesearch

    J.E. Jakes; C.R. Frihart; J.F. Beecher; R.J. Moon; P.J. Resto; Z.H. Melgarejo; O.M. Saurez; H. Baumgart; A.A. Elmustafa; D.S. Stone

    2009-01-01

    Whenever a nanoindent is placed near an edge, such as the free edge of the specimen or heterophase interface intersecting the surface, the elastic discontinuity associated with the edge produces artifacts in the load-depth data. Unless properly handled in the data analysis, the artifacts can produce spurious results that obscure any real trends in properties as...

  7. Fundamental Vibration Frequency and Damping Estimation: A Comparison Using the Random Decrement Method, the Empirical Mode Decomposition, and the HV Spectral Ratio Method for Local Site Characterization

    NASA Astrophysics Data System (ADS)

    Huerta-Lopez, C. I.; Upegui Botero, F. M.; Pulliam, J.; Willemann, R. J.; Pasyanos, M.; Schmitz, M.; Rojas Mercedes, N.; Louie, J. N.; Moschetti, M. P.; Martinez-Cruzado, J. A.; Suárez, L.; Huerfano Moreno, V.; Polanco, E.

    2013-12-01

    Site characterization in civil engineering demands to know at least two of the dynamic properties of soil systems, which are: (i) dominant vibration frequency, and (ii) damping. As part of an effort to develop understanding of the principles of earthquake hazard analysis, particularly site characterization techniques using non invasive/non destructive seismic methods, a workshop (Pan-American Advanced Studies Institute: New Frontiers in Geophysical Research: Bringing New Tools and Techniques to Bear on Earthquake Hazard Analysis and Mitigation) was conducted during july 15-25, 2013 in Santo Domingo, Dominican Republic by the alliance of Pan-American Advanced Studies Institute (PASI) and Incorporated Research Institutions for Seismology (IRIS), jointly supported by Department of Energy (DOE) and National Science Foundation (NSF). Preliminary results of the site characterization in terms of fundamental vibration frequency and damping are here presented from data collected during the workshop. Three different methods were used in such estimations and later compared in order to identify the stability of estimations as well as the advantage or disadvantage among these methodologies. The used methods were the: (i) Random Decrement Method (RDM), to estimate fundamental vibration frequency and damping simultaneously; (ii) Empirical Mode Decomposition (EMD), to estimate the vibration modes, and (iii) Horizontal to Vertical Spectra ratio (HVSR), to estimate the fundamental vibration frequency. In all cases ambient vibration and induced vibration were used.

  8. Improved measurement of the spectral index of the diffuse radio background between 90 and 190 MHz

    NASA Astrophysics Data System (ADS)

    Mozdzen, T. J.; Bowman, J. D.; Monsalve, R. A.; Rogers, A. E. E.

    2017-02-01

    We report absolutely calibrated measurements of diffuse radio emission between 90 and 190 MHz from the Experiment to Detect the Global EoR Signature (EDGES). EDGES employs a wide beam zenith-pointing dipole antenna centred on a declination of -26.7°. We measure the sky brightness temperature as a function of frequency averaged over the EDGES beam from 211 nights of data acquired from 2015 July to 2016 March. We derive the spectral index, β, as a function of local sidereal time (LST) and find -2.60 > β > -2.62 ± 0.02 between 0 and 12 h LST. When the Galactic Centre is in the sky, the spectral index flattens, reaching β = -2.50 ± 0.02 at 17.7 h. The EDGES instrument is shown to be very stable throughout the observations with night-to-night reproducibility of σβ < 0.003. Including systematic uncertainty, the overall uncertainty of β is 0.02 across all LST bins. These results improve on the earlier findings of Rogers & Bowman by reducing the spectral index uncertainty from 0.10 to 0.02 while considering more extensive sources of errors. We compare our measurements with spectral index simulations derived from the Global Sky Model (GSM) of de Oliveira-Costa et al. and with fits between the Guzmán et al. 45 MHz and Haslam et al. 408 MHz maps. We find good agreement at the transit of the Galactic Centre. Away from transit, the GSM tends to overpredict (GSM less negative) by 0.05 < Δβ = βGSM - βEDGES < 0.12, while the 45-408 MHz fits tend to overpredict by Δβ < 0.05.

  9. Nonlinear interaction between edge-localized modes (ELMs) and edge turbulence during ELM-crash-suppression phase under n=1 RMP

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyun; Yun, Gunsu; Choi, Minjun; Kwon, Jae-Min; Jeon, Young-Mu; Lee, Woochang; Luhmann, Neville C., Jr.; Park, Hyeon K.

    2016-10-01

    Mutual interactions between edge-localized modes (ELMs) and turbulent eddies have been investigated in 2-D by using the KSTAR electron cyclotron emission imaging (ECEI) system. ECEI shows that ELM filaments still exist in the edge when the usual large scale collapse of the edge pedestal, i.e., the ELM crash, is completely suppressed by n = 1 resonant magnetic perturbation (RMP). Correlation analysis among ECEI channels reveals that the RMP enhances turbulent fluctuations in the edge and that ELM crashes are suppressed when the RMP exceeds a certain threshold. The spectral power distribution of turbulence shows a clear dispersion for a wide range of wavenumber (kθ < 1 cm-1) and frequency (f < 70 kHz). The radial velocity and ECE intensity fluctuations of the turbulent eddies are approximately in-phase and thus the turbulence involves a net radial energy transport. Bispectral analysis indicates the coexisting ELMs and turbulent eddies nonlinearly interact with each other. Both the enhancement of radial transport and the nonlinear interaction with ELMs may be the key to the physics mechanism of ELM-crash-suppression by low-n RMP. This work was supported by National Research Foundation of Korea under Grant No. NRF-2014M1A7A1A03029865 and NRF-2014M1A7AA03029881.

  10. Frequency noise in frequency swept fiber laser.

    PubMed

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2013-04-01

    This Letter presents a measurement of the spectral content of frequency shifted pulses generated by a lightwave synthesized frequency sweeper. We found that each pulse is shifted in frequency with very high accuracy. We also discovered that noise originating from light leaking through the acousto- optical modulators and forward propagating Brillouin scattering appear in the spectrum.

  11. [Calculation of the amount of free water molecules in aqueous solutions by means of spectral parameters from the terahertz frequency domain taking into account processes of screening].

    PubMed

    Pen'kov, N V; Iashin, V A; Fesenko, E E; Fesenko, E E

    2014-01-01

    In this paper we derive a formula to calculate the amount of free water molecules in solution. Physical values in this formula may be obtained by analyzing the spectra of aqueous solutions in the terahertz frequency range. Formula is derived on the basis of considering water polarization process in electric field. It is shown that without processes of shielding the electric field in the water calculations lead to very high estimation of a share of free water molecule.

  12. A uniformly accurate multiscale time integrator spectral method for the Klein-Gordon-Zakharov system in the high-plasma-frequency limit regime

    NASA Astrophysics Data System (ADS)

    Bao, Weizhu; Zhao, Xiaofei

    2016-12-01

    A multiscale time integrator sine pseudospectral (MTI-SP) method is presented for discretizing the Klein-Gordon-Zakharov (KGZ) system with a dimensionless parameter 0 < ε ≤ 1, which is inversely proportional to the plasma frequency. In the high-plasma-frequency limit regime, i.e. 0 < ε ≪ 1, the solution of the KGZ system propagates waves with amplitude at O (1) and wavelength at O (ε2) in time and O (1) in space, which causes significantly numerical burdens due to the high oscillation in time. The main idea of the numerical method is to carry out a multiscale decomposition by frequency (MDF) to the electric field component of the solution at each time step and then apply the sine pseudospectral discretization for spatial derivatives followed by using the exponential wave integrator in phase space for integrating the MDF and the equation of the ion density component. The method is explicit and easy to be implemented. Extensive numerical results show that the MTI-SP method converges uniformly and optimally in space with exponential convergence rate if the solution is smooth, and uniformly in time with linear convergence rate at O (τ) for ε ∈ (0 , 1 ] with τ time step size and optimally with quadratic convergence rate at O (τ2) in the regime when either ε = O (1) or 0 < ε ≤ τ. Thus the meshing strategy requirement (or ε-scalability) of the MTI-SP for the KGZ system in the high-plasma-frequency limit regime is τ = O (1) and h = O (1) for 0 < ε ≪ 1, which is significantly better than classical methods in the literatures. Finally, we apply the MTI-SP method to study the convergence rates of the KGZ system to its limiting models in the high-plasma-frequency limit and the interactions of bright solitons of the KGZ system, and to identify certain parameter regimes that the solution of the KGZ system will be blow-up in one dimension.

  13. Thermophotovoltaic Spectral Control

    SciTech Connect

    DM DePoy; PM Fourspring; PF Baldasaro; JF Beausang; EJ Brown; MW Dashiel; KD Rahner; TD Rahmlow; JE Lazo-Wasem; EJ Gratrix; B Wemsman

    2004-06-09

    Spectral control is a key technology for thermophotovoltaic (TPV) direct energy conversion systems because only a fraction (typically less than 25%) of the incident thermal radiation has energy exceeding the diode bandgap energy, E{sub g}, and can thus be converted to electricity. The goal for TPV spectral control in most applications is twofold: (1) Maximize TPV efficiency by minimizing transfer of low energy, below bandgap photons from the radiator to the TPV diode. (2) Maximize TPV surface power density by maximizing transfer of high energy, above bandgap photons from the radiator to the TPV diode. TPV spectral control options include: front surface filters (e.g. interference filters, plasma filters, interference/plasma tandem filters, and frequency selective surfaces), back surface reflectors, and wavelength selective radiators. System analysis shows that spectral performance dominates diode performance in any practical TPV system, and that low bandgap diodes enable both higher efficiency and power density when spectral control limitations are considered. Lockheed Martin has focused its efforts on front surface tandem filters which have achieved spectral efficiencies of {approx}83% for E{sub g} = 0.52 eV and {approx}76% for E{sub g} = 0.60 eV for a 950 C radiator temperature.

  14. Chromatic confocal spectral interferometry

    SciTech Connect

    Papastathopoulos, Evangelos; Koerner, Klaus; Osten, Wolfgang

    2006-11-10

    Chromatic confocal spectral interferomertry (CCSI) is a novel scheme for topography measurements that combines the techniques of spectral interferometry and chromatic confocal microscopy. This hybrid method allows for white-light interferometric detection with a high NA in a single-shot manner. To the best of our knowledge, CCSI is the first interferometric method that utilizes a confocally filtered and chromatically dispersed focus for detection and simultaneously allows for retrieval of the depth position of reflecting or scattering objects utilizing the phase (modulation frequency) of the interferometric signals acquired. With the chromatically dispersed focus, the depth range of the sensor is decoupled from the NA of the microscope objective.

  15. Spectral stratigraphy

    NASA Technical Reports Server (NTRS)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  16. High sensitive THz superconducting hot electron bolometer mixers and transition edge sensors

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Miao, W.; Zhou, K. M.; Guo, X. H.; Zhong, J. Q.; Shi, S. C.

    2016-11-01

    Terahertz band, which is roughly defined as 0.1 THz to 10 THz, is an interesting frequency region of the electromagnetic spectrum to be fully explored in astronomy. THz observations play key roles in astrophysics and cosmology. High sensitive heterodyne and direct detectors are the main tools for the detection of molecular spectral lines and fine atomic structure spectral lines, which are very important tracers for probing the physical and chemical properties and dynamic processes of objects such as star and planetary systems. China is planning to build an THz telescope at Dome A, Antarctica, a unique site for ground-based THz observations. We are developing THz superconducting hot electron bolometer (HEB) mixers and transition edge sensors (TES), which are quantum limited and back-ground limited detectors, respectively. Here we first introduce the working principles of superconducting HEB and TES, and then mainly present the results achieved at Purple mountain Observatory.

  17. Tasting edge effects

    NASA Astrophysics Data System (ADS)

    Bocquet, Lydéric

    2007-02-01

    We show that the baking of potato wedges constitutes a crunchy example of edge effects, which are usually demonstrated in electrostatics. A simple model of the diffusive transport of water vapor around the potato wedges shows that the water vapor flux diverges at the sharp edges in analogy with its electrostatic counterpart. This increased evaporation at the edges leads to the crispy taste of these parts of the potatoes.

