Sample records for spectral evolution model

  1. Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava

    2018-06-01

    The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.

  2. Modeling of the spectral evolution in a narrow-linewidth fiber amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Kuang, Wenjun; Jiang, Man; Xu, Jiangming; Zhou, Pu; Liu, Zejin

    2016-03-01

    Efficient numerical modeling of the spectral evolution in a narrow-linewidth fiber amplifier is presented. By describing the seeds using a statistical model and simulating the amplification process through power balanced equations combined with the nonlinear Schrödinger equations, the spectral evolution of different seeds in the fiber amplifier can be evaluated accurately. The simulation results show that the output spectra are affected by the temporal stability of the seeds and the seeds with constant amplitude in time are beneficial to maintain the linewidth of the seed in the fiber amplifier.

  3. Asymptotic stability of spectral-based PDF modeling for homogeneous turbulent flows

    NASA Astrophysics Data System (ADS)

    Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2015-11-01

    Engineering models of turbulence, based on one-point statistics, neglect spectral information inherent in a turbulence field. It is well known, however, that the evolution of turbulence is dictated by a complex interplay between the spectral modes of velocity. For example, for homogeneous turbulence, the pressure-rate-of-strain depends on the integrated energy spectrum weighted by components of the wave vectors. The Interacting Particle Representation Model (IPRM) (Kassinos & Reynolds, 1996) and the Velocity/Wave-Vector PDF model (Van Slooten & Pope, 1997) emulate spectral information in an attempt to improve the modeling of turbulence. We investigate the evolution and asymptotic stability of the IPRM using three different approaches. The first approach considers the Lagrangian evolution of individual realizations (idealized as particles) of the stochastic process defined by the IPRM. The second solves Lagrangian evolution equations for clusters of realizations conditional on a given wave vector. The third evolves the solution of the Eulerian conditional PDF corresponding to the aforementioned clusters. This last method avoids issues related to discrete particle noise and slow convergence associated with Lagrangian particle-based simulations.

  4. Catching the radio flare in CTA 102. I. Light curve analysis

    NASA Astrophysics Data System (ADS)

    Fromm, C. M.; Perucho, M.; Ros, E.; Savolainen, T.; Lobanov, A. P.; Zensus, J. A.; Aller, M. F.; Aller, H. D.; Gurwell, M. A.; Lähteenmäki, A.

    2011-07-01

    Context. The blazar CTA 102 (z = 1.037) underwent a historical radio outburst in April 2006. This event offered a unique chance to study the physical properties of the jet. Aims: We used multifrequency radio and mm observations to analyze the evolution of the spectral parameters during the flare as a test of the shock-in-jet model under these extreme conditions. Methods: For the analysis of the flare we took into account that the flaring spectrum is superimposed on a quiescent spectrum. We reconstructed the latter from archival data and fitted a synchrotron self-absorbed distribution of emission. The uncertainties of the derived spectral parameters were calculated using Monte Carlo simulations. The spectral evolution is modeled by the shock-in-jet model, and the derived results are discussed in the context of a geometrical model (varying viewing angle) and shock-shock interaction Results: The evolution of the flare in the turnover frequency-turnover flux density (νm - Sm) plane shows a double peak structure. The nature of this evolution is dicussed in the frame of shock-in-jet models. We discard the generation of the double peak structure in the νm - Sm plane purely based on geometrical changes (variation of the Doppler factor). The detailed modeling of the spectral evolution favors a shock-shock interaction as a possible physical mechanism behind the deviations from the standard shock-in-jet model.

  5. The Impact of Progenitor Mass Loss on the Dynamical and Spectral Evolution of Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Patnaude, Daniel J.; Lee, Shiu-Hang; Slane, Patrick O.; Badenes, Carles; Nagataki, Shigehiro; Ellison, Donald C.; Milisavljevic, Dan

    2017-11-01

    There is now substantial evidence that the progenitors of some core-collapse supernovae undergo enhanced or extreme mass loss prior to explosion. The imprint of this mass loss is observed in the spectra and dynamics of the expanding blast wave on timescales of days to years after core collapse, and the effects on the spectral and dynamical evolution may linger long after the supernova has evolved into the remnant stage. In this paper, we present, for the first time, largely self-consistent end-to-end simulations for the evolution of a massive star from the pre-main sequence, up to and through core collapse, and into the remnant phase. We present three models and compare and contrast how the progenitor mass-loss history impacts the dynamics and spectral evolution of the supernovae and supernova remnants. We study a model that only includes steady mass loss, a model with enhanced mass loss over a period of ˜5000 yr prior to core collapse, and a model with extreme mass loss over a period of ˜500 yr prior to core collapse. The models are not meant to address any particular supernova or supernova remnant, but rather to highlight the important role that the progenitor evolution plays in the observable qualities of supernovae and supernova remnants. Through comparisons of these three different progenitor evolution scenarios, we find that the mass loss in late stages (during and after core carbon burning) can have a profound impact on the dynamics and spectral evolution of the supernova remnant centuries after core collapse.

  6. Spectral evolution of weakly nonlinear random waves: kinetic description vs direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Annenkov, Sergei; Shrira, Victor

    2016-04-01

    We study numerically the long-term evolution of water wave spectra without wind forcing, using three different models, aiming at understanding the role of different sets of assumptions. The first model is the classical Hasselmann kinetic equation (KE). We employ the WRT code kindly provided by G. van Vledder. Two other models are new. As the second model, we use the generalised kinetic equation (gKE), derived without the assumption of quasi-stationarity. Thus, unlike the KE, the gKE is valid in the cases when a wave spectrum is changing rapidly (e.g. at the initial stage of evolution of a narrow spectrum). However, the gKE employs the same statistical closure as the KE. The third model is based on the Zakharov integrodifferential equation for water waves and does not depend on any statistical assumptions. Since the Zakharov equation plays the role of the primitive equation of the theory of wave turbulence, we refer to this model as direct numerical simulation of spectral evolution (DNS-ZE). For initial conditions, we choose two narrow-banded spectra with the same frequency distribution (a JONSWAP spectrum with high peakedness γ = 6) and different degrees of directionality. These spectra are from the set of observations collected in a directional wave tank by Onorato et al (2009). Spectrum A is very narrow in angle (corresponding to N = 840 in the cosN directional model). Spectrum B is initially wider in angle (corresponds to N = 24). Short-term evolution of both spectra (O(102) wave periods) has been studied numerically by Xiao et al (2013) using two other approaches (broad-band modified nonlinear Schrödinger equation and direct numerical simulation based on the high-order spectral method). We use these results to verify the initial stage of our DNS-ZE simulations. However, the advantage of the DNS-ZE method is that it allows to study long-term spectral evolution (up to O(104) periods), which was previously possible only with the KE. In the short-term evolution, we find a good agreement between our DNS-ZE results and simulations by Xiao et al (2013), both for the evolution of frequency spectra and for the directional spreading. In the long term, all three approaches demonstrate very close evolution of integral characteristics of spectra, approaching for large time the theoretical asymptotes of the self-similar stage of evolution. However, the detailed comparison of the spectral evolution shows certain notable differences. Both kinetic equations give virtually identical evolution of spectrum B, but in the case of initially nearly one-dimensional spectrum A the KE overestimates the amplitude of the spectral peak. Meanwhile, the DNS-ZE results show considerably wider spectra with less pronounced peak. There is a striking difference for the rate of spectral broadening, which is much larger for the gKE and especially for the KE, than for the DNS-ZE. We show that the rates of change of the spectra obtained with the DNS-ZE are proportional to the fourth power of nonlinearity, corresponding to the dynamical timescale of evolution, rather than the statistical timescale of both kinetic equations.

  7. VizieR Online Data Catalog: Spectral evolution of 4U 1543-47 in 2002 (Lipunova+, 2017)

    NASA Astrophysics Data System (ADS)

    Lipunova, G. V.; Malanchev, K. L.

    2017-08-01

    Evolution of the spectral parameters obtained from the fitting of the spectral data obtained with RXTE/PCA in the 2.9-25keV energy band. Some spectral parameters are plotted in Figure 1 of the paper. The black hole mass is 9.4 solar masses, the Kerr parameter is 0.4, the disc inclination is 20.7 grad. The spectral fitting is done using XSPEC 12.9.0. The XSPEC spectral model consists of the following spectral components: TBabs((simpl*kerrbb+laor)smedge). Full description of the spectral parameters can be found in Table A1 and Appendix A of the paper. (1 data file).

  8. ACCRETION FLOW DYNAMICS OF MAXI J1659-152 FROM THE SPECTRAL EVOLUTION STUDY OF ITS 2010 OUTBURST USING THE TCAF SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnath, Dipak; Molla, Aslam Ali; Chakrabarti, Sandip K.

    2015-04-20

    Transient black hole candidates are interesting objects to study in X-rays as these sources show rapid evolutions in their spectral and temporal properties. In this paper, we study the spectral properties of the Galactic transient X-ray binary MAXI J1659-152 during its very first outburst after discovery with the archival data of RXTE Proportional Counter Array instruments. We make a detailed study of the evolution of accretion flow dynamics during its 2010 outburst through spectral analysis using the Chakrabarti–Titarchuk two-component advective flow (TCAF) model as an additive table model in XSPEC. Accretion flow parameters (Keplerian disk and sub-Keplerian halo rates, shockmore » location, and shock strength) are extracted from our spectral fits with TCAF. We studied variations of these fit parameters during the entire outburst as it passed through three spectral classes: hard, hard-intermediate, and soft-intermediate. We compared our TCAF fitted results with standard combined disk blackbody (DBB) and power-law (PL) model fitted results and found that variations of disk rate with DBB flux and halo rate with PL flux are generally similar in nature. There appears to be an absence of the soft state, unlike what is seen in other similar sources.« less

  9. Observational aspects of outbursting black hole sources: Evolution of spectro-temporal features and X-ray variability

    NASA Astrophysics Data System (ADS)

    Sreehari, H.; Nandi, Anuj; Radhika, D.; Iyer, Nirmal; Mandal, Samir

    2018-02-01

    We report on our attempt to understand the outbursting profile of Galactic Black Hole sources, keeping in mind the evolution of temporal and spectral features during the outburst. We present results of evolution of quasi-periodic oscillations, spectral states and possible connection with jet ejections during the outburst phase. Further, we attempt to connect the observed X-ray variabilities (i.e., `class'/`structured' variabilities, similar to GRS 1915+105) with spectral states of black hole sources. Towards these studies, we consider three black hole sources that have undergone single (XTE J1859+226), a few (IGR J17091-3624) and many (GX 339-4) outbursts since the start of RXTE era. Finally, we model the broadband energy spectra (3-150 keV) of different spectral states using RXTE and NuSTAR observations. Results are discussed in the context of two-component advective flow model, while constraining the mass of the three black hole sources.

  10. TRIADS: A phase-resolving model for nonlinear shoaling of directional wave spectra

    NASA Astrophysics Data System (ADS)

    Sheremet, Alex; Davis, Justin R.; Tian, Miao; Hanson, Jeffrey L.; Hathaway, Kent K.

    2016-03-01

    We investigate the performance of TRIADS, a numerical implementation of a phase-resolving, nonlinear, spectral model describing directional wave evolution in intermediate and shallow water. TRIADS simulations of shoaling waves generated by Hurricane Bill, 2009 are compared to directional spectral estimates based on observations collected at the Field Research Facility of the US Army Corps Of Engineers, at Duck, NC. Both the ability of the model to capture the processes essential to the nonlinear wave evolution, and the efficiency of the numerical implementations are analyzed and discussed.

  11. a Comparative Study of the Timing and the Spectral Properties during Two Recent Outbursts (2010 and 2011) of H 1743-322

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Chakrabarti, Sandip. K.; Nandi, Anuj

    2015-01-01

    The Galactic black hole candidate (BHC) H 1743-322 recently exhibited two outbursts in X-rays in August 2010 & April 2011. The nature (outburst profile, evolution of quasi-periodic oscillation (QPO) frequency and spectral states, etc.) of these two successive outbursts, which continued for around two months each, are very similar. We present the results obtained from a comparative study on the temporal and the spectral properties of the source during these two outbursts. The evolutions of QPOs observed in both the outbursts were well fitted with propagating oscillatory shock (POS) model. During both the outbursts, the observed spectral states (i.e, hard, hard-intermediate, soft-intermediate and soft) follow the `standard' type of hysteresis-loop, which could be explained with two component advective flow (TCAF) model.

  12. Non-Equilibrium Turbulence and Two-Equation Modeling

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    2011-01-01

    Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.

  13. Reevaluating Old Stellar Populations

    NASA Astrophysics Data System (ADS)

    Stanway, E. R.; Eldridge, J. J.

    2018-05-01

    Determining the properties of old stellar populations (those with age >1 Gyr) has long involved the comparison of their integrated light, either in the form of photometry or spectroscopic indexes, with empirical or synthetic templates. Here we reevaluate the properties of old stellar populations using a new set of stellar population synthesis models, designed to incorporate the effects of binary stellar evolution pathways as a function of stellar mass and age. We find that single-aged stellar population models incorporating binary stars, as well as new stellar evolution and atmosphere models, can reproduce the colours and spectral indices observed in both globular clusters and quiescent galaxies. The best fitting model populations are often younger than those derived from older spectral synthesis models, and may also lie at slightly higher metallicities.

  14. Accretion flow dynamics during 1999 outburst of XTE J1859+226—modeling of broadband spectra and constraining the source mass

    NASA Astrophysics Data System (ADS)

    Nandi, Anuj; Mandal, S.; Sreehari, H.; Radhika, D.; Das, Santabrata; Chattopadhyay, I.; Iyer, N.; Agrawal, V. K.; Aktar, R.

    2018-05-01

    We examine the dynamical behavior of accretion flow around XTE J1859+226 during the 1999 outburst by analyzing the entire outburst data (˜166 days) from RXTE Satellite. Towards this, we study the hysteresis behavior in the hardness intensity diagram (HID) based on the broadband (3-150 keV) spectral modeling, spectral signature of jet ejection and the evolution of Quasi-periodic Oscillation (QPO) frequencies using the two-component advective flow model around a black hole. We compute the flow parameters, namely Keplerian accretion rate (\\dot{m}d), sub-Keplerian accretion rate (\\dot{m}h), shock location (rs) and black hole mass (M_{bh}) from the spectral modeling and study their evolution along the q-diagram. Subsequently, the kinetic jet power is computed as L^{obs}_{jet} ˜3-6 ×10^{37} erg s^{-1} during one of the observed radio flares which indicates that jet power corresponds to 8-16% mass outflow rate from the disc. This estimate of mass outflow rate is in close agreement with the change in total accretion rate (˜14%) required for spectral modeling before and during the flare. Finally, we provide a mass estimate of the source XTE J1859+226 based on the spectral modeling that lies in the range of 5.2-7.9 M_{⊙} with 90% confidence.

  15. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Stanway, E. R.; Xiao, L.; McClelland, L. A. S.; Taylor, G.; Ng, M.; Greis, S. M. L.; Bray, J. C.

    2017-11-01

    The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.

  16. Cosine-Gaussian Schell-model sources.

    PubMed

    Mei, Zhangrong; Korotkova, Olga

    2013-07-15

    We introduce a new class of partially coherent sources of Schell type with cosine-Gaussian spectral degree of coherence and confirm that such sources are physically genuine. Further, we derive the expression for the cross-spectral density function of a beam generated by the novel source propagating in free space and analyze the evolution of the spectral density and the spectral degree of coherence. It is shown that at sufficiently large distances from the source the degree of coherence of the propagating beam assumes Gaussian shape while the spectral density takes on the dark-hollow profile.

  17. THE SPECTRAL EVOLUTION OF CONVECTIVE MIXING WHITE DWARFS, THE NON-DA GAP, AND WHITE DWARF COSMOCHRONOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Eugene Y.; Hansen, Brad M. S., E-mail: eyc@mail.utexas.edu, E-mail: hansen@astro.ucla.edu

    The spectral distribution of field white dwarfs shows a feature called the 'non-DA gap'. As defined by Bergeron et al., this is a temperature range (5100-6100 K) where relatively few non-DA stars are found, even though such stars are abundant on either side of the gap. It is usually viewed as an indication that a significant fraction of white dwarfs switch their atmospheric compositions back and forth between hydrogen-rich and helium-rich as they cool. In this Letter, we present a Monte Carlo model of the Galactic disk white dwarf population, based on the spectral evolution model of Chen and Hansen.more » We find that the non-DA gap emerges naturally, even though our model only allows white dwarf atmospheres to evolve monotonically from hydrogen-rich to helium-rich through convective mixing. We conclude by discussing the effects of convective mixing on the white dwarf luminosity function and the use thereof for Cosmochronology.« less

  18. Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2016-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. We present a case study of the temporal evolution of H+, He+, and O+ spectral structures throughout the geomagnetic storm of 2 October 2013. We use data from the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer onboard Van Allen Probe A to analyze the spectral structures in the energy range of 1- 50 keV. We find that the characteristics of the ion structures follow a cyclic pattern, the observed features changing dramatically as the storm starts and then returning to its initial pre-storm state. Quiet, pre-storm times are characterized by multiple and often complex flux structures at narrow energy bands. During the storm main phase, the observed features become simple, with no nose structures or only one nose structure present in the energy-time spectrograms. As the inner magnetosphere recovers from the storm, more complex structures appear once again. Additionally, the heavy ion spectral features are generally more complex than the H+ features, with multiple noses being observed more often in the heavy ion spectra. We use a model of ion drift and losses due to charge exchange to understand the formation of the spectral features and their species dependence.

  19. Spectral-luminosity evolution of active galactic nuclei (AGN)

    NASA Technical Reports Server (NTRS)

    Leiter, Darryl; Boldt, Elihu

    1992-01-01

    The origin of the cosmic X-ray and gamma-ray backgrounds is explained via the mechanism of AGN spectral-luminosity evolution. The spectral evolution of precursor active galaxies into AGN, and Newton-Raphson input and output parameters are discussed.

  20. Narrow Quasar Absorption Lines and the History of the Universe

    NASA Astrophysics Data System (ADS)

    Liebscher, Dierck-Ekkehard

    In order to get an estimation of the parameters of the cosmological model the statistics of narrow absorption lines in quasar spectra is evaluated. To this end a phenomenological model of the evolution of the corresponding absorbers in density, size, number and dimension is presented and compared with the observed evolution in the spectral density of the lines and their column density seen in the equivalent width. In spite of the wide range of possible models, the Einstein-deSitter model is shown to be unlikely because of the implied fast evolution in mass.

  1. The red/infrared evolution in galaxies - Effect of the stars on the asymptotic giant branch

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Wright, Edward L.

    1987-01-01

    The effect of including the asymptotic giant branch (AGB) population in a spectral synthesis model of galaxy evolution is examined. Stars on the AGB are luminous enough and also evolve rapidly enough to affect the evolution of red and infrared colors in galaxies. The validity of using infrared colors as distance indicators to galaxies is then investigated in detail. It is found that for z of 1 or less infrared colors of model galaxies behave linearly with redshift.

  2. Steep Decay Phase Shaped by the Curvature Effect. II. Spectral Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Da-Bin; Mu, Hui-Jun; Lu, Rui-Jing

    We derive a simple analytical formula to describe the evolution of spectral index β in the steep decay phase shaped by the curvature effect with the assumption that the spectral parameters and Lorentz factor of the jet shell are the same for different latitudes. Here, the value of β is estimated in the 0.3−10 keV energy band. For a spherical thin shell with a cutoff power-law (CPL) intrinsic radiation spectrum, the spectral evolution can be read as a linear function of observer time. For the situation with the Band function intrinsic radiation spectrum, the spectral evolution may be complex. Ifmore » the observed break energy of the radiation spectrum is larger than 10 keV, the spectral evolution is the same as that shaped by jet shells with a CPL spectrum. If the observed break energy is less than 0.3 keV, the value of β would be a constant. For others, the spectral evolution can be approximated as a logarithmal function of the observer time in general.« less

  3. Two-point spectral model for variable density homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Pal, Nairita; Kurien, Susan; Clark, Timothy; Aslangil, Denis; Livescu, Daniel

    2017-11-01

    We present a comparison between a two-point spectral closure model for buoyancy-driven variable density homogeneous turbulence, with Direct Numerical Simulation (DNS) data of the same system. We wish to understand how well a suitable spectral model might capture variable density effects and the transition to turbulence from an initially quiescent state. Following the BHRZ model developed by Besnard et al. (1990), the spectral model calculation computes the time evolution of two-point correlations of the density fluctuations with the momentum and the specific-volume. These spatial correlations are expressed as function of wavenumber k and denoted by a (k) and b (k) , quantifying mass flux and turbulent mixing respectively. We assess the accuracy of the model, relative to a full DNS of the complete hydrodynamical equations, using a and b as metrics. Work at LANL was performed under the auspices of the U.S. DOE Contract No. DE-AC52-06NA25396.

  4. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds.

    PubMed

    Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C

    2016-07-12

    Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination.

  5. Discovery and Monitoring of a New Black Hole Candidate XTE J1752-223 with RXTE: RMS Spectrum Evolution, BH Mass and the Source Distance

    NASA Technical Reports Server (NTRS)

    Shaposhinikov, Nikolai; Markwardt, Craig; Swank, Jean; Krimm, Hans

    2010-01-01

    We report on the discovery and monitoring observations of a new galactic black hole candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on October 21 2009 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/highsoft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass black hole binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a black body spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (RMS) variability in the RXTE/PCA energy band with the source spectral state and conclude that broad band variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hardto- soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source about 3.5 kiloparsec.

  6. Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma

    NASA Technical Reports Server (NTRS)

    Leiter, D.; Boldt, E.

    1982-01-01

    A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually emerge from an earlier stage at z approx = 4 in which they are the thermal X-ray sources responsible for most of the cosmic X-ray background (CXB). The conjecture is pursued that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx. 10 to the 8th power years these central black holes are spun-up to a canonical Kerr equilibrium state (A/M = 0.998; Thorne 1974) and shown how they then can lead to spectral evolution involving non-thermal emission extending to gamma rays, at the expense of reduced thermal disk radiation. That major portion of the CXB remaining after the contribution of usual AGN are considered, while a superposition of AGN sources at z 1 can account for the gamma ray background. Extensive X-ray measurements carried out with the HEAO 1 and 2 missions as well as gamma ray and optical data are shown to compare favorably with principal features of this model.

  7. The Supercritical Pile GRB Model: The Prompt to Afterglow Evolution

    NASA Technical Reports Server (NTRS)

    Mastichiadis, A.; Kazanas, D.

    2009-01-01

    The "Supercritical Pile" is a very economical GRB model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at energy approx. 1 MeV. We extend this model to include the evolution of the RBW Lorentz factor Gamma and thus follow its spectral and temporal features into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model can be the sources of rich time evolution which we have began to explore. In particular. one can this may obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the (nu)F(sub nu), spectra. In this note we present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  8. Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, E. S.; Bianda, M., E-mail: escarlin@irsol.es

    Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended timemore » integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ 4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.« less

  9. Numerical modeling of the Madison Dynamo Experiment.

    NASA Astrophysics Data System (ADS)

    Bayliss, R. A.; Wright, J. C.; Forest, C. B.; O'Connell, R.

    2002-11-01

    Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a 3-D pseudo-spectral simulation of the MHD equations; results of the simulations will be compared to results obtained from the experiment. The code, Dynamo (Fortran90), allows for full evolution of the magnetic and velocity fields. The induction equation governing B and the curl of the momentum equation governing V are separately or simultaneously solved. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and fourth order finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James (M.L. Dudley and R.W. James, Time-dependent kinematic dynamos with stationary flows, Proc. R. Soc. Lond. A 425, p. 407 (1989)). Power balance in the system has been verified in both mechanically driven and perturbed hydrodynamic, kinematic, and dynamic cases. Evolution of the vacuum magnetic field has been added to facilitate comparison with the experiment. Modeling of the Madison Dynamo eXperiment will be presented.

  10. Hard Burst Emission from the Soft Gamma Repeater SGR 1900+14

    NASA Technical Reports Server (NTRS)

    Woods, Peter M.; Kouveliotou, Chryssa; VanParadijs, Jan; Briggs, Michael S.; Hurley, Kevin; Gogus, Ersin; Preece, Robert D.; Giblin, Timothy W.; Thompson, Christopher; Duncan, Robert C.

    1999-01-01

    We present evidence for burst emission from SGR 1900 + 14 with a power-law high-energy spectrum extending beyond 500 keV. Unlike previous detections of high-energy photons during bursts from soft gamma repeaters (SGRs), these emissions are not associated with extraordinarily bright flares. Not only is the emission hard, but the spectra are better fitted by D. Band's gamma-ray burst (GRB) function rather than by the traditional optically thin thermal bremsstrahlung model. We find that the spectral evolution within these hard events obeys a hardness/intensity anticorrelation. Temporally, these events are distinct from typical SGR burst emissions in that they are longer (approximately 1 s) and have relatively smooth profiles. Despite a difference in peak luminosity of approximately > 10(exp 11) between these bursts from SGR 1900 + 14 and cosmological GRBs, there are striking temporal and spectral similarities between the two kinds of bursts, aside from spectral evolution. We outline an interpretation of these events in the context of the magnetar model.

  11. SPECTRAL EVOLUTION OF ANOMALOUS COSMIC RAYS AT VOYAGER 1 BEYOND THE TERMINATION SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senanayake, U. K.; Florinski, V.; Cummings, A. C.

    When the Voyager 1 spacecraft crossed the termination shock (TS) on 2004 December 16, the energy spectra of anomalous cosmic rays (ACRs) could not have been produced by steady-state diffusive shock acceleration. However, over the next few years, in the declining phase of the solar cycle, the spectra began to evolve into the expected power-law profile. Observations at the shock led to a broad range of alternative theories for ACR acceleration. In spite of that, in this work we show that the observations could be explained by assuming ACRs are accelerated at the TS. In this paper, we propose thatmore » the solar cycle had an important effect on the unrolling of the spectra in the heliosheath. To investigate the spectral evolution of ACRs, a magnetohydrodynamic background model with stationary solar-wind inner boundary conditions was used to model the transport of helium and oxygen ions. We used a backward-in-time stochastic integration technique where phase-space trajectories are integrated until the so-called “injection energy” is reached. Our simulation results were compared with Voyager 1 observations using three different diffusion models. It is shown that the spectral evolution of ACRs in the heliosheath at Voyager 1 could be explained by an increase in the source strength and an enhancement in diffusion as a result of a decrease of the turbulent correlation length in the declining phase of the solar cycle. At the same time, drift effects seem to have had a smaller effect on the evolution of the spectra.« less

  12. The effect of stellar evolution uncertainties on the rest-frame ultraviolet stellar lines of C IV and He II in high-redshift Lyman-break galaxies

    NASA Astrophysics Data System (ADS)

    Eldridge, John J.; Stanway, Elizabeth R.

    2012-01-01

    Young, massive stars dominate the rest-frame ultraviolet (UV) spectra of star-forming galaxies. At high redshifts (z > 2), these rest-frame UV features are shifted into the observed-frame optical and a combination of gravitational lensing, deep spectroscopy and spectral stacking analysis allows the stellar population characteristics of these sources to be investigated. We use our stellar population synthesis code Binary Population and Spectral Synthesis (BPASS) to fit two strong rest-frame UV spectral features in published Lyman-break galaxy spectra, taking into account the effects of binary evolution on the stellar spectrum. In particular, we consider the effects of quasi-homogeneous evolution (arising from the rotational mixing of rapidly rotating stars), metallicity and the relative abundance of carbon and oxygen on the observed strengths of He IIλ1640 Å and C IVλ1548, 1551 Å spectral lines. We find that Lyman-break galaxy spectra at z ˜ 2-3 are best fitted with moderately sub-solar metallicities, and with a depleted carbon-to-oxygen ratio. We also find that the spectra of the lowest metallicity sources are best fitted with model spectra in which the He II emission line is boosted by the inclusion of the effect of massive stars being spun-up during binary mass transfer so these rapidly rotating stars experience quasi-homogeneous evolution.

  13. The Measurement of the Solar Spectral Irradiance Variability at 782 nm during the Solar Cycle 24 using the SES on-board PICARD

    NASA Astrophysics Data System (ADS)

    Meftah, Mustapha; Hauchecorne, Alain; Irbah, Abdanour; Bekki, Slimane

    2016-04-01

    A Sun Ecartometry Sensor (SES) was developed to provide the stringent pointing requirements of the PICARD satellite. The SES sensor produced an image of the Sun at 782+/-5 nm. From the SES data, we obtained a new time series of the solar spectral irradiance at 782nm from 2010 to 2014. SES observations provided a qualitatively consistent evolution of the solar spectral irradiance variability at 782 nm during the solar cycle 24. Comparisons will be made with Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) semi-empirical model and with the Spectral Irradiance Monitor instrument (SIM) on-board the Solar Radiation and Climate Experiment satellite (SORCE). These data will help to improve the representation of the solar forcing in the IPSL Global Circulation Model.

  14. On a generalized Ablowitz-Kaup-Newell-Segur hierarchy in inhomogeneities of media: soliton solutions and wave propagation influenced from coefficient functions and scattering data

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Hong, Siyu

    2018-07-01

    In this paper, a generalized Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy in inhomogeneities of media described by variable coefficients is investigated, which includes some important nonlinear evolution equations as special cases, for example, the celebrated Korteweg-de Vries equation modeling waves on shallow water surfaces. To be specific, the known AKNS spectral problem and its time evolution equation are first generalized by embedding a finite number of differentiable and time-dependent functions. Starting from the generalized AKNS spectral problem and its generalized time evolution equation, a generalized AKNS hierarchy with variable coefficients is then derived. Furthermore, based on a systematic analysis on the time dependence of related scattering data of the generalized AKNS spectral problem, exact solutions of the generalized AKNS hierarchy are formulated through the inverse scattering transform method. In the case of reflectionless potentials, the obtained exact solutions are reduced to n-soliton solutions. It is graphically shown that the dynamical evolutions of such soliton solutions are influenced by not only the time-dependent coefficients but also the related scattering data in the process of propagations.

  15. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds

    PubMed Central

    Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C

    2016-01-01

    Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination. DOI: http://dx.doi.org/10.7554/eLife.15675.001 PMID:27402384

  16. A New Comptonization Model for Weakly Magnetized Accreting NS LMXBs

    NASA Astrophysics Data System (ADS)

    Paizis, A.; Farinelli, R.; Titarchuk, L.; Frontera, F.; Cocchi, M.; Ferrigno, C.

    2009-05-01

    We have developed a new Comptonization model to propose, for the first time, a self consistent physical interpretation of the complex spectral evolution seen in NS LMXBs. The model and its application to LMXBs are presented and compared to the Simbol-X expected capabilities.

  17. A numerical and experimental study on the nonlinear evolution of long-crested irregular waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goullet, Arnaud; Choi, Wooyoung; Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701

    2011-01-15

    The spatial evolution of nonlinear long-crested irregular waves characterized by the JONSWAP spectrum is studied numerically using a nonlinear wave model based on a pseudospectral (PS) method and the modified nonlinear Schroedinger (MNLS) equation. In addition, new laboratory experiments with two different spectral bandwidths are carried out and a number of wave probe measurements are made to validate these two wave models. Strongly nonlinear wave groups are observed experimentally and their propagation and interaction are studied in detail. For the comparison with experimental measurements, the two models need to be initialized with care and the initialization procedures are described. Themore » MNLS equation is found to approximate reasonably well for the wave fields with a relatively smaller Benjamin-Feir index, but the phase error increases as the propagation distance increases. The PS model with different orders of nonlinear approximation is solved numerically, and it is shown that the fifth-order model agrees well with our measurements prior to wave breaking for both spectral bandwidths.« less

  18. Numerical Simulation and Quantitative Uncertainty Assessment of Microchannel Flow

    NASA Astrophysics Data System (ADS)

    Debusschere, Bert; Najm, Habib; Knio, Omar; Matta, Alain; Ghanem, Roger; Le Maitre, Olivier

    2002-11-01

    This study investigates the effect of uncertainty in physical model parameters on computed electrokinetic flow of proteins in a microchannel with a potassium phosphate buffer. The coupled momentum, species transport, and electrostatic field equations give a detailed representation of electroosmotic and pressure-driven flow, including sample dispersion mechanisms. The chemistry model accounts for pH-dependent protein labeling reactions as well as detailed buffer electrochemistry in a mixed finite-rate/equilibrium formulation. To quantify uncertainty, the governing equations are reformulated using a pseudo-spectral stochastic methodology, which uses polynomial chaos expansions to describe uncertain/stochastic model parameters, boundary conditions, and flow quantities. Integration of the resulting equations for the spectral mode strengths gives the evolution of all stochastic modes for all variables. Results show the spatiotemporal evolution of uncertainties in predicted quantities and highlight the dominant parameters contributing to these uncertainties during various flow phases. This work is supported by DARPA.

  19. Pore-scale spectral induced polarization (SIP) signaturesassociated with FeS biomineral transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Lee; Ntarlagiannis, Dimitrios; Personna, Yves R.

    2007-10-01

    The authors measured Spectral Induced Polarization (SIP) signatures in sand columns during (1) FeS biomineralization produced by sulfate reducing bacteria (D. vulgaris) under anaerboci conditions, and (2) subsequent biomineral dissolution upon return to an aerobic state. The low-frequency (0.1-10 Hz peak) relaxations produced during biomineralization can be modeled with a Cole-Cole formulation, from which the evolution of the polarization magnitude and relaxation length scale can be estimated. They find that the modeled time constant is consistent with the polarizable elements being biomineral encrused pores. Evolution of the model parameters is consistent with FeS surface area increases and pore-size reduction duringmore » biomineral growth, and subsequent biomineral dissolution (FeS surface area decreases and pore expansion) upon return to the aerobic state. They conclude that SIP signatures are diagnostic of pore-scale geometrical changes associated with FeS biomineralization by sulfate reducing bacteria.« less

  20. Complex patterns of divergence among green-sensitive (RH2a) African cichlid opsins revealed by Clade model analyses

    PubMed Central

    2012-01-01

    Background Gene duplications play an important role in the evolution of functional protein diversity. Some models of duplicate gene evolution predict complex forms of paralog divergence; orthologous proteins may diverge as well, further complicating patterns of divergence among and within gene families. Consequently, studying the link between protein sequence evolution and duplication requires the use of flexible substitution models that can accommodate multiple shifts in selection across a phylogeny. Here, we employed a variety of codon substitution models, primarily Clade models, to explore how selective constraint evolved following the duplication of a green-sensitive (RH2a) visual pigment protein (opsin) in African cichlids. Past studies have linked opsin divergence to ecological and sexual divergence within the African cichlid adaptive radiation. Furthermore, biochemical and regulatory differences between the RH2aα and RH2aβ paralogs have been documented. It thus seems likely that selection varies in complex ways throughout this gene family. Results Clade model analysis of African cichlid RH2a opsins revealed a large increase in the nonsynonymous-to-synonymous substitution rate ratio (ω) following the duplication, as well as an even larger increase, one consistent with positive selection, for Lake Tanganyikan cichlid RH2aβ opsins. Analysis using the popular Branch-site models, by contrast, revealed no such alteration of constraint. Several amino acid sites known to influence spectral and non-spectral aspects of opsin biochemistry were found to be evolving divergently, suggesting that orthologous RH2a opsins may vary in terms of spectral sensitivity and response kinetics. Divergence appears to be occurring despite intronic gene conversion among the tandemly-arranged duplicates. Conclusions Our findings indicate that variation in selective constraint is associated with both gene duplication and divergence among orthologs in African cichlid RH2a opsins. At least some of this variation may reflect an adaptive response to differences in light environment. Interestingly, these patterns only became apparent through the use of Clade models, not through the use of the more widely employed Branch-site models; we suggest that this difference stems from the increased flexibility associated with Clade models. Our results thus bear both on studies of cichlid visual system evolution and on studies of gene family evolution in general. PMID:23078361

  1. Wind growth and wave breaking in higher-order spectral phase resolved wave models

    NASA Astrophysics Data System (ADS)

    Leighton, R.; Walker, D. T.

    2016-02-01

    Wind growth and wave breaking are a integral parts of the wave evolution. Higher-OrderSpectral models (HoS) describing the non-linear evolution require empirical models for these effects. In particular, the assimilation of phase-resolved remotesensing data will require the prediction and modeling of wave breaking events.The HoS formulation used in this effort is based on fully nonlinear model of O. Nwogu (2009). The model for wave growth due to wind is based on the early normal and tangential stress model of Munk (1947). The model for wave breaking contains two parts. The first part initiates the breaking events based on the local wave geometry and the second part is a model for the pressure field, which acting against the surface normal velocity extracts energy from the wave. The models are tuned to balance the wind energy input with the breaking wave losses and to be similarfield observations of breaking wave coverage. The initial wave field, based on a Pierson-Moskowitz spectrum for 10 meter wind speed of 5-15 m/s, defined over a region of up to approximate 2.5 km on a side with the simulation running for several hundreds of peak wave periods. Results will be presented describing the evolution of the wave field.Sponsored by Office of Naval Research, Code 322

  2. Spectral Evolution of Intensive Microwave Bursts at Centimeter-Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Melnikov, V. F.; Magun, A.

    The dynamics of the frequency spectrum of intensive broad band microwave bursts with one spectral maximum and simple time profiles are investigated. The aim of the study is to correlate the temporal evolution of the microwave burst spectrum above and below the spectral peak frequency f_p, as well as to compare these features with theoretical expectations. The analysis was carried out by using the data from the patrol instruments of IAP, Bern University and NIRFI, Nizhnii Novgorod (10 fixed frequencies in the range 1-50 GHz). It has been found for the majority of these bursts that: a) during the rise phase of the burst flux there is an anticorrelation of the absolute values of the spectral indices above and below peak frequency whereas a good correlation during the decay phase was found; b) time delays between flux profiles at neighbouring frequencies change sign under the transition from low to high frequencies. As a rule the lower frequency emission is delayed at frequencies below f_p whereas at high frequencies (f>f_p) the higher frequency emission is delayed (see also Melnikov and Magun, 1998). Qualitatively these results fit well the calculated spectral evolution of the gyrosynchrotron if one takes into account the flattening of the electron energy spectrum in a flare loop (Melnikov and Magun, 1996) due to Coulomb collisions (Vilmer et al., 1982), and uses values for the background plasma density derived from hard X-ray data (Aschwanden et al., 1997). For some of the bursts, however, quantitative discrepancies with the predictions of the homogeneous model have been found. For these bursts the absolute value of the spectral index at low frequencies is remarkably smaller, and the time delay remarkably higher than expected. We have investigated several possibilities to obtain an agremeent between theory and observations. Special attention is paid to model calculations taking into account the dynamics of energetic electrons in flare loops with an inhomogeneous magnetic field and plasma density. In this context the capabilities of the models for the diagnostics of the physical conditions in flare loops using observations with high spatial

  3. Green's Functions from Real-Time Bold-Line Monte Carlo Calculations: Spectral Properties of the Nonequilibrium Anderson Impurity Model

    NASA Astrophysics Data System (ADS)

    Cohen, Guy; Gull, Emanuel; Reichman, David R.; Millis, Andrew J.

    2014-04-01

    The nonequilibrium spectral properties of the Anderson impurity model with a chemical potential bias are investigated within a numerically exact real-time quantum Monte Carlo formalism. The two-time correlation function is computed in a form suitable for nonequilibrium dynamical mean field calculations. Additionally, the evolution of the model's spectral properties are simulated in an alternative representation, defined by a hypothetical but experimentally realizable weakly coupled auxiliary lead. The voltage splitting of the Kondo peak is confirmed and the dynamics of its formation after a coupling or gate quench are studied. This representation is shown to contain additional information about the dot's population dynamics. Further, we show that the voltage-dependent differential conductance gives a reasonable qualitative estimate of the equilibrium spectral function, but significant qualitative differences are found including incorrect trends and spurious temperature dependent effects.

  4. Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source.

    NASA Astrophysics Data System (ADS)

    Averbuch, Gil; Price, Colin

    2015-04-01

    Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source. G. Averbuch, C. Price Department of Geosciences, Tel Aviv University, Israel Infrasound is one of the four Comprehensive Nuclear-Test Ban Treaty technologies for monitoring nuclear explosions. This technology measures the acoustic waves generated by the explosions followed by their propagation through the atmosphere. There are also natural phenomena that can act as an infrasound sources like sprites, volcanic eruptions and earthquakes. The infrasound waves generated from theses phenomena can also be detected by the infrasound arrays. In order to study the behavior of these waves, i.e. the physics of wave propagation in the atmosphere, their evolution and their trajectories, numerical methods are required. This presentation will deal with the evolution of acoustic waves generated by underground sources (earthquakes and underground explosions). A 2D Spectral elements formulation for lithosphere-atmosphere coupling will be presented. The formulation includes the elastic wave equation for the seismic waves and the momentum, mass and state equations for the acoustic waves in a moving stratified atmosphere. The coupling of the two media is made by boundary conditions that ensures the continuity of traction and velocity (displacement) in the normal component to the interface. This work has several objectives. The first is to study the evolution of acoustic waves in the atmosphere from an underground source. The second is to derive transmission coefficients for the energy flux with respect to the seismic magnitude and earth density. The third will be the generation of seismic waves from acoustic waves in the atmosphere. Is it possible?

  5. The physical origin of the X-ray emission from SN 1987A

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Orlando, S.; Petruk, O.

    2017-10-01

    We revisit the spectral analysis of the set of archive XMM-Newton observations of SN 1987A through our 3-D hydrodynamic model describing the whole evolution from the onset of the supernova to the full remnant development. For the first time the spectral analysis accounts for the single observations and for the evolution of the system self-consistently. We adopt a forward modeling approach which allows us to directly synthesize, from the model, X-ray spectra and images in different energy bands. We fold the synthetic observables through the XMM-Newton instrumental response and directly compare models and actual data. We find that our simulation provides an excellent fit to the data, by reproducing simultaneously X-ray fluxes, spectral features, and morphology of SN 1987A at all evolutionary stages. Our analysis enables us to obtain a deep insight on the physical origin of the observed multi-thermal emission, by revealing the contribution of shocked surrounding medium, dense clumps of the circumstellar ring, and ejecta to the total emission. We finally provide predictions for future observations (to be performed with XMM-Newton in the next future and with the forthcoming Athena X-ray telescope in approximately 10 years), showing the growing contribution of the ejecta X-ray emission.

  6. Numerical modelling of the Madison Dynamo Experiment.

    NASA Astrophysics Data System (ADS)

    Bayliss, R. A.; Wright, J. C.; Forest, C. B.; O'Connell, R.; Truitt, J. L.

    2000-10-01

    Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a newly developed 3-D pseudo-spectral simulation of the MHD equations; results of the simulations will be compared to the experimental results obtained from the experiment. The code, Dynamo, is in Fortran90 and allows for full evolution of the magnetic and velocity fields. The induction equation governing B and the Navier-Stokes equation governing V are solved. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James (M.L. Dudley and R.W. James, Time-dependant kinematic dynamos with stationary flows, Proc. R. Soc. Lond. A 425, p. 407 (1989)). Initial results on magnetic field saturation, generated by the simultaneous evolution of magnetic and velocity fields be presented using a variety of mechanical forcing terms.

  7. Hubble Space Telescope studies of low-redshift Type Ia supernovae: evolution with redshift and ultraviolet spectral trends

    NASA Astrophysics Data System (ADS)

    Maguire, K.; Sullivan, M.; Ellis, R. S.; Nugent, P. E.; Howell, D. A.; Gal-Yam, A.; Cooke, J.; Mazzali, P.; Pan, Y.-C.; Dilday, B.; Thomas, R. C.; Arcavi, I.; Ben-Ami, S.; Bersier, D.; Bianco, F. B.; Fulton, B. J.; Hook, I.; Horesh, A.; Hsiao, E.; James, P. A.; Podsiadlowski, P.; Walker, E. S.; Yaron, O.; Kasliwal, M. M.; Laher, R. R.; Law, N. M.; Ofek, E. O.; Poznanski, D.; Surace, J.

    2012-11-01

    We present an analysis of the maximum light, near-ultraviolet (NUV; 2900 < λ < 5500 Å) spectra of 32 low-redshift (0.001 < z < 0.08) Type Ia supernovae (SNe Ia), obtained with the Hubble Space Telescope (HST) using the Space Telescope Imaging Spectrograph. We combine this spectroscopic sample with high-quality gri light curves obtained with robotic telescopes to measure SN Ia photometric parameters, such as stretch (light-curve width), optical colour and brightness (Hubble residual). By comparing our new data to a comparable sample of SNe Ia at intermediate redshift (0.4 < z < 0.9), we detect modest spectral evolution (3σ), in the sense that our mean low-redshift NUV spectrum has a depressed flux compared to its intermediate-redshift counterpart. We also see a strongly increased dispersion about the mean with decreasing wavelength, confirming the results of earlier surveys. We show that these trends are consistent with changes in metallicity as predicted by contemporary SN Ia spectral models. We also examine the properties of various NUV spectral diagnostics in the individual SN spectra. We find a general correlation between SN stretch and the velocity (or position) of many NUV spectral features. In particular, we observe that higher stretch SNe have larger Ca II H&K velocities, which also correlate with host galaxy stellar mass. This latter trend is probably driven by the well-established correlation between stretch and host galaxy stellar mass. We find no significant trends between UV spectral features and optical colour. Mean spectra constructed according to whether the SN has a positive or negative Hubble residual show very little difference at NUV wavelengths, indicating that the NUV evolution and variation we identify does not directly correlate with Hubble diagram residuals. Our work confirms and strengthens earlier conclusions regarding the complex behaviour of SNe Ia in the NUV spectral region, but suggests the correlations we find are more useful in constraining progenitor models rather than improving the use of SNe Ia as cosmological probes.

  8. Temporal Evolution of Ion Spectral Structures During a Geomagnetic Storm: Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2018-01-01

    Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1 to 50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet inner edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. As the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. We use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.

  9. Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferradas Alva, Cristian Pablo; Zhang, J.-C.; Spence, H. E.

    Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1- ~50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet innermore » edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. Here, as the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. Lastly, we use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.« less

  10. Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling

    DOE PAGES

    Ferradas Alva, Cristian Pablo; Zhang, J.-C.; Spence, H. E.; ...

    2017-12-13

    Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1- ~50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet innermore » edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. Here, as the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. Lastly, we use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.« less

  11. Phycoerythrin evolution and diversification of spectral phenotype in marine Synechococcus and related picocyanobacteria.

    PubMed

    Everroad, R Craig; Wood, A Michelle

    2012-09-01

    In marine Synechococcus there is evidence for the adaptive evolution of spectrally distinct forms of the major light harvesting pigment phycoerythrin (PE). Recent research has suggested that these spectral forms of PE have a different evolutionary history than the core genome. However, a lack of explicit statistical testing of alternative hypotheses or for selection on these genes has made it difficult to evaluate the evolutionary relationships between spectral forms of PE or the role horizontal gene transfer (HGT) may have had in the adaptive phenotypic evolution of the pigment system in marine Synechococcus. In this work, PE phylogenies of picocyanobacteria with known spectral phenotypes, including newly co-isolated strains of marine Synechococcus from the Gulf of Mexico, were constructed to explore the diversification of spectral phenotype and PE evolution in this group more completely. For the first time, statistical evaluation of competing evolutionary hypotheses and tests for positive selection on the PE locus in picocyanobacteria were performed. Genes for PEs associated with specific PE spectral phenotypes formed strongly supported monophyletic clades within the PE tree with positive directional selection driving evolution towards higher phycourobilin (PUB) content. The presence of the PUB-lacking phenotype in PE-containing marine picocyanobacteria from cyanobacterial lineages identified as Cyanobium is best explained by HGT into this group from marine Synechococcus. Taken together, these data provide strong examples of adaptive evolution of a single phenotypic trait in bacteria via mutation, positive directional selection and horizontal gene transfer. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. A Bulk Comptonization Model for the Prompt GRM Emission

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos; Mastichiadis, A.

    2010-01-01

    The "Supercritical Pile" is a very economical GRB model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at energy approximately 1 MeV. We extend this model to include the evolution of the RBW Lorentz factor F and thus follow its spectral and temporal features into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model are sources of potentially very rich time evolution which we have began to explore. In particular, one can this way obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the nu F(sub nu) spectra. In this note we present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  13. Experimental Investigation of Spectra of Dynamical Maps and their Relation to non-Markovianity

    NASA Astrophysics Data System (ADS)

    Yu, Shang; Wang, Yi-Tao; Ke, Zhi-Jin; Liu, Wei; Meng, Yu; Li, Zhi-Peng; Zhang, Wen-Hao; Chen, Geng; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can

    2018-02-01

    The spectral theorem of von Neumann has been widely applied in various areas, such as the characteristic spectral lines of atoms. It has been recently proposed that dynamical evolution also possesses spectral lines. As the most intrinsic property of evolution, the behavior of these spectra can, in principle, exhibit almost every feature of this evolution, among which the most attractive topic is non-Markovianity, i.e., the memory effects during evolution. Here, we develop a method to detect these spectra, and moreover, we experimentally examine the relation between the spectral behavior and non-Markovianity by engineering the environment to prepare dynamical maps with different non-Markovian properties and then detecting the dynamical behavior of the spectral values. These spectra will lead to a witness for essential non-Markovianity. We also experimentally verify another simplified witness method for essential non-Markovianity. Interestingly, in both cases, we observe the sudden transition from essential non-Markovianity to something else. Our work shows the role of the spectra of evolution in the studies of non-Makovianity and provides the alternative methods to characterize non-Markovian behavior.

  14. The Supercritical Pile GRB Model: The Prompt to Afterglow Evolution

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2008-01-01

    The 'Supercritical Pile' is a very economical gamma ray burst (GRB) model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at an energy sim 1 MeV. We extend this model to include also the evolution of the RBW Lorentz factor Gamma and thus follow the spectral and temporal features of this model into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model can be the sources of rich time evolution which we have begun to explore. In particular, one can this way obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the nu F spectra. Furthermore, the existence of a kinematic threshold in this model provides for a operational distinction of the prompt and afterglow GRB stages; in fact, the afterglow stage sets in when the RBW Lorentz factor cannot anymore fulfill the kinematic condition for pair formation in the photon - proton pair production reactions that constitute the fundamental process for the dissipation of the blast wave kinetic energy. We present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  15. Numerical simulations of electrohydrodynamic evolution of thin polymer films

    NASA Astrophysics Data System (ADS)

    Borglum, Joshua Christopher

    Recently developed needleless electrospinning and electrolithography are two successful techniques that have been utilized extensively for low-cost, scalable, and continuous nano-fabrication. Rational understanding of the electrohydrodynamic principles underneath these nano-manufacturing methods is crucial to fabrication of continuous nanofibers and patterned thin films. This research project is to formulate robust, high-efficiency finite-difference Fourier spectral methods to simulate the electrohydrodynamic evolution of thin polymer films. Two thin-film models were considered and refined. The first was based on reduced lubrication theory; the second further took into account the effect of solvent drying and dewetting of the substrate. Fast Fourier Transform (FFT) based spectral method was integrated into the finite-difference algorithms for fast, accurately solving the governing nonlinear partial differential equations. The present methods have been used to examine the dependencies of the evolving surface features of the thin films upon the model parameters. The present study can be used for fast, controllable nanofabrication.

  16. The evolution of obscured AGN

    NASA Astrophysics Data System (ADS)

    Brightman, Murray

    2012-09-01

    We present results on the evolution of Compton thick AGN with redshift, and the nature of this obscuration, important for understanding the accretion history of the universe and for AGN unification schemes. We use lessons learned from spectral complexity of local AGN (Brightman & Nandra 2012) and up to date spectral models of heavily absorbed AGN, which take into account Compton scattering, self consistent Fe Ka modeling and the geometry of the circumnuclear material (Brightman & Nandra 2011), to optimise our identification of Compton thick AGN and understanding of the obscuring material. Results from the Chandra Deep Field South are presented (Brightman & Ueda, 2012), which show an increasing fraction of CTAGN with redshift and that most heavily obscured AGN are geometrically deeply buried in material, as well as new results from and extension of this study to AEGIS-XD and Chandra-COSMOS survey, which aim to fully characterise the dependence of heavy AGN obscuration on redshift and luminosity.

  17. Long-Lag, Wide-pulse Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.; Kazanas, D.; Scargle, . D.; Hakkila, J.; Giblin, T. W.

    2004-01-01

    Currently, the best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine GRB pulse evolution. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. In this work we analyze the temporal and spectral behavior of wide pulses in 24 long-lag bursts, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systematically lower peaks in vF(v), harder low-energy spectra and softer high-energy spectra. We find that these five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior. However, pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. We infer that accurate formulations for estimating GRB luminosity and total energy will depend on several gamma-ray attributes, at least for long-lag bursts. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low vF(v) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swift will detect many such bursts.

  18. Indications of negative evolution for the sources of the highest energy cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan

    2015-09-14

    Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (α≃1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically.more » In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (α≃2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.« less

  19. A combined spectroscopic and plasma chemical kinetic analysis of ionospheric samarium releases

    NASA Astrophysics Data System (ADS)

    Holmes, Jeffrey M.; Dressler, Rainer A.; Pedersen, Todd R.; Caton, Ronald G.; Miller, Daniel

    2017-05-01

    Two rocket-borne releases of samarium vapor in the upper atmosphere occurred in May 2013, as part of the Metal Oxide Space Clouds experiment. The releases were characterized by a combination of optical and RF diagnostic instruments located at the Roi-Namur launch site and surrounding islands and atolls. The evolution of the optical spectrum of the solar-illuminated cloud was recorded with a spectrograph covering a 400-800 nm spectral range. The spectra exhibit two distinct spectral regions centered at 496 and 636 nm within which the relative intensities change insignificantly. The ratio between the integrated intensities within these regions, however, changes with time, suggesting that they are associated with different species. With the help of an equilibrium plasma spectral model we attribute the region centered at 496 nm to neutral samarium atoms (Sm I radiance) and features peaking at 649 nm to a molecular species. No evidence for structure due to Sm+ (Sm II) is identified. The persistence of the Sm I radiance suggests a high dissociative recombination rate for the chemi-ionization product, SmO+. A one-dimensional plasma chemical kinetic model of the evolution of the density ratio NSmO/NSm(t) demonstrates that the molecular feature peaking at 649 nm can be attributed to SmO radiance. SmO+ radiance is not identified. By adjusting the Sm vapor mass of the chemical kinetic model input to match the evolution of the total electron density determined by ionosonde data, we conclude that less than 5% of the payload samarium was vaporized.

  20. EXPLORING DATA-DRIVEN SPECTRAL MODELS FOR APOGEE M DWARFS

    NASA Astrophysics Data System (ADS)

    Lua Birky, Jessica; Hogg, David; Burgasser, Adam J.; Jessica Birky

    2018-01-01

    The Cannon (Ness et al. 2015; Casey et al. 2016) is a flexible, data-driven spectral modeling and parameter inference framework, demonstrated on high-resolution Apache Point Galactic Evolution Experiment (APOGEE; λ/Δλ~22,500, 1.5-1.7µm) spectra of giant stars to estimate stellar labels (Teff, logg, [Fe/H], and chemical abundances) to precisions higher than the model-grid pipeline. The lack of reliable stellar parameters reported by the APOGEE pipeline for temperatures less than ~3550K, motivates extension of this approach to M dwarf stars. Using a training set of 51 M dwarfs with spectral types ranging M0-M9 obtained from SDSS optical spectra, we demonstrate that the Cannon can infer spectral types to a precision of +/-0.6 types, making it an effective tool for classifying high-resolution near-infrared spectra. We discuss the potential for extending this work to determine the physical stellar labels Teff, logg, and [Fe/H].This work is supported by the SDSS Faculty and Student (FAST) initiative.

  1. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.

    PubMed

    Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W

    2016-02-01

    Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2012-01-01

    Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low clean concentration and a high dirty concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.

  3. Applicability of mathematical modeling to problems of environmental physiology

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.; Leonard, Joel I.; Srinivasan, R. Srini

    1988-01-01

    The paper traces the evolution of mathematical modeling and systems analysis from terrestrial research to research related to space biomedicine and back again to terrestrial research. Topics covered include: power spectral analysis of physiological signals; pattern recognition models for detection of disease processes; and, computer-aided diagnosis programs used in conjunction with a special on-line biomedical computer library.

  4. Crystal plasticity simulation of Zirconium tube rolling using multi-grain representative volume element

    NASA Astrophysics Data System (ADS)

    Isaenkova, Margarita; Perlovich, Yuriy; Zhuk, Dmitry; Krymskaya, Olga

    2017-10-01

    The rolling of Zirconium tube is studied by means of the crystal plasticity viscoplastic self-consistent (VPSC) constitutive modeling. This modeling performed by a dislocation-based constitutive model and a spectral solver using open-source simulation of DAMASK kit. The multi-grain representative volume elements with periodic boundary conditions are used to predict the texture evolution and distributions of strain and stresses. Two models for randomly textured and partially rolled material are deformed to 30% reduction in tube wall thickness and 7% reduction in tube diameter. The resulting shapes of the models are shown and distributions of strain are plotted. Also, evolution of grain's shape during deformation is shown.

  5. Long-Lag, Wide-pulse Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.; Kazanas, D.; Scargie, J. D.; Hakkila, J.; Giblin, T. W.

    2005-01-01

    The best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine observed GRB pulse evolution, including at least: jet opening angle, profiles of Lorentz factor and matter/field density, distance of emission region from central source, and viewing angle. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. We have analyzed the temporal and spectral behavior of wide pulses in 24 long-lag bursts from the BATSE sample, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systemtically lower peaks in nu*F(nu), harder low-energy spectra and softer high-energy spectra. These five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior, roughly commensurate with the theoretical phase space. However, we do find that pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low nu*F(nu) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swiift will detect many such bursts.

  6. An examination of astrophysical habitats for targeted SETI

    NASA Technical Reports Server (NTRS)

    Doyle, Laurance R.; Mckay, Christopher P.; Reynolds, Ray T.; Whitmire, Daniel P.; Matese, John J.

    1991-01-01

    Planetary atmospheric radiative transfer models have recently given valuable insights into the definition of the solar system's ecoshell. In addition, however, results have indicated that constraints on solar evolution also need to be addressed, with even minor solar variations, (mass loss, for example), having important consequences from an exobiological standpoint. Following the definition of the solar system's ecoshell evolution, the ecoshells around different stellar spectral types can then be modeled. In this study the astrophysical constraints on the definition of ecoshells and possible exobiological habitats includes: (1) the investigation of the evolution of the solar system's ecoshell under different initial solar/stellar model conditions as indicated by both solar abundance considerations as well as planetary evidence; (2) an outline of considerations necessary to define the ecoshells around the most abundant spectral-type stars, the K and M stars looking at the effects on exobiological habitats of planetary rotational tidal locking effects, and stellar flare/chromospheric-activity cycles, among other effects; (3) a preliminary examination of the factors defining the expected ecoshells around binary stars determining the of regular stellar eclipses, and the expected shortening of the semi-major axis. These results can then be applied to the targeted microwave search for extraterrestrial intelligent signals by constraining the ecoshell space in the solar neighborhood.

  7. Radial variations of large-scale magnetohydrodynamic fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Goldstein, M. L.

    1983-01-01

    Two time periods are studied for which comprehensive data coverage is available at both 1 AU using IMP-8 and ISEE-3 and beyond using Voyager 1. One of these periods is characterized by the predominance of corotating stream interactions. Relatively small scale transient flows characterize the second period. The evolution of these flows with heliocentric distance is studied using power spectral techniques. The evolution of the transient dominated period is consistent with the hypothesis of turbulent evolution including an inverse cascade of large scales. The evolution of the corotating period is consistent with the entrainment of slow streams by faster streams in a deterministic model.

  8. MURI: Adaptive Waveform Design for Full Spectral Dominance

    DTIC Science & Technology

    2011-03-11

    a three- dimensional urban tracking model, based on the nonlinear measurement model (that uses the urban multipath geometry with different types of ... the time evolution of the scattering function with a high dimensional dynamic system; a multiple particle filter technique is used to sequentially...integration of space -time coding with a fixed set of beams. It complements the

  9. Correlation Analysis of Prompt Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Pothapragada, Sriharsha

    Prompt emission from gamma-ray bursts (GRBs) exhibits very rapid, complicated temporal and spectral evolution. This diverse variability in the light-curves reflects the complicated nature of the underlying physics, in which inter-penetrating relativistic shells in the outflow are believed to generate strong magnetic fields that vary over very small scales. We use the theory of jitter radiation to model the emission from such regions and the resulting overall prompt gamma ray emission from a series of relativistic collisionless shocks. We present simulated GRB light-curves developed as a series of "pulses" corresponding to instantaneously illuminated "thin-shell" regions emitting via the jitter radiation mechanism. The effects of various geometries, viewing angles, and bulk Lorentz factor profiles of the radiating outflow jets on the spectral features and evolution of these light-curves are explored. Our results demonstrate how an anisotropic jitter radiation pattern, in conjunction with relativistic shock kinematics, can produce certain features observed in the GRB prompt emission spectra, such as the occurrence of hard, synchrotron violating spectra, the "tracking" of observed flux with spectral parameters, and spectral softening below peak energy within individual episodes of the light curve. We highlight predictions in the light of recent advances in the observational sphere of GRBs.

  10. Spectral lags in different episodes of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Jia, LanWei; Yi, TingFeng; Liang, EnWei

    2013-08-01

    A systematical analysis of the spectral lags in different episodes within a gamma-ray burst (GRB) for the BATSE GRB sample is given. The identified episodes are usually a single pulse with mixing of small fluctuations. The spectral lags were calculated for lightcurves in the 25-55 keV and 110-320 keV bands. No universal spectral lag evolution feature in different episodes within a GRB were found for most GRBs. Among 362 bright GRBs that have at least three well-identified episodes, 19 of them show long-to-short lag and 19 of them show short-to-long lag in successive episodes. The other 324 GRBs have no clear evolution trend. Defining the specified lag with the ratio of the spectral lag to the episode duration in 110-320 keV band, no prominent case of specified lag was found showing clear evolution features. The results suggest that the observed spectral lag may contribute to the dynamics and/or the radiation physics of a given emission episode.

  11. Compressive Spectral Method for the Simulation of the Nonlinear Gravity Waves

    PubMed Central

    Bayındır, Cihan

    2016-01-01

    In this paper an approach for decreasing the computational effort required for the spectral simulations of the fully nonlinear ocean waves is introduced. The proposed approach utilizes the compressive sampling algorithm and depends on the idea of using a smaller number of spectral components compared to the classical spectral method. After performing the time integration with a smaller number of spectral components and using the compressive sampling technique, it is shown that the ocean wave field can be reconstructed with a significantly better efficiency compared to the classical spectral method. For the sparse ocean wave model in the frequency domain the fully nonlinear ocean waves with Jonswap spectrum is considered. By implementation of a high-order spectral method it is shown that the proposed methodology can simulate the linear and the fully nonlinear ocean waves with negligible difference in the accuracy and with a great efficiency by reducing the computation time significantly especially for large time evolutions. PMID:26911357

  12. REVIEWS OF TOPICAL PROBLEMS: Population synthesis in astrophysics

    NASA Astrophysics Data System (ADS)

    Popov, S. B.; Prokhorov, M. E.

    2007-11-01

    Population synthesis is a method for numerical simulation of the population of objects with a complex evolution. This method is widely used in astrophysics. We consider its main applications to studying astronomical objects. Examples of modeling evolution are given for populations of close binaries and isolated neutron stars. The application of the method to studying active galactic nuclei and the integral spectral characteristics of galaxies is briefly discussed. An extensive bibliography on all the topics covered is provided.

  13. A mathematical model of the structure and evolution of small-scale discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Seyler, Charles E.

    1990-01-01

    A three-dimensional fluid model for the structure and evolution of small-scale discrete auroral arcs originating from Alfven waves is developed and used to study the nonlinear macroscopic plasma dynamics of these auroral arcs. The results of simulations show that stationary auroral arcs can be unstable to a collisionless tearing mode which may be responsible for the observed transverse structuring in the form of folds and curls. At late times, the plasma becomes turbulent having transverse electric field power spectra that tend toward a universal k exp -5/3 spectral form.

  14. Chemical evolution of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Barbuy, B.; de Freitas Pacheco, J. A.; Idiart, T.

    We have obtained integrated spectra for 14 clusters in the Magellanic Clouds, on which the spectral indices Hβ, Mg2, Fe5270, Fe5335 were measured. Selecting indices whose behaviour depends essentially on age and metallicity (Hβ and ), together with (B-V) and (V-K) colours, we were able to determine age and metallicities for these clusters, using calibrations based on single stellar population models (Borges et al. 1995). A chemical evolution model which follows a star formation history as indicated by the field population is checked with the age and metallicity data for our sample star clusters.

  15. Firework Model: Time Dependent Spectral Evolution of GRB

    NASA Astrophysics Data System (ADS)

    Barbiellini, Guido; Longo, Francesco; Ghirlanda, G.; Celotti, A.; Bosnjak, Z.

    2004-09-01

    The energetics of the long duration GRB phenomenon is compared with models of a rotating BH in a strong magnetic field generated by an accreting torus. The GRB energy emission is attributed to magnetic field vacuum breakdown that gives origin to a e +/- fireball. Its subsequent evolution is hypothesized in analogy with the in-flight decay of an elementary particle. An anisotropy in the fireball propagation is thus naturally produced. The recent discovery in some GRB of an initial phase characterized by a thermal spectrum could be interpreted as the photon emission of the fireball photosphere when it becomes transparent. In particular, the temporal evolution of the emission can be explained as the effect of a radiative deceleration of the out-moving ejecta.

  16. Estimation of mass of black hole candidate H1743-322 using spectral and timing analysis of 2010 and 2011 outbursts with TCAF and POS models

    NASA Astrophysics Data System (ADS)

    Molla, Aslam Ali; Debnath, Dipak; Chakrabarti, Sandip Kumar; Mondal, Santanu; Jana, Arghajit; Chatterjee, Debjit

    2016-07-01

    The black hole X-ray binary H1743-322 has been observed almost during every X-ray mission since the inception of X-ray astronomy. Like other black hole candidates H1743-322 is highly variable. Using a self consistent accretion flow model (TCAF), we study spectral evolution during its 2010 & 2011 outbursts by keeping model normalization fixed to a value (14.5). As model normalization depends only on mass, distance and inclination angle of the black hole so, it should be a constant. This constant allows us to calculate mass of the black hole if we keep it frozen. The only uncertainty in mass and normalization measurements comes from the uncertainty of distance and inclination angle. Here we present spectral analysis of H1743-322 during 2010 and 2011 outburst and conclude that the mass of the black hole is within a range of 9 - 13 M_Sun.

  17. Investigation of Spectral Lag and Epeak as Joint Luminosity Indicators in GRBs

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Norris, Jay P.

    2003-01-01

    Models for gamma-ray bursts which invoke jetted, colliding shells would appear to have at least two determinants for luminosity, e.g., observer viewing angle and Lorentz factor, or possibly shell mass. The latter two internal physical parameters may vary from pulse to pulse within a burst, and such variation might be reflected in evolution of observables such as spectral lag and peak in the spectral energy distribution. We analyze bright BATSE bursts using the 16-channel medium energy resolution (MER) data, with time resolutions of 16 and 64 ms, measuring spectral lags and peak energies for significant pulse structures within a burst, identified using a Bayesian block algorithm. We then explore correlations between the measured parameters and total flux for the individual pulse structures.

  18. Multispectral studies of selected crater- and basin-filling lunar Maria from Galileo Earth-Moon encounter 1

    NASA Technical Reports Server (NTRS)

    Williams, D. A.; Greeley, R.; Neukum, G.; Wagner, R.

    1993-01-01

    New visible and near-infrared multispectral data of the Moon were obtained by the Galileo spacecraft in December, 1990. These data were calibrated with Earth-based spectral observations of the nearside to compare compositional information to previously uncharacterized mare basalts filling craters and basins on the western near side and eastern far side. A Galileo-based spectral classification scheme, modified from the Earth-based scheme developed by Pieters, designates the different spectral classifications of mare basalt observed using the 0.41/0.56 micron reflectance ratio (titanium content), 0.56 micron reflectance values (albedo), and 0.76/0.99 micron reflectance ratio (absorption due to Fe(2+) in mafic minerals and glass). In addition, age determinations from crater counts and results of a linear spectral mixing model were used to assess the volcanic histories of specific regions of interest. These interpreted histories were related to models of mare basalt petrogenesis in an attempt to better understand the evolution of lunar volcanism.

  19. Tracer evolution in winds generated by a global spectral mechanistic model

    NASA Technical Reports Server (NTRS)

    Nielsen, J. E.; Rood, Richard B.; Couglass, Anne R.; Cerniglia, Mark C.; Allen, Dale J.; Rosenfield, Joan E.

    1994-01-01

    The lower boundary of a spectral mechanistic model is prescribed with 100 hPa geopotentials, and its performance during a November 1989 through March 1990 integration is compared with National Meteorological Center observations. Although the stratopause temperatures quickly become biased near the pole in both hemispheres, the model develops a residual mean circulation which shows significant descent over the winter pole and ascent in the tropics and over the summer pole at pressures less than 10 hPa. The daily correspondence of observed to modeled features in the upper stratosphere and mesosphere degrades after one month. However, the long-term variability qualitatively follows the observations. The results of off-line transport experiments are also described. A passive tracer is instantaneously injected into the flow over the poles and evolves in a manner which is consistent with the residual mean circulation. It demonstrates a significant cross-equatorial flux in the mesosphere near solstice, and air which originates in the southern hemisphere polar mesosphere can be found descending deep into the nothern polar stratosphere at the end of the integration. Nitrous oxide is also transported, and its ability to act as a dynamical tracer is evaluated by comparison to the evolution of the passive tracer.

