Wang, Yin; Zhao, Nan-jing; Liu, Wen-qing; Yu, Yang; Fang, Li; Meng, De-shuo; Hu, Li; Zhang, Da-hai; Ma, Min-jun; Xiao, Xue; Wang, Yu; Liu, Jian-guo
2015-02-01
In recent years, the technology of laser induced breakdown spectroscopy has been developed rapidly. As one kind of new material composition detection technology, laser induced breakdown spectroscopy can simultaneously detect multi elements fast and simply without any complex sample preparation and realize field, in-situ material composition detection of the sample to be tested. This kind of technology is very promising in many fields. It is very important to separate, fit and extract spectral feature lines in laser induced breakdown spectroscopy, which is the cornerstone of spectral feature recognition and subsequent elements concentrations inversion research. In order to realize effective separation, fitting and extraction of spectral feature lines in laser induced breakdown spectroscopy, the original parameters for spectral lines fitting before iteration were analyzed and determined. The spectral feature line of' chromium (Cr I : 427.480 nm) in fly ash gathered from a coal-fired power station, which was overlapped with another line(FeI: 427.176 nm), was separated from the other one and extracted by using damped least squares method. Based on Gauss-Newton iteration, damped least squares method adds damping factor to step and adjust step length dynamically according to the feedback information after each iteration, in order to prevent the iteration from diverging and make sure that the iteration could converge fast. Damped least squares method helps to obtain better results of separating, fitting and extracting spectral feature lines and give more accurate intensity values of these spectral feature lines: The spectral feature lines of chromium in samples which contain different concentrations of chromium were separated and extracted. And then, the intensity values of corresponding spectral lines were given by using damped least squares method and least squares method separately. The calibration curves were plotted, which showed the relationship between spectral line intensity values and chromium concentrations in different samples. And then their respective linear correlations were compared. The experimental results showed that the linear correlation of the intensity values of spectral feature lines and the concentrations of chromium in different samples, which was obtained by damped least squares method, was better than that one obtained by least squares method. And therefore, damped least squares method was stable, reliable and suitable for separating, fitting and extracting spectral feature lines in laser induced breakdown spectroscopy.
Makkai, Géza; Buzády, Andrea; Erostyák, János
2010-01-01
Determination of concentrations of spectrally overlapping compounds has special difficulties. Several methods are available to calculate the constituents' concentrations in moderately complex mixtures. A method which can provide information about spectrally hidden components in mixtures is very useful. Two methods powerful in resolving spectral components are compared in this paper. The first method tested is the Derivative Matrix Isopotential Synchronous Fluorimetry (DMISF). It is based on derivative analysis of MISF spectra, which are constructed using isopotential trajectories in the Excitation-Emission Matrix (EEM) of background solution. For DMISF method, a mathematical routine fitting the 3D data of EEMs was developed. The other method tested uses classical Least Squares Fitting (LSF) algorithm, wherein Rayleigh- and Raman-scattering bands may lead to complications. Both methods give excellent sensitivity and have advantages against each other. Detection limits of DMISF and LSF have been determined at very different concentration and noise levels.
Sensitivity of Chemical Shift-Encoded Fat Quantification to Calibration of Fat MR Spectrum
Wang, Xiaoke; Hernando, Diego; Reeder, Scott B.
2015-01-01
Purpose To evaluate the impact of different fat spectral models on proton density fat-fraction (PDFF) quantification using chemical shift-encoded (CSE) MRI. Material and Methods Simulations and in vivo imaging were performed. In a simulation study, spectral models of fat were compared pairwise. Comparison of magnitude fitting and mixed fitting was performed over a range of echo times and fat fractions. In vivo acquisitions from 41 patients were reconstructed using 7 published spectral models of fat. T2-corrected STEAM-MRS was used as reference. Results Simulations demonstrate that imperfectly calibrated spectral models of fat result in biases that depend on echo times and fat fraction. Mixed fitting is more robust against this bias than magnitude fitting. Multi-peak spectral models showed much smaller differences among themselves than when compared to the single-peak spectral model. In vivo studies show all multi-peak models agree better (for mixed fitting, slope ranged from 0.967–1.045 using linear regression) with reference standard than the single-peak model (for mixed fitting, slope=0.76). Conclusion It is essential to use a multi-peak fat model for accurate quantification of fat with CSE-MRI. Further, fat quantification techniques using multi-peak fat models are comparable and no specific choice of spectral model is shown to be superior to the rest. PMID:25845713
ACCOUNTING FOR CALIBRATION UNCERTAINTIES IN X-RAY ANALYSIS: EFFECTIVE AREAS IN SPECTRAL FITTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyunsook; Kashyap, Vinay L.; Drake, Jeremy J.
2011-04-20
While considerable advance has been made to account for statistical uncertainties in astronomical analyses, systematic instrumental uncertainties have been generally ignored. This can be crucial to a proper interpretation of analysis results because instrumental calibration uncertainty is a form of systematic uncertainty. Ignoring it can underestimate error bars and introduce bias into the fitted values of model parameters. Accounting for such uncertainties currently requires extensive case-specific simulations if using existing analysis packages. Here, we present general statistical methods that incorporate calibration uncertainties into spectral analysis of high-energy data. We first present a method based on multiple imputation that can bemore » applied with any fitting method, but is necessarily approximate. We then describe a more exact Bayesian approach that works in conjunction with a Markov chain Monte Carlo based fitting. We explore methods for improving computational efficiency, and in particular detail a method of summarizing calibration uncertainties with a principal component analysis of samples of plausible calibration files. This method is implemented using recently codified Chandra effective area uncertainties for low-resolution spectral analysis and is verified using both simulated and actual Chandra data. Our procedure for incorporating effective area uncertainty is easily generalized to other types of calibration uncertainties.« less
The Chandra Source Catalog 2.0: Spectral Properties
NASA Astrophysics Data System (ADS)
McCollough, Michael L.; Siemiginowska, Aneta; Burke, Douglas; Nowak, Michael A.; Primini, Francis Anthony; Laurino, Omar; Nguyen, Dan T.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula; Chandra Source Catalog Team
2018-01-01
The second release of the Chandra Source Catalog (CSC) contains all sources identified from sixteen years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package) using wstat as a fit statistic and Bayesian draws method to determine errors. Three models were fit to each source: an absorbed power-law, blackbody, and Bremsstrahlung emission. The fitted parameter values for the power-law, blackbody, and Bremsstrahlung models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy fluxes computed from the normalizations of predefined absorbed power-law, black-body, Bremsstrahlung, and APEC models needed to match the observed net X-ray counts. For sources that have been observed multiple times we performed a Bayesian Blocks analysis will have been performed (see the Primini et al. poster) and the most significant block will have a joint fit performed for the mentioned spectral models. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard). This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.
Spectral embedding finds meaningful (relevant) structure in image and microarray data
Higgs, Brandon W; Weller, Jennifer; Solka, Jeffrey L
2006-01-01
Background Accurate methods for extraction of meaningful patterns in high dimensional data have become increasingly important with the recent generation of data types containing measurements across thousands of variables. Principal components analysis (PCA) is a linear dimensionality reduction (DR) method that is unsupervised in that it relies only on the data; projections are calculated in Euclidean or a similar linear space and do not use tuning parameters for optimizing the fit to the data. However, relationships within sets of nonlinear data types, such as biological networks or images, are frequently mis-rendered into a low dimensional space by linear methods. Nonlinear methods, in contrast, attempt to model important aspects of the underlying data structure, often requiring parameter(s) fitting to the data type of interest. In many cases, the optimal parameter values vary when different classification algorithms are applied on the same rendered subspace, making the results of such methods highly dependent upon the type of classifier implemented. Results We present the results of applying the spectral method of Lafon, a nonlinear DR method based on the weighted graph Laplacian, that minimizes the requirements for such parameter optimization for two biological data types. We demonstrate that it is successful in determining implicit ordering of brain slice image data and in classifying separate species in microarray data, as compared to two conventional linear methods and three nonlinear methods (one of which is an alternative spectral method). This spectral implementation is shown to provide more meaningful information, by preserving important relationships, than the methods of DR presented for comparison. Tuning parameter fitting is simple and is a general, rather than data type or experiment specific approach, for the two datasets analyzed here. Tuning parameter optimization is minimized in the DR step to each subsequent classification method, enabling the possibility of valid cross-experiment comparisons. Conclusion Results from the spectral method presented here exhibit the desirable properties of preserving meaningful nonlinear relationships in lower dimensional space and requiring minimal parameter fitting, providing a useful algorithm for purposes of visualization and classification across diverse datasets, a common challenge in systems biology. PMID:16483359
FIREFLY (Fitting IteRativEly For Likelihood analYsis): a full spectral fitting code
NASA Astrophysics Data System (ADS)
Wilkinson, David M.; Maraston, Claudia; Goddard, Daniel; Thomas, Daniel; Parikh, Taniya
2017-12-01
We present a new spectral fitting code, FIREFLY, for deriving the stellar population properties of stellar systems. FIREFLY is a chi-squared minimization fitting code that fits combinations of single-burst stellar population models to spectroscopic data, following an iterative best-fitting process controlled by the Bayesian information criterion. No priors are applied, rather all solutions within a statistical cut are retained with their weight. Moreover, no additive or multiplicative polynomials are employed to adjust the spectral shape. This fitting freedom is envisaged in order to map out the effect of intrinsic spectral energy distribution degeneracies, such as age, metallicity, dust reddening on galaxy properties, and to quantify the effect of varying input model components on such properties. Dust attenuation is included using a new procedure, which was tested on Integral Field Spectroscopic data in a previous paper. The fitting method is extensively tested with a comprehensive suite of mock galaxies, real galaxies from the Sloan Digital Sky Survey and Milky Way globular clusters. We also assess the robustness of the derived properties as a function of signal-to-noise ratio (S/N) and adopted wavelength range. We show that FIREFLY is able to recover age, metallicity, stellar mass, and even the star formation history remarkably well down to an S/N ∼ 5, for moderately dusty systems. Code and results are publicly available.1
Testing spectral models for stellar populations with star clusters - II. Results
NASA Astrophysics Data System (ADS)
González Delgado, Rosa M.; Cid Fernandes, Roberto
2010-04-01
High spectral resolution evolutionary synthesis models have become a routinely used ingredient in extragalactic work, and as such deserve thorough testing. Star clusters are ideal laboratories for such tests. This paper applies the spectral fitting methodology outlined in Paper I to a sample of clusters, mainly from the Magellanic Clouds and spanning a wide range in age and metallicity, fitting their integrated light spectra with a suite of modern evolutionary synthesis models for single stellar populations. The combinations of model plus spectral library employed in this investigation are Galaxev/STELIB, Vazdekis/MILES, SED@/GRANADA and Galaxev/MILES+GRANADA, which provide a representative sample of models currently available for spectral fitting work. A series of empirical tests are performed with these models, comparing the quality of the spectral fits and the values of age, metallicity and extinction obtained with each of them. A comparison is also made between the properties derived from these spectral fits and literature data on these nearby, well studied clusters. These comparisons are done with the general goal of providing useful feedback for model makers, as well as guidance to the users of such models. We find the following. (i) All models are able to derive ages that are in good agreement both with each other and with literature data, although ages derived from spectral fits are on average slightly older than those based on the S-colour-magnitude diagram (S-CMD) method as calibrated by Girardi et al. (ii) There is less agreement between the models for the metallicity and extinction. In particular, Galaxev/STELIB models underestimate the metallicity by ~0.6 dex, and the extinction is overestimated by 0.1 mag. (iii) New generations of models using the GRANADA and MILES libraries are superior to STELIB-based models both in terms of spectral fit quality and regarding the accuracy with which age and metallicity are retrieved. Accuracies of about 0.1 dex in age and 0.3 dex in metallicity can be achieved as long as the models are not extrapolated beyond their expected range of validity.
SCOUSE: Semi-automated multi-COmponent Universal Spectral-line fitting Engine
NASA Astrophysics Data System (ADS)
Henshaw, J. D.; Longmore, S. N.; Kruijssen, J. M. D.; Davies, B.; Bally, J.; Barnes, A.; Battersby, C.; Burton, M.; Cunningham, M. R.; Dale, J. E.; Ginsburg, A.; Immer, K.; Jones, P. A.; Kendrew, S.; Mills, E. A. C.; Molinari, S.; Moore, T. J. T.; Ott, J.; Pillai, T.; Rathborne, J.; Schilke, P.; Schmiedeke, A.; Testi, L.; Walker, D.; Walsh, A.; Zhang, Q.
2016-01-01
The Semi-automated multi-COmponent Universal Spectral-line fitting Engine (SCOUSE) is a spectral line fitting algorithm that fits Gaussian files to spectral line emission. It identifies the spatial area over which to fit the data and generates a grid of spectral averaging areas (SAAs). The spatially averaged spectra are fitted according to user-provided tolerance levels, and the best fit is selected using the Akaike Information Criterion, which weights the chisq of a best-fitting solution according to the number of free-parameters. A more detailed inspection of the spectra can be performed to improve the fit through an iterative process, after which SCOUSE integrates the new solutions into the solution file.
Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges
NASA Astrophysics Data System (ADS)
Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.
2018-01-01
Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., <300 nm). In preparation for anticipated future hyperspectral satellite missions, we take the first step here of exploring global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.
Multidomain spectral solution of shock-turbulence interactions
NASA Technical Reports Server (NTRS)
Kopriva, David A.; Hussaini, M. Yousuff
1989-01-01
The use of a fitted-shock multidomain spectral method for solving the time-dependent Euler equations of gasdynamics is described. The multidomain method allows short spatial scale features near the shock to be resolved throughout the calculation. Examples presented are of a shock-plane wave, shock-hot spot and shock-vortex street interaction.
NASA Astrophysics Data System (ADS)
Pan, Zhuokun; Huang, Jingfeng; Wang, Fumin
2013-12-01
Spectral feature fitting (SFF) is a commonly used strategy for hyperspectral imagery analysis to discriminate ground targets. Compared to other image analysis techniques, SFF does not secure higher accuracy in extracting image information in all circumstances. Multi range spectral feature fitting (MRSFF) from ENVI software allows user to focus on those interesting spectral features to yield better performance. Thus spectral wavelength ranges and their corresponding weights must be determined. The purpose of this article is to demonstrate the performance of MRSFF in oilseed rape planting area extraction. A practical method for defining the weighted values, the variance coefficient weight method, was proposed to set up criterion. Oilseed rape field canopy spectra from the whole growth stage were collected prior to investigating its phenological varieties; oilseed rape endmember spectra were extracted from the Hyperion image as identifying samples to be used in analyzing the oilseed rape field. Wavelength range divisions were determined by the difference between field-measured spectra and image spectra, and image spectral variance coefficient weights for each wavelength range were calculated corresponding to field-measured spectra from the closest date. By using MRSFF, wavelength ranges were classified to characterize the target's spectral features without compromising spectral profile's entirety. The analysis was substantially successful in extracting oilseed rape planting areas (RMSE ≤ 0.06), and the RMSE histogram indicated a superior result compared to a conventional SFF. Accuracy assessment was based on the mapping result compared with spectral angle mapping (SAM) and the normalized difference vegetation index (NDVI). The MRSFF yielded a robust, convincible result and, therefore, may further the use of hyperspectral imagery in precision agriculture.
Spectral colors capture and reproduction based on digital camera
NASA Astrophysics Data System (ADS)
Chen, Defen; Huang, Qingmei; Li, Wei; Lu, Yang
2018-01-01
The purpose of this work is to develop a method for the accurate reproduction of the spectral colors captured by digital camera. The spectral colors being the purest color in any hue, are difficult to reproduce without distortion on digital devices. In this paper, we attempt to achieve accurate hue reproduction of the spectral colors by focusing on two steps of color correction: the capture of the spectral colors and the color characterization of digital camera. Hence it determines the relationship among the spectral color wavelength, the RGB color space of the digital camera device and the CIEXYZ color space. This study also provides a basis for further studies related to the color spectral reproduction on digital devices. In this paper, methods such as wavelength calibration of the spectral colors and digital camera characterization were utilized. The spectrum was obtained through the grating spectroscopy system. A photo of a clear and reliable primary spectrum was taken by adjusting the relative parameters of the digital camera, from which the RGB values of color spectrum was extracted in 1040 equally-divided locations. Calculated using grating equation and measured by the spectrophotometer, two wavelength values were obtained from each location. The polynomial fitting method for the camera characterization was used to achieve color correction. After wavelength calibration, the maximum error between the two sets of wavelengths is 4.38nm. According to the polynomial fitting method, the average color difference of test samples is 3.76. This has satisfied the application needs of the spectral colors in digital devices such as display and transmission.
Exploiting physical constraints for multi-spectral exo-planet detection
NASA Astrophysics Data System (ADS)
Thiébaut, Éric; Devaney, Nicholas; Langlois, Maud; Hanley, Kenneth
2016-07-01
We derive a physical model of the on-axis PSF for a high contrast imaging system such as GPI or SPHERE. This model is based on a multi-spectral Taylor series expansion of the diffraction pattern and predicts that the speckles should be a combination of spatial modes with deterministic chromatic magnification and weighting. We propose to remove most of the residuals by fitting this model on a set of images at multiple wavelengths and times. On simulated data, we demonstrate that our approach achieves very good speckle suppression without additional heuristic parameters. The residual speckles1, 2 set the most serious limitation in the detection of exo-planets in high contrast coronographic images provided by instruments such as SPHERE3 at the VLT, GPI4, 5 at Gemini, or SCExAO6 at Subaru. A number of post-processing methods have been proposed to remove as much as possible of the residual speckles while preserving the signal from the planets. These methods exploit the fact that the speckles and the planetary signal have different temporal and spectral behaviors. Some methods like LOCI7 are based on angular differential imaging8 (ADI), spectral differential imaging9, 10 (SDI), or on a combination of ADI and SDI.11 Instead of working on image differences, we propose to tackle the exo-planet detection as an inverse problem where a model of the residual speckles is fit on the set of multi-spectral images and, possibly, multiple exposures. In order to reduce the number of degrees of freedom, we impose specific constraints on the spatio-spectral distribution of stellar speckles. These constraints are deduced from a multi-spectral Taylor series expansion of the diffraction pattern for an on-axis source which implies that the speckles are a combination of spatial modes with deterministic chromatic magnification and weighting. Using simulated data, the efficiency of speckle removal by fitting the proposed multi-spectral model is compared to the result of using an approximation based on the singular value decomposition of the rescaled images. We show how the difficult problem to fitting a bilinear model on the can be solved in practise. The results are promising for further developments including application to real data and joint planet detection in multi-variate data (multi-spectral and multiple exposures images).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, Guillermo A.; Weinzirl, Tim; Song, Mimi
2013-05-15
We present the survey design, data reduction, and spectral fitting pipeline for the VIRUS-P Exploration of Nearby Galaxies (VENGA). VENGA is an integral field spectroscopic survey, which maps the disks of 30 nearby spiral galaxies. Targets span a wide range in Hubble type, star formation activity, morphology, and inclination. The VENGA data cubes have 5.''6 FWHM spatial resolution, {approx}5 A FWHM spectral resolution, sample the 3600 A-6800 A range, and cover large areas typically sampling galaxies out to {approx}0.7R{sub 25}. These data cubes can be used to produce two-dimensional maps of the star formation rate, dust extinction, electron density, stellarmore » population parameters, the kinematics and chemical abundances of both stars and ionized gas, and other physical quantities derived from the fitting of the stellar spectrum and the measurement of nebular emission lines. To exemplify our methods and the quality of the data, we present the VENGA data cube on the face-on Sc galaxy NGC 628 (a.k.a. M 74). The VENGA observations of NGC 628 are described, as well as the construction of the data cube, our spectral fitting method, and the fitting of the stellar and ionized gas velocity fields. We also propose a new method to measure the inclination of nearly face-on systems based on the matching of the stellar and gas rotation curves using asymmetric drift corrections. VENGA will measure relevant physical parameters across different environments within these galaxies, allowing a series of studies on star formation, structure assembly, stellar populations, chemical evolution, galactic feedback, nuclear activity, and the properties of the interstellar medium in massive disk galaxies.« less
Underresolved absorption spectroscopy of OH radicals in flames using broadband UV LEDs
NASA Astrophysics Data System (ADS)
White, Logan; Gamba, Mirko
2018-04-01
A broadband absorption spectroscopy diagnostic based on underresolution of the spectral absorption lines is evaluated for the inference of species mole fraction and temperature in combustion systems from spectral fitting. The approach uses spectrally broadband UV light emitting diodes and leverages low resolution, small form factor spectrometers. Through this combination, the method can be used to develop high precision measurement sensors. The challenges of underresolved spectroscopy are explored and addressed using spectral derivative fitting, which is found to generate measurements with high precision and accuracy. The diagnostic is demonstrated with experimental measurements of gas temperature and OH mole fraction in atmospheric air/methane premixed laminar flat flames. Measurements exhibit high precision, good agreement with 1-D flame simulations, and high repeatability. A newly developed model of uncertainty in underresolved spectroscopy is applied to estimate two-dimensional confidence regions for the measurements. The results of the uncertainty analysis indicate that the errors in the outputs of the spectral fitting procedure are correlated. The implications of the correlation between uncertainties for measurement interpretation are discussed.
Schulze, H Georg; Turner, Robin F B
2013-04-01
Raman spectra often contain undesirable, randomly positioned, intense, narrow-bandwidth, positive, unidirectional spectral features generated when cosmic rays strike charge-coupled device cameras. These must be removed prior to analysis, but doing so manually is not feasible for large data sets. We developed a quick, simple, effective, semi-automated procedure to remove cosmic ray spikes from spectral data sets that contain large numbers of relatively homogenous spectra. Although some inhomogeneous spectral data sets can be accommodated--it requires replacing excessively modified spectra with the originals and removing their spikes with a median filter instead--caution is advised when processing such data sets. In addition, the technique is suitable for interpolating missing spectra or replacing aberrant spectra with good spectral estimates. The method is applied to baseline-flattened spectra and relies on fitting a third-order (or higher) polynomial through all the spectra at every wavenumber. Pixel intensities in excess of a threshold of 3× the noise standard deviation above the fit are reduced to the threshold level. Because only two parameters (with readily specified default values) might require further adjustment, the method is easily implemented for semi-automated processing of large spectral sets.
Smoothness of In vivo Spectral Baseline Determined by Mean Squared Error
Zhang, Yan; Shen, Jun
2013-01-01
Purpose A nonparametric smooth line is usually added to spectral model to account for background signals in vivo magnetic resonance spectroscopy (MRS). The assumed smoothness of the baseline significantly influences quantitative spectral fitting. In this paper, a method is proposed to minimize baseline influences on estimated spectral parameters. Methods In this paper, the non-parametric baseline function with a given smoothness was treated as a function of spectral parameters. Its uncertainty was measured by root-mean-squared error (RMSE). The proposed method was demonstrated with a simulated spectrum and in vivo spectra of both short echo time (TE) and averaged echo times. The estimated in vivo baselines were compared with the metabolite-nulled spectra, and the LCModel-estimated baselines. The accuracies of estimated baseline and metabolite concentrations were further verified by cross-validation. Results An optimal smoothness condition was found that led to the minimal baseline RMSE. In this condition, the best fit was balanced against minimal baseline influences on metabolite concentration estimates. Conclusion Baseline RMSE can be used to indicate estimated baseline uncertainties and serve as the criterion for determining the baseline smoothness of in vivo MRS. PMID:24259436
[Colorimetric characterization of LCD based on wavelength partition spectral model].
Liu, Hao-Xue; Cui, Gui-Hua; Huang, Min; Wu, Bing; Xu, Yan-Fang; Luo, Ming
2013-10-01
To establish a colorimetrical characterization model of LCDs, an experiment with EIZO CG19, IBM 19, DELL 19 and HP 19 LCDs was designed and carried out to test the interaction between RGB channels, and then to test the spectral additive property of LCDs. The RGB digital values of single channel and two channels were given and the corresponding tristimulus values were measured, then a chart was plotted and calculations were made to test the independency of RGB channels. The results showed that the interaction between channels was reasonably weak and spectral additivity property was held well. We also found that the relations between radiations and digital values at different wavelengths varied, that is, they were the functions of wavelength. A new calculation method based on piecewise spectral model, in which the relation between radiations and digital values was fitted by a cubic polynomial in each piece of wavelength with measured spectral radiation curves, was proposed and tested. The spectral radiation curves of RGB primaries with any digital values can be found out with only a few measurements and fitted cubic polynomial in this way and then any displayed color can be turned out by the spectral additivity property of primaries at given digital values. The algorithm of this method was discussed in detail in this paper. The computations showed that the proposed method was simple and the number of measurements needed was reduced greatly while keeping a very high computation precision. This method can be used as a colorimetrical characterization model.
NASA Astrophysics Data System (ADS)
Gu, Junhua; Xu, Haiguang; Wang, Jingying; An, Tao; Chen, Wen
2013-08-01
We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time.
Spectral solution of the inverse Mie problem
NASA Astrophysics Data System (ADS)
Romanov, Andrey V.; Konokhova, Anastasiya I.; Yastrebova, Ekaterina S.; Gilev, Konstantin V.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.; Yurkin, Maxim A.
2017-10-01
We developed a fast method to determine size and refractive index of homogeneous spheres from the power Fourier spectrum of their light-scattering patterns (LSPs), measured with the scanning flow cytometer. Specifically, we used two spectral parameters: the location of the non-zero peak and zero-frequency amplitude, and numerically inverted the map from the space of particle characteristics (size and refractive index) to the space of spectral parameters. The latter parameters can be reliably resolved only for particle size parameter greater than 11, and the inversion is unique only in the limited range of refractive index with upper limit between 1.1 and 1.25 (relative to the medium) depending on the size parameter and particular definition of uniqueness. The developed method was tested on two experimental samples, milk fat globules and spherized red blood cells, and resulted in accuracy not worse than the reference method based on the least-square fit of the LSP with the Mie theory. Moreover, for particles with significant deviation from the spherical shape the spectral method was much closer to the Mie-fit result than the estimated uncertainty of the latter. The spectral method also showed adequate results for synthetic LSPs of spheroids with aspect ratios up to 1.4. Overall, we present a general framework, which can be used to construct an inverse algorithm for any other experimental signals.
Spectral reconstruction analysis for enhancing signal-to-noise in time-resolved spectroscopies
NASA Astrophysics Data System (ADS)
Wilhelm, Michael J.; Smith, Jonathan M.; Dai, Hai-Lung
2015-09-01
We demonstrate a new spectral analysis for the enhancement of the signal-to-noise ratio (SNR) in time-resolved spectroscopies. Unlike the simple linear average which produces a single representative spectrum with enhanced SNR, this Spectral Reconstruction analysis (SRa) improves the SNR (by a factor of ca. 0 . 6 √{ n } ) for all n experimentally recorded time-resolved spectra. SRa operates by eliminating noise in the temporal domain, thereby attenuating noise in the spectral domain, as follows: Temporal profiles at each measured frequency are fit to a generic mathematical function that best represents the temporal evolution; spectra at each time are then reconstructed with data points from the fitted profiles. The SRa method is validated with simulated control spectral data sets. Finally, we apply SRa to two distinct experimentally measured sets of time-resolved IR emission spectra: (1) UV photolysis of carbonyl cyanide and (2) UV photolysis of vinyl cyanide.
NASA Astrophysics Data System (ADS)
Ye, L.; Xu, X.; Luan, D.; Jiang, W.; Kang, Z.
2017-07-01
Crater-detection approaches can be divided into four categories: manual recognition, shape-profile fitting algorithms, machine-learning methods and geological information-based analysis using terrain and spectral data. The mainstream method is Shape-profile fitting algorithms. Many scholars throughout the world use the illumination gradient information to fit standard circles by least square method. Although this method has achieved good results, it is difficult to identify the craters with poor "visibility", complex structure and composition. Moreover, the accuracy of recognition is difficult to be improved due to the multiple solutions and noise interference. Aiming at the problem, we propose a method for the automatic extraction of impact craters based on spectral characteristics of the moon rocks and minerals: 1) Under the condition of sunlight, the impact craters are extracted from MI by condition matching and the positions as well as diameters of the craters are obtained. 2) Regolith is spilled while lunar is impacted and one of the elements of lunar regolith is iron. Therefore, incorrectly extracted impact craters can be removed by judging whether the crater contains "non iron" element. 3) Craters which are extracted correctly, are divided into two types: simple type and complex type according to their diameters. 4) Get the information of titanium and match the titanium distribution of the complex craters with normal distribution curve, then calculate the goodness of fit and set the threshold. The complex craters can be divided into two types: normal distribution curve type of titanium and non normal distribution curve type of titanium. We validated our proposed method with MI acquired by SELENE. Experimental results demonstrate that the proposed method has good performance in the test area.
Meirovitch, Eva; Shapiro, Yury E.; Polimeno, Antonino; Freed, Jack H.
2009-01-01
15N-1H spin relaxation is a powerful method for deriving information on protein dynamics. The traditional method of data analysis is model-free (MF), where the global and local N-H motions are independent and the local geometry is simplified. The common MF analysis consists of fitting single-field data. The results are typically field-dependent, and multi-field data cannot be fit with standard fitting schemes. Cases where known functional dynamics has not been detected by MF were identified by us and others. Recently we applied to spin relaxation in proteins the Slowly Relaxing Local Structure (SRLS) approach which accounts rigorously for mode-mixing and general features of local geometry. SRLS was shown to yield MF in appropriate asymptotic limits. We found that the experimental spectral density corresponds quite well to the SRLS spectral density. The MF formulae are often used outside of their validity ranges, allowing small data sets to be force-fitted with good statistics but inaccurate best-fit parameters. This paper focuses on the mechanism of force-fitting and its implications. It is shown that MF force-fits the experimental data because mode-mixing, the rhombic symmetry of the local ordering and general features of local geometry are not accounted for. Combined multi-field multi-temperature data analyzed by MF may lead to the detection of incorrect phenomena, while conformational entropy derived from MF order parameters may be highly inaccurate. On the other hand, fitting to more appropriate models can yield consistent physically insightful information. This requires that the complexity of the theoretical spectral densities matches the integrity of the experimental data. As shown herein, the SRLS densities comply with this requirement. PMID:16821820
Online Spectral Fit Tool for Analyzing Reflectance Spectra
NASA Astrophysics Data System (ADS)
Penttilä, A.; Kohout, T.