  18. High-frequency spectral falloff of earthquakes, fractal dimension of complex rupture, b value, and the scaling of strength on faults

    USGS Publications Warehouse

    Frankel, A.

    1991-01-01

    The high-frequency falloff ??-y of earthquake displacement spectra and the b value of aftershock sequences are attributed to the character of spatially varying strength along fault zones. I assume that the high frequency energy of a main shock is produced by a self-similar distribution of subevents, where the number of subevents with radii greater than R is proportional to R-D, D being the fractal dimension. In the model, an earthquake is composed of a hierarchical set of smaller earthquakes. The static stress drop is parameterized to be proportional to R??, and strength is assumed to be proportional to static stress drop. I find that a distribution of subevents with D = 2 and stress drop independent of seismic moment (?? = 0) produces a main shock with an ??-2 falloff, if the subevent areas fill the rupture area of the main shock. By equating subevents to "islands' of high stress of a random, self-similar stress field on a fault, I relate D to the scaling of strength on a fault, such that D = 2 - ??. Thus D = 2 corresponds to constant stress drop scaling (?? = 0) and scale-invariant fault strength. A self-similar model of aftershock rupture zones on a fault is used to determine the relationship between the b value, the size distribution of aftershock rupture zones, and the scaling of strength on a fault. -from Author

  19. The value of time and frequency domain, and spectral temporal mapping analysis of the signal-averaged electrocardiogram in identification of patients with hypertrophic cardiomyopathy at increased risk of sudden death.

    PubMed

    Kulakowski, P; Counihan, P J; Camm, A J; McKenna, W J

    1993-07-01

    Late potentials detected by the signal-averaged ECG (SAECG) identify post-infarction patients at risk from sustained ventricular tachycardia (VT) and sudden death. Hypertrophic cardiomyopathy (HCM) is also associated with increased risk of sudden death. In adults, episodes of non-sustained VT on ambulatory ECG monitoring are a marker of high risk patients. In children and adolescents, however, there is no reliable ECG marker, and clinical features have low predictive accuracy. The prognostic value of the SAECG in HCM has not been systematically evaluated. We examined the relation of detailed time domain, frequency domain, and spectral temporal mapping analysis of the SAECG and clinical and echocardiographic features, and the results of 48 h ambulatory ECG monitoring in 121 consecutive patients with HCM. Non-sustained VT on Holter monitoring was recorded in 27 (23%) patients. An abnormal time domain SAECG was present in three (11%) patients with VT vs three (3%) without VT (ns). Of the SAECG variables, reduced (below 150 microV) voltage of the initial 40 ms of the signal-averaged QRS complex was the best predictor for non-sustained VT (sensitivity: 95%; specificity: 74%: positive predictive accuracy: 64%; negative predictive accuracy: 97%). Nine patients (of whom eight were < or = 30 years of age) experienced catastrophic events: three died suddenly and six had been resuscitated from out-of-hospital ventricular fibrillation. None of them had an abnormal time domain SAECG. The frequency domain analysis and spectral temporal mapping of the SAECG did not improve the identification of patients with VT or patients with catastrophic events. In conclusion, alterations of the initial portion of the signal-averaged QRS complex identified patients with HCM and non-sustained VT, but the SAECG was not useful in identifying young patients who suffered cardiac arrest.

  20. Spectral power time-courses of human sleep EEG reveal a striking discontinuity at approximately 18 Hz marking the division between NREM-specific and wake/REM-specific fast frequency activity.

    PubMed

    Merica, Helli; Fortune, Ronald D

    2005-07-01

    Spectral power time-courses over the ultradian cycle of the sleep electroencephalogram (EEG) provide a useful window for exploring the temporal correlation between cortical EEG and sub-cortical neuronal activities. Precision in the measurement of these time-courses is thus important, but it is hampered by lacunae in the definition of the frequency band limits that are in the main based on wake EEG conventions. A frequently seen discordance between the shape of the beta power time-course across the ultradian cycle and that reported for the sequential mean firing rate of brainstem-thalamic activating neurons invites a closer examination of these band limits, especially since the sleep EEG literature indicates in several studies an intriguing non-uniformity of time-course comportment across the traditional beta band frequencies. We ascribe this tentatively to the sharp reversal of slope we have seen at approximately 18 Hz in our data and that of others. Here, therefore, using data for the first four ultradian cycles from 18 healthy subjects, we apply several criteria based on changes in time-course comportment in order to examine this non-uniformity as we move in 1 Hz bins through the frequency range 14-30 Hz. The results confirm and describe in detail the striking discontinuity of shape at around 18 Hz, with only the upper range (18-30 Hz) displaying a time-course similar to that of the firing-rate changes measured in brainstem activating neurons and acknowledged to engender states of brain activation. Fast frequencies in the lower range (15-18 Hz), on the other hand, are shown to be specific to non-rapid-eye-movement sleep. Splitting the beta band at approximately 18 Hz therefore permits a significant improvement in EEG measurement and a more precise correlation with cellular activity.

  1. Supersonic Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Maslov, Anatoly A.

    1998-01-01

    This paper describes experimental studies of leading edge boundary layer receptivity for imposed stream disturbances. Studies were conducted in the supersonic T-325 facility at ITAM and include data for both sharp and blunt leading edges. The data are in agreement with existing theory and should provide guidance for the development of more complete theories and numerical computations of this phenomena.

  2. The Edge, Fall 1999.

    ERIC Educational Resources Information Center

    Edge, 1999

    1999-01-01

    "The Edge" is a Canadian publication for youth. The mandate of the Edge is to support and celebrate all career journeys embraced by youth. This issue contains career profile articles covering three jobs: crane operator, indoor climbing instructor, and product certification tester. Career trends and the state of today's workplace are also…

  3. Quantum hydrodynamic modeling of edge modes in chiral Berry plasmons

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Zhai, Feng; Guo, Bin; Yi, Lin; Jiang, Wei

    2017-07-01

    A quantum hydrodynamic model is used to study the edge modes of chiral Berry plasmons in two-dimensional materials with nonzero Berry flux. A quantum effect of collective electron motions appears in systems with a high electron density. For the considered edge plasmon, the transcendental equation of the dispersion relation is solved nonlinearly and semianalytically. We predict a one-way chiral edge state in the presence of the quantum statistical effect and quantum diffraction effect. Indeed, the plasmon frequencies for counterpropagating edge modes exhibit different long-wavelength limits. The quantum effect can enhance the chirality of edge plasmons and their spatial confinement.

  4. Characterization of Flap Edge Noise Radiation from a High-Fidelity Airframe Model

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Khorrami, Mehdi R.; Lockhard, David P.; Neuhart, Dan H.; Bahr, Christopher J.

    2015-01-01

    The results of an experimental study of the noise generated by a baseline high-fidelity airframe model are presented. The test campaign was conducted in the open-jet test section of the NASA Langley 14- by 22-foot Subsonic Tunnel on an 18%-scale, semi-span Gulfstream airframe model incorporating a trailing edge flap and main landing gear. Unsteady surface pressure measurements were obtained from a series of sensors positioned along the two flap edges, and far field acoustic measurements were obtained using a 97-microphone phased array that viewed the pressure side of the airframe. The DAMAS array deconvolution method was employed to determine the locations and strengths of relevant noise sources in the vicinity of the flap edges and the landing gear. A Coherent Output Power (COP) spectral method was used to couple the unsteady surface pressures measured along the flap edges with the phased array output. The results indicate that outboard flap edge noise is dominated by the flap bulb seal cavity with very strong COP coherence over an approximate model-scale frequency range of 1 to 5 kHz observed between the array output and those unsteady pressure sensors nearest the aft end of the cavity. An examination of experimental COP spectra for the inboard flap proved inconclusive, most likely due to a combination of coherence loss caused by decorrelation of acoustic waves propagating through the thick wind tunnel shear layer and contamination of the spectra by tunnel background noise at lower frequencies. Directivity measurements obtained from integration of DAMAS pressure-squared values over defined geometric zones around the model show that the baseline flap and landing gear are only moderately directional as a function of polar emission angle.

  5. Edge Detection By Differences Of Gaussians

    NASA Astrophysics Data System (ADS)

    Marthon, Ph.; Thiesse, B.; Bruel, A.

    1986-06-01

    The Differences of Gaussians (DOGs) are of fundamental importance in edge detection. They belong to the human vision system as shown by Enroth-Cugell and Robson [ENR66]. The zero-crossings of their outputs mark the loci of the intensity changes. The set of descriptions from different operator sizes forms the input for later visual processes, such as stereopsis and motion analysis. We show that DOGs uniformly converge to the Laplacian of a Gaussian (ΔG2,σ) when both the inhibitory and excitatory variables converge to σ. Spatial and spectral properties of DOGs and ΔGs are compared: width and height of their central positive regions, bandiwidths... Finally, DOGs' responses to some features such as ideal edge, right angle corner, general corner..., are presented and magnitudes of error on edge position are given.

  6. Losing your edge: climate change and the conservation value of range-edge populations.

    PubMed

    Rehm, Evan M; Olivas, Paulo; Stroud, James; Feeley, Kenneth J

    2015-10-01

    Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range-edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range-edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range-edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range-core populations. We also highlight how large-scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest-cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range-edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range-edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change.

  7. Evaluation of edge effect due to phase contrast imaging for mammography.

    PubMed

    Matsuo, Satoru; Katafuchi, Tetsuro; Tohyama, Keiko; Morishita, Junji; Yamada, Katsuhiko; Fujita, Hiroshi

    2005-08-01

    It is well-known that the edge effect produced by phase contrast imaging results in the edge enhancement of x-ray images and thereby sharpens those images. It has recently been reported that phase contrast imaging using practical x-ray tubes with small focal spots has improved image sharpness as observed in the phase contrast imaging with x-ray from synchrotron radiation or micro-focus x-ray tubes. In this study, we conducted the phase contrast imaging of a plastic fiber and plant seeds using a customized mammography equipment with a 0.1 mm focal spot, and the improvement of image sharpness was evaluated in terms of spatial frequency response of the images. We observed that the image contrast of the plastic fiber was increased by edge enhancement, and, as predicted elsewhere, spectral analysis revealed that as the spatial frequencies of the x-ray images increased, so did the sharpness gained through phase contrast imaging. Thus, phase contrast imaging using a practical molybdenum anode tube with a 0.1 mm-focal spot would benefit mammography, in which the morphological detectability of small species such as microcalcifications is of great concern. And detectability of tumor-surrounded glandular tissues in dense breast would be also improved by the phase contrast imaging.

  8. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates from Photoplethysmographic Signals using Time-Frequency Spectral Features.

    PubMed

    Dao, Duy; Salehizadeh, S M A; Noj, Yeon; Chong, Jo Woon; Cho, Chae; Mcmanus, Dave; Darling, Chad E; Mendelson, Yitzhak; Chon, Ki H

    2016-10-21

    Motion and noise artifacts (MNAs) impose limits on the usability of the photoplethysmogram (PPG), particularly in the context of ambulatory monitoring. MNAs can distort PPG, causing erroneous estimation of physiological parameters such as heart rate (HR) and arterial oxygen saturation (SpO2). In this study we present a novel approach, "TifMA," based on using the Time-frequency spectrum of PPG to first detect the MNA-corrupted data and next discard the non-usable part of the corrupted data. The term "non-usable" refers to segments of PPG data from which the HR signal cannot be recovered accurately. Two sequential classification procedures were included in the TifMA algorithm. The first classifier distinguishes between MNA-corrupted and MNA-free PPG data. Once a segment of data is deemed MNA-corrupted, the next classifier determines whether the HR can be recovered from the corrupted segment or not. A support vector machine (SVM) classifier was used to build a decision boundary for the first classification task using data segments from a training data set. Features from time-frequency spectra of PPG were extracted to build the detection model. Five datasets were considered for evaluating TifMA performance: (1) and (2) were lab-controlled PPG recordings from forehead and finger pulse oximeter sensors with subjects making random movements, (3) and (4) were actual patient PPG recordings from UMass Memorial Medical Center with random free movements and (5) was a lab-controlled PPG recording dataset measured at the forehead while the subjects ran on a treadmill. The first dataset was used to analyze the noise sensitivity of the algorithm. Datasets 2-4 were used to evaluate the MNA detection phase of the algorithm. The results from the first phase of the algorithm (MNA detection) were compared to results from three existing MNA detection algorithms: the Hjorth, kurtosis-Shannon Entropy and time-domain variability-SVM approaches. This last is an approach recently developed

  9. Low-Frequency Vibrational Modes of Poly(glycolic acid) and Thermal Expansion of Crystal Lattice Assigned On the Basis of DFT-Spectral Simulation Aided with a Fragment Method.