  20. Kernel spectral clustering with memory effect

    NASA Astrophysics Data System (ADS)

    Langone, Rocco; Alzate, Carlos; Suykens, Johan A. K.

    2013-05-01

    Evolving graphs describe many natural phenomena changing over time, such as social relationships, trade markets, metabolic networks etc. In this framework, performing community detection and analyzing the cluster evolution represents a critical task. Here we propose a new model for this purpose, where the smoothness of the clustering results over time can be considered as a valid prior knowledge. It is based on a constrained optimization formulation typical of Least Squares Support Vector Machines (LS-SVM), where the objective function is designed to explicitly incorporate temporal smoothness. The latter allows the model to cluster the current data well and to be consistent with the recent history. We also propose new model selection criteria in order to carefully choose the hyper-parameters of our model, which is a crucial issue to achieve good performances. We successfully test the model on four toy problems and on a real world network. We also compare our model with Evolutionary Spectral Clustering, which is a state-of-the-art algorithm for community detection of evolving networks, illustrating that the kernel spectral clustering with memory effect can achieve better or equal performances.

  1. Efficient solution of the Wigner-Liouville equation using a spectral decomposition of the force field

    NASA Astrophysics Data System (ADS)

    Van de Put, Maarten L.; Sorée, Bart; Magnus, Wim

    2017-12-01

    The Wigner-Liouville equation is reformulated using a spectral decomposition of the classical force field instead of the potential energy. The latter is shown to simplify the Wigner-Liouville kernel both conceptually and numerically as the spectral force Wigner-Liouville equation avoids the numerical evaluation of the highly oscillatory Wigner kernel which is nonlocal in both position and momentum. The quantum mechanical evolution is instead governed by a term local in space and non-local in momentum, where the non-locality in momentum has only a limited range. An interpretation of the time evolution in terms of two processes is presented; a classical evolution under the influence of the averaged driving field, and a probability-preserving quantum-mechanical generation and annihilation term. Using the inherent stability and reduced complexity, a direct deterministic numerical implementation using Chebyshev and Fourier pseudo-spectral methods is detailed. For the purpose of illustration, we present results for the time-evolution of a one-dimensional resonant tunneling diode driven out of equilibrium.

  2. White Dwarf Model Atmospheres: Synthetic Spectra for Supersoft Sources

    NASA Astrophysics Data System (ADS)

    Rauch, Thomas

    2013-01-01

    The Tübingen NLTE Model-Atmosphere Package (TMAP) calculates fully metal-line blanketed white dwarf model atmospheres and spectral energy distributions (SEDs) at a high level of sophistication. Such SEDs are easily accessible via the German Astrophysical Virtual Observatory (GAVO) service TheoSSA. We discuss applications of TMAP models to (pre) white dwarfs during the hottest stages of their stellar evolution, e.g. in the parameter range of novae and supersoft sources.

  3. Undecidability of the spectral gap.

    PubMed

    Cubitt, Toby S; Perez-Garcia, David; Wolf, Michael M

    2015-12-10

    The spectral gap--the energy difference between the ground state and first excited state of a system--is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding 'halting problem'. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.

  4. Modeling the Radio Foreground for Detection of CMB Spectral Distortions from the Cosmic Dawn and the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Udaya Shankar, N.; Chluba, Jens

    2017-05-01

    Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30-6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal. We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.

  5. ACCRETION FLOW DYNAMICS OF MAXI J1836-194 DURING ITS 2011 OUTBURST FROM TCAF SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jana, Arghajit; Debnath, Dipak; Chakrabarti, Sandip K.

    2016-03-20

    The Galactic transient X-ray binary MAXI J1836-194 was discovered on 2011 August 29. Here we make a detailed study of the spectral and timing properties of its 2011 outburst using archival data from the RXTE Proportional Counter Array instrument. The evolution of accretion flow dynamics of the source during the outburst through spectral analysis with Chakrabarti–Titarchuk’s two-component advective flow (TCAF) solution as a local table model in XSPEC. We also fitted spectra with combined disk blackbody and power-law models and compared it with the TCAF model fitted results. The source is found to be in hard and hard-intermediate spectral states onlymore » during the entire phase of this outburst. No soft or soft-intermediate spectral states are observed. This could be due to the fact that this object belongs to a special class of sources (e.g., MAXI J1659-152, Swift J1753.5-0127, etc.) that have very short orbital periods and that the companion is profusely mass-losing or the disk is immersed inside an excretion disk. In these cases, flows in the accretion disk are primarily dominated by low viscous sub-Keplerian flow and the Keplerian rate is not high enough to initiate softer states. Low-frequency quasi-periodic oscillations (QPOs) are observed sporadically although as in normal outbursts of transient black holes, monotonic evolutions of QPO frequency during both rising and declining phases are observed. From the TCAF fits, we find the mass of the black hole in the range of 7.5–11 M{sub ⊙}, and from time differences between peaks of the Keplerian and sub-Keplerian accretion rates we obtain a viscous timescale for this particular outburst, ∼10 days.« less

  6. A Study of Pulse Shape Evolution and X-Ray Reprocessing in Her X-1

    NASA Technical Reports Server (NTRS)

    Cushman, Paula P.

    1998-01-01

    This study focused on the pulse shape evolution and spectral properties of the X-ray binary Her X-1 with regard to the well known 35-day cycle of Her X-1. A follow-up set of RXTE observations has been conducted in RXTE AO-2 phase and the two observation sets are being analyzed together. We presented results of early analysis of pulse shape evolution in "Proceedings of the Fourth Compton Symposium". More advanced analysis was presented at the HEAD meeting in November, 1997 in Estes Park, Colorado. A related study of the 35-day cycle using RXTE/ASM data, which laid out the overall picture within which the more detailed PCA observations could be placed has also been conducted. The results of this study have been published. A pair of papers on the detailed pulse evolution and the spectral/color evolution are currently being prepared for publication. Some of the significant results of this study have been a confirmation of the detailed pulse profile changes at the end of the Main High state in HerX-1 first observed by GINGA, observations of the pulse evolution in several Short High states which agree with the pulse evolution pattern predicted using a disk occultation model, observation of a systematic lengthening of the eclipse egress during the Main High state of the 35-day phase and observation of a new type of extended eclipse ingress during which pulsations cease to observed during the Short High state.

  7. Evolution of complex organic molecules in hot molecular cores. Synthetic spectra at (sub-)mm wavebands

    NASA Astrophysics Data System (ADS)

    Choudhury, R.; Schilke, P.; Stéphan, G.; Bergin, E.; Möller, T.; Schmiedeke, A.; Zernickel, A.

    2015-03-01

    Context. Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich chemical reservoirs and emission line spectra at (sub-)mm wavebands. Complex organic molecules (COMs) such as methanol (CH3OH), ethanol (C2H5OH), dimethyl ether (CH3OCH3), and methyl formate (HCOOCH3) produce most of these observed lines. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. Aims: We aim to investigate the spectral evolution of these COMs to explore the initial evolutionary stages of high-mass star formation including HMCs. Methods: We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s) among other parameters. Finally, we simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. Results: Temperature has a profound effect on the formation of COMs through the depletion and diffusion on grain surface to desorption and further gas-phase processing. The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. We find that a slightly higher value (15 K) than the canonical dark cloud temperature (10 K) provides a more productive environment for COM formation on grain surface. With increasing protostellar luminosity, the water ice evaporation font (~100 K) expands and the spatial distribution of gas phase abundances of these COMs also spreads out. We calculated the temporal variation of the radial profiles of these COMs for different hot core models. These profiles resemble the so-called jump profiles with relative abundances higher than 10-9 within the evaporation font will furthermore be useful to model the observed spectra of hot cores. We present the simulated spectra of these COMs for different hot core models at various evolutionary timescales. A qualitative comparison of the simulated and observed spectra suggests that these self-consistent hot core models can reproduce the notable trends in hot core spectral variation within the typical hot core timescales of 105 year. These models predict that the spatial distribution of various emission line maps will also expand with evolutionary time; this feature can be used to constrain the relative desorption energies of the molecules that mainly form on the grain surface and return to the gas phase via thermal desorption. The detailed modeling of the thermal structure of hot cores with similar masses along with the characterization of the desorption energies of different molecules can be used to constrain the luminosity evolution of the central protostars. The model predictions can be compared with high resolution observation that can probe scales of a few thousand AU in high-mass star forming regions such as from Atacama Large Millimeter/submillimeter Array (ALMA). We used a spectral fitting method to analyze the simulated spectra and find that it significantly underestimates some of the physical parameters such as temperature. The coupling of chemical evolution with radiative transfer models will be particularly useful to decipher the physical structure of hot cores and also to constrain the initial evolutionary stages of high-mass star formation. Appendices are available in electronic form at http://www.aanda.org

  8. Characterizing Pale Blue Dots Around FGKM Stars

    NASA Astrophysics Data System (ADS)

    Rugheimer, S.; Kaltenegger, L.; Sasselov, D. D.; Segura, A.

    2015-12-01

    Exoplanet characterization of small rocky worlds will be a main focus in the coming decades. For future telescopes like JWST and UVOIR/HDST, an exoplanet's host star will influence our ability to detect and interpret spectral features, including biosignatures. We present a complete suit of stellar models and a grid of model atmospheres for Earth-like planets at equivalent stages of geological evolution in their HZ for stellar effective temperature from Teff = 2300K to 7000K, sampling the entire FGKM stellar type range. Since M dwarfs are simultaneously the most numerous in the universe, the most active, and the most likely stars to host terrestrial exoplanets, we focus in particular on the range of UV emission possible in each sub M spectral class. The UV emission from a planet's host star dominates the photochemistry and thus the resultant observable spectral features of the planet. Using the latest UV spectra obtained by HST and IUE we model the effect of stellar activity on Earth-like planets. We also model the amount of UV flux reaching the surface for Earth-like planets at various geological epochs ranging from a pre-biotic world through the rise of oxygen and for Earth-like planets orbiting FGKM stars at equivalent stages of evolution. When modeling the remotely detectable spectra of these planets we focus on the primary detectable atmospheric features that indicate habitability on Earth, namely: H2O, CO2, O3, CH4, N2O and CH3Cl. We model the emergent as well as transit spectra of Earth-like planets orbiting our grid of FGKM stars in the VIS/NIR (0.4 - 4 μm) and the IR (5 - 20 μm) range as input for future missions like JWST and concepts like UVOIR/HDST.

  9. Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.

    2017-11-01

    We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.

  10. A thermal/nonthermal model for solar microwave bursts

    NASA Technical Reports Server (NTRS)

    Benka, Stephen G.; Holman, Gordon D.

    1992-01-01

    A theoretical framework is developed for modeling high-resolution spectra of microwave bursts from the Owens Valley Radio Observatory which can account for departures from expectations based on simple thermal or nonthermal models. Specifically, 80 percent of the events show more than one spectral peak; many bursts have a low-side spectral index steeper than the maximum expected slope; and the peak frequency stays relatively constant and changes intensity in concert with the secondary peaks throughout a given event's solution. It is shown that the observed spectral features can be explained through gyrosynchrotron radiation. The 'secondary' components seen on the LF side of many spectra are nonthermal enhancements superposed upon thermal radiation, occurring between the thermal harmonics. A steep optically thick slope is accounted for by the thermal absorption of nonthermal radiation. If the coexistence of thermal and nonthermal particles is interpreted in terms of electron heating and acceleration in current sheets, a changing electric field strength can account for the gross evolution of the microwave spectra.

  11. On the evolution of the star formation rate function of massive galaxies: constraints at 0.4 < z < 1.8 from the GOODS-MUSIC catalogue

    NASA Astrophysics Data System (ADS)

    Fontanot, Fabio; Cristiani, Stefano; Santini, Paola; Fontana, Adriano; Grazian, Andrea; Somerville, Rachel S.

    2012-03-01

    We study the evolution of the star formation rate function (SFRF) of massive (M★ > 1010 M⊙) galaxies over the 0.4 < z < 1.8 redshift range and its implications for our understanding of the physical processes responsible for galaxy evolution. We use multiwavelength observations included in the Great Observatories Origins Deep Survey-Multiwavelength Southern Infrared Catalog (GOODS-MUSIC) catalogue, which provides a suitable coverage of the spectral region from 0.3 to 24 ?m and either spectroscopic or photometric redshifts for each object. Individual SFRs have been obtained by combining ultraviolet and 24-?m observations, when the latter were available. For all other sources a 'spectral energy distribution (SED) fitting' SFR estimate has been considered. We then define a stellar mass limited sample, complete in the M★ > 1010 M⊙ range and determine the SFRF using the 1/Vmax algorithm. We thus define simulated galaxy catalogues based on the predictions of three different state-of-the-art semi-analytical models (SAMs) of galaxy formation and evolution, and compare them with the observed SFRF. We show that the theoretical SFRFs are well described by a double power law functional form and its redshift evolution is approximated with high accuracy by a pure evolution of the typical SFR (SFR★). We find good agreement between model predictions and the high-SFR end of the SFRF, when the observational errors on the SFR are taken into account. However, the observational SFRF is characterized by a double-peaked structure, which is absent in its theoretical counterparts. At z > 1.0 the observed SFRF shows a relevant density evolution, which is not reproduced by SAMs, due to the well-known overprediction of intermediate-mass galaxies at z˜ 2. SAMs are thus able to reproduce the most intense SFR events observed in the GOODS-MUSIC sample and their redshift distribution. At the same time, the agreement at the low-SFR end is poor: all models overpredict the space density of SFR ˜ 1 M⊙ yr-1 and no model reproduces the double-peaked shape of the observational SFRF. If confirmed by deeper infrared observations, this discrepancy will provide a key constraint on theoretical modelling of star formation and stellar feedback.

  12. Divergent positive selection in rhodopsin from lake and riverine cichlid fishes.

    PubMed

    Schott, Ryan K; Refvik, Shannon P; Hauser, Frances E; López-Fernández, Hernán; Chang, Belinda S W

    2014-05-01

    Studies of cichlid evolution have highlighted the importance of visual pigment genes in the spectacular radiation of the African rift lake cichlids. Recent work, however, has also provided strong evidence for adaptive diversification of riverine cichlids in the Neotropics, which inhabit environments of markedly different spectral properties from the African rift lakes. These ecological and/or biogeographic differences may have imposed divergent selective pressures on the evolution of the cichlid visual system. To test these hypotheses, we investigated the molecular evolution of the dim-light visual pigment, rhodopsin. We sequenced rhodopsin from Neotropical and African riverine cichlids and combined these data with published sequences from African cichlids. We found significant evidence for positive selection using random sites codon models in all cichlid groups, with the highest levels in African lake cichlids. Tests using branch-site and clade models that partitioned the data along ecological (lake, river) and/or biogeographic (African, Neotropical) boundaries found significant evidence of divergent selective pressures among cichlid groups. However, statistical comparisons among these models suggest that ecological, rather than biogeographic, factors may be responsible for divergent selective pressures that have shaped the evolution of the visual system in cichlids. We found that branch-site models did not perform as well as clade models for our data set, in which there was evidence for positive selection in the background. One of our most intriguing results is that the amino acid sites found to be under positive selection in Neotropical and African lake cichlids were largely nonoverlapping, despite falling into the same three functional categories: spectral tuning, retinal uptake/release, and rhodopsin dimerization. Taken together, these results would imply divergent selection across cichlid clades, but targeting similar functions. This study highlights the importance of molecular investigations of ecologically important groups and the flexibility of clade models in explicitly testing ecological hypotheses.

  13. Near-IR spectral evolution of dusty starburst galaxies

    NASA Astrophysics Data System (ADS)

    Lançon, Ariane; Rocca-Volmerange, Brigitte

    1996-11-01

    We propose a multicomponent analysis of starburst galaxies, based on a model that takes into account the young and evolved stellar components and the gas emission, with their respective extinction, in the frame of a coherent dust distribution pattern. Near-IR signatures are preferentially investigated, in order to penetrate as deep as possible into the dusty starburst cores. We computed the 1.4-2.5 μm spectra of synthetic stellar populations evolving through strong, short timescale bursts of star formation (continuum and lines, R ≃ 500). The evolution model is specifically sensitive to cool stellar populations (AGB and red supergiant stars). It takes advantage of the stellar library of Lançon & Rocca-Volmerange (1992) [A&ASS, 96, 593], observed with the same instrument (FTS/CFHT) as the analysed galaxy sample, so that the instrumental effects are minimised. The main near-IR observable constraints are the molecular signatures of CO and H2O and the slope of the continuum, observed over a range exceptionally broad for spectroscopic data. The H - K colour determined from the spectra measures the intrinsic stellar energy distribution but also differential extinction, which is further constrained by optical emission line ratios. Other observational constraints are the near-IR emission lines (Brγ, He I 2.06 μm, [Fe II] 1.64 μm, H2 2.12 μm) and the far-IR luminosity. The coherence of the results relies on the interpretation in terms of stellar populations from which all observable properties are derived, so that the link between the various wavelength ranges is secured. The luminosity LK is used for the absolute calibration. We apply this approach to the typical spectrum of the core of NGC 1614. Consistent solutions for the starburst characteristics (star-formation rate, IMF, burst age, morphology) are found and the role of each observational constraint in deriving satisfactory models is extensively discussed. The acceptable contamination of the K band light by the underlying population amounts ≥ 15% even through a 5 arcsec aperture. The model leads to a limit on the direct absorption of Lyman continuum photons by dust situated inside the ionised areas, which in turn, with standard gas-to-dust ratios, translates into small characteristic sizes for the individual coexisting H II regions of the massive starburst area (clusters containing ˜ 102 ionising stars). We show that room is left for IMFs extending to 120 M⊙, rather than truncated at ˜ 60 M⊙ as most conservative studies conclude. High internal velocity dispersions (≥ 20 km s-1) are then needed for the H II regions. An original feature of this work is to base the analysis of near-infrared spectral galaxy observations on a large wavelength range, using models constructed with spectral stellar data observed with the same instrument. However a broader use of this spectral evolution model on other spectral or photometric data samples is possible if the spectral resolution of the model is adapted to observations or if colours are derived from the energy distributions. Catherine J. Cesarsky

  14. Masses, Radii, and Cloud Properties of the HR 8799 Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.; Saumon, Didier; Cushing, Michael; Ackerman, Andrew S.; Fortney, Jonathan J.; Freedman, Richard

    2012-01-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have compared the photometric and limited spectral data of the planets to the predictions of various atmosphere and evolution models and concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Most studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against field L and T dwarfs, including the reddest L dwarfs. Unlike almost all previous studies we specify mutually self-consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure yields plausible and self-consistent values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are in fact not unusual but rather follow previously recognized trends including a gravity dependence on the temperature of the L to T spectral transition, some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to the H and K band spectrum. Solutions for planets c and particularly d are less certain but are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that as for L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present a new evolution calculation that predicts cooling tracks on the near-infrared color-magnitude diagram. Finally we argue that the range of uncertainty conventionally quoted for the bolometric luminosity of all three planets is too small.

  15. Spectral evolution with doping of an antiferromagnetic Mott state

    NASA Astrophysics Data System (ADS)

    Wu, Huan-Kuang; Lee, Ting-Kuo

    2017-01-01

    Since the discovery of half-filled cuprate to be a Mott insulator, the excitation spectra above the chemical potential for the unoccupied states has attracted much research attention. There were many theoretical works using different numerical techniques to study this problem, but many have reached different conclusions. One of the reasons is the lack of very detailed high-resolution experimental results for the theories to be compared with. Recently, the scanning tunneling spectroscopy [P. Cai et al., Nat. Phys. 12, 1047 (2016), 10.1038/nphys3840; C. Ye et al., Nat. Commun. 4, 1365 (2013), 10.1038/ncomms2369] on lightly doped Mott insulator with an antiferromagnetic order found the presence of in-gap states with energy of order half an eV above the chemical potential. The measured spectral properties with doping are not quite consistent with earlier theoretical works. Although the experiment has disorder and localization effect, but for the energy scale we will study here, a model without disorder is sufficed to illustrate the underlying physics. We perform a diagonalization method on top of the variational Monte Carlo calculation to study the evolution of antiferromagnetic Mott state with doped hole concentration in the Hubbard model. Our results found in-gap states that behave similarly with ones reported by STS. These in-gap states acquire a substantial amount of dynamical spectral weight transferred from the upper Hubbard band. The in-gap states move toward chemical potential with increasing spectral weight as doping increases. Our result also provides information about the energy scale of these in-gap states in relation with the Coulomb coupling strength U .

  16. The LOFAR window on star-forming galaxies and AGNs - curved radio SEDs and IR-radio correlation at 0

    NASA Astrophysics Data System (ADS)

    Calistro Rivera, G.; Williams, W. L.; Hardcastle, M. J.; Duncan, K.; Röttgering, H. J. A.; Best, P. N.; Brüggen, M.; Chyży, K. T.; Conselice, C. J.; de Gasperin, F.; Engels, D.; Gürkan, G.; Intema, H. T.; Jarvis, M. J.; Mahony, E. K.; Miley, G. K.; Morabito, L. K.; Prandoni, I.; Sabater, J.; Smith, D. J. B.; Tasse, C.; van der Werf, P. P.; White, G. J.

    2017-08-01

    We present a study of the low-frequency radio properties of star-forming (SF) galaxies and active galactic nuclei (AGNs) up to redshift z = 2.5. The new spectral window probed by the Low Frequency Array (LOFAR) allows us to reconstruct the radio continuum emission from 150 MHz to 1.4 GHz to an unprecedented depth for a radio-selected sample of 1542 galaxies in ˜ 7 deg2 of the LOFAR Boötes field. Using the extensive multiwavelength data set available in Boötes and detailed modelling of the far-infrared to ultraviolet spectral energy distribution (SED), we are able to separate the star formation (N = 758) and the AGN (N = 784) dominated populations. We study the shape of the radio SEDs and their evolution across cosmic time and find significant differences in the spectral curvature between the SF galaxy and AGN populations. While the radio spectra of SF galaxies exhibit a weak but statistically significant flattening, AGN SEDs show a clear trend to become steeper towards lower frequencies. No evolution of the spectral curvature as a function of redshift is found for SF galaxies or AGNs. We investigate the redshift evolution of the infrared-radio correlation for SF galaxies and find that the ratio of total infrared to 1.4-GHz radio luminosities decreases with increasing redshift: q1.4 GHz = (2.45 ± 0.04) (1 + z)-0.15 ± 0.03. Similarly, q150 MHz shows a redshift evolution following q150 GHz = (1.72 ± 0.04) (1 + z)-0.22 ± 0.05. Calibration of the 150 MHz radio luminosity as a star formation rate tracer suggests that a single power-law extrapolation from q1.4 GHz is not an accurate approximation at all redshifts.

  17. Unambiguous demonstration of soliton evolution in slow-light silicon photonic crystal waveguides with SFG-XFROG.

    PubMed

    Li, Xiujian; Liao, Jiali; Nie, Yongming; Marko, Matthew; Jia, Hui; Liu, Ju; Wang, Xiaochun; Wong, Chee Wei

    2015-04-20

    We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton.

  18. Reconstruction of solar spectral irradiance since the Maunder minimum

    NASA Astrophysics Data System (ADS)

    Krivova, N. A.; Vieira, L. E. A.; Solanki, S. K.

    2010-12-01

    Solar irradiance is the main external driver of the Earth's climate. Whereas the total solar irradiance is the main source of energy input into the climate system, solar UV irradiance exerts control over chemical and physical processes in the Earth's upper atmosphere. The time series of accurate irradiance measurements are, however, relatively short and limit the assessment of the solar contribution to the climate change. Here we reconstruct solar total and spectral irradiance in the range 115-160,000 nm since 1610. The evolution of the solar photospheric magnetic flux, which is a central input to the model, is appraised from the historical record of the sunspot number using a simple but consistent physical model. The model predicts an increase of 1.25 W/m2, or about 0.09%, in the 11-year averaged solar total irradiance since the Maunder minimum. Also, irradiance in individual spectral intervals has generally increased during the past four centuries, the magnitude of the trend being higher toward shorter wavelengths. In particular, the 11-year averaged Ly-α irradiance has increased by almost 50%. An exception is the spectral interval between about 1500 and 2500 nm, where irradiance has slightly decreased (by about 0.02%).

  19. Leith diffusion model for homogeneous anisotropic turbulence

    DOE PAGES

    Rubinstein, Robert; Clark, Timothy T.; Kurien, Susan

    2017-06-01

    Here, a proposal for a spectral closure model for homogeneous anisotropic turbulence. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Here, numericalmore » simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.« less

  20. Characterization of H 1743-322 during its 2003 outburst with TCAF Solution.

    NASA Astrophysics Data System (ADS)

    Nagarkoti, Shreeram; Debnath, Dipak; Chakrabarti, Sandip Kumar; Mondal, Santanu; Chatterjee, Arka

    2016-07-01

    Transiant black hole candidate (BHC) H 1743-322 became active in X-rays on 2003 March 21 after remaining dormant for around two decades. We study both the spectral and temporal properties of the source during its 2003 outburst under TCAF paradigm. The classification of different spectral states (hard, hard-intermediate, soft-intermediate, soft) and their intermediate transitions are more clear from the variation of TCAF model fitted/derived physical flow parameters and nature of quasi-periodic oscillations (if present). We also studied evolutions of low frequency QPOs during rising and declining phases of the outburst with propagating oscillatory shock (POS) model. We get a good estimation of the probable mass range of the objects from prediction methods using TCAF and POS model, as discussed in Molla et al. (2016).

  1. The next generation of galaxy evolution models: A symbiosis of stellar populations and chemical abundances

    NASA Astrophysics Data System (ADS)

    Kotulla, Ralf

    2012-10-01

    Over its lifespan Hubble has invested significant effort into detailed observations of galaxies both in the local and distant universe. To extract the physical information from the observed {spectro-}photometry requires detailed and accurate models. Stellar population synthesis models are frequently used to obtain stellar masses, star formation rate, galaxy ages and star formation histories. Chemical evolution models offer another valuable and complementary approach to gain insight into many of the same aspects, yet these two methods have rarely been used in combination.Our proposed next generation of galaxy evolution models will help us improve our understanding of how galaxies form and evolve. Building on GALEV evolutionary synthesis models we incorporate state-of-the-art input physics for stellar evolution of binaries and rotating stars as well as new spectral libraries well matched to the modern observational capabilities. Our improved chemical evolution model allows us to self-consistently trace abundances of individual elements, fully accounting for the increasing initial abundances of successive stellar generations. GALEV will support variable Initial Mass Functions {IMF}, enabling us to test recent observational findings of a non-universal IMF by predicting chemical properties and integrated spectra in an integrated and consistent manner.HST is the perfect instrument for testing this approach. Its wide wavelength coverage from UV to NIR enables precise SED fitting, and with its spatial resolution we can compare the inferred chemical evolution to studies of star clusters and resolved stellar populations in nearby galaxies.

  2. Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas

    NASA Astrophysics Data System (ADS)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2016-11-01

    In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.

  3. Modeling the Radio Foreground for Detection of CMB Spectral Distortions from the Cosmic Dawn and the Epoch of Reionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Shankar, N Udaya

    Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30–6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal.more » We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.« less

  4. Evaluation of chemical parameters in soft mold-ripened cheese during ripening by mid-infrared spectroscopy.

    PubMed

    Martín-del-Campo, S T; Picque, D; Cosío-Ramírez, R; Corrieu, G

    2007-06-01

    The suitability of mid-infrared spectroscopy (MIR) to follow the evolution throughout ripening of specific physicochemical parameters in Camembert-type cheeses was evaluated. The infrared spectra were obtained directly from raw cheese samples deposited on an attenuated total reflectance crystal. Significant correlations were observed between physicochemical data, pH, acid-soluble nitrogen, nonprotein nitrogen, ammonia (NH4+), lactose, and lactic acid. Dry matter showed significant correlation only with lactose and nonprotein nitrogen. Principal components analysis factorial maps of physicochemical data showed a ripening evolution in 2 steps, from d 1 to d 7 and from d 8 to d 27, similar to that observed previously from infrared spectral data. Partial least squares regressions made it possible to obtain good prediction models for dry matter, acid-soluble nitrogen, nonprotein nitrogen, lactose, lactic acid, and NH4+ values from spectral data of raw cheese. The values of 3 statistical parameters (coefficient of determination, root mean square error of cross validation, and ratio prediction deviation) are satisfactory. Less precise models were obtained for pH.

  5. The effect of time-variant acoustical properties on orchestral instrument timbres

    NASA Astrophysics Data System (ADS)

    Hajda, John Michael

    1999-06-01

    The goal of this study was to investigate the timbre of orchestral instrument tones. Kendall (1986) showed that time-variant features are important to instrument categorization. But the relative salience of specific time-variant features to each other and to other acoustical parameters is not known. As part of a convergence strategy, a battery of experiments was conducted to assess the importance of global amplitude envelope, spectral frequencies, and spectral amplitudes. An omnibus identification experiment investigated the salience of global envelope partitions (attack, steady state, and decay). Valid partitioning models should identify important boundary conditions in the evolution of a signal; therefore, these models should be based on signal characteristics. With the use of such a model for sustained continuant tones, the steady-state segment was more salient than the attack. These findings contradicted previous research, which used questionable operational definitions for signal partitioning. For the next set of experiments, instrument tones were analyzed by phase vocoder, and stimuli were created by additive synthesis. Edits and combinations of edits controlled global amplitude envelope, spectral frequencies, and relative spectral amplitudes. Perceptual measurements were made with distance estimation, Verbal Attribute Magnitude Estimation, and similarity scaling. Results indicated that the primary acoustical attribute was the long-time-average spectral centroid. Spectral centroid is a measure of the center of energy distribution for spectral frequency components. Instruments with high values of spectral centroid (bowed strings) sound nasal while instruments with low spectral centroid (flute, clarinet) sound not nasal. The secondary acoustical attribute was spectral amplitude time variance. Predictably, time variance correlated highly with subject ratings of vibrato. The control of relative spectral amplitudes was more salient than the control of global envelope and spectral frequencies. Both amplitude phase relationships and time- variant spectral centroid were affected by the control of relative spectral amplitudes. Further experimentation is required to determine the salience of these features. The finding that instrumental vibrato is a manifestation of spectral amplitude time variance contradicts the common belief that vibrato is due to frequency (pitch) and intensity (loudness) modulation. This study suggests that vibrato is due to a periodic modulation in timbre. Future research should employ musical contexts.

  6. Pulse Shape Evolution, HER X-1

    NASA Technical Reports Server (NTRS)

    VanParadijs, Johannes A.

    1998-01-01

    This study focuses on the pulse shape evolution and spectral properties of the X-ray binary Her X-1 with regard to the well known 35-day cycle of Her X-1. A follow-up set of RXTE observations has been conducted in RXTE AO-2 phase and the two observation sets are being analyzed together. We presented results of early analysis of pulse shape evolution in "Proceedings of the Fourth Compton Symposium." More advanced analysis was presented at the HEAD meeting in November, 1997 in Estes Park, Colorado. A related study of the 35-day cycle using RXTE/ASM data, which laid out the overall picture within which the more detailed PCA observations could be placed has also been conducted. The results of this study have been published in The Astrophysical Journal, vol. 510, 974. A pair of papers on the detailed pulse evolution and the spectral/color evolution are currently being prepared for publication. Some of the significant results of this study have been a confirmation of the detailed pulse profile changes at the end of the Main High state in Her X-1 first observed by GINGA, observations of the pulse evolution in several Short High states which agree with the pulse evolution pattern predicted using a disk occultation model in the PhD Thesis of Scott 1993, observation of a systematic lengthening of the eclipse egress during the Main High state of the 35-day phase and observation of a new type of extended eclipse ingress during which pulsations cease to observed during the Short High state.

  7. The peculiar Type Ia supernova iPTF14atg: Chandrasekhar-mass explosion or violent merger?

    NASA Astrophysics Data System (ADS)

    Kromer, M.; Fremling, C.; Pakmor, R.; Taubenberger, S.; Amanullah, R.; Cenko, S. B.; Fransson, C.; Goobar, A.; Leloudas, G.; Taddia, F.; Röpke, F. K.; Seitenzahl, I. R.; Sim, S. A.; Sollerman, J.

    2016-07-01

    iPTF14atg, a subluminous peculiar Type Ia supernova (SN Ia) similar to SN 2002es, is the first SN Ia for which a strong UV flash was observed in the early-time light curves. This has been interpreted as evidence for a single-degenerate (SD) progenitor system, where such a signal is expected from interactions between the SN ejecta and the non-degenerate companion star. Here, we compare synthetic observables of multidimensional state-of-the-art explosion models for different progenitor scenarios to the light curves and spectra of iPTF14atg. From our models, we have difficulties explaining the spectral evolution of iPTF14atg within the SD progenitor channel. In contrast, we find that a violent merger of two carbon-oxygen white dwarfs with 0.9 and 0.76 M⊙, respectively, provides an excellent match to the spectral evolution of iPTF14atg from 10 d before to several weeks after maximum light. Our merger model does not naturally explain the initial UV flash of iPTF14atg. We discuss several possibilities like interactions of the SN ejecta with the circumstellar medium and surface radioactivity from an He-ignited merger that may be able to account for the early UV emission in violent merger models.

  8. The Spectral Signatures Of BH Versus NS Sources

    NASA Astrophysics Data System (ADS)

    Seifina, E.; Titarchuk, L.

    2011-09-01

    We present a comparative analysis of spectral properties of Black Hole (BH) and Neutron Star (NS) X-ray binaries during transition events observed with BeppoSAX and RXTE satellites. In particular, we investigated the behavior of Comptonized component of X-ray spectra when object evolves from the low to high spectral states. The basic models to fit X-ray spectra of these objects are upscattering models (so called BMC and COMPTB models) which are the first principal models. These models taking into account both dynamical and thermal Comptonization and allow to study separate contributions of thermal component and Comptonization component (bulk and thermal effect of Comptonization processes). Specifically, we tested quite a few observations of BHs (GRS 1915+105 and SS 433) and NSs (4U 1728-34 and GX 3+1) applying BMC and COMPTB models. In this way it was found a crucial difference in behavior of photon index vs mass accretion rate (mdot) for BHs and NSs. Namely, we revealed the stability of the photon index around typical value of Gamma=2 versus mdot (or electron temperature) during spectral evolution of NS sources. This stability effect was previously suggested for a number of other neutron binaries (see Farinelli and Titarchuk, 2011). This intrinsic property of NS is fundamentally different from that in BH binary sources for which the index demonstrates monotonic growth with mass accretion rate followed by its saturation at high values of mdot. These index-mass accretion rate behavior during X-ray spectral transition events can be considered as signatures, which allow to differ NS from BH.

  9. Hydrogen-deficient Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Pena, M.; Graefener, G.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2015-06-01

    A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient and are considered as the progenitors of H-deficient white dwarfs. Almost all of these H-deficient CSPNe show a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8 (spectral type [WN/WC]), IC 4663 and Abell 48 (spectral type [WN]). We performed spectral analyses for a number of Wolf-Rayet type central stars of different evolutionary stages with the help of our Potsdam Wolf-Rayet (PoWR) model code for expanding atmospheres to determine relevant stellar parameters. The results of our recent analyses will be presented in the context of stellar evolution and white dwarf formation. Especially the problems of a uniform evolutionary channel for [WC] stars as well as constraints to the formation of [WN] or [WN/WC] subtype stars will be addressed.

  10. Charge-Transfer Processes in Warm Dense Matter: Selective Spectral Filtering for Laser-Accelerated Ion Beams

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Barriga-Carrasco, M. D.; Morales, R.; Schnürer, M.

    2018-05-01

    We investigate, both experimentally and theoretically, how the spectral distribution of laser accelerated carbon ions can be filtered by charge exchange processes in a double foil target setup. Carbon ions at multiple charge states with an initially wide kinetic energy spectrum, from 0.1 to 18 MeV, were detected with a remarkably narrow spectral bandwidth after they had passed through an ultrathin and partially ionized foil. With our theoretical calculations, we demonstrate that this process is a consequence of the evolution of the carbon ion charge states in the second foil. We calculated the resulting spectral distribution separately for each ion species by solving the rate equations for electron loss and capture processes within a collisional radiative model. We determine how the efficiency of charge transfer processes can be manipulated by controlling the ionization degree of the transfer matter.

  11. Parallel evolution of image processing tools for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Brumby, Steven P.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Szymanski, John J.; Bloch, Jeffrey J.

    2000-11-01

    We describe the implementation and performance of a parallel, hybrid evolutionary-algorithm-based system, which optimizes image processing tools for feature-finding tasks in multi-spectral imagery (MSI) data sets. Our system uses an integrated spatio-spectral approach and is capable of combining suitably-registered data from different sensors. We investigate the speed-up obtained by parallelization of the evolutionary process via multiple processors (a workstation cluster) and develop a model for prediction of run-times for different numbers of processors. We demonstrate our system on Landsat Thematic Mapper MSI , covering the recent Cerro Grande fire at Los Alamos, NM, USA.

  12. The millimagnitude variability of the HgMn star φ Phe

    NASA Astrophysics Data System (ADS)

    Prvák, M.; Krtička, J.; Korhonen, H.

    2018-01-01

    The horizontally inhomogeneous chemical composition of the atmospheres of the chemically peculiar stars causes wavelength redistribution of the spectral energy in areas with increased abundance of heavier elements. Due to the rotation of the star, this usually leads to strictly periodic photometric variability in some spectral regions. We used abundance maps of the HgMn star φ Phe (HD 11753), obtained by means of the Doppler imaging, to model its photometric variability. Comparing the light curves derived from abundance maps obtained at different times, we also study how the time evolution of the surface spots affects this variability.

  13. Quantum walks with an anisotropic coin I: spectral theory

    NASA Astrophysics Data System (ADS)

    Richard, S.; Suzuki, A.; Tiedra de Aldecoa, R.

    2018-02-01

    We perform the spectral analysis of the evolution operator U of quantum walks with an anisotropic coin, which include one-defect models, two-phase quantum walks, and topological phase quantum walks as special cases. In particular, we determine the essential spectrum of U, we show the existence of locally U-smooth operators, we prove the discreteness of the eigenvalues of U outside the thresholds, and we prove the absence of singular continuous spectrum for U. Our analysis is based on new commutator methods for unitary operators in a two-Hilbert spaces setting, which are of independent interest.

  14. Characteristics of 3-D transport simulations of the stratosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D. A.; Siskind, D. E.; Turner, R. E.; Fisher, M.

    1992-01-01

    A 3D mechanistic, primitive-equation model of the stratosphere and mesosphere is coupled to an offline spectral transport model. The dynamics model is initialized with and forced by observations so that the coupled models may be used to study specific episodes. Results are compared with those obtained by transport online in the dynamics model. Although some differences are apparent, the results suggest that coupling of the models to a comprehensive photochemical package will provide a useful tool for studying the evolution of constituents in the middle atmosphere during specific episodes.

  15. Variations on a theme - the evolution of hydrocarbon solids. I. Compositional and spectral modelling - the eRCN and DG models

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    2012-04-01

    Context. The compositional properties of hydrogenated amorphous carbons are known to evolve in response to the local conditions. Aims: We present a model for low-temperature, amorphous hydrocarbon solids, based on the microphysical properties of random and defected networks of carbon and hydrogen atoms, that can be used to study and predict the evolution of their properties in the interstellar medium. Methods: We adopt an adaptable and prescriptive approach to model these materials, which is based on a random covalent network (RCN) model, extended here to a full compositional derivation (the eRCN model), and a defective graphite (DG) model for the hydrogen poorer materials where the eRCN model is no longer valid. Results: We provide simple expressions that enable the determination of the structural, infrared and spectral properties of amorphous hydrocarbon grains as a function of the hydrogen atomic fraction, XH. Structural annealing, resulting from hydrogen atom loss, results in a transition from H-rich, aliphatic-rich to H-poor, aromatic-rich materials. Conclusions: The model predicts changes in the optical properties of hydrogenated amorphous carbon dust in response to the likely UV photon-driven and/or thermal annealing processes resulting, principally, from the radiation field in the environment. We show how this dust component will evolve, compositionally and structurally in the interstellar medium in response to the local conditions. Appendices A and B are available in electronic form at http://www.aanda.org

  16. Time-dependent inhomogeneous jet models for BL Lac objects

    NASA Technical Reports Server (NTRS)

    Marlowe, A. T.; Urry, C. M.; George, I. M.

    1992-01-01

    Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.

  17. Time-dependent inhomogeneous jet models for BL Lac objects

    NASA Astrophysics Data System (ADS)

    Marlowe, A. T.; Urry, C. M.; George, I. M.

    1992-05-01

    Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.

  18. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.; Johnson, D.; Remer, L.

    2004-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and in the mid-latitude continent with different concentrations of CCN: a low "c1ean"concentration and a high "dirty" concentration. In addition, differences and similarities between bulk microphysics and spectral-bin microphysical schemes will be examined and discussed.

  19. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.; Johnson, D.; Remer, L.

    2004-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, r d a U production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembe1 (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and platelike), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and in the mid-latitude continent with different concentrations of CCN: a low "c1ean"concentration and a high "dirty" concentration. In addition, differences and similarities between bulk microphysics and spectral-bin microphysical schemes will be examined and discussed.

  20. Herschel and the Molecular Universe

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Helmich, F. P.

    2006-01-01

    Over the next decade, space-based missions will open up the universe to high spatial and spectral resolution studies at infrared and submillimeter wavelengths. This will allow us to study, in much greater detail, the composition and the origin and evolution of molecules in space. Moreover, molecular transitions in these spectral ranges provide a sensitive probe of the dynamics and the physical and chemical conditions in a wide range of objects at scales ranging from budding planetary systems to galactic and extragalactic sizes. Hence, these missions provide us with the tools to study key astrophysical and astrochemical processes involved in the formation and evolution of planets, stars, and galaxies. These new missions can be expected to lead to the detection of many thousands of new spectral features. Identification, analysis and interpretation of these features in terms of the physical and chemical characteristics of the astronomical sources will require detailed astronomical modeling tools supported by laboratory measurements and theoretical studies of chemical reactions and collisional excitation rates on species of astrophysical relevance. These data will have to be made easily accessible to the scientific community through web-based data archives. In this paper, we will review the Herschel mission and its expected impact on our understanding of the molecular universe.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamfir, Michael; Cumming, Andrew; Galloway, Duncan K., E-mail: mzamfir@physics.mcgill.ca, E-mail: cumming@physics.mcgill.ca, E-mail: Duncan.Galloway@monash.edu

    We investigate the constraints on neutron star mass and radius in GS 1826-24 from models of light curves and spectral evolution of type I X-ray bursts. This source shows remarkable agreement with theoretical calculations of burst energies, recurrence times, and light curves. We first exploit this agreement to set the overall luminosity scale of the observed bursts. When combined with a measured blackbody normalization, this leads to a distance- and anisotropy-independent measurement of the ratio between the redshift 1 + z and color-correction factor f{sub c}. We find 1 + z = 1.19-1.28 for f{sub c} = 1.4-1.5. We thenmore » compare the evolution of the blackbody normalization with flux in the cooling tail of bursts with predictions from spectral models of Suleimanov et al. The observations are well described by the models at luminosities greater than about one-third of the peak luminosity, with deviations emerging at luminosities below that. We show that this comparison leads to distance-independent upper limits on R{sub {infinity}} and neutron star mass of R{sub {infinity}} {approx}< 9.0-13.2 km and M < 1.2-1.7 M{sub Sun }, respectively, for solar abundance of hydrogen at the photosphere and a range of metallicity and surface gravity. The radius limits are low in comparison to previous measurements. This may be indicative of a subsolar hydrogen fraction in the GS 1826-24 photosphere, or of larger color corrections than that predicted by spectral models. Our analysis also gives an upper limit on the distance to GS 1826-24 of d < 4.0-5.5 kpc {xi}{sup -1/2}{sub b}, where {xi}{sub b} is the degree of anisotropy of the burst emission.« less

  2. Collision Induced Velocity Changes from Molecular Dynamic Simulations. Application to the Spectral Shape of the Q(1) Raman Lines of H{_2}/H{_2}

    NASA Astrophysics Data System (ADS)

    Tran, H.; Hartmann, J. M.

    2011-06-01

    Collision induced velocity changes for pure H{_2} have been computed from classical dynamic simulations. The results have been compared with the Keilson-Storer model from four different points of view. The first involves various autocorrelation functions associated with the velocity. The second and third give more detailed information, and are time evolutions of some conditional probabilities for changes of the velocity modulus and orientation and the collision kernels themselves. The fourth considers the evolutions, with density, of the half widths of the Q(1) lines of the isotropic Raman (1-0) fundamental band and of the (2-0) overtone quadrupole band. These spectroscopic data enable an indirect test of the models since velocity changes translate into line-shape modifications through the speed dependence of collisional parameters and the Dicke narrowing of the Doppler contribution to the profile. The results indicate that, while the KS approach gives a poor description of detailed velocity-to-velocty changes, it leads to accurate results for the correlation functions and spectral shapes, quantities related to large averages over the velocity. It is also shown that the use of collision kernels directly derived from MDS lead to an almost perfect prediction of all considered quantities (correlation functions, conditional probabilities, and spectral shapes). Finally, the results stress the need for very accurate calculations of line-broadening and -shifting coefficients from the intermolecular potential to obviate the need for experimental data and permit fully meaningful tests of the models. H. Tran, J.M. Hartmann J. Chem. Phys. 130, 094301, 2009.

  3. Stability properties of solitary waves for fractional KdV and BBM equations

    NASA Astrophysics Data System (ADS)

    Angulo Pava, Jaime

    2018-03-01

    This paper sheds new light on the stability properties of solitary wave solutions associated with Korteweg-de Vries-type models when the dispersion is very low. Using a compact, analytic approach and asymptotic perturbation theory, we establish sufficient conditions for the existence of exponentially growing solutions to the linearized problem and so a criterium of spectral instability of solitary waves is obtained for both models. Moreover, the nonlinear stability and spectral instability of the ground state solutions for both models is obtained for some specific regimen of parameters. Via a Lyapunov strategy and a variational analysis, we obtain the stability of the blow-up of solitary waves for the critical fractional KdV equation. The arguments presented in this investigation show promise for use in the study of the instability of traveling wave solutions of other nonlinear evolution equations.

  4. The In-flight Spectroscopic Performance of the Swift XRT CCD Camera During 2006-2007

    NASA Technical Reports Server (NTRS)

    Godet, O.; Beardmore, A.P.; Abbey, A.F.; Osborne, J.P.; Page, K.L.; Evans, P.; Starling, R.; Wells, A.A.; Angelini, L.; Burrows, D.N.; hide

    2007-01-01

    The Swift X-ray Telescope focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 135 eV FWHM at 5.9 keV as measured before launch. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant in-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Comparison of observed spectra with models folded through the instrument response produces negative residuals around and below the Oxygen edge. We discuss several possible causes for such residuals. Traps created by proton damage on the CCD increase the charge transfer inefficiency (CTI) over time. We describe the evolution of the CTI since the launch and its effect on the CCD spectral resolution and the gain.

  5. Temporal studies of black hole X-ray transients during outburst decay

    NASA Astrophysics Data System (ADS)

    Kalemci, Emrah

    Galactic black holes (GBH) are a class of astrophysical sources with X-ray emission that is powered by accretion from a companion star. An important goal of GBH research is to understand the accretion structure and the nature of the variability of these systems. The GBHs sometimes show significant changes in the X-ray emission properties, and these changes are called state transitions. The transitions are believed to be caused by variation of the mass accretion rate and changes in accretion geometry. Thus, their study provides valuable information on the nature of the accretion structure. In this thesis work, I present results from studying the spectral and temporal evolution of all GBH transients that have been observed with NASA's Rossi X-ray Timing Explorer during outburst decay. I explore the physical conditions before, during and after the state transition, characterize the quasi-periodic oscillations (QPO) and continuum of power spectral density (PSD) in different energy bands, and study the correlations between spectral and temporal fit parameters. I also analyze the evolution of the cross- spectral parameters during and after the transition. I show that the appearance of the broad band variability is coincident with an increase of power-law flux. The evolution of the characteristic frequencies and the spectral parameters after the transition are consistent with retreating of the inner accretion disk. The energy dependent PSD analysis shows that the level of variability increases with energy when there is significant soft flux from the optically thick accretion disk. The variability level also increases with energy if the absorption column density to the source is high. This may be a result of small angle scatterings of lower energy X-ray photons with the ISM dust around these sources. I find global correlations between the spectral index and three temporal fit parameters: the QPO frequency, the overall level of variability and the integrated time lag. The relation between the spectral index and the time lags are interpreted within the context of the average number of Compton scatterings and the temperature of the scattering medium. During the transitions, the average lag is higher and average coherence is lower. I discuss whether a hybrid accretion model, for which the hot electron corona is the base of an optically thin outflow or a jet, can explain the physical properties during the transition.

  6. Impact of surrounding environment evolution on long-term gas flux measurements in a temperate mixed forest

    NASA Astrophysics Data System (ADS)

    Hurdebise, Quentin; Rixen, Toma; De Ligne, Anne; Vincke, Caroline; Heinesch, Bernard; Aubinet, Marc

    2016-04-01

    With the development of eddy covariance networks like Fluxnet, ICOS or NEON, long-term data series of carbon dioxide, water vapor and other gas exchanges between terrestrial ecosystems and atmosphere will become more and more numerous. However, long-term analyses of such exchanges require a good understanding of measurement conditions during the investigated period. Independently of climate drivers, measurements may indeed be influenced by measurement conditions themselves subjected to long-term variability due to vegetation growth or set-up changes. The present research refers to the Vielsalm Terrestrial Observatory (VTO) where fluxes of momentum, carbon dioxide, latent and sensible heat have been continuously measured by eddy covariance during twenty years. VTO is an ICOS site installed in a mixed forest (beech, silver fir, Douglas fir, Norway spruce) in the Belgian Ardennes. A multidisciplinary approach was developed in order to investigate the spatial and temporal evolution of several site characteristics: -displacement height (d) and relative measurement height (z-d) were determined using a spectral approach that compared observed and theoretical cospectra; -turbulence statistics were analyzed in the context of Monin-Obukhov similarity theory; -tree height during the measurement period was obtained by combining tree height inventories, a LIDAR survey and tree growth models; -measurement footprint was determined by using a footprint model. A good agreement was found between the three first approaches. Results show notably that z-d was subjected to both temporal and spatial evolution. Temporal evolution resulted from continuous tree growth as well as from a tower raise, achieved in 2009. Spatial evolution, due to canopy heterogeneity, was also observed. The impacts of these changes on measurements are investigated. In particular, it was shown that they affect measurement footprint, flux spectral corrections and flux quality. All these effects must be taken into consideration in order to disentangle long-term flux evolutions due to climate or phenology from changes resulting from measurement set-up changes.

  7. Coherent photoluminescence excitation spectroscopy of semicrystalline polymeric semiconductors

    NASA Astrophysics Data System (ADS)

    Silva, Carlos; Grégoire, Pascal; Thouin, Félix

    In polymeric semiconductors, the competition between through-bond (intrachain) and through-space (interchain) electronic coupling determines two-dimensional spatial coherence of excitons. The balance of intra- and interchain excitonic coupling depends very sensitively on solid-state microstructure of the polymer film (polycrystalline, semicrystalline with amorphous domains, etc.). Regioregular poly(3-hexylthiophene) has emerged as a model material because its photoluminescence (PL) spectral lineshape reveals intricate information on the magnitude of excitonic coupling, the extent of energetic disorder, and on the extent to which the disordered energy landscape is correlated. I discuss implementation of coherent two-dimensional electronic spectroscopy. We identify cross peaks between 0-0 and 0-1 excitation peaks, and we measure their time evolution, which we interpret within the context of a hybrid HJ aggregate model. By measurement of the homogeneous linewidth in diverse polymer microstructures, we address the nature of optical transitions within such hynbrid aggregate model. These depend strongly on sample processing, and I discuss the relationship between microstructure, steady-state absorption and PL spectral lineshape, and 2D coherent PL excitation spectral lineshapes.

  8. Clues to Coral Reef Ecosystem Health: Spectral Analysis Coupled with Radiative Transfer Modeling

    NASA Astrophysics Data System (ADS)

    Guild, L.; Ganapol, B.; Kramer, P.; Armstrong, R.; Gleason, A.; Torres, J.; Johnson, L.; Garfield, N.

    2003-12-01

    Coral reefs are among the world's most productive and biologically rich ecosystems and are some of the oldest ecosystems on Earth. Coralline structures protect coastlines from storms, maintain high diversity of marine life, and provide nurseries for marine species. Coral reefs play a role in carbon cycling through high rates of organic carbon metabolism and calcification. Coral reefs provide fisheries habitat that are the sole protein source for humans on remote islands. Reefs respond immediately to environmental change and therefore are considered "canaries" of the oceans. However, the world's reefs are in peril: they have shrunk 10-50% from their historical extent due to climate change and anthropogenic activity. An important contribution to coral reef research is improved spectral distinction of reef species' health where anthropogenic activity and climate change impacts are high. Relatively little is known concerning the spectral properties of coral or how coral structures reflect and transmit light. New insights into optical processes of corals under stressed conditions can lead to improved interpretation of airborne and satellite data and forecasting of immediate or long-term impacts of events such as bleaching and disease in coral. We are investigating the spatial and spectral resolution required to detect remotely changes in reef health by coupling spectral analysis of in situ spectra and airborne spectral data with a new radiative transfer model called CorMOD2. Challenges include light attenuation by the water column, atmospheric scattering, and scattering caused by the coral themselves that confound the spectral signal. In CorMOD2, input coral reflectance measurements produce modeled absorption through an inversion at each visible wavelength. The first model development phase of CorMOD2 imposes a scattering baseline that is constant regardless of coral condition, and further specifies that coral is optically thick. Evolution of CorMOD2 is towards a coral-specific radiative transfer model that includes coral biochemical concentrations, specific absorptivities of coral components, and transmission measurements from coral surfaces.

  9. The Eagle Nebula: a spectral template for star forming regions

    NASA Astrophysics Data System (ADS)

    Flagey, Nicolas; Boulanger, Francois; Carey, Sean; Compiegne, Mathieu; Dwek, Eli; Habart, Emilie; Indebetouw, Remy; Montmerle, Thierry; Noriega-Crespo, Alberto

    2008-03-01

    IRAC and MIPS have revealed spectacular images of massive star forming regions in the Galaxy. These vivid illustrations of the interaction between the stars, through their winds and radiation, and their environment, made of gas and dust, still needs to be explained. The large scale picture of layered shells of gas components, is affected by the small scale interaction of stars with the clumpy medium that surrounds them. To understand spatial variations of physical conditions and dust properties on small scales, spectroscopic imaging observations are required on a nearby object. The iconic Eagle Nebula (M16) is one of the nearest and most observed star forming region of our Galaxy and as such, is a well suited template to obtain this missing data set. We thus propose a complete spectral map of the Eagle Nebula (M16) with the IRS/Long Low module (15-38 microns) and MIPS/SED mode (55-95 microns). Analysis of the dust emission, spectral features and continuum, and of the H2 and fine-structure gas lines within our models will provide us with constraints on the physical conditions (gas ionization state, pressure, radiation field) and dust properties (temperature, size distribution) at each position within the nebula. Only such a spatially and spectrally complete map will allow us to characterize small scale structure and dust evolution within the global context and understand the impact of small scale structure on the evolution of dusty star forming regions. This project takes advantage of the unique ability of IRS at obtaining sensitive spectral maps covering large areas.

  10. Emergent spectral properties of river network topology: an optimal channel network approach.

    PubMed

    Abed-Elmdoust, Armaghan; Singh, Arvind; Yang, Zong-Liang

    2017-09-13

    Characterization of river drainage networks has been a subject of research for many years. However, most previous studies have been limited to quantities which are loosely connected to the topological properties of these networks. In this work, through a graph-theoretic formulation of drainage river networks, we investigate the eigenvalue spectra of their adjacency matrix. First, we introduce a graph theory model for river networks and explore the properties of the network through its adjacency matrix. Next, we show that the eigenvalue spectra of such complex networks follow distinct patterns and exhibit striking features including a spectral gap in which no eigenvalue exists as well as a finite number of zero eigenvalues. We show that such spectral features are closely related to the branching topology of the associated river networks. In this regard, we find an empirical relation for the spectral gap and nullity in terms of the energy dissipation exponent of the drainage networks. In addition, the eigenvalue distribution is found to follow a finite-width probability density function with certain skewness which is related to the drainage pattern. Our results are based on optimal channel network simulations and validated through examples obtained from physical experiments on landscape evolution. These results suggest the potential of the spectral graph techniques in characterizing and modeling river networks.

  11. Observational properties of massive black hole binary progenitors

    NASA Astrophysics Data System (ADS)

    Hainich, R.; Oskinova, L. M.; Shenar, T.; Marchant, P.; Eldridge, J. J.; Sander, A. A. C.; Hamann, W.-R.; Langer, N.; Todt, H.

    2018-01-01

    Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.

  12. Single-shot spectroscopy of broadband Yb fiber laser

    NASA Astrophysics Data System (ADS)

    Suzuki, Masayuki; Yoneya, Shin; Kuroda, Hiroto

    2017-02-01

    We have experimentally reported on a real-time single-shot spectroscopy of a broadband Yb-doped fiber (YDF) laser which based on a nonlinear polarization evolution by using a time-stretched dispersive Fourier transformation technique. We have measured an 8000 consecutive single-shot spectra of mode locking and noise-like pulse (NLP), because our developed broadband YDF oscillator can individually operate the mode locking and NLP by controlling a pump LD power and angle of waveplates. A shot-to-shot spectral fluctuation was observed in NLP. For the investigation of pulse formation dynamics, we have measured the spectral evolution in an initial fluctuations of mode locked broadband YDF laser at an intracavity dispersion of 1500 and 6200 fs2 for the first time. In both case, a build-up time between cw and steady-state mode locking was estimated to be 50 us, the dynamics of spectral evolution between cw and mode locking, however, was completely different. A shot-to-shot strong spectral fluctuation, as can be seen in NLP spectra, was observed in the initial timescale of 20 us at the intracavity dispersion of 1500 fs2. These new findings would impact on understanding the birth of the broadband spectral formation in fiber laser oscillator.

  13. Blue Stragglers in Clusters and Integrated Spectral Properties of Stellar Populations

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Deng, Licai

    Blue straggler stars are the most prominent bright objects in the colour-magnitude diagram of a star cluster that challenges the theory of stellar evolution. Star clusters are the closest counterparts of the theoretical concept of simple stellar populations (SSPs) in the Universe. SSPs are widely used as the basic building blocks to interpret stellar contents in galaxies. The concept of an SSP is a group of coeval stars which follows a given distribution in mass, and has the same chemical property and age. In practice, SSPs are more conveniently made by the latest stellar evolutionary models of single stars. In reality, however, stars can be more complicated than just single either at birth time or during the course of evolution in a typical environment. Observations of star clusters show that there are always exotic objects which do not follow the predictions of standard theory of stellar evolution. Blue straggler stars (BSSs), as discussed intensively in this book both observationally and theoretically, are very important in our context when considering the integrated spectral properties of a cluster, or a simple stellar population. In this chapter, we are going to describe how important the contribution of BSSs is to the total light of a cluster.

  14. Lunar and Planetary Science XXXVI, Part 17

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The following topics were discussed: A Model for the Formation of Paterae on Io; LIBS-based Detection of As, Br, C, Cl, P, and S in the VUV Spectral Region in a Mars Atmosphere; Mass Independent Sulfur in Achondrites: Possible Evidence of Photochemistry in the Solar Nebula; Grain Size-dependent Viscosity and Oceans in Icy Satellites; Claritas Paleolake Studied from the MEX HRSC Data; Mars Express HRSC Colors of White Rock, Arabia, Mars; Lava and Flows of the Arcadia Region of Mars; Isotopic Composition of Lunar Soils and the Early Differentiation of the Moon; Trace Element Analysis of Lunar Soils by ICP-MS; Highly Siderophile Elements and Osmium Isotope Systematics in Ureilites: Are the Carbonaceous Veins Primary Components?; Evaporative Evolution of Martian Brines Based on Halogens in Nakhlites and MER Samples; Io from High-Resolution Galileo PPR Data Taken Simultaneously with SSI or NIMS Observations; Loki, Io: Groundbased Observations and a Model for Periodic Overturn; Deconstructing a Few Myths in the Interpretation of Satellite-Altitude Crustal Magnetic Field: Examples from Mars Global Surveyor; Semi-Autonomous Rover Operations: A Mars Technology Program Demonstration; Rotational Studies of Asteroids with Small Telescopes; Mineralogy and Temperature-induced Spectral Investigations of A-type Asteroids 246 Asporina and 446 Aeternitas; and Thermal History Calculations Versus Full Convection Models: Application to the Thermal Evolution of Mercury. Recent Solar-Proton Fluxes

  15. Supernova Remnants As Laboratories For Determining The Properties Of Ejecta Dust And The Processing Of Dust Grains In Shocks

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Temim, Tea

    Recent infrared satellites, such as the Spitzer, Herschel, and WISE, have obtained a wealth of spectral and broadband data on the infrared (IR) emission from dust in supernova remnants (SNRs). Supernovae (SNe) are important producers of newly condensed dust during the early free-expansion phase of their evolution, and the dominant destroyers of dust during the subsequent remnant phase of their evolution. The infrared observations hold the key for determining their role in the origin and evolution of dust in the universe. We propose to model the composition, abundance, and size distribution of the dust in select Galactic and Magellanic Cloud remnants. As explained in detail below, the remnants were selected for the availability of IR and X-ray observations. All selected remnants have Spitzer IRS spectral data in the 5-35 μm regions which allow us to determine the effect of grain processing in the shock. Some have spectral maps that allow the distinction between the IR emission from SN-condensed and swept up circumstellar and interstellar dust. All remnants have also been covered by Spitzer, Herschel, and WISE imaging, and have existing X-ray Chandra and/or XMM observations. The dust in some remnants is radiatively-heated by a pulsar wind nebula, and in others collisionally- heated by shocked X-ray or line emitting gas. We will use physical models to calculate the radiative and collisional heating of SNR dust, the equilibrium or fluctuating dust temperatures, and the resulting IR emission for various dust compositions and size distributions. Specific examples of Cas A, SN1987A, the Crab Nebula, and Puppis A, are discussed in detail to illustrate our modeling approach. Our study will be the first comprehensive and physical analysis of a large sample of SNRs in different evolutionary states and different astrophysical environments. They will cover a wide range of interactions between the dust grains and their surroundings, including the radioactively- powered and/or shocked SN ejecta, hard X-rays and EUV radiation fields, and shocked circumstel- lar/interstellar gas. Our study will shed light on the evolution of dust grains from their explosive formation sites, through their violent injection into the ISM, and ultimate demise or survival as they travel through a network of interstellar shock waves. It will constitute a major advance in our understanding of the origin and evolution of dust in the Milky Way, in galaxies in general, and especially in the early universe.

  16. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.

    2004-01-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles (i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail). Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, in the sub-tropics (Florida) and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low 'clean' concentration and a high 'dirty' concentration.

  17. Consistency with synchrotron emission in the bright GRB 160625B observed by Fermi

    NASA Astrophysics Data System (ADS)

    Ravasio, M. E.; Oganesyan, G.; Ghirlanda, G.; Nava, L.; Ghisellini, G.; Pescalli, A.; Celotti, A.

    2018-05-01

    We present time-resolved spectral analysis of prompt emission from GRB 160625B, one of the brightest bursts ever detected by Fermi in its nine years of operations. Standard empirical functions fail to provide an acceptable fit to the GBM spectral data, which instead require the addition of a low-energy break to the fitting function. We introduce a new fitting function, called 2SBPL, consisting of three smoothly connected power laws. Fitting this model to the data, the goodness of the fits significantly improves and the spectral parameters are well constrained. We also test a spectral model that combines non-thermal and thermal (black body) components, but find that the 2SBPL model is systematically favoured. The spectral evolution shows that the spectral break is located around Ebreak 100 keV, while the usual νFν peak energy feature Epeak evolves in the 0.5-6 MeV energy range. The slopes below and above Ebreak are consistent with the values -0.67 and -1.5, respectively, expected from synchrotron emission produced by a relativistic electron population with a low-energy cut-off. If Ebreak is interpreted as the synchrotron cooling frequency, the implied magnetic field in the emitting region is 10 Gauss, i.e. orders of magnitudes smaller than the value expected for a dissipation region located at 1013-14 cm from the central engine. The low ratio between Epeak and Ebreak implies that the radiative cooling is incomplete, contrary to what is expected in strongly magnetized and compact emitting regions.

  18. Evolution and Activity in the Solar Corona: A Comparison of Coronal and Chromospheric Structures Seen in Soft X-Rays, White Light and H-Alpha Emission

    NASA Technical Reports Server (NTRS)

    Bagenal, Fran

    2001-01-01

    The work completed under this project, 'Evolution and Activity in the Solar Corona: A Comparison of Coronal and Chromospheric Structures Seen in Soft X-Rays, White Light and H-Alpha Emission', includes the following presentations: (1) Analysis of H-alpha Observations of High-altitude Coronal Condensations; (2) Multi-spectral Imaging of Coronal Activity; (3) Measurement and Modeling of Soft X-ray Loop Arcades; (4) A Study of the Origin and Dynamics of CMEs; and various poster presentations and thesis dissertations.

  19. Evolution of the solar radiative forcing on climate during the Holocene

    NASA Astrophysics Data System (ADS)

    Vieira, Luis Eduardo; Solanki, Sami K.; Krivova, Natalie

    The main external heating source of the Earth's coupled atmosphere-ocean system is the solar radiative energy input. The variability of this energy source produces corresponding changes on the coupled system. However, there is still significant uncertainty on the level of changes. One way to distinguish the influence of the Sun on the climate from other sources is to search for its influence in the pre-industrial period, when the influence of human activities on the atmosphere composition and Earth's surface properties can be neglected. Such studies require long time series of solar and geophysical parameters, ideally covering the whole Holocene. Here, we compute the total and spectral irradiance for the Holocene employing the reconstructions of the open flux and sunspot number obtained from the cosmogenic isotope 14C. The model employed in this study is identical to the spectral and total irradiance reconstruction (SATIRE) models employed to study these parameters on time scales from days to centuries, but adapted to work with decadal averaged data. The model is tested by comparing to the total and spectral solar irradiance reconstructions from the sunspot number for the last 4 centuries. We also discuss limits and uncertainties of the model.

  20. Testing Solar Flare Models with BATSE

    NASA Astrophysics Data System (ADS)

    Zarro, Dominic M.

    1995-07-01

    We propose to use high-sensitivity Burst and Transient Source Experiment (BATSE) hard X-ray observations to test the thick-target and electric field acceleration models of solar flares. We will compare the predictions made by these models with hard X-ray spectral observations obtained with BATSE and simultaneous soft X-ray Ca XIX emission observed with the Yohkoh Bragg Crystal Spectrometer (BCS). The increased sensitivities of the BATSE and BCS (relative to previous detectors) permits a renewed study of the relationship between heating and dynamical motions during the crucial rise phase of flares. With these observations, we will: (1) investigate the ability of the thick-target model to explain the temporal evolution of hard X-ray emission relative to the soft X-ray blueshift during the earliest stages of the impulsive phase; and (2) search for evidence of electric-field acceleration as implied by temporal correlations between hard X-ray spectral breaks and the Ca XIX blueshift. The proposed study will utilize hard X-ray lightcurve and spectral measurements in the 10-100 keV energy range obtained with the BATSE Large Area Detectors (LAD). The DISCLA and CONT data will be the primary data products used in this analysis.

  1. X-ray Modeling of Classical Novae

    NASA Astrophysics Data System (ADS)

    Nemeth, Peter

    2010-01-01

    It has been observed and theoretically supported in the last decade that the peak of the spectral energy distribution of classical novae gradually shifts to higher energies at constant bolometric luminosity after a nova event. For this reason, comprehensive evolutionary studies require spectral analysis in multiple spectral bands. After a nova explosion, the white dwarf can maintain stable surface hydrogen burning, the duration of which strongly correlates with the white dwarf mass. During this stage the peak of the luminosity is in the soft X-ray band (15 - 60 Angstroms). By extending the modeling range of TLUSTY/SYNSPEC, I analyse the luminosity and abundance evolution of classical novae. Model atoms required for this work were built using atomic data from NIST/ASD and TOPBASE. The accurate but incomplete set of energy levels and radiative transitions in NIST were completed with calculated data from TOPBASE. Synthetic spectra were then compared to observed data to derive stellar parameters. I show the capabilities and validity of this project on the example of V4743 Sgr. This nova was observed with both Chandra and XMM-Newton observatories and has already been modeled by several scientific groups (PHOENIX, TMAP).

  2. Transition between inverse and direct energy cascades in multiscale optical turbulence.

    PubMed

    Malkin, V M; Fisch, N J

    2018-03-01

    Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.