2015-11-01
The Online Spectral Fit Tool is developed for analyzing Vis-NIR spectral behavior of asteroids and meteorites. Implementation is done using JavaScript/HTML. Fitted spectra consist of spline continuum and gamma distributions for absorption bands.
Individual spectral densities and molecular motion in polycrystalline hexamethylbenzene-d18
NASA Astrophysics Data System (ADS)
Hoatson, Gina L.; Vold, Robert L.; Tse, Tak Y.
1994-04-01
Methods are described for obtaining the orientation dependence of individual motional spectral densities, J1(ω0) and J2(2ω0), from deuterium spin relaxation experiments on polycrystalline materials. Spectral density measurements provide detailed information in a motional regime too fast to be studied by the two-dimensional (2D) exchange method. Their potential as a source of detailed kinetic and geometric information is illustrated for hexamethylbenzene-d18 (HMB). The relaxation behavior of HMB cannot be explained exclusively by six-site jumps around the C6v axis. Agreement between the experimentally determined spectral densities and simulations is improved if the methyl rotation is explicitly included. At ambient temperature the experimental data are best fitted with the simultaneous jump rates, k6=3.85×108 s-1 and k3=5.0×1011 s-1. This is significantly different from the rate determined using a simple six-site jump model, k6=3.9×109 s-1. Geometric distortions of the methyl rotation axes can account for the observed motionally averaged electric field gradient tensor. When these distortions are included in analysis of the spectral density data, there is a small, but significant, improvement in the fit. k3 is unchanged and the best fit k6 is reduced to 2.2×108 s-1, with distortions out of plane by δ=2.5° and in plane ɛ=ɛ'=1.202.
New Variance-Reducing Methods for the PSD Analysis of Large Optical Surfaces
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2010-01-01
Edge data of a measured surface map of a circular optic result in large variance or "spectral leakage" behavior in the corresponding Power Spectral Density (PSD) data. In this paper we present two new, alternative methods for reducing such variance in the PSD data by replacing the zeros outside the circular area of a surface map by non-zero values either obtained from a PSD fit (method 1) or taken from the inside of the circular area (method 2).
Liu, Hao; Zhu, Lili; Bai, Shuming; Shi, Qiang
2014-04-07
We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly in the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hao; Zhu, Lili; Bai, Shuming
2014-04-07
We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly inmore » the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.« less
NASA Astrophysics Data System (ADS)
Vaishali, S.; Narendranath, S.; Sreekumar, P.
An IDL (interactive data language) based widget application developed for the calibration of C1XS (Narendranath et al., 2010) instrument on Chandrayaan-1 is modified to provide a generic package for the analysis of data from x-ray detectors. The package supports files in ascii as well as FITS format. Data can be fitted with a list of inbuilt functions to derive the spectral redistribution function (SRF). We have incorporated functions such as `HYPERMET' (Philips & Marlow 1976) including non Gaussian components in the SRF such as low energy tail, low energy shelf and escape peak. In addition users can incorporate additional models which may be required to model detector specific features. Spectral fits use a routine `mpfit' which uses Leven-Marquardt least squares fitting method. The SRF derived from this tool can be fed into an accompanying program to generate a redistribution matrix file (RMF) compatible with the X-ray spectral analysis package XSPEC. The tool provides a user friendly interface of help to beginners and also provides transparency and advanced features for experts.
Daniell method for power spectral density estimation in atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labuda, Aleksander
An alternative method for power spectral density (PSD) estimation—the Daniell method—is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion—the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to amore » more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum.« less
Improved Model Fitting for the Empirical Green's Function Approach Using Hierarchical Models
NASA Astrophysics Data System (ADS)
Van Houtte, Chris; Denolle, Marine
2018-04-01
Stress drops calculated from source spectral studies currently show larger variability than what is implied by empirical ground motion models. One of the potential origins of the inflated variability is the simplified model-fitting techniques used in most source spectral studies. This study examines a variety of model-fitting methods and shows that the choice of method can explain some of the discrepancy. The preferred method is Bayesian hierarchical modeling, which can reduce bias, better quantify uncertainties, and allow additional effects to be resolved. Two case study earthquakes are examined, the 2016 MW7.1 Kumamoto, Japan earthquake and a MW5.3 aftershock of the 2016 MW7.8 Kaikōura earthquake. By using hierarchical models, the variation of the corner frequency, fc, and the falloff rate, n, across the focal sphere can be retrieved without overfitting the data. Other methods commonly used to calculate corner frequencies may give substantial biases. In particular, if fc was calculated for the Kumamoto earthquake using an ω-square model, the obtained fc could be twice as large as a realistic value.
NASA Astrophysics Data System (ADS)
Cao, Bin; Liao, Ningfang; Li, Yasheng; Cheng, Haobo
2017-05-01
The use of spectral reflectance as fundamental color information finds application in diverse fields related to imaging. Many approaches use training sets to train the algorithm used for color classification. In this context, we note that the modification of training sets obviously impacts the accuracy of reflectance reconstruction based on classical reflectance reconstruction methods. Different modifying criteria are not always consistent with each other, since they have different emphases; spectral reflectance similarity focuses on the deviation of reconstructed reflectance, whereas colorimetric similarity emphasizes human perception. We present a method to improve the accuracy of the reconstructed spectral reflectance by adaptively combining colorimetric and spectral reflectance similarities. The different exponential factors of the weighting coefficients were investigated. The spectral reflectance reconstructed by the proposed method exhibits considerable improvements in terms of the root-mean-square error and goodness-of-fit coefficient of the spectral reflectance errors as well as color differences under different illuminants. Our method is applicable to diverse areas such as textiles, printing, art, and other industries.
Evolutionary Computing Methods for Spectral Retrieval
NASA Technical Reports Server (NTRS)
Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna
2009-01-01
A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.
NASA Astrophysics Data System (ADS)
Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong
2015-08-01
A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.
Prediction Analysis for Measles Epidemics
NASA Astrophysics Data System (ADS)
Sumi, Ayako; Ohtomo, Norio; Tanaka, Yukio; Sawamura, Sadashi; Olsen, Lars Folke; Kobayashi, Nobumichi
2003-12-01
A newly devised procedure of prediction analysis, which is a linearized version of the nonlinear least squares method combined with the maximum entropy spectral analysis method, was proposed. This method was applied to time series data of measles case notification in several communities in the UK, USA and Denmark. The dominant spectral lines observed in each power spectral density (PSD) can be safely assigned as fundamental periods. The optimum least squares fitting (LSF) curve calculated using these fundamental periods can essentially reproduce the underlying variation of the measles data. An extension of the LSF curve can be used to predict measles case notification quantitatively. Some discussions including a predictability of chaotic time series are presented.
Atmospheric Properties Of T Dwarfs Inferred From Model Fits At Low Spectral Resolution
NASA Astrophysics Data System (ADS)
Giorla Godfrey, Paige A.; Rice, Emily L.; Filippazzo, Joseph C.; Douglas, Stephanie E.
2016-09-01
Brown dwarf spectral types (M, L, T, Y) correlate with spectral morphology, and generally appear to correspond with decreasing mass and effective temperature (Teff). Model fits to observed spectra suggest, however, that spectral subclasses do not share this monotonic temperature correlation, indicating that secondary parameters (gravity, metallicity, dust) significantly influence spectral morphology. We seekto disentangle the fundamental parameters that underlie the spectral type sequence of the coolest fully populated spectral class of brown dwarfs using atmosphere models. We investigate the relationship between spectral type and best fit model parameters for a sample of over 150 T dwarfs with low resolution (R 75-100) near-infrared ( 0.8-2.5 micron) SpeX Prism spectra. We use synthetic spectra from four model grids (Saumon & Marley 2008, Morley+ 2012, Saumon+ 2012, BT Settl 2013) and a Markov-Chain Monte Carlo (MCMC) analysis to determine robust best fit parameters and their uncertainties. We compare the consistency of each model grid by performing our analysis on the full spectrum and also on individual wavelength bands (Y,J,H,K). We find more consistent results between the J band and full spectrum fits and that our best fit spectral type-Teff results agree with the polynomial relationships of Stephens+2009 and Filippazzo+ 2015 using bolometric luminosities. Our analysis consists of the most extensive low resolution T dwarf model comparison to date, and lays the foundation for interpretation of cool brown dwarf and exoplanet spectra.
NASA Astrophysics Data System (ADS)
Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der
2010-08-01
Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.
Iterative spectral methods and spectral solutions to compressible flows
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Zang, T. A.
1982-01-01
A spectral multigrid scheme is described which can solve pseudospectral discretizations of self-adjoint elliptic problems in O(N log N) operations. An iterative technique for efficiently implementing semi-implicit time-stepping for pseudospectral discretizations of Navier-Stokes equations is discussed. This approach can handle variable coefficient terms in an effective manner. Pseudospectral solutions of compressible flow problems are presented. These include one dimensional problems and two dimensional Euler solutions. Results are given both for shock-capturing approaches and for shock-fitting ones.
Jain, S C; Miller, J R
1976-04-01
A method, using an optimization scheme, has been developed for the interpretation of spectral albedo (or spectral reflectance) curves obtained from remotely sensed water color data. This method used a two-flow model of the radiation flow and solves for the albedo. Optimization fitting of predicted to observed reflectance data is performed by a quadratic interpolation method for the variables chlorophyll concentration and scattering coefficient. The technique is applied to airborne water color data obtained from Kawartha Lakes, Sargasso Sea, and Nova Scotia coast. The modeled spectral albedo curves are compared to those obtained experimentally, and the computed optimum water parameters are compared to ground truth values. It is shown that the backscattered spectral signal contains information that can be interpreted to give quantitative estimates of the chlorophyll concentration and turbidity in the waters studied.
Spectral Analysis of B Stars: An Application of Bayesian Statistics
NASA Astrophysics Data System (ADS)
Mugnes, J.-M.; Robert, C.
2012-12-01
To better understand the processes involved in stellar physics, it is necessary to obtain accurate stellar parameters (effective temperature, surface gravity, abundances…). Spectral analysis is a powerful tool for investigating stars, but it is also vital to reduce uncertainties at a decent computational cost. Here we present a spectral analysis method based on a combination of Bayesian statistics and grids of synthetic spectra obtained with TLUSTY. This method simultaneously constrains the stellar parameters by using all the lines accessible in observed spectra and thus greatly reduces uncertainties and improves the overall spectrum fitting. Preliminary results are shown using spectra from the Observatoire du Mont-Mégantic.
Systematic wavelength selection for improved multivariate spectral analysis
Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.
1995-01-01
Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.
Spectral optical coherence tomography vs. fluorescein pattern for rigid gas-permeable lens fit.
Piotrowiak, Ilona; Kaluzny, Bartłomiej Jan; Danek, Beata; Chwiędacz, Adam; Sikorski, Bartosz Lukasz; Malukiewicz, Grażyna
2014-07-04
This study aimed to evaluate anterior segment spectral optical coherence tomography (AS SOCT) for assessing the lens-to-cornea fit of rigid gas-permeable (RGP) lenses. The results were verified with the fluorescein pattern method, considered the criterion standard for RGP lens alignment evaluations. Twenty-six eyes of 14 patients were enrolled in the study. Initial base curve radius (BCR) of each RGP lens was determined on the basis of keratometry readings. The fluorescein pattern and AS SOCT tomograms were evaluated, starting with an alignment fit, and subsequently, with BCR reductions in increments of 0.1 mm, up to 3 consecutive changes. AS SOCT examination was performed with the use of RTVue (Optovue, California, USA). The average BCR for alignment fits, defined according to the fluorescein pattern, was 7.8 mm (SD=0.26). Repeatability of the measurements was 18.2%. BCR reductions of 0.1, 0.2, and 0.3 mm resulted in average apical clearances detected with AS SOCT of 12.38 (SD=9.91, p<0.05), 28.79 (SD=15.39, p<0.05), and 33.25 (SD=10.60, p>0.05), respectively. BCR steepening of 0.1 mm or more led to measurable changes in lens-to-cornea fits. Although AS SOCT represents a new method of assessing lens-to-cornea fit, apical clearance detection with current commercial technology showed lower sensitivity than the fluorescein pattern assessment.
NASA Astrophysics Data System (ADS)
Hu, Yingtian; Liu, Chao; Wang, Xiaoping; Zhao, Dongdong
2018-06-01
At present the general scatter handling methods are unsatisfactory when scatter and fluorescence seriously overlap in excitation emission matrix. In this study, an adaptive method for scatter handling of fluorescence data is proposed. Firstly, the Raman scatter was corrected by subtracting the baseline of deionized water which was collected in each experiment to adapt to the intensity fluctuations. Then, the degrees of spectral overlap between Rayleigh scatter and fluorescence were classified into three categories based on the distance between the spectral peaks. The corresponding algorithms, including setting to zero, fitting on single or both sides, were implemented after the evaluation of the degree of overlap for individual emission spectra. The proposed method minimized the number of fitting and interpolation processes, which reduced complexity, saved time, avoided overfitting, and most importantly assured the authenticity of data. Furthermore, the effectiveness of this procedure on the subsequent PARAFAC analysis was assessed and compared to Delaunay interpolation by conducting experiments with four typical organic chemicals and real water samples. Using this method, we conducted long-term monitoring of tap water and river water near a dyeing and printing plant. This method can be used for improving adaptability and accuracy in the scatter handling of fluorescence data.
NASA Astrophysics Data System (ADS)
Lasche, George; Coldwell, Robert; Metzger, Robert
2017-09-01
A new application (known as "VRF", or "Visual RobFit") for analysis of high-resolution gamma-ray spectra has been developed using non-linear fitting techniques to fit full-spectrum nuclide shapes. In contrast to conventional methods based on the results of an initial peak-search, the VRF analysis method forms, at each of many automated iterations, a spectrum-wide shape for each nuclide and, also at each iteration, it adjusts the activities of each nuclide, as well as user-enabled parameters of energy calibration, attenuation by up to three intervening or self-absorbing materials, peak width as a function of energy, full-energy peak efficiency, and coincidence summing until no better fit to the data can be obtained. This approach, which employs a new and significantly advanced underlying fitting engine especially adapted to nuclear spectra, allows identification of minor peaks that are masked by larger, overlapping peaks that would not otherwise be possible. The application and method are briefly described and two examples are presented.
NASA Technical Reports Server (NTRS)
Persinger, Tim; Castelaz, Michael W.
1990-01-01
This paper presents the results of spectral type and luminosity classification of reference stars in the Allegheny Observatory MAP parallax program, using broadband and intermediate-band photometry. In addition to the use of UBVRI and DDO photometric systems, the uvbyH-beta photometric system was included for classification of blue (B - V less than 0.6) reference stars. The stellar classifications made from the photometry are used to determine spectroscopic parallaxes. The spectroscopic parallaxes are used in turn to adjust the relative parallaxes measured with the MAP to absolute parallaxes. A new method for dereddening stars using more than one photometric system is presented. In the process of dereddening, visual extinctions, spectral types, and luminosity classes are determined, as well as a measure of the goodness of fit. The measure of goodness of fit quantifies confidence in the stellar classifications. It is found that the spectral types are reliable to within 2.5 spectral subclasses.
McCann, Cooper; Repasky, Kevin S.; Morin, Mikindra; ...
2017-05-23
Hyperspectral image analysis has benefited from an array of methods that take advantage of the increased spectral depth compared to multispectral sensors; however, the focus of these developments has been on supervised classification methods. Lack of a priori knowledge regarding land cover characteristics can make unsupervised classification methods preferable under certain circumstances. An unsupervised classification technique is presented in this paper that utilizes physically relevant basis functions to model the reflectance spectra. These fit parameters used to generate the basis functions allow clustering based on spectral characteristics rather than spectral channels and provide both noise and data reduction. Histogram splittingmore » of the fit parameters is then used as a means of producing an unsupervised classification. Unlike current unsupervised classification techniques that rely primarily on Euclidian distance measures to determine similarity, the unsupervised classification technique uses the natural splitting of the fit parameters associated with the basis functions creating clusters that are similar in terms of physical parameters. The data set used in this work utilizes the publicly available data collected at Indian Pines, Indiana. This data set provides reference data allowing for comparisons of the efficacy of different unsupervised data analysis. The unsupervised histogram splitting technique presented in this paper is shown to be better than the standard unsupervised ISODATA clustering technique with an overall accuracy of 34.3/19.0% before merging and 40.9/39.2% after merging. Finally, this improvement is also seen as an improvement of kappa before/after merging of 24.8/30.5 for the histogram splitting technique compared to 15.8/28.5 for ISODATA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, Cooper; Repasky, Kevin S.; Morin, Mikindra
Hyperspectral image analysis has benefited from an array of methods that take advantage of the increased spectral depth compared to multispectral sensors; however, the focus of these developments has been on supervised classification methods. Lack of a priori knowledge regarding land cover characteristics can make unsupervised classification methods preferable under certain circumstances. An unsupervised classification technique is presented in this paper that utilizes physically relevant basis functions to model the reflectance spectra. These fit parameters used to generate the basis functions allow clustering based on spectral characteristics rather than spectral channels and provide both noise and data reduction. Histogram splittingmore » of the fit parameters is then used as a means of producing an unsupervised classification. Unlike current unsupervised classification techniques that rely primarily on Euclidian distance measures to determine similarity, the unsupervised classification technique uses the natural splitting of the fit parameters associated with the basis functions creating clusters that are similar in terms of physical parameters. The data set used in this work utilizes the publicly available data collected at Indian Pines, Indiana. This data set provides reference data allowing for comparisons of the efficacy of different unsupervised data analysis. The unsupervised histogram splitting technique presented in this paper is shown to be better than the standard unsupervised ISODATA clustering technique with an overall accuracy of 34.3/19.0% before merging and 40.9/39.2% after merging. Finally, this improvement is also seen as an improvement of kappa before/after merging of 24.8/30.5 for the histogram splitting technique compared to 15.8/28.5 for ISODATA.« less
NASA Technical Reports Server (NTRS)
Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.
1987-01-01
The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.
Superpixel Based Factor Analysis and Target Transformation Method for Martian Minerals Detection
NASA Astrophysics Data System (ADS)
Wu, X.; Zhang, X.; Lin, H.
2018-04-01
The Factor analysis and target transformation (FATT) is an effective method to test for the presence of particular mineral on Martian surface. It has been used both in thermal infrared (Thermal Emission Spectrometer, TES) and near-infrared (Compact Reconnaissance Imaging Spectrometer for Mars, CRISM) hyperspectral data. FATT derived a set of orthogonal eigenvectors from a mixed system and typically selected first 10 eigenvectors to least square fit the library mineral spectra. However, minerals present only in a limited pixels will be ignored because its weak spectral features compared with full image signatures. Here, we proposed a superpixel based FATT method to detect the mineral distributions on Mars. The simple linear iterative clustering (SLIC) algorithm was used to partition the CRISM image into multiple connected image regions with spectral homogeneous to enhance the weak signatures by increasing their proportion in a mixed system. A least square fitting was used in target transformation and performed to each region iteratively. Finally, the distribution of the specific minerals in image was obtained, where fitting residual less than a threshold represent presence and otherwise absence. We validate our method by identifying carbonates in a well analysed CRISM image in Nili Fossae on Mars. Our experimental results indicate that the proposed method work well both in simulated and real data sets.
Smile effect detection for dispersive hypersepctral imager based on the doped reflectance panel
NASA Astrophysics Data System (ADS)
Zhou, Jiankang; Liu, Xiaoli; Ji, Yiqun; Chen, Yuheng; Shen, Weimin
2012-11-01
Hyperspectral imager is now widely used in many regions, such as resource development, environmental monitoring and so on. The reliability of spectral data is based on the instrument calibration. The smile, wavelengths at the center pixels of imaging spectrometer detector array are different from the marginal pixels, is a main factor in the spectral calibration because it can deteriorate the spectral data accuracy. When the spectral resolution is high, little smile can result in obvious signal deviation near weak atmospheric absorption peak. The traditional method of detecting smile is monochromator wavelength scanning which is time consuming and complex and can not be used in the field or at the flying platform. We present a new smile detection method based on the holmium oxide panel which has the rich of absorbed spectral features. The higher spectral resolution spectrometer and the under-test imaging spectrometer acquired the optical signal from the Spectralon panel and the holmium oxide panel respectively. The wavelength absorption peak positions of column pixels are determined by curve fitting method which includes spectral response function sequence model and spectral resampling. The iteration strategy and Pearson coefficient together are used to confirm the correlation between the measured and modeled spectral curve. The present smile detection method is posed on our designed imaging spectrometer and the result shows that it can satisfy precise smile detection requirement of high spectral resolution imaging spectrometer.
The Chandra Source Catalog: Spectral Properties
NASA Astrophysics Data System (ADS)
Doe, Stephen; Siemiginowska, Aneta L.; Refsdal, Brian L.; Evans, Ian N.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Glotfelty, Kenny J.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Primini, Francis A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula
2009-09-01
The first release of the Chandra Source Catalog (CSC) contains all sources identified from eight years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard) using the Bayesian algorithm (BEHR, Park et al. 2006). The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package, developed by the Chandra X-ray Center; see Freeman et al. 2001). Two models were fit to each source: an absorbed power law and a blackbody emission. The fitted parameter values for the power-law and blackbody models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy flux computed from the normalizations of predefined power-law and black-body models needed to match the observed net X-ray counts. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. This work is supported by NASA contract NAS8-03060 (CXC).
Dong, Zhengchao; Zhang, Yudong; Liu, Feng; Duan, Yunsuo; Kangarlu, Alayar; Peterson, Bradley S
2014-11-01
Proton magnetic resonance spectroscopic imaging ((1) H MRSI) has been used for the in vivo measurement of intramyocellular lipids (IMCLs) in human calf muscle for almost two decades, but the low spectral resolution between extramyocellular lipids (EMCLs) and IMCLs, partially caused by the magnetic field inhomogeneity, has hindered the accuracy of spectral fitting. The purpose of this paper was to enhance the spectral resolution of (1) H MRSI data from human calf muscle using the SPREAD (spectral resolution amelioration by deconvolution) technique and to assess the influence of improved spectral resolution on the accuracy of spectral fitting and on in vivo measurement of IMCLs. We acquired MRI and (1) H MRSI data from calf muscles of three healthy volunteers. We reconstructed spectral lineshapes of the (1) H MRSI data based on field maps and used the lineshapes to deconvolve the measured MRS spectra, thereby eliminating the line broadening caused by field inhomogeneities and improving the spectral resolution of the (1) H MRSI data. We employed Monte Carlo (MC) simulations with 200 noise realizations to measure the variations of spectral fitting parameters and used an F-test to evaluate the significance of the differences of the variations between the spectra before SPREAD and after SPREAD. We also used Cramer-Rao lower bounds (CRLBs) to assess the improvements of spectral fitting after SPREAD. The use of SPREAD enhanced the separation between EMCL and IMCL peaks in (1) H MRSI spectra from human calf muscle. MC simulations and F-tests showed that the use of SPREAD significantly reduced the standard deviations of the estimated IMCL peak areas (p < 10(-8) ), and the CRLBs were strongly reduced (by ~37%). Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Su, Ray Kai Leung; Lee, Chien-Liang
2013-06-01
This study presents a seismic fragility analysis and ultimate spectral displacement assessment of regular low-rise masonry infilled (MI) reinforced concrete (RC) buildings using a coefficient-based method. The coefficient-based method does not require a complicated finite element analysis; instead, it is a simplified procedure for assessing the spectral acceleration and displacement of buildings subjected to earthquakes. A regression analysis was first performed to obtain the best-fitting equations for the inter-story drift ratio (IDR) and period shift factor of low-rise MI RC buildings in response to the peak ground acceleration of earthquakes using published results obtained from shaking table tests. Both spectral acceleration- and spectral displacement-based fragility curves under various damage states (in terms of IDR) were then constructed using the coefficient-based method. Finally, the spectral displacements of low-rise MI RC buildings at the ultimate (or nearcollapse) state obtained from this paper and the literature were compared. The simulation results indicate that the fragility curves obtained from this study and other previous work correspond well. Furthermore, most of the spectral displacements of low-rise MI RC buildings at the ultimate state from the literature fall within the bounded spectral displacements predicted by the coefficient-based method.
Information content of IRIS spectra. [from Nimbus 4 satellite
NASA Technical Reports Server (NTRS)
Price, J. C.
1974-01-01
Spectra from the satellite instrument IRIS (infra red interferometer spectrometer) were examined to find the number of independent variables needed to describe these broadband high spectral resolution data. The radiated power in the atmospheric window from 771 to 981/cm was the first parameter chosen for fitting observed spectra. At succeeding levels of analysis the residual variability (observed spectrum - best fit spectrum) in an ensemble of observations was partioned into spectral eigenvectors. The eigenvector describing the largest fraction of this variability was examined for a strong spectral signature; the power in the corresponding spectral band was then used as the next fitting parameter. The measured power in nine spectral intervals, when inserted in the spectral fitting functions, was adequate to describe most spectra to within the noise level of IRIS. Considerations of relative signal strength and scales of atmospheric variability suggest a combination sounder (multichannel-broad field of view) scanner (window channel-small field of view) as an efficient observing instrument.
Information content in Iris spectra. [Infrared Interferometer Spectrometer of Nimbus 4 satellite
NASA Technical Reports Server (NTRS)
Price, J. C.
1975-01-01
Spectra from the satellite instrument Iris (infrared interferometer spectrometer) were examined to find the number of independent variables needed to describe the broad-band high-resolution spectral data. The radiated power in the atmospheric window from 771 to 981 per cm was the first parameter chosen for fitting observed spectra. At succeeding levels of analysis, the residual variability (observed spectrum minus best-fit spectrum) in an ensemble of observations was partitioned into spectral eigenvectors. The eigenvector describing the largest fraction of this variability was examined for a strong spectral signature; the power in the corresponding spectral band was then used as the next fitting parameter. The measured power in nine spectral intervals, when it was inserted in the spectral-fitting functions, was adequate to describe most spectra to within the noise level of Iris. Considerations of relative signal strength and scales of atmospheric variability suggest a combination sounder (multichannel, broad field of view) scanner (window channel, small field of view) as an efficient observing instrument.
NASA Astrophysics Data System (ADS)
Szalai, Robert; Ehrhardt, David; Haller, George
2017-06-01
In a nonlinear oscillatory system, spectral submanifolds (SSMs) are the smoothest invariant manifolds tangent to linear modal subspaces of an equilibrium. Amplitude-frequency plots of the dynamics on SSMs provide the classic backbone curves sought in experimental nonlinear model identification. We develop here, a methodology to compute analytically both the shape of SSMs and their corresponding backbone curves from a data-assimilating model fitted to experimental vibration signals. This model identification utilizes Taken's delay-embedding theorem, as well as a least square fit to the Taylor expansion of the sampling map associated with that embedding. The SSMs are then constructed for the sampling map using the parametrization method for invariant manifolds, which assumes that the manifold is an embedding of, rather than a graph over, a spectral subspace. Using examples of both synthetic and real experimental data, we demonstrate that this approach reproduces backbone curves with high accuracy.
Peripheral absolute threshold spectral sensitivity in retinitis pigmentosa.
Massof, R W; Johnson, M A; Finkelstein, D
1981-01-01
Dark-adapted spectral sensitivities were measured in the peripheral retinas of 38 patients diagnosed as having typical retinitis pigmentosa (RP) and in 3 normal volunteers. The patients included those having autosomal dominant and autosomal recessive inheritance patterns. Results were analysed by comparisons with the CIE standard scotopic spectral visibility function and with Judd's modification of the photopic spectral visibility function, with consideration of contributions from changes in spectral transmission of preretinal media. The data show 3 general patterns. One group of patients had absolute threshold spectral sensitivities that were fit by Judd's photopic visibility curve. Absolute threshold spectral sensitivities for a second group of patients were fit by a normal scotopic spectral visibility curve. The third group of patients had absolute threshold spectral sensitivities that were fit by a combination of scotopic and photopic spectral visibility curves. The autosomal dominant and autosomal recessive modes of inheritance were represented in each group of patients. These data indicate that RP patients have normal rod and/or cone spectral sensitivities, and support the subclassification of patients described previously by Massof and Finkelstein. PMID:7459312
Extracting Damping Ratio from Dynamic Data and Numerical Solutions
NASA Technical Reports Server (NTRS)
Casiano, M. J.
2016-01-01
There are many ways to extract damping parameters from data or models. This Technical Memorandum provides a quick reference for some of the more common approaches used in dynamics analysis. Described are six methods of extracting damping from data: the half-power method, logarithmic decrement (decay rate) method, an autocorrelation/power spectral density fitting method, a frequency response fitting method, a random decrement fitting method, and a newly developed half-quadratic gain method. Additionally, state-space models and finite element method modeling tools, such as COMSOL Multiphysics (COMSOL), provide a theoretical damping via complex frequency. Each method has its advantages which are briefly noted. There are also likely many other advanced techniques in extracting damping within the operational modal analysis discipline, where an input excitation is unknown; however, these approaches discussed here are objective, direct, and can be implemented in a consistent manner.