    PubMed

    Yamamoto, Shigeki; Miyada, Mai; Sato, Harumi; Hoshina, Hiromichi; Ozaki, Yukihiro

    2017-02-09

    Low-frequency vibrational modes of lamellar crystalline poly(glycolic acid) (PGA) were measured on Raman and far-infrared (FIR) spectra. Among the observed bands, an FIR band at ∼70 cm(-1) and a Raman band at 125 cm(-1) showed a gradual lower-frequency shift with increasing temperature from 20 °C to the melting point at ∼230 °C. Their polarization direction was perpendicular to the chain axis of PGA. Both spectra were quantum-mechanically simulated with the aid of a fragment method, the Cartesian-coordinate tensor transfer, which enabled an explicit consideration of molecular interactions between two adjacent polymer chains. Good agreement was achieved between the experiment and theory in both spectra. The temperature-sensitive bands at ∼70 cm(-1) in FIR and at 125 cm(-1) in Raman comprise the out-of-plane C═O bending motion. The temperature-dependent shifts of the low-frequency bands were successfully simulated by the DFT-spectral calculation, exploring that the main origin of the shifts is the thermal expansion of the crystal lattice. This result indicates that the thermally shifted bands may be used as an indicator of the lattice expansion of PGA. Possible changes in intermolecular interactions of PGA under temperature rising were ascribed on the basis of natural bond orbital theory. The steric repulsion between the carbonyl O atom in one chain and the H-C bond in the adjacent chain will be a dominant interaction in the lattice-expanding process, which would cause the observed thermal shifts of the bending modes. Comparisons of the spectral assignment for PGA obtained in this study and that for poly-(R)-3-hydroxybutyrate (PHB) reported by us suggest that crystalline polyesters give vibrational modes composed of out-of-plane bending motion of C═O groups between ∼70 and ∼125 cm(-1), the modes of which are sensitive to the thermal expansion of crystal lattice and its concomitant changes in their intermolecular interactions.

  10. Shock capturing by the spectral viscosity method

    NASA Technical Reports Server (NTRS)

    Tadmor, Eitan

    1989-01-01

    A main disadvantage of using spectral methods for nonlinear conservation laws lies in the formation of Gibbs phenomenon, once spontaneous shock discontinuities appear in the solution. The global nature of spectral methods than pollutes the unstable Gibbs oscillations overall the computational domain, and the lack of entropy dissipation prevents convergences in these cases. The Spectral Viscosity method, which is based on high frequency dependent vanishing viscosity regularization of the classical spectral methods is discussed. It is shown that this method enforces the convergence of nonlinear spectral approximations without sacrificing their overall spectral accuracy.

  11. Carrier-envelope offset frequency linewidth narrowing in a Cr:forsterite laser-based frequency comb.

    PubMed

    Wu, Shun; Tillman, Karl; Washburn, Brian R; Corwin, Kristan L

    2016-12-01

    Cr:forsterite laser-based frequency combs are useful for spectroscopic purposes in the near-IR wavelength region. However, self-referenced Cr:forsterite combs tend to exhibit wide carrier-envelope offset frequency (f0) linewidths, which result in broad comb teeth. This can be attributed to significant frequency noise across the comb's spectral bandwidth. We have stabilized a prism-based Cr:forsterite laser comb and observed narrowing of the f0 linewidth from ∼1.4  MHz down to ∼100  kHz by changing only the prism insertion, and to 23 kHz by inserting a knife edge into the intracavity beam while keeping the same prism insertion. The noise dynamics of the Cr:forsterite laser frequency comb are investigated with the goal of explaining this f0 narrowing phenomenon.

  12. Flap Edge Aeroacoustic Measurements and Predictions

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2000-01-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady surface pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and

  13. Flap Edge Aeroacoustic Measurements and Predictions

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2000-01-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define, the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and

  14. Clustered frequency comb.

    PubMed

    Matsko, Andrey B; Savchenkov, Anatoliy A; Huang, Shu-Wei; Maleki, Lute

    2016-11-01

    We show theoretically that it is feasible to generate a spectrally broad Kerr frequency comb consisting of several spectral clusters phase matched due to interplay among second- and higher-order group velocity dispersion contributions. We validate the theoretical analysis experimentally by driving a magnesium fluoride resonator, characterized with 110 GHz free spectral range, with a continuous wave light at 1.55 μm and observing two comb clusters separated by nearly two-thirds of an octave.

  15. Hybrid spectral CT reconstruction

    PubMed Central

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  16. Hybrid spectral CT reconstruction.

    PubMed

    Clark, Darin P; Badea, Cristian T

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  17. FOCUSR: feature oriented correspondence using spectral regularization--a method for precise surface matching.

    PubMed

    Lombaert, Herve; Grady, Leo; Polimeni, Jonathan R; Cheriet, Farida

    2013-09-01

    Existing methods for surface matching are limited by the tradeoff between precision and computational efficiency. Here, we present an improved algorithm for dense vertex-to-vertex correspondence that uses direct matching of features defined on a surface and improves it by using spectral correspondence as a regularization. This algorithm has the speed of both feature matching and spectral matching while exhibiting greatly improved precision (distance errors of 1.4 percent). The method, FOCUSR, incorporates implicitly such additional features to calculate the correspondence and relies on the smoothness of the lowest-frequency harmonics of a graph Laplacian to spatially regularize the features. In its simplest form, FOCUSR is an improved spectral correspondence method that nonrigidly deforms spectral embeddings. We provide here a full realization of spectral correspondence where virtually any feature can be used as an additional information using weights on graph edges, but also on graph nodes and as extra embedded coordinates. As an example, the full power of FOCUSR is demonstrated in a real-case scenario with the challenging task of brain surface matching across several individuals. Our results show that combining features and regularizing them in a spectral embedding greatly improves the matching precision (to a submillimeter level) while performing at much greater speed than existing methods.

  18. FOCUSR: Feature Oriented Correspondence using Spectral Regularization–A Method for Precise Surface Matching

    PubMed Central

    Lombaert, Herve; Grady, Leo; Polimeni, Jonathan R.; Cheriet, Farida

    2013-01-01

    Existing methods for surface matching are limited by the trade-off between precision and computational efficiency. Here we present an improved algorithm for dense vertex-to-vertex correspondence that uses direct matching of features defined on a surface and improves it by using spectral correspondence as a regularization. This algorithm has the speed of both feature matching and spectral matching while exhibiting greatly improved precision (distance errors of 1.4%). The method, FOCUSR, incorporates implicitly such additional features to calculate the correspondence and relies on the smoothness of the lowest-frequency harmonics of a graph Laplacian to spatially regularize the features. In its simplest form, FOCUSR is an improved spectral correspondence method that nonrigidly deforms spectral embeddings. We provide here a full realization of spectral correspondence where virtually any feature can be used as additional information using weights on graph edges, but also on graph nodes and as extra embedded coordinates. As an example, the full power of FOCUSR is demonstrated in a real case scenario with the challenging task of brain surface matching across several individuals. Our results show that combining features and regularizing them in a spectral embedding greatly improves the matching precision (to a sub-millimeter level) while performing at much greater speed than existing methods. PMID:23868776

  19. The digital step edge

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.

    1982-01-01

    The facet model was used to accomplish step edge detection. The essence of the facet model is that any analysis made on the basis of the pixel values in some neighborhood has its final authoritative interpretation relative to the underlying grey tone intensity surface of which the neighborhood pixel values are observed noisy samples. Pixels which are part of regions have simple grey tone intensity surfaces over their areas. Pixels which have an edge in them have complex grey tone intensity surfaces over their areas. Specially, an edge moves through a pixel only if there is some point in the pixel's area having a zero crossing of the second directional derivative taken in the direction of a non-zero gradient at the pixel's center. To determine whether or not a pixel should be marked as a step edge pixel, its underlying grey tone intensity surface was estimated on the basis of the pixels in its neighborhood.

  20. Red edge measurements for remotely sensing plant chlorophyll content

    NASA Technical Reports Server (NTRS)

    Horler, D. N. H.; Dockray, M.; Barber, J.; Barringer, A. R.

    1983-01-01

    The feasibility of using the wavelength of the maximum slope of the red edge of leaf reflectance spectra, Lambda(re), as an indication of plant chlorophyll status was examined in the laboratory for single leaves of several species. Lambda(re) for each sample was determined by derivative reflectance spectroscopy. A high positive correlation was found between Lambda(re) and leaf chlorophyll content for all species, although there were some differences in the quantitative nature of the relationship for plants of different types. The position of the red edge was found to be unaffected by simulated change in ground cover, but multiple leaf layers produced a shift in its position. Appropriate spectral measurements and processing for obtaining useful information from the red edge are discussed, and the potential of the red edge in relation to other spectral measurements is considered.

  1. Red edge measurements for remotely sensing plant chlorophyll content

    NASA Technical Reports Server (NTRS)

    Horler, D. N. H.; Dockray, M.; Barber, J.; Barringer, A. R.

    1983-01-01

    The feasibility of using the wavelength of the maximum slope of the red edge of leaf reflectance spectra, Lambda(re), as an indication of plant chlorophyll status was examined in the laboratory for single leaves of several species. Lambda(re) for each sample was determined by derivative reflectance spectroscopy. A high positive correlation was found between Lambda(re) and leaf chlorophyll content for all species, although there were some differences in the quantitative nature of the relationship for plants of different types. The position of the red edge was found to be unaffected by simulated change in ground cover, but multiple leaf layers produced a shift in its position. Appropriate spectral measurements and processing for obtaining useful information from the red edge are discussed, and the potential of the red edge in relation to other spectral measurements is considered.

  2. Spectral clustering with epidemic diffusion

    NASA Astrophysics Data System (ADS)

    Smith, Laura M.; Lerman, Kristina; Garcia-Cardona, Cristina; Percus, Allon G.; Ghosh, Rumi

    2013-10-01

    Spectral clustering is widely used to partition graphs into distinct modules or communities. Existing methods for spectral clustering use the eigenvalues and eigenvectors of the graph Laplacian, an operator that is closely associated with random walks on graphs. We propose a spectral partitioning method that exploits the properties of epidemic diffusion. An epidemic is a dynamic process that, unlike the random walk, simultaneously transitions to all the neighbors of a given node. We show that the replicator, an operator describing epidemic diffusion, is equivalent to the symmetric normalized Laplacian of a reweighted graph with edges reweighted by the eigenvector centralities of their incident nodes. Thus, more weight is given to edges connecting more central nodes. We describe a method that partitions the nodes based on the componentwise ratio of the replicator's second eigenvector to the first and compare its performance to traditional spectral clustering techniques on synthetic graphs with known community structure. We demonstrate that the replicator gives preference to dense, clique-like structures, enabling it to more effectively discover communities that may be obscured by dense intercommunity linking.

  3. Edge wave visualization

    NASA Technical Reports Server (NTRS)

    Dominek, Allen K.; Nguyen, Truong X.

    1991-01-01

    Scattering mechanisms that involve edge waves are addressed. The behavior of edge waves and their interaction with flat, perfectly conducting plates are depicted in the time domain through a visualization of surface currents that flow on the surface, as an incident Gaussian pulse of energy washes over the surface. Viewing these surface currents allows a very clear physical interpretation and appreciation of the scattering process.

  4. Spectral Predictors

    SciTech Connect

    Ibarria, L; Lindstrom, P; Rossignac, J

    2006-11-17

    Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show that predictive coding using our spectral predictor improves compression for various sources of high-precision data.