  3. Closed coronal structures. V - Gasdynamic models of flaring loops and comparison with SMM observations

    NASA Technical Reports Server (NTRS)

    Peres, G.; Serio, S.; Vaiana, G.; Acton, L.; Leibacher, J.; Rosner, R.; Pallavicini, R.

    1983-01-01

    A time-dependent one-dimensional code incorporating energy, momentum and mass conservation equations, and taking the entire solar atmospheric structure into account, is used to investigate the hydrodynamic response of confined magnetic structures to strong heating perturbations. Model calculation results are compared with flare observations which include the light curves of spectral lines formed over a wide range of coronal flare temperatures, as well as determinations of Doppler shifts for the high temperature plasma. It is shown that the numerical simulation predictions are in good overall agreement with the observed flare coronal plasma evolution, correctly reproducing the temporal profile of X-ray spectral lines and their relative intensities. The predicted upflow velocities support the interpretation of the blueshifts as due to evaporation of chromospheric material.

  4. Transition between inverse and direct energy cascades in multiscale optical turbulence

    NASA Astrophysics Data System (ADS)

    Malkin, V. M.; Fisch, N. J.

    2018-03-01

    Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.

  5. A theoretical and observational study of the Red Giant Branch phase transition in Magellanic Cloud clusters - A progress report

    NASA Technical Reports Server (NTRS)

    Buonanno, R.; Corsi, C. E.; Fusi Pecci, F.; Greggio, L.; Renzini, A.; Sweigart, A. V.

    1986-01-01

    Preliminary results are reported for an investigation comparing theoretical models of the sudden appearance of an extended RGB (and its effects on the spectral energy distributions of stellar populations) with data from ESO CCD observations of clusters in the LMC and SMC. Isochrones for the entire RGB are being constructed on the basis of 100 new evolutionary sequences (calculated using the evolution code of Sweigart and Gross, 1976 and 1978) to permit determination of synthetic colors and spectral energy distributions. The observations so far indicate a main sequence about 0.1 mag redder than that predicted by the present models or by the isochrones of VandenBerg and Bell (1985), and fail to show a B-V color difference at the RGB phase transition.

  6. Numerical calculations of spectral turnover and synchrotron self-absorption in CSS and GPS radio sources

    NASA Astrophysics Data System (ADS)

    Jeyakumar, S.

    2016-06-01

    The dependence of the turnover frequency on the linear size is presented for a sample of Giga-hertz Peaked Spectrum and Compact Steep Spectrum radio sources derived from complete samples. The dependence of the luminosity of the emission at the peak frequency with the linear size and the peak frequency is also presented for the galaxies in the sample. The luminosity of the smaller sources evolve strongly with the linear size. Optical depth effects have been included to the 3D model for the radio source of Kaiser to study the spectral turnover. Using this model, the observed trend can be explained by synchrotron self-absorption. The observed trend in the peak-frequency-linear-size plane is not affected by the luminosity evolution of the sources.

  7. Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion

    NASA Technical Reports Server (NTRS)

    Kenyon, S. J.; Hartmann, L.

    1987-01-01

    The Adams et al. (1987) conclusion that much of the IR excess emission in the spectral energy distribution of T Tauri stars arises from reprocessing of stellar radiation by a dusty circumstellar disk is presently supported by analyses conducted in light of various models of these stars' spectra. A low mass reprocessing disk can, however, produce these spectra as well as a massive accretion disk. The detection of possible boundary layer radiation in the optical and near-UV regions poses the strongest limits on accretion rates. Disk accretion in the T Tauri phase does not significantly modify stellar evolution.

  8. CCS Observations of the Protostellar Envelope of B335

    NASA Technical Reports Server (NTRS)

    Velusamy, T.; Kuiper, T. B. H.; Langer, W. D.

    1995-01-01

    Knowledge of the density, velocity and chemical profiles around protostars is of fundamental importance for testing dynamical models of protostar evolution and understanding the nature of the material falling onto circumstellar disks. Presented are single dish and interferometric spectral line observations of CCS towards the core of B335, a classic example of a young, low mass stellar object.

  9. Galactic Black Holes in the Hard State: A Multi-Wavelength View of Accretion and Ejection

    NASA Technical Reports Server (NTRS)

    Kalemci; Tomsick, John A.; Migliari; Corbel; Markoff

    2010-01-01

    The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.

  10. Evolution of CMB spectral distortion anisotropies and tests of primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Chluba, Jens; Dimastrogiovanni, Emanuela; Amin, Mustafa A.; Kamionkowski, Marc

    2017-04-01

    Anisotropies in distortions to the frequency spectrum of the cosmic microwave background (CMB) can be created through spatially varying heating processes in the early Universe. For instance, the dissipation of small-scale acoustic modes does create distortion anisotropies, in particular for non-Gaussian primordial perturbations. In this work, we derive approximations that allow describing the associated distortion field. We provide a systematic formulation of the problem using Fourier-space window functions, clarifying and generalizing previous approximations. Our expressions highlight the fact that the amplitudes of the spectral-distortion fluctuations induced by non-Gaussianity depend also on the homogeneous value of those distortions. Absolute measurements are thus required to obtain model-independent distortion constraints on primordial non-Gaussianity. We also include a simple description for the evolution of distortions through photon diffusion, showing that these corrections can usually be neglected. Our formulation provides a systematic framework for computing higher order correlation functions of distortions with CMB temperature anisotropies and can be extended to describe correlations with polarization anisotropies.

  11. Spectral Dependence of Stratified Electrothermal Instability in Tamped Aluminum 6061 with Current in a Skin Layer

    NASA Astrophysics Data System (ADS)

    Bauer, Bruno; Hutchinson, Trevor; Awe, Thomas

    2017-10-01

    The stratified electrothermal instability (ETI) was recently observed on the surface of thick aluminum 6061 pulsed with rapidly rising lineal current density (3 ×1015 A m-1s-1) for 70 ns. A transparent 70- μm-thick Parylene-N coating tamped the aluminum expansion and suppressed surface plasma. The evolution of the aluminum surface emission pattern was recorded with time-resolved microscopy (3- μm resolution). The images were converted into a series of blackbody surface-temperature maps. Analysis of these temperature maps provides information on the evolution of temperature fluctuations, as a function of axial wavelength and azimuthal width. Perturbations with axial wavelength longer than 20 μm grow, while those with axial wavelength shorter than 10 μm decay. Comparing the spectral dependence of growth/decay rates with MHD simulations could test the modeling of ETI positive feedback and of damping by thermal conduction. Work supported by Sandia National Laboratories LDRD program, PO 1742766.

  12. Modeling of spectral signatures of littoral waters

    NASA Astrophysics Data System (ADS)

    Haltrin, Vladimir I.

    1997-12-01

    The spectral values of remotely obtained radiance reflectance coefficient (RRC) are compared with the values of RRC computed from inherent optical properties measured during the shipborne experiment near the West Florida coast. The model calculations are based on the algorithm developed at the Naval Research Laboratory at Stennis Space Center and presented here. The algorithm is based on the radiation transfer theory and uses regression relationships derived from experimental data. Overall comparison of derived and measured RRCs shows that this algorithm is suitable for processing ground truth data for the purposes of remote data calibration. The second part of this work consists of the evaluation of the predictive visibility model (PVM). The simulated three-dimensional values of optical properties are compared with the measured ones. Preliminary results of comparison are encouraging and show that the PVM can qualitatively predict the evolution of inherent optical properties in littoral waters.

  13. Solar Spectral Irradiance at 782 nm as Measured by the SES Sensor Onboard Picard

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Hauchecorne, A.; Irbah, A.; Cessateur, G.; Bekki, S.; Damé, L.; Bolsée, D.; Pereira, N.

    2016-04-01

    Picard is a satellite dedicated to the simultaneous measurement of the total and solar spectral irradiance, the solar diameter, the solar shape, and to the Sun's interior through the methods of helioseismology. The satellite was launched on June 15, 2010, and pursued its data acquisitions until March 2014. A Sun Ecartometry Sensor (SES) was developed to provide the stringent pointing requirements of the satellite. The SES sensor produced an image of the Sun at 782 ± 2.5 nm. From the SES data, we obtained a new time series of the solar spectral irradiance at 782 nm from 2010 to 2014. During this period of Solar Cycle 24, the amplitude of the changes has been of the order of ± 0.08 %, corresponding to a range of about 2× 10^{-3} W m^{-2} nm^{-1}. SES observations provided a qualitatively consistent evolution of the solar spectral irradiance variability at 782 nm. SES data show similar amplitude variations with the semi-empirical model Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S), whereas the Spectral Irradiance Monitor instrument (SIM) onboard the SOlar Radiation and Climate Experiment satellite (SORCE) highlights higher amplitudes.

  14. GRAMS: A Grid of RSG and AGB Models

    NASA Astrophysics Data System (ADS)

    Srinivasan, S.; Sargent, B. A.; Meixner, M.

    2011-09-01

    We present a grid of oxygen- and carbon-rich circumstellar dust radiative transfer models for asymptotic giant branch (AGB) and red supergiant (RSG) stars. The grid samples a large region of the relevant parameter space, and it allows for a quick calculation of bolometric fluxes and dust mass-loss rates from multi-wavelength photometry. This method of fitting observed spectral energy distributions (SEDs) is preferred over detailed radiative transfer calculations, especially for large data sets such as the SAGE (Surveying the Agents of a Galaxy's Evolution) survey of the Magellanic Clouds. The mass-loss rates calculated for SAGE data will allow us to quantify the dust returned to the interstellar medium (ISM) by the entire AGB population. The total injection rate provides an important constraint for models of galactic chemical evolution. Here, we discuss our carbon star models and compare the results to SAGE observations in the Large Magellanic Cloud (LMC).

  15. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering Based on the Newly Developed Self-consistent RC/EMIC Waves Model by Khazanov et al. [2006

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gallagher, D. L.; Gamayunov, K.

    2007-01-01

    It is well known that the effects of EMIC waves on RC ion and RB electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. Therefore, realistic characteristics of EMIC waves should be properly determined by modeling the RC-EMIC waves evolution self-consistently. Such a selfconsistent model progressively has been developing by Khaznnov et al. [2002-2006]. It solves a system of two coupled kinetic equations: one equation describes the RC ion dynamics and another equation describes the energy density evolution of EMIC waves. Using this model, we present the effectiveness of relativistic electron scattering and compare our results with previous work in this area of research.

  16. Visible Near-infrared Spectral Evolution of Irradiated Mixed Ices and Application to Kuiper Belt Objects and Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Poston, Michael J.; Mahjoub, Ahmed; Ehlmann, Bethany L.; Blacksberg, Jordana; Brown, Michael E.; Carlson, Robert W.; Eiler, John M.; Hand, Kevin P.; Hodyss, Robert; Wong, Ian

    2018-04-01

    Understanding the history of Kuiper Belt Objects and Jupiter Trojans will help to constrain models of solar system formation and dynamical evolution. Laboratory simulations of a possible thermal and irradiation history of these bodies were conducted on ice mixtures while monitoring their spectral properties. These simulations tested the hypothesis that the presence or absence of sulfur explains the two distinct visible near-infrared spectral groups observed in each population and that Trojans and KBOs share a common formation location. Mixed ices consisting of water, methanol, and ammonia, in mixtures both with and without hydrogen sulfide, were deposited and irradiated with 10 keV electrons. Deposition and initial irradiation were performed at 50 K to simulate formation at 20 au in the early solar system, then heated to Trojan-like temperatures and irradiated further. Finally, irradiation was concluded and resulting samples were observed during heating to room temperature. Results indicated that the presence of sulfur resulted in steeper spectral slopes. Heating through the 140–200 K range decreased the slopes and total reflectance for both mixtures. In addition, absorption features at 410, 620, and 900 nm appeared under irradiation, but only in the H2S-containing mixture. These features were lost with heating once irradiation was concluded. While the results reported here are consistent with the hypothesis, additional work is needed to address uncertainties and to simulate conditions not included in the present work.

  17. Spectral simplicity of apparent complexity. II. Exact complexities and complexity spectra

    NASA Astrophysics Data System (ADS)

    Riechers, Paul M.; Crutchfield, James P.

    2018-03-01

    The meromorphic functional calculus developed in Part I overcomes the nondiagonalizability of linear operators that arises often in the temporal evolution of complex systems and is generic to the metadynamics of predicting their behavior. Using the resulting spectral decomposition, we derive closed-form expressions for correlation functions, finite-length Shannon entropy-rate approximates, asymptotic entropy rate, excess entropy, transient information, transient and asymptotic state uncertainties, and synchronization information of stochastic processes generated by finite-state hidden Markov models. This introduces analytical tractability to investigating information processing in discrete-event stochastic processes, symbolic dynamics, and chaotic dynamical systems. Comparisons reveal mathematical similarities between complexity measures originally thought to capture distinct informational and computational properties. We also introduce a new kind of spectral analysis via coronal spectrograms and the frequency-dependent spectra of past-future mutual information. We analyze a number of examples to illustrate the methods, emphasizing processes with multivariate dependencies beyond pairwise correlation. This includes spectral decomposition calculations for one representative example in full detail.

  18. Influence of magnetism and correlation on the spectral properties of doped Mott insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yao; Moritz, Brian; Chen, Cheng-Chien

    Unraveling the nature of the doping-induced transition between a Mott insulator and a weakly correlated metal is crucial to understanding novel emergent phases in strongly correlated materials. Here, for this purpose, we study the evolution of spectral properties upon doping Mott insulating states by utilizing the cluster perturbation theory on the Hubbard and t – J -like models. Specifically, a quasifree dispersion crossing the Fermi level develops with small doping, and it eventually evolves into the most dominant feature at high doping levels. Although this dispersion is related to the free-electron hopping, our study shows that this spectral feature is,more » in fact, influenced inherently by both electron-electron correlation and spin-exchange interaction: the correlation destroys coherence, while the coupling between spin and mobile charge restores it in the photoemission spectrum. Due to the persistent impact of correlations and spin physics, the onset of gaps or the high-energy anomaly in the spectral functions can be expected in doped Mott insulators.« less

  19. Influence of magnetism and correlation on the spectral properties of doped Mott insulators

    DOE PAGES

    Wang, Yao; Moritz, Brian; Chen, Cheng-Chien; ...

    2018-03-01

    Unraveling the nature of the doping-induced transition between a Mott insulator and a weakly correlated metal is crucial to understanding novel emergent phases in strongly correlated materials. Here, for this purpose, we study the evolution of spectral properties upon doping Mott insulating states by utilizing the cluster perturbation theory on the Hubbard and t – J -like models. Specifically, a quasifree dispersion crossing the Fermi level develops with small doping, and it eventually evolves into the most dominant feature at high doping levels. Although this dispersion is related to the free-electron hopping, our study shows that this spectral feature is,more » in fact, influenced inherently by both electron-electron correlation and spin-exchange interaction: the correlation destroys coherence, while the coupling between spin and mobile charge restores it in the photoemission spectrum. Due to the persistent impact of correlations and spin physics, the onset of gaps or the high-energy anomaly in the spectral functions can be expected in doped Mott insulators.« less

  20. Late-Time Evolution of Composite Supernova Remnants: Deep Chandra Observations and Hydrodynamical Modeling of a Crushed Pulsar Wind Nebula in SNR G327.1-1.1

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Slane, Patrick; Kolb, Christopher; Blondin, John; Hughes, John P.; Bucciantini, Niccolo

    2015-01-01

    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 ks Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology; a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock(RS) that can occur as a result of a density gradient in the ambient medium and or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a approx. 17,000 yr old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsar's motion. We also show that the RSPWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to gamma-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs.

  1. Evolution of CO lines in time-dependent models of protostellar disk formation

    NASA Astrophysics Data System (ADS)

    Harsono, D.; Visser, R.; Bruderer, S.; van Dishoeck, E. F.; Kristensen, L. E.

    2013-07-01

    Context. Star and planet formation theories predict an evolution in the density, temperature, and velocity structure as the envelope collapses and forms an accretion disk. While continuum emission can trace the dust evolution, spectrally resolved molecular lines are needed to determine the physical structure and collapse dynamics. Aims: The aim of this work is to model the evolution of the molecular excitation, line profiles, and related observables during low-mass star formation. Specifically, the signatures of disks during the deeply embedded stage (Menv > M⋆) are investigated. Methods: The semi-analytic 2D axisymmetric model of Visser and collaborators has been used to describe the evolution of the density, stellar mass, and luminosity from the pre-stellar to the T-Tauri phase. A full radiative transfer calculation is carried out to accurately determine the time-dependent dust temperatures. The time-dependent CO abundance is obtained from the adsorption and thermal desorption chemistry. Non-LTE near-IR (NIR), far-IR (FIR), and submm lines of CO have been simulated at a number of time steps. Results: In single dish (10-20'' beams), the dynamics during the collapse are best probed through highly excited 13CO and C18O lines, which are significantly broadened by the infall process. In contrast to the dust temperature, the CO excitation temperature derived from submm/FIR data does not vary during the protostellar evolution, consistent with C18O observations obtained with Herschel and from ground-based telescopes. The NIR spectra provide complementary information to the submm lines by probing not only the cold outer envelope but also the warm inner region. The NIR high-J (≥8) absorption lines are particularly sensitive to the physical structure of the inner few AU, which does show evolution. The models indicate that observations of 13CO and C18O low-J submm lines within a ≤1″ (at 140 pc) beam are well suited to probe embedded disks in Stage I (Menv < M⋆) sources, consistent with recent interferometric observations. High signal-to-noise ratio subarcsec resolution data with ALMA are needed to detect the presence of small rotationally supported disks during the Stage 0 phase and various diagnostics are discussed. The combination of spatially and spectrally resolved lines with ALMA and at NIR is a powerful method to probe the inner envelope and disk formation process during the embedded phase. Appendices are available in electronic form at http://www.aanda.org

  2. The Las Campanas Infrared Survey - II. Photometric redshifts, comparison with models and clustering evolution

    NASA Astrophysics Data System (ADS)

    Firth, A. E.; Somerville, R. S.; McMahon, R. G.; Lahav, O.; Ellis, R. S.; Sabbey, C. N.; McCarthy, P. J.; Chen, H.-W.; Marzke, R. O.; Wilson, J.; Abraham, R. G.; Beckett, M. G.; Carlberg, R. G.; Lewis, J. R.; Mackay, C. D.; Murphy, D. C.; Oemler, A. E.; Persson, S. E.

    2002-05-01

    The Las Campanas Infrared (LCIR) Survey, using the Cambridge Infra-Red Survey Instrument (CIRSI), reaches H ~21 over nearly 1deg2 . In this paper we present results from 744arcmin2 centred on the Hubble Deep Field South for which UBVRI optical data are publicly available. Making conservative magnitude cuts to ensure spatial uniformity, we detect 3177 galaxies to H =20.0 in 744arcmin2 and a further 842 to H =20.5 in a deeper subregion of 407arcmin2 . We compare the observed optical-infrared (IR) colour distributions with the predictions of semi-analytic hierarchical models and find reasonable agreement. We also determine photometric redshifts, finding a median redshift of ~0.55. We compare the redshift distributions N (z ) of E, Sbc, Scd and Im spectral types with models, showing that the observations are inconsistent with simple passive-evolution models while semi-analytic models provide a reasonable fit to the total N (z ) but underestimate the number of z ~1 red spectral types relative to bluer spectral types. We also present N (z ) for samples of extremely red objects (EROs) defined by optical-IR colours. We find that EROs with R -H >4 and H <20.5 have a median redshift z m ~1 while redder colour cuts have slightly higher z m . In the magnitude range 194 comprise ~18 per cent of the observed galaxy population, while in semi-analytic models they contribute only ~4 per cent. We also determine the angular correlation function w (θ ) for magnitude, colour, spectral type and photometric redshift-selected subsamples of the data and use the photometric redshift distributions to derive the spatial clustering statistic ξ (r ) as a function of spectral type and redshift out to z ~1.2. Parametrizing ξ (r ) by ξ (r c ,z )=[r c /r *(z )]-1.8 , where r c is in comoving coordinates, we find that r *(z ) increases by a factor of 1.5-2 from z =0 to z ~1.2. We interpret this as a selection effect - the galaxies selected at z ~1.2 are intrinsically very luminous, about 1-1.5mag brighter than L *. When galaxies are selected by absolute magnitude, we find no evidence for evolution in r * over this redshift range. Extrapolated to z =0, we find r *(z =0)~6.5h -1 Mpc for red galaxies and r *(z =0)~2-4h -1 Mpc for blue galaxies. We also find that, while the angular clustering amplitude of EROs with R -H >4 or I -H >3 is up to four times that of the whole galaxy population, the spatial clustering length r *(z =1) is ~7.5-10.5h -1 Mpc, which is only a factor of ~1.7 times r *(z =1) for R -H <4 and I -H <3 galaxies lying in a similar redshift and luminosity range. This difference is similar to that observed between red and blue galaxies at low redshifts.

  3. Studying the highly bent spectra of FR II-type radio galaxies with the KDA EXT model

    NASA Astrophysics Data System (ADS)

    Kuligowska, Elżbieta

    2018-04-01

    Context. The Kaiser, Dennett-Thorpe & Alexander (KDA, 1997, MNRAS, 292, 723) EXT model, that is, the extension of the KDA model of Fanaroff & Riley (FR) II-type source evolution, is applied and confronted with the observational data for selected FR II-type radio sources with significantly aged radio spectra. Aim. A sample of FR II-type radio galaxies with radio spectra strongly bent at their highest frequencies is used for testing the usefulness of the KDA EXT model. Methods: The dynamical evolution of FR II-type sources predicted with the KDA EXT model is briefly presented and discussed. The results are then compared to the ones obtained with the classical KDA approach, assuming the source's continuous injection and self-similarity. Results: The results and corresponding diagrams obtained for the eight sample sources indicate that the KDA EXT model predicts the observed radio spectra significantly better than the best spectral fit provided by the original KDA model.

  4. Hyperspectral, photogrammetric and morphological characterization of surface impurities over the Greenland ice sheet from remote sensing observations

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Alexander, P. M.; Briggs, K.; Linares, M.; Mote, T. L.

    2016-12-01

    The spatial and temporal evolution of surface impurities over the Greenland ice sheet plays a crucial role in modulating the meltwater production in view of the associated feedback on albedo. Recent studies have pointed to a `darkening' of the west portion of the ice sheet with this reduction in albedo likely associated with the increasing presence of surface impurities (e.g., soot, dust) and biological activity (e.g., cryoconite holes, algae, bacteria). Regional climate models currently do not account for the presence, evolution and impact on albedo of such impurities, mostly because the underlying processes driving the spectral and morphological evolution of impurities are poorly known. One for the reasons for this is the lack of hyperspectral and high-spatial resolution data over specific regions of the Greenland ice sheet. To put things in perspective: there is more hyperspectral data at high spatial resolution for the planet Mars than for the Greenland ice sheet. In this presentation, we report the results of an analysis using the few available hyperspectral data collected over Greenland by the HYPERION and AVIRIS sensors, in conjunction with visible (RGB) helicopter-based high resolution images and LANDSAT/WorldView data for characterizing the spectral and morphological evolution of surface impurities and cryoconite holes over western Greenland. The hyperspectral data is used to characterize the abundance of different `endmembers' and the temporal evolution (inter-seasonal and intra-seasonal) of surface impurities composition and concentration. Digital photographs from helicopter are used to characterize the size and distribution of cryoconite holes as a function of elevation and, lastly, LANDSAT/WV images are used to study the evolution of `mysterious' shapes that form as a consequence of the accumulation of impurities and the ice flow.

  5. 12 years of Pluto surface's evolution investigated with radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Philippe, Sylvain; Schmitt, Bernard; Grundy, William; Protopapa, Silvia; Olkin, Cathy

    2015-11-01

    The evolution of Pluto’s surface through time, due to surface - atmosphere interactions, remains unknown. New Horizons will provide very high spatial resolution data of its surface state but only as a snapshot. Furthermore, this evolution during the last decades is supposed to be fast due to the recent passage of Pluto through its perihelion (1989). Ground based survey data over a long period of time are thus crucial to understand the long-term evolution of the dwarf planet surface.IRTF/SpeX reflectance spectra of Pluto have been acquired during 13 years (2001-2013) between 0.8-2.4 μm (Grundy et al., 2013; Grundy et al., 2014). This set of data present the opportunity to monitor possible changes of the surface in terms of geographical distribution and segregation between different chemical species that are known to be present at the surface in an icy state (N2, CH4 and CO, Owen et al., 1993, Douté et al., 1999). These variations are recorded through changes in the infrared absorption bands of the different ices. A study based on band criteria variation (Grundy et al., 2013) showed that CH4 absorption bands are increasing through time, whereas N2 and CO absorptions bands are decreasing (Grundy et al. 2014). However, quantitative interpretation of these data needs further investigation and detailed radiative transfer modeling.We used the bidirectional reflectance model of Douté & Schmitt (1998) to fit the IRTF/SpeX spectral data. This model takes into account a possible stratification of chemical species, a phenomenon that is likely to occur on Pluto where CH4 is supposed to accumulate on a sublimating molecular mixture of N2-CH4-CO (Douté et al., 1999). Different modelings take into account pure CH4 ice, a molecular mixture of N2-CH4-CO, tholins and water ice. We modeled the grand average spectra and then allowed the parameters to vary around the average values to model individual spectra and get quantitative variations of the different species.Preliminary results of these modelings will be presented in terms of longitudinal and temporal variations. This study could provide a useful precursor for the analysis of the spatially resolved New Horizon hyper spectral data acquired by the RALPH/Leisa instrument.

  6. A NEAR-INFRARED SPECTROSCOPIC SURVEY OF COOL WHITE DWARFS IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilic, Mukremin; Kowalski, Piotr M.; Von Hippel, Ted

    2009-07-15

    We present near-infrared photometric observations of 15 and spectroscopic observations of 38 cool white dwarfs (WDs). This is the largest near-infrared spectroscopic survey of cool WDs to date. Combining the Sloan Digital Sky Survey photometry and our near-infrared data, we perform a detailed model atmosphere analysis. The spectral energy distributions of our objects are explained fairly well by model atmospheres with temperatures ranging from 6300 K down to 4200 K. Two WDs show significant absorption in the infrared, and are best explained with mixed H/He atmosphere models. Based on the up-to-date model atmosphere calculations by Kowalski and Saumon, we findmore » that the majority of the stars in our sample have hydrogen-rich atmospheres. We do not find any pure helium atmosphere WDs below 5000 K, and we find a trend of increasing hydrogen to helium ratio with decreasing temperature. These findings present an important challenge to understanding the spectral evolution of WDs.« less

  7. Determining the Stellar Initial Mass by Means of the 17O/18O Ratio on the AGB

    NASA Astrophysics Data System (ADS)

    De Nutte, Rutger; Decin, Leen; Olofsson, Hans; de Koter, Alex; Karakas, Amanda; Lombaert, Robin; Milam, Stefanie; Ramstedt, Sofia; Stancliffe, Richard; Homan, Ward; Van de Sande, Marie

    2016-07-01

    This poster presentsnewly obtainedcircumstellar 12C17O and 12C18O line observations, from which theline intensity are then related directly tothe 17O/18O surface abundance ratiofor a sample of nine AGB stars covering the three spectral types ().These ratios are evaluated in relation to a fundamental stellar evolution parameters: the stellar initial mass. The17O/18O ratio is shown to function as an effective method of determining the initial stellar mass. Through comparison with predictions bystellar evolution models, accurate initial mass estimates are calculated for all nine sources.

  8. Spectral Analysis of PG 1034+001, the Exciting Star of Hewett 1

    NASA Technical Reports Server (NTRS)

    Kruk, J. W.; Mahsereci, M.; Ringat, E.; Rauch, T.; Werner, K.

    2011-01-01

    PG 1034+001 is an extremely hot, helium-rich DO-type star that excites the planetary nebula Hewett 1 and large parts of the surrounding interstellar medium. We present preliminary results of an ongoing spectral analysis by means of non-LTE model atmospheres that consider most elements from hydrogen to nickel. This analysis is based on high-resolution ultraviolet (FUSE, IUE) and optical (VLT/UVES, KECK) data. The results are compared with those of PG 1034+001's spectroscopic twin, the DO star PG 0038+ 199. Keywords. stars: abundances, stars: AGB and post-AGB, stars: atmospheres, stars: evolution, stars: individual (PG 1034+001, PG 0038+ 199), planetary nebulae: individual (Hewett 1)

  9. Determination of thicknesses and temperatures of crystalline silicon wafers from optical measurements in the far infrared region

    NASA Astrophysics Data System (ADS)

    Franta, Daniel; Franta, Pavel; Vohánka, Jiří; Čermák, Martin; Ohlídal, Ivan

    2018-05-01

    Optical measurements of transmittance in the far infrared region performed on crystalline silicon wafers exhibit partially coherent interference effects appropriate for the determination of thicknesses of the wafers. The knowledge of accurate spectral and temperature dependencies of the optical constants of crystalline silicon in this spectral region is crucial for the determination of its thickness and vice versa. The recently published temperature dependent dispersion model of crystalline silicon is suitable for this purpose. Because the linear thermal expansion of crystalline silicon is known, the temperatures of the wafers can be determined with high precision from the evolution of the interference patterns at elevated temperatures.

  10. Study of Four Young TeV Pulsar Wind Nebulae with a Spectral Evolution Model

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuta J.; Takahara, Fumio

    2011-11-01

    We study four young pulsar wind nebulae (PWNe) detected in TeV γ-rays, G21.5-0.9, G54.1+0.3, Kes 75, and G0.9+0.1, using the spectral evolution model developed and applied to the Crab Nebula in our previous work. We model the evolution of the magnetic field and the particle distribution function inside a uniformly expanding PWN considering a time-dependent injection from the pulsar and radiative and adiabatic losses. Considering uncertainties in the interstellar radiation field (ISRF) and their distance, we study two cases for each PWN. Because TeV PWNe have a large TeV γ-ray to X-ray flux ratio, the magnetic energy of the PWNe accounts for only a small fraction of the total energy injected (typically a few × 10-3). The γ-ray emission is dominated by inverse Compton scattering off the infrared photons of the ISRF. A broken power-law distribution function for the injected particles reproduces the observed spectrum well, except for G0.9+0.1. For G0.9+0.1, we do not need a low-energy counterpart because adiabatic losses alone are enough to reproduce the radio observations. High-energy power-law indices at injection are similar (2.5-2.6), while low-energy power-law indices range from 1.0 to 1.6. The lower limit of the particle injection rate indicates that the pair multiplicity is larger than 104. The corresponding upper limit of the bulk Lorentz factor of the pulsar winds is close to the break energy of the broken power-law injection, except for Kes 75. The initial rotational energy and the magnetic energy of the pulsars seem anticorrelated, although the statistics are poor.

  11. Simulated space weathering of Fe- and Mg-rich aqueously altered minerals using pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Kaluna, H. M.; Ishii, H. A.; Bradley, J. P.; Gillis-Davis, J. J.; Lucey, P. G.

    2017-08-01

    Simulated space weathering experiments on volatile-rich carbonaceous chondrites (CCs) have resulted in contrasting spectral behaviors (e.g. reddening vs bluing). The aim of this work is to investigate the origin of these contrasting trends by simulating space weathering on a subset of minerals found in these meteorites. We use pulsed laser irradiation to simulate micrometeorite impacts on aqueously altered minerals and observe their spectral and physical evolution as a function of irradiation time. Irradiation of the mineral lizardite, a Mg-phyllosilicate, produces a small degree of reddening and darkening, but a pronounced reduction in band depths with increasing irradiation. In comparison, irradiation of an Fe-rich aqueously altered mineral assemblage composed of cronstedtite, pyrite and siderite, produces significant darkening and band depth suppression. The spectral slopes of the Fe-rich assemblage initially redden then become bluer with increasing irradiation time. Post-irradiation analyses of the Fe-rich assemblage using scanning and transmission electron microscopy reveal the presence of micron sized carbon-rich particles that contain notable fractions of nitrogen and oxygen. Radiative transfer modeling of the Fe-rich assemblage suggests that nanometer sized metallic iron (npFe0) particles result in the initial spectral reddening of the samples, but the increasing production of micron sized carbon particles (μpC) results in the subsequent spectral bluing. The presence of npFe0 and the possible catalytic nature of cronstedtite, an Fe-rich phyllosilicate, likely promotes the synthesis of these carbon-rich, organic-like compounds. These experiments indicate that space weathering processes may enable organic synthesis reactions on the surfaces of volatile-rich asteroids. Furthermore, Mg-rich and Fe-rich aqueously altered minerals are dominant at different phases of the aqueous alteration process. Thus, the contrasting spectral slope evolution between the Fe- and Mg-rich samples in these experiments may indicate that space weathering trends of volatile-rich asteroids have a compositional dependency that could be used to determine the aqueous histories of asteroid parent bodies.

  12. A New Measurement of the Spectral Lag of Gamma-Ray Bursts and its Implications for Spectral Evolution Behaviors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Lang; Wang, Fu-Ri; Cheng, Ye-Hao

    We carry out a systematical study of the spectral lag properties of 50 single-pulsed gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor. By dividing the light curves into multiple consecutive energy channels, we provide a new measurement of the spectral lag that is independent of energy channel selections. We perform a detailed statistical study of our new measurements. We find two similar power-law energy dependencies of both the pulse arrival time and pulse width. Our new results on the power-law indices would favor the relativistic geometric effects for the origin of spectral lag. However, a complete theoretical frameworkmore » that can fully account for the diverse energy dependencies of both arrival time and pulse width revealed in this work is still lacking. We also study the spectral evolution behaviors of the GRB pulses. We find that a GRB pulse with negligible spectral lag would usually have a shorter pulse duration and would appear to have a “hardness-intensity tracking” behavior, and a GRB pulse with a significant spectral lag would usually have a longer pulse duration and would appear to have a “hard-to-soft” behavior.« less

  13. Blue Stragglers and Other Stars of Mass Consumption in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Panurach, Teresa; Leigh, Nathan

    2018-01-01

    Simulations of globular clusters suggest that collisions between main-sequence (MS) stars happen frequently. Stellar evolution models show that these collision products can be photometrically identified, appearing off the MS locus. These collision products can appear brighter and bluer than the MS turnoff, called “blue stragglers,” or even less massive and redder than the MS. We use proper motion-cleaned photometry from the Hubble Space Telescope of 38 globular clusters to identify candidate collision products. We compare the spectral energy distributions of our candidates to theoretical templates for single and multiple star systems, to constrain the possible presence of a binary companion and test consistency with theoretical stellar evolution models for collision products. For the BSs, we also compare the observed velocities from the proper motion catalog along with mass estimates derived from isochrone-fitting to theoretical predictions for both the collision and binary mass transfer models and find better agreement with the former.

  14. Hyperspectral Probing of Exciton dynamics and Multiplication in PbSe Nanocrystals

    NASA Astrophysics Data System (ADS)

    Gdor, I.; Sachs, H.; Roitblat, A.; Strasfeld, D.; Bawendi, M. G.; Ruhman, S.

    2013-03-01

    Height time hyperspectral near IR probing providing broad-band coverage is employed on PbSe nanocrystals, uncovering spectral evolution following high energy photo-excitation due to hot exciton relaxation and recombination. Separation of single, double and triple exciton state contributions to these spectra is demonstrated, and the mechanisms underlying the course of spectral evolution are investigated. In addition no sign of MEG was detected in this sample up to a photon energy 3.7 times that of the band gap.

  15. Brain metabolic pattern analysis using a magnetic resonance spectra classification software in experimental stroke.

    PubMed

    Jiménez-Xarrié, Elena; Davila, Myriam; Candiota, Ana Paula; Delgado-Mederos, Raquel; Ortega-Martorell, Sandra; Julià-Sapé, Margarida; Arús, Carles; Martí-Fàbregas, Joan

    2017-01-13

    Magnetic resonance spectroscopy (MRS) provides non-invasive information about the metabolic pattern of the brain parenchyma in vivo. The SpectraClassifier software performs MRS pattern-recognition by determining the spectral features (metabolites) which can be used objectively to classify spectra. Our aim was to develop an Infarct Evolution Classifier and a Brain Regions Classifier in a rat model of focal ischemic stroke using SpectraClassifier. A total of 164 single-voxel proton spectra obtained with a 7 Tesla magnet at an echo time of 12 ms from non-infarcted parenchyma, subventricular zones and infarcted parenchyma were analyzed with SpectraClassifier ( http://gabrmn.uab.es/?q=sc ). The spectra corresponded to Sprague-Dawley rats (healthy rats, n = 7) and stroke rats at day 1 post-stroke (acute phase, n = 6 rats) and at days 7 ± 1 post-stroke (subacute phase, n = 14). In the Infarct Evolution Classifier, spectral features contributed by lactate + mobile lipids (1.33 ppm), total creatine (3.05 ppm) and mobile lipids (0.85 ppm) distinguished among non-infarcted parenchyma (100% sensitivity and 100% specificity), acute phase of infarct (100% sensitivity and 95% specificity) and subacute phase of infarct (78% sensitivity and 100% specificity). In the Brain Regions Classifier, spectral features contributed by myoinositol (3.62 ppm) and total creatine (3.04/3.05 ppm) distinguished among infarcted parenchyma (100% sensitivity and 98% specificity), non-infarcted parenchyma (84% sensitivity and 84% specificity) and subventricular zones (76% sensitivity and 93% specificity). SpectraClassifier identified candidate biomarkers for infarct evolution (mobile lipids accumulation) and different brain regions (myoinositol content).

  16. Spectral evolution in young active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Boldt, E.; Leiter, D.

    1986-01-01

    The spectral evolution of AGNs is discussed within the context of a scenario where the cosmic X-ray background (CXB) is dominated by these sources. Attention is draqwn to the fact that the individually observed AGN X-ray spectra are significantly steeper than that of the CXB. The remarkably flat spectrum thereby required for the 'as-yet' unresolved sources of the residual CXB is interpreted as an observational constraint on an earlier stage of AGN evolution. Assuming black hole disk accretion, a picture emerges where young AGNs are compact Eddington limited thermal X-ray sources and where canonical AGNs represent later stages in which they have become appreciably less compact, exhibiting the importance of nonthermal disk-dynamo processes.

  17. What Can Spectral Properties of Martian Surface and Snc Can Tell Us about the Martian Crust Composition and Evolution

    NASA Astrophysics Data System (ADS)

    Ody, A.; Poulet, F.; Baratoux, D.; Quantin, C.; Bibring, J. P.

    2014-12-01

    While the study of Martian meteorites can provide detailed information about the crust and mantle composition and evolution, remote-sensing observations, through the merging of compositional and geological data, allow highlighting planetary-scale trends of the Martian crustal evolution [1,2]. Recently, the analysis of the global distribution of mafic minerals [3] has put new constraints on the Martian crust formation and evolution. One of the major results is a past global event of olivine-bearing fissural volcanism that has filled craters and low depressions in the southern highlands and a large part of the Northern plains during the late Noachian/early Hesperian. Petrologic models show that this sudden increase of the olivine content at the Noachian-Hesperian boundary could be the result of a rapid thickening of the lithosphere at the end of the Noachian era [4]. A recent study based on the OMEGA/MEx data has shown that the spectral properties of the shergottites are similar to those of some Noachian and Hesperian terrains [5]. To contrary, the Nakhla spectral properties are very different from those of the observable surface and could be representative of Amazonian terrains buried under dust. These results are best explained with an old age of the shergottites [6] and with the present understanding of the evolution of magma composition at a planetary scale [7]. On the other hand, if shergottites are young [8], the similarities between the shergottites and ancient terrains implies that exceptional conditions of melting with respect to the ambient mantle (e.g., hot spots or water-rich mantle source) were responsible for the formation of these samples [9]. References: [1] McSween et al., 2009, Science, 324. [2] Ehlmann & Edwards 2014, AREPS, vol. 42. [3] Ody et al., 2013, JGR,117,E00J14. [4] Ody et al., 2014, 8th Inter. Conf. on Mars,#1190. [5] Ody et al., 2013, 44th LPSC, #1719. [6] Bouvier et al., 2009, EPSL, 280. [7] Baratoux et al., 2013, JGR, 118. [8] Nyquist et al., [2001], Chronology and Evolution of Mars, pp. 105-164. [9] Balta and McSween, 2013, Geology,v. 41, p. 1115-1118. Acknowledgment:The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013)/ERC Grant agreement n°280168 .

  18. Retrodicting the Cenozoic evolution of the mantle: Implications for dynamic surface topography

    NASA Astrophysics Data System (ADS)

    Glišović, Petar; Forte, Alessandro; Rowley, David; Simmons, Nathan; Grand, Stephen

    2014-05-01

    Seismic tomography is the essential starting ingredient for constructing realistic models of the mantle convective flow and for successfully predicting a wide range of convection-related surface observables. However, the lack of knowledge of the initial thermal state of the mantle in the geological past is still an outstanding problem in mantle convection. The resolution of this problem requires models of 3-D mantle evolution that yield maximum consistency with a wide suite of geophysical constraints. Quantifying the robustness of the reconstructed thermal evolution is another major concern. We have carried out mantle dynamic simulations (Glišović & Forte, EPSL 2014) using a pseudo-spectral solution for compressible-flow thermal convection in 3-D spectral geometry that directly incorporate: 1) joint seismic-geodynamic inversions of mantle density structure with constraints provided by mineral physics data (Simmons et al., GJI 2009); and 2) constraints on mantle viscosity inferred by inversion of a suite of convection-related and glacial isostatic adjustment data sets (Mitrovica & Forte, EPSL 2004) characterised by Earth-like Rayleigh numbers. These time-reversed convection simulations reveal how the buoyancy associated with hot, active upwellings is a major driver of the mantle-wide convective circulation and the changes in dynamic topography at the Earth's surface. These simulations reveal, for example, a stable and long-lived superplume under the East Pacific Rise (centred under the Easter and Pitcairn hotspots) that was previously identified by Rowley et al. (AGU 2011, Nature in review) on the basis of plate kinematic data. We also present 65 Myr reconstructions of the Reunion plume that gave rise to the Deccan Traps.

  19. THE KEY ROLE OF SOLAR DYNAMICS IN THE CHROMOSPHERIC HANLE POLARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, E. S.; Bianda, M., E-mail: escarlin@irsol.ch

    The quantum theory of polarized light allows one to model scattering in the solar atmosphere for inferring its properties. This powerful approach has revealed two key long-standing problems in solar physics: the puzzling dilemmas between theory and observations in several anomalously polarized spectral lines and the need for inferring the ubiquitous weak chromospheric magnetic fields, which requires discriminating the Hanle effect in dynamic optically thick plasmas. However, the ever-present dynamics, i.e., the temporal evolution of heatings and macroscopic motions, has been widely disregarded when modeling and interpreting the scattering polarization. This has hindered a consistent theoretical solution to the puzzlemore » while falsifying the Hanle diagnosis. Here, we show that the dynamical evolution is a keystone for solving both problems because its systematic impact allows an explanation of the observations from “anomalous” instantaneous polarization signals. Evolution accounted for, we reproduce amplitudes and (spectral and spatial) shapes of the Ca i 4227 Å polarization at solar disk center, identifying a restrictive arrangement of magnetic fields, kinematics, heatings, and spatio-temporal resolution. We find that the joint action of dynamics, Hanle effect, and low temporal resolutions mimics Zeeman linear polarization profiles, the true weak-field Zeeman signals being negligible. Our results allow reinterpretation of many polarization signals of the solar spectra and support time-dependent scattering polarization as a powerful tool for deciphering the spatio-temporal distribution of chromospheric heatings and fields. This approach may be a key aid in developing the Hanle diagnosis for the solar atmosphere.« less

  20. On the Origin and Evolution of Stellar Chromospheres, Coronae and Winds

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1997-01-01

    The final report discusses work completed on proposals to construct state-of-the-art, theoretical, two-component, chromospheric models for single stars of different spectral types and different evolutionary status. We suggested to use these models to predict the level of the "basal flux", the observed range of variation of chromospheric activity for a given spectral type, and the decrease of this activity with stellar age. In addition, for red giants and supergiants, we also proposed to construct self-consistent, purely theoretical, chromosphere-wind models, and investigate the origin of "dividing lines" in the H-R diagram. In the report, we list the following six specific goals for the first and second year of the proposed research and then describe the completed work: (1) To calculate the acoustic and magnetic wave energy fluxes for stars located in different regions of the H-R diagram; (2) To investigate the transfer of this non-radiative energy through stellar photospheres and to estimate the amount of energy that reaches the chromosphere; (3) To identify major sources of radiative losses in stellar chromospheres and calculate the amount of emitted energy; (4) To use (1) through (3) to construct purely theoretical, two-component, chromospheric models based on the local energy balance. The models will be constructed for stars of different spectral types and different evolutionary status; (5) To explain theoretically the "basal flux", the location of stellar temperature minima and the observed range of chromospheric activity for stars of the same spectral type; and (6) To construct self-consistent, time-dependent stellar wind models based on the momentum deposition by finite amplitude Alfven waves.

  1. Properties of the Second Outburst of the Bursting Pulsar (GRO J1744-28) as Observed with BASTE

    NASA Technical Reports Server (NTRS)

    Woods, Peter M.; Kouveliotou, Chryssa; VanParadus, Jan; Briggs, Michael S.; Wilson, C. A.; Deal, Kim; Harmon, B. A.; Fishman, G. J.; Lewin, W. H. G.; Kommers, J.

    1999-01-01

    One year after its discovery, the Bursting Pulsar (GRO J1744-28) went into outburst again, displaying the hard X-ray bursts and pulsations that make this source unique. We report on BATSE (Burst and Transient Source Experiment) observations of both the persistent and burst emission for this second outburst and draw comparisons with the first. The second outburst was smaller than the first in both duration and peak luminosity. The persistent flux, burst peak flux, and burst fluence were all reduced in amplitude by a factor of approximately 1.7. Despite these differences, the two outbursts were very similar with respect to the burst occurrence rate, the durations and spectra of bursts, the absence of spectral evolution during bursts, and the evolution of the ratio alpha of average persistent to burst luminosity. Although no spectral evolution was found within individual bursts, we find evidence for a small (20%) variation of the spectral temperature during the course of the second outburst.

  2. Spectral effects in the propagation of chirped laser pulses in uniform underdense plasma

    NASA Astrophysics Data System (ADS)

    Pathak, Naveen; Zhidkov, Alexei; Hosokai, Tomonao; Kodama, Ryosuke

    2018-01-01

    Propagation of linearly chirped and linearly polarized, powerful laser pulses in uniform underdense plasma with their duration exceeding the plasma wave wavelength is examined via 3D fully relativistic particle-in-cell simulations. Spectral evolution of chirped laser pulses, determined by Raman scattering, essentially depends on the nonlinear electron evacuation from the first wake bucket via modulation of the known parameter /n e ( r ) ω0 2 γ . Conversely, the relative motion of different spectral components inside a pulse changes the evolution of the pulse length and, therefore, the ponderomotive forces at the pulse rear. Such longitudinal dynamics of the pulse length provoke a parametric resonance in the laser wake with continuous electron self-injection for any chirped pulses. However, the total charge of accelerated electrons and their energy distribution essentially depends on the chirp. Besides, negatively chirped laser pulses are shown to be useful for spatially resolved measurements of the plasma density profiles and for rough estimations of the laser pulse intensity evolution in underdense plasma.

  3. Time-dependent spectral renormalization method

    NASA Astrophysics Data System (ADS)

    Cole, Justin T.; Musslimani, Ziad H.

    2017-11-01

    The spectral renormalization method was introduced by Ablowitz and Musslimani (2005) as an effective way to numerically compute (time-independent) bound states for certain nonlinear boundary value problems. In this paper, we extend those ideas to the time domain and introduce a time-dependent spectral renormalization method as a numerical means to simulate linear and nonlinear evolution equations. The essence of the method is to convert the underlying evolution equation from its partial or ordinary differential form (using Duhamel's principle) into an integral equation. The solution sought is then viewed as a fixed point in both space and time. The resulting integral equation is then numerically solved using a simple renormalized fixed-point iteration method. Convergence is achieved by introducing a time-dependent renormalization factor which is numerically computed from the physical properties of the governing evolution equation. The proposed method has the ability to incorporate physics into the simulations in the form of conservation laws or dissipation rates. This novel scheme is implemented on benchmark evolution equations: the classical nonlinear Schrödinger (NLS), integrable PT symmetric nonlocal NLS and the viscous Burgers' equations, each of which being a prototypical example of a conservative and dissipative dynamical system. Numerical implementation and algorithm performance are also discussed.

  4. Transition between inverse and direct energy cascades in multiscale optical turbulence

    DOE PAGES

    Malkin, V. M.; Fisch, N. J.

    2018-03-06

    Transition between inverse and direct energy cascades in multiscale optical turbulence. Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a singlemore » scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.« less

  5. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.

    PubMed

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V

    2016-05-26

    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.

  6. Moments distributions of single dye molecule spectra in a low-temperature polymer: Analysis of system ergodicity

    NASA Astrophysics Data System (ADS)

    Anikushina, T. A.; Naumov, A. V.

    2013-12-01

    This article demonstrates the principal advantages of the technique for analysis of the long-term spectral evolution of single molecules (SM) in the study of the microscopic nature of the dynamic processes in low-temperature polymers. We performed the detailed analysis of the spectral trail of single tetra-tert-butylterrylene (TBT) molecule in an amorphous polyisobutylene matrix, measured over 5 hours at T = 7K. It has been shown that the slow temporal dynamics is in qualitative agreement with the standard model of two-level systems and stochastic sudden-jump model. At the same time the distributions of the first four moments (cumulants) of the spectra of the selected SM measured at different time points were found not consistent with the standard theory prediction. It was considered as evidence that in a given time interval the system is not ergodic

  7. BayeSED: A General Approach to Fitting the Spectral Energy Distribution of Galaxies

    NASA Astrophysics Data System (ADS)

    Han, Yunkun; Han, Zhanwen

    2014-11-01

    We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large Ks -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has been performed for the first time. We found that the 2003 model by Bruzual & Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the Ks -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.

  8. BayeSED: A GENERAL APPROACH TO FITTING THE SPECTRAL ENERGY DISTRIBUTION OF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yunkun; Han, Zhanwen, E-mail: hanyk@ynao.ac.cn, E-mail: zhanwenhan@ynao.ac.cn

    2014-11-01

    We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large K{sub s} -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has beenmore » performed for the first time. We found that the 2003 model by Bruzual and Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the K{sub s} -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.« less

  9. Some insights on the dust properties of nearby galaxies, as seen with Herschel

    NASA Astrophysics Data System (ADS)

    Galliano, Frédéric

    2017-12-01

    Nearby galaxies are particularly relevant laboratories to study dust evolution due to the diversity of physical conditions they harbor and to the wealth of data at our disposal. In this paper, we review several recent advances in this field, mainly based on Herschel observations. We first discuss the problems linked with our ignorance of grain emissivities, and show that it can be constrained in some cases. New models are starting to incorporate these constraints. We then present methodological issues encountered when fitting spectral energy distributions, leading to biases in derived dust properties, and some attempts to solve them. Subsequently, we review studies scrutinizing dust evolution: (i) from a global point of view, inferring long term cosmic dust evolution; (ii) from a local point of view, looking for indices of dust processing in the ISM.

  10. Application of a Phase-resolving, Directional Nonlinear Spectral Wave Model

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Sheremet, A.; Tian, M.; Hanson, J. L.

    2014-12-01

    We describe several applications of a phase-resolving, directional nonlinear spectral wave model. The model describes a 2D surface gravity wave field approaching a mildly sloping beach with parallel depth contours at an arbitrary angle accounting for nonlinear, quadratic triad interactions. The model is hyperbolic, with the initial wave spectrum specified in deep water. Complex amplitudes are generated based on the random phase approximation. The numerical implementation includes unidirectional propagation as a special case. In directional mode, it solves the system of equations in the frequency-alongshore wave number space. Recent enhancements of the model include the incorporation of dissipation caused by breaking and propagation over a viscous mud layer and the calculation of wave induced setup. Applications presented include: a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation, a study of the evolution of a single directional triad, and several preliminary comparisons to wave spectra collected at the USACE-FRF in Duck, NC which show encouraging results although further validation with a wider range of beach slopes and wave conditions is needed.

  11. Visual Pigments, Ocular Filters and the Evolution of Snake Vision.

    PubMed

    Simões, Bruno F; Sampaio, Filipa L; Douglas, Ronald H; Kodandaramaiah, Ullasa; Casewell, Nicholas R; Harrison, Robert A; Hart, Nathan S; Partridge, Julian C; Hunt, David M; Gower, David J

    2016-10-01

    Much of what is known about the molecular evolution of vertebrate vision comes from studies of mammals, birds and fish. Reptiles (especially snakes) have barely been sampled in previous studies despite their exceptional diversity of retinal photoreceptor complements. Here, we analyze opsin gene sequences and ocular media transmission for up to 69 species to investigate snake visual evolution. Most snakes express three visual opsin genes (rh1, sws1, and lws). These opsin genes (especially rh1 and sws1) have undergone much evolutionary change, including modifications of amino acid residues at sites of known importance for spectral tuning, with several tuning site combinations unknown elsewhere among vertebrates. These changes are particularly common among dipsadine and colubrine "higher" snakes. All three opsin genes are inferred to be under purifying selection, though dN/dS varies with respect to some lineages, ecologies, and retinal anatomy. Positive selection was inferred at multiple sites in all three opsins, these being concentrated in transmembrane domains and thus likely to have a substantial effect on spectral tuning and other aspects of opsin function. Snake lenses vary substantially in their spectral transmission. Snakes active at night and some of those active by day have very transmissive lenses, whereas some primarily diurnal species cut out shorter wavelengths (including UVA). In terms of retinal anatomy, lens transmission, visual pigment spectral tuning and opsin gene evolution the visual system of snakes is exceptionally diverse compared with all other extant tetrapod orders. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. SPECTRAL ANALYSIS OF FERMI -LAT BLAZARS ABOVE 50 GEV

    DOE PAGES

    Domínguez, Alberto; Ajello, Marco

    2015-11-04

    We present an analysis of the intrinsic (unattenuated by the extragalactic background light, EBL) power-law spectral indices of 128 extragalactic sources detected up to z ~ 2 with the Fermi-Large Area Telescope (LAT) at very high energies (VHEs, E ≥50 GeV). The median of the intrinsic index distribution is 2.20 (versus 2.54 for the observed distribution). We also analyze the observed spectral breaks (i.e., the difference between the VHE and high energy, HE, 100 MeV ≤ E ≤ 300 GeV, spectral indices). The Fermi-LAT has now provided a large sample of sources detected both at VHE and HE with comparablemore » exposure that allows us to test models of extragalactic γ-ray photon propagation. We find that our data are compatible with simulations that include intrinsic blazar curvature and EBL attenuation. There is also no evidence of evolution with redshift of the physics that drives the photon emission in high-frequency synchrotron peak (HSP) blazars. This makes HSP blazars excellent probes of the EBL.« less

  13. A Long Decay of X-Ray Flux and Spectral Evolution in the Supersoft Active Galactic Nucleus GSN 069

    NASA Astrophysics Data System (ADS)

    Shu, X. W.; Wang, S. S.; Dou, L. M.; Jiang, N.; Wang, J. X.; Wang, T. G.

    2018-04-01

    GSN 069 is an optically identified very low-mass active galactic nuclei (AGN) that shows supersoft X-ray emission. The source is known to exhibit a huge X-ray outburst, with flux increased by more than a factor of ∼240 compared to the quiescence state. We report its long-term evolution in the X-ray flux and spectral variations over a timescale of ∼decade, using both new and archival X-ray observations from the XMM-Newton and Swift. The new Swift observations detected the source in its lowest level of X-ray activity since the outburst, a factor of ∼4 lower in the 0.2–2 keV flux than that obtained with the XMM-Newton observations nearly eight years ago. Combining with the historical X-ray measurements, we find that the X-ray flux is decreasing slowly. There seemed to be spectral softening associated with the drop of X-ray flux. In addition, we find evidence for the presence of a weak, variable, hard X-ray component, in addition to the dominant thermal blackbody emission reported before. The long decay of X-ray flux and spectral evolution, as well as the supersoft X-ray spectra, suggest that the source could be a tidal disruption event (TDE), though a highly variable AGN cannot be fully ruled out. Further continued X-ray monitoring would be required to test the TDE interpretation, by better determining the flux evolution in the decay phase.

  14. Electron trapping in evolving coronal structures during a large gradual hard X-ray/radio burst

    NASA Technical Reports Server (NTRS)

    Bruggmann, G.; Vilmer, N.; Klein, K.-L.; Kane, S. R.

    1994-01-01

    Gradual hard X-ray/radio bursts are characterized by their long duration, smooth time profile, time delays between peaks at different hard X-ray energies and microwaves, and radiation from extended sources in the low and middle corona. Their characteristic properties have been ascribed to the dynamic evolution of the accelerated electrons in coronal magnetic traps or to the separate acceleration of high-energy electrons in a 'second step' process. The information available so far was drawn from quality considerations of time profiles or even only from the common occurrence of emissions in different spectral ranges. This paper presents model computations of the temporal evolution of hard X-ray and microwave spectra, together with a qualitative discussion of radio lightcurves over a wide spectral range, and metric imaging observations. The basis hypothesis investigated is that the peculiar 'gradual' features can be related to the dynamical evolution of electrons injected over an extended time interval in a coronal trap, with electrons up to relativistic energies being injected simultaneously. The analyzed event (26 April. 1981) is particularly challenging to this hypothesis because of the long time delays between peaks at different X-ray energies and microwave frequencies. The observations are shown to be consistent with the hypothesis, provided that the electrons lose their energy by Coulomb collisions and possibly betatron deceleration. The access of the electrons to different coronal structures varies in the course of the event. The evolution and likely destabilization of part of the coronal plasma-magnetic field configuration is of crucial influence in determining the access to these structures and possibly the dynamical evolution of the trapped electrons through betatron deceleration in the late phase of the event.

  15. Is the Universe More Transparent to Gamma Rays than Previously Thought?

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Scully, Sean T.

    2009-01-01

    The MAGIC collaboration has recently reported the detection of the strong gamma-ray blazar 3C279 during a 1-2 day flare. They have used their spectral observations to draw conclusions regarding upper limits on the opacity of the Universe to high energy gamma-rays and, by implication, upper limits on the extragalactic mid-infrared background radiation. In this paper we examine the effect of gamma-ray absorption by the extragalactic infrared radiation on intrinsic spectra for this blazar and compare our results with the observational data on 3C279. We find agreement with our previous results, contrary to the recent assertion of the MAGIC group that the Universe is more transparent to gamma-rays than our calculations indicate. Our analysis indicates that in the energy range between approx. 80 and approx. 500 GeV, 3C279 has a best-fit intrinsic spectrum with a spectral index approx. 1.78 using our fast evolution model and approx. 2.19 using our baseline model. However, we also find that spectral indices in the range of 1.0 to 3.0 are almost as equally acceptable as the best fit spectral indices. Assuming the same intrinsic spectral index for this flare as for the 1991 flare from 3C279 observed by EGRET, viz., 2.02, which lies between our best fit indeces, we estimate that the MAGIC flare was approx.3 times brighter than the EGRET flare observed 15 years earlier.

  16. Far-infrared to Millimeter Data of Protoplanetary Disks: Dust Growth in the Taurus, Ophiuchus, and Chamaeleon I Star-forming Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribas, Álvaro; Espaillat, Catherine C.; Macías, Enrique

    Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus, Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths. We analyze their spectral indices as a function of wavelength and determine their (sub)millimeter slopes when possible. Most disks display observational evidence of grain growth, in agreement with previous studies. No correlation is found between other tracers of disk evolution and the millimeter spectral indices. A simple disk model ismore » used to fit these sources, and we derive posterior distributions for the optical depth at 1.3 mm and 10 au, the disk temperature at this same radius, and the dust opacity spectral index β . We find the fluxes at 70 μ m to correlate strongly with disk temperatures at 10 au, as derived from these simple models. We find tentative evidence for spectral indices in Chamaeleon I being steeper than those of disks in Taurus/Ophiuchus, although more millimeter observations are needed to confirm this trend and identify its possible origin. Additionally, we determine the median spectral energy distribution of each region and find them to be similar across the entire wavelength range studied, possibly due to the large scatter in disk properties and morphologies.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, James; Mullan, D. J.

    KIC 7177553 is a quadruple system containing two binaries of orbital periods 16.5 and 18 days. All components have comparable masses and are slowly rotating with spectral types of ∼G2V. The longer period binary is eclipsing with component masses and radii M {sub 1} = 1.043 ± 0.014 M {sub ⊙}, R {sub 1} = 0.940 ± 0.005 R {sub ⊙} and M {sub 2} = 0.986 ± 0.015 M {sub ⊙}, R {sub 2} = 0.941 ± 0.005 R {sub ⊙}. The essentially equal radii measurements are inconsistent with the two stars being on the man sequence at themore » same age using standard nonmagnetic stellar evolution models. Instead a consistent scenario is found if the stars are in their pre-main-sequence phase of evolution and have an age of 32–36 Myr. We have also computed evolutionary models of magnetic stars, but we find that our nonmagnetic models fit the empirical radii and effective temperatures better than the magnetic models.« less

  18. Constraining Star Formation in Old Stellar Populations from Theoretical Spectra

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.

    2007-12-01

    We are calculating stellar spectra using Kurucz codes, Castelli models, and Kurucz laboratory lines plus guesses; but must first finish adjusting gf values to match stars of solar metallicity and higher. We show that even now, 1D LTE spectral calculations fit a wide range of stellar spectra (from A to K types) over 2200 Å-9000Å once gf values are set to optimize them. Moreover, weighted coadditions of spectral calculations can be constructed that match M31 globular clusters over this entire wavelength range. Both stellar and composite grids will be archived on MAST. The age-metallicity degeneracy can be broken, but only with high-quality data, and only if rare stages of stellar evolution are incorporated where necessary.

  19. The spectral energy distributions of the entire Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Ciesla, Laure

    2012-08-01

    We present the spectral energy distributions (SED) of the 323 galaxies of the Herschel Reference Survey. In order to provide templates for nearby galaxies calibrated on physical parameters, we computed mean SEDs per bin of morphological types and stellar masses. They will be very useful to study more distant galaxies and their evolution with redshift. This preliminary work aims to study how the most commonly used libraries (Chary & Elbaz 2001, Dale & Helou 2002 and Draine & Li 2007) reproduce the far-infrared emission of galaxies. First results show that they reproduce well the far-infrared part of mean SEDs. For single galaxies the Draine & Li (2007) models seem to reproduce very well the far-infrared emission, as does the Dale & Helou (2002).

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting Yuan-Sen; Conroy, Charlie; Cargile, Phillip

    Understanding the evolution of the Milky Way calls for the precise abundance determination of many elements in many stars. A common perception is that deriving more than a few elemental abundances ([Fe/H], [ α /Fe], perhaps [C/H], [N/H]) requires medium-to-high spectral resolution, R ≳ 10,000, mostly to overcome the effects of line blending. In a recent work, we presented an efficient and practical way to model the full stellar spectrum, even when fitting a large number of stellar labels simultaneously. In this paper, we quantify to what precision the abundances of many different elements can be recovered, as a functionmore » of spectroscopic resolution and wavelength range. In the limit of perfect spectral models and spectral normalization, we show that the precision of elemental abundances is nearly independent of resolution, for a fixed exposure time and number of detector pixels; low-resolution spectra simply afford much higher S/N per pixel and generally larger wavelength range in a single setting. We also show that estimates of most stellar labels are not strongly correlated with one another once R ≳ 1000. Modest errors in the line-spread function, as well as small radial velocity errors, do not affect these conclusions, and data-driven models indicate that spectral (continuum) normalization can be achieved well enough in practice. These results, to be confirmed with an analysis of observed low-resolution data, open up new possibilities for the design of large spectroscopic stellar surveys and for the reanalysis of archival low-resolution data sets.« less

  1. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2010-09-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  2. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2012-01-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  3. The impact of wave number selection and spin up time when using spectral nudging for dynamical downscaling applications

    NASA Astrophysics Data System (ADS)

    Gómez, Breogán; Miguez-Macho, Gonzalo

    2017-04-01

    Nudging techniques are commonly used to constrain the evolution of numerical models to a reference dataset that is typically of a lower resolution. The nudged model retains some of the features of the reference field while incorporating its own dynamics to the solution. These characteristics have made nudging very popular in dynamic downscaling applications that cover from shot range, single case studies, to multi-decadal regional climate simulations. Recently, a variation of this approach called Spectral Nudging, has gained popularity for its ability to maintain the higher temporal and spatial variability of the model results, while forcing the large scales in the solution with a coarser resolution field. In this work, we focus on a not much explored aspect of this technique: the impact of selecting different cut-off wave numbers and spin-up times. We perform four-day long simulations with the WRF model, daily for three different one-month periods that include a free run and several Spectral Nudging experiments with cut-off wave numbers ranging from the smallest to the largest possible (full Grid Nudging). Results show that Spectral Nudging is very effective at imposing the selected scales onto the solution, while allowing the limited area model to incorporate finer scale features. The model error diminishes rapidly as the nudging expands over broader parts of the spectrum, but this decreasing trend ceases sharply at cut-off wave numbers equivalent to a length scale of about 1000 km, and the error magnitude changes minimally thereafter. This scale corresponds to the Rossby Radius of deformation, separating synoptic from convective scales in the flow. When nudging above this value is applied, a shifting of the synoptic patterns can occur in the solution, yielding large model errors. However, when selecting smaller scales, the fine scale contribution of the model is damped, thus making 1000 km the appropriate scale threshold to nudge in order to balance both effects. Finally, we note that longer spin-up times are needed for model errors to stabilize when using Spectral Nudging than with Grid Nudging. Our results suggest that this time is between 36 and 48 hours.

  4. Time-resolved spectral analysis of Radachlorin luminescence in water

    NASA Astrophysics Data System (ADS)

    Belik, V. P.; Gadzhiev, I. M.; Semenova, I. V.; Vasyutinskii, O. S.

    2017-05-01

    We report results of spectral- and time-resolved study of Radachlorin photosensitizer luminescence in water in the spectral range of 950-1350nm and for determination of the photosensitizer triplet state and the singlet oxygen lifetimes responsible for singlet oxygen generation and degradation. At any wavelength within the explored spectral range the luminescence decay contained two major contributions: a fast decay at the ns time scale and a slow evolution at the μs time scale. The fast decay was attributed to electric dipole fluorescence transitions in photosensitizer molecules and the slow evolution to intercombination phosphorescence transitions in singlet oxygen and photosensitizer molecules. Relatively high-amplitude ns peak observed at all wavelengths suggests that singlet oxygen monitoring with spectral isolation methods alone, without additional temporal resolution can be controversial. In the applied experimental conditions the total phosphorescence signal at any wavelength contained a contribution from the photosensitizer triplet state decay, while at 1274nm the singlet oxygen phosphorescence dominated. The results obtained can be used for optimization of the methods of singlet oxygen monitoring and imaging.

  5. Evolution of the solar irradiance during the Holocene

    NASA Astrophysics Data System (ADS)

    Vieira, L. E. A.; Solanki, S. K.; Krivova, N. A.; Usoskin, I.

    2011-07-01

    Context. Long-term records of solar radiative output are vital for understanding solar variability and past climate change. Measurements of solar irradiance are available for only the last three decades, which calls for reconstructions of this quantity over longer time scales using suitable models. Aims: We present a physically consistent reconstruction of the total solar irradiance for the Holocene. Methods: We extend the SATIRE (Spectral And Total Irradiance REconstruction) models to estimate the evolution of the total (and partly spectral) solar irradiance over the Holocene. The basic assumption is that the variations of the solar irradiance are due to the evolution of the dark and bright magnetic features on the solar surface. The evolution of the decadally averaged magnetic flux is computed from decadal values of cosmogenic isotope concentrations recorded in natural archives employing a series of physics-based models connecting the processes from the modulation of the cosmic ray flux in the heliosphere to their record in natural archives. We then compute the total solar irradiance (TSI) as a linear combination of the jth and jth + 1 decadal values of the open magnetic flux. In order to evaluate the uncertainties due to the evolution of the Earth's magnetic dipole moment, we employ four reconstructions of the open flux which are based on conceptually different paleomagnetic models. Results: Reconstructions of the TSI over the Holocene, each valid for a different paleomagnetic time series, are presented. Our analysis suggests that major sources of uncertainty in the TSI in this model are the heritage of the uncertainty of the TSI since 1610 reconstructed from sunspot data and the uncertainty of the evolution of the Earth's magnetic dipole moment. The analysis of the distribution functions of the reconstructed irradiance for the last 3000 years, which is the period that the reconstructions overlap, indicates that the estimates based on the virtual axial dipole moment are significantly lower at earlier times than the reconstructions based on the virtual dipole moment. We also present a combined reconstruction, which represents our best estimate of total solar irradiance for any given time during the Holocene. Conclusions: We present the first physics-based reconstruction of the total solar irradiance over the Holocene, which will be of interest for studies of climate change over the last 11 500 years. The reconstruction indicates that the decadally averaged total solar irradiance ranges over approximately 1.5 W/m2 from grand maxima to grand minima. Appendix A is available in electronic form at http://www.aanda.orgThe TSI data is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A6

  6. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.

    2003-01-01

    Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distribution parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), groupel and frozen drops/hall] Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bim model explicitly calculates and allows for the examination of both the mass and number concentration of cpecies in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low CCN case produces fever droplets, larger size develop due to greater condencational and collectional growth, leading to a broader size spectrum in comparison to the high CCN case.