Ocean wavenumber estimation from wave-resolving time series imagery
Plant, N.G.; Holland, K.T.; Haller, M.C.
2008-01-01
We review several approaches that have been used to estimate ocean surface gravity wavenumbers from wave-resolving remotely sensed image sequences. Two fundamentally different approaches that utilize these data exist. A power spectral density approach identifies wavenumbers where image intensity variance is maximized. Alternatively, a cross-spectral correlation approach identifies wavenumbers where intensity coherence is maximized. We develop a solution to the latter approach based on a tomographic analysis that utilizes a nonlinear inverse method. The solution is tolerant to noise and other forms of sampling deficiency and can be applied to arbitrary sampling patterns, as well as to full-frame imagery. The solution includes error predictions that can be used for data retrieval quality control and for evaluating sample designs. A quantitative analysis of the intrinsic resolution of the method indicates that the cross-spectral correlation fitting improves resolution by a factor of about ten times as compared to the power spectral density fitting approach. The resolution analysis also provides a rule of thumb for nearshore bathymetry retrievals-short-scale cross-shore patterns may be resolved if they are about ten times longer than the average water depth over the pattern. This guidance can be applied to sample design to constrain both the sensor array (image resolution) and the analysis array (tomographic resolution). ?? 2008 IEEE.
Calculation of Thomson scattering spectral fits for interpenetrating flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F., E-mail: george.swadling@imperial.ac.uk; Lebedev, S. V., E-mail: george.swadling@imperial.ac.uk; Burdiak, G. C.
2014-12-15
Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accruedmore » around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.« less
Method and system for calibrating acquired spectra for use in spectral analysis
Reber, Edward L.; Rohde, Kenneth W.; Blackwood, Larry G.
2010-09-14
A method for calibrating acquired spectra for use in spectral analysis includes performing Gaussian peak fitting to spectra acquired by a plurality of NaI detectors to define peak regions. A Na and annihilation doublet may be located among the peak regions. A predetermined energy level may be applied to one of the peaks in the doublet and a location of a hydrogen peak may be predicted based on the location of at least one of the peaks of the doublet. Control systems for calibrating spectra are also disclosed.
Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch
Vogman, G. V.; Shumlak, U.
2011-10-13
Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.« less
Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogman, G. V.; Shumlak, U.
2011-10-15
Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. These measurements are used to gain a better understanding of Z-pinch equilibria.« less
NASA Astrophysics Data System (ADS)
Gan, Ruting; Guo, Zhenning; Lin, Jieben
2015-09-01
To decrease the risk of bilirubin encephalopathy and minimize the need for exchange transfusions, we report a novel design for light source of light-emitting diode (LED)-based neonatal jaundice therapeutic device (NJTD). The bilirubin absorption spectrum in vivo was regarded as target. Based on spectral constructing theory, we used commercially available LEDs with different peak wavelengths and full width at half maximum as matching light sources. Simple genetic algorithm was first proposed as the spectral matching method. The required LEDs number at each peak wavelength was calculated, and then, the commercial light source sample model of the device was fabricated to confirm the spectral matching technology. In addition, the corresponding spectrum was measured and the effect was analyzed finally. The results showed that fitted spectrum was very similar to the target spectrum with 98.86 % matching degree, and the actual device model has a spectrum close to the target with 96.02 % matching degree. With higher fitting degree and efficiency, this matching algorithm is very suitable for light source matching technology of LED-based spectral distribution, and bilirubin absorption spectrum in vivo will be auspicious candidate for the target spectrum of new LED-based NJTD light source.
Bringing the cross-correlation method up to date
NASA Technical Reports Server (NTRS)
Statler, Thomas
1995-01-01
The cross-correlation (XC) method of Tonry & Davis (1979, AJ, 84, 1511) is generalized to arbitrary parametrized line profiles. In the new algorithm the correlation function itself, rather than the observed galaxy spectrum, is fitted by the model line profile: this removes much of the complication in the error analysis caused by template mismatch. Like the Fourier correlation quotient (FCQ) method of Bender (1990, A&A, 229, 441), the inferred line profiles are, up to a normalization constant, independent of template mismatch as long as there are no blended lines. The standard reduced chi(exp 2) is a good measure of the fit of the inferred velocity distribution, largely decoupled from the fit of the spectral template. The updated XC method performs as well as other recently developed methods, with the added virtue of conceptual simplicity.
Batsoulis, A N; Nacos, M K; Pappas, C S; Tarantilis, P A; Mavromoustakos, T; Polissiou, M G
2004-02-01
Hemicellulose samples were isolated from kenaf (Hibiscus cannabinus L.). Hemicellulosic fractions usually contain a variable percentage of uronic acids. The uronic acid content (expressed in polygalacturonic acid) of the isolated hemicelluloses was determined by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and the curve-fitting deconvolution method. A linear relationship between uronic acids content and the sum of the peak areas at 1745, 1715, and 1600 cm(-1) was established with a high correlation coefficient (0.98). The deconvolution analysis using the curve-fitting method allowed the elimination of spectral interferences from other cell wall components. The above method was compared with an established spectrophotometric method and was found equivalent for accuracy and repeatability (t-test, F-test). This method is applicable in analysis of natural or synthetic mixtures and/or crude substances. The proposed method is simple, rapid, and nondestructive for the samples.
Land, P E; Haigh, J D
1997-12-20
In algorithms for the atmospheric correction of visible and near-IR satellite observations of the Earth's surface, it is generally assumed that the spectral variation of aerosol optical depth is characterized by an Angström power law or similar dependence. In an iterative fitting algorithm for atmospheric correction of ocean color imagery over case 2 waters, this assumption leads to an inability to retrieve the aerosol type and to the attribution to aerosol spectral variations of spectral effects actually caused by the water contents. An improvement to this algorithm is described in which the spectral variation of optical depth is calculated as a function of aerosol type and relative humidity, and an attempt is made to retrieve the relative humidity in addition to aerosol type. The aerosol is treated as a mixture of aerosol components (e.g., soot), rather than of aerosol types (e.g., urban). We demonstrate the improvement over the previous method by using simulated case 1 and case 2 sea-viewing wide field-of-view sensor data, although the retrieval of relative humidity was not successful.
Atmospheric Turbulence Modeling for Aerospace Vehicles: Fractional Order Fit
NASA Technical Reports Server (NTRS)
Kopasakis, George (Inventor)
2015-01-01
An improved model for simulating atmospheric disturbances is disclosed. A scale Kolmogorov spectral may be scaled to convert the Kolmogorov spectral into a finite energy von Karman spectral and a fractional order pole-zero transfer function (TF) may be derived from the von Karman spectral. Fractional order atmospheric turbulence may be approximated with an integer order pole-zero TF fit, and the approximation may be stored in memory.
Benefits of Applying Hierarchical Models to the Empirical Green's Function Approach
NASA Astrophysics Data System (ADS)
Denolle, M.; Van Houtte, C.
2017-12-01
Stress drops calculated from source spectral studies currently show larger variability than what is implied by empirical ground motion models. One of the potential origins of the inflated variability is the simplified model-fitting techniques used in most source spectral studies. This study improves upon these existing methods, and shows that the fitting method may explain some of the discrepancy. In particular, Bayesian hierarchical modelling is shown to be a method that can reduce bias, better quantify uncertainties and allow additional effects to be resolved. The method is applied to the Mw7.1 Kumamoto, Japan earthquake, and other global, moderate-magnitude, strike-slip earthquakes between Mw5 and Mw7.5. It is shown that the variation of the corner frequency, fc, and the falloff rate, n, across the focal sphere can be reliably retrieved without overfitting the data. Additionally, it is shown that methods commonly used to calculate corner frequencies can give substantial biases. In particular, if fc were calculated for the Kumamoto earthquake using a model with a falloff rate fixed at 2 instead of the best fit 1.6, the obtained fc would be as large as twice its realistic value. The reliable retrieval of the falloff rate allows deeper examination of this parameter for a suite of global, strike-slip earthquakes, and its scaling with magnitude. The earthquake sequences considered in this study are from Japan, New Zealand, Haiti and California.
Yao, Xia; Liu, Xiao-jun; Wang, Wei; Tian, Yong-chao; Cao, Wei-xing; Zhu, Yan
2010-12-01
Four independent field experiments with 6 wheat varieties and 5 nitrogen application levels were conducted, and time-course measurements were taken on the canopy hyperspectral reflectance and leaf N accumulation per unit soil area (LNA, g N x m(-2)). By adopting reduced precise sampling method, all possible normalized difference spectral indices [NDSI(i,j)] within the spectral range of 350-2500 nm were constructed, and the relationships of LNA to the NDSI(i,j) were quantified, aimed to explore the new sensitive spectral bands and key index from precise analysis of ground-based hyperspectral information, and to develop prediction models for wheat LNA. The results showed that the sensitive spectral bands for LNA were located in visible light and near infrared regions, especially at 860 nm and 720 nm for wheat LNA. The monitoring model based on the NDSI(860,720) was formulated as LNA = 26.34 x [NDSI(860,720)](1.887), with R2 = 0.900 and SE = 1.327. The fitness test of the derived equations with independent datasets showed that for wheat LNA, the model gave the estimation accuracy of 0.823 and the RMSE of 0.991 g N x m(-2), indicating a good fitness between the measured and estimated LNA. The present normalized hyperspectral parameter of NDSI(860,720) and its derived regression model could be reliably used for the estimation of winter wheat LNA.
Analysis of the Zeeman effect on D α spectra on the EAST tokamak
NASA Astrophysics Data System (ADS)
Gao, Wei; Huang, Juan; Wu, Chengrui; Xu, Zong; Hou, Yumei; Jin, Zhao; Chen, Yingjie; Zhang, Pengfei; Zhang, Ling; Wu, Zhenwei; EAST Team
2017-04-01
Based on the passive spectroscopy, the {{{D}}}α atomic emission spectra in the boundary region of the plasma have been measured by a high resolution optical spectroscopic multichannel analysis (OSMA) system in EAST tokamak. The Zeeman splitting of the {{{D}}}α spectral lines has been observed. A fitting procedure by using a nonlinear least squares method was applied to fit and analyze all polarization π and +/- σ components of the {{{D}}}α atomic spectra to acquire the information of the local plasma. The spectral line shape was investigated according to emission spectra from different regions (e.g., low-field side and high-field side) along the viewing chords. Each polarization component was fitted and classified into three energy categories (the cold, warm, and hot components) based on different atomic production processes, in consistent with the transition energy distribution by calculating the gradient of the {{{D}}}α spectral profile. The emission position, magnetic field intensity, and flow velocity of a deuterium atom were also discussed in the context. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275231 and 11575249) and the National Magnetic Confinement Fusion Energy Research Program of China (Grant No. 2015GB110005).
VizieR Online Data Catalog: Vela Junior (RX J0852.0-4622) HESS image (HESS+, 2018)
NASA Astrophysics Data System (ADS)
H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Anguener, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernloehr, K.; Blackwell, R.; Boettcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Buechele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chretien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Atai, A.; Domainko, W.; Donath, A.; Drury, L. O'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Foerster, A.; Funk, S.; Fuessling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzynski, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khelifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluzniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krueger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; Lopez-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Mora, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec J.; Oakes, L.; O'Brien, P.; Odaka, H.; Oettl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schuessler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der, Walt D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Voelk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Woernlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zywucka, N.
2018-03-01
skymap.fit: H.E.S.S. excess skymap in FITS format of the region comprising Vela Junior and its surroundings. The excess map has been corrected for the gradient of exposure and smoothed with a Gaussian function of width 0.08° to match the analysis point spread function, matching the procedure applied to derive the maps in Fig. 1. sp_stat.txt: H.E.S.S. spectral points and fit parameters for Vela Junior (H.E.S.S. data points in Fig. 3 and Tab. A.2 and H.E.S.S. spectral fit parameters in Tab. 4). The errors in this file represent statistical uncertainties at 1 sigma confidence level. The covariance matrix of the fit is also included in the format: c11 c12 c_13 c21 c22 c_23 c31 c32 c_33 where the subindices represent the following parameters of the power-law with exponential cut-off (ECPL) formula in Tab. 2: 1: flux normalization (Phi0) 2: spectral index (Gamma) 3: inverse of the cutoff energy (lambda=1/Ecut) The units for the covariance matrix are the same as for the fit parameters. Notice that, while the fit parameters section of the file shows E_cut as parameter, the fit was done in lambda=1/Ecut; hence the covariance matrix shows the values for lambda in TeV-1. sp_syst.txt: H.E.S.S. spectral points and fit parameters for Vela Junior (H.E.S.S. data points in Fig. 3 and Tab. A.2 and H.E.S.S. spectral fit parameters in Tab. 4). The errors in this file represent systematic uncertainties at 1 sigma confidence level. The integral fluxes for several energy ranges are also included. (4 data files).
NASA Astrophysics Data System (ADS)
Huang, H.-C.; Lin, C.-Y.
2012-04-01
The Tapu earthquake (ML 5.7) occurred at the southwestern part of Taiwan on December 16, 1993. We examine the source model of this event using the observed seismograms by CWBSN at eight stations surrounding the source area. An objective estimation method is used to obtain the parameters N and C which are needed for the empirical Green's function method by Irikura (1986). This method is called "source spectral ratio fitting method" which gives estimate of seismic moment ratio between a large and a small event and their corner frequencies by fitting the observed source spectral ratio with the ratio of source spectra which obeys the model (Miyake et al., 1999). This method has an advantage of removing site effects in evaluating the parameters. The best source model of the Tapu mainshock in 1993 is estimated by comparing the observed waveforms with the synthetic ones using empirical Green's function method. The size of the asperity is about 2.1 km length along the strike direction by 1.5 km width along the dip direction. The rupture started at the right-bottom of the asperity and extended radially to the left-upper direction.
NASA Astrophysics Data System (ADS)
Huang, H.; Lin, C.
2012-12-01
The Tapu earthquake (ML 5.7) occurred at the southwestern part of Taiwan on December 16, 1993. We examine the source model of this event using the observed seismograms by CWBSN at eight stations surrounding the source area. An objective estimation method is used to obtain the parameters N and C which are needed for the empirical Green's function method by Irikura (1986). This method is called "source spectral ratio fitting method" which gives estimate of seismic moment ratio between a large and a small event and their corner frequencies by fitting the observed source spectral ratio with the ratio of source spectra which obeys the model (Miyake et al., 1999). This method has an advantage of removing site effects in evaluating the parameters. The best source model of the Tapu mainshock in 1993 is estimated by comparing the observed waveforms with the synthetic ones using empirical Green's function method. The size of the asperity is about 2.1 km length along the strike direction by 1.5 km width along the dip direction. The rupture started at the right-bottom of the asperity and extended radially to the left-upper direction.
VizieR Online Data Catalog: Spectral evolution of 4U 1543-47 in 2002 (Lipunova+, 2017)
NASA Astrophysics Data System (ADS)
Lipunova, G. V.; Malanchev, K. L.
2017-08-01
Evolution of the spectral parameters obtained from the fitting of the spectral data obtained with RXTE/PCA in the 2.9-25keV energy band. Some spectral parameters are plotted in Figure 1 of the paper. The black hole mass is 9.4 solar masses, the Kerr parameter is 0.4, the disc inclination is 20.7 grad. The spectral fitting is done using XSPEC 12.9.0. The XSPEC spectral model consists of the following spectral components: TBabs((simpl*kerrbb+laor)smedge). Full description of the spectral parameters can be found in Table A1 and Appendix A of the paper. (1 data file).
HEAO-1 analysis of Low Energy Detectors (LED)
NASA Technical Reports Server (NTRS)
Nousek, John A.
1992-01-01
The activities at Penn State University are described. During the period Oct. 1990 to Dec. 1991 work on HEAO-1 analysis of the Low Energy Detectors (LED) concentrated on using the improved detector spectral simulation model and fitting diffuse x-ray background spectral data. Spectral fitting results, x-ray point sources, and diffuse x-ray sources are described.
Galaxy properties from J-PAS narrow-band photometry
NASA Astrophysics Data System (ADS)
Mejía-Narváez, A.; Bruzual, G.; Magris, C. G.; Alcaniz, J. S.; Benítez, N.; Carneiro, S.; Cenarro, A. J.; Cristóbal-Hornillos, D.; Dupke, R.; Ederoclite, A.; Marín-Franch, A.; de Oliveira, C. Mendes; Moles, M.; Sodre, L.; Taylor, K.; Varela, J.; Ramió, H. Vázquez
2017-11-01
We study the consistency of the physical properties of galaxies retrieved from spectral energy distribution (SED) fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local Universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding stellar mass, the mass- and luminosity-weighted age and metallicity, and the dust extinction. We study the biases, correlations and degeneracies affecting the retrieved parameters and explore the role of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the Sloan Digital Sky Survey (SDSS), we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and show that the prior probability distribution functions, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy, albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.
Optimization of data analysis for the in vivo neutron activation analysis of aluminum in bone.
Mohseni, H K; Matysiak, W; Chettle, D R; Byun, S H; Priest, N; Atanackovic, J; Prestwich, W V
2016-10-01
An existing system at McMaster University has been used for the in vivo measurement of aluminum in human bone. Precise and detailed analysis approaches are necessary to determine the aluminum concentration because of the low levels of aluminum found in the bone and the challenges associated with its detection. Phantoms resembling the composition of the human hand with varying concentrations of aluminum were made for testing the system prior to the application to human studies. A spectral decomposition model and a photopeak fitting model involving the inverse-variance weighted mean and a time-dependent analysis were explored to analyze the results and determine the model with the best performance and lowest minimum detection limit. The results showed that the spectral decomposition and the photopeak fitting model with the inverse-variance weighted mean both provided better results compared to the other methods tested. The spectral decomposition method resulted in a marginally lower detection limit (5μg Al/g Ca) compared to the inverse-variance weighted mean (5.2μg Al/g Ca), rendering both equally applicable to human measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, H.; Lin, C.
2010-12-01
The Tai-Tung earthquake (ML=6.2) occurred at the southeastern part of Taiwan on April 1, 2006. We examine the source model of this event using the observed seismograms by CWBSN at five stations surrounding the source area. An objective estimation method was used to obtain the parameters N and C which are needed for the empirical Green’s function method by Irikura (1986). This method is called “source spectral ratio fitting method” which gives estimate of seismic moment ratio between a large and a small event and their corner frequencies by fitting the observed source spectral ratio with the ratio of source spectra which obeys the model (Miyake et al., 1999). This method has an advantage of removing site effects in evaluating the parameters. The best source model of the Tai-Tung mainshock in 2006 was estimated by comparing the observed waveforms with synthetics using empirical Green’s function method. The size of the asperity is about 3.5 km length along the strike direction by 7.0 km width along the dip direction. The rupture started at the left-bottom of the asperity and extended radially to the right-upper direction.
Rosado-Mendez, Ivan M; Nam, Kibo; Hall, Timothy J; Zagzebski, James A
2013-07-01
Reported here is a phantom-based comparison of methods for determining the power spectral density (PSD) of ultrasound backscattered signals. Those power spectral density values are then used to estimate parameters describing α(f), the frequency dependence of the acoustic attenuation coefficient. Phantoms were scanned with a clinical system equipped with a research interface to obtain radiofrequency echo data. Attenuation, modeled as a power law α(f)= α0 f (β), was estimated using a reference phantom method. The power spectral density was estimated using the short-time Fourier transform (STFT), Welch's periodogram, and Thomson's multitaper technique, and performance was analyzed when limiting the size of the parameter-estimation region. Errors were quantified by the bias and standard deviation of the α0 and β estimates, and by the overall power-law fit error (FE). For parameter estimation regions larger than ~34 pulse lengths (~1 cm for this experiment), an overall power-law FE of 4% was achieved with all spectral estimation methods. With smaller parameter estimation regions as in parametric image formation, the bias and standard deviation of the α0 and β estimates depended on the size of the parameter estimation region. Here, the multitaper method reduced the standard deviation of the α0 and β estimates compared with those using the other techniques. The results provide guidance for choosing methods for estimating the power spectral density in quantitative ultrasound methods.
Using frequency-domain methods to identify XV-15 aeroelastic modes
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.; Tischler, Mark B.
1987-01-01
The XV-15 Tilt-Rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed) with cross spectral and transfer function methods. Modal frequencies and damping were determined by performing curve fits to transfer function magnitude and phase data and to cross spectral magnitude data. Results are given for the XV-15 with its original metal rotor blades. Frequency and damping values are also compared with earlier predictions.
Spectral K-edge subtraction imaging
NASA Astrophysics Data System (ADS)
Zhu, Y.; Samadi, N.; Martinson, M.; Bassey, B.; Wei, Z.; Belev, G.; Chapman, D.
2014-05-01
We describe a spectral x-ray transmission method to provide images of independent material components of an object using a synchrotron x-ray source. The imaging system and process is similar to K-edge subtraction (KES) imaging where two imaging energies are prepared above and below the K-absorption edge of a contrast element and a quantifiable image of the contrast element and a water equivalent image are obtained. The spectral method, termed ‘spectral-KES’ employs a continuous spectrum encompassing an absorption edge of an element within the object. The spectrum is prepared by a bent Laue monochromator with good focal and energy dispersive properties. The monochromator focuses the spectral beam at the object location, which then diverges onto an area detector such that one dimension in the detector is an energy axis. A least-squares method is used to interpret the transmitted spectral data with fits to either measured and/or calculated absorption of the contrast and matrix material-water. The spectral-KES system is very simple to implement and is comprised of a bent Laue monochromator, a stage for sample manipulation for projection and computed tomography imaging, and a pixelated area detector. The imaging system and examples of its applications to biological imaging are presented. The system is particularly well suited for a synchrotron bend magnet beamline with white beam access.
A Spectroscopic Catalog of Nearby, High Proper Motion M subdwarfs
NASA Astrophysics Data System (ADS)
Hejazi, Neda; Lepine, Sebastien; Homeier, Derek
2018-01-01
We present a catalog of 350 metal-poor M subdwarfs, most of them likely from the local Galactic halo population, assembled from medium-resolution observations made at the MDM observatory. All objects are high proper motion stars, with 257 of them having proper motions > 0.4"/yr. We have identified the brightest prototypes for each bin of a grid of 14 spectral subtypes (M0, M0.5, M1, … M6.5) and 9 metallicity bins that go from the moderately metal-poor subdwarfs (sdM), to the more metal-poor extreme subdwarfs (esdM), to the most metal-poor ultra subdwarfs (usdM), each of which is subdivided into three finer metallicity subclasses. The spectral classification by subtype and metallicity class has been determined by a template-fit method, and confirmed by synthetic-model fitting using the BT-Settl spectral grid. We provide the list of the brightest prototypes for each subtype/subclass, as a guide for future high-resolution surveys of low-mass, metal-poor stars.
CARS Spectral Fitting with Multiple Resonant Species using Sparse Libraries
NASA Technical Reports Server (NTRS)
Cutler, Andrew D.; Magnotti, Gaetano
2010-01-01
The dual pump CARS technique is often used in the study of turbulent flames. Fast and accurate algorithms are needed for fitting dual-pump CARS spectra for temperature and multiple chemical species. This paper describes the development of such an algorithm. The algorithm employs sparse libraries, whose size grows much more slowly with number of species than a conventional library. The method was demonstrated by fitting synthetic "experimental" spectra containing 4 resonant species (N2, O2, H2 and CO2), both with noise and without it, and by fitting experimental spectra from a H2-air flame produced by a Hencken burner. In both studies, weighted least squares fitting of signal, as opposed to least squares fitting signal or square-root signal, was shown to produce the least random error and minimize bias error in the fitted parameters.
Star clusters: age, metallicity and extinction from integrated spectra
NASA Astrophysics Data System (ADS)
González Delgado, Rosa M.; Cid Fernandes, Roberto
2010-01-01
Integrated optical spectra of star clusters in the Magellanic Clouds and a few Galactic globular clusters are fitted using high-resolution spectral models for single stellar populations. The goal is to estimate the age, metallicity and extinction of the clusters, and evaluate the degeneracies among these parameters. Several sets of evolutionary models that were computed with recent high-spectral-resolution stellar libraries (MILES, GRANADA, STELIB), are used as inputs to the starlight code to perform the fits. The comparison of the results derived from this method and previous estimates available in the literature allow us to evaluate the pros and cons of each set of models to determine star cluster properties. In addition, we quantify the uncertainties associated with the age, metallicity and extinction determinations resulting from variance in the ingredients for the analysis.
NASA Astrophysics Data System (ADS)
Kreplin, A.; Kraus, S.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Driebe, T.
2012-01-01
Aims: We study the AU-scale circumstellar environment of the unclassified B[e] star V921 Sco in the near-infrared. For interpreting the observations, we employ temperature-gradient disk models. Methods: Using the near-infrared beam combiner instrument AMBER, we recorded spectrally dispersed (spectral resolution R = 35) interferograms in the H and K bands. To obtain an improved calibration of the visibilities, we developed a method that is able to equalize the histograms of the optical path difference of target and calibrator. We fit temperature-gradient disk models to the visibilities and spectral energy distribution (SED) to analyze the circumstellar dust geometry. Results: We derived a geometric ring-fit radius of 2.10 ± 0.16 mas in the K band. If we adopt the distance of 1150 ± 150 pc reported elsewhere, we obtain a ring-fit radius of 2.4 AU, which is slightly smaller than the 3.5 AU dust sublimation radius predicted by the size-luminosity relation. The fitted H-band radius of 1.61 ± 0.23 mas (1.85 AU) is found to be more compact than the K-band radius. The best-fit temperature-gradient disk model has an inner disk radius of ~1.45 AU, an inner-edge disk temperature T0 = 1533 K, and a temperature-gradient exponent q = 0.46 suggesting a flared disk geometry. Conclusions: The distance and luminosity of V921 Sco are not well known. If we assume a distance of 1150 ± 150 pc, we derive a ring-fit radius of ~2.4 AU, which is approximately consistent with the computed temperature-gradient disk model with inner and outer ring radii of 1.45 and 8.5 AU, respectively. If the inner radius of V921 Sco is more compact than the sublimation radius, this compact observed size can be explained by emitting material (e.g., a gaseous disk) inside the dust sublimation radius, as suggested for several other B[e] stars. Based on observations made with ESO telescopes at Paranal Observatory under program ID (MPG-VISA GTO): 079.C-0212(A).
Fe XXV temperatures in flares from the Yohkoh Bragg crystal spectrometer
NASA Technical Reports Server (NTRS)
Sterling, Alphonse C.; Doschek, George A.; Pike, C. David
1994-01-01
Studies by Doschek et al. using P78-1 and Solar Maximum Misson (SMM) data have shown that the ratio of intensities of the Fe XXV and Ca XIX resonance lines can be expressed as a function of Fe XXV temperature. Using a more recent data set consisting of 13 flares observed by the Bragg crystal spectrometer (BCS) experiment on board Yohkoh, we find a nearly identical functional relationship between the same resonance line ratios and Fe XXV temperatures. We use this functional relationship to obtain resonance line ratio temperatures (T(sub RLR)) for each flare in our data set, and compare them with temperatures resulting from application of a simple spectral fitting method. (T(sub SSF)) to individal Fe XXV spectra. We also use a more involved free-parameter spectral fitting method to deduce temperatures (T(sub FSF)) from some of these spectra. On average, agreement between T(sub RLR) and T(sub SSF) improves as a flare progresses in time, with average agreements of 10.0% +/- 5.2%, 6.4% +/- 5.4%, and 5.0% +/- 3.9% over the rise, peak, and decay phases, respectively. Deviations between T(sub RLR) and T(sub FSF) are about the same or smaller. Thus, for most analysis purposes, all three methods yield virtually identical temperatures in flares. The somewhat poorer agreement between T(sub SSF) and T(sub RLR) during the earlier phases may be partially a result of difficulties in obtaining precise values for temperatures from spectral fits when blueshifts and large nonthermal broadenings are present in the spectra. Because of the high sensitivity of the Yohkoh BCS compared to that of BCS experiments on earlier spacecraft, we can for the first time consistently observe the heating phase of flares in Fe XXV.
The atmospheric parameters of FGK stars using wavelet analysis of CORALIE spectra
NASA Astrophysics Data System (ADS)
Gill, S.; Maxted, P. F. L.; Smalley, B.
2018-05-01
Context. Atmospheric properties of F-, G- and K-type stars can be measured by spectral model fitting or with the analysis of equivalent width (EW) measurements. These methods require data with good signal-to-noise ratios (S/Ns) and reliable continuum normalisation. This is particularly challenging for the spectra we have obtained with the CORALIE échelle spectrograph for FGK stars with transiting M-dwarf companions. The spectra tend to have low S/Ns, which makes it difficult to analyse them using existing methods. Aims: Our aim is to create a reliable automated spectral analysis routine to determine Teff, [Fe/H], V sini from the CORALIE spectra of FGK stars. Methods: We use wavelet decomposition to distinguish between noise, continuum trends, and stellar spectral features in the CORALIE spectra. A subset of wavelet coefficients from the target spectrum are compared to those from a grid of models in a Bayesian framework to determine the posterior probability distributions of the atmospheric parameters. Results: By testing our method using synthetic spectra we found that our method converges on the best fitting atmospheric parameters. We test the wavelet method on 20 FGK exoplanet host stars for which higher-quality data have been independently analysed using EW measurements. We find that we can determine Teff to a precision of 85 K, [Fe/H] to a precision of 0.06 dex and V sini to a precision of 1.35 km s-1 for stars with V sini ≥ 5 km s-1. We find an offset in metallicity ≈- 0.18 dex relative to the EW fitting method. We can determine log g to a precision of 0.13 dex but find systematic trends with Teff. Measurements of log g are only reliable enough to confirm dwarf-like surface gravity (log g ≈ 4.5). Conclusions: The wavelet method can be used to determine Teff, [Fe/H], and V sini for FGK stars from CORALIE échelle spectra. Measurements of log g are unreliable but can confirm dwarf-like surface gravity. We find that our method is self consistent, and robust for spectra with S/N ⪆ 40.
SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra
NASA Astrophysics Data System (ADS)
Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.
2017-01-01
Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the intergalactic medium, and they may inject kinetic energy to the host galaxy, influencing its evolution. The traditional method of analyzing BALQSO spectra involves measuring myriad absorption lines, computing the inferred ionic column densities in each feature, and comparing with the output of photonionization models. This method is inefficient and does not handle line blending well. We introduce SimBAL, a spectral synthesis fitting method for BALQSOs, which compares synthetic spectra created from photoionization model results with continuum-normalized observed spectra using Bayesian model calibration. We find that we can obtain an excellent fit to the UV to near-IR spectrum of the low-redshift BALQSO SDSS J0850+4451, including lines from diverse ionization states such as PV, CIII*, SIII, Lyalpha, NV, SiIV, CIV, MgII, and HeI*.
NASA Astrophysics Data System (ADS)
Asadi Haroni, Hooshang; Hassan Tabatabaei, Seyed
2016-04-01
Muteh gold mining area is located in 160 km NW of Isfahan town. Gold mineralization is meso-thermal type and associated with silisic, seresitic and carbonate alterations as well as with hematite and goethite. Image processing and interpretation were applied on the ASTER satellite imagery data of about 400 km2 at the Muteh gold mining area to identify hydrothermal alterations and iron oxides associated with gold mineralization. After applying preprocessing methods such as radiometric and geometric corrections, image processing methods of Principal Components Analysis (PCA), Least Square Fit (Ls-Fit) and Spectral Angle Mapper (SAM) were applied on the ASTER data to identify hydrothermal alterations and iron oxides. In this research reference spectra of minerals such as chlorite, hematite, clay minerals and phengite identified from laboratory spectral analysis of collected samples were used to map the hydrothermal alterations. Finally, identified hydrothermal alteration and iron oxides were validated by visiting and sampling some of the mapped hydrothermal alterations.
NASA Astrophysics Data System (ADS)
Li, Rong; Zhao, Feng
2015-10-01
Solar-induced chlorophyll fluorescence is closely related to photosynthesis and can serve as an indicator of plant status. Several methods have been proposed to retrieve fluorescence signal (Fs) either at specific spectral bands or within the whole fluorescence emission region. In this study, we investigated the precision of the fluorescence signal obtained through these methods under various sensor spectral characteristics. Simulated datasets generated by the SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) model with known `true' Fs as well as an experimental dataset are exploited to investigate four commonly used Fs retrieval methods, namely the original Fraunhofer Line Discriminator method (FLD), the 3 bands FLD (3FLD), the improved FLD (iFLD), and the Spectral Fitting Methods (SFMs). Fluorescence Spectrum Reconstruction (FSR) method is also investigated using simulated datasets. The sensor characteristics of spectral resolution (SR) and signal-to-noise ratio (SNR) are taken into account. According to the results, finer SR and SNR both lead to better accuracy. Lowest precision is obtained for the FLD method with strong overestimation. Some improvements are made by the 3FLD method, but it still tends to overestimate. Generally, the iFLD method and the SFMs provide better accuracy. As to FSR, the shape and magnitude of reconstructed Fs are generally consistent with the `true' Fs distributions when fine SR is exploited. With coarser SR, however, though R2 of the retrieved Fs may be high, large bias is likely to be obtained as well.
Wei, Ru-Yi; Zhou, Jin-Song; Zhang, Xue-Min; Yu, Tao; Gao, Xiao-Hui; Ren, Xiao-Qiang
2014-11-01
The present paper describes the observations and measurements of the infrared absorption spectra of CO2 on the Earth's surface with OP/FTIR method by employing a mid-infrared reflecting scanning Fourier transform spectrometry, which are the first results produced by the first prototype in China developed by the team of authors. This reflecting scanning Fourier transform spectrometry works in the spectral range 2 100-3 150 cm(-1) with a spectral resolution of 2 cm(-1). Method to measure the atmospheric molecules was described and mathematical proof and quantitative algorithms to retrieve molecular concentration were established. The related models were performed both by a direct method based on the Beer-Lambert Law and by a simulating-fitting method based on HITRAN database and the instrument functions. Concentrations of CO2 were retrieved by the two models. The results of observation and modeling analyses indicate that the concentrations have a distribution of 300-370 ppm, and show tendency that going with the variation of the environment they first decrease slowly and then increase rapidly during the observation period, and reached low points in the afternoon and during the sunset. The concentrations with measuring times retrieved by the direct method and by the simulating-fitting method agree with each other very well, with the correlation of all the data is up to 99.79%, and the relative error is no more than 2.00%. The precision for retrieving is relatively high. The results of this paper demonstrate that, in the field of detecting atmospheric compositions, OP/FTIR method performed by the Infrared reflecting scanning Fourier transform spectrometry is a feasible and effective technical approach, and either the direct method or the simulating-fitting method is capable of retrieving concentrations with high precision.
Gmur, Stephan; Vogt, Daniel; Zabowski, Darlene; Moskal, L. Monika
2012-01-01
The characterization of soil attributes using hyperspectral sensors has revealed patterns in soil spectra that are known to respond to mineral composition, organic matter, soil moisture and particle size distribution. Soil samples from different soil horizons of replicated soil series from sites located within Washington and Oregon were analyzed with the FieldSpec Spectroradiometer to measure their spectral signatures across the electromagnetic range of 400 to 1,000 nm. Similarity rankings of individual soil samples reveal differences between replicate series as well as samples within the same replicate series. Using classification and regression tree statistical methods, regression trees were fitted to each spectral response using concentrations of nitrogen, carbon, carbonate and organic matter as the response variables. Statistics resulting from fitted trees were: nitrogen R2 0.91 (p < 0.01) at 403, 470, 687, and 846 nm spectral band widths, carbonate R2 0.95 (p < 0.01) at 531 and 898 nm band widths, total carbon R2 0.93 (p < 0.01) at 400, 409, 441 and 907 nm band widths, and organic matter R2 0.98 (p < 0.01) at 300, 400, 441, 832 and 907 nm band widths. Use of the 400 to 1,000 nm electromagnetic range utilizing regression trees provided a powerful, rapid and inexpensive method for assessing nitrogen, carbon, carbonate and organic matter for upper soil horizons in a nondestructive method. PMID:23112620
Deconstructing the Spectrum of the Soft X-ray Background
NASA Technical Reports Server (NTRS)
Kuntz, K. D.; Snowden, S. L.
2000-01-01
The soft X-ray background in the 0.1-1.0 keV band is known to be produced by at least three sources; the Local Hot Bubble (LHB), the extragalactic power law (EPL), and a seemingly galactic component that lies outside the bulk of the absorption that is due to the ISM of the galactic disk. This last component, which we call the Trans-Absorption Emission (TAE), has been modeled by a number of groups who have derived disparate measures of its temperature. The differences have arisen from differing assumptions about the structure of the emitting gas and unrecognized methodological difficulties. In particular, spectral fitting methods do not uniquely separate the TAE from the foreground emission that is due the LHB. This "degeneracy" can be resolved using the angular variation of the absorption of the TAE. We show that the TAE cannot be characterized by a single thermal component; no single-component model can be consistent with both the spectral energy distribution of the TAE emission and the angular variation due to absorption by the galactic disk. We use the angular anticorrelation of the ROSAT All-Sky Survey with the galactic absorption to separate local from distant emission components, and to fit the spectral energy distribution of the resulting distant emission. We find that the emission is best described by a two-thermal-component model with logT(sub S) = 6.06(sup +0.14, sub -0.12) and log T(sub H) = 6.42(sup +0.14, sub -0.12). This two-thermal-component TAE fits the ROSAT spectral energy distribution significantly better than single-component models, and is consistent with both angular variation and spectral constraints.
NASA Astrophysics Data System (ADS)
Emam-Ismail, M.
2015-11-01
In a broad spectral range (300-2500 nm), we report the use of channeled spectra formed from the interference of polarized white light to extract the dispersion of the phase birefringence Δnp(λ) of the x- and y-cuts of lithium tantalite (LiTaO3:LT) plates. A new method named as wavenumber difference method is used to extract the spectral behavior of the phase birefringence of the x- and y- cuts of LT plates. The correctness of the obtained birefringence data is confirmed by using Jones vector method through recalculating the plates thicknesses. The spectral variation of the phase birefringence Δnp(λ) of the x- and y-cuts of LT plates is fitted to Cauchy dispersion function with relative error for both x- and y-cuts of order 2.4×10-4. The group birefringence dispersion Δng (λ) of the x- and y-cuts of LT plates is also calculated and fitted to Ghosh dispersion function with relative error for both x- and y-cuts of order 2.83×10-4. Furthermore, the phase retardation introduced by the x- and y-cuts of LT plates is also calculated. It is found that the amount of phase retardation confirms that the x- and y-cuts of LT plates can act as a multiple order half- and quarter-wave plates working at many different wavelengths through the spectral range 300-2500 nm. For the x- and y-cuts of LT plates, a large difference between group and phase birefringence is observed at a short wavelength (λ=300 nm); while such difference progressively diminished at longer wavelength (λ=2000 nm). In the near infrared region (NIR) region (700-2500 nm), a broad spectral full width at half maximum (FWHM) is observed for either x- or y-cut of LT plate which can act as if it is working as a zero order wave plate. Finally, an achromatic half-wave plate working at 598 nm and covering a wide spectral range (300-900 nm) is demonstrated experimentally by combining both x- and y-cuts of LT plates.
Attenuation analysis of real GPR wavelets: The equivalent amplitude spectrum (EAS)
NASA Astrophysics Data System (ADS)
Economou, Nikos; Kritikakis, George
2016-03-01
Absorption of a Ground Penetrating Radar (GPR) pulse is a frequency dependent attenuation mechanism which causes a spectral shift on the dominant frequency of GPR data. Both energy variation of GPR amplitude spectrum and spectral shift were used for the estimation of Quality Factor (Q*) and subsequently the characterization of the subsurface material properties. The variation of the amplitude spectrum energy has been studied by Spectral Ratio (SR) method and the frequency shift by the estimation of the Frequency Centroid Shift (FCS) or the Frequency Peak Shift (FPS) methods. The FPS method is more automatic, less robust. This work aims to increase the robustness of the FPS method by fitting a part of the amplitude spectrum of GPR data with Ricker, Gaussian, Sigmoid-Gaussian or Ricker-Gaussian functions. These functions fit different parts of the spectrum of a GPR reference wavelet and the Equivalent Amplitude Spectrum (EAS) is selected, reproducing Q* values used in forward Q* modeling analysis. Then, only the peak frequencies and the time differences between the reference wavelet and the subsequent reflected wavelets are used to estimate Q*. As long as the EAS is estimated, it is used for Q* evaluation in all the GPR section, under the assumption that the selected reference wavelet is representative. De-phasing and constant phase shift, for obtaining symmetrical wavelets, proved useful in the sufficiency of the horizons picking. Synthetic, experimental and real GPR data were examined in order to demonstrate the effectiveness of the proposed methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debnath, Dipak; Molla, Aslam Ali; Chakrabarti, Sandip K.
2015-04-20
Transient black hole candidates are interesting objects to study in X-rays as these sources show rapid evolutions in their spectral and temporal properties. In this paper, we study the spectral properties of the Galactic transient X-ray binary MAXI J1659-152 during its very first outburst after discovery with the archival data of RXTE Proportional Counter Array instruments. We make a detailed study of the evolution of accretion flow dynamics during its 2010 outburst through spectral analysis using the Chakrabarti–Titarchuk two-component advective flow (TCAF) model as an additive table model in XSPEC. Accretion flow parameters (Keplerian disk and sub-Keplerian halo rates, shockmore » location, and shock strength) are extracted from our spectral fits with TCAF. We studied variations of these fit parameters during the entire outburst as it passed through three spectral classes: hard, hard-intermediate, and soft-intermediate. We compared our TCAF fitted results with standard combined disk blackbody (DBB) and power-law (PL) model fitted results and found that variations of disk rate with DBB flux and halo rate with PL flux are generally similar in nature. There appears to be an absence of the soft state, unlike what is seen in other similar sources.« less
NASA Technical Reports Server (NTRS)
Scarpace, F. L.; Voss, A. W.
1973-01-01
Dye densities of multi-layered films are determined by applying a regression analysis to the spectral response of the composite transparency. The amount of dye in each layer is determined by fitting the sum of the individual dye layer densities to the measured dye densities. From this, dye content constants are calculated. Methods of calculating equivalent exposures are discussed. Equivalent exposures are a constant amount of energy over a limited band-width that will give the same dye content constants as the real incident energy. Methods of using these equivalent exposures for analysis of photographic data are presented.
A synthetic method of solar spectrum based on LED
NASA Astrophysics Data System (ADS)
Wang, Ji-qiang; Su, Shi; Zhang, Guo-yu; Zhang, Jian
2017-10-01
A synthetic method of solar spectrum which based on the spectral characteristics of the solar spectrum and LED, and the principle of arbitrary spectral synthesis was studied by using 14 kinds of LED with different central wavelengths.The LED and solar spectrum data were selected by Origin Software firstly, then calculated the total number of LED for each center band by the transformation relation between brightness and illumination and Least Squares Curve Fit in Matlab.Finally, the spectrum curve of AM1.5 standard solar spectrum was obtained. The results met the technical indexes of the solar spectrum matching with ±20% and the solar constant with >0.5.
Ohisa, Noriko; Ogawa, Hiromasa; Murayama, Nobuki; Yoshida, Katsumi
2010-02-01
Polysomnography (PSG) is the gold standard for the diagnosis of sleep apnea hypopnea syndrome (SAHS), but it takes time to analyze the PSG and PSG cannot be performed repeatedly because of efforts and costs. Therefore, simplified sleep respiratory disorder indices in which are reflected the PSG results are needed. The Memcalc method, which is a combination of the maximum entropy method for spectral analysis and the non-linear least squares method for fitting analysis (Makin2, Suwa Trust, Tokyo, Japan) has recently been developed. Spectral entropy which is derived by the Memcalc method might be useful to expressing the trend of time-series behavior. Spectral entropy of ECG which is calculated with the Memcalc method was evaluated by comparing to the PSG results. Obstructive SAS patients (n = 79) and control volanteer (n = 7) ECG was recorded using MemCalc-Makin2 (GMS) with PSG recording using Alice IV (Respironics) from 20:00 to 6:00. Spectral entropy of ECG, which was calculated every 2 seconds using the Memcalc method, was compared to sleep stages which were analyzed manually from PSG recordings. Spectral entropy value (-0.473 vs. -0.418, p < 0.05) were significantly increased in the OSAHS compared to the control. For the entropy cutoff level of -0.423, sensitivity and specificity for OSAHS were 86.1% and 71.4%, respectively, resulting in a receiver operating characteristic with an area under the curve of 0.837. The absolute value of entropy had inverse correlation with stage 3. Spectral entropy, which was calculated with Memcalc method, might be a possible index evaluating the quality of sleep.
Guo, Tong; Chen, Zhuo; Li, Minghui; Wu, Juhong; Fu, Xing; Hu, Xiaotang
2018-04-20
Based on white-light spectral interferometry and the Linnik microscopic interference configuration, the nonlinear phase components of the spectral interferometric signal were analyzed for film thickness measurement. The spectral interferometric signal was obtained using a Linnik microscopic white-light spectral interferometer, which includes the nonlinear phase components associated with the effective thickness, the nonlinear phase error caused by the double-objective lens, and the nonlinear phase of the thin film itself. To determine the influence of the effective thickness, a wavelength-correction method was proposed that converts the effective thickness into a constant value; the nonlinear phase caused by the effective thickness can then be determined and subtracted from the total nonlinear phase. A method for the extraction of the nonlinear phase error caused by the double-objective lens was also proposed. Accurate thickness measurement of a thin film can be achieved by fitting the nonlinear phase of the thin film after removal of the nonlinear phase caused by the effective thickness and by the nonlinear phase error caused by the double-objective lens. The experimental results demonstrated that both the wavelength-correction method and the extraction method for the nonlinear phase error caused by the double-objective lens improve the accuracy of film thickness measurements.
Submillimeter, millimeter, and microwave spectral line catalogue
NASA Technical Reports Server (NTRS)
Poynter, R. L.; Pickett, H. M.
1980-01-01
A computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between O and 3000 GHz (such as; wavelengths longer than 100 m) is discussed. The catalogue was used as a planning guide and as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances.
NASA Astrophysics Data System (ADS)
Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.; La Barbera, F.; Getman, F.; Grado, A.
2017-04-01
Photometric redshifts (photo-z) are fundamental in galaxy surveys to address different topics, from gravitational lensing and dark matter distribution to galaxy evolution. The Kilo Degree Survey (KiDS), I.e. the European Southern Observatory (ESO) public survey on the VLT Survey Telescope (VST), provides the unprecedented opportunity to exploit a large galaxy data set with an exceptional image quality and depth in the optical wavebands. Using a KiDS subset of about 25000 galaxies with measured spectroscopic redshifts, we have derived photo-z using (I) three different empirical methods based on supervised machine learning; (II) the Bayesian photometric redshift model (or BPZ); and (III) a classical spectral energy distribution (SED) template fitting procedure (LE PHARE). We confirm that, in the regions of the photometric parameter space properly sampled by the spectroscopic templates, machine learning methods provide better redshift estimates, with a lower scatter and a smaller fraction of outliers. SED fitting techniques, however, provide useful information on the galaxy spectral type, which can be effectively used to constrain systematic errors and to better characterize potential catastrophic outliers. Such classification is then used to specialize the training of regression machine learning models, by demonstrating that a hybrid approach, involving SED fitting and machine learning in a single collaborative framework, can be effectively used to improve the accuracy of photo-z estimates.
SEDEBLEND: a new method for deblending spectral energy distributions in confused imaging
NASA Astrophysics Data System (ADS)
MacKenzie, Todd P.; Scott, Douglas; Swinbank, Mark
2016-11-01
For high-redshift submillimetre or millimetre sources detected with single-dish telescopes, interferometric follow-up has shown that many are multiple submillimetre galaxies blended together. Confusion-limited Herschel observations of such targets are also available, and these sample the peak of their spectral energy distribution (SED) in the far-infrared. Many methods for analysing these data have been adopted, but most follow the traditional approach of extracting fluxes before model SEDs are fit, which has the potential to erase important information on degeneracies among fitting parameters and glosses over the intricacies of confusion noise. Here, we adapt the forward-modelling method that we originally developed to disentangle a high-redshift strongly lensed galaxy group, in order to tackle this general problem in a more statistically rigorous way, by combining source deblending and SED fitting into the same procedure. We call this method `SEDeblend'. As an application, we derive constraints on far-infrared luminosities and dust temperatures for sources within the ALMA follow-up of the LABOCA Extended Chandra Deep Field South Submillimetre Survey. We find an average dust temperature for an 870-μm-selected sample of (33.9 ± 2.4) K for the full survey. When selection effects of the sample are considered, we find no evidence that the average dust temperature evolves with redshift for sources with redshifts greater than about 1.5, when compared to those with redshifts between 0.1 and 1.5.
Spectacle and SpecViz: New Spectral Analysis and Visualization Tools
NASA Astrophysics Data System (ADS)
Earl, Nicholas; Peeples, Molly; JDADF Developers
2018-01-01
A new era of spectroscopic exploration of our universe is being ushered in with advances in instrumentation and next-generation space telescopes. The advent of new spectroscopic instruments has highlighted a pressing need for tools scientists can use to analyze and explore these new data. We have developed Spectacle, a software package for analyzing both synthetic spectra from hydrodynamic simulations as well as real COS data with an aim of characterizing the behavior of the circumgalactic medium. It allows easy reduction of spectral data and analytic line generation capabilities. Currently, the package is focused on automatic determination of absorption regions and line identification with custom line list support, simultaneous line fitting using Voigt profiles via least-squares or MCMC methods, and multi-component modeling of blended features. Non-parametric measurements, such as equivalent widths, delta v90, and full-width half-max are available. Spectacle also provides the ability to compose compound models used to generate synthetic spectra allowing the user to define various LSF kernels, uncertainties, and to specify sampling.We also present updates to the visualization tool SpecViz, developed in conjunction with the JWST data analysis tools development team, to aid in the exploration of spectral data. SpecViz is an open source, Python-based spectral 1-D interactive visualization and analysis application built around high-performance interactive plotting. It supports handling general and instrument-specific data and includes advanced tool-sets for filtering and detrending one-dimensional data, along with the ability to isolate absorption regions using slicing and manipulate spectral features via spectral arithmetic. Multi-component modeling is also possible using a flexible model fitting tool-set that supports custom models to be used with various fitting routines. It also features robust user extensions such as custom data loaders and support for user-created plugins that add new functionality.This work was supported in part by HST AR #13919, HST GO #14268, and HST AR #14560.
Image-based spectral distortion correction for photon-counting x-ray detectors
Ding, Huanjun; Molloi, Sabee
2012-01-01
Purpose: To investigate the feasibility of using an image-based method to correct for distortions induced by various artifacts in the x-ray spectrum recorded with photon-counting detectors for their application in breast computed tomography (CT). Methods: The polyenergetic incident spectrum was simulated with the tungsten anode spectral model using the interpolating polynomials (TASMIP) code and carefully calibrated to match the x-ray tube in this study. Experiments were performed on a Cadmium-Zinc-Telluride (CZT) photon-counting detector with five energy thresholds. Energy bins were adjusted to evenly distribute the recorded counts above the noise floor. BR12 phantoms of various thicknesses were used for calibration. A nonlinear function was selected to fit the count correlation between the simulated and the measured spectra in the calibration process. To evaluate the proposed spectral distortion correction method, an empirical fitting derived from the calibration process was applied on the raw images recorded for polymethyl methacrylate (PMMA) phantoms of 8.7, 48.8, and 100.0 mm. Both the corrected counts and the effective attenuation coefficient were compared to the simulated values for each of the five energy bins. The feasibility of applying the proposed method to quantitative material decomposition was tested using a dual-energy imaging technique with a three-material phantom that consisted of water, lipid, and protein. The performance of the spectral distortion correction method was quantified using the relative root-mean-square (RMS) error with respect to the expected values from simulations or areal analysis of the decomposition phantom. Results: The implementation of the proposed method reduced the relative RMS error of the output counts in the five energy bins with respect to the simulated incident counts from 23.0%, 33.0%, and 54.0% to 1.2%, 1.8%, and 7.7% for 8.7, 48.8, and 100.0 mm PMMA phantoms, respectively. The accuracy of the effective attenuation coefficient of PMMA estimate was also improved with the proposed spectral distortion correction. Finally, the relative RMS error of water, lipid, and protein decompositions in dual-energy imaging was significantly reduced from 53.4% to 6.8% after correction was applied. Conclusions: The study demonstrated that dramatic distortions in the recorded raw image yielded from a photon-counting detector could be expected, which presents great challenges for applying the quantitative material decomposition method in spectral CT. The proposed semi-empirical correction method can effectively reduce these errors caused by various artifacts, including pulse pileup and charge sharing effects. Furthermore, rather than detector-specific simulation packages, the method requires a relatively simple calibration process and knowledge about the incident spectrum. Therefore, it may be used as a generalized procedure for the spectral distortion correction of different photon-counting detectors in clinical breast CT systems. PMID:22482608
NASA Astrophysics Data System (ADS)
Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei
2017-12-01
Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that has gained increasing attention because of many applications. The production of continuous background in LIBS is inevitable because of factors associated with laser energy, gate width, time delay, and experimental environment. The continuous background significantly influences the analysis of the spectrum. Researchers have proposed several background correction methods, such as polynomial fitting, Lorenz fitting and model-free methods. However, less of them apply these methods in the field of LIBS Technology, particularly in qualitative and quantitative analyses. This study proposes a method based on spline interpolation for detecting and estimating the continuous background spectrum according to its smooth property characteristic. Experiment on the background correction simulation indicated that, the spline interpolation method acquired the largest signal-to-background ratio (SBR) over polynomial fitting, Lorenz fitting and model-free method after background correction. These background correction methods all acquire larger SBR values than that acquired before background correction (The SBR value before background correction is 10.0992, whereas the SBR values after background correction by spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 26.9576, 24.6828, 18.9770, and 25.6273 respectively). After adding random noise with different kinds of signal-to-noise ratio to the spectrum, spline interpolation method acquires large SBR value, whereas polynomial fitting and model-free method obtain low SBR values. All of the background correction methods exhibit improved quantitative results of Cu than those acquired before background correction (The linear correlation coefficient value before background correction is 0.9776. Moreover, the linear correlation coefficient values after background correction using spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 0.9998, 0.9915, 0.9895, and 0.9940 respectively). The proposed spline interpolation method exhibits better linear correlation and smaller error in the results of the quantitative analysis of Cu compared with polynomial fitting, Lorentz fitting and model-free methods, The simulation and quantitative experimental results show that the spline interpolation method can effectively detect and correct the continuous background.
NASA Astrophysics Data System (ADS)
McCraig, Michael A.; Osinski, Gordon R.; Cloutis, Edward A.; Flemming, Roberta L.; Izawa, Matthew R. M.; Reddy, Vishnu; Fieber-Beyer, Sherry K.; Pompilio, Loredana; van der Meer, Freek; Berger, Jeffrey A.; Bramble, Michael S.; Applin, Daniel M.
2017-03-01
Spectroscopy in planetary science often provides the only information regarding the compositional and mineralogical make up of planetary surfaces. The methods employed when curve fitting and modelling spectra can be confusing and difficult to visualize and comprehend. Researchers who are new to working with spectra may find inadequate help or documentation in the scientific literature or in the software packages available for curve fitting. This problem also extends to the parameterization of spectra and the dissemination of derived metrics. Often, when derived metrics are reported, such as band centres, the discussion of exactly how the metrics were derived, or if there was any systematic curve fitting performed, is not included. Herein we provide both recommendations and methods for curve fitting and explanations of the terms and methods used. Techniques to curve fit spectral data of various types are demonstrated using simple-to-understand mathematics and equations written to be used in Microsoft Excel® software, free of macros, in a cut-and-paste fashion that allows one to curve fit spectra in a reasonably user-friendly manner. The procedures use empirical curve fitting, include visualizations, and ameliorates many of the unknowns one may encounter when using black-box commercial software. The provided framework is a comprehensive record of the curve fitting parameters used, the derived metrics, and is intended to be an example of a format for dissemination when curve fitting data.
[A correction method of baseline drift of discrete spectrum of NIR].
Hu, Ai-Qin; Yuan, Hong-Fu; Song, Chun-Feng; Li, Xiao-Yu
2014-10-01
In the present paper, a new correction method of baseline drift of discrete spectrum is proposed by combination of cubic spline interpolation and first order derivative. A fitting spectrum is constructed by cubic spline interpolation, using the datum in discrete spectrum as interpolation nodes. The fitting spectrum is differentiable. First order derivative is applied to the fitting spectrum to calculate derivative spectrum. The spectral wavelengths which are the same as the original discrete spectrum were taken out from the derivative spectrum to constitute the first derivative spectra of the discrete spectra, thereby to correct the baseline drift of the discrete spectra. The effects of the new method were demonstrated by comparison of the performances of multivariate models built using original spectra, direct differential spectra and the spectra pretreated by the new method. The results show that negative effects on the performance of multivariate model caused by baseline drift of discrete spectra can be effectively eliminated by the new method.
Development of Jet Noise Power Spectral Laws Using SHJAR Data
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Bridges, James
2009-01-01
High quality jet noise spectral data measured at the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent and convergent-divergent axisymmetric nozzles. Following the work of Viswanathan, velocity power factors are estimated using a least squares fit on spectral power density as a function of jet temperature and observer angle. The regression parameters are scrutinized for their uncertainty within the desired confidence margins. As an immediate application of the velocity power laws, spectral density in supersonic jets are decomposed into their respective components attributed to the jet mixing noise and broadband shock associated noise. Subsequent application of the least squares method on the shock power intensity shows that the latter also scales with some power of the shock parameter. A modified shock parameter is defined in order to reduce the dependency of the regression factors on the nozzle design point within the uncertainty margins of the least squares method.
Consistency with synchrotron emission in the bright GRB 160625B observed by Fermi
NASA Astrophysics Data System (ADS)
Ravasio, M. E.; Oganesyan, G.; Ghirlanda, G.; Nava, L.; Ghisellini, G.; Pescalli, A.; Celotti, A.
2018-05-01
We present time-resolved spectral analysis of prompt emission from GRB 160625B, one of the brightest bursts ever detected by Fermi in its nine years of operations. Standard empirical functions fail to provide an acceptable fit to the GBM spectral data, which instead require the addition of a low-energy break to the fitting function. We introduce a new fitting function, called 2SBPL, consisting of three smoothly connected power laws. Fitting this model to the data, the goodness of the fits significantly improves and the spectral parameters are well constrained. We also test a spectral model that combines non-thermal and thermal (black body) components, but find that the 2SBPL model is systematically favoured. The spectral evolution shows that the spectral break is located around Ebreak 100 keV, while the usual νFν peak energy feature Epeak evolves in the 0.5-6 MeV energy range. The slopes below and above Ebreak are consistent with the values -0.67 and -1.5, respectively, expected from synchrotron emission produced by a relativistic electron population with a low-energy cut-off. If Ebreak is interpreted as the synchrotron cooling frequency, the implied magnetic field in the emitting region is 10 Gauss, i.e. orders of magnitudes smaller than the value expected for a dissipation region located at 1013-14 cm from the central engine. The low ratio between Epeak and Ebreak implies that the radiative cooling is incomplete, contrary to what is expected in strongly magnetized and compact emitting regions.