  5. Spectral classification

    NASA Astrophysics Data System (ADS)

    Jaschek, C.

    Taxonomic classification of astronomically observed stellar objects is described in terms of spectral properties. Stars receive a classification containing a letter, number, and a Roman numeral, which relates the star to other stars of higher or lower Roman numerals. The citation indicates the stellar chromatic emission in relation to the wavelengths of other stars. Standards are chosen from the available objects detected. Various classification schemes such as the MK, HD, and the Barbier-Chalonge-Divan systems are defined, including examples of indexing differences. Details delineating the separations between classifications are discussed with reference to the information content in spectral and in photometric classification schemes. The parameters usually used for classification include the temperature, luminosity, reddening, binarity, rotation, magnetic field, and elemental abundance or composition. The inclusion of recently discovered extended wavelength characteristics in nominal classifications is outlined, together with techniques involved in automated classification.

  6. Using new edges for anomaly detection in computer networks

    DOEpatents

    Neil, Joshua Charles

    2015-05-19

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  7. Using new edges for anomaly detection in computer networks

    DOEpatents

    Neil, Joshua Charles

    2017-07-04

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  8. Spectral Searching

    NASA Astrophysics Data System (ADS)

    Sprouse, James F.

    1985-12-01

    Infrared Spectral Searching has progressed rapidly over the past two years since the last FT-IR Conference in Durham, England. In addition, if we compare the searching capabilities available to the Infrared Spectroscopist today with those that were available a short four years ago at the last North American Conference held in Columbia, South Carolina, then the advancements are even more impressive. In retrospect, I would describe the state-of-the-art in Spectral Searching at the 1981 FT-IR Conference as "Level 1 Searching", where the spectroscopist was limited to measuring a spectrum for his unknown material, and automatically searching it against very limited libraries at that time to obtain a search report. The report generally provided an ordered ranking of the best matches, chemical name, and a spectrum number so the reference spectrum could be located and reviewed in books. In 1981, there existed a total of three commercially available infrared search packages at the instrument level. Two of the packages were available for FT-IR instruments and the third was available on a dispersive instrument. Only the FT-IR packages allowed viewing the reference spectra on the CRT along with the unknown spectrum by automated spectral retrieval from the reference libraries stored on disk. However, the primary source of reference spectra was still predominantly hard copy.

  9. The comparison between modeling of edge localized modes with a current relaxation model and experiment on EAST

    NASA Astrophysics Data System (ADS)

    Cai, J. Q.; Liang, Y.; Pearson, J.; Zhang, T.; Zang, Q.; Wu, M. Q.; Huang, J.; Team1, EAST

    2017-08-01

    The distinctions of edge localized mode (ELM) frequency distributions between moderate and high edge current density cases were observed on the experiment advanced superconducting tokamak. In this paper, a current relaxation model is applied to explain this new observation. It has been demonstrated that the ELM frequency is very sensitive to the edge current density and the edge safety factor by the model predictions. The results also show that, in the large edge current density case, the ELM frequency is subject to a single-peak distribution; while in the moderate edge current density case, the ELM frequency is subject to a roughly multi-peak distribution.

  10. Drift wave turbulence in the edge region of MST reversed field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Thuecks, D. J.; Almagri, A. F.; Sarff, J. S.; Terry, P. W.

    2016-10-01

    Measurements of electric field fluctuations reveal activity consistent with drift waves in the edge region of standard-confinement MST plasmas. The fluctuations are broadband and strongly anisotropic, with a power spectral index that is steeper in the direction parallel to the mean magnetic field direction than it is in the perpendicular direction. The power in the fluctuating kinetic energy, 1/2 minivẼ×B0 2 , exceeds the power in magnetic fluctuation energy for frequencies above 80 kHz. At lower frequencies (20-40 kHz), magnetic energy associated with unstable global tearing modes dominates. A lack of equipartition in the turbulent cascade coincides with measured signatures of independent fluctuation activity broadly consistent with drift-wave fluctuations. Statistical coherence measurements reveal mode activity at high frequencies (>=80 kHz) that is compressive, has high coherence in regions of the plasma with strong density gradients, and has a phase speed comparable to the electron drift speed. Elevated coherency associated with this fluctuation feature of the drift wave fluctuations return more quickly following magnetic reconnection events than corresponding coherence associated with the tearing activity. This suggests the drift-wave fluctuations may be excited by the large edge-localized thermal pressure gradient, but they could also be excited nonlinearly in a turbulent cascade driven by the tearing modes. Work supported by DOE and NSF.

  11. The Edge supersonic transport

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  12. Crystal growth, structural, spectral, thermal, linear and nonlinear optical characterization of a new organic nonlinear chiral compound: L-tryptophan-fumaric acid-water (1/1/1) suitable for laser frequency conversion

    NASA Astrophysics Data System (ADS)

    Peer Mohamed, M.; Jayaprakash, P.; Nageshwari, M.; Rathika Thaya Kumari, C.; Sangeetha, P.; Sudha, S.; Mani, G.; Lydia Caroline, M.

    2017-08-01

    A new organic active nonlinear optical crystal L-tryptophan fumaric acid water (1/1/1), (C15H17N2 O7. H2O)(LTFAW), consisting of zwitterion tryptophan molecule in conjunction with a fumaric acid molecule and a water molecule was grown by slow solvent evaporation technique from aqueous solution. The organic chromophore crystallizes from water in its zwitterions exhibiting tabular habit in monoclinic system with acentric space group C2 (Z = 4). The sharp peaks observed in Powder X-ray diffractogram depicts the crystalline nature. The presence of functional groups in the grown crystal was analyzed using FT-IR spectrum. The carbon and hydrogen environment in molecular structure was investigated using FT-NMR technique using deuterated DMSO solution. Ultraviolet-visible spectral analysis reveal that the crystal possess lower cut-off wavelength down to 275 nm, is a key factor to exhibit Second Harmonic Generation (SHG) signal. The direct optical band gap is evaluated to be 5.28 eV from the UV absorption profile. The evaluation of optical constants by employing UV-visible absorbance data such as, extinction coefficient, reflectance, refractive index, optical conductivity are supportive towards good performance as NLO devices. Temperature of decomposition was investigated using thermogravimetric analysis/differential thermal analysis techniques (TG/DTA). The luminescence profile exhibited two peaks (362 nm, 683 nm) due to the donation of protons from carboxylic group to amino group. The nonlinear optical behavior from the noncentrosymmetric crystal was observed by the generation of frequency doubled (2ω) optical radiation when subjected to pulsed Nd:YAG laser (1064 nm, 10 ns, 10 Hz) using Kurtz-Perry method. The variation of dielectric constant (εʹ) and dielectric loss (εʹʹ) vs. Log f for the title compound was analysed at a few selected temperatures and frequencies.

  13. Spectral characterization of a photonic bandgap fiber for sensing applications.

    PubMed

    Aref, S Hashem; Amezcua-Correac, Rodrigo; Carvalho, Joel P; Frazão, Orlando; Santos, José L; Araújo, Francisco M; Latifi, Hamid; Farahi, Faramarz; Ferreira, Luis A; Knight, Jonathan C

    2010-04-01

    We study the measurand-induced spectral shift of the photonic bandgap edge of a hollow-core photonic crystal fiber. The physical measurands considered are strain, temperature, curvature, and twist. A noticeable sensitivity to strain, temperature, and twist is observed, with a blueshift to increase strain and twist. An increase in temperature induces a redshift. On the other hand, curvature has no observable effect on the spectral position of the photonic bandgap edge.

  14. Adaptable edge quality metric

    NASA Astrophysics Data System (ADS)

    Strickland, Robin N.; Chang, Dunkai K.

    1990-09-01

    A new quality metric for evaluating edges detected by digital image processing algorithms is presented. The metric is a weighted sum of measures of edge continuity smoothness thinness localization detection and noisiness. Through a training process we can design weights which optimize the metric for different users and applications. We have used the metric to compare the results of ten edge detectors when applied to edges degraded by varying degrees of blur and varying degrees and types of noise. As expected the more optimum Difference-of-Gaussians (DOG) and Haralick methods outperform the simpler gradient detectors. At high signal-to-noise (SNR) ratios Haralick''s method is the best choice although it exhibits a sudden drop in performance at lower SNRs. The DOG filter''s performance degrades almost linearly with SNR and maintains a reasonably high level at lower SNRs. The same relative performances are observed as blur is varied. For most of the detectors tested performance drops with increasing noise correlation. Noise correlated in the same direction as the edge is the most destructive of the noise types tested.

  15. Power spectral estimation algorithms

    NASA Technical Reports Server (NTRS)

    Bhatia, Manjit S.

    1989-01-01

    Algorithms to estimate the power spectrum using Maximum Entropy Methods were developed. These algorithms were coded in FORTRAN 77 and were implemented on the VAX 780. The important considerations in this analysis are: (1) resolution, i.e., how close in frequency two spectral components can be spaced and still be identified; (2) dynamic range, i.e., how small a spectral peak can be, relative to the largest, and still be observed in the spectra; and (3) variance, i.e., how accurate the estimate of the spectra is to the actual spectra. The application of the algorithms based on Maximum Entropy Methods to a variety of data shows that these criteria are met quite well. Additional work in this direction would help confirm the findings. All of the software developed was turned over to the technical monitor. A copy of a typical program is included. Some of the actual data and graphs used on this data are also included.

  16. How Sharp Does a "Knife Edge" Have to Be?

    ERIC Educational Resources Information Center

    Dietz, Eric R.; Gash, Philip W.

    1994-01-01

    Describes an experiment designed to help understand the effect of the curvature of the laboratory equipment support (cylindrical rod instead of knife-edge) on the frequency of oscillation of pendula. (ZWH)

  17. Spin Frequency Detection in the Spectral Domain.

    DTIC Science & Technology

    1986-03-01

    ml-(A 0 0 w aK 0 Z x 93 W WO.L WI- m w00 z X X (A mm I -" 0 ae .L aI- 01- 1-I - Ix0 w SX Ř oz L 0 La m 𔃾Z-wla- Zx c IX.aw (nl E a * Z03 0ŗ W- I L.O...W0ZwW=CWo0Z Q.I-W4MY)JLL IL Z(A*.J.JXW= .0+ +9-CL=.0JaLŔ.C CDP -O"- IA ( 0 .a a. a a WI- (LW.4W"WwWW(U~mW WMWWWWWWWWWWW ZII- ’.04XXXXWXZLa.ZXZCM

  18. Near Field Trailing Edge Tone Noise Computation

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2002-01-01

    Blunt trailing edges in a flow often generate tone noise due to wall-jet shear layer and vortex shedding. In this paper, the space-time conservation element (CE/SE) method is employed to numerically study the near-field noise of blunt trailing edges. Two typical cases, namely, flow past a circular cylinder (aeolian noise problem) and flow past a flat plate of finite thickness are considered. The computed frequencies compare well with experimental data. For the aeolian noise problem, comparisons with the results of other numerical approaches are also presented.

  19. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1980-01-01

    A computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between O and 3000 GHz (such as; wavelengths longer than 100 m) is discussed. The catalogue was used as a planning guide and as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances.

  20. The pulsar spectral index distribution

    NASA Astrophysics Data System (ADS)

    Bates, S. D.; Lorimer, D. R.; Verbiest, J. P. W.

    2013-05-01

    The flux-density spectra of radio pulsars are known to be steep and, to first order, described by a power-law relationship of the form Sν ∝ να, where Sν is the flux density at some frequency ν and α is the spectral index. Although measurements of α have been made over the years for several hundred pulsars, a study of the intrinsic distribution of pulsar spectra has not been carried out. From the result of pulsar surveys carried out at three different radio frequencies, we use population synthesis techniques and a likelihood analysis to deduce what underlying spectral index distribution is required to replicate the results of these surveys. We find that in general the results of the surveys can be modelled by a Gaussian distribution of spectral indices with a mean of -1.4 and unit standard deviation. We also consider the impact of the so-called gigahertz-peaked spectrum pulsars proposed by Kijak et al. The fraction of peaked-spectrum sources in the population with any significant turnover at low frequencies appears to be at most 10 per cent. We demonstrate that high-frequency (>2 GHz) surveys preferentially select flatter spectrum pulsars and the converse is true for lower frequency (<1 GHz) surveys. This implies that any correlations between α and other pulsar parameters (for example age or magnetic field) need to carefully account for selection biases in pulsar surveys. We also expect that many known pulsars which have been detected at high frequencies will have shallow, or positive, spectral indices. The majority of pulsars do not have recorded flux density measurements over a wide frequency range, making it impossible to constrain their spectral shapes. We also suggest that such measurements would allow an improved description of any populations of pulsars with `non-standard' spectra. Further refinements to this picture will soon be possible from the results of surveys with the Green Bank Telescope and LOFAR.