  7. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.

    2003-01-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e.,pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size categor, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low CCN case produces fewer droplets, larger sized develop due to the greater condensational and collectional growth, leading to a broader size spectrum in comparison to the high CCN case.

  8. Infrared circumstellar shells - Origins, and clues to the evolution of massive stars

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Pesce, Joseph E.; Bauer, Wendy Hagen

    1989-01-01

    The infrared fluxes, spatial and spectral characteristics for a sample of 111 supergiant stars of spectral types F0 through M5 are tabulated, and correlations examined with respect to the nature of their circumstellar envelopes. One-fourth of these objects were spatialy resolved by IRAS at 60 microns and possess extended circumstellar shell material, with implied expansion ages of about 10 to the 5th yr. Inferences about the production of dust, mass loss, and the relation of these characteristics of the evolution of massive stars, are discussed.

  9. RAiSE II: resolved spectral evolution in radio AGN

    NASA Astrophysics Data System (ADS)

    Turner, Ross J.; Rogers, Jonathan G.; Shabala, Stanislav S.; Krause, Martin G. H.

    2018-01-01

    The active galactic nuclei (AGN) lobe radio luminosities modelled in hydrodynamical simulations and most analytical models do not address the redistribution of the electron energies due to adiabatic expansion, synchrotron radiation and inverse-Compton scattering of cosmic microwave background photons. We present a synchrotron emissivity model for resolved sources that includes a full treatment of the loss mechanisms spatially across the lobe, and apply it to a dynamical radio source model with known pressure and volume expansion rates. The bulk flow and dispersion of discrete electron packets is represented by tracer fields in hydrodynamical simulations; we show that the mixing of different aged electrons strongly affects the spectrum at each point of the radio map in high-powered Fanaroff & Riley type II (FR-II) sources. The inclusion of this mixing leads to a factor of a few discrepancy between the spectral age measured using impulsive injection models (e.g. JP model) and the dynamical age. The observable properties of radio sources are predicted to be strongly frequency dependent: FR-II lobes are expected to appear more elongated at higher frequencies, while jetted FR-I sources appear less extended. The emerging FR0 class of radio sources, comprising gigahertz peaked and compact steep spectrum sources, can potentially be explained by a population of low-powered FR-Is. The extended emission from such sources is shown to be undetectable for objects within a few orders of magnitude of the survey detection limit and to not contribute to the curvature of the radio spectral energy distribution.

  10. Community detection using Kernel Spectral Clustering with memory

    NASA Astrophysics Data System (ADS)

    Langone, Rocco; Suykens, Johan A. K.

    2013-02-01

    This work is related to the problem of community detection in dynamic scenarios, which for instance arises in the segmentation of moving objects, clustering of telephone traffic data, time-series micro-array data etc. A desirable feature of a clustering model which has to capture the evolution of communities over time is the temporal smoothness between clusters in successive time-steps. In this way the model is able to track the long-term trend and in the same time it smooths out short-term variation due to noise. We use the Kernel Spectral Clustering with Memory effect (MKSC) which allows to predict cluster memberships of new nodes via out-of-sample extension and has a proper model selection scheme. It is based on a constrained optimization formulation typical of Least Squares Support Vector Machines (LS-SVM), where the objective function is designed to explicitly incorporate temporal smoothness as a valid prior knowledge. The latter, in fact, allows the model to cluster the current data well and to be consistent with the recent history. Here we propose a generalization of the MKSC model with an arbitrary memory, not only one time-step in the past. The experiments conducted on toy problems confirm our expectations: the more memory we add to the model, the smoother over time are the clustering results. We also compare with the Evolutionary Spectral Clustering (ESC) algorithm which is a state-of-the art method, and we obtain comparable or better results.

  11. Spectral Cauchy Characteristic Extraction: Gravitational Waves and Gauge Free News

    NASA Astrophysics Data System (ADS)

    Handmer, Casey; Szilagyi, Bela; Winicour, Jeff

    2015-04-01

    We present a fast, accurate spectral algorithm for the characteristic evolution of the full non-linear vacuum Einstein field equations in the Bondi framework. Developed within the Spectral Einstein Code (SpEC), we demonstrate how spectral Cauchy characteristic extraction produces gravitational News without confounding gauge effects. We explain several numerical innovations and demonstrate speed, stability, accuracy, exponential convergence, and consistency with existing methods. We highlight its capability to deliver physical insights in the study of black hole binaries.

  12. A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow

    NASA Astrophysics Data System (ADS)

    Tuzet, Francois; Dumont, Marie; Lafaysse, Matthieu; Picard, Ghislain; Arnaud, Laurent; Voisin, Didier; Lejeune, Yves; Charrois, Luc; Nabat, Pierre; Morin, Samuel

    2017-11-01

    Light-absorbing impurities (LAIs) decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive and direct impact is to accelerate snowmelt. Enhanced energy absorption in snow also modifies snow metamorphism, which can indirectly drive further variations of snow albedo in the near-infrared part of the solar spectrum because of the evolution of the near-surface snow microstructure. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities' deposition and evolution within the snowpack and their direct and indirect impacts. Once deposited, the model computes impurities' mass evolution until snow melts out, accounting for scavenging by meltwater. Taking advantage of the recent inclusion of the spectral radiative transfer model TARTES (Two-stream Analytical Radiative TransfEr in Snow model) in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. The model was evaluated at the Col de Porte experimental site (French Alps) during the 2013-2014 snow season against in situ standard snow measurements and spectral albedo measurements. In situ meteorological measurements were used to drive the snowpack model, except for aerosol deposition fluxes. Black carbon (BC) and dust deposition fluxes used to drive the model were extracted from simulations of the atmospheric model ALADIN-Climate. The model simulates snowpack evolution reasonably, providing similar performances to our reference Crocus version in terms of snow depth, snow water equivalent (SWE), near-surface specific surface area (SSA) and shortwave albedo. Since the reference empirical albedo scheme was calibrated at the Col de Porte, improvements were not expected to be significant in this study. We show that the deposition fluxes from the ALADIN-Climate model provide a reasonable estimate of the amount of light-absorbing impurities deposited on the snowpack except for extreme deposition events which are greatly underestimated. For this particular season, the simulated melt-out date advances by 6 to 9 days due to the presence of light-absorbing impurities. The model makes it possible to apportion the relative importance of direct and indirect impacts of light-absorbing impurities on energy absorption in snow. For the snow season considered, the direct impact in the visible part of the solar spectrum accounts for 85 % of the total impact, while the indirect impact related to accelerated snow metamorphism decreasing near-surface specific surface area and thus decreasing near-infrared albedo accounts for 15 % of the total impact. Our model results demonstrate that these relative proportions vary with time during the season, with potentially significant impacts for snowmelt and avalanche prediction.

  13. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observedmore » colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.« less

  14. NuSTAR and XMM-Newton Observations of the 2015 Outburst Decay of GX 339-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiele, H.; Kong, A. K. H., E-mail: hstiele@mx.nthu.edu.tw

    The extent of the accretion disk in the low/hard state of stellar mass black hole X-ray binaries remains an open question. There is some evidence suggesting that the inner accretion disk is truncated and replaced by a hot flow, while the detection of relativistic broadened iron emission lines seems to require an accretion disk extending fully to the innermost stable circular orbit. We present comprehensive spectral and timing analyses of six Nuclear Spectroscopic Telescope Array and XMM-Newton observations of GX 339–4 taken during outburst decay in the autumn of 2015. Using a spectral model consisting of a thermal accretion disk,more » Comptonized emission, and a relativistic reflection component, we obtain a decreasing photon index, consistent with an X-ray binary during outburst decay. Although we observe a discrepancy in the inner radius of the accretion disk and that of the reflector, which can be attributed to the different underlying assumptions in each model, both model components indicate a truncated accretion disk that resiles with decreasing luminosity. The evolution of the characteristic frequency in Fourier power spectra and their missing energy dependence support the interpretation of a truncated and evolving disk in the hard state. The XMM-Newton data set allowed us to study, for the first time, the evolution of the covariance spectra and ratio during outburst decay. The covariance ratio increases and steeps during outburst decay, consistent with increased disk instabilities.« less

  15. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David

    2017-06-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  16. A Conversational Mass Spectral Search System. IV. The Evolution of a System for the Retrieval of Mass Spectral Information

    ERIC Educational Resources Information Center

    Heller, Stephen R.; And Others

    1973-01-01

    A prototype of an interactive, conversational mass spectral search system, developed at the National Institutes of Health, has been tested since September 1971 and is now being used by more than 200 scientists in the U.S. and Canada, and will soon be used by the international mass spectrometry community. (17 references) (SJ)

  17. Detecting signatures of cosmological recombination and reionization in the cosmic radio background

    NASA Astrophysics Data System (ADS)

    Subrahmanyan, Ravi; Shankar Narayana Rao, Udaya; Sathyanarayana Rao, Mayuri; Singh, Saurabh

    2015-08-01

    Evolution of the baryons during the Epochs of cosmological Recombination and Reionization has left traces in the cosmic radio background in the form of spectral distortions (Sunyaev & Chluba 2008 Astron. Nachrichten, 330, 657; Pritchard & Loeb 2012 Rep Prog Phys 75(8):086901). The spectral signature depends on the evolution in the ionization state in hydrogen and helium and on the spin temperature of hydrogen. These probe the physics of energy release beyond the last scattering surface at redshifts exceeding 1090 and the nature of the first sources and gas evolution down to redshift about 6. The spectral distortions are sensitive to the nature of the first stars, ultra-dwarf galaxies, accreting compact objects, and the evolving ambient radiation field: X-rays and UV from the first sources. Detection of the all-sky or global spectral distortions in the radio background is hence a probe of cosmological recombination and reionization.We present new spectral radiometers that we have purpose designed for precision measurements of spectral distortions at radio wavelengths. New antenna elements include frequency independent and electrically small fat-dipole (Raghunathan et al. 2013 IEEE TAP, 61, 3411) and monopole designs. Receiver configurations have been devised that are self-calibratable (Patra et al. 2013 Expt Astron, 36, 319) so that switching of signal paths and of calibration noise sources provide real time calibration for systematics and receiver noise. Observing strategies (Patra et al. arXiv:1412.7762) and analysis methods (Satyanarayana Rao et al. arXiv:1501.07191) have been evolved that are capable of discriminating between the cosmological signals and the substantially brighter foregrounds. We have also demonstrated the value of system designs that exploit advantages of interferometer detection (Mahesh et al. arXiv:1406.2585) of global spectral distortions.Finally we discuss how the Square Kilometer Array stations may be outfitted with precision spectral radiometer outriggers (Subrahmanyan et al. arXiv:1501.04340) to provide the zero-spacing measurement sets, complement the interferometer visibilities and give the SKA a capability for measurements of cosmic radio background spectral distortions.

  18. New Probe of Early Phases of Jet Formation and Evolution using Stellar Tidal Disruption Flares

    NASA Astrophysics Data System (ADS)

    Ranga Reddy Pasham, Dheeraj; van Velzen, Sjoert

    2018-01-01

    The tidal disruption of a star by a supermassive black hole can result in transient radio emission. The electrons producing these synchrotron radio flares could either be accelerated inside a relativistic jet or externally by shocks resulting from an outflow interacting with the circumnuclear medium. Until now, evidence for the internal emission mechanism has been lacking; nearly all tidal disruption flare studies have adopted the external shock model to explain the observed properties of radio flares. I will talk about a result that presents a challenge to external emission models: we discovered a cross-correlation between the soft X-ray (0.3-1 keV) and 16 GHz radio flux of Rosetta Stone tidal disruption flare ASASSN-14li. Variability features in the X-ray light curve appear again in the radio light curve, but after a time lag of about 13 days. This demonstrates that soft X-ray emitting accretion disk regulates the radio emission. This coupling appears to be inconsistent with all previous external emission models for this source but is naturally explained if the radio emission originates from a freely expanding jet. I will show that emission internal to an adiabatically expanding jet can also reproduce the observed evolution of the radio spectral energy distribution. Furthermore, both the correlation between X-ray and radio luminosity as well as our radio spectral modeling imply an approximately linear coupling between the accretion rate and jet power. I will also discuss how future tidal disruption events can help us understand how jets form and evolve in general.

  19. Swift captures the spectrally evolving prompt emission of GRB070616

    NASA Astrophysics Data System (ADS)

    Starling, R. L. C.; O'Brien, P. T.; Willingale, R.; Page, K. L.; Osborne, J. P.; de Pasquale, M.; Nakagawa, Y. E.; Kuin, N. P. M.; Onda, K.; Norris, J. P.; Ukwatta, T. N.; Kodaka, N.; Burrows, D. N.; Kennea, J. A.; Page, M. J.; Perri, M.; Markwardt, C. B.

    2008-02-01

    The origins of gamma-ray burst (GRB) prompt emission are currently not well understood and in this context long, well-observed events are particularly important to study. We present the case of GRB070616, analysing the exceptionally long-duration multipeaked prompt emission, and later afterglow, captured by all the instruments on-board Swift and by Suzaku Wide-Band All-Sky Monitor (WAM). The high-energy light curve remained generally flat for several hundred seconds before going into a steep decline. Spectral evolution from hard to soft is clearly taking place throughout the prompt emission, beginning at 285s after the trigger and extending to 1200s. We track the movement of the spectral peak energy, whilst observing a softening of the low-energy spectral slope. The steep decline in flux may be caused by a combination of this strong spectral evolution and the curvature effect. We investigate origins for the spectral evolution, ruling out a superposition of two power laws and considering instead an additional component dominant during the late prompt emission. We also discuss origins for the early optical emission and the physics of the afterglow. The case of GRB070616 clearly demonstrates that both broad-band coverage and good time resolution are crucial to pin down the origins of the complex prompt emission in GRBs. This paper is dedicated to the memory of Dr Francesca Tamburelli who died during its production. Francesca played a fundamental role within the team which is in charge of the development of the Swift X-Ray Telescope (XRT) data analysis software at the Italian Space Agency's Science Data Centre in Frascati. She is sadly missed. E-mail: rlcs1@star.le.ac.uk

  20. Spectral decomposition of nonlinear systems with memory

    NASA Astrophysics Data System (ADS)

    Svenkeson, Adam; Glaz, Bryan; Stanton, Samuel; West, Bruce J.

    2016-02-01

    We present an alternative approach to the analysis of nonlinear systems with long-term memory that is based on the Koopman operator and a Lévy transformation in time. Memory effects are considered to be the result of interactions between a system and its surrounding environment. The analysis leads to the decomposition of a nonlinear system with memory into modes whose temporal behavior is anomalous and lacks a characteristic scale. On average, the time evolution of a mode follows a Mittag-Leffler function, and the system can be described using the fractional calculus. The general theory is demonstrated on the fractional linear harmonic oscillator and the fractional nonlinear logistic equation. When analyzing data from an ill-defined (black-box) system, the spectral decomposition in terms of Mittag-Leffler functions that we propose may uncover inherent memory effects through identification of a small set of dynamically relevant structures that would otherwise be obscured by conventional spectral methods. Consequently, the theoretical concepts we present may be useful for developing more general methods for numerical modeling that are able to determine whether observables of a dynamical system are better represented by memoryless operators, or operators with long-term memory in time, when model details are unknown.

  1. The MiMeS survey of magnetism in massive stars: CNO surface abundances of Galactic O stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Hervé, A.; Bouret, J.-C.; Marcolino, W.; Wade, G. A.; Neiner, C.; Alecian, E.; Grunhut, J.; Petit, V.

    2015-03-01

    Context. The evolution of massive stars is still partly unconstrained. Mass, metallicity, mass loss, and rotation are the main drivers of stellar evolution. Binarity and the magnetic field may also significantly affect the fate of massive stars. Aims: Our goal is to investigate the evolution of single O stars in the Galaxy. Methods: For that, we used a sample of 74 objects comprising all luminosity classes and spectral types from O4 to O9.7. We relied on optical spectroscopy obtained in the context of the MiMeS survey of massive stars. We performed spectral modelling with the code CMFGEN. We determined the surface properties of the sample stars, with special emphasis on abundances of carbon, nitrogen, and oxygen. Results: Most of our sample stars have initial masses in the range of 20 to 50 M⊙. We show that nitrogen is more enriched and carbon and oxygen are more depleted in supergiants than in dwarfs, with giants showing intermediate degrees of mixing. CNO abundances are observed in the range of values predicted by nucleosynthesis through the CNO cycle. More massive stars, within a given luminosity class, appear to be more chemically enriched than lower mass stars. We compare our results with predictions of three types of evolutionary models and show that for two sets of models, 80% of our sample can be explained by stellar evolution including rotation. The effect of magnetism on surface abundances is unconstrained. Conclusions: Our study indicates that in the 20-50 M⊙ mass range, the surface chemical abundances of most single O stars in the Galaxy are fairly well accounted for by stellar evolution of rotating stars. Based on observations obtained at 1) the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France; 2) at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; 3) at the ESO/La Silla Observatory under program ID 187.D-0917.

  2. The Evolution of the Spectrum of Solar Wind Velocity Fluctuations from 0.3 to 5 AU

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron

    2011-01-01

    Recent work has shown that at 1 AU from the Sun the power spectrum of the solar wind magnetic field has the -5/3 spectral slope expected for Kolmogorov turbulence, but that the velocity has closer to a -3/2 spectrum. This paper traces the changes in solar wind velocity spectra from 0.3 to 5 AU using data from the Helios and Ulysses spacecraft to show that this is a transient stage in solar-wind evolution. The spectrum of the velocity is found to be flatter than that of the magnetic field for the higher frequencies examined for all cases until the slopes become equal (at -5/3) well past 1 AU when the wind is relatively nonAlfvenic. In some respects, in particular in the evolution of the frequency at which the spectrum changes from flatter at larger scales to a "turbulent" spectrum at smaller scales, the velocity field evolves more rapidly than the magnetic, and this is associated with the dominance of the magnetic energy over the kinetic at "inertial range" scales. The speed of the flow is argued to be largely unrelated to the spectral slopes, consistent with previous work, whereas high Alfvenicity appears to slow the spectral evolution, as expected from theory. This study shows that, for the solar wind, the idea of a simple "inertial range" with uniform spectral properties is not realistic, and new phenomenologies will be needed to capture the true situation. It is also noted that a flattening of the velocity spectrum often occurs at small scales.

  3. The Tübingen Model-Atom Database: A Revised Aluminum Model Atom and its Application for the Spectral Analysis of White Dwarfs

    NASA Astrophysics Data System (ADS)

    Löbling, L.

    2017-03-01

    Aluminum (Al) nucleosynthesis takes place during the asymptotic-giant-branch (AGB) phase of stellar evolution. Al abundance determinations in hot white dwarf stars provide constraints to understand this process. Precise abundance measurements require advanced non-local thermodynamic stellar-atmosphere models and reliable atomic data. In the framework of the German Astrophysical Virtual Observatory (GAVO), the Tübingen Model-Atom Database (TMAD) contains ready-to- use model atoms for elements from hydrogen to barium. A revised, elaborated Al model atom has recently been added. We present preliminary stellar-atmosphere models and emergent Al line spectra for the hot white dwarfs G191-B2B and RE 0503-289.

  4. Source spectral properties of small-to-moderate earthquakes in southern Kansas

    USGS Publications Warehouse

    Trugman, Daniel T.; Dougherty, Sara L.; Cochran, Elizabeth S.; Shearer, Peter M.

    2017-01-01

    The source spectral properties of injection-induced earthquakes give insight into their nucleation, rupture processes, and influence on ground motion. Here we apply a spectral decomposition approach to analyze P-wave spectra and estimate Brune-type stress drop for more than 2000 ML1.5–5.2 earthquakes occurring in southern Kansas from 2014 to 2016. We find that these earthquakes are characterized by low stress drop values (median ∼0.4MPa) compared to natural seismicity in California. We observe a significant increase in stress drop as a function of depth, but the shallow depth distribution of these events is not by itself sufficient to explain their lower stress drop. Stress drop increases with magnitude from M1.5–M3.5, but this scaling trend may weaken above M4 and also depends on the assumed source model. Although we observe a nonstationary, sequence-specific temporal evolution in stress drop, we find no clear systematic relation with the activity of nearby injection wells.

  5. NGC 4051: Black hole mass and photon index-mass accretion rate correlation

    NASA Astrophysics Data System (ADS)

    Seifina, Elena; Chekhtman, Alexandre; Titarchuk, Lev

    2018-05-01

    We present a discovery of the correlation between the X-ray spectral (photon) index and mass accretion rate observed in an active galactic nucleus, NGC 4051. We analyzed spectral transition episodes observed in NGC 4051 using XMM-Newton, Suzaku and RXTE. We applied a scaling technique for a black hole (BH) mass evaluation which uses a correlation between the photon index and normalization of the seed (disk) component, which is proportional to a mass accretion rate. We developed an analytical model that shows the spectral (photon) index of the BH emergent spectrum undergoes an evolution from lower to higher values depending on a mass accretion rate in the accretion disk. We considered Cygnus X-1 and GRO J1550-564 as reference sources for which distances, inclination angles and the BH masses are evaluated by dynamical measurements. Application of the scaling technique for the photon index-mass accretion rate correlation provides an estimate of the black hole mass in NGC 4051 to be more than 6 × 105 solar masses.

  6. Temporal and Spectral Analyses of SGRs Observed by HETE-2

    NASA Astrophysics Data System (ADS)

    Nakagawa, Y. E.; Yoshida, A.; Maetou, M.; Suzuki, M.; Tamagawa, T.; Sakamoto, T.; Kawai, N.; Shirasaki, Y.; Tanaka, K.; Matsuoka, M.; Fenimore, E. E.; Galassi, M.; Atteia, J.-L.; Hurley, K.; Ricker, G. R.

    2006-05-01

    HETE-2 localized 63 flares from SGR1806-20 and 6 flares from SGR1900+14 in the summer periods from June 18 2001 through August 7 2005. We report on the temporal and spectral analyses of short flares from those SGRs. The estimation of T90 durations in 2-30 keV and 30-100 keV revealed that there is no difference between them with a few exceptions. For these exceptional short flares, there seems softening or possibly hardening during flares, but these spectral evolution are not common. We also found a good linear correlation between the rise and decay time, and they do not depend on a peak flux. We also found that the spectra are well reproduced by a sum of two blackbody models for all short flares. The temperatures are lying around 4 keV and 11 keV which are consistent with previous studies. They are not depend on either the magnitude of flare, the event morphology or the source.

  7. Evolution of the Orszag-Tang vortex system in a compressible medium. II - Supersonic flow

    NASA Technical Reports Server (NTRS)

    Picone, J. Michael; Dahlburg, Russell B.

    1991-01-01

    A study is presented on the effect of embedded supersonic flows and the resulting emerging shock waves on phenomena associated with MHD turbulence, including reconnection, the formation of current sheets and vortex structures, and the evolution of spatial and temporal correlations among physical variables. A two-dimensional model problem, the Orszag-Tang (1979) vortex system, is chosen, which involves decay from nonrandom initial conditions. The system is doubly periodic, and the initial conditions consist of single-mode solenoidal velocity and magnetic fields, each containing X points and O points. The initial mass density is flat, and the initial pressure fluctuations are incompressible, balancing the local forces for a magnetofluid of unit mass density. Results on the evolution of the local structure of the flow field, the global properties of the system, and spectral correlations are presented. The important dynamical properties and observational consequences of embedded supersonic regions and emerging shocks in the Orszag-Tang model of an MHD system undergoing reconnection are discussed. Conclusions are drawn regarding the effects of local supersonic regions on MHD turbulence.

  8. Effect of phonon-bath dimensionality on the spectral tuning of single-photon emitters in the Purcell regime

    NASA Astrophysics Data System (ADS)

    Chassagneux, Yannick; Jeantet, Adrien; Claude, Théo; Voisin, Christophe

    2018-05-01

    We develop a theoretical frame to investigate the spectral dependence of the brightness of a single-photon source made of a solid-state nanoemitter embedded in a high-quality factor microcavity. This study encompasses the cases of localized excitons embedded in a one-, two-, or three-dimensional matrix. The population evolution is calculated based on a spin-boson model, using the noninteracting blip approximation. We find that the spectral dependence of the single-photon source brightness (hereafter called spectral efficiency) can be expressed analytically through the free-space emission and absorption spectra of the emitter, the vacuum Rabi splitting, and the loss rates of the system. In other words, the free-space spectrum of the emitter encodes all the relevant information on the interaction between the exciton and the phonon bath to obtain the dynamics of the cavity-coupled system. We compute numerically the spectral efficiency for several types of localized emitters differing by the phonon bath dimensionality. In particular, in low-dimensional systems where this interaction is enhanced, a pronounced asymmetric energy exchange between the emitter and the cavity on the phonon sidebands yields a considerable extension of the tuning range of the source through phonon-assisted cavity feeding, possibly surpassing that of a purely resonant system.

  9. The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion

    NASA Astrophysics Data System (ADS)

    Sarkar, Abir; Sethi, Shiv. K.; Das, Subinoy

    2017-07-01

    After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark matter, despite successfully explaining the large-scale features of the universe, has long-standing small-scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3 Mpc < k < 104 Mpc-1, whose dynamics can be precisely described using linear theory. In this paper, we investigate the possibility of using the Silk damping induced CMB spectral distortion as a probe of the small-scale power. We consider four suggested alternative dark matter candidates—Warm Dark Matter (WDM), Late Forming Dark Matter (LFDM), Ultra Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB. The y-parameter diminishes by a few percent as compared to the ΛCDM model for a range of parameters of these models: LFDM for formation redshift zf = 105 (7%); WDM for mass mwdm = 1 keV (2%); CHDM for decay redshift zdecay = 105 (5%); ULA for mass ma = 10-24 eV (3%). This effect from the pre-recombination era can be masked by orders of magnitude higher y-distortions generated by late-time sources, e.g. the Epoch of Reionization and tSZ from the cluster of galaxies. We also briefly discuss the detectability of this deviation in light of the upcoming CMB experiment PIXIE, which might have the sensitivity to detect this signal from the pre-recombination phase.

  10. The Andromeda Optical and Infrared Disk Survey

    NASA Astrophysics Data System (ADS)

    Sick, Jonathan

    The spectral energy distributions of galaxies inform us about a galaxy's stellar populations and interstellar medium, revealing stories of galaxy formation and evolution. How we interpret this light depends in part on our proximity to the galaxy. For nearby galaxies, detailed star formation histories can be extracted from the resolved stellar populations, while more distant galaxies feature the contributions of entire stellar populations within their integrated spectral energy distribution (SED). This thesis aims to resolve whether the techniques used to investigate stellar populations in distant galaxies are consistent with those available for nearby galaxies. As the nearest spiral galaxy, the Andromeda Galaxy (M31) is the ideal testbed for the joint study of resolved stellar populations and panchromatic SEDs. We present the Andromeda Optical and Infrared Disk Survey (ANDROIDS), which adds new near-UV to near-IR (u*g'r'i'JKs) imaging using the MegaCam and WIRCam cameras at the Canada-France-Hawaii telescope to the available M31 panchromatic dataset. To accurately subtract photometric background from our extremely wide-field (14 square degree) mosaics, we present observing and data reduction techniques with sky-target nodding, optimization of image-to-image surface brightness, and a novel hierarchical Bayesian model to trace the background signal while modelling the astrophysical SED. We model the spectral energy distributions of M31 pixels with MAGPHYS (da Cunha et al. 2008) and compare those results to resolved stellar population models of the same pixels from the Panchromatic Hubble Andromeda Treasury (PHAT) survey (Williams et al. 2017). We find substantial (0.3 dex) differences in stellar mass estimates despite a common use of the Chabrier (2003) initial mass function. Stellar mass estimated from the resolved stellar population is larger than any mass estimate from SED models or colour-M/L relations (CMLRs). There is also considerable diversity among CMLR estimators, largely driven by differences in the star formation history prior distribution. We find broad consistency between the star formation history estimated by integrated spectral energy distributions and resolved stars. Generally, spectral energy distribution models yield a stronger inside-out radial metallicity gradient and bias towards younger mean ages than resolved stellar population models.

  11. The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Abir; Sethi, Shiv K.; Das, Subinoy, E-mail: abir@rri.res.in, E-mail: sethi@rri.res.in, E-mail: subinoy@iiap.res.in

    After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark matter, despite successfully explaining the large-scale features of the universe, has long-standing small-scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3 Mpc < k < 10{sup 4} Mpc{sup −1}, whose dynamics can be precisely described using linear theory. In this paper, we investigate the possibility of using the Silk damping induced CMB spectral distortion as amore » probe of the small-scale power. We consider four suggested alternative dark matter candidates—Warm Dark Matter (WDM), Late Forming Dark Matter (LFDM), Ultra Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB. The y -parameter diminishes by a few percent as compared to the ΛCDM model for a range of parameters of these models: LFDM for formation redshift z {sub f} = 10{sup 5} (7%); WDM for mass m {sub wdm} = 1 keV (2%); CHDM for decay redshift z {sub decay} = 10{sup 5} (5%); ULA for mass m {sub a} = 10{sup −24} eV (3%). This effect from the pre-recombination era can be masked by orders of magnitude higher y -distortions generated by late-time sources, e.g. the Epoch of Reionization and tSZ from the cluster of galaxies. We also briefly discuss the detectability of this deviation in light of the upcoming CMB experiment PIXIE, which might have the sensitivity to detect this signal from the pre-recombination phase.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, H. P.; Badnell, N. R.; Foster, A. R.

    The paper is a tribute to Nicol Peacock and has a focus on interests and developments at Culham Laboratory from {approx} 1970 when Nicol led the UKAEA spectroscopy team. The paper charts a little of the evolution of these models and their data through the seventies and eighties on into this century at Culham. The paper concludes with the state of efforts to enable easy, universal access to spectral analysis across the scope of Culham activity, of which it is hoped Nicol would approve.

  13. Accurate abundance determinations in S stars

    NASA Astrophysics Data System (ADS)

    Neyskens, P.; Van Eck, S.; Plez, B.; Goriely, S.; Siess, L.; Jorissen, A.

    2011-12-01

    S-type stars are thought to be the first objects, during their evolution on the asymptotic giant branch (AGB), to experience s-process nucleosynthesis and third dredge-ups, and therefore to exhibit s-process signatures in their atmospheres. Until present, the modeling of these processes is subject to large uncertainties. Precise abundance determinations in S stars are of extreme importance for constraining e.g., the depth and the formation of the 13C pocket. In this paper a large grid of MARCS model atmospheres for S stars is used to derive precise abundances of key s-process elements and iron. A first estimation of the atmospheric parameters is obtained using a set of well-chosen photometric and spectroscopic indices for selecting the best model atmosphere of each S star. Abundances are derived from spectral line synthesis, using the selected model atmosphere. Special interest is paid to technetium, an element without stable isotopes. Its detection in stars is considered as the best possible signature that the star effectively populates the thermally-pulsing AGB (TP-AGB) phase of evolution. The derived Tc/Zr abundances are compared, as a function of the derived [Zr/Fe] overabundances, with AGB stellar model predictions. The computed [Zr/Fe] overabundances are in good agreement with the AGB stellar evolution model predictions, while the Tc/Zr abundances are slightly over-predicted. This discrepancy can help to set stronger constraints on nucleosynthesis and mixing mechanisms in AGB stars.

  14. Type II Supernova Spectral Diversity. I. Observations, Sample Characterization, and Spectral Line Evolution

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Claudia P.; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; González-Gaitan, Santiago; Stritzinger, Maximilian D.; Phillips, Mark M.; Galbany, Lluis; Folatelli, Gastón; Dessart, Luc; Contreras, Carlos; Della Valle, Massimo; Freedman, Wendy L.; Hsiao, Eric Y.; Krisciunas, Kevin; Madore, Barry F.; Maza, José; Suntzeff, Nicholas B.; Prieto, Jose Luis; González, Luis; Cappellaro, Enrico; Navarrete, Mauricio; Pizzella, Alessandro; Ruiz, Maria T.; Smith, R. Chris; Turatto, Massimo

    2017-11-01

    We present 888 visual-wavelength spectra of 122 nearby type II supernovae (SNe II) obtained between 1986 and 2009, and ranging between 3 and 363 days post-explosion. In this first paper, we outline our observations and data reduction techniques, together with a characterization based on the spectral diversity of SNe II. A statistical analysis of the spectral matching technique is discussed as an alternative to nondetection constraints for estimating SN explosion epochs. The time evolution of spectral lines is presented and analyzed in terms of how this differs for SNe of different photometric, spectral, and environmental properties: velocities, pseudo-equivalent widths, decline rates, magnitudes, time durations, and environment metallicity. Our sample displays a large range in ejecta expansion velocities, from ˜9600 to ˜1500 km s-1 at 50 days post-explosion with a median {{{H}}}α value of 7300 km s-1. This is most likely explained through differing explosion energies. Significant diversity is also observed in the absolute strength of spectral lines, characterized through their pseudo-equivalent widths. This implies significant diversity in both temperature evolution (linked to progenitor radius) and progenitor metallicity between different SNe II. Around 60% of our sample shows an extra absorption component on the blue side of the {{{H}}}α P-Cygni profile (“Cachito” feature) between 7 and 120 days since explosion. Studying the nature of Cachito, we conclude that these features at early times (before ˜35 days) are associated with Si II λ 6355, while past the middle of the plateau phase they are related to high velocity (HV) features of hydrogen lines. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2008B-Q-56). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programs 076.A-0156, 078.D-0048, 080.A-0516, and 082.A-0526).

  15. Constraining UV Continuum Slopes of Active Galactic Nuclei with CLOUDY Models of Broad-line Region Extreme-ultraviolet Emission Lines

    NASA Astrophysics Data System (ADS)

    Moloney, Joshua; Shull, J. Michael

    2014-10-01

    Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 <= z <= 0.64, two AGNs with 0.32 <= z <= 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV λ765, O II λ833, and O III λ834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n H >= 1012 cm-3) and hydrogen ionizing photon fluxes (ΦH >= 1022 cm-2 s-1). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555.

  16. The Transitional Protoplanetary Disk Frequency as a Function of Age: Disk Evolution In the Coronet Cluster, Taurus, and Other 1-8 Myr Old Regions

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Sicilia-Aguilar, Aurora

    2011-05-01

    We present Spitzer 3.6-24 μm photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters—IC 348, NGC 2362, and η Cha—to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks—those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from ~15%-20% at 1-2 Myr to >=50% at 5-8 Myr the mean transitional disk lifetime is closer to ~1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M disk ≈ 0.001-0.003 M sstarf. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.

  17. Spatial variability of the Black Sea surface temperature from high resolution modeling and satellite measurements

    NASA Astrophysics Data System (ADS)

    Mizyuk, Artem; Senderov, Maxim; Korotaev, Gennady

    2016-04-01

    Large number of numerical ocean models were implemented for the Black Sea basin during last two decades. They reproduce rather similar structure of synoptical variability of the circulation. Since 00-s numerical studies of the mesoscale structure are carried out using high performance computing (HPC). With the growing capacity of computing resources it is now possible to reconstruct the Black Sea currents with spatial resolution of several hundreds meters. However, how realistic these results can be? In the proposed study an attempt is made to understand which spatial scales are reproduced by ocean model in the Black Sea. Simulations are made using parallel version of NEMO (Nucleus for European Modelling of the Ocean). A two regional configurations with spatial resolutions 5 km and 2.5 km are described. Comparison of the SST from simulations with two spatial resolutions shows rather qualitative difference of the spatial structures. Results of high resolution simulation are compared also with satellite observations and observation-based products from Copernicus using spatial correlation and spectral analysis. Spatial scales of correlations functions for simulated and observed SST are rather close and differs much from satellite SST reanalysis. Evolution of spectral density for modelled SST and reanalysis showed agreed time periods of small scales intensification. Using of the spectral analysis for satellite measurements is complicated due to gaps. The research leading to this results has received funding from Russian Science Foundation (project № 15-17-20020)

  18. Understanding Coronal Heating through Time-Series Analysis and Nanoflare Modeling

    NASA Astrophysics Data System (ADS)

    Romich, Kristine; Viall, Nicholeen

    2018-01-01

    Periodic intensity fluctuations in coronal loops, a signature of temperature evolution, have been observed using the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) spacecraft. We examine the proposal that nanoflares, or impulsive bursts of energy release in the solar atmosphere, are responsible for the intensity fluctuations as well as the megakelvin-scale temperatures observed in the corona. Drawing on the work of Cargill (2014) and Bradshaw & Viall (2016), we develop a computer model of the energy released by a sequence of nanoflare events in a single magnetic flux tube. We then use EBTEL (Enthalpy-Based Thermal Evolution of Loops), a hydrodynamic model of plasma response to energy input, to simulate intensity as a function of time across the coronal AIA channels. We test the EBTEL output for periodicities using a spectral code based on Mann and Lees’ (1996) multitaper method and present preliminary results here. Our ultimate goal is to establish whether quasi-continuous or impulsive energy bursts better approximate the original SDO data.

  19. Physical Model of the Genotype-to-Phenotype Map of Proteins

    NASA Astrophysics Data System (ADS)

    Tlusty, Tsvi; Libchaber, Albert; Eckmann, Jean-Pierre

    2017-04-01

    How DNA is mapped to functional proteins is a basic question of living matter. We introduce and study a physical model of protein evolution which suggests a mechanical basis for this map. Many proteins rely on large-scale motion to function. We therefore treat protein as learning amorphous matter that evolves towards such a mechanical function: Genes are binary sequences that encode the connectivity of the amino acid network that makes a protein. The gene is evolved until the network forms a shear band across the protein, which allows for long-range, soft modes required for protein function. The evolution reduces the high-dimensional sequence space to a low-dimensional space of mechanical modes, in accord with the observed dimensional reduction between genotype and phenotype of proteins. Spectral analysis of the space of 1 06 solutions shows a strong correspondence between localization around the shear band of both mechanical modes and the sequence structure. Specifically, our model shows how mutations are correlated among amino acids whose interactions determine the functional mode.

  20. Quantum dynamics of a two-state system induced by a chirped zero-area pulse

    NASA Astrophysics Data System (ADS)

    Lee, Han-gyeol; Song, Yunheung; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2016-02-01

    It is well known that area pulses make Rabi oscillation and chirped pulses in the adiabatic interaction regime induce complete population inversion of a two-state system. Here we show that chirped zero-area pulses could engineer an interplay between the adiabatic evolution and Rabi-like rotations. In a proof-of-principle experiment utilizing spectral chirping of femtosecond laser pulses with a resonant spectral hole, we demonstrate that the chirped zero-area pulses could induce, for example, complete population inversion and return of the cold rubidium atom two-state system. Experimental result agrees well with the theoretically considered overall dynamics, which could be approximately modeled to a Ramsey-like three-pulse interaction, where the x and z rotations are driven by the hole and the main pulse, respectively.

  1. Probing coherence in microcavity frequency combs via optical pulse shaping

    NASA Astrophysics Data System (ADS)

    Ferdous, Fahmida; Miao, Houxun; Wang, Pei-Hsun; Leaird, Daniel E.; Srinivasan, Kartik; Chen, Lei; Aksyuk, Vladimir; Weiner, Andrew M.

    2012-09-01

    Recent investigations of microcavity frequency combs based on cascaded four-wave mixing have revealed a link between the evolution of the optical spectrum and the observed temporal coherence. Here we study a silicon nitride microresonator for which the initial four-wave mixing sidebands are spaced by multiple free spectral ranges (FSRs) from the pump, then fill in to yield a comb with single FSR spacing, resulting in partial coherence. By using a pulse shaper to select and manipulate the phase of various subsets of spectral lines, we are able to probe the structure of the coherence within the partially coherent comb. Our data demonstrate strong variation in the degree of mutual coherence between different groups of lines and provide support for a simple model of partially coherent comb formation.

  2. Far-infrared to Millimeter Data of Protoplanetary Disks: Dust Growth in the Taurus, Ophiuchus, and Chamaeleon I Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Ribas, Álvaro; Espaillat, Catherine C.; Macías, Enrique; Bouy, Hervé; Andrews, Sean; Calvet, Nuria; Naylor, David A.; Riviere-Marichalar, Pablo; van der Wiel, Matthijs H. D.; Wilner, David

    2017-11-01

    Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus, Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths. We analyze their spectral indices as a function of wavelength and determine their (sub)millimeter slopes when possible. Most disks display observational evidence of grain growth, in agreement with previous studies. No correlation is found between other tracers of disk evolution and the millimeter spectral indices. A simple disk model is used to fit these sources, and we derive posterior distributions for the optical depth at 1.3 mm and 10 au, the disk temperature at this same radius, and the dust opacity spectral index β. We find the fluxes at 70 μm to correlate strongly with disk temperatures at 10 au, as derived from these simple models. We find tentative evidence for spectral indices in Chamaeleon I being steeper than those of disks in Taurus/Ophiuchus, although more millimeter observations are needed to confirm this trend and identify its possible origin. Additionally, we determine the median spectral energy distribution of each region and find them to be similar across the entire wavelength range studied, possibly due to the large scatter in disk properties and morphologies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Mazzali, Paolo A.; Tominaga, Nozomu; Hachinger, Stephan; Blinnikov, Sergei I.; Tauris, Thomas M.; Takahashi, Koh; Tanaka, Masaomi; Langer, Norbert; Podsiadlowski, Philipp

    2017-04-01

    We investigate light-curve and spectral properties of ultrastripped core-collapse supernovae. Ultrastripped supernovae are the explosions of heavily stripped massive stars that lost their envelopes via binary interactions with a compact companion star. They eject only ˜0.1 M⊙ and may be the main way to form double neutron-star systems that eventually merge emitting strong gravitational waves. We follow the evolution of an ultrastripped supernova progenitor until iron core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultrastripped supernovae using the nucleosynthesis results and present their expected properties. Ultrastripped supernovae synthesize ˜0.01 M⊙ of radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5-10 d. Comparing synthesized and observed spectra, we find that SN 2005ek, some of the so-called calcium-rich gap transients, and SN 2010X may be related to ultrastripped supernovae. If these supernovae are actually ultrastripped supernovae, their event rate is expected to be about 1 per cent of core-collapse supernovae. Comparing the double neutron-star merger rate obtained by future gravitational-wave observations and the ultrastripped supernova rate obtained by optical transient surveys identified with our synthesized light-curve and spectral models, we will be able to judge whether ultrastripped supernovae are actually a major contributor to the binary neutron-star population and provide constraints on binary stellar evolution.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irwin, Judith A.; Henriksen, Richard N.; Wiegert, Theresa

    We have observed the Virgo Cluster spiral galaxy, NGC 4845, at 1.6 and 6 GHz using the Karl G. Jansky Very Large Array, as part of the Continuum Halos in Nearby Galaxies—an EVLA Survey (CHANG-ES). The source consists of a bright unresolved core with a surrounding weak central disk (1.8 kpc diameter). The core is variable over the 6 month timescale of the CHANG-ES data and has increased by a factor of ≈6 since 1995. The wide bandwidths of CHANG-ES have allowed us to determine the spectral evolution of this core, which peaks between 1.6 and 6 GHz (it ismore » a Gigahertz-peaked spectrum source). We show that the spectral turnover is dominated by synchrotron self-absorption and that the spectral evolution can be explained by adiabatic expansion (outflow), likely in the form of a jet or cone. The CHANG-ES observations serendipitously overlap in time with the hard X-ray light curve obtained by Nikolajuk and Walter (2013), which they interpret as due to a tidal disruption event (TDE) of a super-Jupiter mass object around a 10{sup 5} M{sub ⊙} black hole. We outline a standard jet model, provide an explanation for the observed circular polarization, and quantitatively suggest a link between the peak radio and peak X-ray emission via inverse Compton upscattering of the photons emitted by the relativistic electrons. We predict that it should be possible to resolve a young radio jet via VLBI as a result of this nearby TDE.« less

  5. Age discrimination among basalt flows using digitally enhanced LANDSAT imagery. [Saudi Arabia

    NASA Technical Reports Server (NTRS)

    Blodget, H. W.; Brown, G. F.

    1984-01-01

    Digitally enhanced LANDSAT MSS data were used to discriminate among basalt flows of historical to Tertiary age, at a test site in Northwestern Saudi Arabia. Spectral signatures compared favorably with a field-defined classification that permits discrimination among five groups of basalt flows on the basis of geomorphic criteria. Characteristics that contributed to age definition include: surface texture, weathering, color, drainage evolution, and khabrah development. The inherent gradation in the evolution of geomorphic parameters, however, makes visual extrapolation between areas subjective. Therefore, incorporation of spectrally-derived volcanic units into the mapping process should produce more quantitatively consistent age groupings.

  6. A review of the evolution of animal colour vision and visual communication signals.

    PubMed

    Osorio, D; Vorobyev, M

    2008-09-01

    The visual displays of animals and plants are often colourful, and colour vision allows animals to respond to these signals as they forage for food, choose mates and so-forth. This article discusses the evolutionary relationship between photoreceptor spectral sensitivities of four groups of land animals--birds, butterflies, primates and hymenopteran insects (bees and wasps)--, the colour signals that are relevant to them, and how understanding is informed by models of spectral coding and colour vision. Although the spectral sensitivities of photoreceptors are known to vary adaptively under natural selection there is little evidence that those of hymenopterans, birds and primates are specifically adapted to the reflectance spectra of food plants or animal visual signals. On the other hand, the colours of fruit, flowers and feathers may have evolved to be more discriminable for the colour vision of their natural receivers than for other groups of animals. Butterflies are unusual in that they have enjoyed a major radiation in receptor numbers and spectral sensitivities. The reasons for the radiation and diversity of butterfly colour vision remain unknown, but may include their need to find food plants and to select mates.

  7. Comparative visual ecology of cephalopods from different habitats.

    PubMed

    Chung, Wen-Sung; Marshall, N Justin

    2016-09-14

    Previous investigations of vision and visual pigment evolution in aquatic predators have focused on fish and crustaceans, generally ignoring the cephalopods. Since the first cephalopod opsin was sequenced in late 1980s, we now have data on over 50 cephalopod opsins, prompting this functional and phylogenetic examination. Much of this data does not specifically examine the visual pigment spectral absorbance position (λmax) relative to environment or lifestyle, and cephalopod opsin functional adaptation and visual ecology remain largely unknown. Here we introduce a new protocol for photoreceptor microspectrophotometry (MSP) that overcomes the difficulty of bleaching the bistable visual pigment and that reveals eight coastal coleoid cephalopods to be monochromatic with λmax varying from 484 to 505 nm. A combination of current MSP results, the λmax values previously characterized using cephalopod retinal extracts (467-500 nm) and the corresponding opsin phylogenetic tree were used for systematic comparisons with an end goal of examining the adaptations of coleoid visual pigments to different light environments. Spectral tuning shifts are described in response to different modes of life and light conditions. A new spectral tuning model suggests that nine amino acid substitution sites may determine the direction and the magnitude of spectral shifts. © 2016 The Authors.

  8. HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkolnik, Evgenya L.; Barman, Travis S., E-mail: shkolnik@lowell.edu, E-mail: barman@lpl.arizona.edu

    2014-10-01

    The spectral energy distribution, variability, and evolution of the high-energy radiation from an M dwarf planet host is crucial in understanding the planet's atmospheric evolution and habitability and in interpreting the planet's spectrum. The star's extreme-UV (EUV), far-UV (FUV), and near-UV (NUV) emission can chemically modify, ionize, and erode the atmosphere over time. This makes determining the lifetime exposure of such planets to stellar UV radiation critical for both the evolution of a planet's atmosphere and our potential to characterize it. Using the early M star members of nearby young moving groups, which sample critical ages in planet formation andmore » evolution, we measure the evolution of the GALEX NUV and FUV flux as a function of age. The median UV flux remains at a 'saturated' level for a few hundred million years, analogous to that observed for X-ray emission. By the age of the Hyades Cluster (650 Myr), we measure a drop in UV flux by a factor of 2-3 followed by a steep drop from old (several Gyrs) field stars. This decline in activity beyond 300 Myr follows roughly t {sup –1}. Despite this clear evolution, there remains a wide range, of 1-2 orders of magnitude, in observed emission levels at every age. These UV data supply the much-needed constraints to M dwarf upper-atmosphere models, which will provide empirically motivated EUV predictions and more accurate age-dependent UV spectra as inputs to planetary photochemical models.« less

  9. Constraining Galaxy Evolution With Hubble's Next Generation Spectral Library

    NASA Astrophysics Data System (ADS)

    Heap, S.; Lindler, D. J.

    2009-03-01

    We present Hubble's Next Generation Spectral Library, a library of UV-optical spectra (0.2-1.0 μ) of 378 stars. We show that the mid-UV spectrum can be used to constrain the ages and metallicities of high-redshift galaxies presently being observed with large, ground-based telescopes.

  10. Detection of Spectral Evolution in the Bursts Emitted During the 2008-2009 Active Episode of SGR J1550 - 5418

    NASA Technical Reports Server (NTRS)

    von Kienlin, Andreas; Gruber, David; Kouveliotou, Chryssa; Granot, Jonathan; Baring, Matthew G.; Gogus, Ersin; Huppenkothen, Daniela; Kaneko, Yuki; Lin, Lin; Watts, Anna L.; hide

    2012-01-01

    In early October 2008, the Soft Gamma Repeater SGRJ1550 - 5418 (1E1547.0 - 5408, AXJ155052 - 5418, PSR J1550 - 5418) became active, emitting a series of bursts which triggered the Fermi Gamma-ray Burst Monitor (GBM) after which a second especially intense activity period commenced in 2009 January and a third, less active period was detected in 2009 March-April. Here we analyze the GBM data of all the bursts from the first and last active episodes. We performed temporal and spectral analysis for all events and found that their temporal characteristics are very similar to the ones of other SGR bursts, as well the ones reported for the bursts of the main episode (average burst durations 170ms). In addition, we used our sample of bursts to quantify the systematic uncertainties of the GBM location algorithm for soft gamma-ray transients to less than or equal to 8 degrees. Our spectral analysis indicates significant spectral evolution between the first and last set of events. Although the 2008 October events are best fit with a single blackbody function, for the 2009 bursts an Optically Thin Thermal Bremsstrahlung (OTTB) is clearly preferred. We attribute this evolution to changes in the magnetic field topology of the source, possibly due to effects following the very energetic main bursting episode.

  11. NGEE Arctic Canopy Spectral Reflectance, Barrow, Alaska, 2014-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shawn Serbin; Wil Lieberman-Cribbin; Kim Ely

    Measurements of full-spectrum (i.e. 350-2500nm) canopy spectral reflectance of Arctic plant species within the BEO, Barrow, Alaska. Spectra were collected using an Spectra Vista Corporation (SVC) HR-2014i and Spectral Evolution (SE) PSR+ instrument mounted on a tripod or monopod together with a Spectralon white plate to calibrate each measurement under variable illumination conditions. Data were collected in Barrow, Alaska during the 2014 to 2016 period.

  12. Visible spectral slope survey of Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Erasmus, Nicolas; Rivkin, Andrew S.; Sickafoose, Amanda A.

    2016-10-01

    Jupiter's Trojans are predicted by the Nice Model [1,2] to be Trans-Neptunian Objects (TNOs) that moved from 30+ AU to 5.2 AU during the early evolution period of the Solar System. This model, predicting giant planet migration and widespread transport of material throughout the Solar System, is however still lacking important constraints. Correlations between the composition, size, and orbital geometry of Jupiter's Trojans can provide additional information to test predicted migration and evolution models.Two main colour groups have been observed, roughly equivalent to the C (plus low-albedo X) and D classes with distinguishable spectral slopes, and one interpretation is that the two groups have different compositions [3]. Independent compositions together with hints of differing orbital inclination distributions could imply separate formation locations; therefore, determining the relative fractions of C and D asteroids at different sizes would provide a key test for Solar System dynamical models. However, there is a caveat: the distinct colour groups could also arise by other means. Regolith processes or "space weathering" such as micrometeorite impacts and UV irradiation of ice are also plausible explanations for a range of spectrographic slopes from C-like to D-like [4].Here we report on our latest survey observations at Sutherland, South Africa of approximately 50 Trojan targets using the Sutherland High Speed Optical Camera (SHOC) [5] on the 74" telescope. These observations are part of a larger multi-telescope survey to determine the spectral slopes (C-like or D-like) for multiple Trojans, focusing on those of small size. These slopes can be used to determine the relative fraction of C+X and D asteroids at different sizes to determine whether what is seen is more consistent with regolith processes or different compositions.References:[1] A. Morbidelli, et al. Nature, 435, 462-465, (2005)[2] R. Gomes, et al. Nature 435, 466-469 (2005)[3] J.P. Emery, et al. The Astronomical Journal, 141, 25, (2010)[4] R. Brunetto et al. Asteroids IV, 597-616 (2015)[5] R. Coppejans, et al. Publ. Astr. Soc. Pacific, 125, 976-988, (2013)

  13. New solar irradiances for use in space research

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Bouwer, D.; Jones, A.

    Space environment research applications require solar irradiances in a variety of time scales and spectral formats We describe the development of research grade modeled solar irradiances using four models and systems that are also used for space weather operations The four models systems include SOLAR2000 S2K SOLARFLARE SFLR APEX and IDAR which are used by Space Environment Technologies SET to provide solar irradiances from the soft X-rays through the visible spectrum SFLR uses the GOES 0 1--0 8 nm X-rays in combination with a Mewe model subroutine to provide 0 1--30 0 nm irradiances at 0 1 nm spectral resolution at 1 minute time resolution and in a 6-hour XUV--EUV spectral solar flare evolution forecast with a 7 minute latency and a 2 minute cadence These irradiances have been calibrated with the SORCE XPS observations and we report on the inclusion of these irradiances in the S2K model There are additional developments with S2K that we discuss particularly the method by which S2K is emerging as a hybrid model empirical plus physics-based and real-time data integration platform Numerous new solar indices have been recently developed for the operations community and we describe their inclusion in S2K The APEX system is a real-time data retrieval system developed under contract to the University of Southern California Space Sciences Center SSC to provide SOHO SEM data processing and distribution SSC provides the updated SEM data to the research community and SET provides the operational data to the space operations community We

  14. SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.

    2017-01-01

    Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the intergalactic medium, and they may inject kinetic energy to the host galaxy, influencing its evolution. The traditional method of analyzing BALQSO spectra involves measuring myriad absorption lines, computing the inferred ionic column densities in each feature, and comparing with the output of photonionization models. This method is inefficient and does not handle line blending well. We introduce SimBAL, a spectral synthesis fitting method for BALQSOs, which compares synthetic spectra created from photoionization model results with continuum-normalized observed spectra using Bayesian model calibration. We find that we can obtain an excellent fit to the UV to near-IR spectrum of the low-redshift BALQSO SDSS J0850+4451, including lines from diverse ionization states such as PV, CIII*, SIII, Lyalpha, NV, SiIV, CIV, MgII, and HeI*.

  15. Fog Evolution in the Visible and Infrared Spectral Regions and Its Meaning in Optical Modeling

    DTIC Science & Technology

    1979-12-01

    8217 ilatiton flr -KmniCs Stret ’i-bite’ I’t, tnsmitttat’e ~Nit (il’.:’’ l )Nt-.5t;7.,*JtIl\\ 19175. .1. 111&1tiIo. .. , I nid It. .ttaigt’loe "BIallisti WiX ~ndI...8217’Temperature Nvasuroments in thet Stratosphere from Balloon- Borne Instrument Platforms , 1968-1975," E(’(M.5808, Decembiler 1976. 45. Mlonahan, II.11., ’’An

  16. Large-scale Heterogeneous Network Data Analysis

    DTIC Science & Technology

    2012-07-31

    Mining (KDD’09), 527-535, 2009. [20] B. Long, Z. M. Zhang, X. Wu, and P. S. Yu . Spectral Clustering for Multi-type Relational Data. In Proceedings of...and Data Mining (KDD’06), 374-383, 2006. [33] Y. Sun, Y. Yu , and J. Han. Ranking-Based Clustering of Heterogeneous Information Networks with Star...publications in 2012 so far:  Yi-Kuang Ko, Jing- Kai Lou, Cheng-Te Li, Shou-de Lin, and Shyh-Kang Jeng. “A Social Network Evolution Model Based on

  17. Outer atmospheres of giant and supergiant stars

    NASA Technical Reports Server (NTRS)

    Brown, A.

    1984-01-01

    The properties of the chromospheres, transition regions and coronas of cool evolved stars are reviewed based primarily on recent ultraviolet and X-ray studies. Determinations of mass loss rates using new observational techniques in the ultraviolet and radio spectral regions are discussed and observations indicating general atmospheric motions are considered. The techniques available for the quantitative modeling of these atmospheres are outlined and recent results discussed. Finally, the current rudimentary understanding of the evolution of these outer atmospheres and its causes are considered.

  18. Exploring the luminosity evolution and stellar mass assembly of 2SLAQ luminous red galaxies between redshifts 0.4 and 0.8

    NASA Astrophysics Data System (ADS)

    Banerji, Manda; Ferreras, Ignacio; Abdalla, Filipe B.; Hewett, Paul; Lahav, Ofer

    2010-03-01

    We present an analysis of the evolution of 8625 luminous red galaxies (LRGs) between z = 0.4 and 0.8 in the 2dF and Sloan Digital Sky Survey LRG and QSO (2SLAQ) survey. The LRGs are split into redshift bins and the evolution of both the luminosity and stellar mass function with redshift is considered and compared to the assumptions of a passive evolution scenario. We draw attention to several sources of systematic error that could bias the evolutionary predictions made in this paper. While the inferred evolution is found to be relatively unaffected by the exact choice of spectral evolution model used to compute K + e corrections, we conclude that photometric errors could be a source of significant bias in colour-selected samples such as this, in particular when using parametric maximum likelihood based estimators. We find that the evolution of the most massive LRGs is consistent with the assumptions of passive evolution and that the stellar mass assembly of the LRGs is largely complete by z ~ 0.8. Our findings suggest that massive galaxies with stellar masses above 1011Msolar must have undergone merging and star formation processes at a very early stage (z >~ 1). This supports the emerging picture of downsizing in both the star formation as well as the mass assembly of early-type galaxies. Given that our spectroscopic sample covers an unprecedentedly large volume and probes the most massive end of the galaxy mass function, we find that these observational results present a significant challenge for many current models of galaxy formation.

  19. Constraining Cosmic Dawn and Cosmological Reionization via the global redshifted 21-cm signal

    NASA Astrophysics Data System (ADS)

    Singh, Saurabh

    2018-01-01

    The formation of first stars and consequent thermal evolution in baryons during Cosmic Dawn and the Epoch of Reionization (EoR) is poorly constrained. The 21-cm line transition of neutral hydrogen is one of the richest probes of the astrophysics during this era. The signal has the potential to reveal the nature and timing of the emergence of first stars, first light, and the consequent evolution in thermal and ionization state of the baryons.The detection of the global redshifted 21-cm signal, which represents the mean thermal history of the gas, is challenging since it is extremely faint and seen through orders of magnitude stronger contributions from Galactic and extragalactic foregrounds. Man-made terrestrial Radio Frequency Interference (RFI) and the exacting tolerances required on instrument systematics make the detection even more daunting.The design considerations for a precision spectral radiometer are first listed, and a comparison is made of different radiometer configurations, including short and zero baseline interferometers along with methods to enhance the response. We discuss the relative merits of different methods.We then describe SARAS 2, a spectral radiometer custom-designed for precision measurement of the global 21-cm signal. SARAS 2 has been designed to have a system transfer function and internal systematics – both multiplicative and additive – to be spectrally smooth so as to allow a separation of foregrounds and systematics from plausible and predicted global cosmological 21-cm signals. The algorithms for calibration and RFI mitigation are carefully developed so that they do not introduce spectral features that may confuse the detection of the 21-cm signal.We present the outcomes for cosmology from analysis of 60 hr observing with the radiometer deployed at the Timbaktu Collective in Southern India. The detailed analysis of the data reveals an RMS noise level of 11 mK, without being limited by systematic structures. The likelihood ratios are computed from the data for plausible 21-cm signals predicted by theoretical models. First light with SARAS 2 disfavors the scenario of rapid reionization and also the models in which the first X-ray sources have poor heating efficiency.

  20. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength.

    PubMed

    Wang, Wenjing; Geiger, James H; Borhan, Babak

    2014-01-01

    The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore. © 2014 WILEY Periodicals, Inc.

  1. What Can Simbol-X Do for Gamma-ray Binaries?

    NASA Astrophysics Data System (ADS)

    Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.

    2009-05-01

    Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ~1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61°303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.

  2. Fitting Analysis using Differential evolution Optimization (FADO):. Spectral population synthesis through genetic optimization under self-consistency boundary conditions

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.

    2017-07-01

    The goal of population spectral synthesis (pss; also referred to as inverse, semi-empirical evolutionary- or fossil record approach) is to decipher from the spectrum of a galaxy the mass, age and metallicity of its constituent stellar populations. This technique, which is the reverse of but complementary to evolutionary synthesis, has been established as fundamental tool in extragalactic research. It has been extensively applied to large spectroscopic data sets, notably the SDSS, leading to important insights into the galaxy assembly history. However, despite significant improvements over the past decade, all current pss codes suffer from two major deficiencies that inhibit us from gaining sharp insights into the star-formation history (SFH) of galaxies and potentially introduce substantial biases in studies of their physical properties (e.g., stellar mass, mass-weighted stellar age and specific star formation rate). These are I) the neglect of nebular emission in spectral fits, consequently; II) the lack of a mechanism that ensures consistency between the best-fitting SFH and the observed nebular emission characteristics of a star-forming (SF) galaxy (e.g., hydrogen Balmer-line luminosities and equivalent widths-EWs, shape of the continuum in the region around the Balmer and Paschen jump). In this article, we present fado (Fitting Analysis using Differential evolution Optimization) - a conceptually novel, publicly available pss tool with the distinctive capability of permitting identification of the SFH that reproduces the observed nebular characteristics of a SF galaxy. This so-far unique self-consistency concept allows us to significantly alleviate degeneracies in current spectral synthesis, thereby opening a new avenue to the exploration of the assembly history of galaxies. The innovative character of fado is further augmented by its mathematical foundation: fado is the first pss code employing genetic differential evolution optimization. This, in conjunction with various other currently unique elements in its mathematical concept and numerical realization (e.g., mid-analysis optimization of the spectral library using artificial intelligence, test for convergence through a procedure inspired by Markov chain Monte Carlo techniques, quasi-parallelization embedded within a modular architecture) results in key improvements with respect to computational efficiency and uniqueness of the best-fitting SFHs. Furthermore, fado incorporates within a single code the entire chain of pre-processing, modeling, post-processing, storage and graphical representation of the relevant output from pss, including emission-line measurements and estimates of uncertainties for all primary and secondary products from spectral synthesis (e.g., mass contributions of individual stellar populations, mass- and luminosity-weighted stellar ages and metallicities). This integrated concept greatly simplifies and accelerates a lengthy sequence of individual time-consuming steps that are generally involved in pss modeling, further enhancing the overall efficiency of the code and inviting to its automated application to large spectroscopic data sets. The distribution package of the FADO v.1 tool contains the binary and its auxiliary files. FADO v.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A63

  3. A simulation-based analytic model of radio galaxies

    NASA Astrophysics Data System (ADS)

    Hardcastle, M. J.

    2018-04-01

    I derive and discuss a simple semi-analytical model of the evolution of powerful radio galaxies which is not based on assumptions of self-similar growth, but rather implements some insights about the dynamics and energetics of these systems derived from numerical simulations, and can be applied to arbitrary pressure/density profiles of the host environment. The model can qualitatively and quantitatively reproduce the source dynamics and synchrotron light curves derived from numerical modelling. Approximate corrections for radiative and adiabatic losses allow it to predict the evolution of radio spectral index and of inverse-Compton emission both for active and `remnant' sources after the jet has turned off. Code to implement the model is publicly available. Using a standard model with a light relativistic (electron-positron) jet, subequipartition magnetic fields, and a range of realistic group/cluster environments, I simulate populations of sources and show that the model can reproduce the range of properties of powerful radio sources as well as observed trends in the relationship between jet power and radio luminosity, and predicts their dependence on redshift and environment. I show that the distribution of source lifetimes has a significant effect on both the source length distribution and the fraction of remnant sources expected in observations, and so can in principle be constrained by observations. The remnant fraction is expected to be low even at low redshift and low observing frequency due to the rapid luminosity evolution of remnants, and to tend rapidly to zero at high redshift due to inverse-Compton losses.

  4. Resurfacing asteroids from YORP spin-up and failure

    NASA Astrophysics Data System (ADS)

    Graves, Kevin J.; Minton, David A.; Hirabayashi, Masatoshi; DeMeo, Francesca E.; Carry, Benoit

    2018-04-01

    The spectral properties of S and Q-type asteroids can change over time due to interaction with the solar wind and micrometeorite impacts in a process known as 'space weathering.' Space weathering raises the spectral slope and decreases the 1 μm absorption band depth in the spectra of S and Q-type asteroids. Over time, Q-type asteroids, which have very similar spectra to ordinary chondrite meteorites, will change into S-type asteroids. Because there are a significant number of Q-type asteroids, there must be some process which is resurfacing S-type asteroids into Q-types. In this study, we use asteroid data from the Sloan Digital Sky Survey to show a trend between the slope through the g‧, r‧, and i‧ filters, called the gri-slope, and size that holds for all populations of S and Q-type asteroids in the inner solar system, regardless of orbit. We model the evolution of a suite of asteroids in a Monte Carlo YORP rotational evolution and space weathering model. We show that spin-up and failure from YORP is one of the key resurfacing mechanisms that creates the observed weathering trends with size. By varying the non-dimensional YORP coefficient and running time of the present model over the range 475-1425 Myr, we find a range of values for the space weathering timescale, τSW ≈ 19-80 Myr at 2.2 AU. We also estimate the time to weather a newly resurfaced Q-type asteroid into an S-complex asteroid at 1 AU, τQ → S(1AU) ≈ 2-7 Myr.

  5. GRB 120729A: External Shock Origin for Both the Prompt Gamma-Ray Emission and Afterglow

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ye; Wang, Xiang-Gao; Zheng, WeiKang; Liang, En-Wei; Lin, Da-bin; Zhong, Shu-Qing; Zhang, Hai-Ming; Huang, Xiao-Li; Filippenko, Alexei V.; Zhang, Bing

    2018-06-01

    Gamma-ray burst (GRB) 120729A was detected by Swift/BAT and Fermi/GBM, and then rapidly observed by Swift/XRT, Swift/UVOT, and ground-based telescopes. It had a single long and smooth γ-ray emission pulse, which extends continuously to the X-rays. We report Lick/KAIT observations of the source, and make temporal and spectral joint fits of the multiwavelength light curves of GRB 120729A. It exhibits achromatic light-curve behavior, consistent with the predictions of the external shock model. The light curves are decomposed into four typical phases: onset bump (Phase I), normal decay (Phase II), shallow decay (Phase III), and post-jet break (Phase IV). The spectral energy distribution (SED) evolves from prompt γ-ray emission to the afterglow with a photon index from Γ γ = 1.36 to Γ ≈ 1.75. There is no obvious evolution of the SED during the afterglow. The multiwavelength light curves from γ-ray to optical can be well modeled with an external shock by considering energy injection, and a time-dependent microphysics model with {ε }B\\propto {t}{α B} for the emission at early times, T< {T}0+157 {{s}}. Therefore, we conclude that both the prompt γ-ray emission and afterglow of GRB 120729A have the same external shock physical origin. Our model indicates that the ɛ B evolution can be described as a broken power-law function with α B,1 = 0.18 ± 0.04 and α B,2 = 0.84 ± 0.04. We also systematically investigate single-pulse GRBs in the Swift era, finding that only a small fraction of GRBs (GRBs 120729A, 051111, and 070318) are likely to originate from an external shock for both the prompt γ-ray emission and afterglow.

  6. Building and Characterizing Volcanic Landscapes with a Numerical Landscape Evolution Model and Spectral Techniques

    NASA Astrophysics Data System (ADS)

    Richardson, P. W.; Karlstrom, L.

    2016-12-01

    The competition between constructional volcanic processes such as lava flows, cinder cones, and tumuli compete with physical and chemical erosional processes to control the morphology of mafic volcanic landscapes. If volcanic effusion rates are high, these landscapes are primarily constructional, but over the timescales associated with hot spot volcanism (1-10 Myr) and arcs (10-50 Myr), chemical and physical erosional processes are important. For fluvial incision to occur, initially high infiltration rates must be overcome by chemical weathering or input of fine-grained sediment. We investigate lava flow resurfacing, using a new lava flow algorithm that can be calibrated for specific flows and eruption magnitude/frequency relationships, into a landscape evolution model to complete two modeling experiments to investigate the interplay between volcanic resurfacing and fluvial incision. We use a stochastic spatial vent distribution calibrated from the Hawaiian eruption record to resurface a synthetically produced ocean island. In one experiment, we investigate the consequences of including time-dependent channel incision efficiency. This effectively mimics the behavior of transient hydrological development of lava flows. In the second experiment, we explore the competition between channel incision and lava flow resurfacing. The relative magnitudes of channel incision versus lava flow resurfacing are captured in landscape topography. For example, during the shield building period for ocean islands, effusion rates are high and the signature of lava flow resurfacing dominates. In contrast, after the shield building phase, channel incision begins and eventually dominates the topographic signature. We develop a dimensionless ratio of resurfacing rate to erosion rate to characterize the transition between these processes. We use spectral techniques to characterize volcanic features and to pinpoint the transition between constructional and erosional morphology on modeled landscapes and on the Big Island of Hawaii.