Application of multivariate autoregressive spectrum estimation to ULF waves
NASA Technical Reports Server (NTRS)
Ioannidis, G. A.
1975-01-01
The estimation of the power spectrum of a time series by fitting a finite autoregressive model to the data has recently found widespread application in the physical sciences. The extension of this method to the analysis of vector time series is presented here through its application to ULF waves observed in the magnetosphere by the ATS 6 synchronous satellite. Autoregressive spectral estimates of the power and cross-power spectra of these waves are computed with computer programs developed by the author and are compared with the corresponding Blackman-Tukey spectral estimates. The resulting spectral density matrices are then analyzed to determine the direction of propagation and polarization of the observed waves.
Library Optimization in EDXRF Spectral Deconvolution for Multi-element Analysis of Ambient Aerosols
In multi-element analysis of atmospheric aerosols, attempts are made to fit overlapping elemental spectral lines for many elements that may be undetectable in samples due to low concentrations. Fitting with many library reference spectra has the unwanted effect of raising the an...
Shwirl: Meaningful coloring of spectral cube data with volume rendering
NASA Astrophysics Data System (ADS)
Vohl, Dany
2017-04-01
Shwirl visualizes spectral data cubes with meaningful coloring methods. The program has been developed to investigate transfer functions, which combines volumetric elements (or voxels) to set the color, and graphics shaders, functions used to compute several properties of the final image such as color, depth, and/or transparency, as enablers for scientific visualization of astronomical data. The program uses Astropy (ascl:1304.002) to handle FITS files and World Coordinate System, Qt (and PyQt) for the user interface, and VisPy, an object-oriented Python visualization library binding onto OpenGL.
NASA Astrophysics Data System (ADS)
Rahim, K. J.; Cumming, B. F.; Hallett, D. J.; Thomson, D. J.
2007-12-01
An accurate assessment of historical local Holocene data is important in making future climate predictions. Holocene climate is often obtained through proxy measures such as diatoms or pollen using radiocarbon dating. Wiggle Match Dating (WMD) uses an iterative least squares approach to tune a core with a large amount of 14C dates to the 14C calibration curve. This poster will present a new method of tuning a time series with when only a modest number of 14C dates are available. The method presented uses the multitaper spectral estimation, and it specifically makes use of a multitaper spectral coherence tuning technique. Holocene climate reconstructions are often based on a simple depth-time fit such as a linear interpolation, splines, or low order polynomials. Many of these models make use of only a small number of 14C dates, each of which is a point estimate with a significant variance. This technique attempts to tune the 14C dates to a reference series, such as tree rings, varves, or the radiocarbon calibration curve. The amount of 14C in the atmosphere is not constant, and a significant source of variance is solar activity. A decrease in solar activity coincides with an increase in cosmogenic isotope production, and an increase in cosmogenic isotope production coincides with a decrease in temperature. The method presented uses multitaper coherence estimates and adjusts the phase of the time series to line up significant line components with that of the reference series in attempt to obtain a better depth-time fit then the original model. Given recent concerns and demonstrations of the variation in estimated dates from radiocarbon labs, methods to confirm and tune the depth-time fit can aid climate reconstructions by improving and serving to confirm the accuracy of the underlying depth-time fit. Climate reconstructions can then be made on the improved depth-time fit. This poster presents a run though of this process using Chauvin Lake in the Canadian prairies and Mt. Barr Cirque Lake located in British Columbia as examples.
Measurement of the refractive index of hemoglobin solutions for a continuous spectral region
Wang, Jin; Deng, Zhichao; Wang, Xiaowan; Ye, Qing; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo
2015-01-01
Determination of the refractive index of hemoglobin solutions over a wide wavelength range remains challenging. A famous detour approach is the Kramers-Kronig (KK) analysis which can resolve the real part of complex refractive index from the imaginary part. However, KK analysis is limited by the contradiction between the requirement of semi-infinite frequency range and limited measured range. In this paper, based on the Multi-curve fitting method (MFM), continuous refractive index dispersion (CRID) of oxygenated and deoxygenated hemoglobin solutions are measured using a homemade symmetrical arm-linked apparatus in the continuous wavelength range with spectral resolution of about 0.259nm. A novel method to obtain the CRID is proposed. PMID:26203379
MASS/RADIUS CONSTRAINTS ON THE QUIESCENT NEUTRON STAR IN M13 USING HYDROGEN AND HELIUM ATMOSPHERES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catuneanu, A.; Heinke, C. O.; Sivakoff, G. R.
The mass and radius of the neutron star (NS) in low-mass X-ray binaries can be obtained by fitting the X-ray spectrum of the NS in quiescence, and the mass and radius constrains the properties of dense matter in NS cores. A critical ingredient for spectral fits is the composition of the NS atmosphere: hydrogen atmospheres are assumed in most prior work, but helium atmospheres are possible if the donor star is a helium white dwarf. Here we perform spectral fits to XMM-Newton, Chandra, and ROSAT data of a quiescent NS in the globular cluster M13. This NS has the smallestmore » inferred radius from previous spectral fitting. Assuming an atmosphere composed of hydrogen, we find a significantly larger radius, more consistent with those from other quiescent NSs. With a helium atmosphere (an equally acceptable fit), we find even larger values for the radius.« less
A catalog of M-type star candidates in the LAMOST data release 1
NASA Astrophysics Data System (ADS)
Zhong, Jing; Lépine, Sébastien; Li, Jing; Chen, Li; Hou, Jinliang
2016-08-01
In this work, we present a set of M-type star candidates selected from the LAMOST DR1. A discrimination method with the spectral index diagram is used to separate M giants and M dwarfs. Then, we have successfully assembled a set of M giants templates from M0 to M6, using the spectra identified from the LAMOST spectral database. After combining the M dwarf templates in Zhong et al. (2015a) and the new created M giant templates, we use the M-type spectral library to perform the template-fit method to classify and identify M-type stars in the LAMOST DR1. A catalog of M-type star candidates including 8639 M giants and 101690 M dwarfs/subdwarfs is provided. As an additional results, we also present other fundamental parameters like proper motion, photometry, radial velocity and spectroscopic distance.
The extended Fourier transform for 2D spectral estimation.
Armstrong, G S; Mandelshtam, V A
2001-11-01
We present a linear algebraic method, named the eXtended Fourier Transform (XFT), for spectral estimation from truncated time signals. The method is a hybrid of the discrete Fourier transform (DFT) and the regularized resolvent transform (RRT) (J. Chen et al., J. Magn. Reson. 147, 129-137 (2000)). Namely, it estimates the remainder of a finite DFT by RRT. The RRT estimation corresponds to solution of an ill-conditioned problem, which requires regularization. The regularization depends on a parameter, q, that essentially controls the resolution. By varying q from 0 to infinity one can "tune" the spectrum between a high-resolution spectral estimate and the finite DFT. The optimal value of q is chosen according to how well the data fits the form of a sum of complex sinusoids and, in particular, the signal-to-noise ratio. Both 1D and 2D XFT are presented with applications to experimental NMR signals. Copyright 2001 Academic Press.
MODELING THE NEAR-UV BAND OF GK STARS. II. NON-LTE MODELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ian Short, C.; Campbell, Eamonn A.; Pickup, Heather
We present a grid of atmospheric models and synthetic spectral energy distributions (SEDs) for late-type dwarfs and giants of solar and 1/3 solar metallicity with many opacity sources computed in self-consistent non-local thermodynamic equilibrium (NLTE), and compare them to the LTE grid of Short and Hauschildt (Paper I). We describe, for the first time, how the NLTE treatment affects the thermal equilibrium of the atmospheric structure (T({tau}) relation) and the SED as a finely sampled function of T{sub eff}, log g, and [A/H] among solar metallicity and mildly metal-poor red giants. We compare the computed SEDs to the library ofmore » observed spectrophotometry described in Paper I across the entire visible band, and in the blue and red regions of the spectrum separately. We find that for the giants of both metallicities, the NLTE models yield best-fit T{sub eff} values that are 30-90 K lower than those provided by LTE models, while providing greater consistency between log g values, and, for Arcturus, T{sub eff} values, fitted separately to the blue and red spectral regions. There is marginal evidence that NLTE models give more consistent best-fit T{sub eff} values between the red and blue bands for earlier spectral classes among the solar metallicity GK giants than they do for the later classes, but no model fits the blue-band spectrum well for any class. For the two dwarf spectral classes that we are able to study, the effect of NLTE on derived parameters is less significant. We compare our derived T{sub eff} values to several other spectroscopic and photometric T{sub eff} calibrations for red giants, including one that is less model dependent based on the infrared flux method (IRFM). We find that the NLTE models provide slightly better agreement to the IRFM calibration among the warmer stars in our sample, while giving approximately the same level of agreement for the cooler stars.« less
Emissivity independent optical pyrometer
Earl, Dennis Duncan; Kisner, Roger A.
2017-04-04
Disclosed herein are representative embodiments of methods, apparatus, and systems for determining the temperature of an object using an optical pyrometer. Certain embodiments of the disclosed technology allow for making optical temperature measurements that are independent of the surface emissivity of the object being sensed. In one of the exemplary embodiments disclosed herein, a plurality of spectral radiance measurements at a plurality of wavelengths is received from a surface of an object being measured. The plurality of the spectral radiance measurements is fit to a scaled version of a black body curve, the fitting comprising determining a temperature of the scaled version of the black body curve. The temperature is then output. The present disclosure is not to be construed as limiting and is instead directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone or in various combinations and subcombinations with one another.
Methyl Group Internal Rotation in the Pure Rotational Spectrum of 1,1-DIFLUOROACETONE
NASA Astrophysics Data System (ADS)
Grubbs, G. S. Grubbs, II; Cooke, S. A.; Groner, P.
2011-06-01
We have used chirped pulse Fourier transform microwave spectroscopy to record the pure rotational spectrum of the title molecule. The spectrum was doubled owing to the internal rotation of the methyl group. The spectrum has been assigned and two approaches to the spectral analysis have been performed. In the first case, the A and E components were fit separately using a principal axis method with the SPFIT code of Pickett. In the second case, the A and E states were fit simultaneously using the ERHAM code. For a satisfactory analysis of the spectral data it has been found that the choice of Hamiltonian reduction, i.e. Watson A or S, is very important. The barrier to the internal rotation has been determined to be 261.1(8) Cm-1 and it will be compared to that of acetone and other halogenated acetone species recently studied in our laboratory.
Recognition of a porphyry system using ASTER data in Bideghan - Qom province (central of Iran)
NASA Astrophysics Data System (ADS)
Feizi, F.; Mansouri, E.
2014-07-01
The Bideghan area is located south of the Qom province (central of Iran). The most impressive geological features in the studied area are the Eocene sequences which are intruded by volcanic rocks with basic compositions. Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) image processing have been used for hydrothermal alteration mapping and lineaments identification in the investigated area. In this research false color composite, band ratio, Principal Component Analysis (PCA), Least Square Fit (LS-Fit) and Spectral Angel Mapping (SAM) techniques were applied on ASTER data and argillic, phyllic, Iron oxide and propylitic alteration zones were separated. Lineaments were identified by aid of false color composite, high pass filters and hill-shade DEM techniques. The results of this study demonstrate the usefulness of remote sensing method and ASTER multi-spectral data for alteration and lineament mapping. Finally, the results were confirmed by field investigation.
Using an interference spectrum as a short-range absolute rangefinder with fiber and wideband source
NASA Astrophysics Data System (ADS)
Hsieh, Tsung-Han; Han, Pin
2018-06-01
Recently, a new type of displacement instrument using spectral-interference has been found, which utilizes fiber and a wideband light source to produce an interference spectrum. In this work, we develop a method that measures the absolute air-gap distance by taking wavelengths at two interference spectra minima. The experimental results agree with the theoretical calculations. It is also utilized to produce and control the spectral switch, which is much easier than other previous methods using other control mechanisms. A scanning mode of this scheme for stepped surface measurement is suggested, which is verified by a standard thickness gauge test. Our scheme is different to one available on the market that may use a curve-fitting method, and some comparisons are made between our scheme and that one.
Monte Carlo calculation of dynamical properties of the two-dimensional Hubbard model
NASA Technical Reports Server (NTRS)
White, S. R.; Scalapino, D. J.; Sugar, R. L.; Bickers, N. E.
1989-01-01
A new method is introduced for analytically continuing imaginary-time data from quantum Monte Carlo calculations to the real-frequency axis. The method is based on a least-squares-fitting procedure with constraints of positivity and smoothness on the real-frequency quantities. Results are shown for the single-particle spectral-weight function and density of states for the half-filled, two-dimensional Hubbard model.
Multi-filter spectrophotometry of quasar environments
NASA Technical Reports Server (NTRS)
Craven, Sally E.; Hickson, Paul; Yee, Howard K. C.
1993-01-01
A many-filter photometric technique for determining redshifts and morphological types, by fitting spectral templates to spectral energy distributions, has good potential for application in surveys. Despite success in studies performed on simulated data, the results have not been fully reliable when applied to real, low signal-to-noise data. We are investigating techniques to improve the fitting process.
Numerical techniques for high-throughput reflectance interference biosensing
NASA Astrophysics Data System (ADS)
Sevenler, Derin; Ünlü, M. Selim
2016-06-01
We have developed a robust and rapid computational method for processing the raw spectral data collected from thin film optical interference biosensors. We have applied this method to Interference Reflectance Imaging Sensor (IRIS) measurements and observed a 10,000 fold improvement in processing time, unlocking a variety of clinical and scientific applications. Interference biosensors have advantages over similar technologies in certain applications, for example highly multiplexed measurements of molecular kinetics. However, processing raw IRIS data into useful measurements has been prohibitively time consuming for high-throughput studies. Here we describe the implementation of a lookup table (LUT) technique that provides accurate results in far less time than naive methods. We also discuss an additional benefit that the LUT method can be used with a wider range of interference layer thickness and experimental configurations that are incompatible with methods that require fitting the spectral response.
Broadband Spectral Modeling of the Extreme Gigahertz-peaked Spectrum Radio Source PKS B0008-421
NASA Astrophysics Data System (ADS)
Callingham, J. R.; Gaensler, B. M.; Ekers, R. D.; Tingay, S. J.; Wayth, R. B.; Morgan, J.; Bernardi, G.; Bell, M. E.; Bhat, R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Ewall-Wice, A.; Feng, L.; Greenhill, L. J.; Hazelton, B. J.; Hindson, L.; Hurley-Walker, N.; Jacobs, D. C.; Johnston-Hollitt, M.; Kaplan, D. L.; Kudrayvtseva, N.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Srivani, K. S.; Subrahmanyan, R.; Udaya Shankar, N.; Webster, R. L.; Williams, A.; Williams, C. L.
2015-08-01
We present broadband observations and spectral modeling of PKS B0008-421 and identify it as an extreme gigahertz-peaked spectrum (GPS) source. PKS B0008-421 is characterized by the steepest known spectral slope below the turnover, close to the theoretical limit of synchrotron self-absorption, and the smallest known spectral width of any GPS source. Spectral coverage of the source spans from 0.118 to 22 GHz, which includes data from the Murchison Widefield Array and the wide bandpass receivers on the Australia Telescope Compact Array. We have implemented a Bayesian inference model fitting routine to fit the data with internal free-free absorption (FFA), single- and double-component FFA in an external homogeneous medium, FFA in an external inhomogeneous medium, or single- and double-component synchrotron self-absorption models, all with and without a high-frequency exponential break. We find that without the inclusion of a high-frequency break these models cannot accurately fit the data, with significant deviations above and below the peak in the radio spectrum. The addition of a high-frequency break provides acceptable spectral fits for the inhomogeneous FFA and double-component synchrotron self-absorption models, with the inhomogeneous FFA model statistically favored. The requirement of a high-frequency spectral break implies that the source has ceased injecting fresh particles. Additional support for the inhomogeneous FFA model as being responsible for the turnover in the spectrum is given by the consistency between the physical parameters derived from the model fit and the implications of the exponential spectral break, such as the necessity of the source being surrounded by a dense ambient medium to maintain the peak frequency near the gigahertz region. This implies that PKS B0008-421 should display an internal H i column density greater than 1020 cm-2. The discovery of PKS B0008-421 suggests that the next generation of low radio frequency surveys could reveal a large population of GPS sources that have ceased activity, and that a portion of the ultra-steep-spectrum source population could be composed of these GPS sources in a relic phase.
MEM spectral analysis for predicting influenza epidemics in Japan.
Sumi, Ayako; Kamo, Ken-ichi
2012-03-01
The prediction of influenza epidemics has long been the focus of attention in epidemiology and mathematical biology. In this study, we tested whether time series analysis was useful for predicting the incidence of influenza in Japan. The method of time series analysis we used consists of spectral analysis based on the maximum entropy method (MEM) in the frequency domain and the nonlinear least squares method in the time domain. Using this time series analysis, we analyzed the incidence data of influenza in Japan from January 1948 to December 1998; these data are unique in that they covered the periods of pandemics in Japan in 1957, 1968, and 1977. On the basis of the MEM spectral analysis, we identified the periodic modes explaining the underlying variations of the incidence data. The optimum least squares fitting (LSF) curve calculated with the periodic modes reproduced the underlying variation of the incidence data. An extension of the LSF curve could be used to predict the incidence of influenza quantitatively. Our study suggested that MEM spectral analysis would allow us to model temporal variations of influenza epidemics with multiple periodic modes much more effectively than by using the method of conventional time series analysis, which has been used previously to investigate the behavior of temporal variations in influenza data.
NASA Astrophysics Data System (ADS)
Didenko, A. N.; Nosyrev, M. Yu.; Shevchenko, B. F.; Gilmanova, G. Z.
2017-11-01
The depth of the base of the magnetoactive layer and the geothermal gradient in the Sikhote Alin crust are estimated based on a method determining the Curie depth point of magnetoactive masses by using spectral analysis of the anomalous magnetic field. A detailed map of the geothermal gradient is constructed for the first time for the Sikhote Alin and adjacent areas of the Central Asian belt. Analysis of this map shows that the zones with a higher geothermal gradient geographically fit the areas with a higher level of seismicity.
Boore, David M.; Di Alessandro, Carola; Abrahamson, Norman A.
2014-01-01
The stochastic method of simulating ground motions requires the specification of the shape and scaling with magnitude of the source spectrum. The spectral models commonly used are either single-corner-frequency or double-corner-frequency models, but the latter have no flexibility to vary the high-frequency spectral levels for a specified seismic moment. Two generalized double-corner-frequency ω2 source spectral models are introduced, one in which two spectra are multiplied together, and another where they are added. Both models have a low-frequency dependence controlled by the seismic moment, and a high-frequency spectral level controlled by the seismic moment and a stress parameter. A wide range of spectral shapes can be obtained from these generalized spectral models, which makes them suitable for inversions of data to obtain spectral models that can be used in ground-motion simulations in situations where adequate data are not available for purely empirical determinations of ground motions, as in stable continental regions. As an example of the use of the generalized source spectral models, data from up to 40 stations from seven events, plus response spectra at two distances and two magnitudes from recent ground-motion prediction equations, were inverted to obtain the parameters controlling the spectral shapes, as well as a finite-fault factor that is used in point-source, stochastic-method simulations of ground motion. The fits to the data are comparable to or even better than those from finite-fault simulations, even for sites close to large earthquakes.
Effect of gold photocathode contamination on a flat spectral response X-ray diode
NASA Astrophysics Data System (ADS)
Wang, Kun-lun; Zhang, Si-qun; Zhou, Shao-tong; Huang, Xian-bin; Ren, Xiao-dong; Dan, Jia-kun; Xu, Qiang
2018-03-01
A detector with an approximately flat spectral response is important for diagnosing intense thermal X-ray flux. A flat-spectral-response X-ray diode (FSR-XRD) utilizes a gold photocathode X-ray diode and a specially configured gold filter to give rise to a nearly flat spectral response in the photon energy range of 100-4000 eV. It has been observed that the spectral responses of several FSR-XRDs changed after a few shots of z-pinch experiments on the Primary Test Stand facility. This paper presents an analysis of the changes by fitting the spectral responses of the gold photocathodes using a model with a free parameter which characterizes the thickness of the contamination. The spectral responses of FSR-XRDs were calibrated with synchrotron radiation, and several cleaning methods were tested with the calibration. Considering the results of model and cleaning, it may be anticipated that contamination was the major reason of the response changing. Contamination worsened the flatness of the spectral response of the FSR-XRD and decreased the averaged response, hence it is important to avoid contamination. Current results indicate a requirement of further study of the contamination.
Spectrally resolved far-fields of terahertz quantum cascade lasers.
Brandstetter, Martin; Schönhuber, Sebastian; Krall, Michael; Kainz, Martin A; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron M; Strasser, Gottfried; Unterrainer, Karl
2016-10-31
We demonstrate a convenient and fast method to measure the spectrally resolved far-fields of multimode terahertz quantum cascade lasers by combining a microbolometer focal plane array with an FTIR spectrometer. Far-fields of fundamental TM0 and higher lateral order TM1 modes of multimode Fabry-Pérot type lasers have been distinguished, which very well fit to the results obtained by a 3D finite-element simulation. Furthermore, multimode random laser cavities have been investigated, analyzing the contribution of each single laser mode to the total far-field. The presented method is thus an important tool to gain in-depth knowledge of the emission properties of multimode laser cavities at terahertz frequencies, which become increasingly important for future sensing applications.
NASA Astrophysics Data System (ADS)
Alexandrou, Constantia; Athenodorou, Andreas; Cichy, Krzysztof; Constantinou, Martha; Horkel, Derek P.; Jansen, Karl; Koutsou, Giannis; Larkin, Conor
2018-04-01
We compare lattice QCD determinations of topological susceptibility using a gluonic definition from the gradient flow and a fermionic definition from the spectral-projector method. We use ensembles with dynamical light, strange and charm flavors of maximally twisted mass fermions. For both definitions of the susceptibility we employ ensembles at three values of the lattice spacing and several quark masses at each spacing. The data are fitted to chiral perturbation theory predictions with a discretization term to determine the continuum chiral condensate in the massless limit and estimate the overall discretization errors. We find that both approaches lead to compatible results in the continuum limit, but the gluonic ones are much more affected by cutoff effects. This finally yields a much smaller total error in the spectral-projector results. We show that there exists, in principle, a value of the spectral cutoff which would completely eliminate discretization effects in the topological susceptibility.
Open Systems with Error Bounds: Spin-Boson Model with Spectral Density Variations.
Mascherpa, F; Smirne, A; Huelga, S F; Plenio, M B
2017-03-10
In the study of open quantum systems, one of the most common ways to describe environmental effects on the reduced dynamics is through the spectral density. However, in many models this object cannot be computed from first principles and needs to be inferred on phenomenological grounds or fitted to experimental data. Consequently, some uncertainty regarding its form and parameters is unavoidable; this in turn calls into question the accuracy of any theoretical predictions based on a given spectral density. Here, we focus on the spin-boson model as a prototypical open quantum system, find two error bounds on predicted expectation values in terms of the spectral density variation considered, and state a sufficient condition for the strongest one to apply. We further demonstrate an application of our result, by bounding the error brought about by the approximations involved in the hierarchical equations of motion resolution method for spin-boson dynamics.
NASA Astrophysics Data System (ADS)
Yang, L.; Lin, H.; Plimmer, M. D.; Feng, X. J.; Zhang, J. T.
2018-05-01
The performances of a multi-spectral fit for the spectra of pressure-broadened overlapping lines (R9F1, R9F2) of 12CH4 in binary mixtures with N2 were studied by applying different lineshape models, from the simplest Voigt profile (VP) to the Harmann-Tran profile (HTP). Line-mixing was approximated in the first order in the spectral fits. Data were acquired using a high-resolution cavity ring-down spectrometer of minimum detectable absorption coefficient of 2.8 × 10-12 cm-1. The lines were observed with a signal-to-noise ratio of 19 365 for pressures from 5 to 40 kPa. The study reveals that the multi-spectral fits using the HTP and the speed-dependent Nelkin-Ghatak profile (SDNGP) yield the best among all tested. The two models gave the maximum relative residuals of less than 0.065 %. All things considered, the HTP and the SDNGP appear to be the most reliable models for treating the present case of multi-spectral fitting of unresolved dual-component spectra.
NASA Astrophysics Data System (ADS)
Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.
2018-02-01
A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.
Interactive Spectral Analysis and Computation (ISAAC)
NASA Technical Reports Server (NTRS)
Lytle, D. M.
1992-01-01
Isaac is a task in the NSO external package for IRAF. A descendant of a FORTRAN program written to analyze data from a Fourier transform spectrometer, the current implementation has been generalized sufficiently to make it useful for general spectral analysis and other one dimensional data analysis tasks. The user interface for Isaac is implemented as an interpreted mini-language containing a powerful, programmable vector calculator. Built-in commands provide much of the functionality needed to produce accurate line lists from input spectra. These built-in functions include automated spectral line finding, least squares fitting of Voigt profiles to spectral lines including equality constraints, various filters including an optimal filter construction tool, continuum fitting, and various I/O functions.
Shape selection in Landsat time series: A tool for monitoring forest dynamics
Gretchen G. Moisen; Mary C. Meyer; Todd A. Schroeder; Xiyue Liao; Karen G. Schleeweis; Elizabeth A. Freeman; Chris Toney
2016-01-01
We present a new methodology for fitting nonparametric shape-restricted regression splines to time series of Landsat imagery for the purpose of modeling, mapping, and monitoring annual forest disturbance dynamics over nearly three decades. For each pixel and spectral band or index of choice in temporal Landsat data, our method delivers a smoothed rendition of...
NASA Astrophysics Data System (ADS)
Han, Ming
In this dissertation, detailed and systematic theoretical and experimental study of low-finesse extrinsic Fabry-Perot interferometric (EFPI) fiber optic sensors together with their signal processing methods for white-light systems are presented. The work aims to provide a better understanding of the operational principle of EFPI fiber optic sensors, and is useful and important in the design, optimization, fabrication and application of single mode fiber(SMF) EFPI (SMF-EFPI) and multimode fiber (MMF) EFPI (MMF-EFPI) sensor systems. The cases for SMF-EFPI and MMF-EFPI sensors are separately considered. In the analysis of SMF-EFPI sensors, the light transmitted in the fiber is approximated by a Gaussian beam and the obtained spectral transfer function of the sensors includes an extra phase shift due to the light coupling in the fiber end-face. This extra phase shift has not been addressed by previous researchers and is of great importance for high accuracy and high resolution signal processing of white-light SMF-EFPI systems. Fringe visibility degradation due to gap-length increase and sensor imperfections is studied. The results indicate that the fringe visibility of a SMF-EFPI sensor is relatively insensitive to the gap-length change and sensor imperfections. Based on the spectral fringe pattern predicated by the theory of SMF-EFPI sensors, a novel curve fitting signal processing method (Type 1 curve-fitting method) is presented for white-light SMF-EFPI sensor systems. Other spectral domain signal processing methods including the wavelength-tracking, the Type 2-3 curve fitting, Fourier transform, and two-point interrogation methods are reviewed and systematically analyzed. Experiments were carried out to compare the performances of these signal processing methods. The results have shown that the Type 1 curve fitting method achieves high accuracy, high resolution, large dynamic range, and the capability of absolute measurement at the same time, while others either have less resolution, or are not capable of absolute measurement. Previous mathematical models for MMF-EFPI sensors are all based on geometric optics; therefore their applications have many limitations. In this dissertation, a modal theory is developed that can be used in any situations and is more accurate. The mathematical description of the spectral fringes of MMF-EFPI sensors is obtained by the modal theory. Effect on the fringe visibility of system parameters, including the sensor head structure, the fiber parameters, and the mode power distribution in the MMF of the MMF-EFPI sensors, is analyzed. Experiments were carried out to validate the theory. Fundamental mechanism that causes the degradation of the fringe visibility in MMF-EFPI sensors are revealed. It is shown that, in some situations at which the fringe visibility is important and difficult to achieve, a simple method of launching the light into the MMF-EFPI sensor system from the output of a SMF could be used to improve the fringe visibility and to ease the fabrication difficulties of MMF-EFPI sensors. Signal processing methods that are well-understood in white-light SMF-EFPI sensor systems may exhibit new aspects when they are applied to white-light MMF-EFPI sensor systems. This dissertation reveals that the variations of mode power distribution (MPD) in the MMF could cause phase variations of the spectral fringes from a MMF-EFPI sensor and introduce measurement errors for a signal processing method in which the phase information is used. This MPD effect on the wavelength-tracking method in white-light MMF-EFPI sensors is theoretically analyzed. The fringe phases changes caused by MPD variations were experimentally observed and thus the MFD effect is validated.
Determining index of refraction from polarimetric hyperspectral radiance measurements
NASA Astrophysics Data System (ADS)
Martin, Jacob A.; Gross, Kevin C.