  1. An experimental study of airfoil instability tonal noise with trailing edge serrations

    NASA Astrophysics Data System (ADS)

    Chong, Tze Pei; Joseph, Phillip F.

    2013-11-01

    This paper presents an experimental study of the effect of trailing edge serrations on airfoil instability noise. Detailed aeroacoustic measurements are presented of the noise radiated by an NACA-0012 airfoil with trailing edge serrations in a low to moderate speed flow under acoustical free field conditions. The existence of a separated boundary layer near the trailing edge of the airfoil at an angle of attack of 4.2 degree has been experimentally identified by a surface mounted hot-film arrays technique. Hot-wire results have shown that the saw-tooth surface can trigger a bypass transition and prevent the boundary layer from becoming separated. Without the separated boundary layer to act as an amplifier for the incoming Tollmien-Schlichting waves, the intensity and spectral characteristic of the radiated tonal noise can be affected depending upon the serration geometry. Particle Imaging Velocimetry (PIV) measurements of the airfoil wakes for a straight and serrated trailing edge are also reported in this paper. These measurements show that localized normal-component velocity fluctuations that are present in a small region of the wake from the laminar airfoil become weakened once serrations are introduced. Owing to the above unique characteristics of the serrated trailing edges, we are able to further investigate the mechanisms of airfoil instability tonal noise with special emphasis on the assessment of the wake and non-wake based aeroacoustic feedback models. It has been shown that the instability tonal noise generated at an angle of attack below approximately one degree could involve several complex mechanisms. On the other hand, the non-wake based aeroacoustic feedback mechanism alone is sufficient to predict all discrete tone frequencies accurately when the airfoil is at a moderate angle of attack. Larger Δf, which is defined as (fn+1-fn). In other words, a larger margin of velocity increase is required in order to "shift" the fn and fn+1 across fs

  2. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2015-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  3. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2016-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  4. Peakfitter — an integrated Excel-based Visual Basic program for processing multiple skewed and shifting Gaussian-like spectral peaks simultaneously: application to radio frequency glow discharge ion trap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Eanes, Ritchie C.; Marcus, R. Kenneth

    2000-04-01

    This article is an electronic publication in Spectrochimica Acta Electronica (SAE), a section of Spectrochimica Acta Part B (SAB). The hardcopy text is accompanied by an electronic archive, stored on the SAE homepage at (http://www.elsevier.nl/locate/sabe). The archive contains program and data files. The main article discusses the scientific spectroscopic and instrumental aspects of the subject and explains the purpose of the program and data files. The work deals with a Microsoft Excel Visual Basic program, Peakfitter, which can process multiple Gaussian-shaped spectral peaks quickly and easily. The program employs Microsoft Excel Solver to process any Gaussian-like spectra that can be opened in Microsoft Excel 97. Up to three peaks in one to 225 spectra, each containing up to 2000 data points can be processed per data file to give background corrected peak areas for both raw data and its associated fit data as calculated by the trapezoidal method or by simple successive addition of channel intensities across each peak. Concurrently output also includes fit peak heights for Gaussian-shaped spectral peaks. Use of other statistical distributions such as the Lorentzian model requires only slight modification to a template file. Hence, Peakfitter was actually written as two application programs, 'Gaussfitter' and 'Lorenfitter' to accommodate spectra of Gaussian or Lorentzian character, respectively. Written initially to process data from a radio frequency glow discharge ion trap mass spectrometer (rf-GD/ITMS), the program is useful for processing sequentially acquired spectra, which have a limited number of data points across each peak. The user may examine and manipulate program variables in cases where the raw data is skewed with respect to the fit data. An assessment of Peakfitter is given using rf-GD/ITMS elemental analysis and ion-molecule reaction data. Peakfitter's (i.e. 'Gaussfitter's) utility in processing rf-GD/ITMS spectra is characterized by a slight

  5. Control of leading-edge vortices on a delta wing

    NASA Technical Reports Server (NTRS)

    Magness, C.; Robinson, O.; Rockwell, D.

    1992-01-01

    The unsteady flow structure of leading-edge vortices on a delta wing has been investigated using new types of experimental techniques, in order to provide insight into the consequences of various forms of active control. These investigations involve global control of the entire wing and local control applied at crucial locations on or adjacent to the wing. Transient control having long and short time-scales, relative to the convective time-scale C/U(sub infinity), allows substantial modification of the unsteady and time-mean flow structure. Global control at long time-scale involves pitching the wing at rates an order of magnitude lower than the convective time-scale C/U(sub infinity), but at large amplitudes. The functional form of the pitching maneuver exerts a predominant influence on the trajectory of the feeding sheet, the instantaneous vorticity distribution, and the instantaneous location of vortex breakdown. Global control at short time-scales of the order of the inherent frequency of the shear layer separating from the leading-edge and the natural frequency of vortex breakdown shows that 'resonant' response of the excited shear layer-vortex breakdown system is attainable. The spectral content of the induced disturbance is preserved not only across the entire core of the vortex, but also along the axis of the vortex into the region of vortex breakdown. This unsteady modification results in time-mean alteration of the axial and swirl velocity fields and the location of vortex breakdown. Localized control at long and short time-scales involves application of various transient forms of suction and blowing using small probes upstream and downstream of the location of vortex breakdown, as well as distributed suction and blowing along the leading-edge of the wing applied in a direction tangential to the feeding sheet. These local control techniques can result in substantial alteration of the location of vortex breakdown; in some cases, it is possible to

  6. Floquet edge states in germanene nanoribbons

    PubMed Central

    Tahir, M.; Zhang, Q. Y.; Schwingenschlögl, U.

    2016-01-01

    We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude of the light and by applying a static electric field. For circularly polarized light the band gap in one valley is reduced and in the other enhanced, enabling single valley edge states. For linearly polarized light spin-split states are found for both valleys, being connected by time reversal symmetry. The effects of elliptically polarized light are similar to those of circularly polarized light. The transport properties of zigzag nanoribbons in the presence of disorder confirm a nontrivial nature of the edge states under circularly and elliptically polarized light. PMID:27550632

  7. How visual edge features influence cuttlefish camouflage patterning.

    PubMed

    Chiao, Chuan-Chin; Ulmer, Kimberly M; Siemann, Liese A; Buresch, Kendra C; Chubb, Charles; Hanlon, Roger T

    2013-05-03

    Rapid adaptive camouflage is the primary defense of soft-bodied cuttlefish. Previous studies have shown that cuttlefish body patterns are strongly influenced by visual edges in the substrate. The aim of the present study was to examine how cuttlefish body patterning is differentially controlled by various aspects of edges, including contrast polarity, contrast strength, and the presence or absence of "line terminators" introduced into a pattern when continuous edges are fragmented. Spatially high- and low-pass filtered white or black disks, as well as isolated, continuous and fragmented edges varying in contrast, were used to assess activation of cuttlefish skin components. Although disks of both contrast polarities evoked relatively weak disruptive body patterns, black disks activated different skin components than white disks, and high-frequency information alone sufficed to drive the responses to white disks whereas high- and low-frequency information were both required to drive responses to black disks. Strikingly, high-contrast edge fragments evoked substantially stronger body pattern responses than low-contrast edge fragments, whereas the body pattern responses evoked by high-contrast continuous edges were no stronger than those produced by low-contrast edges. This suggests that line terminators vs. continuous edges influence expression of disruptive body pattern components via different mechanisms that are controlled by contrast in different ways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Swords with Blunt Edges

    ERIC Educational Resources Information Center

    Popham, W. James

    2004-01-01

    Many U.S. educators now wonder whether they're teachers or targets. This mentality stems from the specter of their school being sanctioned for failing the state accountability tests mandated under No Child Left Behind (NCLB). According to this author, most of those tests are like blunt-edged swords: They function badly in two directions. While…

  9. The Inner Urban Edge

    ERIC Educational Resources Information Center

    Ferebee, Ann; Carpenter, Edward K.

    1974-01-01

    In this article, renewal of the inner urban edge is discussed. Norfolk (Virginia) is attempting to blur the difference between old and new neighbor hoods through zoning and architectural controls. Cincinnati (Ohio) is developing an environmentally sound hillside design. Reading (Pennsylvania) is utilizing old railyards for greenbelts of hiking and…

  10. The red edge of plant leaf reflectance

    NASA Technical Reports Server (NTRS)

    Horler, D. N. H.; Dockray, M.; Barber, J.

    1983-01-01

    A detailed study of the red edge spectral feature of green vegetation based on laboratory reflectance spectrophotometry is presented. A parameter lambda is defined as the wavelength is defined as the wavelength of maximum slope and found to be dependent on chlorophyll concentration. Species, development stage, leaf layering, and leaf water content of vegetation also influences lambda. The maximum slope parameter is found to be independent of simulated ground area coverage. The results are interpreted in terms of Beer's Law and Kubelka-Munk theory. The chlorophyll concentration dependence of lambda seems to be explained in terms of a pure absorption effect, and it is suggested that the existence of two lambda components arises from leaf scattering properties. The results indicate that red edge measurements will be valuable for assessment of vegetative chlorophyll status and leaf area index independently of ground cover variations, and will be particularly suitable for early stress detection.

  11. The red edge of plant leaf reflectance

    NASA Technical Reports Server (NTRS)

    Horler, D. N. H.; Dockray, M.; Barber, J.

    1983-01-01

    A detailed study of the red edge spectral feature of green vegetation based on laboratory reflectance spectrophotometry is presented. A parameter lambda is defined as the wavelength is defined as the wavelength of maximum slope and found to be dependent on chlorophyll concentration. Species, development stage, leaf layering, and leaf water content of vegetation also influences lambda. The maximum slope parameter is found to be independent of simulated ground area coverage. The results are interpreted in terms of Beer's Law and Kubelka-Munk theory. The chlorophyll concentration dependence of lambda seems to be explained in terms of a pure absorption effect, and it is suggested that the existence of two lambda components arises from leaf scattering properties. The results indicate that red edge measurements will be valuable for assessment of vegetative chlorophyll status and leaf area index independently of ground cover variations, and will be particularly suitable for early stress detection.

  12. Near-infrared spectral imaging of the female breast for quantitative oximetry in optical mammography

    SciTech Connect

    Yu Yang; Liu Ning; Sassaroli, Angelo; Fantini, Sergio

    2009-04-01

    We present a hybrid continuous-wave, frequency-domain instrument for near-infrared spectral imaging of the female breast based on a tandem, planar scanning of one illumination optical fiber and one collection optical fiber configured in a transmission geometry. The spatial sampling rate of 25 points/cm{sup 2} is increased to 400 points/cm{sup 2} by postprocessing the data with a 2D cubic spline interpolation. We then apply a previously developed spatial second-derivative algorithm to an edge-corrected intensity image (N-image) to enhance the visibility and resolution of optical inhomogeneities in breast tissue such as blood vessels and tumors. The spectral data at each image pixel consist of 515-point spectra over the 650-900 nm wavelength range, thus featuring a spectral density of two data points per nanometer. We process the measured spectra with a paired-wavelength spectral analysis method to quantify the oxygen saturation of detected optical inhomogeneities, under the assumption that they feature a locally higher hemoglobin concentration. Our initial measurements on two healthy human subjects have generated high-resolution optical mammograms displaying a network of blood vessels with values of hemoglobin saturation typically falling within the 60%-95% range, which is physiologically reasonable. This approach to spectral imaging and oximetry of the breast has the potential to efficiently exploit the high intrinsic contrast provided by hemoglobin in breast tissue and to contribute a useful tool in the detection, diagnosis, and monitoring of breast pathologies.