  7. Evidence for different accretion regimes in GRO J1008-57

    NASA Astrophysics Data System (ADS)

    Kühnel, Matthias; Fürst, Felix; Pottschmidt, Katja; Kreykenbohm, Ingo; Ballhausen, Ralf; Falkner, Sebastian; Rothschild, Richard E.; Klochkov, Dmitry; Wilms, Jörn

    2017-11-01

    We present a comprehensive spectral analysis of the BeXRB GRO J1008-57 over a luminosity range of three orders of magnitude using NuSTAR, Suzaku, and RXTE data. We find significant evolution of the spectral parameters with luminosity. In particular, the photon index hardens with increasing luminosity at intermediate luminosities in the range 1036-1037 erg s-1. This evolution is stable and repeatedly observed over different outbursts. However, at the extreme ends of the observed luminosity range, we find that the correlation breaks down, with a significance level of at least 3.7σ. We conclude that these changes indicate transitions to different accretion regimes, which are characterized by different deceleration processes, such as Coulomb or radiation breaking. We compare our observed luminosity levels of these transitions to theoretical predications and discuss the variation of those theoretical luminosity values with fundamental neutron star parameters. Finally, we present detailed spectroscopy of the unique "triple peaked" outburst in 2014/15 which does not fit in the general parameter evolution with luminosity. The pulse profile on the other hand is consistent with what is expected at this luminosity level, arguing against a change in accretion geometry. In summary, GRO J1008-57 is an ideal target to study different accretion regimes due to the well-constrained evolution of its broad-band spectral continuum over several orders of magnitude in luminosity.

  8. Characterizing bidirectional reflectance and spectral albedo of various land cover types in Midwest using GeoTASO Summer-2014 campaign

    NASA Astrophysics Data System (ADS)

    Wulamu, A.; Fishman, J.; Maimaitiyiming, M.; Leitch, J. W.; Zoogman, P.; Liu, X.; Chance, K.; Marshall, B.

    2015-12-01

    Understanding the bi-directional reflectance function (BRDF) and spectral albedo of various land-cover types is critical for retrieval of trace gas measurements from planned geostationary satellites such as the Tropospheric Emissions: Monitoring of Pollution (TEMPO). Radiant energy, which will be measured by these instruments at the top of atmosphere (TOA) at unprecedented spectral resolution, is strongly influenced by how this energy is reflected by the underlying surface. Thus, it is critical that we understand this phenomenon at comparable wavelength resolution. As part of the NASA ESTO-funded Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) development project, we carried out synchronous field and airborne data collection campaigns in the St Louis Metro region in Summer 2014. We collected spectral reflectance data of various land cover types on the ground within hours of a GeoTASO overpass using a field-based hyperspectral spectroradiometer (model PSR3500 from Spectral Evolution). Field measurements collecting in-situ spectral albedo and bidirectional reflectance factors were also obtained in July and August of 2015. In this study, we present our preliminary findings from in-situ and airborne GeoTASO derived spectral albedo and BRDF characteristics of major land cover types at TEMPO spectral profiles, which are necessary for the accurate retrieval of tropospheric trace gases and aerosols. First, a spectral database of various targets (e.g., plants, soils, rocks, man-made objects and water) was developed using field measurements. Next, the GeoTASO airborne data were corrected using MODTRAN and field measurements to derive spectral albedo and BRDF. High spatial resolution land-cover types were extracted using satellite images (e.g., Landsat, WorldView, IKONOS, etc.) at resolutions from 2 m - 30 m. Lastly, spectral albedo/BRDFs corresponding to various land cover types were analyzed using both field and GeoTASO measurements.

  9. Hydrodynamical models of cometary H II regions

    NASA Astrophysics Data System (ADS)

    Steggles, H. G.; Hoare, M. G.; Pittard, J. M.

    2017-04-01

    We have modelled the evolution of cometary H II regions produced by zero-age main-sequence stars of O and B spectral types, which are driving strong winds and are born off-centre from spherically symmetric cores with power-law (α = 2) density slopes. A model parameter grid was produced that spans stellar mass, age and core density. Exploring this parameter space, we investigated limb-brightening, a feature commonly seen in cometary H II regions. We found that stars with mass M⋆ ≥ 12 M⊙ produce this feature. Our models have a cavity bounded by a contact discontinuity separating hot shocked wind and ionized ambient gas that is similar in size to the surrounding H II region. Because of early pressure confinement, we did not see shocks outside of the contact discontinuity for stars with M⋆ ≤ 40 M⊙, but the cavities were found to continue to grow. The cavity size in each model plateaus as the H II region stagnates. The spectral energy distributions of our models are similar to those from identical stars evolving in uniform density fields. The turn-over frequency is slightly lower in our power-law models as a result of a higher proportion of low-density gas covered by the H II regions.

  10. Importance of Resolving the Spectral Support of Beam-plasma Instabilities in Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalaby, Mohamad; Broderick, Avery E.; Chang, Philip

    2017-10-20

    Many astrophysical plasmas are prone to beam-plasma instabilities. For relativistic and dilute beams, the spectral support of the beam-plasma instabilities is narrow, i.e., the linearly unstable modes that grow with rates comparable to the maximum growth rate occupy a narrow range of wavenumbers. This places stringent requirements on the box-sizes when simulating the evolution of the instabilities. We identify the implied lower limits on the box size imposed by the longitudinal beam plasma instability, i.e., typically the most stringent condition required to correctly capture the linear evolution of the instabilities in multidimensional simulations. We find that sizes many orders ofmore » magnitude larger than the resonant wavelength are typically required. Using one-dimensional particle-in-cell simulations, we show that the failure to sufficiently resolve the spectral support of the longitudinal instability yields slower growth and lower levels of saturation, potentially leading to erroneous physical conclusion.« less

  11. Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves.

    PubMed

    Cuevas-Maraver, J; Kevrekidis, P G; Frantzeskakis, D J; Karachalios, N I; Haragus, M; James, G

    2017-07-01

    In the present work, we aim at taking a step towards the spectral stability analysis of Peregrine solitons, i.e., wave structures that are used to emulate extreme wave events. Given the space-time localized nature of Peregrine solitons, this is a priori a nontrivial task. Our main tool in this effort will be the study of the spectral stability of the periodic generalization of the Peregrine soliton in the evolution variable, namely the Kuznetsov-Ma breather. Given the periodic structure of the latter, we compute the corresponding Floquet multipliers, and examine them in the limit where the period of the orbit tends to infinity. This way, we extrapolate towards the stability of the limiting structure, namely the Peregrine soliton. We find that multiple unstable modes of the background are enhanced, yet no additional unstable eigenmodes arise as the Peregrine limit is approached. We explore the instability evolution also in direct numerical simulations.

  12. Generic analysis of kinetically driven inflation

    NASA Astrophysics Data System (ADS)

    Saitou, Rio

    2018-04-01

    We perform a model-independent analysis of kinetically driven inflation (KDI) which (partially) includes generalized G-inflation and ghost inflation. We evaluate the background evolution splitting into the inflationary attractor and the perturbation around it. We also consider the quantum fluctuation of the scalar mode with a usual scaling and derive the spectral index, ignoring the contribution from the second-order products of slow-roll parameters. Using these formalisms, we find that within our generic framework the models of KDI which possess the shift symmetry of scalar field cannot create the quantum fluctuation consistent with the observation. Breaking the shift symmetry, we obtain a few essential conditions for viable models of KDI associated with the graceful exit.

  13. A Fractional PDE Approach to Turbulent Mixing; Part II: Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Samiee, Mehdi; Zayernouri, Mohsen

    2016-11-01

    We propose a generalizing fractional order transport model of advection-diffusion kind with fractional time- and space-derivatives, governing the evolution of passive scalar turbulence. This approach allows one to incorporate the nonlocal and memory effects in the underlying anomalous diffusion i.e., sub-to-standard diffusion to model the trapping of particles inside the eddied, and super-diffusion associated with the sudden jumps of particles from one coherent region to another. For this nonlocal model, we develop a high order numerical (spectral) method in addition to a fast solver, examined in the context of some canonical problems. PhD student, Department of Mechanical Engineering, & Department Computational Mathematics, Science, and Engineering.

  14. Phonon-mediated nuclear spin relaxation in H2O

    NASA Astrophysics Data System (ADS)

    Yamakawa, Koichiro; Azami, Shinya; Arakawa, Ichiro

    2017-03-01

    A theoretical model of the phonon-mediated nuclear spin relaxation in H2O trapped by cryomatrices has been established for the first time. In order to test the validity of this model, we measured infrared spectra of H2O trapped in solid Ar, which showed absorption peaks due to rovibrational transitions of ortho- and para-H2O in the spectral region of the bending vibration. We monitored the time evolution of the spectra and analyzed the rotational relaxation associated with the nuclear spin flip to obtain the relaxation rates of H2O at temperatures of 5-15 K. Temperature dependence of the rate is discussed in terms of the devised model.

  15. High Resolution X-ray Spectroscopy and Star Formation: HETG Observations of the Pre-Main Sequence Stellar Cluster IC 348

    NASA Astrophysics Data System (ADS)

    Principe, David; Huenemoerder, David P.; Schulz, Norbert; Kastner, Joel H.; Weintraub, David; Preibisch, Thomas

    2018-01-01

    We present Chandra High Energy Transmission Grating (HETG) observations of the ∼3 Myr old pre-main sequence (pre-MS) stellar cluster IC 348. With 400-500 cluster members at a distance of ∼300 pc, IC 348 is an ideal target to observe a large number of X-ray sources in a single pointing and is thus an extremely efficient use of Chandra-HETG. High resolution X-ray spectroscopy offers a means to investigate detailed spectral characteristic of X-ray emitting plasmas and their surrounding environments. We present preliminary results where we compare X-ray spectral signatures (e.g., luminosity, temperature, column density, abundance) of the X-ray brightest pre-MS stars in IC 348 with spectral type, multiwavelength signatures of accretion, and the presence of circumstellar disks at multiple stages of pre-MS stellar evolution. Assuming all IC 348 members formed from the same primordial molecular cloud, any disparity between coronal abundances of individual members, as constrained by the identification and strength of emission lines, will constrain the source(s) of coronal chemical evolution at a stage of pre-MS evolution vital to the formation of planets.

  16. Examining South Atlantic Subtropical Cyclone Anita using the Satellite-Enhanced Regional Downscaling for Applied Studies Hourly Outputs

    NASA Astrophysics Data System (ADS)

    Vaicberg, H.; Palmeira, A. C. P. A.; Nunes, A.

    2017-12-01

    Studies on South Atlantic cyclones are mainly compromised by scarcity of observations. Therefore, remote sensing and global (re) analysis products are usually employed in investigations of their evolution. However, the frequent use of global reanalysis might difficult the assessment of the characteristics of the cyclones found in South Atlantic. In that regard, studies on "subtropical" cyclones have been performed using the 25-km resolution, Satellite-enhanced Regional Downscaling for Applied Studies (SRDAS), a product developed at the Federal University of Rio de Janeiro in Brazil. In SRDAS, the Regional Spectral Model assimilates precipitation estimates from environmental satellites, while dynamically downscaling a global reanalysis using the spectral nudging technique to maintain the large-scale features in agreement with the regional model solution. The use of regional models in the downscaling of general circulation models provides more detailed information on weather and climate. As a way of illustrating the usefulness of SRDAS in the study of the subtropical South Atlantic cyclones, the subtropical cyclone Anita was selected because of its intensity. Anita developed near Brazilian south/southeast coast, with damages to local communities. Comparisons with available observations demonstrated the skill of SRDAS in simulating such an extreme event.

  17. Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications

    NASA Technical Reports Server (NTRS)

    Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.

    2012-01-01

    Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.

  18. Modelling of squall with the generalised kinetic equation

    NASA Astrophysics Data System (ADS)

    Annenkov, Sergei; Shrira, Victor

    2014-05-01

    We study the long-term evolution of random wind waves using the new generalised kinetic equation (GKE). The GKE derivation [1] does not assume the quasi-stationarity of a random wave field. In contrast with the Hasselmann kinetic equation, the GKE can describe fast spectral changes occurring when a wave field is driven out of a quasi-equilibrium state by a fast increase or decrease of wind, or by other factors. In these cases, a random wave field evolves on the dynamic timescale typical of coherent wave processes, rather than on the kinetic timescale predicted by the conventional statistical theory. Besides that, the generalised theory allows to trace the evolution of higher statistical moments of the field, notably the kurtosis, which is important for assessing the risk of freak waves and other applications. A new efficient and highly parallelised algorithm for the numerical simulation of the generalised kinetic equation is presented and discussed. Unlike in the case of the Hasselmann equation, the algorithm takes into account all (resonant and non-resonant) nonlinear wave interactions, but only approximately resonant interactions contribute to the spectral evolution. However, counter-intuitively, all interactions contribute to the kurtosis. Without forcing or dissipation, the algorithm is shown to conserve the relevant integrals. We show that under steady wind forcing the wave field evolution predicted by the GKE is close to the predictions of the conventional statistical theory, which is applicable in this case. In particular, we demonstrate the known long-term asymptotics for the evolution of the spectrum. When the wind forcing is not steady (in the simplest case, an instant increase or decrease of wind occurs), the generalised theory is the only way to study the spectral evolution, apart from the direct numerical simulation. The focus of the work is a detailed analysis of the fast evolution after an instant change of forcing, and of the subsequent transition to the new quasi-stationary state of a wave field. It is shown that both increase and decrease of wind lead to a significant transient increase of the dynamic kurtosis, although these changes remain small compared to the changes of the other component of the kurtosis, which is due to bound harmonics. A special consideration is given to the case of the squall, i.e. an instant and large (by a factor of 2-4) increase of wind, which lasts for O(102) characteristic wave periods. We show that fast adjustment processes lead to the formation of a transient spectrum, which has a considerably narrower peak than the spectra developed under a steady forcing. These transient spectra differ qualitatively from those predicted by the Hasselmann kinetic equation under the squall with the same parameters. 1. S.Annenkov, V.Shrira (2006) Role of non-resonant interactions in evolution of nonlinear random water wave fields, J. Fluid Mech. 561, 181-207.

  19. Spectral decomposition of asteroid Itokawa based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho

    2018-01-01

    The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.

  20. Constraining star formation through redshifted CO and CII emission in archival CMB data

    NASA Astrophysics Data System (ADS)

    Switzer, Eric

    LCDM is a strikingly successful paradigm to explain the CMB anisotropy and its evolution into observed galaxy clustering statistics. The formation and evolution of galaxies within this context is more complex and only partly characterized. Measurements of the average star formation and its precursors over cosmic time are required to connect theories of galaxy evolution to LCDM evolution. The fine structure transition in CII at 158 um traces star formation rates and the ISM radiation environment. Cold, molecular gas fuels star formation and is traced well by a ladder of CO emission lines. Catalogs of emission lines in individual galaxies have provided the most information about CII and CO to-date but are subject to selection effects. Intensity mapping is an alternative approach to measuring line emission. It surveys the sum of all line radiation as a function of redshift, and requires angular resolution to reach cosmologically interesting scales, but not to resolve individual sources. It directly measures moments of the luminosity function from all emitting objects. Intensity mapping of CII and CO can perform an unbiased census of stars and cold gas across cosmic time. We will use archival COBE-FIRAS and Planck data to bound or measure cosmologically redshifted CII and CO line emission through 1) the monopole spectrum, 2) cross-power between FIRAS/Planck and public galaxy survey catalogs from BOSS and the 2MASS redshift surveys, 3) auto-power of the FIRAS/Planck data itself. FIRAS is unique in its spectral range and all-sky coverage, provided by the space-borne FTS architecture. In addition to sensitivity to a particular emission line, intensity mapping is sensitive to all other contributions to surface brightness. We will remove CMB and foreground spatial and spectral templates using models from WMAP and Planck data. Interlopers and residual foregrounds additively bias the auto-power and monopole, but both can still be used to provide rigorous upper bounds. The cross-power with galaxy surveys directly constrains the redshifted line emission. Residual foregrounds and interlopers increase errors but do not add bias. There are 300 resolution elements of the 7 degree FIRAS top-hat inside the BOSS quasar survey, spanning 66 spectral pixels to z 2. While FIRAS noise per voxel is 200 times brighter than the expected peak cosmological CII emission, strt-N averaging of spatial and spectral modes above results in a gain of 140. Intensity mapping is in its infancy, with predictions for surface brightness of line emission ranging over an order of magnitude, and limited knowledge of the intensity-weighted bias. Even if only upper bounds are possible, they complement existing measurements of individual galaxies, which can constitute a lower bound because they measure only a portion of the luminosity function. FIRAS and Planck provide unique opportunities to pursue CII and CO intensity mapping with well-characterized instruments that overlap with galaxy surveys in angular coverage and redshift. We will re-analyze the FIRAS data to optimize sensitivity and robustness, developing a spectral line response model, splitting the data into sub-missions to isolate noise properties, and re- evaluating data cuts. The tools and results here will support future survey concepts with significantly lower noise, such as PIXIE, PRISM, SPHEREX and proposed suborbital experiments designed specifically for intensity mapping. There is a growing appreciation that many phenomena could lie just below the published FIRAS bounds. The proposed work is an early step toward this new science.

  1. Spatio-temporally resolved spectral measurements of laser-produced plasma and semiautomated spectral measurement-control and analysis software

    NASA Astrophysics Data System (ADS)

    Cao, S. Q.; Su, M. G.; Min, Q.; Sun, D. X.; O'Sullivan, G.; Dong, C. Z.

    2018-02-01

    A spatio-temporally resolved spectral measurement system of highly charged ions from laser-produced plasmas is presented. Corresponding semiautomated computer software for measurement control and spectral analysis has been written to achieve the best synchronicity possible among the instruments. This avoids the tedious comparative processes between experimental and theoretical results. To demonstrate the capabilities of this system, a series of spatio-temporally resolved experiments of laser-produced Al plasmas have been performed and applied to benchmark the software. The system is a useful tool for studying the spectral structures of highly charged ions and for evaluating the spatio-temporal evolution of laser-produced plasmas.

  2. The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.

    2017-11-01

    Pulsar timing arrays (PTAs) around the world are using the incredible consistency of millisecond pulsars to measure low-frequency gravitational waves from (super)massive black hole (MBH) binaries. We use comprehensive MBH merger models based on cosmological hydrodynamic simulations to predict the spectrum of the stochastic gravitational wave background (GWB). We use real time-of-arrival specifications from the European, NANOGrav, Parkes, and International PTA (IPTA) to calculate realistic times to detection of the GWB across a wide range of model parameters. In addition to exploring the parameter space of environmental hardening processes (in particular: stellar scattering efficiencies), we have expanded our models to include eccentric binary evolution which can have a strong effect on the GWB spectrum. Our models show that strong stellar scattering and high characteristic eccentricities enhance the GWB strain amplitude near the PTA-sensitive `sweet-spot' (near the frequency f = 1 yr-1), slightly improving detection prospects in these cases. While the GWB amplitude is degenerate between cosmological and environmental parameters, the location of a spectral turnover at low frequencies (f ≲ 0.1 yr-1) is strongly indicative of environmental coupling. At high frequencies (f ≳ 1 yr-1), the GWB spectral index can be used to infer the number density of sources and possibly their eccentricity distribution. Even with merger models that use pessimistic environmental and eccentricity parameters, if the current rate of PTA expansion continues, we find that the IPTA is highly likely to make a detection within about 10 yr.

  3. A Teaching Module about Stellar Structure and Evolution

    ERIC Educational Resources Information Center

    Colantonio, Arturo; Galano, Silvia; Leccia, Silvio; Puddu, Emanuella; Testa, Italo

    2017-01-01

    In this paper, we present a teaching module about stellar structure, functioning and evolution. Drawing from literature in astronomy education, we designed the activities around three key ideas: spectral analysis, mechanical and thermal equilibrium, energy and nuclear reactions. The module is divided into four phases, in which the key ideas for…

  4. Effects of distributions of energy of transfer rates on spectral hole burning in photosynthetic pigment-protein complexes

    NASA Astrophysics Data System (ADS)

    Ahmouda, Somaya

    To perform photosynthesis, plants, algae and bacteria possess well organized and closely coupled photosynthetic pigment-protein complexes. Information on energy transfer in photosynthetic complexes is important to understand their functioning and possibly to design new and improved photovoltaic devices. The information on energy transfer processes contained in the narrow zero-phonon lines at low temperatures is hidden under the inhomogeneous broadening. Thus, it has been proven difficult to analyze the spectroscopic properties of these complexes in sufficient detail by conventional spectroscopy methods. In this context the high resolution spectroscopy techniques such as Spectral Hole Burning are powerful tools designed to get around the inhomogeneous broadening. Spectral Hole Burning involves selective excitation by a laser which removes molecules with the zero-phonon transitions resonant with this laser. This thesis focuses on the effects of the distributions of the energy transfer rates (homogeneous line widths) on the evolution of spectral holes. These distributions are a consequence of the static disorder in the photosynthetic pigment-protein complexes. The qualitative effects of different types of the line width distributions on the evolution of spectral holes have been and explored by numerical simulations, an example of analysis of the original experimental data has been presented as well.

  5. Phase Fluctuations and a Negative U Hubbard Model: Single-Particle and Thermodyanic Properties in a Conserving Approximation

    NASA Astrophysics Data System (ADS)

    Serene, J. W.; Deisz, J. J.; Hess, D. W.

    1997-03-01

    Calculations performed in the fluctuation exchange approximation for the single-band 2D Hubbard model on a cylinder and threaded by a flux, show the appearance of a finite superfluid density below T ~ 0.13t, for U=-4t and at three-eighths filling.(J.J. Deisz, D.W. Hess, Bull. Am. Phys. Soc. 41, 239 (1996); J.J. Deisz, D.W. Hess, and J.W. Serene, in preparation.) We show the evolution, with decreasing temperature, of the single-particle spectral function, the self-energy, the particle-particle T-matrix, and thermodynamic properties as the superfluid state is approached and entered.

  6. Detecting Non-Markovianity of Quantum Evolution via Spectra of Dynamical Maps.

    PubMed

    Chruściński, Dariusz; Macchiavello, Chiara; Maniscalco, Sabrina

    2017-02-24

    We provide an analysis on non-Markovian quantum evolution based on the spectral properties of dynamical maps. We introduce the dynamical analog of entanglement witness to detect non-Markovianity and we illustrate its behavior with several instructive examples. It is shown that for several important classes of dynamical maps the corresponding evolution of singular values and/or eigenvalues of the map provides a simple non-Markovianity witness.

  7. Color evolution from z = 0 to z = 1

    NASA Technical Reports Server (NTRS)

    Rakos, Karl D.; Schombert, James M.

    1995-01-01

    Rest frame Stroemgren photometry (3500 A, 4100 A, 4750 A, and 5500 A) is presented for 509 galaxies in 17 rich clusters between z = 0 and z = 1 as a test of color evolution. Our observations confirm a strong, rest frame, Butcher-Oemler effect where the fraction of blue galaxies increases from 20% at z = 0.4 to 80% at z = 0.9. We also find that a majority of these blue cluster galaxies are composed of normal disk or post-starburst systems based on color criteria. When comparing our colors to the morphological results from Hubble Space Telescope HST imaging, we propose that the blue cluster galaxies are a population of late-type, low surface brightness objects which fade and are then destroyed by the cluster tidal field. After isolating the red objects from Butcher-Oemler objects, we have compared the mean color of these old, non-star-forming objects with spectral energy distribution models in the literature as a test for passive galaxy evolution in ellipticals. We find good agreement with single-burst models which predict a mean epoch of galaxy formation at z = 5. Tracing the red envelope for ellipticals places the earliest epoch of galaxy formation at z = 10.

  8. Evolution of the frequency chirp of Gaussian pulses and beams when passing through a pulse compressor.

    PubMed

    Li, Derong; Lv, Xiaohua; Bowlan, Pamela; Du, Rui; Zeng, Shaoqun; Luo, Qingming

    2009-09-14

    The evolution of the frequency chirp of a laser pulse inside a classical pulse compressor is very different for plane waves and Gaussian beams, although after propagating through the last (4th) dispersive element, the two models give the same results. In this paper, we have analyzed the evolution of the frequency chirp of Gaussian pulses and beams using a method which directly obtains the spectral phase acquired by the compressor. We found the spatiotemporal couplings in the phase to be the fundamental reason for the difference in the frequency chirp acquired by a Gaussian beam and a plane wave. When the Gaussian beam propagates, an additional frequency chirp will be introduced if any spatiotemporal couplings (i.e. angular dispersion, spatial chirp or pulse front tilt) are present. However, if there are no couplings present, the chirp of the Gaussian beam is the same as that of a plane wave. When the Gaussian beam is well collimated, the introduced frequency chirp predicted by the plane wave and Gaussian beam models are in closer agreement. This work improves our understanding of pulse compressors and should be helpful for optimizing dispersion compensation schemes in many applications of femtosecond laser pulses.

  9. Correlated Timing and Spectral Behavior of 4U 1705-44

    NASA Astrophysics Data System (ADS)

    Olive, Jean-François; Barret, Didier; Gierliński, Marek

    2003-01-01

    We follow the timing properties of the neutron star low-mass X-ray binary system 4U 1705-44 in different spectral states, as monitored by the Rossi X-Ray Timing Explorer over about a month. We fit the power density spectra using multiple Lorentzians. We show that the characteristic frequencies of these Lorentzians, when properly identified, fit within the correlations previously reported. The time evolution of these frequencies and their relation with the parameters of the energy spectra reported in Barret & Olive are used to constrain the accretion geometry changes. The spectral data were fitted by the sum of a blackbody and a Comptonized component and were interpreted in the framework of a truncated accretion disk geometry, with a varying truncation radius. If one assumes that the characteristic frequencies of the Lorentzians are some measure of this truncation radius, as in most theoretical models, then the timing data presented here strengthen the above interpretation. The soft-to-hard and hard-to-soft transitions are clearly associated with the disk receding from and approaching the neutron star, respectively. During the transitions, correlations are found between the Lorentzian frequencies and the flux and temperature of the blackbody, which is thus likely to be coming from the disk. On the other hand, in the hard state, the characteristic Lorentzians frequencies that are the lowest remained nearly constant despite significant evolution of the spectra parameters. The disk no longer contributes to the X-ray emission, and the blackbody is now likely to be emitted by the neutron star surface that is providing the seed photons for the Comptonization.

  10. On the upper ocean turbulent dissipation rate due to microscale breakers and small whitecaps

    NASA Astrophysics Data System (ADS)

    Banner, Michael L.; Morison, Russel P.

    2018-06-01

    In ocean wave modelling, accurately computing the evolution of the wind-wave spectrum depends on the source terms and the spectral bandwidth used. The wave dissipation rate source term which spectrally quantifies wave breaking and other dissipative processes remains poorly understood, including the spectral bandwidth needed to capture the essential model physics. The observational study of Sutherland and Melville (2015a) investigated the relative dissipation rate contributions of breaking waves, from large-scale whitecaps to microbreakers. They concluded that a large fraction of wave energy was dissipated by microbreakers. However, in strong contrast with their findings, our analysis of their data and other recent data sets shows that for young seas, microbreakers and small whitecaps contribute only a small fraction of the total breaking wave dissipation rate. For older seas, we find microbreakers and small whitecaps contribute a large fraction of the breaking wave dissipation rate, but this is only a small fraction of the total dissipation rate, which is now dominated by non-breaking contributions. Hence, for all the wave age conditions observed, microbreakers make an insignificant contribution to the total wave dissipation rate in the wave boundary layer. We tested the sensitivity of the results to the SM15a whitecap analysis methodology by transforming the SM15a breaking data using our breaking crest processing methodology. This resulted in the small-scale breaking waves making an even smaller contribution to the total wave dissipation rate, and so the result is independent of the breaker processing methodology. Comparison with other near-surface total TKE dissipation rate observations also support this conclusion. These contributions to the spectral dissipation rate in ocean wave models are small and need not be explicitly resolved.

  11. Numerical simulation of the generation of turbulence from cometary ion pick-up

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Roberts, D. A.; Matthaeus, W. H.

    1987-01-01

    Observations of magnetic field fluctuations near Comet Halley have revealed a rapid development of a Kolmogoroff-like turbulence spectrum extending from below 0.01 Hz to above 0.1 Hz. Spectra obtained far from the comet have a strong peak in power near the Doppler-shifted ion-cyclotron frequency of singly ionized water. Closer to the comet, the spectrum at higher frequencies is enhanced in power level over the background solar wind spectrum by approximately an order of magnitude. The equations of incompressible MHD are solved using a two-dimensional 256 x 256 mode spectral method code to simulate this spectral evolution as an inertial range turbulent cascade. The initial conditions contained a constant magnetic field and a single coherent wave mode at a low wave number. The solar wind turbulence was modeled by a background noise spectrum having a Kolmogoroff spectral index. The coherent mode decayed into an inertial range spectrum with Kolmogoroff slope within a few eddy-turnover times. Both the time scale and the increase in power level of the turbulence seen in the simulation are in accord with the Giotto observations.

  12. Light-scattering changes caused by RBC aggregation: physical basis for new approach to noninvasive blood count

    NASA Astrophysics Data System (ADS)

    Shvartsman, Leonid D.; Fine, Ilya

    2001-06-01

    We develop theoretical models of light transmission through whole blood considering RBC aggregation. RBC aggregates are considered to be the main centers of scattering in red/near- infrared spectral region. In pulsatile blood flow the periodic changes of aggregate geometry cause oscillations of light scattering. Thus scattering-assisted mechanism has to be taken into account in pulse oximeter calibration. In case of over-systolic vessel occlusion the size of aggregates grows, and the light transmission rises. Light diffraction on a single scatterer makes the transmission growth non- monotonic for certain spectral range. For the most typical set of aggregate parameters this range corresponds to wavelengths below 760 nm, and this prediction fits well both in vivo and in vitro experimental results. This spectral range depends on the refraction index mismatch and the geometry of aggregates. Both of them may be affected by the chemistry of blood. For instance, changes of glucose and hemoglobin have different effect on light transmission time response. Consequently, their content may be determined from time evolution of optical transmission.

  13. Cryomagnetic Point-Contact Andreev Reflection Spectroscopy on Single Crystal Iron-Chalcogenide Superconductors

    NASA Astrophysics Data System (ADS)

    Yen, Y. T.; Hu, Rongwei; Petrovic, C.; Yeh, K. W.; Wu, M. K.; Wei, J. Y. T.

    2012-02-01

    We report on cryomagnetic point-contact Andreev reflection spectroscopy performed on single crystals of superconducting FeTe1-xSx and FeTe1-xSex. The samples are cleaved in-situ and the measurements are carried out at temperatures down to 4.2K and in a field up to 9T. At base temperature and zero field, we observe a cone-shaped hump at lower voltages in the conductance spectra with no dips at zero bias and a linear background at higher voltages. The spectral evolution of gap size, zero-bias conductance, and excess spectral area are analyzed as a function of temperature and field. Further spectral analysis is carried out using theoretical models of conductance spectra in multiband superconductors [1,2] and of gap symmetry in Fe-based superconductors [3]. The role of interstitial iron is also considered, by comparison with atomically-resolved scanning tunneling spectroscopy data.[4pt] [1] V. Lukic and E.J. Nicol, PRB 76, 144508 (2007) [2] A. Golubov et al., PRL 103, 077003 (2009) [3] P.J. Hirschfeld et al., RPP 74, 124508 (2011)

  14. High-Speed Boundary-Layer Transition: Study of Stationary Crossflow Using Spectral Analysis

    NASA Astrophysics Data System (ADS)

    McGuire, Patrick Joseph

    Crossflow instability is primary cause of boundary-layer transition on swept wings used in high-speed applications. Delaying the downstream location of transition would drastically reduce the viscous drag over the wing surface, and subsequently improves the overall aircraft efficiency. By studying the development of instability growth rates and how they interact with the surroundings, researchers can control the crossflow transition location. Experiments on the 35° swept-wing model were performed in the NASA Langley 20-Inch Supersonic Wind Tunnel with Mach 2.0 flow conditions and 20 μm tall discrete roughness elements (DRE) with varying spacing placed along the leading edge. Fluorene was used as the sublimating chemical in the surface flow visualization technique to observe the transition front and stationary crossflow vortex patterns in the laminar flow region. Spatial spectral decomposition was completed on high-resolution images of sublimating chemical runs using a newly developed image processing technique. Streamwise evolution of the vortex track wavelengths within the laminar boundary-layer region was observed. The spectral information was averaged to produce dominant modes present throughout the laminar region.

  15. Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures.

    PubMed

    Malacrida, Leonel; Astrada, Soledad; Briva, Arturo; Bollati-Fogolín, Mariela; Gratton, Enrico; Bagatolli, Luis A

    2016-11-01

    Using LAURDAN spectral imaging and spectral phasor analysis we concurrently studied the growth and hydration state of subcellular organelles (lamellar body-like, LB-like) from live A549 lung cancer cells at different post-confluence days. Our results reveal a time dependent two-step process governing the size and hydration of these intracellular LB-like structures. Specifically, a first step (days 1 to 7) is characterized by an increase in their size, followed by a second one (days 7 to 14) where the organelles display a decrease in their global hydration properties. Interestingly, our results also show that their hydration properties significantly differ from those observed in well-characterized artificial lamellar model membranes, challenging the notion that a pure lamellar membrane organization is present in these organelles at intracellular conditions. Finally, these LB-like structures show a significant increase in their hydration state upon secretion, suggesting a relevant role of entropy during this process. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in warblers.

    PubMed

    Bloch, Natasha I; Morrow, James M; Chang, Belinda S W; Price, Trevor D

    2015-02-01

    Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors-historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength-sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20 Ma. During this process, the SWS2 gene accumulated six substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  17. Quantum adiabatic computation with a constant gap is not useful in one dimension.

    PubMed

    Hastings, M B

    2009-07-31

    We show that it is possible to use a classical computer to efficiently simulate the adiabatic evolution of a quantum system in one dimension with a constant spectral gap, starting the adiabatic evolution from a known initial product state. The proof relies on a recently proven area law for such systems, implying the existence of a good matrix product representation of the ground state, combined with an appropriate algorithm to update the matrix product state as the Hamiltonian is changed. This implies that adiabatic evolution with such Hamiltonians is not useful for universal quantum computation. Therefore, adiabatic algorithms which are useful for universal quantum computation either require a spectral gap tending to zero or need to be implemented in more than one dimension (we leave open the question of the computational power of adiabatic simulation with a constant gap in more than one dimension).

  18. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    PubMed Central

    Motsa, S. S.; Magagula, V. M.; Sibanda, P.

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature. PMID:25254252

  19. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    PubMed

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  20. Radial evolution of power spectra of interplanetary Alfvenic turbulence

    NASA Technical Reports Server (NTRS)

    Bavassano, B.; Dobrowolny, M.; Mariani, F.; Ness, N. F.

    1981-01-01

    The radial evolution of the power spectra of the MHD turbulence within the trailing edge of high speed streams in the solar wind was investigated with the magnetic field data of Helios 1 and 2 for heliocentric distance between 0.3 and 0.9 AU. In the analyzed frequency range (.00028 Hz to .0083 Hz) the computed spectra have, near the Earth, values of the spectral index close to that predicted for an incompressible hydromagnetic turbulence in a stationary state. Approaching the Sun the spectral slope remains unchanged for frequencies f or approximately .00 Hz, whereas at lower frequencies, a clear evolution toward a less steep fall off with frequency is found. The radial gradient of the power in Alfvenic fluctuations depends on frequency and it increases upon increasing frequency. For frequencies f or approximately .00 Hz, however, the radial gradient remains approximately the same. Possible theoretical implications of the observational features are discussed.

  1. Reaction mechanisms of methylene-blue degradation in three-dimensionally integrated micro-solution plasma

    NASA Astrophysics Data System (ADS)

    Shirafuji, Tatsuru; Ishida, Yodai; Nomura, Ayano; Hayashi, Yui; Goto, Motonobu

    2017-06-01

    We have performed matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) on methylene-blue aqueous solutions treated with three-dimensionally integrated micro-solution plasma, in which we have acquired the time evolution of mass spectra as a function of treatment time. The time evolution of mass spectral peak intensities for major detected species has clearly indicated that the parent methylene-blue molecules are degraded through consecutive reactions. The primary reaction is the oxidation of the parent molecules. The oxidized species still have two benzene rings in the parent molecules. The secondary reactions are the separation of the oxidized species and the formation of compounds with one benzene ring. We have also performed the numerical fitting of the time evolution of the mass spectral peak intensities, the results of which have indicated that we must assume additional primary reactions before the primary oxidation for better agreement with experimental results.

  2. Evolution of Lamb Vector as a Vortex Breaking into Turbulence.

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Lu, X. Y.

    1996-11-01

    In an incompressible flow, either laminar or turbulent, the Lamb vector is solely responsible to nonlinear interactions. While its longitudinal part is balanced by stagnation enthalpy, its transverse part is the unique source (as an external forcing in spectral space) that causes the flow to evolve. Moreover, in Reynolds-averaged flows the turbulent force can be derived exclusively from the Lamb vector instead of the full Reynolds stress tensor. Therefore, studying the evolution of the Lamb vector itself (both longitudinal and transverse parts) is of great interest. We have numerically examined this problem, taking the nonlinear distabilization of a viscous vortex as an example. In the later stage of this evolution we introduced a forcing to keep a statistically steady state, and observed the Lamb vector behavior in the resulting fine turbulence. The result is presented in both physical and spectral spaces.

  3. Running of scalar spectral index in multi-field inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jinn-Ouk, E-mail: jinn-ouk.gong@apctp.org

    We compute the running of the scalar spectral index in general multi-field slow-roll inflation. By incorporating explicit momentum dependence at the moment of horizon crossing, we can find the running straightforwardly. At the same time, we can distinguish the contributions from the quasi de Sitter background and the super-horizon evolution of the field fluctuations.

  4. A hybrid probabilistic/spectral model of scalar mixing

    NASA Astrophysics Data System (ADS)

    Vaithianathan, T.; Collins, Lance

    2002-11-01

    In the probability density function (PDF) description of a turbulent reacting flow, the local temperature and species concentration are replaced by a high-dimensional joint probability that describes the distribution of states in the fluid. The PDF has the great advantage of rendering the chemical reaction source terms closed, independent of their complexity. However, molecular mixing, which involves two-point information, must be modeled. Indeed, the qualitative shape of the PDF is sensitive to this modeling, hence the reliability of the model to predict even the closed chemical source terms rests heavily on the mixing model. We will present a new closure to the mixing based on a spectral representation of the scalar field. The model is implemented as an ensemble of stochastic particles, each carrying scalar concentrations at different wavenumbers. Scalar exchanges within a given particle represent ``transfer'' while scalar exchanges between particles represent ``mixing.'' The equations governing the scalar concentrations at each wavenumber are derived from the eddy damped quasi-normal Markovian (or EDQNM) theory. The model correctly predicts the evolution of an initial double delta function PDF into a Gaussian as seen in the numerical study by Eswaran & Pope (1988). Furthermore, the model predicts the scalar gradient distribution (which is available in this representation) approaches log normal at long times. Comparisons of the model with data derived from direct numerical simulations will be shown.

  5. Inferring the photometric and size evolution of galaxies from image simulations. I. Method

    NASA Astrophysics Data System (ADS)

    Carassou, Sébastien; de Lapparent, Valérie; Bertin, Emmanuel; Le Borgne, Damien

    2017-09-01

    Context. Current constraints on models of galaxy evolution rely on morphometric catalogs extracted from multi-band photometric surveys. However, these catalogs are altered by selection effects that are difficult to model, that correlate in non trivial ways, and that can lead to contradictory predictions if not taken into account carefully. Aims: To address this issue, we have developed a new approach combining parametric Bayesian indirect likelihood (pBIL) techniques and empirical modeling with realistic image simulations that reproduce a large fraction of these selection effects. This allows us to perform a direct comparison between observed and simulated images and to infer robust constraints on model parameters. Methods: We use a semi-empirical forward model to generate a distribution of mock galaxies from a set of physical parameters. These galaxies are passed through an image simulator reproducing the instrumental characteristics of any survey and are then extracted in the same way as the observed data. The discrepancy between the simulated and observed data is quantified, and minimized with a custom sampling process based on adaptive Markov chain Monte Carlo methods. Results: Using synthetic data matching most of the properties of a Canada-France-Hawaii Telescope Legacy Survey Deep field, we demonstrate the robustness and internal consistency of our approach by inferring the parameters governing the size and luminosity functions and their evolutions for different realistic populations of galaxies. We also compare the results of our approach with those obtained from the classical spectral energy distribution fitting and photometric redshift approach. Conclusions: Our pipeline infers efficiently the luminosity and size distribution and evolution parameters with a very limited number of observables (three photometric bands). When compared to SED fitting based on the same set of observables, our method yields results that are more accurate and free from systematic biases.

  6. Heating and dynamics of two flare loop systems observed by AIA and EIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Ding, M. D.; Qiu, J., E-mail: yingli@nju.edu.cn

    2014-02-01

    We investigate heating and evolution of flare loops in a C4.7 two-ribbon flare on 2011 February 13. From Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) imaging observations, we can identify two sets of loops. Hinode/EUV Imaging Spectrometer (EIS) spectroscopic observations reveal blueshifts at the feet of both sets of loops. The evolution and dynamics of the two sets are quite different. The first set of loops exhibits blueshifts for about 25 minutes followed by redshifts, while the second set shows stronger blueshifts, which are maintained for about one hour. The UV 1600 observation by AIA also shows that the feet ofmore » the second set of loops brighten twice. These suggest that continuous heating may be present in the second set of loops. We use spatially resolved UV light curves to infer heating rates in the few tens of individual loops comprising the two loop systems. With these heating rates, we then compute plasma evolution in these loops with the 'enthalpy-based thermal evolution of loops' model. The results show that, for the first set of loops, the synthetic EUV light curves from the model compare favorably with the observed light curves in six AIA channels and eight EIS spectral lines, and the computed mean enthalpy flow velocities also agree with the Doppler shift measurements by EIS. For the second set of loops modeled with twice-heating, there are some discrepancies between modeled and observed EUV light curves in low-temperature bands, and the model does not fully produce the prolonged blueshift signatures as observed. We discuss possible causes for the discrepancies.« less

  7. The JWST Extragalactic Mock Catalog: Modeling Galaxy Populations from the UV through the Near-IR over 13 Billion Years of Cosmic History

    NASA Astrophysics Data System (ADS)

    Williams, Christina C.; Curtis-Lake, Emma; Hainline, Kevin N.; Chevallard, Jacopo; Robertson, Brant E.; Charlot, Stephane; Endsley, Ryan; Stark, Daniel P.; Willmer, Christopher N. A.; Alberts, Stacey; Amorin, Ricardo; Arribas, Santiago; Baum, Stefi; Bunker, Andrew; Carniani, Stefano; Crandall, Sara; Egami, Eiichi; Eisenstein, Daniel J.; Ferruit, Pierre; Husemann, Bernd; Maseda, Michael V.; Maiolino, Roberto; Rawle, Timothy D.; Rieke, Marcia; Smit, Renske; Tacchella, Sandro; Willott, Chris J.

    2018-06-01

    We present an original phenomenological model to describe the evolution of galaxy number counts, morphologies, and spectral energy distributions across a wide range of redshifts (0.2< z< 15) and stellar masses [{log}(M/{M}ȯ )≥slant 6]. Our model follows observed mass and luminosity functions of both star-forming and quiescent galaxies, and reproduces the redshift evolution of colors, sizes, star formation, and chemical properties of the observed galaxy population. Unlike other existing approaches, our model includes a self-consistent treatment of stellar and photoionized gas emission and dust attenuation based on the BEAGLE tool. The mock galaxy catalogs generated with our new model can be used to simulate and optimize extragalactic surveys with future facilities such as the James Webb Space Telescope (JWST), and to enable critical assessments of analysis procedures, interpretation tools, and measurement systematics for both photometric and spectroscopic data. As a first application of this work, we make predictions for the upcoming JWST Advanced Deep Extragalactic Survey (JADES), a joint program of the JWST/NIRCam and NIRSpec Guaranteed Time Observations teams. We show that JADES will detect, with NIRCam imaging, 1000s of galaxies at z ≳ 6, and 10s at z ≳ 10 at {m}{AB}≲ 30 (5σ) within the 236 arcmin2 of the survey. The JADES data will enable accurate constraints on the evolution of the UV luminosity function at z > 8, and resolve the current debate about the rate of evolution of galaxies at z ≳ 8. Ready-to-use mock catalogs and software to generate new realizations are publicly available as the JAdes extraGalactic Ultradeep Artificial Realizations (JAGUAR) package.

  8. Explosive Events in the Quiet Sun: Extreme Ultraviolet Imaging Spectroscopy Instrumentation and Observations

    NASA Astrophysics Data System (ADS)

    Rust, Thomas Ludwell

    Explosive event is the name given to slit spectrograph observations of high spectroscopic velocities in solar transition region spectral lines. Explosive events show much variety that cannot yet be explained by a single theory. It is commonly believed that explosive events are powered by magnetic reconnection. The evolution of the line core appears to be an important indicator of which particular reconnection process is at work. The Multi-Order Solar Extreme Ultraviolet Spectrograph (MOSES) is a novel slitless spectrograph designed for imaging spectroscopy of solar extreme ultraviolet (EUV) spectral lines. The spectrograph design forgoes a slit and images instead at three spectral orders of a concave grating. The images are formed simultaneously so the resulting spatial and spectral information is co-temporal over the 20' x 10' instrument field of view. This is an advantage over slit spectrographs which build a field of view one narrow slit at a time. The cost of co-temporal imaging spectroscopy with the MOSES is increased data complexity relative to slit spectrograph data. The MOSES data must undergo tomographic inversion for recovery of line profiles. I use the unique data from the MOSES to study transition region explosive events in the He ii 304 A spectral line. I identify 41 examples of explosive events which include 5 blue shifted jets, 2 red shifted jets, and 10 bi-directional jets. Typical doppler speeds are approximately 100kms-1. I show the early development of one blue jet and one bi-directional jet and find no acceleration phase at the onset of the event. The bi-directional jets are interesting because they are predicted in models of Petschek reconnection in the transition region. I develop an inversion algorithm for the MOSES data and test it on synthetic observations of a bi-directional jet. The inversion is based on a multiplicative algebraic reconstruction technique (MART). The inversion successfully reproduces synthetic line profiles. I then use the inversion to study the time evolution of a bi-directional jet. The inverted line profiles show fast doppler shifted components and no measurable line core emission. The blue and red wings of the jet show increasing spatial separation with time.

  9. Effect of multiphase radiation on coal combustion in a pulverized coal jet flame

    NASA Astrophysics Data System (ADS)

    Wu, Bifen; Roy, Somesh P.; Zhao, Xinyu; Modest, Michael F.

    2017-08-01

    The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO2, H2O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame.

  10. The Response of High Energy Photoelectrons in The Mars Atmosphere to Variable Solar Input

    NASA Astrophysics Data System (ADS)

    Mills, I. F.; Eparvier, F. G.; Thiemann, E.; Mitchell, D. L.

    2016-12-01

    The Mars Atmosphere and Volatile Evolution (MAVEN) mission aims to understand the processes by which Mars has been losing atmosphere over time by analyzing data taken from different levels of the Martian atmosphere as well as solar drivers. In this project, we isolate data taken from the ionosphere to study high-energy electrons created by a particular ionization process called the Auger effect. This process occurs when soft x-rays ionize atmospheric gases. In particular, we focus on Auger electrons that are ionized from CO2 molecules and atomic O via solar irradiance in the 0.1-6 nm wavelength range. Thus far, the portion of the solar spectrum that produces Auger electrons has been sparsely measured and its spectral distribution is poorly understood, especially as a function of solar activity. To make up for this, models of spectral irradiance are used in studies of atmospheric effects. In an effort to validate solar irradiance models from 0.1- 6 nm, we utilize data from two instruments on board the MAVEN spacecraft, EUVM (the Extreme Ultraviolet Monitor), which measures the broadband solar irradiance from 0.1-6 nm and SWEA (the Solar Wind Electron Analyzer), which measures the photoelectron energy spectrum in the Mars atmosphere. We then compare these observed data sets to two different spectral irradiance models: MAVEN SynRef, and FISM-M (the Flare Irradiance Spectral Model for Mars). SynRef is a version of the SORCE XPS model modified to be used by MAVEN/EUVM, and FISM-M is a version of the FISM proxy model previously developed for Earth irradiance and modified to be used by MAVEN/EUVM. Our method of comparison is to find the Pearson correlation between the data and the models over October 2015, a month that had a strong solar rotational variability in the solar irradiance. By filtering the SWEA data for different altitudes and solar zenith angles, we are able to analyze how Auger electrons react under different solar activity levels. Both irradiance models correlate well with the electron data, specifically when comparing them with electrons in the bin containing the Auger peak, and when integrating over multiple energy bins surrounding this peak.

  11. The Diversity of Chemical Composition: The Impact of Stellar Abundances on the Evolution of Stars and Habitable Zones

    NASA Astrophysics Data System (ADS)

    Truitt, Amanda R.; Young, Patrick A.

    2018-01-01

    I have investigated how stars of different mass and composition evolve, and how stellar evolution impacts the location of the habitable zone around a star. Current research into habitability of exoplanets focuses mostly on the concept of a “classical” HZ, the range of distances from a star over which liquid water could exist on a planet's surface. This is determined by the host star's luminosity and spectral characteristics; in order to gauge the habitability potential of a given system, both the evolutionary history and the detailed chemical characterization of the host star must be considered. With the ever-accelerating discovery of new exoplanets, it is imperative to develop a better understanding of what factors play a role in creating “habitable” conditions of a planet. I will discuss how stellar evolution is integral to how we define the HZ, and how this work will apply to the search for Earth-like planets in the future.I have developed a catalog of stellar evolution models for Sun-like stars with variable compositions; masses range from 0.1-1.2 Msol (spectral types M4-F4) at scaled metallicities (Z) of 0.1-1.5 Zsol, and O/Fe, C/Fe, and Mg/Fe values of 0.44-2.28, 0.58-1.72, and 0.54-1.84, respectively. I use a spread in abundance values based on observations of variability in nearby stars. It is important to understand how specific elements, not just total Z, impacts stellar lifetime. Time-dependent HZ boundaries are calculated for each track. I have also created a grid of M-dwarfs, and I am currently working to estimate stellar activity vs. age for each model.This catalog is meant to characterize potential host stars of interest. I have explored how to use existing observational data (i.e. Hypatia Catalog) for a more robust comparison to my grid of theoretical models, and I will discuss a new statistical analysis of the catalog to further refine our definition of “continuous” habitability. This work is an important step to assess whether a planet discovered in the HZ of its star has had sufficient time to develop a biosphere capable of producing detectable biosignatures. The catalog is designed for use by the astrobiology and exoplanet communities to characterize any real planetary systems of interest.

  12. Evaluating rapid ground sampling and scaling estimated plant cover using UAV imagery up to Landsat for mapping arctic vegetation

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Paradis, D. P.

    2017-12-01

    The small stature and spectral diversity of arctic plant taxa presents challenges in mapping arctic vegetation. Mapping vegetation at the appropriate scale is needed to visualize effects of disturbance, directional vegetation change or mapping of specific plant groups for other applications (eg. habitat mapping). Fine spatial grain of remotely sensed data (ca. 10 cm pixels) is often necessary to resolve patches of many arctic plant groups, such as bryophytes and lichens. These groups are also spectrally different from mineral, litter and vascular plants. We sought to explore method to generate high-resolution spatial and spectral data to explore better mapping methods for arctic vegetation. We sampled ground vegetation at seven sites north or west of tree-line in Alaska, four north of Fairbanks and three northwest of Bethel, respectively. At each site, we estimated cover of plant functional types in 1m2 quadrats spaced approximately every 10 m along a 100 m long transect. Each quadrat was also scanned using a field spectroradiometer (PSR+ Spectral Evolution, 400-2500 nm range) and photographed from multiple perspectives. We then flew our small UAV with a RGB camera over the transect and at least 50 m on either side collecting on imagery of the plot, which were used to generate a image mosaic and digital surface model of the plot. We compare plant functional group cover ocular estimated in situ to post-hoc estimation, either automated or using a human observer, using the quadrat photos. We also compare interpolated lichen cover from UAV scenes to estimated lichen cover using a statistical models using Landsat data, with focus on lichens. Light and yellow lichens are discernable in the UAV imagery but certain lichens, especially dark colored lichens or those with spectral signatures similar to graminoid litter, present challenges. Future efforts will focus on integrating UAV-upscaled ground cover estimates to hyperspectral sensors (eg. AVIRIS ng) for better combined spectral and spatial resolution.

  13. High Energy Emission of V404 Cygni during 2015 outburst with INTEGRAL/SPI: Spectral analysis results, issues and solutions

    NASA Astrophysics Data System (ADS)

    Jourdain, Elisabeth; Roques, Jean-Pierre

    2016-04-01

    A strong outburst of the X-ray transient V404 Cygni (= GS2023-338) was observed in 2015 June/July up to a level of 50 Crab in the hard X-ray domain.We have used the INTEGRAL/SPI data to investigate the spectral behavior of the source between 20 and 1000 keV during its maximum of activity. We have found striking variability patterns at all timescales. For the 20-200 keV energy band, the huge signal to noise ratio allows us to scrutinize the source evolution on a never reached timescale (30 s). At higher energy, the spectral shape can be determined on a timescale < 1 h.However, we note that at this level of photon flux, instrument's behavior may be severely tested and that some instrumental artifacts could affect the data analysis. We have performed thorough checks to ensure a correct handling of the SPI data and present how to obtain reliable spectral results on the emission of V404 Cyg. We demonstrate that, with the correct configuration, the hard X-ray emission, up to the MeV region, is well described by a two component model (Comptonisation law + cutoff power law) as observed in Cyg X-1 and for V404 Cygni itself at lower flux levels.

  14. Young Blue Straggler Stars in the Galactic Field

    NASA Astrophysics Data System (ADS)

    Ekanayake, Gemunu; Wilhelm, Ronald

    2018-06-01

    In this study we present an analysis of a sample of field blue straggler (BS) stars that show high ultra violet emission in their spectral energy distributions (SED): indication of a hot white dwarf (WD) companion to BS. Using photometry available in the Sloan Digital Sky Survey (SDSS) and Galaxy Evolution Explorer (GALEX ) surveys we identified 80 stars with UV excess. To determine the parameter distributions (mass, temperature and age) of the WD companions, we developed a fitting routine that could fit binary model SEDs to the observed SED. Results from this fit indicate the need for a hot WD companion to provide the excess UV flux. The WD mass distribution peaks at ˜0.4 M⊙, suggesting the primary formation channel of field BSs is case B mass transfer, i.e. when the donor star is in red giant phase of its evolution. Based on stellar evolutionary models, we estimate the lower limit of the binary mass transfer efficiency to be β ˜ 0.5.

  15. Extended adiabatic blast waves and a model of the soft X-ray background. [interstellar matter

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Anderson, P. R.

    1981-01-01

    An analytical approximation is generated which follows the development of an adiabatic spherical blast wave in a homogeneous ambient medium of finite pressure. An analytical approximation is also presented for the electron temperature distribution resulting from coulomb collisional heating. The dynamical, thermal, ionization, and spectral structures are calculated for blast waves of energy E sub 0 = 5 x 10 to the 50th power ergs in a hot low-density interstellar environment. A formula is presented for estimating the luminosity evolution of such explosions. The B and C bands of the soft X-ray background, it is shown, are reproduced by such a model explosion if the ambient density is about .000004 cm, the blast radius is roughly 100 pc, and the solar system is located inside the shocked region. Evolution in a pre-existing cavity with a strong density gradient may, it is suggested, remove both the M band and OVI discrepancies.

  16. SN 1986J VLBI. IV. The Nature of the Central Component

    NASA Astrophysics Data System (ADS)

    Bietenholz, Michael F.; Bartel, Norbert

    2017-12-01

    We report on Very Large Array measurements between 1 and 45 GHz of the evolving radio spectral energy distribution (SED) of SN 1986J, made in conjunction with very long baseline interferometry (VLBI) imaging. The SED of SN 1986J is unique among supernovae, and shows an inversion point and a high-frequency turnover. Both are due to the central component seen in the VLBI images, and both are progressing downward in frequency with time. The optically thin spectral index of the central component is almost the same as that of the shell. We fit a simple model to the evolving SED consisting of an optically thin shell and a partly absorbed central component. The evolution of the SED is consistent with that of a homologously expanding system. Both components are fading, but the shell is fading more rapidly. We conclude that the central component is physically inside the expanding shell, and not a surface hotspot central only in projection. Our observations are consistent with the central component being due to interaction of the shock with the dense and highly structured circumstellar medium that resulted from a period of common-envelope evolution of the progenitor. However, a young pulsar-wind nebula or emission from an accreting black hole can also not be ruled out at this point.

  17. Cardiovascular response to acute stress in freely moving rats: time-frequency analysis.

    PubMed

    Loncar-Turukalo, Tatjana; Bajic, Dragana; Japundzic-Zigon, Nina

    2008-01-01

    Spectral analysis of cardiovascular series is an important tool for assessing the features of the autonomic control of the cardiovascular system. In this experiment Wistar rats ecquiped with intraarterial catheter for blood pressure (BP) recording were exposed to stress induced by blowing air. The problem of non stationary data was overcomed applying the Smoothed Pseudo Wigner Villle (SPWV) time-frequency distribution. Spectral analysis was done before stress, during stress, immediately after stress and later in recovery. The spectral indices were calculated for both systolic blood pressure (SBP) and pulse interval (PI) series. The time evolution of spectral indices showed perturbed sympathovagal balance.

  18. Spectral measurements of cosmic gamma-ray bursts with the Konus-Wind and Konus-A instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.

    1998-05-16

    The Konus gamma-ray burst instrumentation on board the US GGS-Wind spacecraft and the near-Earth Russian satellite Kosmos-2326 makes it possible to make spectral measurements and comparisons between 12 keV to 10 MeV. Since November 1994, over 370 bursts have been observed in the triggered mode, for which detailed spectral measurements are available. Incident photon spectra are derived from the count rate spectra of a number of bright bursts for which the celestial source position or the angle relative to the sensor axis is known. The spectral evolution of these bursts and the possible existence of spectral features in both themore » soft and hard energy bands are discussed.« less

  19. Constraints on millisecond magnetars as the engines of prompt emission in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Giannios, Dimitrios; Metzger, Brian D.

    2017-12-01

    We examine millisecond magnetars as central engines of gamma-ray bursts' (GRBs) prompt emission. Using the protomagnetar wind model of Metzger et al., we estimate the temporal evolution of the magnetization and power injection at the base of the GRB jet and apply these to different prompt emission models to make predictions for the GRB energetics, spectra and light curves. We investigate both shock and magnetic reconnection models for the particle acceleration, as well as the effects of energy dissipation across optically thick and thin regions of the jet. The magnetization at the base of the jet, σ0, is the main parameter driving the GRB evolution in the magnetar model and the emission is typically released for 100 ≲σ0 ≲3000. Given the rapid increase in σ0 as the protomagnetar cools and its neutrino-driven mass loss subsides, the GRB duration is typically limited to ≲100 s. This low baryon loading at late times challenges magnetar models for ultralong GRBs, though black hole models likely run into similar difficulties without substantial entrainment from the jet walls. The maximum radiated gamma-ray energy is ≲5 × 1051 erg, significantly less than the magnetar's total initial rotational energy and in strong tension with the high end of the observed GRB energy distribution. However, the gradual magnetic dissipation model applied to a magnetar central engine, naturally explains several key observables of typical GRBs, including energetics, durations, stable peak energies, spectral slopes and a hard to soft evolution during the burst.

  20. Comprehensive Analysis of RXTE Data from Cyg X-1. Spectral Index-Quasi-Periodic Oscillation Frequency-Luminosity Correlations

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, Nickolai; Titarchuk, Lev

    2006-01-01

    We present timing and spectral analysis of approx. 2.2 Ms of Rossi X-ray Time Explorer (RXTE) archival data from Cyg X-1. Using the generic Comptonization model we reveal that the spectrum of Cyg X-1 consists of three components: a thermal seed photon spectrum, a Comptonized part of the seed photon spectrum and the iron line. We find a strong correlation between 0.1-20 Hz frequencies of quasiperiodic oscillations (QPOs) and the spectral power-law index. Presence of two spectral phases (states) are clearly seen in the data when the spectral indices saturate at low and high values of QPO frequencies. This saturation effect was discovered earlier in a number of black hole candidate (BHC) sources and now we strongly confirm this phenomenon in Cyg X-1. In the soft state this index- QPO frequency correlation shows a saturation of the photon index Gamma approx. 2.1 at high values of the low frequency upsilon(sub L). The saturation level of Gamma approx. 2.1 is the lowest value found yet in BHCs. The bolometric luminosity does not show clear correlation with the index. We also show that Fe K(sub alpha) emission line strength (equivalent width, EW) correlates with the QPO frequency. EW increases from 200 eV in the low/hard state to 1.5 keV in the high/soft state. The revealed observational correlations allow us to propose a scenario for the spectral transition and iron line formation which occur in BHC sources. We also present the spectral state (the power-law index) evolution for eight years of Cyg X-1 observations by RXTE.

  1. Swift monitoring observations of 1H 1743-322 and its evolution towards a state transition

    NASA Astrophysics Data System (ADS)

    Yan, Zhen; Lin, Jie; Yu, Wenfei; Zhang, Wenda; Zhang, Hui; Mao, Dongming

    2016-03-01

    Following the report of the new outburst of black hole X-ray binary H1743-322 (ATel #8751), we requested a series of Swift ToO observations to monitor the X-ray temporal and spectral evolution and potential jet contribution to the UV flux during the outburst.

  2. Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Abbott, David C.; Conti, Peter S.

    1987-01-01

    The properties and evolutionary status of WR stars are examined, reviewing the results of recent observational and theoretical investigations. Topics discussed include spectral types and line strengths, magnitudes and colors, intrinsic variability, IR and radio observations, X-ray observations, the Galactic distribution of WR stars, WR stars in other galaxies, and WR binaries. Consideration is given to the inferred masses, composition, and stellar winds of WR stars; model atmospheres; WR stars and the Galactic environment; and WR stars as a phase of stellar evolution. Diagrams, graphs, and tables of numerical data are provided.

  3. The number counts and infrared backgrounds from infrared-bright galaxies

    NASA Technical Reports Server (NTRS)

    Hacking, P. B.; Soifer, B. T.

    1991-01-01

    Extragalactic number counts and diffuse backgrounds at 25, 60, and 100 microns are predicted using new luminosity functions and improved spectral-energy distribution density functions derived from IRAS observations of nearby galaxies. Galaxies at redshifts z less than 3 that are like those in the local universe should produce a minimum diffuse background of 0.0085, 0.038, and 0.13 MJy/sr at 25, 60, and 100 microns, respectively. Models with significant luminosity evolution predict backgrounds about a factor of 4 greater than this minimum.

  4. X-ray spectroscopic observations and modeling of supernova remnants

    NASA Technical Reports Server (NTRS)

    Shull, J. M.

    1981-01-01

    The X-ray observations of young remnants and their theoretical interpretation are described. A number of questions concerning the nature of the blast wave interaction with the interstellar gas and grains and of atomic processes in these hot plasmas are considered. It is concluded that future X-ray spectrometers with high collecting area, moderate spectral resolution and good spatial resolution can make important contributions to the understanding of supernova remnants in the Milky Way and neighboring galaxies and of their role in the global chemical and dynamical evolution of the interstellar medium.

  5. Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jianzhong; Ning, C. Z.

    2004-01-01

    We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well

  6. Generation and evolution of anisotropic turbulence and related energy transfer in a multi-species solar wind

    NASA Astrophysics Data System (ADS)

    Maneva, Yana; Poedts, Stefaan

    2017-04-01

    The electromagnetic fluctuations in the solar wind represent a zoo of plasma waves with different properties, whose wavelengths range from largest fluid scales to the smallest dissipation scales. By nature the power spectrum of the magnetic fluctuations is anisotropic with different spectral slopes in parallel and perpendicular directions with respect to the background magnetic field. Furthermore, the magnetic field power spectra steepen as one moves from the inertial to the dissipation range and we observe multiple spectral breaks with different slopes in parallel and perpendicular direction at the ion scales and beyond. The turbulent dissipation of magnetic field fluctuations at the sub-ion scales is believed to go into local ion heating and acceleration, so that the spectral breaks are typically associated with particle energization. The gained energy can be in the form of anisotropic heating, formation of non-thermal features in the particle velocity distributions functions, and redistribution of the differential acceleration between the different ion populations. To study the relation between the evolution of the anisotropic turbulent spectra and the particle heating at the ion and sub-ion scales we perform a series of 2.5D hybrid simulations in a collisionless drifting proton-alpha plasma. We neglect the fast electron dynamics and treat the electrons as an isothermal fluid electrons, whereas the protons and a minor population of alpha particles are evolved in a fully kinetic manner. We start with a given wave spectrum and study the evolution of the magnetic field spectral slopes as a function of the parallel and perpendicular wave¬numbers. Simultaneously, we track the particle response and the energy exchange between the parallel and perpendicular scales. We observe anisotropic behavior of the turbulent power spectra with steeper slopes along the dominant energy-containing direction. This means that for parallel and quasi-parallel waves we have steeper spectral slope in parallel direction, whereas for highly oblique waves the dissipation occurs predominantly in perpendicular direction and the spectral slopes are steeper across the background magnetic field. The value of the spectral slopes depends on the angle of propagation, the spectral range, as well as the plasma properties. In general the dissipation is stronger at small scales and the corresponding spectral slopes there are steeper. For parallel and quasi-parallel propagation the prevailing energy cascade remains along the magnetic field, whereas for initially isotropic oblique turbulence the cascade develops mainly in perpendicular direction.

  7. GRO J1655-40: Early Stages of the 2005 Outburst

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, N.; Swank, Jean; Shrader, C. R.; Rupen, M.; Beckmann, V.; Markwardt, C. B.; Smith, D. A.

    2007-01-01

    The black-hole X-ray binary transient GRO J1655-40 underwent an outburst beginning in early 2005. We present the results of our multi-wavelength observational campaign to study the early outburst spectral and temporal evolution, which combines data from X-ray (RXTE, INTEGRAL), radio (VLA) and optical (ROTSE, SMARTS) instruments. During the reported period the source left quiescence and went through four major accreting black hole states: low-hard, hard intermediate, soft intermediate and high-soft. We investigated dipping behavior in the RXTE band and compare our results to the 1996-1997 case, when the source was predominantly in the high-soft state, finding significant differences. We consider the evolution of the low frequency quasi-periodic oscillations and find that the frequency strongly correlates with the spectral characteristics, before shutting off prior to the transition to the high-soft state. We model the broad-band high-energy spectrum in the context of empirical models, as well as more physically motivated thermal and bulk-motion Comptonization and Compton reflection models. RXTE and INTEGRAL data together support a statistically significant high energy cut-off in the energy spectrum at approximately equal to 100 - 200 keV during the low-hard state. The RXTE data alone also show it very significantly during the transition, but cannot see one in the high-soft state spectra. We consider radio, optical and X-ray connections in the context of possible synchrotron and synchrotron self-Compton origins of X-ray emission in low-hard and intermediate states. In this outburst of GRO J1655-40, the radio flux does not rise strongly with the X-ray flux.

  8. A Large Catalog of Multiwavelength GRB Afterglows. I. Color Evolution and Its Physical Implication

    NASA Astrophysics Data System (ADS)

    Li, Liang; Wang, Yu; Shao, Lang; Wu, Xue-Feng; Huang, Yong-Feng; Zhang, Bing; Ryde, Felix; Yu, Hoi-Fung

    2018-02-01

    The spectrum of gamma-ray burst (GRB) afterglows can be studied with color indices. Here, we present a large comprehensive catalog of 70 GRBs with multiwavelength optical transient data on which we perform a systematic study to find the temporal evolution of color indices. We categorize them into two samples based on how well the color indices are evaluated. The Golden sample includes 25 bursts mostly observed by GROND, and the Silver sample includes 45 bursts observed by other telescopes. For the Golden sample, we find that 96% of the color indices do not vary over time. However, the color indices do vary during short periods in most bursts. The observed variations are consistent with effects of (i) the cooling frequency crossing the studied energy bands in a wind medium (43%) and in a constant-density medium (30%), (ii) early dust extinction (12%), (iii) transition from reverse-shock to forward-shock emission (5%), or (iv) an emergent SN emission (10%). We also study the evolutionary properties of the mean color indices for different emission episodes. We find that 86% of the color indices in the 70 bursts show constancy between consecutive ones. The color index variations occur mainly during the late GRB–SN bump, the flare, and early reverse-shock emission components. We further perform a statistical analysis of various observational properties and model parameters (spectral index {β }o{CI}, electron spectral indices p CI, etc.) using color indices. Overall, we conclude that ∼90% of colors are constant in time and can be accounted for by the simplest external forward-shock model, while the varying color indices call for more detailed modeling.