2015-09-01
Polarimetric hyperspectral imaging (P-HSI) combines two of the most common remote sensing modalities. This work leverages the combination of these techniques to improve material classification. Classifying and identifying materials requires parameters which are invariant to changing viewing conditions, and most often a material's reflectivity or emissivity is used. Measuring these most often requires assumptions be made about the material and atmospheric conditions. Combining both polarimetric and hyperspectral imaging, we propose a method to remotely estimate the index of refraction of a material. In general, this is an underdetermined problem because both the real and imaginary components of index of refraction are unknown at every spectral point. By modeling the spectral variation of the index of refraction using a few parameters, however, the problem can be made overdetermined. A number of different functions can be used to describe this spectral variation, and some are discussed here. Reducing the number of spectral parameters to fit allows us to add parameters which estimate atmospheric downwelling radiance and transmittance. Additionally, the object temperature is added as a fit parameter. The set of these parameters that best replicate the measured data is then found using a bounded Nelder-Mead simplex search algorithm. Other search algorithms are also examined and discussed. Results show that this technique has promise but also some limitations, which are the subject of ongoing work.
NASA Technical Reports Server (NTRS)
Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Rinsland, C. P.
1994-01-01
High-resolution (0.01/cm) absorption spectra of lean mixtures of CH4 in dry air were recorded with the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory on Kitt Peak at various temperatures between 24 and -61 C. The spectra have been analyzed to determine the values at room temperature of pressure-broadened widths and pressure-induced shifts of more than 740 transitions. The temperature dependence of air-broadened widths and pressure-induced shifts was deduced for approx. 370 transitions in the nu(sub 1) + nu(sub 4), nu(sub 3) + nu(sub 4), and nu(sub 2) + nu(sub 3) bands of (12)CH4 located between 4118 and 4615/cm. These results were obtained by analyzing a total of 29 spectra simultaneously using a multi-spectral non-linear least-squares fitting technique. This new technique allowed the determination of correlated spectral line parameters (e.g. intensity and broadening coefficient) better than the procedure of averaging values obtained by fitting the spectra individually. This method also provided a direct determination of the uncertainties in the retrieved parameters due to random errors. For each band analysed in this study the dependence of the various spectral line parameters upon the tetrahedral symmetry species and the rotational quantum numbers of the transitions is also presented.
Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada
NASA Technical Reports Server (NTRS)
Swayze, Gregg; Clark, Roger N.; Kruse, Fred; Sutley, Steve; Gallagher, Andrea
1992-01-01
Mineral abundance maps of 18 minerals were made of the Cuprite Mining District using 1990 AVIRIS data and the Multiple Spectral Feature Mapping Algorithm (MSFMA) as discussed in Clark et al. This technique uses least-squares fitting between a scaled laboratory reference spectrum and ground calibrated AVIRIS data for each pixel. Multiple spectral features can be fitted for each mineral and an unlimited number of minerals can be mapped simultaneously. Quality of fit and depth from continuum numbers for each mineral are calculated for each pixel and the results displayed as a multicolor image.
SpecViz: Interactive Spectral Data Analysis
NASA Astrophysics Data System (ADS)
Earl, Nicholas Michael; STScI
2016-06-01
The astronomical community is about to enter a new generation of scientific enterprise. With next-generation instrumentation and advanced capabilities, the need has arisen to equip astronomers with the necessary tools to deal with large, multi-faceted data. The Space Telescope Science Institute has initiated a data analysis forum for the creation, development, and maintenance of software tools for the interpretation of these new data sets. SpecViz is a spectral 1-D interactive visualization and analysis application built with Python in an open source development environment. A user-friendly GUI allows for a fast, interactive approach to spectral analysis. SpecViz supports handling of unique and instrument-specific data, incorporation of advanced spectral unit handling and conversions in a flexible, high-performance interactive plotting environment. Active spectral feature analysis is possible through interactive measurement and statistical tools. It can be used to build wide-band SEDs, with the capability of combining or overplotting data products from various instruments. SpecViz sports advanced toolsets for filtering and detrending spectral lines; identifying, isolating, and manipulating spectral features; as well as utilizing spectral templates for renormalizing data in an interactive way. SpecViz also includes a flexible model fitting toolset that allows for multi-component models, as well as custom models, to be used with various fitting and decomposition routines. SpecViz also features robust extension via custom data loaders and connection to the central communication system underneath the interface for more advanced control. Incorporation with Jupyter notebooks via connection with the active iPython kernel allows for SpecViz to be used in addition to a user’s normal workflow without demanding the user drastically alter their method of data analysis. In addition, SpecViz allows the interactive analysis of multi-object spectroscopy in the same straight-forward, consistent way. Through the development of such tools, STScI hopes to unify astronomical data analysis software for JWST and other instruments, allowing for efficient, reliable, and consistent scientific results.
A New and Fast Method for Smoothing Spectral Imaging Data
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Liu, Ming; Davis, Curtiss O.
1998-01-01
The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) acquires spectral imaging data covering the 0.4 - 2.5 micron wavelength range in 224 10-nm-wide channels from a NASA ER-2 aircraft at 20 km. More than half of the spectral region is affected by atmospheric gaseous absorption. Over the past decade, several techniques have been used to remove atmospheric effects from AVIRIS data for the derivation of surface reflectance spectra. An operational atmosphere removal algorithm (ATREM), which is based on theoretical modeling of atmospheric absorption and scattering effects, has been developed and updated for deriving surface reflectance spectra from AVIRIS data. Due to small errors in assumed wavelengths and errors in line parameters compiled on the HITRAN database, small spikes (particularly near the centers of the 0.94- and 1.14-micron water vapor bands) are present in this spectrum. Similar small spikes are systematically present in entire ATREM output cubes. These spikes have distracted geologists who are interested in studying surface mineral features. A method based on the "global" fitting of spectra with low order polynomials or other functions for removing these weak spikes has recently been developed by Boardman (this volume). In this paper, we describe another technique, which fits spectra "locally" based on cubic spline smoothing, for quick post processing of ATREM apparent reflectance spectra derived from AVIRIS data. Results from our analysis of AVIRIS data acquired over Cuprite mining district in Nevada in June of 1995 are given. Comparisons between our smoothed spectra and those derived with the empirical line method are presented.
NASA Technical Reports Server (NTRS)
Kirkpatrick, J. D.; Kelly, Douglas M.; Rieke, George H.; Liebert, James; Allard, France; Wehrse, Rainer
1993-01-01
Red/infrared (0.6-1.5 micron) spectra are presented for a sequence of well-studied M dwarfs ranging from M2 through M9. A variety of temperature-sensitive features useful for spectral classification are identified. Using these features, the spectral data are compared to recent theoretical models, from which a temperature scale is assigned. The red portion of the model spectra provide reasonably good fits for dwarfs earlier than M6. For layer types, the infrared region provides a more reliable fit to the observations. In each case, the wavelength region used includes the broad peak of the energy distribution. For a given spectral type, the derived temperature sequence assigns higher temperatures than have earlier studies - the difference becoming more pronounced at lower luminosities. The positions of M dwarfs on the H-R diagram are, as a result, in closer agreement with theoretical tracks of the lower main sequence.
Zhang, J.-H.; Zhou, Z.-M.; Wang, P.-J.; Yao, F.-M.; Yang, L.
2011-01-01
The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area. The result showed that for a pure snow spectrum, the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1030 nm wavelength. Compared with fresh snow, the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300~1300, 1700~1800 and 2200~2300 nm, the lowest was from the compacted snow and frozen ice. For the vegetation and snow mixed spectral characteristics, it was indicated that the spectral reflectance increased for the snow-covered land types(including pine leaf with snow and pine leaf on snow background), due to the influence of snow background in the range of 350~1300 nm. However, the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic. In the end, based on the spectrum analysis of snow, vegetation, and mixed snow/vegetation pixels, the mixed spectral fitting equations were established, and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones(correlation coefficient R2=0.9509).
Low resolution spectroscopic investigation of Am stars using Automated method
NASA Astrophysics Data System (ADS)
Sharma, Kaushal; Joshi, Santosh; Singh, Harinder P.
2018-04-01
The automated method of full spectrum fitting gives reliable estimates of stellar atmospheric parameters (Teff, log g and [Fe/H]) for late A, F, G, and early K type stars. Recently, the technique was further improved in the cooler regime and the validity range was extended up to a spectral type of M6 - M7 (Teff˜ 2900 K). The present study aims to explore the application of this method on the low-resolution spectra of Am stars, a class of chemically peculiar stars, to examine its robustness for these objects. We use ULySS with the Medium-resolution INT Library of Empirical Spectra (MILES) V2 spectral interpolator for parameter determination. The determined Teff and log g values are found to be in good agreement with those obtained from high-resolution spectroscopy.
NASA Technical Reports Server (NTRS)
Clark, Roger N.; Swayze, Gregg A.
1995-01-01
One of the challenges of Imaging Spectroscopy is the identification, mapping and abundance determination of materials, whether mineral, vegetable, or liquid, given enough spectral range, spectral resolution, signal to noise, and spatial resolution. Many materials show diagnostic absorption features in the visual and near infrared region (0.4 to 2.5 micrometers) of the spectrum. This region is covered by the modern imaging spectrometers such as AVIRIS. The challenge is to identify the materials from absorption bands in their spectra, and determine what specific analyses must be done to derive particular parameters of interest, ranging from simply identifying its presence to deriving its abundance, or determining specific chemistry of the material. Recently, a new analysis algorithm was developed that uses a digital spectral library of known materials and a fast, modified-least-squares method of determining if a single spectral feature for a given material is present. Clark et al. made another advance in the mapping algorithm: simultaneously mapping multiple minerals using multiple spectral features. This was done by a modified-least-squares fit of spectral features, from data in a digital spectral library, to corresponding spectral features in the image data. This version has now been superseded by a more comprehensive spectral analysis system called Tricorder.
Wiegers, Evita C; Philips, Bart W J; Heerschap, Arend; van der Graaf, Marinette
2017-12-01
J-difference editing is often used to select resonances of compounds with coupled spins in 1 H-MR spectra. Accurate phase and frequency alignment prior to subtracting J-difference-edited MR spectra is important to avoid artefactual contributions to the edited resonance. In-vivo J-difference-edited MR spectra were aligned by maximizing the normalized scalar product between two spectra (i.e., the correlation over a spectral region). The performance of our correlation method was compared with alignment by spectral registration and by alignment of the highest point in two spectra. The correlation method was tested at different SNR levels and for a broad range of phase and frequency shifts. In-vivo application of the proposed correlation method showed reduced subtraction errors and increased fit reliability in difference spectra as compared with conventional peak alignment. The correlation method and the spectral registration method generally performed equally well. However, better alignment using the correlation method was obtained for spectra with a low SNR (down to ~2) and for relatively large frequency shifts. Our correlation method for simultaneously phase and frequency alignment is able to correct both small and large phase and frequency drifts and also performs well at low SNR levels.
Simultaneous fits in ISIS on the example of GRO J1008-57
NASA Astrophysics Data System (ADS)
Kühnel, Matthias; Müller, Sebastian; Kreykenbohm, Ingo; Schwarm, Fritz-Walter; Grossberger, Christoph; Dauser, Thomas; Pottschmidt, Katja; Ferrigno, Carlo; Rothschild, Richard E.; Klochkov, Dmitry; Staubert, Rüdiger; Wilms, Joern
2015-04-01
Parallel computing and steadily increasing computation speed have led to a new tool for analyzing multiple datasets and datatypes: fitting several datasets simultaneously. With this technique, physically connected parameters of individual data can be treated as a single parameter by implementing this connection into the fit directly. We discuss the terminology, implementation, and possible issues of simultaneous fits based on the X-ray data analysis tool Interactive Spectral Interpretation System (ISIS). While all data modeling tools in X-ray astronomy allow in principle fitting data from multiple data sets individually, the syntax used in these tools is not often well suited for this task. Applying simultaneous fits to the transient X-ray binary GRO J1008-57, we find that the spectral shape is only dependent on X-ray flux. We determine time independent parameters such as, e.g., the folding energy E_fold, with unprecedented precision.
NASA Technical Reports Server (NTRS)
Atwell, William; Tylka, Allan; Dietrich, William; Badavi, Francis; Rojdev, Kristina
2011-01-01
Several methods for analyzing the particle spectra from extremely large solar proton events, called Ground-Level Enhancements (GLEs), have been developed and utilized by the scientific community to describe the solar proton energy spectra and have been further applied to ascertain the radiation exposures to humans and radio-sensitive systems, namely electronics. In this paper 12 GLEs dating back to 1956 are discussed, and the three methods for describing the solar proton energy spectra are reviewed. The three spectral fitting methodologies are EXP [an exponential in proton rigidity (R)], WEIB [Weibull fit: an exponential in proton energy], and the Band function (BAND) [a double power law in proton rigidity]. The EXP and WEIB methods use low energy (MeV) GLE solar proton data and make extrapolations out to approx.1 GeV. On the other hand, the BAND method utilizes low- and medium-energy satellite solar proton data combined with high-energy solar proton data deduced from high-latitude neutron monitoring stations. Thus, the BAND method completely describes the entire proton energy spectrum based on actual solar proton observations out to 10 GeV. Using the differential spectra produced from each of the 12 selected GLEs for each of the three methods, radiation exposures are presented and discussed in detail. These radiation exposures are then compared with the current 30-day and annual crew exposure limits and the radiation effects to electronics.
Groupwise shape analysis of the hippocampus using spectral matching
NASA Astrophysics Data System (ADS)
Shakeri, Mahsa; Lombaert, Hervé; Lippé, Sarah; Kadoury, Samuel
2014-03-01
The hippocampus is a prominent subcortical feature of interest in many neuroscience studies. Its subtle morphological changes often predicate illnesses, including Alzheimer's, schizophrenia or epilepsy. The precise location of structural differences requires a reliable correspondence between shapes across a population. In this paper, we propose an automated method for groupwise hippocampal shape analysis based on a spectral decomposition of a group of shapes to solve the correspondence problem between sets of meshes. The framework generates diffeomorphic correspondence maps across a population, which enables us to create a mean shape. Morphological changes are then located between two groups of subjects. The performance of the proposed method was evaluated on a dataset of 42 hippocampus shapes and compared with a state-of-the-art structural shape analysis approach, using spherical harmonics. Difference maps between mean shapes of two test groups demonstrates that the two approaches showed results with insignificant differences, while Gaussian curvature measures calculated between matched vertices showed a better fit and reduced variability with spectral matching.
STATISTICAL STUDY of HARD X-RAY SPECTRAL CHARACTERISTICS OF SOLAR FLARES
NASA Astrophysics Data System (ADS)
Alaoui, M.; Krucker, S.; Saint-Hilaire, P.; Lin, R. P.
2009-12-01
We investigate the spectral characteristics of 75 solar flares at the hard X-ray peak time observed by RHESSI (Ramaty High Energy Solar Spectroscopic Imager) in the energy range 12-150keV. At energies above 40keV, the Hard X-ray emission is mostly produced by bremsstrahlung of suprathermal electrons as they interact with the ambient plasma in the chromosphere. The observed photon spectra therefore provide diagnostics of electron acceleration processes in Solar flares. We will present statistical results of spectral fitting using two models: a broken power law plus a thermal component which is a direct fit of the photon spectrum and a thick target model plus a thermal component which is a fit of the photon spectra with assumptions on the electrons emitting bremsstrahlung in the thick target approximation.
NASA Technical Reports Server (NTRS)
Woodyard, James R.
1995-01-01
Multi-junction solar cells are attractive for space applications because they can be designed to convert a larger fraction of AMO into electrical power at a lower cost than single-junction cells. The performance of multi-junction cells is much more sensitive to the spectral irradiance of the illuminating source than single-junction cells. The design of high efficiency multi-junction cells for space applications requires matching the optoelectronic properties of the junctions to AMO spectral irradiance. Unlike single-junction cells, it is not possible to carry out quantum efficiency measurements using only a monochromatic probe beam and determining the cell short-circuit current assuming linearity of the quantum efficiency. Additionally, current-voltage characteristics can not be calculated from measurements under non-AMO light sources using spectral-correction methods. There are reports in the literature on characterizing the performance of multi junction cells by measuring and convoluting the quantum efficiency of each junction with the spectral irradiance; the technique is of limited value for the characterization of cell performance under AMO power-generating conditions. We report the results of research to develop instrumentation and techniques for characterizing multi junction solar cells for space . An integrated system is described which consists of a standard lamp, spectral radiometer, dual-source solar simulator, and personal computer based current-voltage and quantum efficiency equipment. The spectral radiometer is calibrated regularly using the tungsten-halogen standard lamp which has a calibration based on NIST scales. The solar simulator produces the light bias beam for current-voltage and cell quantum efficiency measurements. The calibrated spectral radiometer is used to 'fit' the spectral irradiance of the dual-source solar simulator to WRL AMO data. The quantum efficiency apparatus includes a monochromatic probe beam for measuring the absolute cell quantum efficiency at various voltage biases, including the voltage bias corresponding to the maximum-power point under AMO light bias. The details of the procedures to 'fit' the spectral irradiance to AMO will be discussed. An assessment of the role of the accuracy of the 'fit' of the spectral irradiance and probe beam intensity on measured cell characteristics will be presented. quantum efficiencies were measured with both spectral light bias and AMO light bias; the measurements show striking differences. Spectral irradiances were convoluted with cell quantum efficiencies to calculate cell currents as function of voltage. The calculated currents compare with measured currents at the 1% level. Measurements on a variety of multi-junction cells will be presented. The dependence of defects in junctions on cell quantum efficiencies measured under light and voltage bias conditions will be presented. Comments will be made on issues related to standards for calibration, and limitations of the instrumentation and techniques. Expeditious development of multi-junction solar cell technology for space presents challenges for cell characterization in the laboratory.
Analyzing the impact of sensor characteristics on retrieval methods of solar-induced fluorescence
NASA Astrophysics Data System (ADS)
Ding, Wenjuan; Zhao, Feng; Yang, Lizi
2017-02-01
In this study, we evaluated the influence of retrieval algorithms and sensor characteristics, such as spectral resolution (SR) and signal to noise ratio (SNR), on the retrieval accuracy of fluorescence signal (Fs). Here Fs was retrieved by four commonly used retrieval methods, namely the original Fraunhofer Line Discriminator method (FLD), the 3 bands FLD (3FLD), the improved FLD (iFLD) and the spectral fitting method (SFM). Fs was retrieved in the oxygen A band centered at around 761nm (O2-A). We analyzed the impact of sensor characteristics on four retrieval methods based on simulated data which were generated by the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), and obtained consistent conclusions when compared with experimental data. Results presented in this study indicate that both retrieval algorithms and sensor characteristics affect the retrieval accuracy of Fs. When applied to the actual measurement, we should choose the instrument with higher performance and adopt appropriate retrieval method according to measuring instruments and conditions.
NASA Technical Reports Server (NTRS)
Swayze, Gregg A.; Clark, Roger N.
1995-01-01
The rapid development of sophisticated imaging spectrometers and resulting flood of imaging spectrometry data has prompted a rapid parallel development of spectral-information extraction technology. Even though these extraction techniques have evolved along different lines (band-shape fitting, endmember unmixing, near-infrared analysis, neural-network fitting, and expert systems to name a few), all are limited by the spectrometer's signal to noise (S/N) and spectral resolution in producing useful information. This study grew from a need to quantitatively determine what effects these parameters have on our ability to differentiate between mineral absorption features using a band-shape fitting algorithm. We chose to evaluate the AVIRIS, HYDICE, MIVIS, GERIS, VIMS, NIMS, and ASTER instruments because they collect data over wide S/N and spectral-resolution ranges. The study evaluates the performance of the Tricorder algorithm, in differentiating between mineral spectra in the 0.4-2.5 micrometer spectral region. The strength of the Tricorder algorithm is in its ability to produce an easily understood comparison of band shape that can concentrate on small relevant portions of the spectra, giving it an advantage over most unmixing schemes, and in that it need not spend large amounts of time reoptimizing each time a new mineral component is added to its reference library, as is the case with neural-network schemes. We believe the flexibility of the Tricorder algorithm is unparalleled among spectral-extraction techniques and that the results from this study, although dealing with minerals, will have direct applications to spectral identification in other disciplines.
Hyperspectral imaging simulation of object under sea-sky background
NASA Astrophysics Data System (ADS)
Wang, Biao; Lin, Jia-xuan; Gao, Wei; Yue, Hui
2016-10-01
Remote sensing image simulation plays an important role in spaceborne/airborne load demonstration and algorithm development. Hyperspectral imaging is valuable in marine monitoring, search and rescue. On the demand of spectral imaging of objects under the complex sea scene, physics based simulation method of spectral image of object under sea scene is proposed. On the development of an imaging simulation model considering object, background, atmosphere conditions, sensor, it is able to examine the influence of wind speed, atmosphere conditions and other environment factors change on spectral image quality under complex sea scene. Firstly, the sea scattering model is established based on the Philips sea spectral model, the rough surface scattering theory and the water volume scattering characteristics. The measured bi directional reflectance distribution function (BRDF) data of objects is fit to the statistical model. MODTRAN software is used to obtain solar illumination on the sea, sky brightness, the atmosphere transmittance from sea to sensor and atmosphere backscattered radiance, and Monte Carlo ray tracing method is used to calculate the sea surface object composite scattering and spectral image. Finally, the object spectrum is acquired by the space transformation, radiation degradation and adding the noise. The model connects the spectrum image with the environmental parameters, the object parameters, and the sensor parameters, which provide a tool for the load demonstration and algorithm development.
Three-dimensional arbitrary voxel shapes in spectroscopy with submillisecond TEs.
Snyder, Jeff; Haas, Martin; Dragonu, Iulius; Hennig, Jürgen; Zaitsev, Maxim
2012-08-01
A novel spectroscopic method for submillisecond TEs and three-dimensional arbitrarily shaped voxels was developed and applied to phantom and in vivo measurements, with additional parallel excitation (PEX) implementation. A segmented spherical shell excitation trajectory was used in combination with appropriate radiofrequency weights for target selection in three dimensions. Measurements in a two-compartment phantom realized a TE of 955 µs, excellent spectral quality and comparable signal-to-noise ratios between accelerated (R = 2) and nonaccelerated modes. The two-compartment model allowed a comparison of the spectral suppression qualities of the method and, although outer volume signals were suppressed by factors of 1434 and 2246 compared with the theoretical unsuppressed case for the clinical and PEX modes, respectively, incomplete suppression of the outer volume (935 cm(3) compared with a target volume of 5.86 cm(3) ) resulted in a spectral contamination of 10.2% and 6.5% compared with the total signal. The method was also demonstrated in vivo in human brain on a clinical system at TE = 935 µs with good signal-to-noise ratio and spatial and spectral selection, and included LCModel relative quantification analysis. Eight metabolites showed significant fitting accuracy, including aspartate, N-acetylaspartylglutamate, glutathione and glutamate. Copyright © 2012 John Wiley & Sons, Ltd.
Broadband spectral fitting of blazars using XSPEC
NASA Astrophysics Data System (ADS)
Sahayanathan, Sunder; Sinha, Atreyee; Misra, Ranjeev
2018-03-01
The broadband spectral energy distribution (SED) of blazars is generally interpreted as radiation arising from synchrotron and inverse Compton mechanisms. Traditionally, the underlying source parameters responsible for these emission processes, like particle energy density, magnetic field, etc., are obtained through simple visual reproduction of the observed fluxes. However, this procedure is incapable of providing confidence ranges for the estimated parameters. In this work, we propose an efficient algorithm to perform a statistical fit of the observed broadband spectrum of blazars using different emission models. Moreover, we use the observable quantities as the fit parameters, rather than the direct source parameters which govern the resultant SED. This significantly improves the convergence time and eliminates the uncertainty regarding initial guess parameters. This approach also has an added advantage of identifying the degenerate parameters, which can be removed by including more observable information and/or additional constraints. A computer code developed based on this algorithm is implemented as a user-defined routine in the standard X-ray spectral fitting package, XSPEC. Further, we demonstrate the efficacy of the algorithm by fitting the well sampled SED of blazar 3C 279 during its gamma ray flare in 2014.
Hot molecular hydrogen in the central parsec of the Galaxy through near-infrared 3D fitting
NASA Astrophysics Data System (ADS)
Ciurlo, A.; Paumard, T.; Rouan, D.; Clénet, Y.
2016-10-01
Aims: We have investigated neutral gas in the central cavity of the circumnuclear disk (CND) at the Galactic center, where the ionized minispiral lies, to describe the H2 distribution and properties in this ionized environment. Methods: This study was carried out through a spectro-imaging data cube of the central cavity obtained with SPIFFI on the VLT. The observed field of view is 36″ × 29″, with a spectral resolution R = 1300 in the near-infrared. These observations cover several H2 lines. To preserve the spatial resolution and avoid edge effects, we applied a new line-fitting method that consists of a regularized 3D fitting. We also applied a more classical 1D fitting to compare the relative strength of the H2 lines. Results: We present high spatial and spectral resolution maps of the intensity, velocity, and width of five H2 lines and an extinction map derived from H2. Molecular gas is detected everywhere in the field. In particular, in addition to the known CND features, we detected an emission from the northern arm cloud and from the minicavity. The excitation diagrams allow us to estimate the temperature, mass, and density of these features. Conclusions: We interpret the CND emission as coming from a hot, thermalized, thin layer at the surface of the clouds. The observed H2 corresponds only to a small fraction of the total H2 mass. The emission remains fairly strong in the whole central cavity, but it is not thermalized. A strong deviation from thermal equilibrium is detected near the minicavity. We suggest that this emission is caused by constantly forming H2 that is destroyed again before it reaches ortho/para equilibrium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudík, Jaroslav; Dzifčáková, Elena; Polito, Vanessa
2017-06-10
We investigate the nature of the spectral line profiles for transition-region (TR) ions observed with the Interface Region Imaging Spectrograph (IRIS) . In this context, we analyzed an active-region observation performed by IRIS in its 1400 Å spectral window. The TR lines are found to exhibit significant wings in their spectral profiles, which can be well fitted with a non-Maxwellian κ distribution. The fit with a κ distribution can perform better than a double-Gaussian fit, especially for the strongest line, Si iv 1402.8 Å. Typical values of κ found are about 2, occurring in a majority of spatial pixels wheremore » the TR lines are symmetric, i.e., the fit can be performed. Furthermore, all five spectral lines studied (from Si iv, O iv, and S iv) appear to have the same full-width at half-maximum irrespective of whether the line is an allowed or an intercombination transition. A similar value of κ is obtained for the electron distribution by the fitting of the line intensities relative to Si iv 1402.8 Å, if photospheric abundances are assumed. The κ distributions, however, do not remove the presence of non-thermal broadening. Instead, they actually increase the non-thermal width. This is because, for κ distributions, TR ions are formed at lower temperatures. The large observed non-thermal width lowers the opacity of the Si iv line sufficiently enough for this line to become optically thin.« less
Submillimeter, millimeter, and microwave spectral line catalogue
NASA Technical Reports Server (NTRS)
Poynter, R. L.; Pickett, H. M.
1984-01-01
This report describes a computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10000 GHz (i.e., wavelengths longer than 30 micrometers). The catalogue can be used as a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue has been constructed using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (151 species) as new data appear. The catalogue is available from the authors as a magnetic tape recorded in card images and as a set of microfiche records.
Submillimeter, millimeter, and microwave spectral line catalogue
NASA Technical Reports Server (NTRS)
Poynter, R. L.; Pickett, H. M.
1981-01-01
A computer accessible catalogue of submillimeter, millimeter and microwave spectral lines in the frequency range between 0 and 3000 GHZ (i.e., wavelengths longer than 100 mu m) is presented which can be used a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (133 species) as new data appear. The catalogue is available as a magnetic tape recorded in card images and as a set of microfiche records.
NASA Astrophysics Data System (ADS)
Favretto-Cristini, Nathalie; Tantsereva, Anastasiya; Cristini, Paul; Ursin, Bjørn; Komatitsch, Dimitri; Aizenberg, Arkady M.
2014-08-01
Accurate simulation of seismic wave propagation in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments with great and rapid structural changes, due for instance to the presence of shadow zones, diffractions and/or edge effects. Different methods, developed to improve seismic modeling, are typically tested on synthetic configurations against analytical solutions for simple canonical problems or reference methods, or via direct comparison with real data acquired in situ. Such approaches have limitations, especially if the propagation occurs in a complex environment with strong-contrast reflectors and surface irregularities, as it can be difficult to determine the method which gives the best approximation of the "real" solution, or to interpret the results obtained without an a priori knowledge of the geologic environment. An alternative approach for seismics consists in comparing the synthetic data with high-quality data collected in laboratory experiments under controlled conditions for a known configuration. In contrast with numerical experiments, laboratory data possess many of the characteristics of field data, as real waves propagate through models with no numerical approximations. We thus present a comparison of laboratory-scaled measurements of 3D zero-offset wave reflection of broadband pulses from a strong topographic environment immersed in a water tank with numerical data simulated by means of a spectral-element method and a discretized Kirchhoff integral method. The results indicate a good quantitative fit in terms of time arrivals and acceptable fit in amplitudes for all datasets.
Hines, Catherine D. G.; Hamilton, Gavin; Sirlin, Claude B.; McKenzie, Charles A.; Yu, Huanzhou; Brittain, Jean H.; Reeder, Scott B.