  13. Edge Minority Heating Experiment in Alcator C-Mod

    SciTech Connect

    S.J. Zweben; J.L. Terry; P. Bonoli; R. Budny; C.S. Chang; C. Fiore; G. Schilling; S. Wukitch; J. Hughes; Y. Lin; R. Perkins; M. Porkolab; the Alcator C-Mod Team

    2005-03-25

    An attempt was made to control global plasma confinement in the Alcator C-Mod tokamak by applying ion cyclotron resonance heating (ICRH) power to the plasma edge in order to deliberately create a minority ion tail loss. In theory, an edge fast ion loss could modify the edge electric field and so stabilize the edge turbulence, which might then reduce the H-mode power threshold or improve the H-mode barrier. However, the experimental result was that edge minority heating resulted in no improvement in the edge plasma parameters or global stored energy, at least at power levels of radio-frequency power is less than or equal to 5.5 MW. A preliminary analysis of these results is presented and some ideas for improvement are discussed.

  14. Edge fluctuations in the MST (Madison Symmetric Torus) reversed field pinch

    SciTech Connect

    Almagri, A.; Assadi, S.; Beckstead, J.; Chartas, G.; Crocker, N.; Den Hartog, D.; Dexter, R.; Hokin, S.; Holly, D.; Nilles, E.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Spragins, C.; Sprott, J.; Starr, G.; Stoneking, M.; Watts, C.

    1990-10-01

    Edge magnetic and electrostatic fluctuations are measured in the Madison Symmetric Torus (MST) reversed field pinch. At low frequency (<25 kHz), the mode number spectra of magnetic fluctuations agree very well with theoretical prediction for nonlinearly saturated tearing fluctuations resonant in the core. At high frequency (50 kHz to 100 kHz) the magnetic spectra broaden and the modes become resonant in the reversal region. Nonlinear phenomena are under experimental investigation. The low frequency fluctuations phase-lock together to produce a rotating localized disturbance. Bi-spectral analysis in frequency also reveals nonlinear three-wave mode-coupling at low frequency. Electrostatic fluctuations are substantial and do not appear to obey a Boltzmann relation (i.e. e{tilde {phi}}/kT{sub e} > {tilde p}{sub e}/p{sub e} where {tilde {phi}} and {tilde p}{sub e} are the fluctuating potential and pressure, respectively). From measurements of the fluctuating density, temperature, and potential we infer that the electrostatic fluctuation induced transport of particles and energy can be substantial. 13 refs., 11 figs.

  15. Frequency Characteristics of Fluctuating Pressure on Rotor Blade in a Propeller Fan

    NASA Astrophysics Data System (ADS)

    Jang, Choon-Man; Furukawa, Masato; Inoue, Masahiro

    A wavelet transform is introduced to analyze frequency characteristics of the fluctuating pressure on rotor blade in a propeller fan. The fluctuating pressure on the rotor blade is obtained by using the results of a large eddy simulation. The frequencies having high spectral peaks of the fluctuating pressure are determined by taking the time average of the local absolute modulus of the wavelet. The dominant frequency of the real-time pressure selected at the high pressure fluctuation region corresponds well to that of the fluctuating rotor torque and the experimental result of fan noise. It is mainly generated due to the unsteady behavior of the vortical flow, such as the tip vortex and the leading edge separation vortex, in the propeller fan. A frequency in the separation bubble region on the suction surface is higher than that of the dominant frequency caused by the vortical flow.

  16. Spectral characterization of the LANDSAT Thematic Mapper sensors

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Barker, J. L.

    1984-01-01

    The spectral coverage characteristics of the two thematic mapper instruments were determined by analyses of spectral measurements of the optics, filters, and detectors. The following results are presented: (1) band 2 and 3 flatness was slightly below specification, and band 7 flatness was below specification; (2) band 5 upper-band edge was higher than specifications; (3) band 2 band edges were shifted upward about 9 nm relative to nominal; and (4) band 4, 5, and 7 lower band edges were 16 to 18 nm higher then nominal.

  17. Superpixel edges for boundary detection

    SciTech Connect

    Moya, Mary M.; Koch, Mark W.

    2016-07-12

    Various embodiments presented herein relate to identifying one or more edges in a synthetic aperture radar (SAR) image comprising a plurality of superpixels. Superpixels sharing an edge (or boundary) can be identified and one or more properties of the shared superpixels can be compared to determine whether the superpixels form the same or two different features. Where the superpixels form the same feature the edge is identified as an internal edge. Where the superpixels form two different features, the edge is identified as an external edge. Based upon classification of the superpixels, the external edge can be further determined to form part of a roof, wall, etc. The superpixels can be formed from a speckle-reduced SAR image product formed from a registered stack of SAR images, which is further segmented into a plurality of superpixels. The edge identification process is applied to the SAR image comprising the superpixels and edges.

  18. Shape of patch edges affects edge permeability for meadow voles.

    PubMed

    Nams, Vilis O

    2012-09-01

    Human development typically fragments natural habitats into patches, affecting population and metapopulation dynamics via changes in animal behavior. Emigration from one habitat patch to another has a large effect on population and metapopulation dynamics. One factor that affects emigration is permeability of patch edges. This study looks at the effects of edge shape (convex, concave, and straight) on edge permeability for meadow voles (Microtus pennsylvanicus).. I tested five hypotheses for responses of animal movement to patch shape: (1) neutral edge response; (2) edge attraction; (3) edge avoidance; (4) time-minimizing, in which an animal attempts to minimize the time spent in inhospitable matrix, and thus travels as far as possible in the patch before crossing the edge; and (5) protection, in which an animal attempts to maximize protection while in the inhospitable matrix by keeping the patch close by. These hypotheses were tested by an experimental manipulation of meadow vole habitats. A strip was mowed with different edge shapes through an old field, and vole response was measured by tracking plates. Voles crossed edges at concave treatments twice as often compared to convex and straight shapes. Hypotheses (2) and (5) were supported. Although edge attraction causes a passive effect of a decrease in edge-crossing at concavities, this effect was eclipsed by the active effect of voles choosing to cross at concavities. The results can be generalized to edge tortuosity in general. Conservation biologists should consider edge shapes when exploring the effects of habitat fragmentation on animal populations.

  19. Edge detector tolerant to object defocusing

    NASA Astrophysics Data System (ADS)

    Mazzaferri, Javier; Campos, Juan; Escalera, Juan C.; Sheppard, Colin J. R.; Ledesma, Silvia

    2010-10-01

    Different methods for edge extraction have been studied in the past years. In a recent paper we have presented a rotation-invariant edge extractor based on a spiral phase filter placed in the frequency plane of a convergent correlator. In this architecture, the axial position of the output plane strongly depends on the axial position of the object. This condition limits the processing of three dimensional objects, because only a narrow axial region of the object would be correctly imaged to the output. The other axial regions of the target yield defocused results. Likewise, a rather small axial misalignment of planar scenes could produce completely inaccurate correlations. Besides, annular pupils have been widely used to regulate the depth of focus (DOF) and the transversal resolution of optical systems. In this paper we present a novel filter that combines the advantages of a spiral phase-based edge extractor and those of an axial-apodizing annular pupil. This design allows edge extraction of objects in a widened axial range. Numerical simulations and experimental results that demonstrate edge extraction with improved tolerance to defocusing are presented.

  20. Numerical simulation of the edge tone phenomenon

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S.; Liu, B. L.; Ofarrell, J. M.

    1994-01-01

    Time accurate Navier-Stokes computations were performed to study a class 2 (acoustic) whistle, the edge tone, and to gain knowledge of the vortex-acoustic coupling mechanisms driving production of these tones. Results were obtained by solving the full Navier-Stokes equations for laminar compressible air flow of a two dimensional jet issuing from a slit interacting with a wedge. Cases considered were determined by varying the distance from the slit to the wedge. Flow speed was kept constant at 1,750 cm/s as was the slit thickness of 0.1 cm, corresponding to conditions in the experiments of Brown. The analytical computations revealed edge tones to be present in four harmonic stages of jet flow instability over the wedge as the jet length was varied from 0.3 to 1.6 cm. Excellent agreement was obtained in all four edge tone stage cases between the present computational results and the experimentally obtained frequencies and flow visualization results of Brown. Specific edge tone generation phenomena and further confirmation of certain theories and empirical formulas concerning these phenomena were brought to light in this analytical simulation of edge tones.

  1. The Effect of Nozzle Trailing Edge Thickness on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Kinzie, Kevin; Haskin, Henry

    2004-01-01

    The effect of nozzle trailing edge thickness on broadband acoustic radiation and the production of tones is investigated for coannular nozzles. Experiments were performed for a core nozzle trailing edge thickness between 0.38 mm and 3.17 mm. The on-set of discrete tones was found to be predominantly affected by the velocity ratio, the ratio of the fan velocity to the core velocity, although some dependency on trailing edge thickness was also noted. For a core nozzle trailing edge thickness greater than or equal to 0.89 mm, tones were produced for velocity ratios between 0.91 and 1.61. For a constant nozzle trailing edge thickness, the frequency varied almost linearly with the core velocity. The Strouhal number based on the core velocity changed with nozzle trailing edge thickness and varied between 0.16 and 0.2 for the core nozzles used in the experiments. Increases in broadband noise with increasing trailing edge thickness were observed for tone producing and non-tone producing conditions. A variable thickness trailing edge (crenellated) nozzle resulted in no tonal production and a reduction of the broadband trailing edge noise relative to that of the corresponding constant thickness trailing edge.

  2. Symmetric airfoil geometry effects on leading edge noise.

    PubMed

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.

  3. Measuring topological invariants from generalized edge states in polaritonic quasicrystals

    NASA Astrophysics Data System (ADS)

    Baboux, Florent; Levy, Eli; Lemaître, Aristide; Gómez, Carmen; Galopin, Elisabeth; Le Gratiet, Luc; Sagnes, Isabelle; Amo, Alberto; Bloch, Jacqueline; Akkermans, Eric

    2017-04-01

    We investigate the topological properties of Fibonacci quasicrystals using cavity polaritons. Composite structures made of the concatenation of two Fibonacci sequences allow one to investigate generalized edge states forming in the gaps of the fractal energy spectrum. We employ these generalized edge states to determine the topological invariants of the quasicrystal. When varying a structural degree of freedom (phason) of the Fibonacci sequence, the edge states spectrally traverse the gaps, while their spatial symmetry switches: The periodicity of this spectral and spatial evolution yields direct measurements of the gap topological numbers. The topological invariants that we determine coincide with those assigned by the gap-labeling theorem, illustrating the direct connection between the fractal and topological properties of Fibonacci quasicrystals.

  4. Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants.

    PubMed

    Seager, S; Turner, E L; Schafer, J; Ford, E B

    2005-06-01

    Earth's deciduous plants have a sharp order-of-magnitude increase in leaf reflectance between approximately 700 and 750 nm wavelength. This strong reflectance of Earth's vegetation suggests that surface biosignatures with sharp spectral features might be detectable in the spectrum of scattered light from a spatially unresolved extrasolar terrestrial planet. We assess the potential of Earth's step-function-like spectroscopic feature, referred to as the "red edge," as a tool for astrobiology. We review the basic characteristics and physical origin of the red edge and summarize its use in astronomy: early spectroscopic efforts to search for vegetation on Mars and recent reports of detection of the red edge in the spectrum of Earthshine (i.e., the spatially integrated scattered light spectrum of Earth). We present Earthshine observations from Apache Point Observatory (New Mexico) to emphasize that time variability is key to detecting weak surface biosignatures such as the vegetation red edge. We briefly discuss the evolutionary advantages of vegetation's red edge reflectance, and speculate that while extraterrestrial "light-harvesting organisms" have no compelling reason to display the exact same red edge feature as terrestrial vegetation, they might have similar spectroscopic features at different wavelengths than terrestrial vegetation. This implies that future terrestrial-planet-characterizing space missions should obtain data that allow time-varying, sharp spectral features at unknown wavelengths to be identified. We caution that some mineral reflectance edges are similar in slope and strength to vegetation's red edge (albeit at different wavelengths); if an extrasolar planet reflectance edge is detected care must be taken with its interpretation.