  9. Thermal winds in stellar mass black hole and neutron star binary systems

    NASA Astrophysics Data System (ADS)

    Done, Chris; Tomaru, Ryota; Takahashi, Tadayuki

    2018-01-01

    Black hole binaries show equatorial disc winds at high luminosities, which apparently disappear during the spectral transition to the low/hard state. This is also where the radio jet appears, motivating speculation that both wind and jet are driven by different configurations of the same magnetic field. However, these systems must also have thermal winds, as the outer disc is clearly irradiated. We develop a predictive model of the absorption features from thermal winds, based on pioneering work of Begelman, McKee & Shields. We couple this to a realistic model of the irradiating spectrum as a function of luminosity to predict the entire wind evolution during outbursts. We show that the column density of the thermal wind scales roughly with luminosity, and does not shut off at the spectral transition, though its visibility will be affected by the abrupt change in ionizing spectrum. We re-analyse the data from H1743-322, which most constrains the difference in wind across the spectral transition, and show that these are consistent with the thermal wind models. We include simple corrections for radiation pressure, which allows stronger winds to be launched from smaller radii. These winds become optically thick around Eddington, which may even explain the exceptional wind seen in one observation of GRO J1655-40. These data can instead be fit by magnetic wind models, but similar winds are not seen in this or other systems at similar luminosities. Hence, we conclude that the majority (perhaps all) of current data can be explained by thermal or thermal-radiative winds.

  10. Millimetre spectral indices of transition disks and their relation to the cavity radius

    NASA Astrophysics Data System (ADS)

    Pinilla, P.; Benisty, M.; Birnstiel, T.; Ricci, L.; Isella, A.; Natta, A.; Dullemond, C. P.; Quiroga-Nuñez, L. H.; Henning, T.; Testi, L.

    2014-04-01

    Context. Transition disks are protoplanetary disks with inner depleted dust cavities that are excellent candidates for investigating the dust evolution when there is a pressure bump. A pressure bump at the outer edge of the cavity allows dust grains from the outer regions to stop their rapid inward migration towards the star and to efficiently grow to millimetre sizes. Dynamical interactions with planet(s) have been one of the most exciting theories to explain the clearing of the inner disk. Aims: We look for evidence of millimetre dust particles in transition disks by measuring their spectral index αmm with new and available photometric data. We investigate the influence of the size of the dust depleted cavity on the disk integrated millimetre spectral index. Methods: We present the 3-mm (100 GHz) photometric observations carried out with the Plateau de Bure Interferometer of four transition disks: LkHα 330, UX Tau A, LRLL 31, and LRLL 67. We used the available values of their fluxes at 345 GHz to calculate their spectral index, as well as the spectral index for a sample of twenty transition disks. We compared the observations with two kinds of models. In the first set of models, we considered coagulation and fragmentation of dust in a disk in which a cavity is formed by a massive planet located at different positions. The second set of models assumes disks with truncated inner parts at different radii and with power-law dust-size distributions, where the maximum size of grains is calculated considering turbulence as the source of destructive collisions. Results: We show that the integrated spectral index is higher for transition disks (TD) than for regular protoplanetary disks (PD) with mean values of bar{αmmTD} = 2.70 ± 0.13 and bar{αmmPD} = 2.20 ± 0.07 respectively. For transition disks, the probability that the measured spectral index is positively correlated with the cavity radius is 95%. High angular resolution imaging of transition disks is needed to distinguish between the dust trapping scenario and the truncated disk case. The final PdBI data used in the paper are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A51

  11. Evolution of Turbulence in the Expanding Solar Wind, a Numerical Study

    NASA Astrophysics Data System (ADS)

    Dong, Yue; Verdini, Andrea; Grappin, Roland

    2014-10-01

    We study the evolution of turbulence in the solar wind by solving numerically the full three-dimensional (3D) magnetohydrodynamic (MHD) equations embedded in a radial mean wind. The corresponding equations (expanding box model or EBM) have been considered earlier but never integrated in 3D simulations. Here, we follow the development of turbulence from 0.2 AU up to about 1.5 AU. Starting with isotropic spectra scaling as k -1, we observe a steepening toward a k -5/3 scaling in the middle of the wave number range and formation of spectral anisotropies. The advection of a plasma volume by the expanding solar wind causes a non-trivial stretching of the volume in directions transverse to radial and the selective decay of the components of velocity and magnetic fluctuations. These two effects combine to yield the following results. (1) Spectral anisotropy: gyrotropy is broken, and the radial wave vectors have most of the power. (2) Coherent structures: radial streams emerge that resemble the observed microjets. (3) Energy spectra per component: they show an ordering in good agreement with the one observed in the solar wind at 1 AU. The latter point includes a global dominance of the magnetic energy over kinetic energy in the inertial and f -1 range and a dominance of the perpendicular-to-the-radial components over the radial components in the inertial range. We conclude that many of the above properties are the result of evolution during transport in the heliosphere, and not just the remnant of the initial turbulence close to the Sun.

  12. Dynamics of modulated beams in spectral domain

    DOE PAGES

    Yampolsky, Nikolai A.

    2017-07-16

    General formalism for describing dynamics of modulated beams along linear beamlines is developed. We describe modulated beams with spectral distribution function which represents Fourier transform of the conventional beam distribution function in the 6-dimensional phase space. The introduced spectral distribution function is localized in some region of the spectral domain for nearly monochromatic modulations. It can be characterized with a small number of typical parameters such as the lowest order moments of the spectral distribution. We study evolution of the modulated beams in linear beamlines and find that characteristic spectral parameters transform linearly. The developed approach significantly simplifies analysis ofmore » various schemes proposed for seeding X-ray free electron lasers. We use this approach to study several recently proposed schemes and find the bandwidth of the output bunching in each case.« less

  13. A Comparative Study of YSO Classification Techniques using WISE Observations of the KR 120 Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Kang, Sung-Ju; Kerton, C. R.

    2014-01-01

    KR 120 (Sh2-187) is a small Galactic HII region located at a distance of 1.4 kpc that shows evidence for triggered star formation in the surrounding molecular cloud. We present an analysis of the young stellar object (YSO) population of the molecular cloud as determined using a variety of classification techniques. YSO candidates are selected from the WISE all sky catalog and classified as Class I, Class II and Flat based on 1) spectral index, 2) color-color or color-magnitude plots, and 3) spectral energy distribution (SED) fits to radiative transfer models. We examine the discrepancies in YSO classification between the various techniques and explore how these discrepancies lead to uncertainty in such scientifically interesting quantities such as the ratio of Class I/Class II sources and the surface density of YSOs at various stages of evolution.

  14. DERIVATION OF A RELATION FOR THE STEEPENING OF TeV-SELECTED BLAZAR {gamma}-RAY SPECTRA WITH ENERGY AND REDSHIFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stecker, Floyd William; Scully, Sean T.

    2010-02-01

    We derive a relation for the steepening of blazar {gamma}-ray spectra between the multi-GeV Fermi energy range and the TeV energy range observed by atmospheric Cerenkov telescopes. The change in spectral index is produced by two effects: (1) an intrinsic steepening, independent of redshift, owing to the properties of emission and absorption in the source and (2) a redshift-dependent steepening produced by intergalactic pair production interactions of blazar {gamma}-rays with low-energy photons of the 'intergalactic background light' (IBL). Given this relation, with good enough data on the mean {gamma}-ray spectral energy distribution of TeV-selected BL Lac objects, the redshift evolutionmore » of the IBL can, in principle, be determined independently of stellar evolution models. We apply our relation to the results of new Fermi observations of TeV-selected blazars.« less

  15. Centrality Dependence of Charged-Hadron Transverse-Momentum Spectra in d+Au Collisions at (sNN)=200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.

    2003-08-01

    We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at (sNN)=200 GeV. The spectra were obtained for transverse momenta 0.25

  16. Characterizing TW Hydra

    NASA Astrophysics Data System (ADS)

    Sokal, Kimberly R.; Deen, Casey P.; Mace, Gregory N.; Lee, Jae-Joon; Oh, Heeyoung; Kim, Hwihyun; Kidder, Benjamin T.; Jaffe, Daniel T.

    2018-02-01

    At 60 pc, TW Hydra (TW Hya) is the closest example of a star with a gas-rich protoplanetary disk, though TW Hya may be relatively old (3–15 Myr). As such, TW Hya is especially appealing for testing our understanding of the interplay between stellar and disk evolution. We present a high-resolution near-infrared spectrum of TW Hya obtained with the Immersion GRating INfrared Spectrometer (IGRINS) to re-evaluate the stellar parameters of TW Hya. We compare these data to synthetic spectra of magnetic stars produced by MoogStokes, and use sensitive spectral line profiles to probe the effective temperature, surface gravity, and magnetic field. A model with {T}{eff}=3800 K, {log} g=4.2, and B=3.0 kG best fits the near-infrared spectrum of TW Hya. These results correspond to a spectral type of M0.5 and an age of 8 Myr, which is well past the median life of gaseous disks.

  17. Pulsed Thermal Emission from the Accreting Pulsar XMMU J054134.7-682550

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonis; Walter, Roland; Audard, Marc; Lanz, Thierry

    2009-05-01

    XMMU J054134.7-682550, located in the LMC, featured a type II outburst in August 2007. We analyzed XMM-Newton (EPIC-MOS) and RXTE (PCA) data in order to derive the spectral and temporal characteristics of the system throughout the outburst. Spectral variability, spin period evolution, energy dependent pulse shape are discussed. The outburst (LX~3×1038 erg/s~LEDD) spectrum can be modeled using, cutoff power law, soft X-ray blackbody, disk emission, and cyclotron absorption line. The blackbody component shows a sinusoidal behavior, expected from hard X-ray reprocessing on the inner edge of the accretion disk. The thickness of the inner accretion disk (width of ~75 km) can be constrained. The spin-up of the pulsar during the outburst is the signature of a (huge) accretion rate. Simbol-X will provide similar capabilities as XMM-Newton and RXTE together, for such bright events.

  18. Gamma-ray bursts from internal shocks in a relativistic wind: a hydrodynamical study

    NASA Astrophysics Data System (ADS)

    Daigne, F.; Mochkovitch, R.

    2000-06-01

    The internal shock model for gamma-ray bursts involves shocks taking place in a relativistic wind with a very inhomogeneous initial distribution of the Lorentz factor. We have developed a 1D lagrangian hydrocode to follow the evolution of such a wind and the results we have obtained are compared to those of a simpler model presented in a recent paper (Daigne & Mochkovitch \\cite{Daigne2}) where all pressure waves are suppressed in the wind so that shells with different velocities only interact by direct collisions. The detailed hydrodynamical calculation essentially confirms the conclusion of the simple model: the main temporal and spectral properties of gamma-ray bursts can be reproduced by internal shocks in a relativistic wind.

  19. Collective bubble oscillations as a component of surf infrasound.

    PubMed

    Park, Joseph; Garcés, Milton; Fee, David; Pawlak, Geno

    2008-05-01

    Plunging surf is a known generator of infrasound, though the mechanisms have not been clearly identified. A model based on collective bubble oscillations created by demise of the initially entrained air pocket is examined. Computed spectra are compared to infrasound data from the island of Kauai during periods of medium, large, and extreme surf. Model results suggest that bubble oscillations generated by plunging waves are plausible generators of infrasound, and that dynamic bubble plume evolution on a temporal scale comparable to the breaking wave period may contribute to the broad spectral lobe of dominant infrasonic energy observed in measured data. Application of an inverse model has potential to characterize breaking wave size distributions, energy, and temporal changes in seafloor morphology based on remotely sensed infrasound.

  20. Self-consistent Model of Magnetospheric Electric Field, RC and EMIC Waves

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.

    2007-01-01

    Electromagnetic ion cyclotron (EMIC) waves are an important magnetospheric emission, which is excited near the magnetic equator with frequencies below the proton gyro-frequency. The source of bee energy for wave growth is provided by temperature anisotropy of ring current (RC) ions, which develops naturally during inward convection from the plasma sheet These waves strongly affect the dynamic s of resonant RC ions, thermal electrons and ions, and the outer radiation belt relativistic electrons, leading to non-adiabatic particle heating and/or pitch-angle scattering and loss to the atmosphere. The rate of ion and electron scattering/heating is strongly controlled by the Wave power spectral and spatial distributions, but unfortunately, the currently available observational information regarding EMIC wave power spectral density is poor. So combinations of reliable data and theoretical models should be utilized in order to obtain the power spectral density of EMIC waves over the entire magnetosphere throughout the different storm phases. In this study, we present the simulation results, which are based on two coupled RC models that our group has developed. The first model deals with the large-scale magnetosphere-ionosphere electrodynamic coupling, and provides a self-consistent description of RC ions/electrons and the magnetospheric electric field. The second model is based on a coupled system of two kinetic equations, one equation describes the RC ion dynamics and another equation describes the power spectral density evolution of EMIC waves, and self-consistently treats a micro-scale electrodynamic coupling of RC and EMIC waves. So far, these two models have been applied independently. However, the large-scale magnetosphere-ionosphere electrodynamics controls the convective patterns of both the RC ions and plasmasphere altering conditions for EMIC wave-particle interaction. In turn, the wave induced RC precipitation Changes the local field-aligned current distributions and the ionospheric conductances, which are crucial for a large-scale electrodynamics. The initial results from this new self-consistent model of the magnetospheric electric field, RC and EMIC waves will be shown in this presentation.

  1. Interrelating meteorite and asteroid spectra at UV-Vis-NIR wavelengths using novel multiple-scattering methods

    NASA Astrophysics Data System (ADS)

    Martikainen, Julia; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri

    2017-10-01

    Asteroids have remained mostly the same for the past 4.5 billion years, and provide us information on the origin, evolution and current state of the Solar System. Asteroids and meteorites can be linked by matching their respective reflectance spectra. This is difficult, because spectral features depend strongly on the surface properties, and meteorite surfaces are free of regolith dust present in asteroids. Furthermore, asteroid surfaces experience space weathering which affects their spectral features.We present a novel simulation framework for assessing the spectral properties of meteorites and asteroids and matching their reflectance spectra. The simulations are carried out by utilizing a light-scattering code that takes inhomogeneous waves into account and simulates light scattering by Gaussian-random-sphere particles large compared to the wavelength of the incident light. The code uses incoherent input and computes phase matrices by utilizing incoherent scattering matrices. Reflectance spectra are modeled by combining olivine, pyroxene, and iron, the most common materials that dominate the spectral features of asteroids and meteorites. Space weathering is taken into account by adding nanoiron into the modeled asteroid spectrum. The complex refractive indices needed for the simulations are obtained from existing databases, or derived using an optimization that utilizes our ray-optics code and the measured spectrum of the material.We demonstrate our approach by applying it to the reflectance spectrum of (4) Vesta and the reflectance spectrum of the Johnstown meteorite measured with the University of Helsinki integrating-sphere UV-Vis-NIR spectrometer.Acknowledgments. The research is funded by the ERC Advanced Grant No. 320773 (SAEMPL).

  2. The Explorer of Diffuse Galactic Emission (EDGE): Determining the Large-Scale Structure Evolution in the Universe

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.; Meyer, S. S.; Knox, L.; Timbie, P.; Wilson, G.

    2003-01-01

    Measurements of the large-scale anisotropy of the Cosmic Infared Background (CIB) can be used to determine the characteristics of the distribution of galaxies at the largest spatial scales. With this information important tests of galaxy evolution models and primordial structure growth are possible. In this paper, we describe the scientific goals, instrumentation, and operation of EDGE, a mission using an Antarctic Long Duration Balloon (LDB) platform. EDGE will osbserve the anisotropy in the CIB in 8 spectral bands from 270 GHz-1.5 THz with 6 arcminute angular resolution over a region -400 square degrees. EDGE uses a one-meter class off-axis telescope and an array of Frequency Selective Bololeters (FSB) to provide the compact and efficient multi-colar, high sensitivity radiometer required to achieve its scientific objectives.

  3. Crustal heterogeneity of the moon viewed from the Galileo SSI camera: Lunar sample calibrations and compositional implications

    NASA Technical Reports Server (NTRS)

    Pieters, Carle M.; Belton, M.; Becker, T.; Carr, M. H.; Chapmann, C.; Fanale, F. P.; Fischer, Erich M.; Gaddis, L.; Greeley, Ronald; Greenberg, R.

    1991-01-01

    Summaries are given of the spectral calibration, compositional parameters, nearside color, and limb and farside color of the Moon. The farside of the Moon, a large area of lunar crust, is dominated by heavily cratered terrain and basin deposits that represent the products of the first half billion years of crustal evolution. Continuing analysis of the returned lunar samples suggest a magma ocean and/or serial magmatism model for evolution of the primordial lunar crust. However, testing either hypothesis requires compositional information about the crustal stratigraphy and lateral heterogeneity. Resolution of this important planetary science issue is dependent on additional data. New Galileo multispectral images indicate previously unknown local and regional compositional diversity of the farside crust. Future analysis will focus on individual features and a more detailed assessment of crustal stratigraphy and heterogeneity.

  4. Probing longitudinal modes evolution of a InGaN green laser diode

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Hsi; Lin, Wei-Chen; Chen, Hong-Zui; Shy, Jow-Tsong; Chui, Hsiang-Chen

    2018-06-01

    This study aims to investigate the longitudinal mode evolution of a InGaN green laser diode. A spectrometer with a 3-pm resolution was employed to obtain the emission spectra of a green laser diode, at a wavelength of around 520 nm, as a function of applied current and temperature. The spectral behavior of the laser modes with applied current was investigated. Right above the lasing threshold, the green diode laser emitted single longitudinal mode output. With increasing applied current, the number of the longitudinal modes increased. Up to ten lasing modes oscillated within the entire gain profile when the applied currents were tuned to 2.2Ith. Subsequently, a multi-Lorentzian profile model was adopted to analyze the spectra and observe how the modes evolved with temperature and applied current.

  5. Image science team

    NASA Technical Reports Server (NTRS)

    Ando, K.

    1982-01-01

    A substantial technology base of solid state pushbroom sensors exists and is in the process of further evolution at both GSFC and JPL. Technologies being developed relate to short wave infrared (SWIR) detector arrays; HgCdTe hybrid detector arrays; InSb linear and area arrays; passive coolers; spectral beam splitters; the deposition of spectral filters on detector arrays; and the functional design of the shuttle/space platform imaging spectrometer (SIS) system. Spatial and spectral characteristics of field, aircraft and space multispectral sensors are summaried. The status, field of view, and resolution of foreign land observing systems are included.

  6. Spectral classification of selected ISOGAL sources using Himalayan Chandra Telescope

    NASA Astrophysics Data System (ADS)

    Joshi, U. C.; Ganesh, S.; Baliyan, K. S.; Parthasarathy, M.; Schultheis, M.; Rajpurohit, A.; Simon, G.; Omont, A.

    The ISOGAL survey (Omont et al. 1999) is devoted to the observation of selected regions of the Galactic plane in the mid-infrared with ISOCAM. More than 240 fields were observed at 7 and 15 micron wave-bands with ISOCAM at an angular resolution of 6'' which has provided a complete census, in the areas surveyed, of the stars in the late stages (RGB/AGB phases) of stellar evolution. Optical counterparts are detected for some of the ISOGAL sources in the directions where the extinction is relatively lower. We obtained optical spectra of ˜100 such sources with the Himalayan Chandra Telescope (HCT), India and estimated their spectral classes. Optical spectroscopy together with mid-IR data is expected to allow us to obtain the spectral-type vs mass-loss relation which are important parameters to understand the late stages of stellar evolution. In this paper, we present a set of spectra taken in the field FC97 for which ISOGAL survey is complete.

  7. Simulations of inspiraling and merging double neutron stars using the Spectral Einstein Code

    NASA Astrophysics Data System (ADS)

    Haas, Roland; Ott, Christian D.; Szilagyi, Bela; Kaplan, Jeffrey D.; Lippuner, Jonas; Scheel, Mark A.; Barkett, Kevin; Muhlberger, Curran D.; Dietrich, Tim; Duez, Matthew D.; Foucart, Francois; Pfeiffer, Harald P.; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-06-01

    We present results on the inspiral, merger, and postmerger evolution of a neutron star-neutron star (NSNS) system. Our results are obtained using the hybrid pseudospectral-finite volume Spectral Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for ≈22 orbits before merger. This waveform is the longest waveform obtained from fully general-relativistic simulations for NSNSs to date. Such long (and accurate) numerical waveforms are required to further improve semianalytical models used in gravitational wave data analysis, for example, the effective one body models. We discuss in detail the improvements to SpEC's ability to simulate NSNS mergers, in particular mesh refined grids to better resolve the merger and postmerger phases. We provide a set of consistency checks and compare our results to NSNS merger simulations with the independent bam code. We find agreement between them, which increases confidence in results obtained with either code. This work paves the way for future studies using long waveforms and more complex microphysical descriptions of neutron star matter in SpEC.

  8. Stability of post-fertilization traveling waves

    NASA Astrophysics Data System (ADS)

    Flores, Gilberto; Plaza, Ramón G.

    This paper studies the stability of a family of traveling wave solutions to the system proposed by Lane et al. [D.C. Lane, J.D. Murray, V.S. Manoranjan, Analysis of wave phenomena in a morphogenetic mechanochemical model and an application to post-fertilization waves on eggs, IMA J. Math. Appl. Med. Biol. 4 (4) (1987) 309-331], to model a pair of mechanochemical phenomena known as post-fertilization waves on eggs. The waves consist of an elastic deformation pulse on the egg's surface, and a free calcium concentration front. The family is indexed by a coupling parameter measuring contraction stress effects on the calcium concentration. This work establishes the spectral, linear and nonlinear orbital stability of these post-fertilization waves for small values of the coupling parameter. The usual methods for the spectral and evolution equations cannot be applied because of the presence of mixed partial derivatives in the elastic equation. Nonetheless, exponential decay of the directly constructed semigroup on the complement of the zero eigenspace is established. We show that small perturbations of the waves yield solutions to the nonlinear equations decaying exponentially to a phase-modulated traveling wave.

  9. The enigmatic object 2201 Oljato - Is it an asteroid or an evolved comet?

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy A.; Cochran, Anita L.; Barker, Edwin S.; Cruikshank, Dale P.; Hartmann, William K.

    1993-01-01

    The orbital properties of near-earth object 2201 have been associated with meteor showers, and its modeled orbital evolution is chaotic - a property which might indicate a history related to comets. Telescopic observations of its visible and near-infrared spectral reflectance, broad-band visible and near-infrared photometry, infrared radiometric measurements, and radar echoes are reported here from two apparitions, 1979 and 1983. This asteroid has a high radiometric albedo, a property not associated with comet nuclei. In certain wavelength regimes it is classified as an S-type asteroid, in others, an E-type, but its overall spectral reflectance is not typical of either taxonomic type, and neither type is thought of as cometlike. Unexpectedly high ultraviolet reflectance at the 1979 apparition was suggested to be the result of residual outgassing as in a comet. The UV photometric data are modeled as fluorescent emission from neutral species found in comets. The resulting calculations indicate a plausible value for OH and CN emission at 0.3085 and 0.38 micron relative to the observed range of active comets.

  10. Systematic study of magnetar outbursts

    NASA Astrophysics Data System (ADS)

    Coti Zelati, Francesco; Rea, Nanda; Pons, José A.; Campana, Sergio; Esposito, Paolo

    2018-02-01

    We present the results of the systematic study of all magnetar outbursts observed to date, through a reanalysis of data acquired in about 1100 X-ray observations. We track the temporal evolution of the outbursts' soft X-ray spectral properties and the luminosities of the single spectral components as well as of the total emission. We model empirically all outburst light curves, and estimate the characteristic decay time-scales as well as the energetics involved. We investigate the link between different parameters (e.g. the luminosity at the peak of the outburst and in quiescence, the maximum luminosity increase, the decay time-scale and energy of the outburst, the neutron star surface dipolar magnetic field and characteristic age, etc.), and unveil several correlations among these quantities. We discuss our results in the context of the internal crustal heating and twisted bundle models for magnetar outbursts. This study is complemented by the Magnetar Outburst Online Catalogue (http://magnetars.ice.csic.es), an interactive data base where the user can plot any combination of the parameters derived in this work, and download all data.

  11. The Bright Gamma-Ray Burst 991208: Tight Constraints on Afterglow Models from Observations of the Early-Time Radio Evolution

    NASA Astrophysics Data System (ADS)

    Galama, T. J.; Bremer, M.; Bertoldi, F.; Menten, K. M.; Lisenfeld, U.; Shepherd, D. S.; Mason, B.; Walter, F.; Pooley, G. G.; Frail, D. A.; Sari, R.; Kulkarni, S. R.; Berger, E.; Bloom, J. S.; Castro-Tirado, A. J.; Granot, J.

    2000-10-01

    The millimeter wavelength emission from GRB 991208 is the second brightest ever detected, yielding a unique data set. We present here well-sampled spectra and light curves over more than two decades in frequency for a 2 week period. This data set has allowed us for the first time to trace the evolution of the characteristic synchrotron self-absorption frequency νa, peak frequency νm, and the peak flux density Fm; we obtain νa~t-0.15+/-0.23, νm~t-1.7+/-0.7, and Fm~t-0.47+/-0.20. From the radio data we find that models of homogeneous or wind-generated ambient media with a spherically symmetric outflow can be ruled out. A model in which the relativistic outflow is collimated (a jet) can account for the observed evolution of the synchrotron parameters, the rapid decay at optical wavelengths, and the observed radio-to-optical spectral flux distributions that we present here, provided that the jet transition has not been fully completed in the first 2 weeks after the event. These observations provide additional evidence that rapidly decaying optical/X-ray afterglows are due to jets and that such transitions either develop very slowly or perhaps never reach the predicted asymptotic decay F(t)~t-p.

  12. Comparison of the Light-Harvesting Networks of Plant and Cyanobacterial Photosystem I

    PubMed Central

    Şener, Melih K.; Jolley, Craig; Ben-Shem, Adam; Fromme, Petra; Nelson, Nathan; Croce, Roberta; Schulten, Klaus

    2005-01-01

    With the availability of structural models for photosystem I (PSI) in cyanobacteria and plants it is possible to compare the excitation transfer networks in this ubiquitous photosystem from two domains of life separated by over one billion years of divergent evolution, thus providing an insight into the physical constraints that shape the networks' evolution. Structure-based modeling methods are used to examine the excitation transfer kinetics of the plant PSI-LHCI supercomplex. For this purpose an effective Hamiltonian is constructed that combines an existing cyanobacterial model for structurally conserved chlorophylls with spectral information for chlorophylls in the Lhca subunits. The plant PSI excitation migration network thus characterized is compared to its cyanobacterial counterpart investigated earlier. In agreement with observations, an average excitation transfer lifetime of ∼49 ps is computed for the plant PSI-LHCI supercomplex with a corresponding quantum yield of 95%. The sensitivity of the results to chlorophyll site energy assignments is discussed. Lhca subunits are efficiently coupled to the PSI core via gap chlorophylls. In contrast to the chlorophylls in the vicinity of the reaction center, previously shown to optimize the quantum yield of the excitation transfer process, the orientational ordering of peripheral chlorophylls does not show such optimality. The finding suggests that after close packing of chlorophylls was achieved, constraints other than efficiency of the overall excitation transfer process precluded further evolution of pigment ordering. PMID:15994896

  13. Pulsational mode fluctuations and their basic conservation laws

    NASA Astrophysics Data System (ADS)

    Borah, B.; Karmakar, P. K.

    2015-01-01

    We propose a theoretical hydrodynamic model for investigating the basic features of nonlinear pulsational mode stability in a partially charged dust molecular cloud within the framework of the Jeans homogenization assumption. The inhomogeneous cloud is modeled as a quasi-neutral multifluid consisting of the warm electrons, warm ions, and identical inertial cold dust grains with partial ionization in a neutral gaseous background. The grain-charge is assumed not to vary in the fluctuation evolution time scale. The active inertial roles of the thermal species are included. We apply a standard multiple scaling technique centered on the gravito-electrostatic equilibrium to understand the fluctuations on the astrophysical scales of space and time. This is found that electrostatic and self-gravitational eigenmodes co-exist as diverse solitary spectral patterns governed by a pair of Korteweg-de Vries (KdV) equations. In addition, all the relevant classical conserved quantities associated with the KdV system under translational invariance are methodologically derived and numerically analyzed. A full numerical shape-analysis of the fluctuations, scale lengths and perturbed densities with multi-parameter variation of judicious plasma conditions is carried out. A correlation of the perturbed densities and gravito-electrostatic spectral patterns is also graphically indicated. It is demonstrated that the solitary mass, momentum and energy densities also evolve like solitary spectral patterns which remain conserved throughout the spatiotemporal scales of the fluctuation dynamics. Astrophysical and space environments significant to our results are briefly highlighted.

  14. The Crab pulsar and its pulsar-wind nebula in the optical and infrared

    NASA Astrophysics Data System (ADS)

    Tziamtzis, A.; Lundqvist, P.; Djupvik, A. A.

    2009-12-01

    Aims. We investigate the emission mechanism and evolution of pulsars that are associated with supernova remnants. Methods: We used imaging techniques in both the optical and near infrared, using images with very good seeing (≤0.primeprime6) to study the immediate surroundings of the Crab pulsar. In the case of the infrared, we took two data sets with a time window of 75 days to check for variability in the inner part of the Crab nebula. We also measure the spectral indices of all these wisps, the nearby knot, and the interwisp medium, using our optical and infrared data. We then compared the observational results with the existing theoretical models. Results: We report variability in the three nearby wisps located to the northwest of the pulsar and also in a nearby anvil wisp in terms of their structure, position, and emissivity within the time window of 75 days. All the wisps display red spectra with similar spectral indices (α_ν = -0.58 ± 0.08, α_ν = -0.63 ± 0.07, α_ν = -0.53 ± 0.08) for the northwest triplet. The anvil wisp (anvil wisp 1) has a spectral index of α_ν = -0.62 ± 0.10. Similarly, the interwisp medium regions also show red spectra similar to those of the wisps, with the spectral index being α_ν = -0.61 ± 0.08, α_ν = -0.50 ± 0.10, while the third interwisp region has a flatter spectrum with spectral α_ν = -0.49 ± 0.10. The inner knot has a spectral index of α_ν = -0.63 ± 0.02. Also, based on archival HST data and our IR data, we find that the inner knot remains stationary for a time period of 13.5 years. The projected average velocity relative to the pulsar for this period is ≲8 ~km s-1. Conclusions: By comparing the spectral indices of the structures in the inner Crab with the current theoretical models, we find that the Del Zanna et al. model for the synchrotron emission fits our observations, although the spectral index is at the flatter end of their modelled spectra. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Part of the data presented here have been taken using ALFOSC, which is owned by the Instituto de Astrofisica de Andalucia (IAA) and operated at the Nordic Optical Telescope under an agreement between IAA and the NBIfAFG of the Astronomical Observatory of Copenhagen.

  15. The optical rebrightening of GRB100814A: an interplay of forward and reverse shocks?

    NASA Astrophysics Data System (ADS)

    De Pasquale, Massimiliano; Kuin, N. P. M.; Oates, S.; Schulze, S.; Cano, Z.; Guidorzi, C.; Beardmore, A.; Evans, P. A.; Uhm, Z. L.; Zhang, B.; Page, M.; Kobayashi, S.; Castro-Tirado, A.; Gorosabel, J.; Sakamoto, T.; Fatkhullin, T.; Pandey, S. B.; Im, M.; Chandra, P.; Frail, D.; Gao, H.; Kopač, D.; Jeon, Y.; Akerlof, C.; Huang, K. Y.; Pak, S.; Park, W.-K.; Gomboc, A.; Melandri, A.; Zane, S.; Mundell, C. G.; Saxton, C. J.; Holland, S. T.; Virgili, F.; Urata, Y.; Steele, I.; Bersier, D.; Tanvir, N.; Sokolov, V. V.; Moskvitin, A. S.

    2015-05-01

    We present a wide data set of gamma-ray, X-ray, UV/Opt/IR (UVOIR), and radio observations of the Swift GRB100814A. At the end of the slow decline phase of the X-ray and optical afterglow, this burst shows a sudden and prominent rebrightening in the optical band only, followed by a fast decay in both bands. The optical rebrightening also shows chromatic evolution. Such a puzzling behaviour cannot be explained by a single component model. We discuss other possible interpretations, and we find that a model that incorporates a long-lived reverse shock and forward shock fits the temporal and spectral properties of GRB100814 the best.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maas, Z. G.; Pilachowski, C. A.; Hinkle, K., E-mail: zmaas@indiana.edu, E-mail: cpilacho@indiana.edu, E-mail: hinkle@noao.edu

    Chlorine abundances are reported in 15 evolved giants and 1 M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H{sup 35}Cl at 3.69851 μ m. The high-resolution L -band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4 m telescope. The average [{sup 35}Cl/Fe] abundance in stars with −0.72 < [Fe/H] < 0.20 is [{sup 35}Cl/Fe] = (−0.10 ± 0.15) dex. The mean difference between the [{sup 35}Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16 ± 0.15) dex. The [{sup 35}Cl/Ca] ratio has an offset of ∼0.35more » dex above model predictions, suggesting that chemical evolution models are underproducing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and H ii regions. In one star where both H{sup 35}Cl and H{sup 37}Cl could be measured, a {sup 35}Cl/{sup 37}Cl isotope ratio of 2.2 ± 0.4 was found, consistent with values found in the Galactic ISM and predicted chemical evolution models.« less

  17. Receiver discriminability drives the evolution of complex sexual signals by sexual selection.

    PubMed

    Cui, Jianguo; Song, Xiaowei; Zhu, Bicheng; Fang, Guangzhan; Tang, Yezhong; Ryan, Michael J

    2016-04-01

    A hallmark of sexual selection by mate choice is the evolution of exaggerated traits, such as longer tails in birds and more acoustic components in the calls of birds and frogs. Trait elaboration can be opposed by costs such as increased metabolism and greater predation risk, but cognitive processes of the receiver can also put a brake on trait elaboration. For example, according to Weber's Law traits of a fixed absolute difference will be more difficult to discriminate as the absolute magnitude increases. Here, we show that in the Emei music frog (Babina daunchina) increases in the fundamental frequency between successive notes in the male advertisement call, which increases the spectral complexity of the call, facilitates the female's ability to compare the number of notes between calls. These results suggest that female's discriminability provides the impetus to switch from enhancement of signaling magnitude (i.e., adding more notes into calls) to employing a new signal feature (i.e., increasing frequency among notes) to increase complexity. We suggest that increasing the spectral complexity of notes ameliorates some of the effects of Weber's Law, and highlights how perceptual and cognitive biases of choosers can have important influences on the evolution of courtship signals. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  18. Simulation of Cosmic Ray Acceleration, Propagation and Interaction in SNR Environment

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Kamae, T.; Ellison, D. C.

    2007-07-01

    Recent studies of young supernova remnants (SNRs) with Chandra, XMM, Suzaku and HESS have revealed complex morphologies and spectral features of the emission sites. The critical question of the relative importance of the two competing gamma-ray emission mechanisms in SNRs; inverse-Compton scattering by high-energy electrons and pion production by energetic protons, may be resolved by GLAST-LAT. To keep pace with the improved observations, we are developing a 3D model of particle acceleration, diffusion, and interaction in a SNR where broad-band emission from radio to multi-TeV energies, produced by shock accelerated electrons and ions, can be simulated for a given topology of shock fronts, magnetic field, and ISM densities. The 3D model takes as input, the particle spectra predicted by a hydrodynamic simulation of SNR evolution where nonlinear diffusive shock acceleration is coupled to the remnant dynamics (e.g., Ellison, Decourchelle & Ballet; Ellison & Cassam-Chenai Ellison, Berezhko & Baring). We will present preliminary models of the Galactic Ridge SNR RX J1713-3946 for selected choices of SNR parameters, magnetic field topology, and ISM density distributions. When constrained by broad-band observations, our models should predict the extent of coupling between spectral shape and morphology and provide direct information on the acceleration efficiency of cosmic-ray electrons and ions in SNRs.

  19. The Konus-Wind Catalog of Gamma-Ray Bursts with Known Redshifts. I. Bursts Detected in the Triggered Mode

    NASA Astrophysics Data System (ADS)

    Tsvetkova, A.; Frederiks, D.; Golenetskii, S.; Lysenko, A.; Oleynik, P.; Pal'shin, V.; Svinkin, D.; Ulanov, M.; Cline, T.; Hurley, K.; Aptekar, R.

    2017-12-01

    In this catalog, we present the results of a systematic study of gamma-ray bursts (GRBs) with reliable redshift estimates detected in the triggered mode of the Konus-Wind (KW) experiment during the period from 1997 February to 2016 June. The sample consists of 150 GRBs (including 12 short/hard bursts) and represents the largest set of cosmological GRBs studied to date over a broad energy band. From the temporal and spectral analyses of the sample, we provide the burst durations, the spectral lags, the results of spectral fits with two model functions, the total energy fluences, and the peak energy fluxes. Based on the GRB redshifts, which span the range 0.1≤slant z≤slant 5, we estimate the rest-frame, isotropic-equivalent energy, and peak luminosity. For 32 GRBs with reasonably constrained jet breaks, we provide the collimation-corrected values of the energetics. We consider the behavior of the rest-frame GRB parameters in the hardness-duration and hardness-intensity planes, and confirm the “Amati” and “Yonetoku” relations for Type II GRBs. The correction for the jet collimation does not improve these correlations for the KW sample. We discuss the influence of instrumental selection effects on the GRB parameter distributions and estimate the KW GRB detection horizon, which extends to z˜ 16.6, stressing the importance of GRBs as probes of the early universe. Accounting for the instrumental bias, we estimate the KW GRB luminosity evolution, luminosity and isotropic-energy functions, and the evolution of the GRB formation rate, which are in general agreement with those obtained in previous studies.

  20. Galaxy And Mass Assembly: the evolution of the cosmic spectral energy distribution from z = 1 to z = 0

    NASA Astrophysics Data System (ADS)

    Andrews, S. K.; Driver, S. P.; Davies, L. J. M.; Kafle, P. R.; Robotham, A. S. G.; Vinsen, K.; Wright, A. H.; Bland-Hawthorn, J.; Bourne, N.; Bremer, M.; da Cunha, E.; Drinkwater, M.; Holwerda, B.; Hopkins, A. M.; Kelvin, L. S.; Loveday, J.; Phillipps, S.; Wilkins, S.

    2017-09-01

    We present the evolution of the cosmic spectral energy distribution (CSED) from z = 1 to 0. Our CSEDs originate from stacking individual spectral energy distribution (SED) fits based on panchromatic photometry from the Galaxy And Mass Assembly (GAMA) and COSMOS data sets in 10 redshift intervals with completeness corrections applied. Below z = 0.45, we have credible SED fits from 100 nm to 1 mm. Due to the relatively low sensitivity of the far-infrared data, our far-infrared CSEDs contain a mix of predicted and measured fluxes above z = 0.45. Our results include appropriate errors to highlight the impact of these corrections. We show that the bolometric energy output of the Universe has declined by a factor of roughly 4 - from 5.1 ± 1.0 at z ˜ 1 to 1.3 ± 0.3 × 1035 h70 W Mpc-3 at the current epoch. We show that this decrease is robust to cosmic sample variance, the SED modelling and other various types of error. Our CSEDs are also consistent with an increase in the mean age of stellar populations. We also show that dust attenuation has decreased over the same period, with the photon escape fraction at 150 nm increasing from 16 ± 3 at z ˜ 1 to 24 ± 5 per cent at the current epoch, equivalent to a decrease in AFUV of 0.4 mag. Our CSEDs account for 68 ± 12 and 61 ± 13 per cent of the cosmic optical and infrared backgrounds, respectively, as defined from integrated galaxy counts and are consistent with previous estimates of the cosmic infrared background with redshift.

  1. Evolution of magnetic field turbulence as observed by the Voyagers in the heliosheath and in the local interstellar medium.

    NASA Astrophysics Data System (ADS)

    Fraternale, F.; Iovieno, M.; Pogorelov, N.; Richardson, J. D.; Tordella, D.

    2017-12-01

    Voyager 1 (V1) left the heliosheath (HS) and entered the Local Interstellar Medium (LISM) in August 2012. At the same time, Voyager 2 (V2) was inside the HS and it is currently approaching the heliopause. The nature of the mainly compressive and "turbulent" fluctuations observed in the HS and in the LISM is still unclear. The presented study aims at describing the spatial and temporal evolution of turbulence in the HS and in the LISM. It shows a collection of power spectra of magnetic field fluctuations computed from consecutive periods since 2009. Unlike previous analysis, the highest resolution data (48 s) available are used to observe up to five frequency decades. Proper spectral recovery techniques applied in a previous work [Gallana et al, JGR 2016] are exploited to overcome the problem of missing data. Inside the HS, the achieved results are consistent with an anisotropic, mainly inertial, energy cascade in the frequency range [10-5,5·10-4] Hz, with spectral index ranging from -1.65 (V2) to -2 (V1) and energy spectral transfer around 10-19 erg/(cm3s). Anisotropy is significantly higher at V1 than at V2. In 2009 and 2010, tangential magnetic field fluctuations at V1 contain half of the fluctuating magnetic energy, which is not observed at V2. Large scales prior to the spectral break (f<10-5 Hz) are featured by a mild spectral decay with index between -0.95 and -1.5. Observations of small scales (5·10-4-2 Hz) are limited by the onboard magnetometer's accuracy, though some kinetic effects are still visible. LISM spectra in 2013.36 - 2014.65 are in agreement with previous observations [Burlaga, Florinski & Ness ApJ Lett, 2015]. A slightly flatter spectral trend than the Kolmogorov's is observed for the radial fluctuations at [10-7, 10-6] Hz. However, the tangential and normal components show nearly a f-1 decay. The evolution of turbulent spectra in the LISM is investigated.

  2. Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Wei, Yuan; Li, Bowen; Wei, Xiaoming; Yu, Ying; Wong, Kenneth K. Y.

    2018-02-01

    The single-shot spectral dynamics of dual-color-soliton collisions inside a mode-locked laser is experimentally and numerically investigated. By using the all-optically dispersive Fourier transform, we spectrally unveil the collision-induced soliton self-reshaping process, which features dynamic spectral fringes over the soliton main lobe, and the rebuilding of Kelly sidebands with wavelength drifting. Meanwhile, the numerical simulations validate the experimental observation and provide additional insights into the physical mechanism of the collision-induced spectral dynamics from the temporal domain perspective. It is verified that the dynamic interference between the soliton and the dispersive waves is responsible for the observed collision-induced spectral evolution. These dynamic phenomena not only demonstrate the role of dispersive waves in the sophisticated soliton interaction inside the laser cavity, but also facilitate a deeper understanding of the soliton's inherent stability.

  3. Long Term Temporal and Spectral Evolution of Point Sources in Nearby Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Durmus, D.; Guver, T.; Hudaverdi, M.; Sert, H.; Balman, Solen

    2016-06-01

    We present the results of an archival study of all the point sources detected in the lines of sight of the elliptical galaxies NGC 4472, NGC 4552, NGC 4649, M32, Maffei 1, NGC 3379, IC 1101, M87, NGC 4477, NGC 4621, and NGC 5128, with both the Chandra and XMM-Newton observatories. Specifically, we studied the temporal and spectral evolution of these point sources over the course of the observations of the galaxies, mostly covering the 2000 - 2015 period. In this poster we present the first results of this study, which allows us to further constrain the X-ray source population in nearby elliptical galaxies and also better understand the nature of individual point sources.

  4. Galaxy Evolution Spectroscopic Explorer (GESE): Science Rationale, Optical Design, and Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Purves, Lloyd

    2014-01-01

    One of the key goals of NASA’s astrophysics program is to answer the question: How did galaxies evolve into the spiral, elliptical, and irregular galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to help address this question by making a large ultraviolet spectroscopic survey of galaxies at a redshift, z approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-m space telescope with an near-ultraviolet (NUV) multi-object slit spectrograph covering the spectral range, 0.2-0.4 micrometers (0.1-0.2 micrometers as emitted by galaxies at a redshift, z approximately 1) at a spectral resolution of delta lambda=6 A.

  5. Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots.

    PubMed

    van Hazel, Ilke; Sabouhanian, Amir; Day, Lainy; Endler, John A; Chang, Belinda S W

    2013-11-13

    One of the most striking features of avian vision is the variation in spectral sensitivity of the short wavelength sensitive (SWS1) opsins, which can be divided into two sub-types: violet- and UV- sensitive (VS & UVS). In birds, UVS has been found in both passerines and parrots, groups that were recently shown to be sister orders. While all parrots are thought to be UVS, recent evidence suggests some passerine lineages may also be VS. The great bowerbird (Chlamydera nuchalis) is a passerine notable for its courtship behaviours in which males build and decorate elaborate bower structures. The great bowerbird SWS1 sequence possesses an unusual residue combination at known spectral tuning sites that has not been previously investigated in mutagenesis experiments. In this study, the SWS1 opsin of C. nuchalis was expressed along with a series of spectral tuning mutants and ancestral passerine SWS1 pigments, allowing us to investigate spectral tuning mechanisms and explore the evolution of UV/violet sensitivity in early passerines and parrots. The expressed C. nuchalis SWS1 opsin was found to be a VS pigment, with a λmax of 403 nm. Bowerbird SWS1 mutants C86F, S90C, and C86S/S90C all shifted λmax into the UV, whereas C86S had no effect. Experimentally recreated ancestral passerine and parrot/passerine SWS1 pigments were both found to be VS, indicating that UV sensitivity evolved independently in passerines and parrots from a VS ancestor. Our mutagenesis studies indicate that spectral tuning in C. nuchalis is mediated by mechanisms similar to those of other birds. Interestingly, our ancestral sequence reconstructions of SWS1 in landbird evolution suggest multiple transitions from VS to UVS, but no instances of the reverse. Our results not only provide a more precise prediction of where these spectral sensitivity shifts occurred, but also confirm the hypothesis that birds are an unusual exception among vertebrates where some descendants re-evolved UVS from a violet type ancestor. The re-evolution of UVS from a VS type pigment has not previously been predicted elsewhere in the vertebrate phylogeny.

  6. Thermal Evolution and Radiative Output of Solar Flares Observed by the EUV Variability Experiment (EVE)

    NASA Technical Reports Server (NTRS)

    Chamberlin, P. C.; Milligan, R. O.; Woods, T. N.

    2012-01-01

    This paper describes the methods used to obtain the thermal evolution and radiative output during solar flares as observed by the Extreme u ltraviolet Variability Experiment (EVE) onboard the Solar Dynamics Ob servatory (SDO). Presented and discussed in detail are how EVE measur ements, due to its temporal cadence, spectral resolution and spectral range, can be used to determine how the thermal plasma radiates at v arious temperatures throughout the impulsive and gradual phase of fla res. EVE can very accurately determine the radiative output of flares due to pre- and in-flight calibrations. Events are presented that sh ow the total radiated output of flares depends more on the flare duration than the typical GOES X-ray peak magnitude classification. With S DO observing every flare throughout its entire duration and over a la rge temperature range, new insights into flare heating and cooling as well as the radiative energy release in EUV wavelengths support exis ting research into understanding the evolution of solar flares.

  7. 3D-MHD Simulations of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Bayliss, R. A.; Forest, C. B.; Wright, J. C.; O'Connell, R.

    2003-10-01

    Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a 3-D pseudo-spectral simulation of the MHD equations; results of the simulations are used to predict behavior of the experiment. The code solves the self-consistent full evolution of the magnetic and velocity fields. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and fourth order finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James [Proc. R. Soc. Lond. A 425. 407-429 (1989)]. Initial results indicate that saturation of the magnetic field occurs so that the resulting perturbed backreaction of the induced magnetic field changes the velocity field such that it would no longer be linearly unstable, suggesting non-linear terms are necessary for explaining the resulting state. Saturation and self-excitation depend in detail upon the magnetic Prandtl number.

  8. Explicit simulation of ice particle habits in a Numerical Weather Prediction Model

    NASA Astrophysics Data System (ADS)

    Hashino, Tempei

    2007-05-01

    This study developed a scheme for explicit simulation of ice particle habits in Numerical Weather Prediction (NWP) Models. The scheme is called Spectral Ice Habit Prediction System (SHIPS), and the goal is to retain growth history of ice particles in the Eulerian dynamics framework. It diagnoses characteristics of ice particles based on a series of particle property variables (PPVs) that reflect history of microphysieal processes and the transport between mass bins and air parcels in space. Therefore, categorization of ice particles typically used in bulk microphysical parameterization and traditional bin models is not necessary, so that errors that stem from the categorization can be avoided. SHIPS predicts polycrystals as well as hexagonal monocrystals based on empirically derived habit frequency and growth rate, and simulates the habit-dependent aggregation and riming processes by use of the stochastic collection equation with predicted PPVs. Idealized two dimensional simulations were performed with SHIPS in a NWP model. The predicted spatial distribution of ice particle habits and types, and evolution of particle size distributions showed good quantitative agreement with observation This comprehensive model of ice particle properties, distributions, and evolution in clouds can be used to better understand problems facing wide range of research disciplines, including microphysics processes, radiative transfer in a cloudy atmosphere, data assimilation, and weather modification.

  9. X-Ray Emission from the MUSCLES Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Schneider, P. Christian; France, Kevin; Loyd, Parke; MUSCLES Team

    2016-07-01

    The MUSCLES (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems) project is a multi-spectral-region investigation of the high-energy (UV/X-ray) radiation fields of K dwarf / M dwarf exoplanet host stars and how this radiation will influence the evolution of the exoplanet atmospheres. As part of this project we have used Chandra and XMM-Newton to study the X-ray emission from ten (7 M dwarf and 3 K dwarf), nearby (within 15 pc), low mass exoplanet hosts. Typically, we have coordinated the X-ray observations with HST-COS FUV and ground-based optical spectroscopy of the same targets. Even though these stars are generally considered to be inactive we find evidence for significant X-ray variability for many of the M dwarfs observed. In this poster we illustrate the coronal properties of the stars using example light-curves and spectral analyses. The UV and X-ray data are crucial input to the modeling the complete spectral energy distributions for exoplanet studies.This work was supported by Chandra grants GO4-15041X and GO5-16155X and NASA XMM grant NNX16AC09G to the University of Colorado at Boulder. The overall MUSCLES project was undertaken by HST GO programs 12464 and 13650 and supported by STScI grants HST-GO-12464.01 and HST-GO-13650.01 . P.C.S. is supported by an ESA Research Fellowship.

  10. On the Time Evolution of Gamma-Ray Burst Pulses: A Self-Consistent Description.

    PubMed

    Ryde; Svensson

    2000-01-20

    For the first time, the consequences of combining two well-established empirical relations that describe different aspects of the spectral evolution of observed gamma-ray burst (GRB) pulses are explored. These empirical relations are (1) the hardness-intensity correlation and (2) the hardness-photon fluence correlation. From these we find a self-consistent, quantitative, and compact description for the temporal evolution of pulse decay phases within a GRB light curve. In particular, we show that in the case in which the two empirical relations are both valid, the instantaneous photon flux (intensity) must behave as 1&solm0;&parl0;1+t&solm0;tau&parr0;, where tau is a time constant that can be expressed in terms of the parameters of the two empirical relations. The time evolution is fully defined by two initial constants and two parameters. We study a complete sample of 83 bright GRB pulses observed by the Compton Gamma-Ray Observatory and identify a major subgroup of GRB pulses ( approximately 45%) which satisfy the spectral-temporal behavior described above. In particular, the decay phase follows a reciprocal law in time. It is unclear what physics causes such a decay phase.

  11. Connections Between Jet Formation and Multiwavelength Spectral Evolution in Black Hole Transients

    NASA Technical Reports Server (NTRS)

    Kakemci, Emrah; Chun, Yoon-Young; Dincer, Tolga; Buxton, Michelle; Tomsick, John A.; Corbel, Stephane; Kaaret, Philip

    2011-01-01

    Multiwavelength observations are the key to understand conditions of jet formation in Galactic black hole transient (GBHT) systems. By studying radio and optical-infrared evolution of such systems during outburst decays, the compact jet formation can be traced. Comparing this with X-ray spectral and timing evolution we can obtain physical and geometrical conditions for jet formation, and study the contribution of jets to X-ray emission. In this work, first X-ray evolution - jet relation for XTE J1752-223 will be discussed. This source had very good coverage in X-rays, optical, infrared and radio. A long exposure with INTEGRAL also allowed us to study gamma-ray behavior after the jet turns on. We will also show results from the analysis of data from GX 339-4 in the hard state with SUZAKU at low flux levels. The fits to iron line fluorescence emission show that the inner disk radius increases by a factor of greater than 27 with respect to radii in bright states. This result, along with other disk radius measurements in the hard state will be discussed within the context of conditions for launching and sustaining jets.

  12. Fundamental Properties of O-Type Stars

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lanz, Thierry; Hubeny, Ivan

    2006-01-01

    We present a comprehensive analysis of high-resolution, far-ultraviolet HST STIS, FUSE, and optical spectra of 18 O stars in the Small Magellanic Cloud. Our analysis is based on the OSTAR2002 grid of NLTE metal-line-blanketed model atmospheres calculated with our code TLUSTY. We systematically explore and present the sensitivity of various UV and optical lines to different stellar parameters. We have obtained consistent fits of the UV and the optical spectrum to derive the effective temperature, surface gravity, surface composition, and microturbulent velocity of each star. Stellar radii, masses, and luminosities follow directly. For stars of the same spectral subtype, we find a general good agreement between effective temperature determinations obtained with TLUSTY, CMFGEN, and FASTWIND models, which are all lower than the standard T(sub eff) calibration of O stars. We propose a new calibration between the spectral type and effective temperature based on our results from UV metal lines, as well as optical hydrogen and helium lines. The lower effective temperatures translate into ionizing luminosities that are smaller by a factor of 3 compared to luminosities inferred from previous standard calibrations. The chemical composition analysis reveals that the surface of about 80% of the program stars is moderately to strongly enriched in nitrogen, while showing the original helium, carbon, and oxygen abundances. Our results support the new stellar evolution models that predict that the surface of fast rotating stars becomes nitrogen-rich during the main-sequence phase because of rotationally induced mixing. Enrichment factors are, however, larger than predicted by stellar evolution models. Most stars exhibit the "mass discrepancy" problem, which we interpret as a result of fast rotation that lowers the measured effective gravity. Nitrogen enrichment and low spectroscopic masses are therefore two manifestations of fast rotation. Our study thus emphasizes the importance of rotation in our understanding of the properties of massive stars and provides a framework for investigating populations of low-metallicity massive stars at low and high redshifts.

  13. Direct numerical simulations of a reacting turbulent mixing layer by a pseudospectral-spectral element method

    NASA Technical Reports Server (NTRS)

    Mcmurtry, Patrick A.; Givi, Peyman

    1992-01-01

    An account is given of the implementation of the spectral-element technique for simulating a chemically reacting, spatially developing turbulent mixing layer. Attention is given to experimental and numerical studies that have investigated the development, evolution, and mixing characteristics of shear flows. A mathematical formulation is presented of the physical configuration of the spatially developing reacting mixing layer, in conjunction with a detailed representation of the spectral-element method's application to the numerical simulation of mixing layers. Results from 2D and 3D calculations of chemically reacting mixing layers are given.

  14. CHARRON: Code for High Angular Resolution of Rotating Objects in Nature

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Zorec, J.; Vakili, F.

    2012-12-01

    Rotation is one of the fundamental physical parameters governing stellar physics and evolution. At the same time, spectrally resolved optical/IR long-baseline interferometry has proven to be an important observing tool to measure many physical effects linked to rotation, in particular, stellar flattening, gravity darkening, differential rotation. In order to interpret the high angular resolution observations from modern spectro-interferometers, such as VLTI/AMBER and VEGA/CHARA, we have developed an interferometry-oriented numerical model: CHARRON (Code for High Angular Resolution of Rotating Objects in Nature). We present here the characteristics of CHARRON, which is faster (≃q10-30 s per model) and thus more adapted to model-fitting than the first version of the code presented by Domiciano de Souza et al. (2002).

  15. Wave Evolution in River Mouths and Tidal Inlets

    DTIC Science & Technology

    2014-06-01

    Monterey Bay by a Datawell Buoy (blue) and three collocated WRD buoys (red). Also shown is the f −4 spectral roll off (black dashed). .............. 48...f −4 spectral roll off (black dashed) and the blocking frequency in regions B-E. .................................................... 53   Figure...Significant Wave Height Hz hertz IMU Inertial measurement unit JONSWAP Joint North Sea Wave Program km kilometer MCR Mouth of the Columbia River MEMS

  16. Time resolved analysis of Fermi gamma-ray bursts with fast-and slow-cooled synchrotron photon models

    DOE PAGES

    Burgess, J. M.; Preece, R. D.; Connaughton, V.; ...

    2014-02-27

    Time-resolved spectroscopy is performed on eight bright, long gamma-ray bursts (GRBs) dominated by single emission pulses that were observed with the Fermi Gamma-Ray Space Telescope. Fitting the prompt radiation of GRBs by empirical spectral forms such as the Band function leads to ambiguous conclusions about the physical model for the prompt radiation. Moreover, the Band function is often inadequate to fit the data. Therefore, the GRB spectrum is modeled with two emission components consisting of optically thin non-thermal synchrotron radiation from relativistic electrons and, when significant, thermal emission from a jet photosphere, which is represented by a blackbody spectrum. Inmore » order to produce an acceptable fit, the addition of a blackbody component is required in five out of the eight cases. We also find that the low-energy spectral index α is consistent with a synchrotron component with α = –0.81 ± 0.1. This value lies between the limiting values of α = –2/3 and α = –3/2 for electrons in the slow- and fast-cooling regimes, respectively, suggesting ongoing acceleration at the emission site. The blackbody component can be more significant when using a physical synchrotron model instead of the Band function, illustrating that the Band function does not serve as a good proxy for a non-thermal synchrotron emission component. The temperature and characteristic emission-region size of the blackbody component are found to, respectively, decrease and increase as power laws with time during the prompt phase. Additionally, we find that the blackbody and non-thermal components have separate temporal behaviors as far as their respective flux and spectral evolutions.« less

  17. Parameters of the flare and surrounding medium and their evolution during 20 January 2005 solar event

    NASA Astrophysics Data System (ADS)

    Troitskaia, E.; Arkhangelskaja, I.; Arkhangelsky, A.; Gan, W.

    2013-02-01

    Basing on the data of AVS-F apparatus from SONG-D detector onboard CORONAS-F satellite, we have studied the extreme solar event of January 20, 2005 used the 2.223 MeV, 4.44 MeV and 6.13 MeV γ-lines temporal profiles. By the statistical modeling method we calculated the temporal profile of 2.223 MeV line too. Calculations have been performed in assumption of Bessel type of accelerated particles energy spectrum, different 3He content in the region of nuclear reactions and several density models of the solar atmosphere. Comparisons of the results of modeling with observational 2.223 MeV AVS-F/SONG-D data reveal the increasing of the ratio of 3He concentration to 1H one during the flare from 2× 10-5 at the rise phase of the gamma-ray flux up to 2× 10--4 at the decay one. During the same period the spectrum became harder and the density of solar atmosphere increased too. Averaged over full time of 2.223 MeV γ-emission concentration ratio of 3He/1H is equal to (1.40±0.15)×10--4, also the density model with enlarged density up to 2×1017 cm-3 in the lower chromosphere and through the whole photosphere is realized. Besides, we have estimated the spectral index αT that is close to 0.1 for accelerated protons in the range of 1-100 MeV. Using the AVS-F gamma-rays spectral data in the wide range up to 140 MeV, we have obtained the spectral index of s=2.5±0.1 in the case of power law spectrum for energies more than 300 MeV.

  18. Epistatic interactions influence terrestrial–marine functional shifts in cetacean rhodopsin

    PubMed Central

    2017-01-01

    Like many aquatic vertebrates, whales have blue-shifting spectral tuning substitutions in the dim-light visual pigment, rhodopsin, that are thought to increase photosensitivity in underwater environments. We have discovered that known spectral tuning substitutions also have surprising epistatic effects on another function of rhodopsin, the kinetic rates associated with light-activated intermediates. By using absorbance spectroscopy and fluorescence-based retinal release assays on heterologously expressed rhodopsin, we assessed both spectral and kinetic differences between cetaceans (killer whale) and terrestrial outgroups (hippo, bovine). Mutation experiments revealed that killer whale rhodopsin is unusually resilient to pleiotropic effects on retinal release from key blue-shifting substitutions (D83N and A292S), largely due to a surprisingly specific epistatic interaction between D83N and the background residue, S299. Ancestral sequence reconstruction indicated that S299 is an ancestral residue that predates the evolution of blue-shifting substitutions at the origins of Cetacea. Based on these results, we hypothesize that intramolecular epistasis helped to conserve rhodopsin's kinetic properties while enabling blue-shifting spectral tuning substitutions as cetaceans adapted to aquatic environments. Trade-offs between different aspects of molecular function are rarely considered in protein evolution, but in cetacean and other vertebrate rhodopsins, may underlie multiple evolutionary scenarios for the selection of specific amino acid substitutions. PMID:28250185

  19. Observation of ion acoustic multi-Peregrine solitons in multicomponent plasma with negative ions

    NASA Astrophysics Data System (ADS)

    Pathak, Pallabi; Sharma, Sumita K.; Nakamura, Y.; Bailung, H.

    2017-12-01

    The evolution of the multi-Peregrine soliton is investigated in a multicomponent plasma and found to be critically dependent on the initial bound state. Formation and splitting of Peregrine soliton, broadening of the frequency spectra provide clear evidence of nonlinear-dispersive focusing due to modulational instability, a generic mechanism for rogue wave formation in which amplitude and phase modulation grow as a result of interplay between nonlinearity and anomalous dispersion. We have shown that initial perturbation parameters (amplitude & temporal length) critically determine the number of solitons evolution. It is also found that a sufficiently long wavelength perturbation of high amplitude invoke strong nonlinearity to generate a supercontinuum state. Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) analysis of the experimental time series data clearly indicate the spatio-temporal localization and spectral broadening. We consider a model based on the frame work of Nonlinear Schrodinger equation (NLSE) to explain the experimental observations.

  20. Spirals, Bridges and Tails: Star Formation and the Disturbed ISM in Colliding Galaxies before Merger.

    NASA Astrophysics Data System (ADS)

    Struck, Curtis; Appleton, Philip; Charmandaris, Vassilis; Reach, William; Smith, Beverly

    2004-09-01

    We propose to use Spitzer's unprecedented sensitivity and wide spatial and spectral evolution to study the distribution of star formation in a sample of colliding galaxies with a wide range of tidal and splash structures. Star forming environments like those in strong tidal spirals, and in extra-disk structures like tails were probably far more common in the early stages of galaxy evolution, and important contributors to the net star formation. Using the Spitzer data and data from other wavebands, we will compare the pattern of SF to maps of gas and dust density and phase distribution. With the help of dynamical modeling, we will relate these in turn to dynamical triggers, to better understand the trigger mechanisms. We expect our observations to complement both the SINGS archive and the archives produced by other GO programs, such as those looking at merger remnants or tidal dwarf formation.

  1. Modeling Protoplanetary Disks to Characterize the Evolution of their Structure

    NASA Astrophysics Data System (ADS)

    Allen, Magdelena; van der Marel, Nienke; Williams, Jonathan

    2018-01-01

    Stars form from gravitationally collapsing clouds of gas and dust. Most young stars retain a protoplanetary disk for a few million years. This disk’s dust reemits stellar flux in the infrared, producing a spectral energy distribution (SED) observable by Spitzer and other telescopes. To understand the inner clearing of dust cavities and evolution in the SED, we used the Chiang & Goldreich two-layer approximation. We first wrote a python script based on refinements by Dullemond that includes a hot, puffed inner rim, shadowed mid region, flaring outer disk, and a variable inner cavity. This was then coupled with a Markov Chain Monte Carlo procedure to fit the observed SEDs of disks in the star forming Lupus region. The fitting procedure recovers physical characteristics of the disk including temperature, size, mass, and surface density. We compare the characteristics of circumstellar disks without holes and more evolved transition disks with cleared inner regions.

  2. Neutral evolution of mutational robustness

    PubMed Central

    van Nimwegen, Erik; Crutchfield, James P.; Huynen, Martijn

    1999-01-01

    We introduce and analyze a general model of a population evolving over a network of selectively neutral genotypes. We show that the population’s limit distribution on the neutral network is solely determined by the network topology and given by the principal eigenvector of the network’s adjacency matrix. Moreover, the average number of neutral mutant neighbors per individual is given by the matrix spectral radius. These results quantify the extent to which populations evolve mutational robustness—the insensitivity of the phenotype to mutations—and thus reduce genetic load. Because the average neutrality is independent of evolutionary parameters—such as mutation rate, population size, and selective advantage—one can infer global statistics of neutral network topology by using simple population data available from in vitro or in vivo evolution. Populations evolving on neutral networks of RNA secondary structures show excellent agreement with our theoretical predictions. PMID:10449760

  3. Prediction for the transverse momentum distribution of Drell-Yan dileptons at GSI PANDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linnyk, O.; Gallmeister, K.; Leupold, S.

    2006-02-01

    We predict the triple differential cross section of the Drell-Yan process pp{yields}l{sup +}l{sup -}X in the kinematical regimes relevant for the upcoming PANDA experiment, using a model that accounts for quark virtuality as well as primordial transverse momentum. We find a cross section magnitude of up to 10 nb in the low mass region. A measurement with 10% accuracy is desirable in order to constrain the partonic transverse momentum dispersion and the spectral function width within {+-}50 MeV and to study their evolution with M and {radical}(s)

  4. Dilepton production from hot hadronic matter in nonequilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenke, B.; Greiner, C.

    2006-03-15

    The influence of time-dependent medium modifications of low-mass vector mesons on dilepton production is investigated within a nonequilibrium quantum field-theoretical description on the basis of the Kadanoff-Baym equations. Time scales for the adaption of the spectral properties to changing self-energies are given, and, under use of a model for the fireball evolution, nonequilibrium dilepton yields from the decay of {rho} and {omega} mesons are calculated. In a comparison of these yields, those from calculations that assume instantaneous (Markovian) adaption to the changing-medium quantum-mechanical memory effects turn out to be important.

  5. Spectral analysis of point-vortex dynamics: first application to vortex polygons in a circular domain

    NASA Astrophysics Data System (ADS)

    Speetjens, M. F. M.; Meleshko, V. V.; van Heijst, G. J. F.

    2014-06-01

    The present study addresses the classical problem of the dynamics and stability of a cluster of N-point vortices of equal strength arranged in a polygonal configuration (‘N-vortex polygons’). In unbounded domains, such N-vortex polygons are unconditionally stable for N\\leqslant 7. Confinement in a circular domain tightens the stability conditions to N\\leqslant 6 and a maximum polygon size relative to the domain radius. This work expands on existing studies on stability and integrability by a first giving an exploratory spectral analysis of the dynamics of N vortex polygons in circular domains. Key to this is that the spectral signature of the time evolution of vortex positions reflects their qualitative behaviour. Expressing vortex motion by a generic evolution operator (the so-called Koopman operator) provides a rigorous framework for such spectral analyses. This paves the way to further differentiation and classification of point-vortex behaviour beyond stability and integrability. The concept of Koopman-based spectral analysis is demonstrated for N-vortex polygons. This reveals that conditional stability can be seen as a local form of integrability and confirms an important generic link between spectrum and dynamics: discrete spectra imply regular (quasi-periodic) motion; continuous (sub-)spectra imply chaotic motion. Moreover, this exposes rich nonlinear dynamics as intermittency between regular and chaotic motion and quasi-coherent structures formed by chaotic vortices. Dedicated to the memory of Slava Meleshko, a dear friend and inspiring colleague.

  6. Dynamics of a Solar Prominence Tornado Observed by SDO/AIA on 2012 November 7-8

    NASA Astrophysics Data System (ADS)

    Mghebrishvili, Irakli; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil; Ramishvili, Giorgi; Shergelashvili, Bidzina; Veronig, Astrid; Poedts, Stefaan

    2015-09-01

    We study the detailed dynamics of a solar prominence tornado using time series of 171, 304, 193, and 211 Å spectral lines obtained by the Solar Dynamics Observatory/Atmospheric Imaging Assembly during 2012 November 7-8. The tornado first appeared at 08:00 UT, November 07, near the surface, gradually rose upwards with the mean speed of ˜1.5 km s-1 and persisted over 30 hr. Time-distance plots show two patterns of quasi-periodic transverse displacements of the tornado axis with periods of 40 and 50 minutes at different phases of the tornado evolution. The first pattern occurred during the rising phase and can be explained by the upward motion of the twisted tornado. The second pattern occurred during the later stage of evolution when the tornado already stopped rising and could be caused either by MHD kink waves in the tornado or by the rotation of two tornado threads around a common axis. The later hypothesis is supported by the fact that the tornado sometimes showed a double structure during the quasi-periodic phase. 211 and 193 Å spectral lines show a coronal cavity above the prominence/tornado, which started expansion at ˜13:00 UT and continuously rose above the solar limb. The tornado finally became unstable and erupted together with the corresponding prominence as coronal mass ejection (CME) at 15:00 UT, November 08. The final stage of the evolution of the cavity and the tornado-related prominence resembles the magnetic breakout model. On the other hand, the kink instability may destabilize the twisted tornado, and consequently prominence tornadoes can be used as precursors for CMEs.