2011-01-01
Purpose: To prospectively compare an investigational version of a complex-based chemical shift–based fat fraction magnetic resonance (MR) imaging method with MR spectroscopy for the quantification of hepatic steatosis. Materials and Methods: This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained before all studies. Fifty-five patients (31 women, 24 men; age range, 24–71 years) were prospectively imaged at 1.5 T with quantitative MR imaging and single-voxel MR spectroscopy, each within a single breath hold. The effects of T2* correction, spectral modeling of fat, and magnitude fitting for eddy current correction on fat quantification with MR imaging were investigated by reconstructing fat fraction images from the same source data with different combinations of error correction. Single-voxel T2-corrected MR spectroscopy was used to measure fat fraction and served as the reference standard. All MR spectroscopy data were postprocessed at a separate institution by an MR physicist who was blinded to MR imaging results. Fat fractions measured with MR imaging and MR spectroscopy were compared statistically to determine the correlation (r2), and the slope and intercept as measures of agreement between MR imaging and MR spectroscopy fat fraction measurements, to determine whether MR imaging can help quantify fat, and examine the importance of T2* correction, spectral modeling of fat, and eddy current correction. Two-sided t tests (significance level, P = .05) were used to determine whether estimated slopes and intercepts were significantly different from 1.0 and 0.0, respectively. Sensitivity and specificity for the classification of clinically significant steatosis were evaluated. Results: Overall, there was excellent correlation between MR imaging and MR spectroscopy for all reconstruction combinations. However, agreement was only achieved when T2* correction, spectral modeling of fat, and magnitude fitting for eddy current correction were used (r2 = 0.99; slope ± standard deviation = 1.00 ± 0.01, P = .77; intercept ± standard deviation = 0.2% ± 0.1, P = .19). Conclusion: T1-independent chemical shift–based water-fat separation MR imaging methods can accurately quantify fat over the entire liver, by using MR spectroscopy as the reference standard, when T2* correction, spectral modeling of fat, and eddy current correction methods are used. © RSNA, 2011 PMID:21248233
Verification of the Velocity Structure in Mexico Basin Using the H/V Spectral Ratio of Microtremors
NASA Astrophysics Data System (ADS)
Matsushima, S.; Sanchez-Sesma, F. J.; Nagashima, F.; Kawase, H.
2011-12-01
The authors have been proposing a new theory to calculate the Horizontal-to-Vertical (H/V) spectral ratio of microtremors assuming that the wave field is completely diffuse and have attempted to apply the theory to understand the observed microtremor data. It is anticipated that this new theory can be applied to detect the subsurface velocity structure beneath urban area. Precise information about the subsurface velocity structure is essential for predicting strong ground motion accurately, which is necessary to mitigate seismic disaster. Mexico basin, who witnessed severe damage during the 1985 Michoacán Earthquake (Ms 8.1) several hundreds of kilometers away from the source region, is an interesting location in which the reassessment of soil properties is urgent. Because of subsidence, having improved estimates of properties is mandatory. In order to estimate possible changes in the velocity structure in the Mexico basin, we measured microtremors at strong motion observation sites in Mexico City. At those sites, information about the velocity profiles are available. Using the obtained data, we derive observed H/V spectral ratio and compare it with the theoretical H/V spectral ratio to gauge the goodness of our new theory. First we compared the observed H/V spectral ratios for five stations to see the diverse characteristics of this measurement. Then we compared the observed H/V spectral ratios with the theoretical predictions to confirm our theory. We assumed the velocity model of previous surveys at the strong motions observation sites as an initial model. We were able to closely fit both the peak frequency and amplitude of the observed H/V spectral ratio, by the theoretical H/V spectral ratio calculated by our new method. These results show that we have a good initial model. However, the theoretical estimates need some improvement to perfectly fit the observed H/V spectral ratio. This may be an indication that the initial model needs some adjustments. We explore how to improve the velocity model based on the comparison between observations and theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, C.; Aldering, G.; Aragon, C.
2015-02-10
We estimate systematic errors due to K-corrections in standard photometric analyses of high-redshift Type Ia supernovae. Errors due to K-correction occur when the spectral template model underlying the light curve fitter poorly represents the actual supernova spectral energy distribution, meaning that the distance modulus cannot be recovered accurately. In order to quantify this effect, synthetic photometry is performed on artificially redshifted spectrophotometric data from 119 low-redshift supernovae from the Nearby Supernova Factory, and the resulting light curves are fit with a conventional light curve fitter. We measure the variation in the standardized magnitude that would be fit for a givenmore » supernova if located at a range of redshifts and observed with various filter sets corresponding to current and future supernova surveys. We find significant variation in the measurements of the same supernovae placed at different redshifts regardless of filters used, which causes dispersion greater than ∼0.05 mag for measurements of photometry using the Sloan-like filters and a bias that corresponds to a 0.03 shift in w when applied to an outside data set. To test the result of a shift in supernova population or environment at higher redshifts, we repeat our calculations with the addition of a reweighting of the supernovae as a function of redshift and find that this strongly affects the results and would have repercussions for cosmology. We discuss possible methods to reduce the contribution of the K-correction bias and uncertainty.« less
Spectral studies of cosmic X-ray sources
NASA Astrophysics Data System (ADS)
Blissett, R. J.
1980-01-01
The conventional "indirect" method of reduction and data analysis of spectral data from non-dispersive X-ray detectors, by the fitting of assumed spectral models, is examined. The limitations of this procedure are presented, and alternative schemes are considered in which the derived spectra are not biased to an astrophysical source model. A new method is developed in detail to directly restore incident photon spectra from the detected count histograms. This Spectral Restoration Technique allows an increase in resolution, to a degree dependent on the statistical precision of the data. This is illustrated by numerical simulations. Proportional counter data from Ariel 5 are analysed using this technique. The results obtained for the sources Cas A and the Crab Nebula are consistent with previous analyses and show that increases in resolution of up to a factor three are possible in practice. The source Cyg X-3 is closely examined. Complex spectral variability is found, with the continuum and iron-line emission modulated with the 4.8 hour period of the source. The data suggest multi-component emission in the source. Comparing separate Ariel 5 observations and published data from other experiments, a correlation between the spectral shape and source intensity is evident. The source behaviour is discussed with reference to proposed source models. Data acquired by the low-energy detectors on-board HEAO-1 are analysed using the Spectral Restoration Technique. This treatment explicitly demonstrates the existence of oxygen K-absorption edges in the soft X-ray spectra of the Crab Nebula and Sco X-1. These results are considered with reference to current theories of the interstellar medium. The thesis commences with a review of cosmic X-ray sources and the mechanisms responsible for their spectral signatures, and continues with a discussion of the instruments appropriate for spectral studies in X-ray astronomy.
Spectral study of the HESS J1745-290 gamma-ray source as dark matter signal
NASA Astrophysics Data System (ADS)
Cembranos, J. A. R.; Gammaldi, V.; Maroto, A. L.
2013-04-01
We study the main spectral features of the gamma-ray fluxes observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source during the years 2004, 2005 and 2006. In particular, we show that these data are well fitted as the secondary gamma-rays photons generated from dark matter annihilating into Standard Model particles in combination with a simple power law background. We present explicit analyses for annihilation in a single standard model particle-antiparticle pair. In this case, the best fits are obtained for the uū and dbar d quark channels and for the W+W- and ZZ gauge bosons, with background spectral index compatible with the Fermi-Large Area Telescope (LAT) data from the same region. The fits return a heavy WIMP, with a mass above ~ 10 TeV, but well below the unitarity limit for thermal relic annihilation.
NASA Astrophysics Data System (ADS)
Skrzypek, N.; Warren, S. J.; Faherty, J. K.; Mortlock, D. J.; Burgasser, A. J.; Hewett, P. C.
2015-02-01
Aims: We present a method, named photo-type, to identify and accurately classify L and T dwarfs onto the standard spectral classification system using photometry alone. This enables the creation of large and deep homogeneous samples of these objects efficiently, without the need for spectroscopy. Methods: We created a catalogue of point sources with photometry in 8 bands, ranging from 0.75 to 4.6 μm, selected from an area of 3344 deg2, by combining SDSS, UKIDSS LAS, and WISE data. Sources with 13.0
Ye, Yalan; He, Wenwen; Cheng, Yunfei; Huang, Wenxia; Zhang, Zhilin
2017-02-16
The estimation of heart rate (HR) based on wearable devices is of interest in fitness. Photoplethysmography (PPG) is a promising approach to estimate HR due to low cost; however, it is easily corrupted by motion artifacts (MA). In this work, a robust approach based on random forest is proposed for accurately estimating HR from the photoplethysmography signal contaminated by intense motion artifacts, consisting of two stages. Stage 1 proposes a hybrid method to effectively remove MA with a low computation complexity, where two MA removal algorithms are combined by an accurate binary decision algorithm whose aim is to decide whether or not to adopt the second MA removal algorithm. Stage 2 proposes a random forest-based spectral peak-tracking algorithm, whose aim is to locate the spectral peak corresponding to HR, formulating the problem of spectral peak tracking into a pattern classification problem. Experiments on the PPG datasets including 22 subjects used in the 2015 IEEE Signal Processing Cup showed that the proposed approach achieved the average absolute error of 1.65 beats per minute (BPM) on the 22 PPG datasets. Compared to state-of-the-art approaches, the proposed approach has better accuracy and robustness to intense motion artifacts, indicating its potential use in wearable sensors for health monitoring and fitness tracking.
2013-06-01
density of the s5 and s3 metastable states for different discharge parameters. The absorption data was fit to an approximated Voigt profile from which...pressures are required in order to have enough spin-orbit relaxation to maintain CW lasing without significant bottlenecking. There are many methods to...for just that [(5),(12)]. This method allows for a wide study of energy levels since the limiting factor is the sensitivity of the detector and modern
A “Skylight” Simulator for HWIL Simulation of Hyperspectral Remote Sensing
Zhao, Huijie; Cui, Bolun; Li, Xudong; Zhang, Chao; Zhang, Xinyang
2017-01-01
Even though digital simulation technology has been widely used in the last two decades, hardware-in-the-loop (HWIL) simulation is still an indispensable method for spectral uncertainty research of ground targets. However, previous facilities mainly focus on the simulation of panchromatic imaging. Therefore, neither the spectral nor the spatial performance is enough for hyperspectral simulation. To improve the accuracy of illumination simulation, a new dome-like skylight simulator is designed and developed to fit the spatial distribution and spectral characteristics of a real skylight for the wavelength from 350 nm to 2500 nm. The simulator’s performance was tested using a spectroradiometer with different accessories. The spatial uniformity is greater than 0.91. The spectral mismatch decreases to 1/243 of the spectral mismatch of the Imagery Simulation Facility (ISF). The spatial distribution of radiance can be adjusted, and the accuracy of the adjustment is greater than 0.895. The ability of the skylight simulator is also demonstrated by comparing radiometric quantities measured in the skylight simulator with those in a real skylight in Beijing. PMID:29211004
A "Skylight" Simulator for HWIL Simulation of Hyperspectral Remote Sensing.
Zhao, Huijie; Cui, Bolun; Jia, Guorui; Li, Xudong; Zhang, Chao; Zhang, Xinyang
2017-12-06
Even though digital simulation technology has been widely used in the last two decades, hardware-in-the-loop (HWIL) simulation is still an indispensable method for spectral uncertainty research of ground targets. However, previous facilities mainly focus on the simulation of panchromatic imaging. Therefore, neither the spectral nor the spatial performance is enough for hyperspectral simulation. To improve the accuracy of illumination simulation, a new dome-like skylight simulator is designed and developed to fit the spatial distribution and spectral characteristics of a real skylight for the wavelength from 350 nm to 2500 nm. The simulator's performance was tested using a spectroradiometer with different accessories. The spatial uniformity is greater than 0.91. The spectral mismatch decreases to 1/243 of the spectral mismatch of the Imagery Simulation Facility (ISF). The spatial distribution of radiance can be adjusted, and the accuracy of the adjustment is greater than 0.895. The ability of the skylight simulator is also demonstrated by comparing radiometric quantities measured in the skylight simulator with those in a real skylight in Beijing.
The 3XMM spectral fit database
NASA Astrophysics Data System (ADS)
Georgantopoulos, I.; Corral, A.; Watson, M.; Carrera, F.; Webb, N.; Rosen, S.
2016-06-01
I will present the XMMFITCAT database which is a spectral fit inventory of the sources in the 3XMM catalogue. Spectra are available by the XMM/SSC for all 3XMM sources which have more than 50 background subtracted counts per module. This work is funded in the framework of the ESA Prodex project. The 3XMM catalog currently covers 877 sq. degrees and contains about 400,000 unique sources. Spectra are available for over 120,000 sources. Spectral fist have been performed with various spectral models. The results are available in the web page http://xraygroup.astro.noa.gr/ and also at the University of Leicester LEDAS database webpage ledas-www.star.le.ac.uk/. The database description as well as some science results in the joint area with SDSS are presented in two recent papers: Corral et al. 2015, A&A, 576, 61 and Corral et al. 2014, A&A, 569, 71. At least for extragalactic sources, the spectral fits will acquire added value when photometric redshifts become available. In the framework of a new Prodex project we have been funded to derive photometric redshifts for the 3XMM sources using machine learning techniques. I will present the techniques as well as the optical near-IR databases that will be used.
Hakey, Patrick M; Allis, Damian G; Ouellette, Wayne; Korter, Timothy M
2009-04-30
The cryogenic terahertz spectrum of (+)-methamphetamine hydrochloride from 10.0 to 100.0 cm(-1) is presented, as is the complete structural analysis and vibrational assignment of the compound using solid-state density functional theory. This cryogenic investigation reveals multiple spectral features that were not previously reported in room-temperature terahertz studies of the title compound. Modeling of the compound employed eight density functionals utilizing both solid-state and isolated-molecule methods. The results clearly indicate the necessity of solid-state simulations for the accurate assignment of solid-state THz spectra. Assignment of the observed spectral features to specific atomic motions is based on the BP density functional, which provided the best-fit solid-state simulation of the experimental spectrum. The seven experimental spectral features are the result of thirteen infrared-active vibrational modes predicted at a BP/DNP level of theory with more than 90% of the total spectral intensity associated with external crystal vibrations.
Cooperative photometric redshift estimation
NASA Astrophysics Data System (ADS)
Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.
2017-06-01
In the modern galaxy surveys photometric redshifts play a central role in a broad range of studies, from gravitational lensing and dark matter distribution to galaxy evolution. Using a dataset of ~ 25,000 galaxies from the second data release of the Kilo Degree Survey (KiDS) we obtain photometric redshifts with five different methods: (i) Random forest, (ii) Multi Layer Perceptron with Quasi Newton Algorithm, (iii) Multi Layer Perceptron with an optimization network based on the Levenberg-Marquardt learning rule, (iv) the Bayesian Photometric Redshift model (or BPZ) and (v) a classical SED template fitting procedure (Le Phare). We show how SED fitting techniques could provide useful information on the galaxy spectral type which can be used to improve the capability of machine learning methods constraining systematic errors and reduce the occurrence of catastrophic outliers. We use such classification to train specialized regression estimators, by demonstrating that such hybrid approach, involving SED fitting and machine learning in a single collaborative framework, is capable to improve the overall prediction accuracy of photometric redshifts.
Integral field spectroscopy of the low-mass companion HD 984 B with the Gemini Planet Imager
Johnson-Groh, Mara; Marois, Christian; De Rosa, Robert J.; ...
2017-03-31
We present new observations of the low-mass companion to HD 984 taken with the Gemini Planet Imager (GPI) as a part of the GPI Exoplanet Survey campaign. Images of HD 984 B were obtained in the J (1.12–1.3 μm) and H (1.50–1.80 μm) bands. Combined with archival epochs from 2012 and 2014, we fit the first orbit to the companion to find an 18 au (70-year) orbit with a 68% confidence interval between 14 and 28 au, an eccentricity of 0.18 with a 68% confidence interval between 0.05 and 0.47, and an inclination of 119° with a 68% confidence interval between 114° and 125°. To address the considerable spectral covariance in both spectra, we present a method of splitting the spectra into low and high frequencies to analyze the spectral structure at different spatial frequencies with the proper spectral noise correlation. Using the split spectra, we compare them to known spectral types using field brown dwarf and low-mass star spectra and find a best-fit match of a field gravity M6.5 ± 1.5 spectral type with a corresponding temperature ofmore » $${2730}_{-180}^{+120}$$ K. Photometry of the companion yields a luminosity of $$\\mathrm{log}({L}_{\\mathrm{bol}}$$/$${L}_{\\odot })=-2.88\\pm 0.07$$ dex with DUSTY models. Mass estimates, again from DUSTY models, find an age-dependent mass of 34 ± 1 to 95 ± 4 M Jup. Lastly, these results are consistent with previous measurements of the object.« less
NASA Astrophysics Data System (ADS)
De Beuckeleer, Liene I.; Herrebout, Wouter A.
2016-02-01
To rationalize the concentration dependent behavior observed for a large spectral data set of HCl recorded in liquid argon, least-squares based numerical methods are developed and validated. In these methods, for each wavenumber a polynomial is used to mimic the relation between monomer concentrations and measured absorbances. Least-squares fitting of higher degree polynomials tends to overfit and thus leads to compensation effects where a contribution due to one species is compensated for by a negative contribution of another. The compensation effects are corrected for by carefully analyzing, using AIC and BIC information criteria, the differences observed between consecutive fittings when the degree of the polynomial model is systematically increased, and by introducing constraints prohibiting negative absorbances to occur for the monomer or for one of the oligomers. The method developed should allow other, more complicated self-associating systems to be analyzed with a much higher accuracy than before.
Determining the Pressure Shift of Helium I Lines Using White Dwarf Stars
NASA Astrophysics Data System (ADS)
Camarota, Lawrence
This dissertation explores the non-Doppler shifting of Helium lines in the high pressure conditions of a white dwarf photosphere. In particular, this dissertation seeks to mathematically quantify the shift in a way that is simple to reproduce and account for in future studies without requiring prior knowledge of the star's bulk properties (mass, radius, temperature, etc.). Two main methods will be used in this analysis. First, the spectral line will be quantified with a continuous wavelet transformation, and the components will be used in a chi2 minimizing linear regression to predict the shift. Second, the position of the lines will be calculated using a best-fit Levy-alpha line function. These techniques stand in contrast to traditional methods of quantifying the center of often broad spectral lines, which usually assume symmetry on the parts of the lines.
A Method for the Estimation of p-Mode Parameters from Averaged Solar Oscillation Power Spectra
NASA Astrophysics Data System (ADS)
Reiter, J.; Rhodes, E. J., Jr.; Kosovichev, A. G.; Schou, J.; Scherrer, P. H.; Larson, T. P.
2015-04-01
A new fitting methodology is presented that is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from m-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the “Windowed, MuLTiple-Peak, averaged-spectrum” or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run, using weights from a leakage matrix that takes into account observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method, which employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure, which is based upon 6366 modes that we computed using the WMLTP method on the 66 day 2010 Solar and Heliospheric Observatory/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion, we developed a new procedure for the identification and correction of outliers in a frequency dataset. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle 24 during mid-2010.
Evaluation of 1H NMR metabolic profiling using biofluid mixture design.
Athersuch, Toby J; Malik, Shahid; Weljie, Aalim; Newton, Jack; Keun, Hector C
2013-07-16
A strategy for evaluating the performance of quantitative spectral analysis tools in conditions that better approximate background variation in a metabonomics experiment is presented. Three different urine samples were mixed in known proportions according to a {3, 3} simplex lattice experimental design and analyzed in triplicate by 1D (1)H NMR spectroscopy. Fifty-four urinary metabolites were subsequently quantified from the sample spectra using two methods common in metabolic profiling studies: (1) targeted spectral fitting and (2) targeted spectral integration. Multivariate analysis using partial least-squares (PLS) regression showed the latent structure of the spectral set recapitulated the experimental mixture design. The goodness-of-prediction statistic (Q(2)) of each metabolite variable in a PLS model was calculated as a metric for the reliability of measurement, across the sample compositional space. Several metabolites were observed to have low Q(2) values, largely as a consequence of their spectral resonances having low s/n or strong overlap with other sample components. This strategy has the potential to allow evaluation of spectral features obtained from metabolic profiling platforms in the context of the compositional background found in real biological sample sets, which may be subject to considerable variation. We suggest that it be incorporated into metabolic profiling studies to improve the estimation of matrix effects that confound accurate metabolite measurement. This novel method provides a rational basis for exploiting information from several samples in an efficient manner and avoids the use of multiple spike-in authentic standards, which may be difficult to obtain.
Optimizing Methods of Obtaining Stellar Parameters for the H3 Survey
NASA Astrophysics Data System (ADS)
Ivory, KeShawn; Conroy, Charlie; Cargile, Phillip
2018-01-01
The Stellar Halo at High Resolution with Hectochelle Survey (H3) is in the process of observing and collecting stellar parameters for stars in the Milky Way's halo. With a goal of measuring radial velocities for fainter stars, it is crucial that we have optimal methods of obtaining this and other parameters from the data from these stars.The method currently developed is The Payne, named after Cecilia Payne-Gaposchkin, a code that uses neural networks and Markov Chain Monte Carlo methods to utilize both spectra and photometry to obtain values for stellar parameters. This project was to investigate the benefit of fitting both spectra and spectral energy distributions (SED). Mock spectra using the parameters of the Sun were created and noise was inserted at various signal to noise values. The Payne then fit each mock spectrum with and without a mock SED also generated from solar parameters. The result was that at high signal to noise, the spectrum dominated and the effect of fitting the SED was minimal. But at low signal to noise, the addition of the SED greatly decreased the standard deviation of the data and resulted in more accurate values for temperature and metallicity.
NASA Astrophysics Data System (ADS)
Spaleta, J.; Bristow, W. A.
2013-12-01
SuperDARN radars estimate plasma drift velocities from the Doppler shift observed on signals scattered from field-aligned density irregularities. These field-aligned density irregularities are embedded in the ionospheric plasma, and move at the same velocity as background plasma. As a result, the electromagnetic signals scattered from these irregularities are Doppler shifted. The SuperDARN radars routinely observe ionospheric scatter Doppler velocities ranging from zero to thousands of meters per second. The radars determine the Doppler shift of the ionospheric scatter by linear fitting the phase of an auto correlation function derived from the radar pulse sequence. The phase fitting technique employed assumes a single dominant velocity is present in the signal. In addition, the SuperDARN radars can also observe signals scattered from the ground. Once refracted by the ionospheric plasma and bent earthward, the radar pulses eventually reach the ground where they scatter, sending signal back to the radar. This ground-scatter signal is characterized as having a low Doppler shift and low spectral width. The SuperDARN radars are able to use these signal characteristics to discriminate the ground scatter signal from the ionospheric scatter, when regions of ground scatter are isolated from ionospheric scatter returns. The phase fitting assumption of a single dominate target can easily be violated at ranges where ground and ionospheric scatter mix together. Due to the wide elevation angle extent of the SuperDARN radar design, ground and ionospheric scatter from different propagation paths can mix together in the return signal. When this happens, the fitting algorithm attempts to fit to the dominant signal, and if ground scatter dominates, information about the ionospheric scatter at that range can be unresolved. One way to address the mix scatter situation is to use a high spectral content pulse sequence together with a spectral estimation technique. The high spectral content pulse sequence consists of twice as many pulses and five times as many distinct lags over which to calculate the auto correlation function. This additional spectral information makes it possible to use spectral estimator techniques, that are robust against aperiodic time series data, to calculate the existence of multiple scatter modes in the signal. A comparison of the operation of the traditional SuperDARN pulse sequence and high spectral content pulse sequence will be presented for both synthetic examples and real SuperDARN radar mixed scatter situation.
In-flight spectral performance monitoring of the Airborne Prism Experiment.
D'Odorico, Petra; Alberti, Edoardo; Schaepman, Michael E
2010-06-01
Spectral performance of an airborne dispersive pushbroom imaging spectrometer cannot be assumed to be stable over a whole flight season given the environmental stresses present during flight. Spectral performance monitoring during flight is commonly accomplished by looking at selected absorption features present in the Sun, atmosphere, or ground, and their stability. The assessment of instrument performance in two different environments, e.g., laboratory and airborne, using precisely the same calibration reference, has not been possible so far. The Airborne Prism Experiment (APEX), an airborne dispersive pushbroom imaging spectrometer, uses an onboard in-flight characterization (IFC) facility, which makes it possible to monitor the sensor's performance in terms of spectral, radiometric, and geometric stability in flight and in the laboratory. We discuss in detail a new method for the monitoring of spectral instrument performance. The method relies on the monitoring of spectral shifts by comparing instrument-induced movements of absorption features on ground and in flight. Absorption lines originate from spectral filters, which intercept the full field of view (FOV) illuminated using an internal light source. A feature-fitting algorithm is used for the shift estimation based on Pearson's correlation coefficient. Environmental parameter monitoring, coregistered on board with the image and calibration data, revealed that differential pressure and temperature in the baffle compartment are the main driving parameters explaining the trend in spectral performance deviations in the time and the space (across-track) domains, respectively. The results presented in this paper show that the system in its current setup needs further improvements to reach a stable performance. Findings provided useful guidelines for the instrument revision currently under way. The main aim of the revision is the stabilization of the instrument for a range of temperature and pressure conditions to be encountered during operation.
Submillimeter, millimeter, and microwave spectral line catalogue, revision 3
NASA Technical Reports Server (NTRS)
Pickett, H. M.; Poynter, R. L.; Cohen, E. A.
1992-01-01
A computer-accessible catalog of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10,000 GHz (i.e., wavelengths longer than 30 micrometers) is described. The catalog can be used as a planning or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, the lower state energy, and the quantum number assignment. This edition of the catalog has information on 206 atomic and molecular species and includes a total of 630,924 lines. The catalog was constructed by using theoretical least square fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalog will add more atoms and molecules and update the present listings as new data appear. The catalog is available as a magnetic data tape recorded in card images, with one card image per spectral line, from the National Space Science Data Center, located at Goddard Space Flight Center.
Spectral Characteristics of VLF Sferics Associated With RHESSI TGFs
NASA Astrophysics Data System (ADS)
Mezentsev, Andrew; Lehtinen, Nikolai; Østgaard, Nikolai; Pérez-Invernón, F. J.; Cummer, Steven A.
2018-01-01
We compared the modeled energy spectral density of very low frequency (VLF) radio emissions from terrestrial gamma ray flashes (TGFs) with the energy spectral density of VLF radio sferics recorded by Duke VLF receiver simultaneously with those TGFs. In total, six events with world wide lightning location network (WWLLN) defined locations were analyzed to exhibit a good fit between the modeled and observed energy spectral densities. In VLF range the energy spectral density of the TGF source current moment is found to be dominated by the contribution of secondary low-energy electrons and independent of the relativistic electrons which play their role in low-frequency (LF) range. Additional spectral modulation by the multiplicity of TGF peaks was found and demonstrated a good fit for two TGFs whose VLF sferics consist of two overlapping pulses each. The number of seeding pulses in TGF defines the spectral shape in VLF range, which allows to retrieve this number from VLF sferics, assuming they were radiated by TGFs. For two events it was found that the number of seeding pulses is small, of the order of 10. For the rest of the events the lower boundary of the number of seeding pulses was found to be between 10 to 103.
NASA Technical Reports Server (NTRS)
Parkin, K. M.; Burns, R. G.
1980-01-01
It is pointed out that transition metal ions in silicate minerals, glasses, and crystalline and amorphous oxyhydroxides and salts contribute to the visible-near infrared spectral profiles of planetary surfaces. Investigations are conducted to obtain spectral information which might be helpful in the interpretation of the remote-sensed spectra of planetary surfaces. A description is presented of the results of high temperature crystal field spectral measurements of a variety of heated minerals containing Cr(3+), Fe(3+), Fe(++), and Mn(++) ions in different coordination symmetries, taking into account a correlation of the temperature-induced variations with those previously observed for octahedrally coordinated Fe(++)-bearing silicates. The employed experimental methods are also discussed, giving attention to the preparation of the samples, the determination of the absorption spectra, electron microprobe analyses, and the curve fitting procedure.
Comparative Characteristics Of Coherent And Incoherent Radiation In The Photography Of Ulcer
NASA Astrophysics Data System (ADS)
Novikov, V. F.; Paramonov, L. V.
1985-01-01
The efficiency of He-Ne laser radiation and incoherent radiation by red light sources with different spectral bandwidths is compared for the endoscopic phototherapy of gastric and duodenal ulcers. Coherent and incoherent radiation is determined to result in the same theraputic effect when doing the treatment of ulcer deseases. The methods of ulcer treatment is suggested with a conventional fibrogastroscope fitted with red glass filter.
Inclusion of TCAF model in XSPEC to study accretion flow dynamics around black hole candidates
NASA Astrophysics Data System (ADS)
Debnath, Dipak; Chakrabarti, Sandip Kumar; Mondal, Santanu
Spectral and Temporal properties of black hole candidates can be well understood with the Chakrabarti-Titarchuk solution of two component advective flow (TCAF). This model requires two accretion rates, namely, the Keplerian disk accretion rate and the sub-Keplerian halo accretion rate, the latter being composed of a low angular momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disk rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time we are able to create a user friendly version by implementing additive Table model FITS file into GSFC/NASA's spectral analysis software package XSPEC. This enables any user to extract physical parameters of accretion flows, such as two accretion rates, shock location, shock strength etc. for any black hole candidate. Most importantly, unlike any other theoretical model, we show that TCAF is capable of predicting timing properties from spectral fits, since in TCAF, a shock is responsible for deciding spectral slopes as well as QPO frequencies.
Effective Temperatures for Young Stars in Binaries
NASA Astrophysics Data System (ADS)
Muzzio, Ryan; Avilez, Ian; Prato, Lisa A.; Biddle, Lauren I.; Allen, Thomas; Wright-Garba, Nuria Meilani Laure; Wittal, Matthew
2017-01-01
We have observed about 100 multi-star systems, within the star forming regions Taurus and Ophiuchus, to investigate the individual stellar and circumstellar properties of both components in young T Tauri binaries. Near-infrared spectra were collected using the Keck II telescope’s NIRSPEC spectrograph and imaging data were taken with Keck II’s NIRC2 camera, both behind adaptive optics. Some properties are straightforward to measure; however, determining effective temperature is challenging as the standard method of estimating spectral type and relating spectral type to effective temperature can be subjective and unreliable. We explicitly looked for a relationship between effective temperatures empirically determined in Mann et al. (2015) and equivalent width ratios of H-band Fe and OH lines for main sequence spectral type templates common to both our infrared observations and to the sample of Mann et al. We find a fit for a wide range of temperatures and are currently testing the validity of using this method as a way to determine effective temperature robustly. Support for this research was provided by an REU supplement to NSF award AST-1313399.