  5. Edge detection by nonlinear dynamics

    SciTech Connect

    Wong, Yiu-fai

    1994-07-01

    We demonstrate how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, our scheme is general enough to be able to handle different edges, such as lines, step-edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.

  6. A paradigm shift in patterning foundation from frequency multiplication to edge-placement accuracy: a novel processing solution by selective etching and alternating-material self-aligned multiple patterning

    NASA Astrophysics Data System (ADS)

    Han, Ting; Liu, Hongyi; Chen, Yijian

    2016-03-01

    Overlay errors, cut/block and line/space critical-dimension (CD) variations are the major sources of the edge-placement errors (EPE) in the cut/block patterning processes of complementary lithography when IC technology is scaled down to sub-10nm half pitch (HP). In this paper, we propose and discuss a modular technology to reduce the EPE effect by combining selective etching and alternating-material (dual-material) self-aligned multiple patterning (altSAMP) processes. Preliminary results of altSAMP process development and material screening experiment are reported and possible material candidates are suggested. A geometrical cut-process yield model considering the joint effect of overlay errors, cut-hole and line CD variations is developed to analyze its patterning performance. In addition to the contributions from the above three process variations, the impacts of key control parameters (such as cut-hole overhang and etching selectivity) on the patterning yield are examined. It is shown that the optimized altSAMP patterning process significantly improves the patterning yield compared with conventional SAMP processes, especially when the half pitch of device patterns is driven down to 7 nm and below.

  7. Universality in spectral statistics of open quantum graphs.

    PubMed

    Gutkin, B; Osipov, V Al

    2015-06-01

    The quantum evolution maps of closed chaotic quantum graphs are unitary and known to have universal spectral correlations matching predictions of random matrix theory. In chaotic graphs with absorption the quantum maps become nonunitary. We show that their spectral statistics exhibit universality at the soft edges of the spectrum. The same spectral behavior is observed in many classical nonunitary ensembles of random matrices with rotationally invariant measures.

  8. Universality in spectral statistics of open quantum graphs

    NASA Astrophysics Data System (ADS)

    Gutkin, B.; Osipov, V. Al.

    2015-06-01

    The quantum evolution maps of closed chaotic quantum graphs are unitary and known to have universal spectral correlations matching predictions of random matrix theory. In chaotic graphs with absorption the quantum maps become nonunitary. We show that their spectral statistics exhibit universality at the soft edges of the spectrum. The same spectral behavior is observed in many classical nonunitary ensembles of random matrices with rotationally invariant measures.

  9. Basic elements of power spectral analysis

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1974-01-01

    The basic elements of power spectral analysis with emphasis on the Blackman-Tukey method are presented. Short discussions are included on the topics of pre-whitening, frequency and spectral windows, and statistical reliability. Examples are included whenever possible, and a FORTRAN subroutine for calculating a power spectrum is presented.

  10. Frequency Domain Speech Coding

    DTIC Science & Technology

    1991-12-01

    perceptible affect on the sound of the reconstructed noiselike speech . It is possible that the frequency bands need not be mel scaled. Equally spaced frequency...levels seemed to affect the quality of the reproduced speech more than did the number of amplitude quantization levels. Informal listening test...the original. Eliminating spectral components has an adverse affect on the quality of reproduced speech . The whole process of selecting frequency and

  11. Playing Along the Edge

    NASA Image and Video Library

    2016-08-13

    Strands and arches of plasma streamed above the edge of the Sun for over a day, pulled by powerful magnetic forces (Aug. 11-12, 2016). The tug and pull of material heated to about 60,000 degrees C. was viewed in extreme ultraviolet light. This kind of dynamic flow of materials is rather common, though this grouping was larger than most. http://photojournal.jpl.nasa.gov/catalog/PIA17913

  12. Differentiator design and performance for edge sharpening

    USGS Publications Warehouse

    Pan, Jeng-Jong; Domingue, Julia O.

    1990-01-01

    A two-dimensional differentiator is useful for edge sharpening in digital image processing. In the design of a differentiator, differentiator coefficients that satisfy the specification of frequency response must be approximated. Four mathematical techniques - the minimax method, least-squares method, nonlinear programming, and linear programming - can be applied to solve the approximation problem. Results indicated that the differentiator derived from linear programming gives the highest resolution. -from Authors

  13. Edge turbulence in tokamaks

    NASA Astrophysics Data System (ADS)

    Nedospasov, A. V.

    1992-12-01

    Edge turbulence is of decisive importance for the distribution of particle and energy fluxes to the walls of tokamaks. Despite the availability of extensive experimental data on the turbulence properties, its nature still remains a subject for discussion. This paper contains a review of the most recent theoretical and experimental studies in the field, including mainly the studies to which Wootton (A.J. Wooton, J. Nucl. Mater. 176 & 177 (1990) 77) referred to most in his review at PSI-9 and those published later. The available theoretical models of edge turbulence with volume dissipation due to collisions fail to fully interpret the entire combination of experimental facts. In the scrape-off layer of a tokamak the dissipation prevails due to the flow of current through potential shifts near the surface of limiters of divertor plates. The different origins of turbulence at the edge and in the core plasma due to such dissipation are discussed in this paper. Recent data on the electron temperature fluctuations enabled one to evaluate the electric probe measurements of turbulent flows of particles and heat critically. The latest data on the suppression of turbulence in the case of L-H transitions are given. In doing so, the possibility of exciting current instabilities in biasing experiments (rather than only to the suppression of existing turbulence) is given some attention. Possible objectives of further studies are also discussed.

  14. Power Spectral Density and Hilbert Transform

    DTIC Science & Technology

    2016-12-01

    there is 1.3 W of power. How much bandwidth does a pure sine wave require? The bandwidth of an ideal sine wave is 0 Hz. How do you represent a 1-W... sine wave source (power concentrated in a single frequency) on a power spectral density graph (power per frequency, watts per hertz)? The Dirac delta...represent the power contained in a sine wave (zero bandwidth) on a power spectral density graph. Fig. 1 Dirac delta function () =

  15. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    SciTech Connect

    Noroozian, Omid; Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N.; Kang, Zhao

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  16. Wisps in the outer edge of the Keeler Gap

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.; Arnault, Ethan G.

    2015-11-01

    Superposed upon the relatively smooth outer edge of the Keeler Gap are a system of "wisps," which appear to be ring material protruding inward into the gap, usually with a sharp trailing edge and a smooth gradation back to the background edge location on the leading side (Porco et al. 2005, Science). The radial amplitude of wisps is usually 0.5 to 1 km, and their azimuthal extent is approximately a degree of longitude (~2400 km). Wisps are likely caused by an interplay between Daphnis (and perhaps other moons) and embedded moonlets within the ring, though the details remain unclear.Aside from the wisps, the Keeler Gap outer edge is the only one of the five sharp edges in the outer part of Saturn's A ring that is reasonably smooth in appearance (Tiscareno et al. 2005, DPS), with occultations indicating residuals less than 1 km upon a possibly non-zero eccentricity (R.G. French, personal communication, 2014). The other four (the inner and outer edges of the Encke Gap, the inner edge of the Keeler Gap, and the outer edge of the A ring itself) are characterized by wavy structure at moderate to high spatial frequencies, with amplitudes ranging from 2 to 30 km (Tiscareno et al. 2005, DPS).We will present a catalogue of wisp detections in Cassini images. We carry out repeated gaussian fits of the radial edge location in order to characterize edge structure and visually scan those fitted edges in order to detect wisps. With extensive coverage in longitude and in time, we will report on how wisps evolve and move, both within an orbit period and on longer timescales. We will also report on the frequency and interpretation of wisps that deviate from the standard morphology. We will discuss the implications of our results for the origin and nature of wisps, and for the larger picture of how masses interact within Saturn's rings.

  17. Numerical renormalization group calculation of near-gap peaks in spectral functions of the Anderson model with superconducting leads

    NASA Astrophysics Data System (ADS)

    Hecht, T.; Weichselbaum, A.; von Delft, J.; Bulla, R.

    2008-07-01

    We use the numerical renormalization group method (NRG) to investigate a single-impurity Anderson model with a coupling of the impurity to a superconducting host. Analysis of the energy flow shows that, contrary to previous belief, NRG iterations can be performed up to a large number of sites, corresponding to energy differences far below the superconducting gap Δ. This allows us to calculate the impurity spectral function A(ω) very accurately for frequencies |ω|~Δ, and to resolve, in a certain parameter regime, sharp peaks in A(ω) close to the gap edge.

  18. Photoacoustic spectral characterization of perfluorocarbon droplets

    NASA Astrophysics Data System (ADS)

    Strohm, Eric; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael

    2012-02-01

    Perfluorocarbon droplets containing optical absorbing nanoparticles have been developed for use as theranostic agents (for both imaging and therapy) and as dual-mode contrast agents. Droplets can be used as photoacoustic contrast agents, vaporized via optical irradiation, then the resulting bubbles can be used as ultrasound imaging and therapeutic agents. The photoacoustic signals from micron-sized droplets containing silica coated gold nanospheres were measured using ultra-high frequencies (100-1000 MHz). The spectra of droplets embedded in a gelatin phantom were compared to a theoretical model which calculates the pressure wave from a spherical homogenous liquid undergoing thermoelastic expansion resulting from laser absorption. The location of the spectral features of the theoretical model and experimental spectra were in agreement after accounting for increases in the droplet sound speed with frequency. The agreement between experiment and model indicate that droplets (which have negligible optical absorption in the visible and infrared spectra by themselves) emitted pressure waves related to the droplet composition and size, and was independent of the physical characteristics of the optical absorbing nanoparticles. The diameter of individual droplets was calculated using three independent methods: the time domain photoacoustic signal, the time domain pulse echo ultrasound signal, and a fit to the photoacoustic model, then compared to the diameter as measured by optical microscopy. It was found the photoacoustic and ultrasound methods calculated diameters an average of 2.6% of each other, and 8.8% lower than that measured using optical microscopy. The discrepancy between the calculated diameters and the optical measurements may be due to the difficulty in resolving the droplet edges after being embedded in the translucent gelatin medium.

  19. Variations in the Sea Ice Edge and the Marginal Ice Zone on Different Spatial Scales as Observed from Different Satellite Sensor

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Henrichs, John

    2006-01-01

    The Marginal sea Ice Zone (MIZ) and the sea ice edge are the most dynamic areas of the sea ice cover. Knowledge of the sea ice edge location is vital for routing shipping in the polar regions. The ice edge is the location of recurrent plankton blooms, and is the habitat for a number of animals, including several which are under severe ecological threat. Polar lows are known to preferentially form along the sea ice edge because of induced atmospheric baroclinicity, and the ice edge is also the location of both vertical and horizontal ocean currents driven by thermal and salinity gradients. Finally, sea ice is both a driver and indicator of climate change and monitoring the position of the ice edge accurately over long time periods enables assessment of the impact of global and regional warming near the poles. Several sensors are currently in orbit that can monitor the sea ice edge. These sensors, though, have different spatial resolutions, different limitations, and different repeat frequencies. Satellite passive microwave sensors can monitor the ice edge on a daily or even twice-daily basis, albeit with low spatial resolution - 25 km for the Special Sensor Microwave Imager (SSM/I) or 12.5 km for the Advanced Microwave Scanning Radiometer (AMSR-E). Although special methods exist that allow the detection of the sea ice edge at a quarter of that nominal resolution (PSSM). Visible and infrared data from the Advanced Very High Resolution Radiometer (AVHRR) and from the Moderate Resolution Imaging Spectroradiometer (MODIS) provide daily coverage at 1 km and 250 m, respectively, but the surface observations me limited to cloud-free periods. The Landsat 7 Enhanced Thematic Mapper (ETM+) has a resolution of 15 to 30 m but is limited to cloud-free periods as well, and does not provide daily coverage. Imagery from Synthetic Aperture Radar (SAR) instruments has resolutions of tens of meters to 100 m, and can be used to distinguish open water and sea ice on the basis of surface

  20. Majorana edge modes in Kitaev model on honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Thakurathi, Manisha; Sengupta, Krishnendu; Sen, Diptiman

    2015-03-01

    We study the Majorana modes, both equilibrium and Floquet, which can appear at the edges of the Kitaev model on the honeycomb lattice. We first present the analytical solutions known for the equilibrium Majorana edge modes for both zigzag and armchair edges of a semi-infinite Kitaev model and chart the parameter regimes of the model in which they appear. We then examine how edge modes can be generated if the Kitaev coupling on the bonds perpendicular to the edge is varied periodically in time as periodic δ-function kicks. We derive a general condition for the appearance and disappearance of the Floquet edge modes as a function of the drive frequency for a generic d-dimensional integrable system. We confirm this general condition for the Kitaev model with a finite width by mapping it to a one-dimensional model. Our numerical and analytical study of this problem shows that Floquet Majorana modes can appear on some edges in the kicked system even when the corresponding equilibrium Hamiltonian has no Majorana mode solutions on those edges. We support our analytical studies by numerics for finite sized system which show that periodic kicks can generate modes at the edges and the corners of the lattice. We thank CSIR, India and DST, India for financial support.