  7. DYNAMICS OF A SOLAR PROMINENCE TORNADO OBSERVED BY SDO/AIA ON 2012 NOVEMBER 7–8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mghebrishvili, Irakli; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil

    We study the detailed dynamics of a solar prominence tornado using time series of 171, 304, 193, and 211 Å spectral lines obtained by the Solar Dynamics Observatory/Atmospheric Imaging Assembly during 2012 November 7–8. The tornado first appeared at 08:00 UT, November 07, near the surface, gradually rose upwards with the mean speed of ∼1.5 km s{sup −1} and persisted over 30 hr. Time–distance plots show two patterns of quasi-periodic transverse displacements of the tornado axis with periods of 40 and 50 minutes at different phases of the tornado evolution. The first pattern occurred during the rising phase and canmore » be explained by the upward motion of the twisted tornado. The second pattern occurred during the later stage of evolution when the tornado already stopped rising and could be caused either by MHD kink waves in the tornado or by the rotation of two tornado threads around a common axis. The later hypothesis is supported by the fact that the tornado sometimes showed a double structure during the quasi-periodic phase. 211 and 193 Å spectral lines show a coronal cavity above the prominence/tornado, which started expansion at ∼13:00 UT and continuously rose above the solar limb. The tornado finally became unstable and erupted together with the corresponding prominence as coronal mass ejection (CME) at 15:00 UT, November 08. The final stage of the evolution of the cavity and the tornado-related prominence resembles the magnetic breakout model. On the other hand, the kink instability may destabilize the twisted tornado, and consequently prominence tornadoes can be used as precursors for CMEs.« less

  8. Evolution of turbulence in the expanding solar wind, a numerical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yue; Grappin, Roland; Verdini, Andrea, E-mail: Yue.Dong@lpp.polytechnique.fr, E-mail: verdini@arcetri.astro.it, E-mail: grappin@lpp.polytechnique.fr

    2014-10-01

    We study the evolution of turbulence in the solar wind by solving numerically the full three-dimensional (3D) magnetohydrodynamic (MHD) equations embedded in a radial mean wind. The corresponding equations (expanding box model or EBM) have been considered earlier but never integrated in 3D simulations. Here, we follow the development of turbulence from 0.2 AU up to about 1.5 AU. Starting with isotropic spectra scaling as k {sup –1}, we observe a steepening toward a k {sup –5/3} scaling in the middle of the wave number range and formation of spectral anisotropies. The advection of a plasma volume by the expandingmore » solar wind causes a non-trivial stretching of the volume in directions transverse to radial and the selective decay of the components of velocity and magnetic fluctuations. These two effects combine to yield the following results. (1) Spectral anisotropy: gyrotropy is broken, and the radial wave vectors have most of the power. (2) Coherent structures: radial streams emerge that resemble the observed microjets. (3) Energy spectra per component: they show an ordering in good agreement with the one observed in the solar wind at 1 AU. The latter point includes a global dominance of the magnetic energy over kinetic energy in the inertial and f {sup –1} range and a dominance of the perpendicular-to-the-radial components over the radial components in the inertial range. We conclude that many of the above properties are the result of evolution during transport in the heliosphere, and not just the remnant of the initial turbulence close to the Sun.« less

  9. Ultrafast transient absorption revisited: Phase-flips, spectral fingers, and other dynamical features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cina, Jeffrey A., E-mail: cina@uoregon.edu; Kovac, Philip A.; Jumper, Chanelle C.

    We rebuild the theory of ultrafast transient-absorption/transmission spectroscopy starting from the optical response of an individual molecule to incident femtosecond pump and probe pulses. The resulting description makes use of pulse propagators and free molecular evolution operators to arrive at compact expressions for the several contributions to a transient-absorption signal. In this alternative description, which is physically equivalent to the conventional response-function formalism, these signal contributions are conveniently expressed as quantum mechanical overlaps between nuclear wave packets that have undergone different sequences of pulse-driven optical transitions and time-evolution on different electronic potential-energy surfaces. Using this setup in application to amore » simple, multimode model of the light-harvesting chromophores of PC577, we develop wave-packet pictures of certain generic features of ultrafast transient-absorption signals related to the probed-frequency dependence of vibrational quantum beats. These include a Stokes-shifting node at the time-evolving peak emission frequency, antiphasing between vibrational oscillations on opposite sides (i.e., to the red or blue) of this node, and spectral fingering due to vibrational overtones and combinations. Our calculations make a vibrationally abrupt approximation for the incident pump and probe pulses, but properly account for temporal pulse overlap and signal turn-on, rather than neglecting pulse overlap or assuming delta-function excitations, as are sometimes done.« less

  10. Correlating the amount of urea, creatinine, and glucose in urine from patients with diabetes mellitus and hypertension with the risk of developing renal lesions by means of Raman spectroscopy and principal component analysis

    NASA Astrophysics Data System (ADS)

    Bispo, Jeyse Aliana Martins; de Sousa Vieira, Elzo Everton; Silveira, Landulfo; Fernandes, Adriana Barrinha

    2013-08-01

    Patients with diabetes mellitus and hypertension (HT) diseases are predisposed to kidney diseases. The objective of this study was to identify potential biomarkers in the urine of diabetic and hypertensive patients through Raman spectroscopy in order to predict the evolution to complications and kidney failure. Urine samples were collected from control subjects (CTR) and patients with diabetes and HT with no complications (lower risk, LR), high degree of complications (higher risk, HR), and doing blood dialysis (DI). Urine samples were stored frozen (-20°C) before spectral analysis. Raman spectra were obtained using a dispersive spectrometer (830-nm, 300-mW power, and 20-s accumulation). Spectra were then submitted to principal component analysis (PCA) followed by discriminant analysis. The first PCA loading vectors revealed spectral features of urea, creatinine, and glucose. It has been found that the amounts of urea and creatinine decreased as disease evoluted from CTR to LR/HR and DI (PC1, p<0.05), and the amount of glucose increased in the urine of LR/HR compared to CTR (PC3, p<0.05). The discriminating model showed better overall classification rate of 70%. These results could lead to diagnostic information of possible complications and a better disease prognosis.

  11. Correlating the amount of urea, creatinine, and glucose in urine from patients with diabetes mellitus and hypertension with the risk of developing renal lesions by means of Raman spectroscopy and principal component analysis.

    PubMed

    Bispo, Jeyse Aliana Martins; de Sousa Vieira, Elzo Everton; Silveira, Landulfo; Fernandes, Adriana Barrinha

    2013-08-01

    Patients with diabetes mellitus and hypertension (HT) diseases are predisposed to kidney diseases. The objective of this study was to identify potential biomarkers in the urine of diabetic and hypertensive patients through Raman spectroscopy in order to predict the evolution to complications and kidney failure. Urine samples were collected from control subjects (CTR) and patients with diabetes and HT with no complications (lower risk, LR), high degree of complications (higher risk, HR), and doing blood dialysis (DI). Urine samples were stored frozen (-20°C) before spectral analysis. Raman spectra were obtained using a dispersive spectrometer (830-nm, 300-mW power, and 20-s accumulation). Spectra were then submitted to principal component analysis (PCA) followed by discriminant analysis. The first PCA loading vectors revealed spectral features of urea, creatinine, and glucose. It has been found that the amounts of urea and creatinine decreased as disease evoluted from CTR to LR/HR and DI (PC1, p<0.05), and the amount of glucose increased in the urine of LR/HR compared to CTR (PC3, p<0.05). The discriminating model showed better overall classification rate of 70%. These results could lead to diagnostic information of possible complications and a better disease prognosis.

  12. The Spectral Nature of Titan's Major Geomorphological Units: Constraints on Surface Composition

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Coustenis, A.; Lopes, R. M. C.; Malaska, M. J.; Rodriguez, S.; Drossart, P.; Elachi, C.; Schmitt, B.; Philippe, S.; Janssen, M.; Hirtzig, M.; Wall, S.; Sotin, C.; Lawrence, K.; Altobelli, N.; Bratsolis, E.; Radebaugh, J.; Stephan, K.; Brown, R. H.; Le Mouélic, S.; Le Gall, A.; Villanueva, E. V.; Brossier, J. F.; Bloom, A. A.; Witasse, O.; Matsoukas, C.; Schoenfeld, A.

    2018-02-01

    We investigate Titan's low-latitude and midlatitude surface using spectro-imaging near-infrared data from Cassini/Visual and Infrared Mapping Spectrometer. We use a radiative transfer code to first evaluate atmospheric contributions and then extract the haze and the surface albedo values of major geomorphological units identified in Cassini Synthetic Aperture Radar data, which exhibit quite similar spectral response to the Visual and Infrared Mapping Spectrometer data. We have identified three main categories of albedo values and spectral shapes, indicating significant differences in the composition among the various areas. We compare with linear mixtures of three components (water ice, tholin-like, and a dark material) at different grain sizes. Due to the limited spectral information available, we use a simplified model, with which we find that each albedo category of regions of interest can be approximately fitted with simulations composed essentially by one of the three surface candidates. Our fits of the data are overall successful, except in some cases at 0.94, 2.03, and 2.79 μm, indicative of the limitations of our simplistic compositional model and the need for additional components to reproduce Titan's complex surface. Our results show a latitudinal dependence of Titan's surface composition, with water ice being the major constituent at latitudes beyond 30°N and 30°S, while Titan's equatorial region appears to be dominated partly by a tholin-like or by a very dark unknown material. The albedo differences and similarities among the various geomorphological units give insights on the geological processes affecting Titan's surface and, by implication, its interior. We discuss our results in terms of origin and evolution theories.

  13. Evolutionary dynamics of Rh2 opsins in birds demonstrate an episode of accelerated evolution in the New World warblers (Setophaga)

    PubMed Central

    Price, Trevor D.

    2015-01-01

    Low rates of sequence evolution associated with purifying selection can be interrupted by episodic changes in selective regimes. Visual pigments are a unique system in which we can investigate the functional consequences of genetic changes, therefore connecting genotype to phenotype in the context of natural and sexual selection pressures. We study the RH2 and RH1 visual pigments (opsins) across 22 bird species belonging to two ecologically convergent clades, the New World warblers (Parulidae) and Old World warblers (Phylloscopidae), and evaluate rates of evolution in these clades along with data from 21 additional species. We demonstrate generally slow evolution of these opsins: both Rh1 and Rh2 are highly conserved across Old World and New World warblers. However, Rh2 underwent a burst of evolution within the New World genus Setophaga, where it accumulated substitutions at 6 amino acid sites across the species we studied. Evolutionary analyses revealed a significant increase in dN/dS in Setophaga, implying relatively strong selective pressures to overcome long-standing purifying selection. We studied the effects of each substitution on spectral tuning and found they do not cause large spectral shifts. Thus substitutions may reflect other aspects of opsin function, such as those affecting photosensitivity and/or dark-light adaptation. Although it is unclear what these alterations mean for color perception, we suggest that rapid evolution is linked to sexual selection, given the exceptional plumage colour diversification in Setophaga. PMID:25827331

  14. Automatic Rooftop Extraction in Stereo Imagery Using Distance and Building Shape Regularized Level Set Evolution

    NASA Astrophysics Data System (ADS)

    Tian, J.; Krauß, T.; d'Angelo, P.

    2017-05-01

    Automatic rooftop extraction is one of the most challenging problems in remote sensing image analysis. Classical 2D image processing techniques are expensive due to the high amount of features required to locate buildings. This problem can be avoided when 3D information is available. In this paper, we show how to fuse the spectral and height information of stereo imagery to achieve an efficient and robust rooftop extraction. In the first step, the digital terrain model (DTM) and in turn the normalized digital surface model (nDSM) is generated by using a newly step-edge approach. In the second step, the initial building locations and rooftop boundaries are derived by removing the low-level pixels and high-level pixels with higher probability to be trees and shadows. This boundary is then served as the initial level set function, which is further refined to fit the best possible boundaries through distance regularized level-set curve evolution. During the fitting procedure, the edge-based active contour model is adopted and implemented by using the edges indicators extracted from panchromatic image. The performance of the proposed approach is tested by using the WorldView-2 satellite data captured over Munich.

  15. Automated spectral classification and the GAIA project

    NASA Technical Reports Server (NTRS)

    Lasala, Jerry; Kurtz, Michael J.

    1995-01-01

    Two dimensional spectral types for each of the stars observed in the global astrometric interferometer for astrophysics (GAIA) mission would provide additional information for the galactic structure and stellar evolution studies, as well as helping in the identification of unusual objects and populations. The classification of the large quantity generated spectra requires that automated techniques are implemented. Approaches for the automatic classification are reviewed, and a metric-distance method is discussed. In tests, the metric-distance method produced spectral types with mean errors comparable to those of human classifiers working at similar resolution. Data and equipment requirements for an automated classification survey, are discussed. A program of auxiliary observations is proposed to yield spectral types and radial velocities for the GAIA-observed stars.

  16. Self-Consistent Model of Magnetospheric Ring Current and Electromagnetic Ion Cyclotron Waves: The 2-7 May 1998 Storm

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.

    2003-01-01

    A complete description of a self-consistent model of magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves and back on waves are considered self-consistently by solving both equations on a global magnetospheric scale under nonsteady state conditions. The developed model is employed to simulate the entire 2-7 May 1998 storm period. First, the trapped number fluxes of the ring current protons are calculated and presented along with comparison with the data measured by the three- dimensional hot plasma instrument Polar/HYDRA. Incorporating in the model the wave-particle interaction leads to much better agreement between the experimental data and the model results. Second, examining of the wave (MLT, L shell) distributions produced by the model during the storm progress reveals an essential intensification of the wave emission about 2 days after the main phase of the storm. This result is well consistent with the earlier ground-based observations. Finally, the theoretical shapes and the occurrence rates of the wave power spectral densities are studied. It is found that about 2 days after the storm s main phase on 4 May, mainly non-Gaussian shapes of power spectral densities are produced.

  17. Chiral three-nucleon forces and the evolution of correlations along the oxygen isotopic chain

    NASA Astrophysics Data System (ADS)

    Cipollone, A.; Barbieri, C.; Navrátil, P.

    2015-07-01

    Background: Three-nucleon forces (3NFs) have nontrivial implications on the evolution of correlations at extreme proton-neutron asymmetries. Recent ab initio calculations show that leading-order chiral interactions are crucial to obtain the correct binding energies and neutron driplines along the O, N, and F chains [A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013), 10.1103/PhysRevLett.111.062501]. Purpose: Here we discuss the impact of 3NFs along the oxygen chain for other quantities of interest, such has the spectral distribution for attachment and removal of a nucleon, spectroscopic factors, and radii. The objective is to better delineate the general effects of 3NFs on nuclear correlations. Methods: We employ self-consistent Green's function (SCGF) theory which allows a comprehensive calculation of the single-particle spectral function. For the closed subshell isotopes, 14O, 16O, 22O, 24O, and 28O, we perform calculations with the Dyson-ADC(3) method, which is fully nonperturbative and is the state of the art for both nuclear physics and quantum chemistry applications. The remaining open-shell isotopes are studied using the newly developed Gorkov-SCGF formalism up to second order. Results: We produce complete plots for the spectral distributions. The spectroscopic factors for the dominant quasiparticle peaks are found to depend very little on the leading-order (NNLO) chiral 3NFs. The latter have small impact on the calculated matter radii, which, however, are consistently obtained smaller than experiment. Similarly, single-particle spectra tend to be too spread with respect to the experiment. This effect might hinder, to some extent, the onset of correlations and screen the quenching of calculated spectroscopic factors. The most important effect of 3NFs is thus the fine tuning of the energies for the dominant quasiparticle states, which governs the shell evolution and the position of driplines. Conclusions: Although present chiral NNLO 3NFs interactions do reproduce the binding energies correctly in this mass region, the details of the nuclear spectral function remain at odds with the experiment showing too-small radii and a too-spread single-particle spectrum, similar to what has already been pointed out for larger masses. This suggests a lack of repulsion in the present model of N N +3 N interactions, which is mildly apparent already for masses in the A =14 - 28 mass range.

  18. A STATE-DEPENDENT INFLUENCE OF TYPE I BURSTS ON THE ACCRETION IN 4U 1608-52?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Long; Zhang, Shu; Chen, YuPeng

    2014-08-20

    We investigated the possible feedback of type I bursts on the accretion process during the spectral evolution of the atoll source 4U 1608-52. By fitting the burst spectrum with a blackbody and an adjustable, persistent spectral component, we found that the latter is significantly state-dependent. In the banana state, the persistent flux increases along the burst evolution, while in the island state this trend holds only when the bursts are less luminous and start to reverse at higher burst luminosities. We speculate that, by taking into account both the Poynting-Robertson drag and radiation pressure, these phenomena may arise from the interactionsmore » between the radiation field of the type I burst and the inner region of the accretion disk.« less

  19. Supernova neutrino three-flavor evolution with dominant collective effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogli, Gianluigi; Marrone, Antonio; Tamborra, Irene

    2009-04-15

    Neutrino and antineutrino fluxes from a core-collapse galactic supernova are studied, within a representative three-flavor scenario with inverted mass hierarchy and tiny 1-3 mixing. The initial flavor evolution is dominated by collective self-interaction effects, which are computed in a full three-family framework along an averaged radial trajectory. During the whole time span considered (t = 1-20 s), neutrino and antineutrino spectral splits emerge as dominant features in the energy domain for the final, observable fluxes. The main results can be useful for SN event rate simulations in specific detectors. Some minor or unobservable three-family features (e.g., related to the muonic-tauonicmore » flavor sector), as well as observable effects due to variations in the spectral input, are also discussed for completeness.« less

  20. Passive Acoustic Leak Detection for Sodium Cooled Fast Reactors Using Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Marklund, A. Riber; Kishore, S.; Prakash, V.; Rajan, K. K.; Michel, F.

    2016-06-01

    Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970s and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control.

  1. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    DOE PAGES

    Hagos, Samson; Feng, Zhe; Plant, Robert S.; ...

    2018-02-20

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. Finally, in addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.« less

  2. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    NASA Astrophysics Data System (ADS)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.; Houze, Robert A.; Xiao, Heng

    2018-02-01

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. In addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.

  3. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The approach used follows the non-equilibrium statistical mechanical approach through a master equation. The aim is to represent the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and mass flux is a non-linear function of convective cell area, mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated mass flux variability under diurnally varying forcing. Besides its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to be capable of providing alternative, non-equilibrium, closure formulations for spectral mass flux parameterizations.« less

  4. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. Finally, in addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.« less

  5. Chromophore-Dependent Intramolecular Exciton-Vibrational Coupling in the FMO Complex: Quantification and Importance for Exciton Dynamics.

    PubMed

    Padula, Daniele; Lee, Myeong H; Claridge, Kirsten; Troisi, Alessandro

    2017-11-02

    In this paper, we adopt an approach suitable for monitoring the time evolution of the intramolecular contribution to the spectral density of a set of identical chromophores embedded in their respective environments. We apply the proposed method to the Fenna-Matthews-Olson (FMO) complex, with the objective to quantify the differences among site-dependent spectral densities and the impact of such differences on the exciton dynamics of the system. Our approach takes advantage of the vertical gradient approximation to reduce the computational demands of the normal modes analysis. We show that the region of the spectral density that is believed to strongly influence the exciton dynamics changes significantly in the timescale of tens of nanoseconds. We then studied the impact of the intramolecular vibrations on the exciton dynamics by considering a model of FMO in a vibronic basis and neglecting the interaction with the environment to isolate the role of the intramolecular exciton-vibration coupling. In agreement with the assumptions in the literature, we demonstrate that high frequency modes at energy much larger than the excitonic energy splitting have negligible influence on exciton dynamics despite the large exciton-vibration coupling. We also find that the impact of including the site-dependent spectral densities on exciton dynamics is not very significant, indicating that it may be acceptable to apply the same spectral density on all sites. However, care needs to be taken for the description of the exciton-vibrational coupling in the low frequency part of intramolecular modes because exciton dynamics is more susceptible to low frequency modes despite their small Huang-Rhys factors.

  6. Properties of the Second Outburst of the Bursting Pulsar (GRO J1744-28) as Observed with BATSE

    NASA Technical Reports Server (NTRS)

    Woods, P.; Kouveliotou, C.; vanParadijs, J.; Briggs, M. S.; Wilson, C. A.; Deal, K. J.; Harmon, B. A.; Fishman, G. J.; Lewin, W. H.; Kommers, J.

    1998-01-01

    One year after its discovery, the Bursting Pulsar (GRO J1744-28) went into outburst again, displaying the hard X-ray bursts and pulsations that make this source unique. We report on Burst and Transient Source Experiment (BATSE) observations of both the persistent and burst emission for this second outburst and draw comparisons to the first. The second outburst was smaller than the first in both duration and peak luminosity. The persistent flux, burst peak flux and burst fluence were all reduced in amplitude by a factor approximately 1.7. Despite these differences, the average burst occurrence rate and average burst durations were roughly the same through each outburst. Similar to the first outburst, no spectral evolution was found within bursts and the parameter alpha was very small at the start of the outburst (alpha = 2.1 +/- 1.7 on 1996 December 2). Although no spectral evolution was found within individual bursts, we find evidence for a small (20%) variation of the spectral temperature during the course of the second outburst.

  7. SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in Warblers

    PubMed Central

    Bloch, Natasha I.; Morrow, James M.; Chang, Belinda S.W.; Price, Trevor D.

    2014-01-01

    Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors – historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20Ma. During this process the SWS2 gene accumulated 6 substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. PMID:25496318

  8. ON THE LATE-TIME SPECTRAL SOFTENING FOUND IN X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuan-Zhu; Liang, En-Wei; Lu, Zu-Jia

    2016-02-20

    Strong spectral softening has been revealed in the late X-ray afterglows of some gamma-ray bursts (GRBs). The scenario of X-ray scattering around the circumburst dusty medium has been supported by previous works due to its overall successful prediction of both the temporal and spectral evolution of some X-ray afterglows. To further investigate the observed feature of spectral softening we now systematically search the X-ray afterglows detected by the X-ray telescope aboard Swift and collect 12 GRBs with significant late-time spectral softening. We find that dust scattering could be the dominant radiative mechanism for these X-ray afterglows regarding their temporal andmore » spectral features. For some well-observed bursts with high-quality data, the time-resolved spectra could be well-produced within the scattering scenario by taking into account the X-ray absorption from the circumburst medium. We also find that during spectral softening the power-law index in the high-energy end of the spectra does not vary much. The spectral softening is mainly manifested by the spectral peak energy continually moving to the soft end.« less

  9. (F)UV Spectroscopy of K648: Abundance Determination of Trace Elements

    NASA Astrophysics Data System (ADS)

    Mohamad-Yob, S. J.; Ziegler, M.; Rauch, T.; Werner, K.

    2010-11-01

    We present preliminary results of an ongoing spectral analysis of K 648, the central star of the planetary nebula Ps 1, based on high resolution FUV spectra. K 648, in M 15 is one of only four known PNe in globular clusters. The formation of this post-AGB object in a globular cluster is still unclear. Our aim is to determine Teff, log g, and the abundances of trace elements, in order to improve our understanding of post-AGB evolution of extremely metal-poor stars, especially PN formation in globular clusters. We analyzed FUSE, HST/STIS, and HST/FOS observations. A grid of stellar model atmospheres was calculated using the Tübingen NLTE Model Atmosphere Package (TMAP).

  10. The Diversity of Chemical Composition and the Effects on Stellar Evolution and Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Truitt, Amanda; Young, Patrick A.

    2017-01-01

    For my dissertation under the supervision of Dr. Young, I investigate how stars of different mass and composition evolve, and how stellar evolution impacts the location of the habitable zone around a star. Current research into habitability of exoplanets focuses mostly on the concept of the classical HZ - the range of distances from a star over which liquid water could exist on a planet's surface - determined primarily by the host star's luminosity and spectral characteristics. With the ever-accelerating discovery of new exoplanets, it is imperative to develop a more complete understanding of what factors play a role in creating the “habitable” conditions of a planet. I discuss how stellar evolution is integral to how we define a HZ, and how this work will apply to the search for habitable Earth-like planets in the future.I developed a catalog of stellar evolution models for Sun-like stars with variable compositions; masses range from 0.1-1.2 Msol (spectral types M4-F4) at scaled metallicities of 0.1-1.5 Zsol, and O/Fe, C/Fe, and Mg/Fe values of 0.44-2.28, 0.58-1.72, and 0.54-1.84, respectively. I use a spread in abundance values based on observations of variability in nearby stars. It is important to understand how specific elements (and not just total metallicity) can impact evolutionary lifetime. The time-dependent HZ boundaries have also been calculated for each stellar track. Additionally, I recently created a grid of models for M-dwarfs, and I am currently working to make preliminary estimates of stellar activity vs. age for each representative star in the catalog.My results indicate that to gauge the habitability potential of a given system, both the evolutionary history as well as the detailed chemical characterization of the host star must be considered. This work can be used to assess whether a planet discovered in the HZ of its star has had sufficient time to develop a biosphere capable of producing detectable biosignatures. The catalog is designed for use by the astrobiology and exoplanet communities to characterize stars and their surrounding HZs for real planetary candidates of interest.

  11. Advances in stellar evolution; Proceedings of the Workshop on Stellar Ecology, Marciana Marina, Italy, June 23-29, 1996

    NASA Astrophysics Data System (ADS)

    Rood, R. T.; Renzini, A.

    1997-01-01

    The present volume on stellar evolution discusses fundamentals of stellar evolution and star clusters, variable stars, AGB stars and planetary nebulae, white dwarfs, binary star evolution, and stars in galaxies. Attention is given to the stellar population in the Galactic bulge, a photometric study of NGC 458, and HST observations of high-density globular clusters. Other topics addressed include the Cepheid instability strip in external galaxies, Hyades cluster white dwarfs and the initial-final mass relation, element diffusion in novae, mass function of the stars in the solar neighborhood, synthetic spectral indices for elliptical galaxies, and stars at the Galactic center.

  12. Optical and near-infrared observations of SN 2011dh - The first 100 days

    NASA Astrophysics Data System (ADS)

    Ergon, M.; Sollerman, J.; Fraser, M.; Pastorello, A.; Taubenberger, S.; Elias-Rosa, N.; Bersten, M.; Jerkstrand, A.; Benetti, S.; Botticella, M. T.; Fransson, C.; Harutyunyan, A.; Kotak, R.; Smartt, S.; Valenti, S.; Bufano, F.; Cappellaro, E.; Fiaschi, M.; Howell, A.; Kankare, E.; Magill, L.; Mattila, S.; Maund, J.; Naves, R.; Ochner, P.; Ruiz, J.; Smith, K.; Tomasella, L.; Turatto, M.

    2014-02-01

    We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with Swift ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten et al. (2012, ApJ, 757, 31). We find that the absorption minimum for the hydrogen lines is never seen below ~11 000 km s-1 but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01-0.04 M⊙ to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5-7 days whereas the helium lines appear between ~10 and ~15 days, close to the photosphere and then move outward in velocity until ~40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the γ-rays is driving the early evolution of these lines. The Spitzer 4.5 μm band shows a significant flux excess, which we attribute to CO fundamental band emission or a thermal dust echo although further work using late time data is needed. Thedistance and in particular the extinction, where we use spectral modelling to put further constraints, is discussed in some detail as well as the sensitivity of the hydrodynamical modelling to errors in these quantities. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by ~75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag day-1 respectively are consistent with the remaining flux being emitted by the SN. Hence we find that the star was indeed the progenitor of SN 2011dh as previously suggested by Maund et al. (2011, ApJ, 739, L37) and which is also consistent with the results from the hydrodynamical modelling. Figures 2, 3, Tables 3-10, and Appendices are available in electronic form at http://www.aanda.orgThe photometric tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A17

  13. The role of ecological factors in shaping bat cone opsin evolution.

    PubMed

    Gutierrez, Eduardo de A; Schott, Ryan K; Preston, Matthew W; Loureiro, Lívia O; Lim, Burton K; Chang, Belinda S W

    2018-04-11

    Bats represent one of the largest and most striking nocturnal mammalian radiations, exhibiting many visual system specializations for performance in light-limited environments. Despite representing the greatest ecological diversity and species richness in Chiroptera, Neotropical lineages have been undersampled in molecular studies, limiting the potential for identifying signatures of selection on visual genes associated with differences in bat ecology. Here, we investigated how diverse ecological pressures mediate long-term shifts in selection upon long-wavelength ( Lws ) and short-wavelength ( Sws1 ) opsins, photosensitive cone pigments that form the basis of colour vision in most mammals, including bats. We used codon-based likelihood clade models to test whether ecological variables associated with reliance on visual information (e.g. echolocation ability and diet) or exposure to varying light environments (e.g. roosting behaviour and foraging habitat) mediated shifts in evolutionary rates in bat cone opsin genes. Using additional cone opsin sequences from newly sequenced eye transcriptomes of six Neotropical bat species, we found significant evidence for different ecological pressures influencing the evolution of the cone opsins. While Lws is evolving under significantly lower constraint in highly specialized high-duty cycle echolocating lineages, which have enhanced sonar ability to detect and track targets, variation in Sws1 constraint was significantly associated with foraging habitat, exhibiting elevated rates of evolution in species that forage among vegetation. This suggests that increased reliance on echolocation as well as the spectral environment experienced by foraging bats may differentially influence the evolution of different cone opsins. Our study demonstrates that different ecological variables may underlie contrasting evolutionary patterns in bat visual opsins, and highlights the suitability of clade models for testing ecological hypotheses of visual evolution. © 2018 The Author(s).

  14. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Kyung-Won, E-mail: kwsuh@chungbuk.ac.kr

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionarymore » tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.« less

  15. On the nature of the extremely fast optical rebrightening of the afterglow of GRB 081029

    NASA Astrophysics Data System (ADS)

    Nardini, M.; Greiner, J.; Krühler, T.; Filgas, R.; Klose, S.; Afonso, P.; Clemens, C.; Guelbenzu, A. N.; Olivares E., F.; Rau, A.; Rossi, A.; Updike, A.; Küpcü Yoldaş, A.; Yoldaş, A.; Burlon, D.; Elliott, J.; Kann, D. A.

    2011-07-01

    Context. After the launch of the Swift satellite, the gamma-ray burst (GRB) optical light-curve smoothness paradigm has been questioned thanks to the faster and better sampled optical follow-up, which has unveiled a very complex behaviour. This complexity is triggering the interest of the whole GRB community. The GROND multi-channel imager is used to study optical and near-infrared (NIR) afterglows of GRBs with unprecedented optical and near-infrared temporal and spectral resolution. The GRB 081029 has a very prominent optical rebrightening event and is an outstanding example of the application of the multi-channel imager to GRB afterglows. Aims: Here we exploit the rich GROND multi-colour follow-up of GRB 081029 combined with XRT observations to study the nature of late-time rebrightenings that appear in the optical-NIR light-curves of some GRB afterglows. Methods: We analyse the optical and NIR observations obtained with the seven-channel Gamma-Ray burst Optical and Near-infrared Detector (GROND) at the 2.2 m MPI/ESO telescope and the X-ray data obtained with the XRT telescope on board the Swift observatory. The multi-wavelength temporal and spectral evolution is discussed in the framework of different physical models. Results: The extremely steep optical and NIR rebrightening observed in GRB 081029 cannot be explained in the framework of the standard forward shock afterglow model. The absence of a contemporaneous X-ray rebrightening and the evidence of a strong spectral evolution in the optical-NIR bands during the rise suggest two separate components that dominate in the early and late-time light-curves, respectively. The steepness of the optical rise cannot be explained even in the framework of the alternative scenarios proposed in the literature unless a late-time activity of the central engine is assumed. Full GROND photometry of GRB 081029 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A39

  16. Properties of young pulsar wind nebulae: TeV detectability and pulsar properties

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuta J.; Takahara, Fumio

    2013-03-01

    Among dozens of young pulsar wind nebulae (PWNe), some have been detected in TeV γ-rays (TeV PWNe), while others have not (non-TeV PWNe). The TeV emission detectability is not correlated with either the spin-down power or the characteristic age of the central pulsars and it is an open question as to what determines the detectability. To study this problem, we investigate the spectral evolution of five young non-TeV PWNe: 3C 58, G310.6-1.6, G292.0+1.8, G11.2-0.3 and SNR B0540-69.3. We use a spectral evolution model that was developed in our previous works to be applied to young TeV PWNe. The TeV γ-ray flux upper limits of non-TeV PWNe give upper or lower limits on parameters such as the age of the PWN and the fraction of spin-down power going into magnetic energy injection (the fraction parameter). Combined with other independent observational and theoretical studies, we can guess a plausible value of the parameters for each object. For 3C 58, we prefer parameters with an age of 2.5 kyr and fraction parameter of 3.0 × 10-3, although the spectral modelling alone does not rule out a lower age and a higher fraction parameter. The fraction parameter of 3.0 × 10-3 is also consistent for other non-TeV PWNe and thus the value is regarded as common to young PWNe, including TeV PWNe. Moreover, we find that the intrinsic properties of the central pulsars are similar: 1048-50 erg for the initial rotational energy and 1042-44 erg for the magnetic energy (2 × 1012-3 × 1013 G for the dipole magnetic field strength at the surface). The TeV detectability is correlated with the total injected energy and the energy density of the interstellar radiation field around PWNe. Except for the case of G292.0+1.8, broken power-law injection of the particles reproduces the broad-band emission from non-TeV PWNe well.

  17. The Effects of Stellar Dynamics on the Evolution of Young, Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    Belkus, H.; van Bever, J.; Vanbeveren, D.

    In this paper, we report on first results of a project in Brussels in which we study the effects of stellar dynamics on the evolution of young dense stellar systems using 3 decades of expertise in massive-star evolution and our population (number and spectral) synthesis code. We highlight an unconventionally formed object scenario (UFO-scenario) for Wolf Rayet binaries and study the effects of a luminous blue variable-type instability wind mass-loss formalism on the formation of intermediate-mass black holes.

  18. Spectral reconstruction analysis for enhancing signal-to-noise in time-resolved spectroscopies

    NASA Astrophysics Data System (ADS)

    Wilhelm, Michael J.; Smith, Jonathan M.; Dai, Hai-Lung

    2015-09-01

    We demonstrate a new spectral analysis for the enhancement of the signal-to-noise ratio (SNR) in time-resolved spectroscopies. Unlike the simple linear average which produces a single representative spectrum with enhanced SNR, this Spectral Reconstruction analysis (SRa) improves the SNR (by a factor of ca. 0 . 6 √{ n } ) for all n experimentally recorded time-resolved spectra. SRa operates by eliminating noise in the temporal domain, thereby attenuating noise in the spectral domain, as follows: Temporal profiles at each measured frequency are fit to a generic mathematical function that best represents the temporal evolution; spectra at each time are then reconstructed with data points from the fitted profiles. The SRa method is validated with simulated control spectral data sets. Finally, we apply SRa to two distinct experimentally measured sets of time-resolved IR emission spectra: (1) UV photolysis of carbonyl cyanide and (2) UV photolysis of vinyl cyanide.

  19. A hybrid system for solar irradiance specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Bouwer, S.

    2006-12-01

    Space environment research and space weather operations require solar irradiances in a variety of time scales and spectral formats. We describe the development of solar irradiance characterization using four models and systems that are also used for space weather operations. The four models/systems include SOLAR2000 (S2K), SOLARFLARE (SFLR), APEX, and IDAR, which are used by Space Environment Technologies (SET) to provide solar irradiances from the soft X-rays through the visible spectrum. SFLR uses the GOES 0.1 0.8 nm X-rays in combination with a Mewe model subroutine to provide 0.1 30.0 nm irradiances at 0.1 nm spectral resolution, at 1 minute time resolution, and in a 6-hour XUV EUV spectral solar flare evolution forecast with a 7 minute latency and a 2 minute cadence. These irradiances have been calibrated with the SORCE XPS observations and we report on the inclusion of these irradiances into the S2K model. The APEX system is a real-time data retrieval system developed in conjunction with the University of Southern California Space Sciences Center (SSC) to provide SOHO SEM data processing and distribution. SSC provides the updated SEM data to the research community and SET provides the operational data to the space operations community. We describe how the SOHO SEM data, and especially the new S10.7 index, is being integrated directly into the S2K model for space weather operations. The IDAR system has been developed by SET to extract coronal hole boundaries, streamers, coronal loops, active regions, plage, network, and background (internetwork) features from solar images for comparison with solar magnetic features. S2K, SFLR, APEX, and IDAR outputs are integrated through the S2K solar irradiance platform that has become a hybrid system, i.e., a system that is able to produce irradiances using different processes, including empirical and physics-based models combined with real-time data integration.

  20. Numeric spectral radiation hydrodynamic calculations of supernova shock breakouts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapir, Nir; Halbertal, Dorri

    2014-12-01

    We present here an efficient numerical scheme for solving the non-relativistic one-dimensional radiation-hydrodynamics equations including inelastic Compton scattering, which is not included in most codes and is crucial for solving problems such as shock breakout. The devised code is applied to the problems of a steady-state planar radiation mediated shock (RMS) and RMS breakout from a stellar envelope. The results are in agreement with those of a previous work on shock breakout, in which Compton equilibrium between matter and radiation was assumed and the 'effective photon' approximation was used to describe the radiation spectrum. In particular, we show that themore » luminosity and its temporal dependence, the peak temperature at breakout, and the universal shape of the spectral fluence derived in this earlier work are all accurate. Although there is a discrepancy between the spectral calculations and the effective photon approximation due to the inaccuracy of the effective photon approximation estimate of the effective photon production rate, which grows with lower densities and higher velocities, the difference in peak temperature reaches only 30% for the most discrepant cases of fast shocks in blue supergiants. The presented model is exemplified by calculations for supernova 1987A, showing the detailed evolution of the burst spectrum. The incompatibility of the stellar envelope shock breakout model results with observed properties of X-ray flashes (XRFs) and the discrepancy between the predicted and observed rates of XRFs remain unexplained.« less

  1. Time-dependent convection models of mantle thermal structure constrained by seismic tomography and geodynamics: implications for mantle plume dynamics and CMB heat flux

    NASA Astrophysics Data System (ADS)

    Glišović, P.; Forte, A. M.; Moucha, R.

    2012-08-01

    One of the outstanding problems in modern geodynamics is the development of thermal convection models that are consistent with the present-day flow dynamics in the Earth's mantle, in accord with seismic tomographic images of 3-D Earth structure, and that are also capable of providing a time-dependent evolution of the mantle thermal structure that is as 'realistic' (Earth-like) as possible. A successful realization of this objective would provide a realistic model of 3-D mantle convection that has optimal consistency with a wide suite of seismic, geodynamic and mineral physical constraints on mantle structure and thermodynamic properties. To address this challenge, we have constructed a time-dependent, compressible convection model in 3-D spherical geometry that is consistent with tomography-based instantaneous flow dynamics, using an updated and revised pseudo-spectral numerical method. The novel feature of our numerical solutions is that the equations of conservation of mass and momentum are solved only once in terms of spectral Green's functions. We initially focus on the theory and numerical methods employed to solve the equation of thermal energy conservation using the Green's function solutions for the equation of motion, with special attention placed on the numerical accuracy and stability of the convection solutions. A particular concern is the verification of the global energy balance in the dissipative, compressible-mantle formulation we adopt. Such validation is essential because we then present geodynamically constrained convection solutions over billion-year timescales, starting from present-day seismically constrained thermal images of the mantle. The use of geodynamically constrained spectral Green's functions facilitates the modelling of the dynamic impact on the mantle evolution of: (1) depth-dependent thermal conductivity profiles, (2) extreme variations of viscosity over depth and (3) different surface boundary conditions, in this case mobile surface plates and a rigid surface. The thermal interpretation of seismic tomography models does not provide a radial profile of the horizontally averaged temperature (i.e. the geotherm) in the mantle. One important goal of this study is to obtain a steady-state geotherm with boundary layers which satisfies energy balance of the system and provides the starting point for more realistic numerical simulations of the Earth's evolution. We obtain surface heat flux in the range of Earth-like values : 37 TW for a rigid surface and 44 TW for a surface with tectonic plates coupled to the mantle flow. Also, our convection simulations deliver CMB heat flux that is on the high end of previously estimated values, namely 13 TW and 20 TW, for rigid and plate-like surface boundary conditions, respectively. We finally employ these two end-member surface boundary conditions to explore the very-long-time scale evolution of convection over billion-year time windows. These billion-year-scale simulations will allow us to determine the extent to which a 'memory' of the starting tomography-based thermal structure is preserved and hence to explore the longevity of the structures in the present-day mantle. The two surface boundary conditions, along with the geodynamically inferred radial viscosity profiles, yield steady-state convective flows that are dominated by long wavelengths throughout the lower mantle. The rigid-surface condition yields a spectrum of mantle heterogeneity dominated by spherical harmonic degree 3 and 4, and the plate-like surface condition yields a pattern dominated by degree 1. Our exploration of the time-dependence of the spatial heterogeneity shows that, for both types of surface boundary condition, deep-mantle hot upwellings resolved in the present-day tomography model are durable and stable features. These deeply rooted mantle plumes show remarkable longevity over very long geological time spans, mainly owing to the geodynamically inferred high viscosity in the lower mantle.

  2. The Planetary Terrestrial Analogues Library (PTAL)

    NASA Astrophysics Data System (ADS)

    Werner, S. C.; Dypvik, H.; Poulet, F.; Rull Perez, F.; Bibring, J.-P.; Bultel, B.; Casanova Roque, C.; Carter, J.; Cousin, A.; Guzman, A.; Hamm, V.; Hellevang, H.; Lantz, C.; Lopez-Reyes, G.; Manrique, J. A.; Maurice, S.; Medina Garcia, J.; Navarro, R.; Negro, J. I.; Neumann, E. R.; Pilorget, C.; Riu, L.; Sætre, C.; Sansano Caramazana, A.; Sanz Arranz, A.; Sobron Grañón, F.; Veneranda, M.; Viennet, J.-C.; PTAL Team

    2018-04-01

    The Planetary Terrestrial Analogues Library project aims to build and exploit a spectral data base for the characterisation of the mineralogical and geological evolution of terrestrial planets and small solar system bodies.

  3. Spectral Indices of Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Gim, Hansung B.; Hales, Christopher A.; Momjian, Emmanuel; Yun, Min Su

    2015-01-01

    The significant improvement in bandwidth and the resultant sensitivity offered by the Karl G. Jansky Very Large Array (VLA) allows us to explore the faint radio source population. Through the study of the radio continuum we can explore the spectral indices of these radio sources. Robust radio spectral indices are needed for accurate k-corrections, for example in the study of the radio - far-infrared (FIR) correlation. We present an analysis of measuring spectral indices using two different approaches. In the first, we use the standard wideband imaging algorithm in the data reduction package CASA. In the second, we use a traditional approach of imaging narrower bandwidths to derive the spectral indices. For these, we simulated data to match the observing parameter space of the CHILES Con Pol survey (Hales et al. 2014). We investigate the accuracy and precision of spectral index measurements as a function of signal-to noise, and explore the requirements to reliably probe possible evolution of the radio-FIR correlation in CHILES Con Pol.

  4. Potential of a newly developed high-speed near-infrared (NIR) camera (Compovision) in polymer industrial analyses: monitoring crystallinity and crystal evolution of polylactic acid (PLA) and concentration of PLA in PLA/Poly-(R)-3-hydroxybutyrate (PHB) blends.

    PubMed

    Ishikawa, Daitaro; Nishii, Takashi; Mizuno, Fumiaki; Sato, Harumi; Kazarian, Sergei G; Ozaki, Yukihiro

    2013-12-01

    This study was carried out to evaluate a new high-speed hyperspectral near-infrared (NIR) camera named Compovision. Quantitative analyses of the crystallinity and crystal evolution of biodegradable polymer, polylactic acid (PLA), and its concentration in PLA/poly-(R)-3-hydroxybutyrate (PHB) blends were investigated using near-infrared (NIR) imaging. This NIR camera can measure two-dimensional NIR spectral data in the 1000-2350 nm region obtaining images with wide field of view of 150 × 250 mm(2) (approximately 100  000 pixels) at high speeds (in less than 5 s). PLA with differing crystallinities between 0 and 50% blended samples with PHB in ratios of 80/20, 60/40, 40/60, 20/80, and pure films of 100% PLA and PHB were prepared. Compovision was used to collect respective NIR spectra in the 1000-2350 nm region and investigate the crystallinity of PLA and its concentration in the blends. The partial least squares (PLS) regression models for the crystallinity of PLA were developed using absorbance, second derivative, and standard normal variate (SNV) spectra from the most informative region of the spectra, between 1600 and 2000 nm. The predicted results of PLS models achieved using the absorbance and second derivative spectra were fairly good with a root mean square error (RMSE) of less than 6.1% and a determination of coefficient (R(2)) of more than 0.88 for PLS factor 1. The results obtained using the SNV spectra yielded the best prediction with the smallest RMSE of 2.93% and the highest R(2) of 0.976. Moreover, PLS models developed for estimating the concentration of PLA in the blend polymers using SNV spectra gave good predicted results where the RMSE was 4.94% and R(2) was 0.98. The SNV-based models provided the best-predicted results, since it can reduce the effects of the spectral changes induced by the inhomogeneity and the thickness of the samples. Wide area crystal evolution of PLA on a plate where a temperature slope of 70-105 °C had occurred was also monitored using NIR imaging. An SNV-based image gave an obvious contrast of the crystallinity around the crystal growth area according to slight temperature change. Moreover, it clarified the inhomogeneity of crystal evolution over the significant wide area. These results have proved that the newly developed hyperspectral NIR camera, Compovision, can be successfully used to study polymers for industrial processes, such as monitoring the crystallinity of PLA and the different composition of PLA/PHB blends.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Sicilia-Aguilar, Aurora

    We present Spitzer 3.6-24 {mu}m photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters-IC 348, NGC 2362, and {eta} Cha-to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks-those with inner holes and thosemore » that are homologously depleted. The percentage of disks in the transitional phase increases from {approx}15%-20% at 1-2 Myr to {>=}50% at 5-8 Myr; the mean transitional disk lifetime is closer to {approx}1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M{sub disk} {approx} 0.001-0.003 M{sub *}. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.« less

  6. THE OBSCURED FRACTION OF ACTIVE GALACTIC NUCLEI IN THE XMM-COSMOS SURVEY: A SPECTRAL ENERGY DISTRIBUTION PERSPECTIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lusso, E.; Hennawi, J. F.; Richards, G. T.

    2013-11-10

    The fraction of active galactic nucleus (AGN) luminosity obscured by dust and re-emitted in the mid-IR is critical for understanding AGN evolution, unification, and parsec-scale AGN physics. For unobscured (Type 1) AGNs, where we have a direct view of the accretion disk, the dust covering factor can be measured by computing the ratio of re-processed mid-IR emission to intrinsic nuclear bolometric luminosity. We use this technique to estimate the obscured AGN fraction as a function of luminosity and redshift for 513 Type 1 AGNs from the XMM-COSMOS survey. The re-processed and intrinsic luminosities are computed by fitting the 18 bandmore » COSMOS photometry with a custom spectral energy distribution fitting code, which jointly models emission from hot dust in the AGN torus, from the accretion disk, and from the host galaxy. We find a relatively shallow decrease of the luminosity ratio as a function of L{sub bol}, which we interpret as a corresponding decrease in the obscured fraction. In the context of the receding torus model, where dust sublimation reduces the covering factor of more luminous AGNs, our measurements require a torus height that increases with luminosity as h ∝ L{sub bol}{sup 0.3-0.4}. Our obscured-fraction-luminosity relation agrees with determinations from Sloan Digital Sky Survey censuses of Type 1 and Type 2 quasars and favors a torus optically thin to mid-IR radiation. We find a much weaker dependence of the obscured fraction on 2-10 keV luminosity than previous determinations from X-ray surveys and argue that X-ray surveys miss a significant population of highly obscured Compton-thick AGNs. Our analysis shows no clear evidence for evolution of the obscured fraction with redshift.« less

  7. The Defect Induced Mix Experiment (DIME) for NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Mark J; Bradley, Paul A; Cobble, James A

    2012-06-18

    LANL will perform two Defect Induced Mix Experiment (DIME) implosion campaigns on NIF in July and September, 2012. This presentation describes the goals for these shots and the experimental configuration and diagnostic set up to collect the appropriate data. The first two-shot campaign will focus on executing polar direct drive (PDD) implosions of plastic CH capsules filled with deuterium gas. Gas filling will be performed through a fill tube at target chamber center. A vanadium backligher foil will provide x-rays to radiograph the last half of the implosion to compare the implosion trajectory with modeling predictions. An equatorial groove inmore » one of the capsules will be present to determine its effect on implosion dynamics. The second DIME campaign will commission and use a spectral imager (MMI) to examine the evolution of thin capsule layers doped with either Ge or Ga at 1.85%. Spectral line emission from these layers will quantify the mix width at the inner shell radius and near an equatorial groove feature.« less

  8. Resolving the Puzzle of MS1248-7+5706

    NASA Technical Reports Server (NTRS)

    Aldcroft, Thomas

    1999-01-01

    The X-ray source MS1248.7+5706 has been identified as a radio-quiet quasar at z=1.84, making it an ideal object for investigating the X-ray spectral evolution of radio-quiet quasars. However. spectral modeling of our ASCA observation of this X-ray source indicated that it might be confused by or misidentified with, a nearby K5V star. A high-resolution X-ray image has been obtained with the ROSAT HRI to enable us to interpret our ASCA spectra. An analysis of the new HRI observation shows that the X-ray source in the ASCA error circle most closely coincides with the position of the K5V star. It therefore appears that the identification of MS1248.7+5706 with a z=1.84 quasar is incorrect. Since MS1248.7+5706 is the second most luminous quasar in the Einstein Medium Sensitivity Survey, the bright end of the EMSS luminosity function will be impacted.

  9. Impulsive and Varying Injection in Gamma-Ray Burst Afterglows.

    PubMed

    Sari; Mészáros

    2000-05-20

    The standard model of gamma-ray burst afterglows is based on synchrotron radiation from a blast wave produced when the relativistic ejecta encounters the surrounding medium. We reanalyze the refreshed shock scenario, in which slower material catches up with the decelerating ejecta and reenergizes it. This energization can be done either continuously or in discrete episodes. We show that such a scenario has two important implications. First, there is an additional component coming from the reverse shock that goes into the energizing ejecta. This persists for as long as the reenergization itself, which could extend for up to days or longer. We find that during this time the overall spectral peak is found at the characteristic frequency of the reverse shock. Second, if the injection is continuous, the dynamics will be different from that in constant energy evolution and will cause a slower decline of the observed fluxes. A simple test of the continuously refreshed scenario is that it predicts a spectral maximum in the far-infrared or millimeter range after a few days.

  10. Energy transfer processes between Tm(3+) and Ho(3+) in LiYF4. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Oezen, Goenuel

    1991-01-01

    The spectroscopic properties of the crystal LiYF4 doped with Thulium (Tm) and Holmium (Ho) ions are studied. The basic processes are discussed that regulate the transfer of energy between these two ions in this crystal. In this system Tm is considered the donor ion and the Ho the acceptor ion. Spectral data were obtained on three samples available: LiYF4:Tm(3+) (0.5 percent), LiYF4:Ho(3+) (1 percent), and LiYF4:Tm(3+) (5 percent), Ho(3+) (0.2 percent). Spectral data, which include absorption, luminescence, excitation, and the response to pulsed excitation in a wide range of temperatures, allowed to look at the energy transfer processes by considering the kinetic evolution of the emission of the two ions (donor and acceptor) involved in the process and the basic spectroscopic properties related to them. This inclusive approach has led to the validation of the physical model.

  11. Analysis of Solar Spectral Irradiance Measurements from the SBUV/2-Series and the SSBUV Instruments

    NASA Technical Reports Server (NTRS)

    Cebula, Richard P.; DeLand, Matthew T.; Hilsenrath, Ernest

    1997-01-01

    During this period of performance, 1 March 1997 - 31 August 1997, the NOAA-11 SBUV/2 solar spectral irradiance data set was validated using both internal and external assessments. Initial quality checking revealed minor problems with the data (e.g. residual goniometric errors, that were manifest as differences between the two scans acquired each day). The sources of these errors were determined and the errors were corrected. Time series were constructed for selected wavelengths and the solar irradiance changes measured by the instrument were compared to a Mg II proxy-based model of short- and long-term solar irradiance variations. This analysis suggested that errors due to residual, uncorrected long-term instrument drift have been reduced to less than 1-2% over the entire 5.5 year NOAA-11 data record. Detailed statistical analysis was performed. This analysis, which will be documented in a manuscript now in preparation, conclusively demonstrates the evolution of solar rotation periodicity and strength during solar cycle 22.

  12. PROPERTIES OF THE NEARBY BROWN DWARF WISEP J180026.60+013453.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gizis, John E.; Burgasser, Adam J.; Vrba, Frederick J.

    2015-12-15

    We present new spectroscopy and astrometry to characterize the nearby brown dwarf WISEP J180026.60+013453.1. The optical spectral type, L7.5, is in agreement with the previously reported near-infrared spectral type. The preliminary trigonometric parallax places it at a distance of 8.01 ± 0.21 pc, confirming that it is the fourth closest known late-L (L7–L9) dwarf. The measured luminosity, our detection of lithium, and the lack of low surface gravity indicators indicates that WISEP J180026.60+013453.1 has a mass 0.03 < M < 0.06 M{sub ⊙} and an age between 300 million and 1.5 billion years according to theoretical substellar evolution models. Themore » low space motion is consistent with this young age. We have measured the rotational broadening (v sin i = 13.5 ± 0.5 km s{sup −1}), and use it to estimate a maximum rotation period of 9.3 hr.« less

  13. Spectral analysis of the binary nucleus of the planetary nebula Hen 2-428 - first results

    NASA Astrophysics Data System (ADS)

    Finch, Nicolle L.; Reindl, Nicole; Barstow, Martin A.; Casewell, Sarah L.; Geier, Stephan; Bertolami, Marcelo M. Miller; Taubenberger, Stefan

    2018-04-01

    Identifying progenitor systems for the double-degenerate scenario is crucial to check the reliability of type Ia supernovae as cosmological standard candles. Santander-Garcia et al. (2015) claimed that Hen 2-428 has a doubledegenerate core whose combined mass significantly exceeds the Chandrasekhar limit. Together with the short orbital period (4.2 hours), the authors concluded that the system should merge within a Hubble time triggering a type Ia supernova event. Garcia-Berro et al. (2016) explored alternative scenarios to explain the observational evidence, as the high mass conclusion is highly unlikely within predictions from stellar evolution theory. They conclude that the evidence supporting the supernova progenitor status of the system is premature. Here we present the first quantitative spectral analysis of Hen 2-428which allows us to derive the effective temperatures, surface gravities and helium abundance of the two CSPNe based on state-of-the-art, non-LTE model atmospheres. These results provide constrains for further studies of this particularly interesting system.

  14. VNIR spectral modeling of Mars analogue rocks: first results

    NASA Astrophysics Data System (ADS)

    Pompilio, L.; Roush, T.; Pedrazzi, G.; Sgavetti, M.

    Knowledge regarding the surface composition of Mars and other bodies of the inner solar system is fundamental to understanding of their origin, evolution, and internal structures. Technological improvements of remote sensors and associated implications for planetary studies have encouraged increased laboratory and field spectroscopy research to model the spectral behavior of terrestrial analogues for planetary surfaces. This approach has proven useful during Martian surface and orbital missions, and petrologic studies of Martian SNC meteorites. Thermal emission data were used to suggest two lithologies occurring on Mars surface: basalt with abundant plagioclase and clinopyroxene and andesite, dominated by plagioclase and volcanic glass [1,2]. Weathered basalt has been suggested as an alternative to the andesite interpretation [3,4]. Orbital VNIR spectral imaging data also suggest the crust is dominantly basaltic, chiefly feldspar and pyroxene [5,6]. A few outcrops of ancient crust have higher concentrations of olivine and low-Ca pyroxene, and have been interpreted as cumulates [6]. Based upon these orbital observations future lander/rover missions can be expected to encounter particulate soils, rocks, and rock outcrops. Approaches to qualitative and quantitative analysis of remotely-acquired spectra have been successfully used to infer the presence and abundance of minerals and to discover compositionally associated spectral trends [7-9]. Both empirical [10] and mathematical [e.g. 11-13] methods have been applied, typically with full compositional knowledge, to chiefly particulate samples and as a result cannot be considered as objective techniques for predicting the compositional information, especially for understanding the spectral behavior of rocks. Extending the compositional modeling efforts to include more rocks and developing objective criteria in the modeling are the next required steps. This is the focus of the present investigation. We present results of a study applying the Modified Gaussian Model [MGM, 13] to solid mafic rock spectral modeling. Reflectance measurements were acquired on rock slabs, rock powder, and mineral separates. The results of spectral modeling were evaluated using compositional data determined from techniques other than reflectance spectroscopy. The rocks studied, melanorite (cumulate analog) and basalt (effusive analog), have different textural characteristics. The modal composition of melanorite includes relatively high opaque content. Opaque minerals strongly affect reflectance 1 spectra of transparent minerals and the criteria for their identification from remotely acquired data are not clearly established. Detailed studies of the melanorite slab spectrum, which includes accounting for the opaque content, can be extended to the basalt spectrum, which must also account for the spectral influence of glass. The spectral analyses reveal the MGM decompositions of solid rock samples can be used to obtain qualitative estimates of the main mineral compositions, for the melanorite, but become more problematic for the basalt. Statistically objective evaluation of the spectral models is complicated by the increased observational error due to the heterogeneity of the rock surfaces relative to mixtures of powders. This suggests additional efforts are required to provide a better understanding regarding the spectral modeling of both laboratory and in-situ measurements of bulk rocks. REFERENCES - [1] Bandfield, J., P. Christensen, and V. Hamilton (2000) Science, 287, 1626-1630. [2] Christensen, P., J. Bandfield, V. Hamilton, and 23 others (2001) J. Geophys. Res.-Planets., 106 (E10), 23823-23871. [3] Wyatt, M. and H. McSween (2002) Nature, 417, 263-266. [4] Hamilton, V. and M. Minitti (2003) Geophys. Res. Lett., 30, PLA 1-1. [5] Bibring, J., Y. Langevin, A. Gendrin, and 9 others (2005) Science, 307, 1576-1581. [6] Mustard, J., F. Poulet, A. Gendrin, and 6 others (2005) Science, 307, 1594-1597. [7] Hapke, B., Danielson, G., Klaasen, K., Wilson L. (1975) J. Geophys. Res., 80, 2431-2443. [8] Rava, B., and Hapke, B. (1987) Icarus, 71, 397- 429. [9] Lucey, P., Blewett, D., and Joliff, B. (2000) J. Geophys. Res., 105, 20297- 20305. [10] Gaffey, M.., L. Lebofsky, M. Nelson, and T. Jones (1993) in Remote Geochemical Analysis: Elemental and Mineralogical Composition, Cambridge University Press, New York, 437-453. [11] Hapke, B. (1981) J. Geophys. Res., 86, 3039-3054. [12] Hapke, B. and E. Wells, (1981) J. Geophys. Res., 86, 3055-3060. [13] Sunshine, J., Pieters, C., Pratt, S. (1990) J. Geophys. Res., 95, 6955-6966. 2

  15. Reconstruction of solar UV irradiance since 1974

    NASA Astrophysics Data System (ADS)

    Krivova, N. A.; Solanki, S. K.; Wenzler, T.; Podlipnik, B.

    2009-09-01

    Variations of the solar UV irradiance are an important driver of chemical and physical processes in the Earth's upper atmosphere and may also influence global climate. Here we reconstruct solar UV irradiance in the range 115-400 nm over the period 1974-2007 by making use of the recently developed empirical extension of the Spectral And Total Irradiance Reconstruction (SATIRE) models employing Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) data. The evolution of the solar photospheric magnetic flux, which is a central input to the model, is described by the magnetograms and continuum images recorded at the Kitt Peak National Solar Observatory between 1974 and 2003 and by the Michelson Doppler Imager instrument on SOHO since 1996. The reconstruction extends the available observational record by 1.5 solar cycles. The reconstructed Ly-α irradiance agrees well with the composite time series by Woods et al. (2000). The amplitude of the irradiance variations grows with decreasing wavelength and in the wavelength regions of special interest for studies of the Earth's climate (Ly-α and oxygen absorption continuum and bands between 130 and 350 nm) is 1-2 orders of magnitude stronger than in the visible or if integrated over all wavelengths (total solar irradiance).

  16. Evidence for a massive stellar black hole in x ray Nova Muscae

    NASA Technical Reports Server (NTRS)

    Chen, Wan; Gehrels, Neil; Cheng, F. H.

    1992-01-01

    We present evidence that the X-ray Nova Muscae system contains a massive, greater than 10 M solarmass, black hole. A recently measured photometric binary mass function gives the black hole mass for this system as a function of orbital inclination angle. From the spectral redshift and width of the positron annihilation gamma-ray line observed by GRANAT/SIGMA, we find the accretion disk inclination angle to be 22 deg plus or minus 18 deg. Assuming the accretion disk lies in the orbital plane of the system, the black hole mass is found to have a lower limit of 14 M solar mass although statistics are poor. This is supported by spectral modeling of combined optical/UV/x-ray/gamma-ray data and by a new Nova Muscae distance limit we derive of greater than 3 kpc. The large mass for this black hole and the high binary mass ratio it implies (greater than 20) raise a serious challenge to theoretical models of the formation and evolution of massive binaries. The gamma-ray line technique introduced here can give tight constraints on orbital parameters when high-sensitivity line measurements are made by such missions as GRO.

  17. Studies of Impurities in the Pegasus Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Rodriguez Sanchez, C.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Weberski, J. D.

    2017-10-01

    Local Helicity Injection (LHI) is used to initiate ST plasmas without a solenoid. Testing predictive models for the evolution of Ip(t) during LHI requires measurement of the plasma resistivity to quantify the dissipation of helicity. To that end, three diagnostic systems are coupled with an impurity transport model to quantify plasma contaminants. These are: visible bremsstrahlung (VB) spectroscopy; bolometry; and VUV spectroscopy. A spectral survey has been performed to identify line-free regions for VB measurements in the visible. Initial VB measurements are obtained with a single sightline through the plasma, and will be expanded to an imaging array to provide spatial resolution. A SPRED multichannel VUV spectrometer is being upgraded to provide high-speed ( 0.2 ms) spectral surveys for ion species identification, with a high-resolution grating installed for metallic line identification. A 16-channel thinistor bolometer array is planned. Absolutely calibrated VB, bolometer measurements, and qualitative ion species identification from SPRED are used as constraints in an impurity transport code to estimate absolute impurity content. Earlier work using this general approach indicated Zeff < 3 , before the edge current sources were shielded to reduce plasma-injector interactions. Work supported by US DOE Grant DE-FG02-96ER54375.

  18. A comparison between SALT/SAAO observations and kilonova models for AT 2017gfo: the first electromagnetic counterpart of a gravitational wave transient - GW170817

    NASA Astrophysics Data System (ADS)

    Buckley, David A. H.; Andreoni, Igor; Barway, Sudhanshu; Cooke, Jeff; Crawford, Steven M.; Gorbovskoy, Evgeny; Gromadzki, Mariusz; Lipunov, Vladimir; Mao, Jirong; Potter, Stephen B.; Pretorius, Magaretha L.; Pritchard, Tyler A.; Romero-Colmenero, Encarni; Shara, Michael M.; Väisänen, Petri; Williams, Ted B.

    2018-02-01

    We report on SALT low-resolution optical spectroscopy and optical/IR photometry undertaken with other SAAO telescopes (MASTER-SAAO and IRSF) of the kilonova AT 2017gfo (a.k.a. SSS17a) in the galaxy NGC4993 during the first 10 d of discovery. This event has been identified as the first ever electromagnetic counterpart of a gravitational wave event, namely GW170817, which was detected by the LIGO and Virgo gravitational wave observatories. The event is likely due to a merger of two neutron stars, resulting in a kilonova explosion. SALT was the third observatory to obtain spectroscopy of AT 2017gfo and the first spectrum, 1.2 d after the merger, is quite blue and shows some broad features, but no identifiable spectral lines and becomes redder by the second night. We compare the spectral and photometric evolution with recent kilonova simulations and conclude that they are in qualitative agreement for post-merger wind models with proton:nucleon ratios of Ye = 0.25-0.30. The blue colour of the first spectrum is consistent with the lower opacity of the lanthanide-free r-process elements in the ejecta. Differences between the models and observations are likely due to the choice of system parameters combined with the absence of atomic data for more elements in the ejecta models.

  19. Modeling Coronal Response in Decaying Active Regions with Magnetic Flux Transport and Steady Heating

    NASA Astrophysics Data System (ADS)

    Ugarte-Urra, Ignacio; Warren, Harry P.; Upton, Lisa A.; Young, Peter R.

    2017-09-01

    We present new measurements of the dependence of the extreme ultraviolet (EUV) radiance on the total magnetic flux in active regions as obtained from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Using observations of nine active regions tracked along different stages of evolution, we extend the known radiance—magnetic flux power-law relationship (I\\propto {{{Φ }}}α ) to the AIA 335 Å passband, and the Fe xviii 93.93 Å spectral line in the 94 Å passband. We find that the total unsigned magnetic flux divided by the polarity separation ({{Φ }}/D) is a better indicator of radiance for the Fe xviii line with a slope of α =3.22+/- 0.03. We then use these results to test our current understanding of magnetic flux evolution and coronal heating. We use magnetograms from the simulated decay of these active regions produced by the Advective Flux Transport model as boundary conditions for potential extrapolations of the magnetic field in the corona. We then model the hydrodynamics of each individual field line with the Enthalpy-based Thermal Evolution of Loops model with steady heating scaled as the ratio of the average field strength and the length (\\bar{B}/L) and render the Fe xviii and 335 Å emission. We find that steady heating is able to partially reproduce the magnitudes and slopes of the EUV radiance—magnetic flux relationships and discuss how impulsive heating can help reconcile the discrepancies. This study demonstrates that combined models of magnetic flux transport, magnetic topology, and heating can yield realistic estimates for the decay of active region radiances with time.

  20. MSSM-inspired multifield inflation

    NASA Astrophysics Data System (ADS)

    Dubinin, M. N.; Petrova, E. Yu.; Pozdeeva, E. O.; Sumin, M. V.; Vernov, S. Yu.

    2017-12-01

    Despite the fact that experimentally with a high degree of statistical significance only a single Standard Model-like Higgs boson is discovered at the LHC, extended Higgs sectors with multiple scalar fields not excluded by combined fits of the data are more preferable theoretically for internally consistent realistic models of particle physics. We analyze the inflationary scenarios which could be induced by the two-Higgs-doublet potential of the Minimal Supersymmetric Standard Model (MSSM) where five scalar fields have non-minimal couplings to gravity. Observables following from such MSSM-inspired multifield inflation are calculated and a number of consistent inflationary scenarios are constructed. Cosmological evolution with different initial conditions for the multifield system leads to consequences fully compatible with observational data on the spectral index and the tensor-to-scalar ratio. It is demonstrated that the strong coupling approximation is precise enough to describe such inflationary scenarios.

  1. A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic Ion Cyclotron Waves, Initial Results: Waves and Precipitating Fluxes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.

    2002-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.

  2. H II regions as probes of galaxy evolution and the properties of massive stars

    NASA Technical Reports Server (NTRS)

    Garnett, Donald R.

    1993-01-01

    The use of H II regions as probes to study the chemical evolution of galaxies and the spectral properties of hot, massive stars is reviewed. The observable parameters for this task are the physical conditions, elemental abundances, and ionization balance in the ionized gas. Some outstanding uncertainties in the determination of these parameters and some approaches to remedy or circumvent the problems are discussed.

  3. Integration of ambient seismic noise monitoring, displacement and meteorological measurements to infer the temperature-controlled long-term evolution of a complex prone-to-fall cliff

    NASA Astrophysics Data System (ADS)

    Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Larose, E.; Valentin, J.; Vinciguerra, S.

    2018-06-01

    Monitoring the temporal evolution of resonance frequencies and velocity changes detected from ambient seismic noise recordings can help in recognizing reversible and irreversible modifications within unstable rock volumes. With this aim, the long-term ambient seismic noise data set acquired at the potentially unstable cliff of Madonna delSasso (NW Italian Alps) was analysed in this study, using both spectral analysis and cross-correlation techniques. Noise results were integrated and compared with direct displacement measurements and meteorological data, to understand the long-term evolution of the cliff. No irreversible modifications in the stability of the site were detected over the monitored period. Conversely, daily and seasonal air temperature fluctuations were found to control resonance frequency values, amplitudes and directivities and to induce reversible velocity changes within the fractured rock mass. The immediate modification in the noise parameters due to temperature fluctuations was interpreted as the result of rock mass thermal expansion and contraction, inducing variations in the contact stiffness along the fractures isolating two unstable compartments. Differences with previous case studies were highlighted in the long-term evolution of noise spectral amplitudes and directivities, due to the complex 3-D fracture setting of the site and to the combined effects of the two unstable compartments.

  4. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.

    PubMed

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-10-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

  5. RECONNECTION PROPERTIES OF LARGE-SCALE CURRENT SHEETS DURING CORONAL MASS EJECTION ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, B. J.; Kazachenko, M. D.; Edmondson, J. K.