  1. Study of a mode-locked erbium-doped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: Experimental results

    NASA Astrophysics Data System (ADS)

    Vazquez-Zuniga, Luis Alonso; Jeong, Yoonchan

    2013-10-01

    We present rigorous experimental studies on the spectral and temporal behaviors of an erbium-doped frequency-shifted-feedback fiber laser (FSFL), with respect to various parameters of the laser cavity, including the direction of the frequency-shift mechanism, the quantity of frequency-shift, and the output coupling ratio (OCR) of the cavity. We show that if the filter bandwidth is much broader than the laser linewidth, the laser spectrum tends to split and form a secondary spectral band (SSB) on the shorter or longer wavelength side of the primary spectrum, depending on whether the direction of the frequency-shift mechanism is upward or downward, respectively. We found that the SSB forms a parasitic pulse with much lower peak power traveling on the leading or trailing edge of the primary pulse, which leads to a significant asymmetry in the whole pulse formation in the time domain.

  2. Competing edge networks

    NASA Astrophysics Data System (ADS)

    Parsons, Mark; Grindrod, Peter

    2012-06-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails.

  3. Spacetime Discontinuous Galerkin FEM: Spectral Response

    NASA Astrophysics Data System (ADS)

    Abedi, R.; Omidi, O.; Clarke, P. L.

    2014-11-01

    Materials in nature demonstrate certain spectral shapes in terms of their material properties. Since successful experimental demonstrations in 2000, metamaterials have provided a means to engineer materials with desired spectral shapes for their material properties. Computational tools are employed in two different aspects for metamaterial modeling: 1. Mircoscale unit cell analysis to derive and possibly optimize material's spectral response; 2. macroscale to analyze their interaction with conventional material. We compare two different approaches of Time-Domain (TD) and Frequency Domain (FD) methods for metamaterial applications. Finally, we discuss advantages of the TD method of Spacetime Discontinuous Galerkin finite element method (FEM) for spectral analysis of metamaterials.

  4. The relative importance of spectral tilt in monophthongs and diphthongs

    NASA Astrophysics Data System (ADS)

    Kiefte, Michael; Kluender, Keith R.

    2005-03-01

    Ito et al. [J. Acoust. Soc. Am. 110, 1141-1149 (2001)] demonstrated that listeners can reliably identify vowel stimuli on the basis of relative formant amplitude in the absence of, or in spite of, F2 peak frequency. In the present study, formant frequencies and global spectral tilt are manipulated independently in synthetic steady-state vowels. Listeners' identification of these sounds demonstrate strong perceptual effects for both local (formant frequency) and global (spectral tilt) acoustic characteristics. Subsequent experiments reveal that effects of spectral tilt are attenuated in synthetic stimuli for which formant center frequencies change continuously. When formant peaks are kinematic, perceptual salience of the relative amplitudes of low- and high-frequency formants (as determined by spectral tilt) is mitigated. Because naturally produced English vowels are rarely spectrally static, one may conclude that gross spectral properties may play only a limited role in perception of fluently produced vowel sounds. .

  5. Effects of spectral modulation filtering on vowel identification1

    PubMed Central

    Liu, Chang; Eddins, David A.

    2008-01-01

    The goal of this study was to measure the effects of global spectral manipulations on vowel identification by progressively high-pass filtering vowel stimuli in the spectral modulation domain. Twelve American-English vowels, naturally spoken by a female talker, were subjected to varied degrees of high-pass filtering in the spectral modulation domain, with cutoff frequencies of 0.0, 0.5, 1.0, 1.5, and 2.0 cycles∕octave. Identification performance for vowels presented at 70 dB sound pressure level with and without spectral modulation filtering was measured for five normal-hearing listeners. Results indicated that vowel identification performance was progressively degraded as the spectral modulation cutoff frequency increased. Degradation of vowel identification was greater for back vowels than for front or central vowels. Detailed acoustic analyses indicated that spectral modulation filtering resulted in a more crowded vowel space (F1×F2), reduced spectral contrast, and reduced spectral tilt relative to the original unfiltered vowels. Changes in the global spectral features produced by spectral modulation filtering were associated with substantial reduction in vowel identification. The results indicated that the spectral cues critical for vowel identification were represented by spectral modulation frequencies below 2 cycles∕octave. These results are considered in terms of the interactions among spectral shape perception, spectral smearing, and speech perception. PMID:19045661

  6. Effects of spectral modulation filtering on vowel identification.

    PubMed

    Liu, Chang; Eddins, David A

    2008-09-01

    The goal of this study was to measure the effects of global spectral manipulations on vowel identification by progressively high-pass filtering vowel stimuli in the spectral modulation domain. Twelve American-English vowels, naturally spoken by a female talker, were subjected to varied degrees of high-pass filtering in the spectral modulation domain, with cutoff frequencies of 0.0, 0.5, 1.0, 1.5, and 2.0 cycles/octave. Identification performance for vowels presented at 70 dB sound pressure level with and without spectral modulation filtering was measured for five normal-hearing listeners. Results indicated that vowel identification performance was progressively degraded as the spectral modulation cutoff frequency increased. Degradation of vowel identification was greater for back vowels than for front or central vowels. Detailed acoustic analyses indicated that spectral modulation filtering resulted in a more crowded vowel space (F1xF2), reduced spectral contrast, and reduced spectral tilt relative to the original unfiltered vowels. Changes in the global spectral features produced by spectral modulation filtering were associated with substantial reduction in vowel identification. The results indicated that the spectral cues critical for vowel identification were represented by spectral modulation frequencies below 2 cycles/octave. These results are considered in terms of the interactions among spectral shape perception, spectral smearing, and speech perception.

  7. Information theoretic analysis of canny edge detection in visual communication

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Rahman, Zia-ur

    2011-06-01

    In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.

  8. Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides

    NASA Astrophysics Data System (ADS)

    Hou, Haowen; Teng, Jinghua; Palacios, Tomás; Chua, Soojin

    2016-07-01

    Graphene nano-ribbon waveguides with ultra-short plasmon wavelength are a promising candidate for nanoscale photonic applications. Graphene edge plasmons are the fundamental and lowest losses mode. Through finite element method, edge plasmons show large effective refractive index and strong field confinement on nanoscale ribbons. The edge plasmons follow a k1/2 dispersion relation. The wavelengths of the edge plasmons and center plasmons differ by a fixed factor. The width of edge plasmon is inversely proportional to wave vector of edge plasmon kedge. Edge defects associate with graphene nano-ribbon induce extra losses and reduce the propagation length. Cut-off width of edge plasmons reduces with increasing frequency. Cut-off width of center plasmon is enlarged by edge component but the enlargement effect diminishing with the increase of kedge. The results are important for the application of graphene plasmon towards ultra-compact photonic devices.

  9. Effect of spectral correlations on spectral switches in the diffraction of partially coherent light.

    PubMed

    Pu, Jixiong; Nemoto, Shojiro; Lü, Baida

    2003-10-01

    The subject is the spectral characteristics of partially coherent light whose spectral degree of coherence satisfies or violates the scaling law in diffraction by a circular aperture. Three kinds of spectral correlations of the incident light are considered. It is shown that no matter whether the partially coherent light satisfies or violates the scaling law, a spectral switch defined as a rapid transition of spectral shifts is always found in the diffraction field. Different spectral correlations of the incident field in the aperture result in different points at which the spectral switch occurs. With an increment in the correlations, the position at which the spectral switch takes place moves toward the point at which the phase of the center frequency component omega0 becomes singular for illumination by spatially fully coherent light. For light that satisfies the scaling law, the spectral switch is attributed to the diffraction-induced spectral changes; for partially coherent light that violates the scaling law, the spectral switch is attributed to both the diffraction-induced spectral changes and the correlation-induced spectral changes.

  10. The Red Edge Problem in asteroid band parameter analysis

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean S.; Dunn, Tasha L.; Emery, Joshua P.; Bowles, Neil E.

    2016-04-01

    Near-infrared reflectance spectra of S-type asteroids contain two absorptions at 1 and 2 μm (band I and II) that are diagnostic of mineralogy. A parameterization of these two bands is frequently employed to determine the mineralogy of S(IV) asteroids through the use of ordinary chondrite calibration equations that link the mineralogy to band parameters. The most widely used calibration study uses a Band II terminal wavelength point (red edge) at 2.50 μm. However, due to the limitations of the NIR detectors on prominent telescopes used in asteroid research, spectral data for asteroids are typically only reliable out to 2.45 μm. We refer to this discrepancy as "The Red Edge Problem." In this report, we evaluate the associated errors for measured band area ratios (BAR = Area BII/BI) and calculated relative abundance measurements. We find that the Red Edge Problem is often not the dominant source of error for the observationally limited red edge set at 2.45 μm, but it frequently is for a red edge set at 2.40 μm. The error, however, is one sided and therefore systematic. As such, we provide equations to adjust measured BARs to values with a different red edge definition. We also provide new ol/(ol+px) calibration equations for red edges set at 2.40 and 2.45 μm.

  11. Edge Detection Techniques for Automatic Location of Spectra

    NASA Astrophysics Data System (ADS)

    Zarate, N.; Labrie, K.

    2012-09-01

    To improve the processing of multi-object or cross-dispersed spectroscopic data, especially for systems resulting in curved 2-D spectra, we have implemented in Python edge detection techniques widely used in the photo processing and remote sensing world. The software uses the discontinuity found in a spectral image to precisely locate each dispersed 2-D spectrum on the pixel array. A valid spectrum image edge is defined as continuous and sharp. To this end the best input data is a well illuminated flat field. The algorithm applies a discontinuity detection filter to the image. We find that a 3 × 3 Sobel kernel reliably produces easily traceable edges on our data. Some instruments produce data with large background noise. In those cases, a mild smoothing filter is first applied to reduce noise spikes that would otherwise confuse the edge tracing algorithm. The edges highlighted by the filtering are traced using the SciPy function label. Each edge is represented by a second degree polynomial that follows each slit edge. Currently the software assumes that the spectra are nearly horizontal or nearly vertical. This constraint can easily be lifted with the choice of a different convolution kernel.

  12. Spectral and spread-spectral teleportation

    SciTech Connect

    Humble, Travis S.

    2010-06-15

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state may be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation. We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  13. Spectral residual method of saliency detection based on the two-dimensional fractional Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Tian, Jiangxue; Qi, Lin; Wang, Yaxing

    2015-12-01

    As one of classic methods of frequency domain based saliency detection, Spectral residual (SR) method has shown several advantages. However, it usually produces higher saliency values at object edges instead of generating maps that uniformly cover the whole object, which results from failing to exploit all the spatial frequency content of the original image. The Two-Dimensional Fractional Fourier transform (2D-FRFT) is a generalized form of the traditional Fourier Transform (FT) which can abstract more meaningful information of the image under certain conditions. Based on this property, we propose a new method which detects the salient region based on 2D-FRFT domain. Moreover, we also use Hough transform detection and a band-pass filter to refine the salien