    2016-07-20

    We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch and Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to ∼100:1), Lundquist number (∼10{sup 3}), and reconnection rate (inflow-to-outflow ratiosmore » reaching ∼0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs’ formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions.« less

  6. S-154 in the Large Magellanic Cloud - Spectral evolution from a luminous Fe II variable to a symbiotic-like star

    NASA Technical Reports Server (NTRS)

    Remillard, R. A.; Rosenthal, E.; Tuohy, I. R.; Schwartz, D. A.; Buckley, D. A. H.; Brissenden, R. J. V.

    1992-01-01

    The evolution of the emission-line Star S-154, between February and December 1988, from a low-excitation 'Fe II star' into a high-excitation state that resembles symbiotic stars, is traced. It is inferred that the spectral type of central stars do not always dominate the physical conditions in the circumstellar material and thereby determine the nebular classification. The membership of S-154 in the LMC was confirmed with a radial velocity measurement of +274 km/s. The historical light curve (1880-1990) obtained from 346 photograph plates of the Harvard Plate Library exhibits about 4 mag of variations, with an MB range of -6 to -2. No evidence was found for coherent modulations that would represent the orbital period of a symbiotic binary.

  7. Far-UV Spectroscopy of Two Extremely Hot, Helium-Rich White Dwarfs

    NASA Technical Reports Server (NTRS)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2017-01-01

    A large proportion of hot post-asymptotic giant branch stars and white dwarfs (WDs) are hydrogen-deficient. Two distinct evolutionary sequences have been identified. One of them comprises stars of spectral type [WC] and PG1159, and it originates from a late helium-shell flash, creating helium-rich stellar atmospheres with significant admixtures of carbon (up to about 50, mass fraction). The other sequence comprises stars of spectral type O(He) and luminous subdwarf O stars which possibly are descendants of RCrB stars and extreme helium stars. Their carbon abundances are significantly lower (of the order of 1 or less) and it is thought that they originate from binary-star evolution (through merger or common-envelope evolution). Here we investigate two of the three hottest known helium-rich (DO) WDs (PG 1034+001 and PG 0038+199). They are the only ones for which spectra were recorded with the Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope, allowing a comprehensive ultraviolet spectral analysis. We find effective temperatures of T(eff) =115000 +/- 5000 K and 125000 +/- 5000 K, respectively, and a surface gravity of log g = 7 +/-0.5. In both stars, nitrogen is strongly oversolar while C and O are significantly subsolar. For all other assessed metals (Ne, Si, P, S, Ar, Fe, and Ni) we find abundances close to solar. We conclude that these WDs are immediate descendants of O(He) stars and, hence, result from close-binary evolution.

  8. Volume dependent quasiparticle spectral weight in NiS2-xSex system

    NASA Astrophysics Data System (ADS)

    Marini, C.; Perucchi, A.; Dore, P.; Topwal, D.; Sarma, D. D.; Lupi, S.; Postorino, P.

    2012-05-01

    We discuss the evolution of Infrared reflectivity at room temperature under various pressures (P) and Se alloying concentration in the strongly correlated NiS2-xSex pyrite. Measurements gave a complete picture of the optical response of the system on approaching the P-induced and Se-induced metallic state. A peculiar non-monotonic (V-shaped) volume dependence was found for the quasiparticle spectral weight of both pure and Se-doped compounds.

  9. A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    DTIC Science & Technology

    2006-09-01

    Postes des et Télécommunication . 19 GSM Global System for Mobile communications . . . . . . . . . 19 FDD Frequency Division Duplexing...entertainment centric in nature [84]. This evolution de - mands more from communication systems – improved quality of service (QoS), higher throughput...Spécial Mobile (GSM) emerged from the Conférence Européenne Postes des et Télécommunication (CEPT) and was commercially introduced in 1991 [103

  10. Toric Networks, Geometric R-Matrices and Generalized Discrete Toda Lattices

    NASA Astrophysics Data System (ADS)

    Inoue, Rei; Lam, Thomas; Pylyavskyy, Pavlo

    2016-11-01

    We use the combinatorics of toric networks and the double affine geometric R-matrix to define a three-parameter family of generalizations of the discrete Toda lattice. We construct the integrals of motion and a spectral map for this system. The family of commuting time evolutions arising from the action of the R-matrix is explicitly linearized on the Jacobian of the spectral curve. The solution to the initial value problem is constructed using Riemann theta functions.

  11. Compositional Homogeneity of CM Parent Bodies

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Cloutis, E. A.; DeMeo, F. E.; Dumas, C.; Hiroi, T.

    2016-09-01

    CM chondrites are the most common type of hydrated meteorites, making up ˜1.5% of all falls. Whereas most CM chondrites experienced only low-temperature (˜0°C-120°C) aqueous alteration, the existence of a small fraction of CM chondrites that suffered both hydration and heating complicates our understanding of the early thermal evolution of the CM parent body(ies). Here, we provide new constraints on the collisional and thermal history of CM-like bodies from a comparison between newly acquired spectral measurements of main-belt Ch/Cgh-type asteroids (70 objects) and existing laboratory spectral measurements of CM chondrites. It first appears that the spectral variation observed among CM-like bodies is essentially due to variations in the average regolith grain size. Second, the spectral properties of the vast majority (unheated) of CM chondrites resemble both the surfaces and the interiors of CM-like bodies, implying a “low” temperature (<300°C) thermal evolution of the CM parent body(ies). It follows that an impact origin is the likely explanation for the existence of heated CM chondrites. Finally, similarly to S-type asteroids and (2) Pallas, the surfaces of large (D > 100 km)—supposedly primordial—Ch/Cgh-type main-belt asteroids likely expose the interiors of the primordial CM parent bodies, a possible consequence of impacts by small asteroids (D < 10 km) in the early solar system.

  12. Discovery and Evolution of the New Black Hole Candidate Swift J1539.2-6227 During Its 2008 Outburst

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Tomsick, J. A.; Markwardt, C. B.; Brocksopp, C.; Grise, F.; Kaaret, P.; Romano, P.

    2010-01-01

    We report on the discovery by the Swift Gamma-Ray Burst Explorer of the black hole candidate Swift J1539.2-6227 and the subsequent course of an outburst beginning in November 2008 and lasting at least seven months. The source was discovered during normal observations with the Swift Burst Alert Telescope (BAT) on 2008 November 25. An extended observing campaign with the Rossi X-Ray Timing Explorer (RXTE) and Swift provided near-daily coverage over 176 days, giving us a rare opportunity to track the evolution of spectral and timing parameters with fine temporal resolution through a series of spectral states. The source was first detected in a hard state during which strong low-frequency quasiperiodic oscillations (QPOs) were detected. The QPOs persisted for about 35 days and a signature of the transition from the hard to soft intermediate states was seen in the timing data. The source entered a short-lived thermal state about 40 days after the start of the outburst. There were variations in spectral hardness as the source flux declined and returned to a hard state at the end of the outburst. The progression of spectral states and the nature of the timing features provide strong evidence that Swift J1539.2-6227 is a candidate black hole in a low-mass X-ray binary system.

  13. The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae)

    PubMed Central

    McCarthy, Elizabeth W.; Arnold, Sarah E. J.; Chittka, Lars; Le Comber, Steven C.; Verity, Robert; Dodsworth, Steven; Knapp, Sandra; Kelly, Laura J.; Chase, Mark W.; Baldwin, Ian T.; Kovařík, Aleš; Mhiri, Corinne; Taylor, Lin; Leitch, Andrew R.

    2015-01-01

    Background and Aims Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. Methods Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. Key Results Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. Conclusions Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators. PMID:25979919

  14. The Role of Aerosols on Precipitation Processes: Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Matsui, T.

    2012-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, the sub-tropics (Florida) and midlatitudes using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CeN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for these cases. It is shown that since the low (CN case produces fewer droplets, larger sizes develop due to greater condensational and collection growth, leading to a broader size spectrum in comparison to the high CCN case. Sensitivity tests were performed to identify the impact of ice processes, radiation and large-scale influence on cloud-aerosol interactive processes, especially regarding surface rainfall amounts and characteristics (i.e., heavy or convective versus light or stratiform types). In addition, an inert tracer was included to follow the vertical redistribution of aerosols by cloud processes. We will also give a brief review from observational evidence on the role of aerosol on precipitation processes.

  15. Pulse phase-coherent timing and spectroscopy of CXOU J164710.2-45521 outbursts

    NASA Astrophysics Data System (ADS)

    Rodríguez Castillo, Guillermo A.; Israel, Gian Luca; Esposito, Paolo; Pons, José A.; Rea, Nanda; Turolla, Roberto; Viganò, Daniele; Zane, Silvia

    2014-06-01

    We present a long-term phase-coherent timing analysis and pulse-phase resolved spectroscopy for the two outbursts observed from the transient anomalous X-ray pulsar CXOU J164710.2-455216. For the first outburst we used 11 Chandra and XMM-Newton observations between 2006 September and 2009 August, the longest baseline yet for this source. We obtain a coherent timing solution with P = 10.61065583(4) s, Ṗ = 9.72(1) × 10-13 s s-1 and P̈ = -1.05(5) × 10-20 s s-2. Under the standard assumptions this implies a surface dipolar magnetic field of ˜1014 G, confirming this source as a standard B magnetar. We also study the evolution of the pulse profile (shape, intensity and pulsed fraction) as a function of time and energy. Using the phase-coherent timing solution we perform a phase-resolved spectroscopy analysis, following the spectral evolution of pulse-phase features, which hints at the physical processes taking place on the star. The results are discussed from the perspective of magnetothermal evolution models and the untwisting magnetosphere model. Finally, we present similar analysis for the second, less intense, 2011 outburst. For the timing analysis we used Swift data together with 2 XMM-Newton and Chandra pointings. The results inferred for both outbursts are compared and briefly discussed in a more general framework.

  16. Core surface magnetic field evolution 2000-2010

    NASA Astrophysics Data System (ADS)

    Finlay, C. C.; Jackson, A.; Gillet, N.; Olsen, N.

    2012-05-01

    We present new dedicated core surface field models spanning the decade from 2000.0 to 2010.0. These models, called gufm-sat, are based on CHAMP, Ørsted and SAC-C satellite observations along with annual differences of processed observatory monthly means. A spatial parametrization of spherical harmonics up to degree and order 24 and a temporal parametrization of sixth-order B-splines with 0.25 yr knot spacing is employed. Models were constructed by minimizing an absolute deviation measure of misfit along with measures of spatial and temporal complexity at the core surface. We investigate traditional quadratic or maximum entropy regularization in space, and second or third time derivative regularization in time. Entropy regularization allows the construction of models with approximately constant spectral slope at the core surface, avoiding both the divergence characteristic of the crustal field and the unrealistic rapid decay typical of quadratic regularization at degrees above 12. We describe in detail aspects of the models that are relevant to core dynamics. Secular variation and secular acceleration are found to be of lower amplitude under the Pacific hemisphere where the core field is weaker. Rapid field evolution is observed under the eastern Indian Ocean associated with the growth and drift of an intense low latitude flux patch. We also find that the present axial dipole decay arises from a combination of subtle changes in the southern hemisphere field morphology.

  17. Realistic dust and water cycles in the MarsWRF GCM using coupled two-moment microphysics

    NASA Astrophysics Data System (ADS)

    Lee, Christopher; Richardson, Mark Ian; Mischna, Michael A.; Newman, Claire E.

    2017-10-01

    Dust and water ice aerosols significantly complicate the Martian climate system because the evolution of the two aerosol fields is coupled through microphysics and because both aerosols strongly interact with visible and thermal radiation. The combination of strong forcing feedback and coupling has led to various problems in understanding and modeling of the Martian climate: in reconciling cloud abundances at different locations in the atmosphere, in generating a stable dust cycle, and in preventing numerical instability within models.Using a new microphysics model inside the MarsWRF GCM we show that fully coupled simulations produce more realistic simulation of the Martian climate system compared to a dry, dust only simulations. In the coupled simulations, interannual variability and intra-annual variability are increased, strong 'solstitial pause' features are produced in both winter high latitude regions, and dust storm seasons are more varied, with early southern summer (Ls 180) dust storms and/or more than one storm occurring in some seasons.A new microphysics scheme was developed as a part of this work and has been included in the MarsWRF model. The scheme uses split spectral/spatial size distribution numerics with adaptive bin sizes to track particle size evolution. Significantly, this scheme is highly accurate, numerically stable, and is capable of running with time steps commensurate with those of the parent atmospheric model.

  18. The Swift/Fermi GRB 080928 from 1 eV to 150 keV

    NASA Technical Reports Server (NTRS)

    Sonbas, Eda; Rossi, A.; Schulze, S.; Klose, S.; Kann, D. A.; Ferrero, P.; NicuesaGuelbenzu, A.; Rau, A.; Kruehler, T.; Greiner, J.; hide

    2010-01-01

    We present the results of a comprehensive study of the Gamma-Ray Burst 080928 and of its afterglow. GRB 08092 was a long burst detected by Swift/BAT and Fermi/GBM, It is one of the exceptional cases where optical emission was already detected when the GRB itself was still radiating in the gamma-ray band. for nearly 100 seconds simultaneous optical X-ray and gamma-ray data provide a coverage of the spectral energy distribution of the transient source from about 1 eV to 150 keV. Here we analyze the prompt emission, constrain its spectral propertIes. and set lower limits on the initial Lorentz factor of the relativistic outflow, In particular. we show that the SED during the main prompt emission phase is in agreement with synchrotron radiation. We construct the optical/near-infrared light curve and the spectral energy distribution based on Swift/UVOT. ROTSE-Illa (Australia) and GROND (La Silla) data and compare it to the X-ray light curve retrieved from the Swift/XRT repository. We show that its bumpy shape can be modeled by multiple energy injections into the forward shock. Furthermore, we provide evidence that the temporal and spectral evolution of the first strong flare seen in the early X-ray light curve can be explained by large-angle emission. Finally, we report on the results of our search for the GRB host galaxy, for which only a deep upper limit can be provided.

  19. Regularities And Irregularities Of The Stark Parameters For Single Ionized Noble Gases

    NASA Astrophysics Data System (ADS)

    Peláez, R. J.; Djurovic, S.; Cirišan, M.; Aparicio, J. A.; Mar S.

    2010-07-01

    Spectroscopy of ionized noble gases has a great importance for the laboratory and astrophysical plasmas. Generally, spectra of inert gases are important for many physics areas, for example laser physics, fusion diagnostics, photoelectron spectroscopy, collision physics, astrophysics etc. Stark halfwidths as well as shifts of spectral lines are usually employed for plasma diagnostic purposes. For example atomic data of argon krypton and xenon will be useful for the spectral diagnostic of ITER. In addition, the software used for stellar atmosphere simulation like TMAP, and SMART require a large amount of atomic and spectroscopic data. Availability of these parameters will be useful for a further development of stellar atmosphere and evolution models. Stark parameters data of spectral lines can also be useful for verification of theoretical calculations and investigation of regularities and systematic trends of these parameters within a multiplet, supermultiplet or transition array. In the last years, different trends and regularities of Stark parameters (halwidths and shifts of spectral lines) have been analyzed. The conditions related with atomic structure of the element as well as plasma conditions are responsible for regular or irregular behaviors of the Stark parameters. The absence of very close perturbing levels makes Ne II as a good candidate for analysis of the regularities. Other two considered elements Kr II and Xe II with complex spectra present strong perturbations and in some cases an irregularities in Stark parameters appear. In this work we analyze the influence of the perturbations to Stark parameters within the multiplets.

  20. GRB 091127: The Cooling Break Race on Magnetic Fuel

    NASA Technical Reports Server (NTRS)

    Filgas, R.; Greiner, J.; Schady, P.; Kruhler, T.; Updike, A. C.; Klose, S.; Nardini, M.; Kann, D. A.; Rossi, A.; Sudilovsky, V.; hide

    2011-01-01

    Using high-quality, broad-band afterglow data for GRB 091127, we investigate the validity of the synchrotron fireball model for gamma-ray bursts, and infer physical parameters of the ultra-relativistic outflow. Methods. We used multi-wavelength (NIR to X-ray) follow-up observations obtained with GROND simultaneously in the g' r' t' i' z' JH filters and the XRT onboard the Swift satellite in the 0.3 to 10 keY energy range. The resulting afterglow light curve is of excellent accuracy with relative photometric errors as low as 1 %, and the spectral energy distribution (SED) is well-sampled over 5 decades in energy. These data present one of the most comprehensive observing campaigns for a single GRB afterglow and allow us to test several proposed emission models and outflow characteristics in unprecedented detail. Results. Both the multi-color light curve and the broad-band SED of the afterglow of GRB 091127 show evidence of a cooling break moving from high to lower energies. The early light curve is well described by a broken power-law, where the initial decay in the optical/NlR wavelength range is considerably flatter than at X-rays. Detailed fitting of the time-resolved SED shows that the break is very smooth with a sharpness index of 2.2 +/- 0.2, and evolves towards lower frequencies as a power-law with index -1.23 +/- 0.06. These are the first accurate and contemporaneous measurements of both the sharpness of the spectral break and its time evolution. Conclusions. The measured evolution of the cooling break (V(sub c) varies as t(sup -1.2) is not consistent with the predictions of the standard model, wherein V(sub c) varies as t(sup -05) is expected. A possible explanation for the observed behavior is a time dependence of the microphysical parameters, in particular the fraction of the total energy in the magnetic field epsilon(sub Beta). This conclusion provides further evidence that the standard fireball model is too simplistic, and time-dependent micro-physical parameters may be required to model the growing number of well-sampled afterglow light curves.

  1. Quasar Spectral Energy Distributions As A Function Of Physical Property

    NASA Astrophysics Data System (ADS)

    Townsend, Shonda; Ganguly, R.; Stark, M. A.; Derseweh, J. A.; Richmond, J. M.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). In turn, models of outflows have shown particular sensitivity to the shape of the spectral energy distribution (SED), depending on the UV luminosity to transfer momentum to the gas, the X-ray luminosity to regulate how efficiently that transfer can be, etc. To investigate how SED changes with physical properties, we follow up on Richards et al. (2006), who constructed SEDs with varying luminosity. Here, we construct SEDs as a function of redshift, and physical property (black hole mass, bolometric luminosity, Eddington ratio) for volume limited samples drawn from the Sloan Digital Sky Survey, with photometry supplemented from 2MASS, WISE, GALEX, ROSAT, and Chandra. To estimate black hole masses, we adopt the scaling relations from Greene & Ho (2005) based on the H-alpha emission line FWHM. This requires redshifts less than 0.4. To construct volume-limited subsamples, we begin by adopting g=19.8 as a nominal limiting magnitude over which we are guaranteed to detect z<0.4 quasars. At redshift 0.4, we are complete down to Mg=-21.8, which yields 3300 objects from Data Release 7. At z=0.1, we are complete down to Mg=-18.5. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.

  2. Mantle convection and the distribution of geochemical reservoirs in the silicate shell of the Earth

    NASA Astrophysics Data System (ADS)

    Walzer, Uwe; Hendel, Roland

    2010-05-01

    We present a dynamic 3-D spherical-shell model of mantle convection and the evolution of the chemical reservoirs of the Earth`s silicate shell. Chemical differentiation, convection, stirring and thermal evolution constitute an inseparable dynamic system. Our model is based on the solution of the balance equations of mass, momentum, energy, angular momentum, and four sums of the number of atoms of the pairs 238U-206Pb, 235U-207Pb, 232Th-208Pb, and 40K-40Ar. Similar to the present model, the continental crust of the real Earth was not produced entirely at the start of the evolution but developed episodically in batches [1-7]. The details of the continental distribution of the model are largely stochastic, but the spectral properties are quite similar to the present real Earth. The calculated Figures reveal that the modeled present-day mantle has no chemical stratification but we find a marble-cake structure. If we compare the observational results of the present-day proportion of depleted MORB mantle with the model then we find a similar order of magnitude. The MORB source dominates under the lithosphere. In our model, there are nowhere pure unblended reservoirs in the mantle. It is, however, remarkable that, in spite of 4500 Ma of solid-state mantle convection, certain strong concentrations of distributed chemical reservoirs continue to persist in certain volumes, although without sharp abundance boundaries. We deal with the question of predictable and stochastic portions of the phenomena. Although the convective flow patterns and the chemical differentiation of oceanic plateaus are coupled, the evolution of time-dependent Rayleigh number, Rat , is relatively well predictable and the stochastic parts of the Rat(t)-curves are small. Regarding the juvenile growth rates of the total mass of the continents, predictions are possible only in the first epoch of the evolution. Later on, the distribution of the continental-growth episodes is increasingly stochastic. Independently of the varying individual runs, our model shows that the total mass of the present-day continents is not generated in a single process at the beginning of the thermal evolution of the Earth but in episodically distributed processes in the course of geological time. This is in accord with observation. Finally, we present results regarding the numerical method, implementation, scalability and performance. References [1] Condie, K. C., Episodie continental growth models: Afterthoughts and extensions, Tectonophysics, 322 (2000), 153-162. [2] Davidson, J. P. and Arculus, R. J., The significance of Phanerozoic arc magmatism in generating continental crust, in Evolution and Differentiation of the Continental Crust, edited by M. Brown and T. Rushmer (2006), 135-172, Cambridge Univ. Press, Cambridge, UK. [3] Hofmann, A. W., Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements, in Treatise on Geochemistry, Vol. 2: The Mantle and the Core, edited by R. W. Carlson (2003), 61-101, Elsevier, Amsterdam. [4] Rollinson, H., Crustal generation in the Archean, in Evolution and Differentiation of the Continental Crust, edited by M. Brown and T. Rushmer (2006), 173-230, Cambridge Univ. Press, Cambridge, UK: [5] Taylor, S. R. and McLennan, S. M., Planetary Crusts. Their Composition, Origin and Evolution. (2009), 1-378, Cambridge Univ. Press, Cambridge, UK. [6] Walzer, U. and Hendel, R., Mantle convection and evolution with growing continents. J. Geophys. Res. 113 (2008), B09405, doi: 10.1029/2007JB005459 [7] http://www.igw.uni-jena.de/geodyn

  3. FERMI Observations of GRB 090902B: A Distinct Spectral Component in the Prompt and Delayed Emission

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-11-03

    Here, we report on the observation of the bright, long gamma-ray burst (GRB), GRB 090902B, by the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on-board the Fermi observatory. This was one of the brightest GRBs to have been observed by the LAT, which detected several hundred photons during the prompt phase. With a redshift of z = 1.822, this burst is among the most luminous detected by Fermi. Time-resolved spectral analysis reveals a significant power-law component in the LAT data that is distinct from the usual Band model emission that is seen in the sub-MeV energy range.more » This power-law component appears to extrapolate from the GeV range to the lowest energies and is more intense than the Band component, both below ~50 keV and above 100 MeV. The Band component undergoes substantial spectral evolution over the entire course of the burst, while the photon index of the power-law component remains constant for most of the prompt phase, then hardens significantly toward the end. After the prompt phase, power-law emission persists in the LAT data as late as 1 ks post-trigger, with its flux declining as t –1.5. The LAT detected a photon with the highest energy so far measured from a GRB, 33.4 +2.7 –3.5 GeV. This event arrived 82 s after the GBM trigger and ~50 s after the prompt phase emission had ended in the GBM band. In conclusion, we discuss the implications of these results for models of GRB emission and for constraints on models of the extragalactic background light.« less

  4. The Structure and Emission Model of the Relativistic Jet in the Quasar 3C 279 Inferred From Radio To High-Energy Gamma-Ray Observations in 2008-2010

    NASA Technical Reports Server (NTRS)

    2012-01-01

    We present time-resolved broad-band observations of the quasar 3C 279 obtained from multiwavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported gamma-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears delayed with respect to the gamma-ray emission by about 10 days. X-ray observations reveal a pair of 'isolated' flares separated. by approx. 90 days, with only weak gamma-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the gamma-ray flare, while the peak appears in the mm/sub-mm band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broad-band spectra during the gamma-ray flaring event by a shift of its location from approx. 1 pc to approx. 4 pc from the central black hole. On the other hand, if the gamma-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.

  5. The Class 0 Protostar BHR71: Herschel Observations and Dust Continuum Models

    NASA Astrophysics Data System (ADS)

    Yang, Yao-Lun; Evans, Neal J., II; Green, Joel D.; Dunham, Michael M.; Jørgensen, Jes K.

    2017-02-01

    We use Herschel spectrophotometry of BHR71, an embedded Class 0 protostar, to provide new constraints on its physical properties. We detect 645 (non-unique) spectral lines among all spatial pixels. At least 61 different spectral lines originate from the central region. A CO rotational diagram analysis shows four excitation temperature components, 43, 197, 397, and 1057 K. Low-J CO lines trace the outflow while the high-J CO lines are centered on the infrared source. The low-excitation emission lines of {{{H}}}2{{O}} trace the large-scale outflow, while the high-excitation emission lines trace a small-scale distribution around the equatorial plane. We model the envelope structure using the dust radiative transfer code, hyperion, incorporating rotational collapse, an outer static envelope, outflow cavity, and disk. The evolution of a rotating collapsing envelope can be constrained by the far-infrared/millimeter spectral energy distribution along with the azimuthally averaged radial intensity profile, and the structure of the outflow cavity plays a critical role at shorter wavelengths. Emission at 20-40 μm requires a cavity with a constant-density inner region and a power-law density outer region. The best-fit model has an envelope mass of 19 {M}⊙ inside a radius of 0.315 pc and a central luminosity of 18.8 {L}⊙ . The time since collapse began is 24,630-44,000 years, most likely around 36,000 years. The corresponding mass infall rate in the envelope (1.2 × 10-5 {M}⊙ {{yr}}-1) is comparable to the stellar mass accretion rate, while the mass-loss rate estimated from the CO outflow is 20% of the stellar mass accretion rate. We find no evidence for episodic accretion.

  6. The X-ray Spectral Evolution of eta Carinae as Seen by ASCA

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Fredericks, A. C.; Petre, R.; Swank, J. H.; Drake, S. A.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Using data from the ASCA X-ray observatory, we examine the variations in the X-ray spectrum of the supermassive star nu Carinae with an unprecedented combination of spatial and spectral resolution. We include data taken during the recent X-ray eclipse in 1997-1998, after recovery from the eclipse, and during and after an X-ray flare. We show that the eclipse variation in the X-ray spectrum is apparently confined to a decrease in the emission measure of the source. We compare our results with a simple colliding wind binary model and find that the observed spectral variations are only consistent, with the binary model if there is significant high-temperature emission far from the star and/or a substantial change in the temperature distribution of the hot plasma. If contamination in the 2-10 keV band is important, the observed eclipse spectrum requires an absorbing column in excess of 10(exp 24)/sq cm for consistency with the binary model, which may indicate an increase in the first derivative of M from nu Carinae near the time of periastron passage. The flare spectra are consistent with the variability seen in nearly simultaneous RXTE observations and thus confirm that nu Carinae itself is the source of the flare emission. The variation in the spectrum during the flare seems confined to a change in the source emission measure. By comparing 2 observations obtained at the same phase in different X-ray cycles, we find that the current, X-ray brightness of the source is slightly higher than the brightness of the source during the last cycle perhaps indicative of a long-term increase in the first derivative of M, not associated with the X-ray cycle.

  7. The structure and emission model of the relativistic jet in the quasar 3C 279 inferred from radio to high-energy γ-ray observations in 2008-2010

    DOE PAGES

    Hayashida, M.; Madejski, G. M.; Nalewajko, K.; ...

    2012-07-16

    Here, we present time-resolved broadband observations of the quasar 3C 279 obtained from multi-wavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. And, while investigating the previously reported γ-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears to be delayed with respect to the γ-ray emission by about 10 days. X-ray observations reveal a pair of "isolated" flares separated by ~90 days, with only weak γ-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break atmore » the far-infrared band during the γ-ray flare, while the peak appears in the millimeter (mm)/submillimeter (sub-mm) band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Furthermore, by adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broadband spectra during the γ-ray flaring event by a shift of its location from ~1 pc to ~4 pc from the central black hole. On the other hand, if the γ-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.« less

  8. Higher Signal-to-Noise Measurements of Alpha-element Abundances in the M31 System

    NASA Astrophysics Data System (ADS)

    Escala, Ivanna; Kirby, Evan N.

    2018-06-01

    The stellar halo and tidal streams of M31 provide an essential counterpoint to the same structures around the Milky Way (MW). While measurements of [Fe/H] and [$\\alpha$/Fe] have been made in the MW, little is known about the detailed chemical abundances of the M31 system. To make progress with existing telescopes, we expand upon the technique first presented by Kirby et al., applying spectral synthesis to medium-resolution spectroscopy at lower spectral resolution (R $\\sim$ 1800) across an optical range (4100~\\AA \\ $<$ $\\lambda$ $<$ 9100~\\AA) that extends down the blue. We have obtained deep spectra of red giants in the tidal streams, smooth halo, and disk of M31 using the DEIMOS 600ZD grating, resulting in higher signal-to-noise per spectral resolution element (S/N $\\sim$ 30 \\AA$^{-1}$). By applying our technique to red giant stars in MW globular clusters with higher-resolution ($R$ $\\sim$ 6000) spectra in the blue (4100 - 6300 \\AA), we demonstrate that our technique reproduces previous measurements derived from the red side of the optical (6300 - 9100 \\AA). For the first time, we present measurements of [Fe/H] and [$\\alpha$/Fe] of sufficient quality and sample size to construct quantitative models of galactic chemical evolution in the M31 system.

  9. Colour variations in the GRB 120327A afterglow

    NASA Astrophysics Data System (ADS)

    Melandri, A.; Covino, S.; Zaninoni, E.; Campana, S.; Bolmer, J.; Cobb, B. E.; Gorosabel, J.; Kim, J.-W.; Kuin, P.; Kuroda, D.; Malesani, D.; Mundell, C. G.; Nappo, F.; Sbarufatti, B.; Smith, R. J.; Steele, I. A.; Topinka, M.; Trotter, A. S.; Virgili, F. J.; Bernardini, M. G.; D'Avanzo, P.; D'Elia, V.; Fugazza, D.; Ghirlanda, G.; Gomboc, A.; Greiner, J.; Guidorzi, C.; Haislip, J. B.; Hanayama, H.; Hanlon, L.; Im, M.; Ivarsen, K. M.; Japelj, J.; Jelínek, M.; Kawai, N.; Kobayashi, S.; Kopac, D.; LaCluyzé, A. P.; Martin-Carrillo, A.; Murphy, D.; Reichart, D. E.; Salvaterra, R.; Salafia, O. S.; Tagliaferri, G.; Vergani, S. D.

    2017-10-01

    Aims: We present a comprehensive temporal and spectral analysis of the long Swift GRB 120327A afterglow data to investigate possible causes of the observed early-time colour variations. Methods: We collected data from various instruments and telescopes in X-ray, ultraviolet, optical, and near-infrared bands, and determined the shapes of the afterglow early-time light curves. We studied the overall temporal behaviour and the spectral energy distributions from early to late times. Results: The ultraviolet, optical, and near-infrared light curves can be modelled with a single power-law component between 200 and 2 × 104 s after the burst event. The X-ray light curve shows a canonical steep-shallow-steep behaviour that is typical of long gamma-ray bursts. At early times a colour variation is observed in the ultraviolet/optical bands, while at very late times a hint of a re-brightening is visible. The observed early-time colour change can be explained as a variation in the intrinsic optical spectral index, rather than an evolution of the optical extinction. Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A29

  10. MODTRAN2: Evolution and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, G.P.; Chetwynd, J.H.; Kneizys, F.X.

    1994-12-31

    MODTRAN2 is the most recent version of the Moderate Resolution Atmospheric Radiance and Transmittance Model. It encompasses all the capabilities of LOWTRAN 7, the historic 20 cm{sup {minus}1} resolution (full width at half maximum, FWHM) radiance code, but incorporates a much more sensitive molecular band model with 2 cm{sup {minus}1} resolution. The band model is based directly upon the HITRAN spectral parameters, including both temperature and pressure (line shape) dependencies. Because the band model parameters and their applications to transmittance calculations have been independently developed using equivalent width binning procedures, validation against full Voigt line-by-line calculations is important. Extensive spectralmore » comparisons have shown excellent agreement. In addition, simple timing runs of MODTRAN vs. FASCOD3P show an improvement of more than a factor of 100 for a typical 500 cm{sup {minus}1} spectral interval and comparable vertical layering. It has been previously established that not only is MODTRAN an excellent band model for full path calculations, but it replicates layer-specific quantities to a very high degree of accuracy. Such layer quantities, derived from ratios and differences of longer path MODTRAN calculations from point A to adjacent layer boundaries, can be used to provide inversion algorithm weighting functions or similarly formulated quantities. One of the most exciting new applications is the rapid calculation of reliable IR cooling rates, including species, altitude, and spectral distinctions, as well as the standard integrated quantities. Comparisons with prior line-by-line cooling rate calculations are excellent, and the techniques can be extended to incorporate global climatologies. Enhancements expected to appear in MODTRAN3 relate directly to climate change studies. The addition of ultraviolet SO{sub 2} and NO{sub 2} in the UV, along with upgraded ozone Chappuis bands in the visible will also be part of MODTRAN3.« less

  11. Methodological problems with gamma-ray burst hardness/intensity correlations

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1993-01-01

    The hardness and intensity are easily measured quantities for all gamma-ray bursts (GRBs), and so, many past and current studies have sought correlations between them. This Letter presents many serious methodological problems with the practical definitions for both hardness and intensity. These difficulties are such that significant correlations can be easily introduced as artifacts of the reduction procedure. In particular, cosmological models of GRBs cannot be tested with hardness/intensity correlations with current instrumentation and the time evolution of the hardness in a given burst may be correlated with intensity for reasons that are unrelated to intrinsic change in the spectral shape.

  12. Tiny Hiccups To Titanic Explosions: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2006-09-01

    Recently discovered transient events in Anomalous X-ray Pulsars (AXPs) may be a Rosetta Stone for understanding the persistent emission from magnetars. They also may hold the key to quantifying the number of magnetars in the Galaxy. Here we request Chandra TOO time to observe any AXP following a rare transient event, including a major outburst or a long-duration flare. Specifically, the requested observations will determine the pulsed fraction and spectral evolution of a transient AXP event as the source relaxes back to quiescence, in order to quantitatively test the "twisted magnetosphere" model for magnetars, and establish the basic phenomenology of transient AXP events.

  13. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2007-09-01

    Recently discovered transient events in Anomalous X-ray Pulsars (AXPs) may be a Rosetta Stone for understanding the persistent emission from magnetars. They also may hold the key to quantifying the number of magnetars in the Galaxy. Here we request Chandra TOO time to observe any AXP following a rare transient event, including a major outburst or a long-duration flare. Specifically, the requested observations will determine the pulsed fraction and spectral evolution of a transient AXP event as the source relaxes back to quiescence, in order to quantitatively test the "twisted magnetosphere" model for magnetars, and establish the basic phenomenology of transient AXP events.

  14. Black Hole Mass Determination In the X-Ray Binary 4U 1630-47: Scaling of Spectral and Variability Characteristics

    NASA Technical Reports Server (NTRS)

    Seifina, Elena; Titarchuk, Lev; Shaposhnikov, Nikolai

    2014-01-01

    We present the results of a comprehensive investigation on the evolution of spectral and timing properties of the Galactic black hole candidate 4U 1630-47 during its spectral transitions. In particular, we show how a scaling of the correlation of the photon index of the Comptonized spectral component gamma with low-frequency quasi-periodic oscillations (QPOs), ?(sub L), and mass accretion rate, M, can be applied to the black hole mass and the inclination angle estimates.We analyze the transition episodes observed with the Rossi X-Ray Timing Explorer and BeppoSAX satellites.We find that the broadband X-ray energy spectra of 4U 1630-47 during all spectral states can be modeled by a combination of a thermal component, a Comptonized component, and a red-skewed iron-line component. We also establish that gamma monotonically increases during transition from the low-hard state to the high-soft state and then saturates for high mass accretion rates. The index saturation levels vary for different transition episodes. Correlations of gamma versus ?(sub L) also show saturation at gamma (is) approximately 3. Gamma -M and gamma -?(sub L) correlations with their index saturation revealed in 4U 1630-47 are similar to those established in a number of other black hole candidates and can be considered as an observational evidence for the presence of a black hole in these sources. The scaling technique, which relies on XTE J1550-564, GRO 1655-40, and H1743-322 as reference sources, allows us to evaluate a black hole mass in 4U 1630-47 yielding M(sub BH) (is) approximately 10 +/- 0.1 solar masses and to constrain the inclination angle of i (is) approximately less than 70 deg.

  15. Yunnan-III models for evolutionary population synthesis

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Li, L.; Han, Z.; Zhuang, Y.; Kang, X.

    2013-02-01

    We build the Yunnan-III evolutionary population synthesis (EPS) models by using the mesa stellar evolution code, BaSeL stellar spectra library and the initial mass functions (IMFs) of Kroupa and Salpeter, and present colours and integrated spectral energy distributions (ISEDs) of solar-metallicity stellar populations (SPs) in the range of 1 Myr to 15 Gyr. The main characteristic of the Yunnan-III EPS models is the usage of a set of self-consistent solar-metallicity stellar evolutionary tracks (the masses of stars are from 0.1 to 100 M⊙). This set of tracks is obtained by using the state-of-the-art mesa code. mesa code can evolve stellar models through thermally pulsing asymptotic giant branch (TP-AGB) phase for low- and intermediate-mass stars. By comparisons, we confirm that the inclusion of TP-AGB stars makes the V - K, V - J and V - R colours of SPs redder and the infrared flux larger at ages log(t/yr) ≳ 7.6 [the differences reach the maximum at log(t/yr) ˜ 8.6, ˜0.5-0.2 mag for colours, approximately two times for K-band flux]. We also find that the colour-evolution trends of Model with-TPAGB at intermediate and large ages are similar to those from the starburst99 code, which employs the Padova-AGB stellar library, BaSeL spectral library and the Kroupa IMF. At last, we compare the colours with the other EPS models comprising TP-AGB stars (such as CB07, M05, V10 and POPSTAR), and find that the B - V colour agrees with each other but the V-K colour shows a larger discrepancy among these EPS models [˜1 mag when 8 ≲ log(t/yr) ≲ 9]. The stellar evolutionary tracks, isochrones, colours and ISEDs can be obtained on request from the first author or from our website (http://www1.ynao.ac.cn/~zhangfh/). Using the isochrones, you can build your EPS models. Now the format of stellar evolutionary tracks is the same as that in the starburst99 code; you can put them into the starburst99 code and get the SP's results. Moreover, the colours involving other passbands or on other systems (e.g. HST F439W - F555W colour on AB system) can also be obtained on request.

  16. Measuring the Redshift Dependence of The Cosmic Microwave Background Monopole Temperature With Planck Data

    NASA Technical Reports Server (NTRS)

    De Martino, I.; Atrio-Barandela, F.; Da Silva, A.; Ebling, H.; Kashlinsky, A.; Kocevski, D.; Martins, C. J. A. P.

    2012-01-01

    We study the capability of Planck data to constrain deviations of the cosmic microwave background (CMB) blackbody temperature from adiabatic evolution using the thermal Sunyaev-Zeldovich anisotropy induced by clusters of galaxies. We consider two types of data sets depending on how the cosmological signal is removed: using a CMB template or using the 217 GHz map. We apply two different statistical estimators, based on the ratio of temperature anisotropies at two different frequencies and on a fit to the spectral variation of the cluster signal with frequency. The ratio method is biased if CMB residuals with amplitude approximately 1 microK or larger are present in the data, while residuals are not so critical for the fit method. To test for systematics, we construct a template from clusters drawn from a hydro-simulation included in the pre-launch Planck Sky Model. We demonstrate that, using a proprietary catalog of X-ray-selected clusters with measured redshifts, electron densities, and X-ray temperatures, we can constrain deviations of adiabatic evolution, measured by the parameter a in the redshift scaling T (z) = T0(1 + z)(sup 1-alpha), with an accuracy of sigma(sub alpha) = 0.011 in the most optimal case and with sigma alpha = 0.018 for a less optimal case. These results represent a factor of 2-3 improvement over similar measurements carried out using quasar spectral lines and a factor 6-20 with respect to earlier results using smaller cluster samples.

  17. Models and methods to characterize site amplification from a pair of records

    USGS Publications Warehouse

    Safak, E.

    1997-01-01

    The paper presents a tutorial review of the models and methods that are used to characterize site amplification from the pairs of rock- and soil-site records, and introduces some new techniques with better theoretical foundations. The models and methods discussed include spectral and cross-spectral ratios, spectral ratios for downhole records, response spectral ratios, constant amplification factors, parametric models, physical models, and time-varying filters. An extensive analytical and numerical error analysis of spectral and cross-spectral ratios shows that probabilistically cross-spectral ratios give more reliable estimates of site amplification. Spectral ratios should not be used to determine site amplification from downhole-surface recording pairs because of the feedback in the downhole sensor. Response spectral ratios are appropriate for low frequencies, but overestimate the amplification at high frequencies. The best method to be used depends on how much precision is required in the estimates.

  18. Supermassive blackhole growth and the supernovae history in high-z early-type galaxies

    NASA Astrophysics Data System (ADS)

    Rocca-Volmerange, Brigitte

    2015-08-01

    A large variety of feedback models, supported by many galaxy surveys, tentatively relate AGN to star formation by stimulation or quenching. However any accretion process from variable AGNs has never been observed to be turned on or off by star formation. We propose to follow the supernovae explosions through the star formation laws of early-type galaxies with the help of the galaxy evolution model Pégase.3. Applied to the continuous Spectral Energy Distribution, including Herschel data of two z=3.8 radio galaxies (4C41.17 and TN J2007-1316), the comparison with Supermassive BlackHole masses from SDSS opens a new interpretation of the AGN-starburst relation without any need of feedback (Rocca-Volmerange et al, 2015, 2013)

  19. Droplet localization in the random XXZ model and its manifestations

    NASA Astrophysics Data System (ADS)

    Elgart, A.; Klein, A.; Stolz, G.

    2018-01-01

    We examine many-body localization properties for the eigenstates that lie in the droplet sector of the random-field spin- \\frac 1 2 XXZ chain. These states satisfy a basic single cluster localization property (SCLP), derived in Elgart et al (2018 J. Funct. Anal. (in press)). This leads to many consequences, including dynamical exponential clustering, non-spreading of information under the time evolution, and a zero velocity Lieb-Robinson bound. Since SCLP is only applicable to the droplet sector, our definitions and proofs do not rely on knowledge of the spectral and dynamical characteristics of the model outside this regime. Rather, to allow for a possible mobility transition, we adapt the notion of restricting the Hamiltonian to an energy window from the single particle setting to the many body context.

  20. Isothermal crystallization of poly(3-hydroxybutyrate) studied by terahertz two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Ishii, Shinya; Morisawa, Yusuke; Sato, Harumi; Noda, Isao; Ozaki, Yukihiro; Otani, Chiko

    2012-01-01

    The isothermal crystallization of poly(3-hydroxybutylate) (PHB) was studied by monitoring the temporal evolution of terahertz absorption spectra in conjunction with spectral analysis using two-dimensional correlation spectroscopy. Correlation between the absorption peaks and the sequential order of the changes in spectral intensity extracted from synchronous and asynchronous plots indicated that crystallization of PHB at 90 °C is a two step process, in which C-H...O=C hydrogen bonds are initially formed before well-defined crystal structures are established.

  1. RXTE Observations of A1744-361: Correlated Spectral and Timing Behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.; Swank, Jean H.; Markwardt, Craig B.

    2007-01-01

    We analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of the transient low mass X-ray binary (LMXB) system A1744-361. We explore the X-ray intensity and spectral evolution of the source, perform timing analysis, and find that A1744-361 is a weak LMXB, that shows atoll behavior at high intensity states. The color-color diagram indicates that this LMXB was observed in a low intensity spectrally hard (low-hard) state and in a high intensity banana state. The low-hard state shows a horizontal pattern in the color-color diagram, and the previously reported dipper QPO appears only during this state. We also perform energy spectral analyses, and report the first detection of broad iron emission line and iron absorption edge from A1744-361.

  2. Precision Spectral Variability of L Dwarfs from the Ground

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Schlawin, Everett; Teske, Johanna K.; Karalidi, Theodora; Gizis, John

    2017-01-01

    L dwarf photospheres (1500 K < T < 2500 K) contain mineral and metal condensates, which appear to organize into cloud structures as inferred from observed periodic photometric variations with amplitudes of <1%-30%. Studying the vertical structure, composition, and long-term evolution of these clouds necessitates precision spectroscopic monitoring, until recently limited to space-based facilities. Building on techniques developed for ground-based exoplanet transit spectroscopy, we present a method for precision spectral monitoring of L dwarfs with nearby visual companions. Using IRTF/SpeX, we demonstrate <0.5% spectral variability precision across the 0.9-2.4 micron band, and present results for two known L5 dwarf variables, J0835-0819 and J1821+1414, both of which show evidence of 3D cloud structure similar to that seen in space-based observations. We describe a survey of 30 systems which would sample the full L dwarf sequence and allow characterization of temperature, surface gravity, metallicity, rotation period and orientation effects on cloud structure, composition and evolution.This research is supported by funding from the National Science Foundation under award No. AST-1517177, and the National Aeronautics and Space Administration under Grant No. NNX15AI75G.

  3. Modeling Planet-Building Stellar Disks with Radiative Transfer Code

    NASA Astrophysics Data System (ADS)

    Swearingen, Jeremy R.; Sitko, Michael L.; Whitney, Barbara; Grady, Carol A.; Wagner, Kevin Robert; Champney, Elizabeth H.; Johnson, Alexa N.; Warren, Chelsea C.; Russell, Ray W.; Hammel, Heidi B.; Lisse, Casey M.; Cure, Michel; Kraus, Stefan; Fukagawa, Misato; Calvet, Nuria; Espaillat, Catherine; Monnier, John D.; Millan-Gabet, Rafael; Wilner, David J.

    2015-01-01

    Understanding the nature of the many planetary systems found outside of our own solar system cannot be completed without knowledge of the beginnings these systems. By detecting planets in very young systems and modeling the disks of material around stars from which they form, we can gain a better understanding of planetary origin and evolution. The efforts presented here have been in modeling two pre-transitional disk systems using a radiative transfer code. With the first of these systems, V1247 Ori, a model that fits the spectral energy distribution (SED) well and whose parameters are consistent with existing interferometry data (Kraus et al 2013) has been achieved. The second of these two systems, SAO 206462, has presented a different set of challenges but encouraging SED agreement between the model and known data gives hope that the model can produce images that can be used in future interferometry work. This work was supported by NASA ADAP grant NNX09AC73G, and the IR&D program at The Aerospace Corporation.

  4. Evolution of Quasiparticle Excitations in a Doped Hubbard Model

    NASA Astrophysics Data System (ADS)

    Hess, D. W.; Deisz, J. J.; Serene, J. W.

    1997-03-01

    Self-consistent calculations in the fluctuation exchange approximation for the 2D Hubbard model at half-filling show the evolution of anomalous structure in the self-energy at low energy with decreasing temperature. This structure is inconsistent with a Fermi liquid interpretation of evolving quasiparticle excitations.(J.J. Deisz, D.W. Hess, J.W. Serene, Phys. Rev. Lett. 76), 1312 (1996). Here we present calculations for a doped 2D Hubbard model with U=4t, n = 0.87 and for temperatures down to ~ 0.01t. Unlike the self-energy of the half-filled case, the slope of Re Σ(k_F, \\varepsilon) remains negative and | Im Σ(k_F, \\varepsilon)| shows no anomalous structure and is roughly parabolic at low energy with a very small magnitude at \\varepsilon = 0. In contrast to the `shadows' of antiferromagnetic order observed for half-filling, structure observed in the single-particle spectral function for momenta not on the Fermi surface are consistent with the characteristic depression at \\varepsilon =0 expected for an evolving Fermi liquid.(See e.g.) P.G. Mc Queen, D.W. Hess, J.W. Serene, Phys. Rev. Lett. 71, 129 (1993). No anomalous structure associated with incipient antiferromagnetic order is evident in the momentum distribution function.

  5. The evolution of massive stars and their spectra. I. A non-rotating 60 M⊙ star from the zero-age main sequence to the pre-supernova stage

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.; Meynet, Georges; Ekström, Sylvia; Georgy, Cyril

    2014-04-01

    For the first time, the interior and spectroscopic evolution of a massive star is analyzed from the zero-age main sequence (ZAMS) to the pre-supernova (SN) stage. For this purpose, we combined stellar evolution models using the Geneva code and stellar atmospheric/wind models using CMFGEN. With our approach, we were able to produce observables, such as a synthetic high-resolution spectrum and photometry, thereby aiding the comparison between evolution models and observed data. Here we analyze the evolution of a non-rotating 60 M⊙ star and its spectrum throughout its lifetime. Interestingly, the star has a supergiant appearance (luminosity class I) even at the ZAMS. We find the following evolutionary sequence of spectral types: O3 I (at the ZAMS), O4 I (middle of the H-core burning phase), B supergiant (BSG), B hypergiant (BHG), hot luminous blue variable (LBV; end of H-core burning), cool LBV (H-shell burning through the beginning of the He-core burning phase), rapid evolution through late WN and early WN, early WC (middle of He-core burning), and WO (end of He-core burning until core collapse). We find the following spectroscopic phase lifetimes: 3.22 × 106 yr for the O-type, 0.34 × 105 yr (BSG), 0.79 × 105 yr (BHG), 2.35 × 105 yr (LBV), 1.05 × 105 yr (WN), 2.57 × 105 yr (WC), and 3.80 × 104 yr (WO). Compared to previous studies, we find a much longer (shorter) duration for the early WN (late WN) phase, as well as a long-lived LBV phase. We show that LBVs arise naturally in single-star evolution models at the end of the MS when the mass-loss rate increases as a consequence of crossing the bistability limit. We discuss the evolution of the spectra, magnitudes, colors, and ionizing flux across the star's lifetime, and the way they are related to the evolution of the interior. We find that the absolute magnitude of the star typically changes by ~6 mag in optical filters across the evolution, with the star becoming significantly fainter in optical filters at the end of the evolution, when it becomes a WO just a few 104 years before the SN explosion. We also discuss the origin of the different spectroscopic phases (i.e., O-type, LBV, WR) and how they are related to evolutionary phases (H-core burning, H-shell burning, He-core burning). Tables 1, 4 and 5 are available in electronic form at http://www.aanda.orgSynthetic spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A30

  6. Stellar models simulating the disk-locking mechanism and the evolutionary history of the Orion Nebula cluster and NGC 2264

    NASA Astrophysics Data System (ADS)

    Landin, N. R.; Mendes, L. T. S.; Vaz, L. P. R.; Alencar, S. H. P.

    2016-02-01

    Context. Rotational evolution in young stars is described by pre-main sequence evolutionary tracks including non-gray boundary conditions, rotation, conservation of angular momentum, and simulations of disk-locking. Aims: By assuming that disk-locking is the regulation mechanism for the stellar angular velocity during the early stages of pre-main sequence evolution, we use our rotating models and observational data to constrain disk lifetimes (Tdisk) of a representative sample of low-mass stars in two young clusters, the Orion Nebula cluster (ONC) and NGC 2264, and to better understand their rotational evolution. Methods: The period distributions of the ONC and NGC 2264 are known to be bimodal and to depend on the stellar mass. To follow the rotational evolution of these two clusters' stars, we generated sets of evolutionary tracks from a fully convective configuration with low central temperatures (before D- and Li-burning). We assumed that the evolution of fast rotators can be represented by models considering conservation of angular momentum during all stages and of moderate rotators by models considering conservation of angular velocity during the first stages of evolution. With these models we estimate a mass and an age for all stars. Results: The resulting mass distribution for the bulk of the cluster population is in the ranges of 0.2-0.4 M⊙ and 0.1-0.6 M⊙ for the ONC and NGC 2264, respectively. For the ONC, we assume that the secondary peak in the period distribution is due to high-mass objects still locked in their disks, with a locking period (Plock) of ~8 days. For NGC 2264 we make two hypotheses: (1) the stars in the secondary peak are still locked with Plock = 5 days, and (2) NGC 2264 is in a later stage in the rotational evolution. Hypothesis 2 implies in a disk-locking scenario with Plock = 8 days, a disk lifetime of 1 Myr and, after that, constant angular momentum evolution. We then simulated the period distribution of NGC 2264 when the mean age of the cluster was 1 Myr. Dichotomy and bimodality appear in the simulated distribution, presenting one peak at 2 days and another one at 5-7 days, indicating that the assumption of Plock = 8 days is plausible. Our hypotheses are compared with observational disk diagnoses available in the literature for the ONC and NGC 2264, such as near-infrared excess, Hα emission, and spectral energy distribution slope in the mid-infrared. Conclusions: Disk-locking models with Plock = 8 days and 0.2 Myr ≤ Tdisk ≤ 3 Myr are consistent with observed periods of moderate rotators of the ONC. For NGC 2264, the more promising explanation for the observed period distribution is an evolution with disk-locking (with Plock near 8 days) during the first 1 Myr, approximately, but after this, the evolution continued with constant angular momentum. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A96

  7. INTEGRAL/SPI γ-ray line spectroscopy. Response and background characteristics

    NASA Astrophysics Data System (ADS)

    Diehl, Roland; Siegert, Thomas; Greiner, Jochen; Krause, Martin; Kretschmer, Karsten; Lang, Michael; Pleintinger, Moritz; Strong, Andrew W.; Weinberger, Christoph; Zhang, Xiaoling

    2018-03-01

    Context. The space based γ-ray observatory INTEGRAL of the European Space Agency (ESA) includes the spectrometer instrument "SPI". This is a coded mask telescope featuring a 19-element Germanium detector array for high-resolution γ-ray spectroscopy, encapsulated in a scintillation detector assembly that provides a veto for background from charged particles. In space, cosmic rays irradiate spacecraft and instruments, which, in spite of the vetoing detectors, results in a large instrumental background from activation of those materials, and leads to deterioration of the charge collection properties of the Ge detectors. Aim. We aim to determine the measurement characteristics of our detectors and their evolution with time, that is, their spectral response and instrumental background. These incur systematic variations in the SPI signal from celestial photons, hence their determination from a broad empirical database enables a reduction of underlying systematics in data analysis. For this, we explore compromises balancing temporal and spectral resolution within statistical limitations. Our goal is to enable modelling of background applicable to spectroscopic studies of the sky, accounting separately for changes of the spectral response and of instrumental background. Methods: We use 13.5 years of INTEGRAL/SPI data, which consist of spectra for each detector and for each pointing of the satellite. Spectral fits to each such spectrum, with independent but coherent treatment of continuum and line backgrounds, provides us with details about separated background components. From the strongest background lines, we first determine how the spectral response changes with time. Applying symmetry and long-term stability tests, we eliminate degeneracies and reduce statistical fluctuations of background parameters, with the aim of providing a self-consistent description of the spectral response for each individual detector. Accounting for this, we then determine how the instrumental background components change in intensities and other characteristics, most-importantly their relative distribution among detectors. Results: Spectral resolution of Ge detectors in space degrades with time, up to 15% within half a year, consistently for all detectors, and across the SPI energy range. Semi-annual annealing operations recover these losses, yet there is a small long-term degradation. The intensity of instrumental background varies anti-correlated to solar activity, in general. There are significant differences among different lines and with respect to continuum. Background lines are found to have a characteristic, well-defined and long-term consistent intensity ratio among detectors. We use this to categorise lines in groups of similar behaviour. The dataset of spectral-response and background parameters as fitted across the INTEGRAL mission allows studies of SPI spectral response and background behaviour in a broad perspective, and efficiently supports precision modelling of instrumental background.

  8. An XMM-Newton Monitoring Campaign of the Accretion Flow in IGRJ16318-4848

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Nicastro, Fabrizio

    2005-01-01

    This grant is associated to a successful XMM-Newton-AO3 observational proposal to monitor the spectrum of the X-ray loud component of the recently discovered binary system IGR J16138-4848, to study the conditions of the accretion flows (and their evolution) in binary system. All four EPIC-PN and MOS observations of the target have now been performed (the last one of the 4, only 3 months ago). The four observations were logarithmically spaced, so to cover timescales from days to months. Data from all four pointings have now been reduced, using the XMM-Newton data reduction pipeline, and spectra and lightcurves from the target have been extracted. For the first three observations we have already performed the observation-by-observation data analysis, by fitting the single EPIC spectra with spectral models that include an intrinsic continuum power law (reduced at low energy by neutral absorption), a 6.4 keV iron emission line (detected in all spectra with varying intensity) and a Compton-reflection component. A Compton reflection component is also detected in all spectra, although at lower significance. The analysis of the fourth and last observation of our monitoring campaign has just recently begun. Next, we will (1) stack together the four observations of IGR J16138-4848, to obtain high-accuracy estimates of the average spectral parameters of this object; and then (2) proceed to the time-evolving analysis, of the three spectral parameters: (a) Gamma (the slope of the intrinsic continuum), (b) W(FeK), the equivalent width of the 6.4 keV Iron emission line, and (c) R, the relative amount of Compton reflection. Through this time-resolved spectroscopic analysis we hope to constrain (a) the physical state of the accreting matter and its relation with the X-ray output, and (b) the evolution of the accretion flow geometry, distribution and covering factor.

  9. Ceres Evolution: From Thermodynamic Modeling and Now Dawn Observation

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Combe, J. P.; Castillo, J. C.; Raymond, C. A.; De Sanctis, M. C.; Jaumann, R.; Ammannito, E.; Russell, C. T.

    2015-12-01

    Thermodynamic modeling indicated that Ceres has experienced planetary processes, including extensive melting of its ~25% water and differentiation, (McCord and Sotin, JGR, 2005; Castillo and McCord, Icarus, 2009). Early telescopic studies showed Ceres' surface to be spectrally similar to carboneous-chondrite-like material, i.e., aqueously altered silicates darkened by carbon, with a water-OH-related absorption near 3.06 µm. Later observations improved the spectra and suggested more specific interpretations: Structural water in clay minerals, phyllosilicates, perhaps ammoniated, iron-rich clays, carbonates, brucite, all implying extensive aqueous alteration, perhaps in the presence of CO2. Telescopic observations and thermodynamic models predicted Dawn would find a very different body compared to Vesta (e.g. McCord et al., SSR, 2011), as current Dawn observations are confirming. Ceres' original water ice should have melted early in its evolution, with the resulting differentiation and mineralization strongly affecting Ceres' composition, size and shape over time. The ocean should have become very salty and perhaps may still be liquid in places. The surface composition from telescopes seems to reflect this complex history. The mineralization with repeated mixing of the crust with the early liquid interior and with in-fall from space would create a complex surface that will present an interpretation challenge for Dawn. The Dawn spacecraft is currently collecting observations of Ceres' landforms, elemental and mineralogical/molecular composition and gravity field from orbit. Early results suggest a heavily cratered but distorted and lumpy body with features and composition consistent with internal activity, perhaps recent or current, associated with water and perhaps other volatiles. We will present and interpret the latest Dawn Ceres findings and how they affect our earlier understanding of Ceres evolution from modeling and telescope observations.

  10. The XMM-Newton View of Wolf-Rayet Bubbles

    NASA Astrophysics Data System (ADS)

    Guerrero, M.; Toala, J.

    2017-10-01

    The powerful stellar winds of Wolf-Rayet (WR) stars blow large bubble into the circumstellar material ejected in previous phases of stellar evolution. The shock of those stellar winds produces X-ray-emitting hot plasmas which tells us about the diffusion of processed material onto the interstellar medium, about processes of heat conduction and turbulent mixing at the interface, about the late stages of stellar evolution, and about the shaping of the circumstellar environment, just before supernova explosions. The unique sensitivity of XMM-Newton has been key for the detection, mapping and spectral analysis of the X-ray emission from the hot bubbles around WR stars. These observations underscore the importance of the structure of the interstellar medium around massive stars, but they have also unveiled unknown phenomena, such as blowouts of hot gas into the interstellar medium or spatially-resolved spectral properties of the hot gas, which disclose inhomogeneous chemical abundances and physical properties across these bubbles.

  11. INFRARED OBSERVATIONAL MANIFESTATIONS OF YOUNG DUSTY SUPER STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-González, Sergio; Tenorio-Tagle, Guillermo; Silich, Sergiy, E-mail: sergiomtz@inaoep.mx

    The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed in a hot plasma. Here we address the stochastic injection of dust by supernovae, and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which result in the appearance of  infrared spectral signatures. We present time-dependent infrared spectral energy distributions that are to be expected from young stellar clusters. Our results aremore » based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind, and a time-dependent grain size distribution.« less

  12. Laboratory Annealing Experiments Of Refractory Silicate Grain Analogs Using Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A., III; Tsukamota, Katsuo; Kaito, Chihiro

    2010-01-01

    Exothermic reactions during the annealing of laboratory synthesized amorphous magnesium-bearing silicate particles used as grain analogs of cosmic dust were detected by differential scanning calorimetry (DSC) in air. With infrared spectroscopy and transmission electron microscopy, we show that cosmic dust could possibly undergo fusion to larger particles, with oxidation of magnesium silicide and crystallization of forsterite as exothermic reactions in the early solar system. The reactions begin at approximately 425, approximately 625, and approximately 1000 K, respectively, and the reaction energies (enthalpies) are at least 727, 4151, and 160.22 J per gram, respectively. During the crystallization of forsterite particles, the spectral evolution of the 10 micrometer feature from amorphous to crystalline was observed to begin at lower temperature than the crystallization temperature of 1003 K. During spectral evolution at lower temperature, nucleation and/or the formation of nanocrystallites of forsterite at the surface of the grain analogs was observed.

  13. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    PubMed

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  14. Time evolution of the spectral break in the high-energy extra component of GRB 090926A

    NASA Astrophysics Data System (ADS)

    Yassine, M.; Piron, F.; Mochkovitch, R.; Daigne, F.

    2017-10-01

    Aims: The prompt light curve of the long GRB 090926A reveals a short pulse 10 s after the beginning of the burst emission, which has been observed by the Fermi observatory from the keV to the GeV energy domain. During this bright spike, the high-energy emission from GRB 090926A underwent a sudden hardening above 10 MeV in the form of an additional power-law component exhibiting a spectral attenuation at a few hundreds of MeV. This high-energy break has been previously interpreted in terms of gamma-ray opacity to pair creation and has been used to estimate the bulk Lorentz factor of the outflow. In this article, we report on a new time-resolved analysis of the GRB 090926A broadband spectrum during its prompt phase and on its interpretation in the framework of prompt emission models. Methods: We characterized the emission from GRB 090926A at the highest energies with Pass 8 data from the Fermi Large Area Telescope (LAT), which offer a greater sensitivity than any data set used in previous studies of this burst, particularly in the 30-100 MeV energy band. Then, we combined the LAT data with the Fermi Gamma-ray Burst Monitor (GBM) in joint spectral fits to characterize the time evolution of the broadband spectrum from keV to GeV energies. We paid careful attention to the systematic effects that arise from the uncertainties on the LAT response. Finally, we performed a temporal analysis of the light curves and we computed the variability timescales from keV to GeV energies during and after the bright spike. Results: Our analysis confirms and better constrains the spectral break, which has been previously reported during the bright spike. Furthermore, it reveals that the spectral attenuation persists at later times with an increase of the break characteristic energy up to the GeV domain until the end of the prompt phase. We discuss these results in terms of keV-MeV synchroton radiation of electrons accelerated during the dissipation of the jet energy and inverse Compton emission at higher energies. We interpret the high-energy spectral break as caused by photon opacity to pair creation. Requiring that all emissions are produced above the photosphere of GRB 090926A, we compute the bulk Lorentz factor of the outflow, Γ. The latter decreases from 230 during the spike to 100 at the end of the prompt emission. Assuming, instead, that the spectral break reflects the natural curvature of the inverse Compton spectrum, lower limits corresponding to larger values of Γ are also derived. Combined with the extreme temporal variability of GRB 090926A, these Lorentz factors lead to emission radii R 1014 cm, which are consistent with an internal origin of both the keV-MeV and GeV prompt emissions.

  15. Polarized Redundant-Baseline Calibration for 21 cm Cosmology Without Adding Spectral Structure

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Kohn, Saul A.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bernardi, Gianni; Kern, Nicholas S.; Li, Wenyang; Liu, Adrian; Nunhokee, Chuneeta D.; Pober, Jonathan C.

    2018-04-01

    21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly-constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally-smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.

  16. Polarized redundant-baseline calibration for 21 cm cosmology without adding spectral structure

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Kohn, Saul A.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bernardi, Gianni; Kern, Nicholas S.; Li, Wenyang; Liu, Adrian; Nunhokee, Chuneeta D.; Pober, Jonathan C.

    2018-07-01

    21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.

  17. Recovering the Physical Properties of Molecular Gas in Galaxies from CO SLED Modeling

    NASA Astrophysics Data System (ADS)

    Kamenetzky, J.; Privon, G. C.; Narayanan, D.

    2018-05-01

    Modeling of the spectral line energy distribution (SLED) of the CO molecule can reveal the physical conditions (temperature and density) of molecular gas in Galactic clouds and other galaxies. Recently, the Herschel Space Observatory and ALMA have offered, for the first time, a comprehensive view of the rotational J = 4‑3 through J = 13‑12 lines, which arise from a complex, diverse range of physical conditions that must be simplified to one, two, or three components when modeled. Here we investigate the recoverability of physical conditions from SLEDs produced by galaxy evolution simulations containing a large dynamical range in physical properties. These simulated SLEDs were generally fit well by one component of gas whose properties largely resemble or slightly underestimate the luminosity-weighted properties of the simulations when clumping due to nonthermal velocity dispersion is taken into account. If only modeling the first three rotational lines, the median values of the marginalized parameter distributions better represent the luminosity-weighted properties of the simulations, but the uncertainties in the fitted parameters are nearly an order of magnitude, compared to approximately 0.2 dex in the “best-case” scenario of a fully sampled SLED through J = 10‑9. This study demonstrates that while common CO SLED modeling techniques cannot reveal the underlying complexities of the molecular gas, they can distinguish bulk luminosity-weighted properties that vary with star formation surface densities and galaxy evolution, if a sufficient number of lines are detected and modeled.

  18. Phenotypic and Genetic Divergence among Poison Frog Populations in a Mimetic Radiation

    PubMed Central

    Twomey, Evan; Yeager, Justin; Brown, Jason Lee; Morales, Victor; Cummings, Molly; Summers, Kyle

    2013-01-01

    The evolution of Müllerian mimicry is, paradoxically, associated with high levels of diversity in color and pattern. In a mimetic radiation, different populations of a species evolve to resemble different models, which can lead to speciation. Yet there are circumstances under which initial selection for divergence under mimicry may be reversed. Here we provide evidence for the evolution of extensive phenotypic divergence in a mimetic radiation in Ranitomeya imitator, the mimic poison frog, in Peru. Analyses of color hue (spectral reflectance) and pattern reveal substantial divergence between morphs. However, we also report that there is a “transition-zone” with mixed phenotypes. Analyses of genetic structure using microsatellite variation reveals some differentiation between populations, but this does not strictly correspond to color pattern divergence. Analyses of gene flow between populations suggest that, while historical levels of gene flow were low, recent levels are high in some cases, including substantial gene flow between some color pattern morphs. We discuss possible explanations for these observations. PMID:23405150

  19. The effect of topography on the evolution of unstable disturbances in a baroclinic atmosphere

    NASA Technical Reports Server (NTRS)

    Clark, J. H. E.

    1985-01-01

    A two layer spectral quasi-geostrophic model is used to simulate the effects of topography on the equilibria, their stability, and the long term evolution of incipient unstable waves. The flow is forced by latitudinally dependent radiative heating. Dissipation is in the form of Rayleigh friction. An analytical solution is found for the propagating finite amplitude waves which result from baroclinic instability of the zonal winds when topography is absent. The appearance of this solution for wavelengths just longer than the Rossby radius of deformation and disappearance of ultra-long wavelengths is interpreted in terms of the Hopf bifurcation theory. Simple dynamic and thermodynamic criteria for the existence of periodic Rossby solutions are presented. A Floquet stability analysis shows that the waves are neutral. The nature of the form drag instability of high index equilibria is investigated. The proximity of the equilibrium shear to a resonant value is essential for the instability, provided the equilibrium occurs at a slightly stronger shear than resonance.

  20. HARD X-RAY ASYMMETRY LIMITS IN SOLAR FLARE CONJUGATE FOOTPOINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daou, Antoun G.; Alexander, David, E-mail: agdaou@rice.edu, E-mail: dalex@rice.edu

    2016-11-20

    The transport of energetic electrons in a solar flare is modeled using a time-dependent one-dimensional Fokker–Planck code that incorporates asymmetric magnetic convergence. We derive the temporal and spectral evolution of the resulting hard X-ray (HXR) emission in the conjugate chromospheric footpoints, assuming thick target photon production, and characterize the time evolution of the numerically simulated footpoint asymmetry and its relationship to the photospheric magnetic configuration. The thick target HXR asymmetry in the conjugate footpoints is found to increase with magnetic field ratio as expected. However, we find that the footpoint HXR asymmetry saturates for conjugate footpoint magnetic field ratios ≥4.more » This result is borne out in a direct comparison with observations of 44 double-footpoint flares. The presence of such a limit has not been reported before, and may serve as both a theoretical and observational benchmark for testing a range of particle transport and flare morphology constraints, particularly as a means to differentiate between isotropic and anisotropic particle injection.« less

Top