How many spectral lines are statistically significant?
NASA Astrophysics Data System (ADS)
Freund, J.
When experimental line spectra are fitted with least squares techniques one frequently does not know whether n or n + 1 lines may be fitted safely. This paper shows how an F-test can be applied in order to determine the statistical significance of including an extra line into the fitting routine.
SOSPEX, an interactive tool to explore SOFIA spectral cubes
NASA Astrophysics Data System (ADS)
Fadda, Dario; Chambers, Edward T.
2018-01-01
We present SOSPEX (SOFIA SPectral EXplorer), an interactive tool to visualize and analyze spectral cubes obtained with the FIFI-LS and GREAT instruments onboard the SOFIA Infrared Observatory. This software package is written in Python 3 and it is available either through Github or Anaconda.Through this GUI it is possible to explore directly the spectral cubes produced by the SOFIA pipeline and archived in the SOFIA Science Archive. Spectral cubes are visualized showing their spatial and spectral dimensions in two different windows. By selecting a part of the spectrum, the flux from the corresponding slice of the cube is visualized in the spatial window. On the other hand, it is possible to define apertures on the spatial window to show the corresponding spectral energy distribution in the spectral window.Flux isocontours can be overlapped to external images in the spatial window while line names, atmospheric transmission, or external spectra can be overplotted on the spectral window. Atmospheric models with specific parameters can be retrieved, compared to the spectra and applied to the uncorrected FIFI-LS cubes in the cases where the standard values give unsatisfactory results. Subcubes can be selected and saved as FITS files by cropping or cutting the original cubes. Lines and continuum can be fitted in the spectral window saving the results in Jyson files which can be reloaded later. Finally, in the case of spatially extended observations, it is possible to compute spectral momenta as a function of the position to obtain velocity dispersion maps or velocity diagrams.
NASA Astrophysics Data System (ADS)
Polehampton, E. T.; Menten, K. M.; van der Tak, F. F. S.; White, G. J.
2010-02-01
Context. The far-infrared spectra of circumstellar envelopes around various oxygen-rich stars were observed using the ISO Long Wavelength Spectrometer (LWS). These have been shown to be spectrally rich, particularly in water lines, indicating a high H2O abundance. Aims: We have examined high signal-to-noise ISO LWS observations of the luminous supergiant star, VY CMa, with the aim of identifying all of the spectral lines. By paying particular attention to water lines, we aim to separate the lines due to other species, in particular, to prepare for forthcoming observations that will cover the same spectral range using Herschel PACS and at higher spectral resolution using Herschel HIFI and SOFIA. Methods: We have developed a fitting method to account for blended water lines using a simple weighting scheme to distribute the flux. We have used this fit to separate lines due to other species which cannot be assigned to water. We have applied this approach to several other stars which we compare with VY CMa. Results: We present line fluxes for the unblended H2O and CO lines, and present detections of several possible ν2=1 vibrationally excited water lines. We also identify blended lines of OH, one unblended and several blended lines of NH3, and one possible detection of H3O+. Conclusions: The spectrum of VY CMa shows a detection of emission from virtually every water line up to 2000 K above the ground state, as well as many additional higher energy and some vibrationally excited lines. A simple rotation diagram analysis shows large scatter (probably due to some optically thick lines). The fit gives a rotational temperature of 670+210-130 K, and lower limit on the water column density of (7.0±1.2) × 1019 cm-2. We estimate a CO column density ~100 times lower, showing that water is the dominant oxygen carrier. The other stars that we examined have similar rotation temperatures, but their H2O column densities are an order of magnitude lower (as are the mass loss rates). Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) with the participation of ISAS and NASA.Current address: Space Science Department, Rutherford Appleton Laboratory, UK
An extended algebraic reconstruction technique (E-ART) for dual spectral CT.
Zhao, Yunsong; Zhao, Xing; Zhang, Peng
2015-03-01
Compared with standard computed tomography (CT), dual spectral CT (DSCT) has many advantages for object separation, contrast enhancement, artifact reduction, and material composition assessment. But it is generally difficult to reconstruct images from polychromatic projections acquired by DSCT, because of the nonlinear relation between the polychromatic projections and the images to be reconstructed. This paper first models the DSCT reconstruction problem as a nonlinear system problem; and then extend the classic ART method to solve the nonlinear system. One feature of the proposed method is its flexibility. It fits for any scanning configurations commonly used and does not require consistent rays for different X-ray spectra. Another feature of the proposed method is its high degree of parallelism, which means that the method is suitable for acceleration on GPUs (graphic processing units) or other parallel systems. The method is validated with numerical experiments from simulated noise free and noisy data. High quality images are reconstructed with the proposed method from the polychromatic projections of DSCT. The reconstructed images are still satisfactory even if there are certain errors in the estimated X-ray spectra.
Meisamy, Sina; Hines, Catherine D G; Hamilton, Gavin; Sirlin, Claude B; McKenzie, Charles A; Yu, Huanzhou; Brittain, Jean H; Reeder, Scott B
2011-03-01
To prospectively compare an investigational version of a complex-based chemical shift-based fat fraction magnetic resonance (MR) imaging method with MR spectroscopy for the quantification of hepatic steatosis. This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained before all studies. Fifty-five patients (31 women, 24 men; age range, 24-71 years) were prospectively imaged at 1.5 T with quantitative MR imaging and single-voxel MR spectroscopy, each within a single breath hold. The effects of T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction on fat quantification with MR imaging were investigated by reconstructing fat fraction images from the same source data with different combinations of error correction. Single-voxel T2-corrected MR spectroscopy was used to measure fat fraction and served as the reference standard. All MR spectroscopy data were postprocessed at a separate institution by an MR physicist who was blinded to MR imaging results. Fat fractions measured with MR imaging and MR spectroscopy were compared statistically to determine the correlation (r(2)), and the slope and intercept as measures of agreement between MR imaging and MR spectroscopy fat fraction measurements, to determine whether MR imaging can help quantify fat, and examine the importance of T2 correction, spectral modeling of fat, and eddy current correction. Two-sided t tests (significance level, P = .05) were used to determine whether estimated slopes and intercepts were significantly different from 1.0 and 0.0, respectively. Sensitivity and specificity for the classification of clinically significant steatosis were evaluated. Overall, there was excellent correlation between MR imaging and MR spectroscopy for all reconstruction combinations. However, agreement was only achieved when T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction were used (r(2) = 0.99; slope ± standard deviation = 1.00 ± 0.01, P = .77; intercept ± standard deviation = 0.2% ± 0.1, P = .19). T1-independent chemical shift-based water-fat separation MR imaging methods can accurately quantify fat over the entire liver, by using MR spectroscopy as the reference standard, when T2 correction, spectral modeling of fat, and eddy current correction methods are used. © RSNA, 2011.
Grimbergen, M C M; van Swol, C F P; Kendall, C; Verdaasdonk, R M; Stone, N; Bosch, J L H R
2010-01-01
The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device requirements and short integration times required for (in vivo) clinical applications of Raman spectroscopy. Multivariate analytical methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are routinely applied to Raman spectral datasets to develop classification models. Data compression is necessary prior to discriminant analysis to prevent or decrease the degree of over-fitting. The logical threshold for the selection of principal components (PCs) to be used in discriminant analysis is likely to be at a point before the PCs begin to introduce equivalent signal and noise and, hence, include no additional value. Assessment of the signal-to-noise ratio (SNR) at a certain peak or over a specific spectral region will depend on the sample measured. Therefore, the mean SNR over the whole spectral region (SNR(msr)) is determined in the original spectrum as well as for spectra reconstructed from an increasing number of principal components. This paper introduces a method of assessing the influence of signal and noise from individual PC loads and indicates a method of selection of PCs for LDA. To evaluate this method, two data sets with different SNRs were used. The sets were obtained with the same Raman system and the same measurement parameters on bladder tissue collected during white light cystoscopy (set A) and fluorescence-guided cystoscopy (set B). This method shows that the mean SNR over the spectral range in the original Raman spectra of these two data sets is related to the signal and noise contribution of principal component loads. The difference in mean SNR over the spectral range can also be appreciated since fewer principal components can reliably be used in the low SNR data set (set B) compared to the high SNR data set (set A). Despite the fact that no definitive threshold could be found, this method may help to determine the cutoff for the number of principal components used in discriminant analysis. Future analysis of a selection of spectral databases using this technique will allow optimum thresholds to be selected for different applications and spectral data quality levels.
NASA Astrophysics Data System (ADS)
Cavalié, T.; Billebaud, F.; Encrenaz, T.; Dobrijevic, M.; Brillet, J.; Forget, F.; Lellouch, E.
2008-10-01
Aims: We have recorded high spectral resolution spectra and derived precise atmospheric temperature profiles and wind velocities in the atmosphere of Mars. We have compared observations of the planetary mean thermal profile and mesospheric wind velocities on the disk, obtained with our millimetric observations of CO rotational lines, to predictions from the Laboratoire de Météorologie Dynamique (LMD) Mars General Circulation Model, as provided through the Mars Climate Database (MCD) numerical tool. Methods: We observed the atmosphere of Mars at CO(1-0) and CO(2-1) wavelengths with the IRAM 30-m antenna in June 2001 and November 2005. We retrieved the mean thermal profile of the planet from high and low spectral resolution data with an inversion method detailed here. High spectral resolution spectra were used to derive mesospheric wind velocities on the planetary disk. We also report here the use of 13CO(2-1) line core shifts to measure wind velocities at 40 km. Results: Neither the Mars Year 24 (MY24) nor the Dust Storm scenario from the Mars Climate Database (MCD) provides satisfactory fits to the 2001 and 2005 data when retrieving the thermal profiles. The Warm scenario only provides good fits for altitudes lower than 30 km. The atmosphere is warmer than predicted up to 60 km and then becomes colder. Dust loading could be the reason for this mismatch. The MCD MY24 scenario predicts a thermal inversion layer between 40 and 60 km, which is not retrieved from the high spectral resolution data. Our results are generally in agreement with other observations from 10 to 40 km in altitude, but our results obtained from the high spectral resolution spectra differ in the 40-70 km layer, where the instruments are the most sensitive. The wind velocities we retrieve from our 12CO observations confirm MCD predictions for 2001 and 2005. Velocities obtained from 13CO observations are consistent with MCD predictions in 2001, but are lower than predicted in 2005.
Intensity Conserving Spectral Fitting
NASA Technical Reports Server (NTRS)
Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.
2015-01-01
The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.
Modeling chromatic instrumental effects for a better model fitting of optical interferometric data
NASA Astrophysics Data System (ADS)
Tallon, M.; Tallon-Bosc, I.; Chesneau, O.; Dessart, L.
2014-07-01
Current interferometers often collect data simultaneously in many spectral channels by using dispersed fringes. Such polychromatic data provide powerful insights in various physical properties, where the observed objects show particular spectral features. Furthermore, one can measure spectral differential visibilities that do not directly depend on any calibration by a reference star. But such observations may be sensitive to instrumental artifacts that must be taken into account in order to fully exploit the polychromatic information of interferometric data. As a specimen, we consider here an observation of P Cygni with the VEGA visible combiner on CHARA interferometer. Indeed, although P Cygni is particularly well modeled by the radiative transfer code CMFGEN, we observe questionable discrepancies between expected and actual interferometric data. The problem is to determine their origin and disentangle possible instrumental effects from the astrophysical information. By using an expanded model fitting, which includes several instrumental features, we show that the differential visibilities are well explained by instrumental effects that could be otherwise attributed to the object. Although this approach leads to more reliable results, it assumes a fit specific to a particular instrument, and makes it more difficult to develop a generic model fitting independent of any instrument.
Iris: Constructing and Analyzing Spectral Energy Distributions with the Virtual Observatory
NASA Astrophysics Data System (ADS)
Laurino, O.; Budynkiewicz, J.; Busko, I.; Cresitello-Dittmar, M.; D'Abrusco, R.; Doe, S.; Evans, J.; Pevunova, O.
2014-05-01
We present Iris 2.0, the latest release of the Virtual Astronomical Observatory application for building and analyzing Spectral Energy Distributions (SEDs). With Iris, users may read in and display SEDs inspect and edit any selection of SED data, fit models to SEDs in arbitrary spectral ranges, and calculate confidence limits on best-fit parameters. SED data may be loaded into the application from VOTable and FITS files compliant with the International Virtual Observatoy Alliance interoperable data models, or retrieved directly from NED or the Italian Space Agency Science Data Center; data in non-standard formats may also be converted within the application. Users may seamlessy exchange data between Iris and other Virtual Observatoy tools using the Simple Application Messaging Protocol. Iris 2.0 also provides a tool for redshifting, interpolating, and measuring integratd fluxes, and allows simple aperture corrections for individual points and SED segments. Custom Python functions, template models and template libraries may be imported into Iris for fitting SEDs. Iris may be extended through Java plugins; users can install third-party packages, or develop their own plugin using Iris' Software Development Kit. Iris 2.0 is available for Linux and Mac OS X systems.
NASA Technical Reports Server (NTRS)
Davila, Joseph M.; Geginald, Nelson L.; Gashut, Hadi; Guhathakurta, Madhulika; Hassler, Donald M.
2008-01-01
An experiment to measure the electron temperature and flow speed in the solar corona by observing the visible K-coronal spectrum was conducted during the total solar eclipse on 29 March 2006 in Libya. New corona1 models accounting for the effect of electron temperature and flow on the resulting K-corona spectrum were used to interpret the observations. Results show electron temperatures of 1.10 +/- 0.05, 0.98 +/- 0.12, and 0.70 +/- 0.08 MK, at l.l{\\it R)$-{\\odot)$ in the solar north, east and west, respectively, and 0.93 +/- 0.12 MK, at 1.2 R(sub sun) in the solar east. The corresponding outflow speeds obtained from the spectral fit are 103 +/- 92, 0 + 10, 0 + 10, and 0 + 10 km/s. Since the observations are taken only at 1.1 and 1.2 R(sub sun) these velocities , consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working.
NASA Astrophysics Data System (ADS)
Teimoorinia, H.
2012-12-01
The aim of this work is to combine spectral energy distribution (SED) fitting with artificial neural network techniques to assign spectral characteristics to a sample of galaxies at 0.5 < z < 1. The sample is selected from the spectroscopic campaign of the ESO/GOODS-South field, with 142 sources having photometric data from the GOODS-MUSIC catalog covering bands between ~0.4 and 24 μm in 10-13 filters. We use the CIGALE code to fit photometric data to Maraston's synthesis spectra to derive mass, specific star formation rate, and age, as well as the best SED of the galaxies. We use the spectral models presented by Kinney et al. as targets in the wavelength interval ~1200-7500 Å. Then a series of neural networks are trained, with average performance ~90%, to classify the best SED in a supervised manner. We consider the effects of the prominent features of the best SED on the performance of the trained networks and also test networks on the galaxy spectra of Coleman et al., which have a lower resolution than the target models. In this way, we conclude that the trained networks take into account all the features of the spectra simultaneously. Using the method, 105 out of 142 galaxies of the sample are classified with high significance. The locus of the classified galaxies in the three graphs of the physical parameters of mass, age, and specific star formation rate appears consistent with the morphological characteristics of the galaxies.
Revisiting the Short-term X-ray Spectral Variability of NGC 4151 with Chandra
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Risaliti, G.; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.
2010-05-01
We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ~200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 × 10-11 erg s-1 cm-2 and 10-10 erg s-1 cm-2 (L 2-10 keV ~ 1.3-2.1 × 1042 erg s-1). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ~ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ~ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ~ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA "long look" observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ~ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M_{BH}˜ 4.6× 10^7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r <~ 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.
Robust Multipoint Water-Fat Separation Using Fat Likelihood Analysis
Yu, Huanzhou; Reeder, Scott B.; Shimakawa, Ann; McKenzie, Charles A.; Brittain, Jean H.
2016-01-01
Fat suppression is an essential part of routine MRI scanning. Multiecho chemical-shift based water-fat separation methods estimate and correct for Bo field inhomogeneity. However, they must contend with the intrinsic challenge of water-fat ambiguity that can result in water-fat swapping. This problem arises because the signals from two chemical species, when both are modeled as a single discrete spectral peak, may appear indistinguishable in the presence of Bo off-resonance. In conventional methods, the water-fat ambiguity is typically removed by enforcing field map smoothness using region growing based algorithms. In reality, the fat spectrum has multiple spectral peaks. Using this spectral complexity, we introduce a novel concept that identifies water and fat for multiecho acquisitions by exploiting the spectral differences between water and fat. A fat likelihood map is produced to indicate if a pixel is likely to be water-dominant or fat-dominant by comparing the fitting residuals of two different signal models. The fat likelihood analysis and field map smoothness provide complementary information, and we designed an algorithm (Fat Likelihood Analysis for Multiecho Signals) to exploit both mechanisms. It is demonstrated in a wide variety of data that the Fat Likelihood Analysis for Multiecho Signals algorithm offers highly robust water-fat separation for 6-echo acquisitions, particularly in some previously challenging applications. PMID:21842498
NASA Astrophysics Data System (ADS)
Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Udaya Shankar, N.; Chluba, Jens
2017-05-01
Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30-6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal. We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.
Neighbors, Corrie; Cochran, Elizabeth S.; Ryan, Kenneth; Kaiser, Anna E.
2017-01-01
The seismic spectrum can be constructed by assuming a Brune spectral model and estimating the parameters of seismic moment (M0), corner frequency (fc), and high-frequency site attenuation (κ). Using seismic data collected during the 2010–2011 Canterbury, New Zealand, earthquake sequence, we apply the non-linear least-squares Gauss–Newton method, a deterministic downhill optimization technique, to simultaneously determine the M0, fc, and κ for each event-station pair. We fit the Brune spectral acceleration model to Fourier-transformed S-wave records following application of path and site corrections to the data. For each event, we solve for a single M0 and fc, while any remaining residual kappa, κr">κrκr, is allowed to differ per station record to reflect varying high-frequency falloff due to path and site attenuation. We use a parametric forward modeling method, calculating initial M0 and fc values from the local GNS New Zealand catalog Mw, GNS magnitudes and measuring an initial κr">κrκr using an automated high-frequency linear regression method. Final solutions for M0, fc, and κr">κrκr are iteratively computed through minimization of the residual function, and the Brune model stress drop is then calculated from the final, best-fit fc. We perform the spectral fitting routine on nested array seismic data that include the permanent GeoNet accelerometer network as well as a dense network of nearly 200 Quake Catcher Network (QCN) MEMs accelerometers, analyzing over 180 aftershocks Mw,GNS ≥ 3.5 that occurred from 9 September 2010 to 31 July 2011. QCN stations were hosted by public volunteers and served to fill spatial gaps between existing GeoNet stations. Moment magnitudes determined using the spectral fitting procedure (Mw,SF) range from 3.5 to 5.7 and agree well with Mw,GNS, with a median difference of 0.09 and 0.17 for GeoNet and QCN records, respectively, and 0.11 when data from both networks are combined. The majority of events are calculated to have stress drops between 1.7 and 13 MPa (20th and 80th percentile, correspondingly) for the combined networks. The overall median stress drop for the combined networks is 3.2 MPa, which is similar to median stress drops previously reported for the Canterbury sequence. We do not observe a correlation between stress drop and depth for this region, nor a relationship between stress drop and magnitude over the catalog considered. Lateral spatial patterns in stress drop, such as a cluster of aftershocks near the eastern extent of the Greendale fault with higher stress drops and lower stress drops for aftershocks of the 2011 Mw,GNS 6.2 Christchurch mainshock, are found to be in agreement with previous reports. As stress drop is arguably a method-dependent calculation and subject to high spatial variability, our results using the parametric Gauss–Newton algorithm strengthen conclusions that the Canterbury sequence has stress drops that are more similar to those found in intraplate regions, with overall higher stress drops that are typically observed in tectonically active areas.
NASA Technical Reports Server (NTRS)
Parker, M. L.; Tomsick, J. A.; Kennea, J. A.; Miller, J. M.; Harrison, F. A.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.;
2016-01-01
We present results from spectral fitting of the very high state of GX339-4 with Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift. We use relativistic reflection modeling to measure the spin of the black hole and inclination of the inner disk and find a spin of a = 0.95+0.08/-0.02 and inclination of 30deg +/- 1deg (statistical errors). These values agree well with previous results from reflection modeling. With the exceptional sensitivity of NuSTAR at the high-energy side of the disk spectrum, we are able to constrain multiple physical parameters simultaneously using continuum fitting. By using the constraints from reflection as input for the continuum fitting method, we invert the conventional fitting procedure to estimate the mass and distance of GX 339-4 using just the X-ray spectrum, finding a mass of 9.0+1.6/-1.2 Stellar Mass and distance of 8.4 +/- 0.9 kpc (statistical errors).
Millisecond Microwave Spikes: Statistical Study and Application for Plasma Diagnostics
NASA Astrophysics Data System (ADS)
Rozhansky, I. V.; Fleishman, G. D.; Huang, G.-L.
2008-07-01
We analyze a dense cluster of solar radio spikes registered at 4.5-6 GHz by the Purple Mountain Observatory spectrometer (Nanjing, China), operating in the 4.5-7.5 GHz range with 5 ms temporal resolution. To handle the data from the spectrometer, we developed a new technique that uses a nonlinear multi-Gaussian spectral fit based on χ2 criteria to extract individual spikes from the originally recorded spectra. Applying this method to the experimental raw data, we eventually identified about 3000 spikes for this event, which allows us to make a detailed statistical analysis. Various statistical characteristics of the spikes have been evaluated, including the intensity distributions, the spectral bandwidth distributions, and the distribution of the spike mean frequencies. The most striking finding of this analysis is the distributions of the spike bandwidth, which are remarkably asymmetric. To reveal the underlaying microphysics, we explore the local-trap model with the renormalized theory of spectral profiles of the electron cyclotron maser (ECM) emission peak in a source with random magnetic irregularities. The distribution of the solar spike relative bandwidths calculated within the local-trap model represents an excellent fit to the experimental data. Accordingly, the developed technique may offer a new tool with which to study very low levels of magnetic turbulence in the spike sources, when the ECM mechanism of the spike cluster is confirmed.
Accuracy Enhancement of Inertial Sensors Utilizing High Resolution Spectral Analysis
Noureldin, Aboelmagd; Armstrong, Justin; El-Shafie, Ahmed; Karamat, Tashfeen; McGaughey, Don; Korenberg, Michael; Hussain, Aini
2012-01-01
In both military and civilian applications, the inertial navigation system (INS) and the global positioning system (GPS) are two complementary technologies that can be integrated to provide reliable positioning and navigation information for land vehicles. The accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects of widespread research. Wavelet de-noising of INS sensors has had limited success in removing the long-term (low-frequency) inertial sensor errors. The primary objective of this research is to develop a novel inertial sensor accuracy enhancement technique that can remove both short-term and long-term error components from inertial sensor measurements prior to INS mechanization and INS/GPS integration. A high resolution spectral analysis technique called the fast orthogonal search (FOS) algorithm is used to accurately model the low frequency range of the spectrum, which includes the vehicle motion dynamics and inertial sensor errors. FOS models the spectral components with the most energy first and uses an adaptive threshold to stop adding frequency terms when fitting a term does not reduce the mean squared error more than fitting white noise. The proposed method was developed, tested and validated through road test experiments involving both low-end tactical grade and low cost MEMS-based inertial systems. The results demonstrate that in most cases the position accuracy during GPS outages using FOS de-noised data is superior to the position accuracy using wavelet de-noising.
Wavelength calibration of an imaging spectrometer based on Savart interferometer
NASA Astrophysics Data System (ADS)
Li, Qiwei; Zhang, Chunmin; Yan, Tingyu; Quan, Naicheng; Wei, Yutong; Tong, Cuncun
2017-09-01
The basic principle of Fourier-transform imaging spectrometer (FTIS) based on Savart interferometer is outlined. The un-identical distribution of the optical path difference which leads to the wavelength drift of each row of the interferogram is analyzed. Two typical methods for wavelength calibration of the presented system are described. The first method unifies different spectral intervals and maximum spectral frequencies of each row by a reference monochromatic light with known wavelength, and the dispersion compensation of Savart interferometer is also involved. The second approach is based on the least square fitting which builds the functional relation between recovered wavelength, row number and calibrated wavelength by concise equations. The effectiveness of the two methods is experimentally demonstrated with monochromatic lights and mixed light source across the detecting band of the system, and the results indicate that the first method has higher precision and the mean root-mean-square error of the recovered wavelengths is significantly reduced from 19.896 nm to 1.353 nm, while the second method is more convenient to implement and also has good precision of 2.709 nm.
Autonomous Modelling of X-ray Spectra Using Robust Global Optimization Methods
NASA Astrophysics Data System (ADS)
Rogers, Adam; Safi-Harb, Samar; Fiege, Jason
2015-08-01
The standard approach to model fitting in X-ray astronomy is by means of local optimization methods. However, these local optimizers suffer from a number of problems, such as a tendency for the fit parameters to become trapped in local minima, and can require an involved process of detailed user intervention to guide them through the optimization process. In this work we introduce a general GUI-driven global optimization method for fitting models to X-ray data, written in MATLAB, which searches for optimal models with minimal user interaction. We directly interface with the commonly used XSPEC libraries to access the full complement of pre-existing spectral models that describe a wide range of physics appropriate for modelling astrophysical sources, including supernova remnants and compact objects. Our algorithm is powered by the Ferret genetic algorithm and Locust particle swarm optimizer from the Qubist Global Optimization Toolbox, which are robust at finding families of solutions and identifying degeneracies. This technique will be particularly instrumental for multi-parameter models and high-fidelity data. In this presentation, we provide details of the code and use our techniques to analyze X-ray data obtained from a variety of astrophysical sources.
Spectral Characteristics of VLF Sferics Associated With RHESSI TGFs.
Mezentsev, Andrew; Lehtinen, Nikolai; Østgaard, Nikolai; Pérez-Invernón, F J; Cummer, Steven A
2018-01-16
We compared the modeled energy spectral density of very low frequency (VLF) radio emissions from terrestrial gamma ray flashes (TGFs) with the energy spectral density of VLF radio sferics recorded by Duke VLF receiver simultaneously with those TGFs. In total, six events with world wide lightning location network (WWLLN) defined locations were analyzed to exhibit a good fit between the modeled and observed energy spectral densities. In VLF range the energy spectral density of the TGF source current moment is found to be dominated by the contribution of secondary low-energy electrons and independent of the relativistic electrons which play their role in low-frequency (LF) range. Additional spectral modulation by the multiplicity of TGF peaks was found and demonstrated a good fit for two TGFs whose VLF sferics consist of two overlapping pulses each. The number of seeding pulses in TGF defines the spectral shape in VLF range, which allows to retrieve this number from VLF sferics, assuming they were radiated by TGFs. For two events it was found that the number of seeding pulses is small, of the order of 10. For the rest of the events the lower boundary of the number of seeding pulses was found to be between 10 to 10 3 .
SHJAR Jet Noise Data and Power Spectral Laws
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Bridges, James
2009-01-01
High quality jet noise spectral data measured at the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent and convergent-divergent axisymmetric nozzles. The measured spectral data are shown in narrow band and cover 8193 equally spaced points in a typical Strouhal number range of 0.0 to 10.0. The measured data are reported as lossless (i.e., atmospheric attenuation is added to measurements), and at 24 equally spaced angles (50deg to 165deg) on a 100-diameter (200-in.) arc. Following the work of Viswanathan, velocity power factors are evaluated using a least squares fit on spectral power density as a function of jet temperature and observer angle. The goodness of the fit and the confidence margins for the two regression parameters are studied at each angle, and alternative relationships are proposed to improve the spectral collapse when certain conditions are met. As an immediate application of the velocity power laws, spectral density in shockcontaining jets are decomposed into components attributed to jet mixing noise and shock noise. From this analysis, jet noise prediction tools can be developed with different spectral components derived from different physics.
Spectral analysis of the Crab Nebula and GRB 160530A with the Compton Spectrometer and Imager
NASA Astrophysics Data System (ADS)
Sleator, Clio; Boggs, Steven E.; Chiu, Jeng-Lun; Kierans, Carolyn; Lowell, Alexander; Tomsick, John; Zoglauer, Andreas; Amman, Mark; Chang, Hsiang-Kuang; Tseng, Chao-Hsiung; Yang, Chien-Ying; Lin, Chih H.; Jean, Pierre; von Ballmoos, Peter
2017-08-01
The Compton Spectrometer and Imager (COSI) is a balloon-borne soft gamma-ray (0.2-5 MeV) telescope designed to study astrophysical sources including gamma-ray bursts and compact objects. As a compact Compton telescope, COSI has inherent sensitivity to polarization. COSI utilizes 12 germanium detectors to provide excellent spectral resolution. On May 17, 2016, COSI was launched from Wanaka, New Zealand and completed a successful 46-day flight on NASA’s new Superpressure balloon. To perform spectral analysis with COSI, we have developed an accurate instrument model as required for the response matrix. With carefully chosen background regions, we are able to fit the background-subtracted spectra in XSPEC. We have developed a model of the atmosphere above COSI based on the NRLMSISE-00 Atmosphere Model to include in our spectral fits. The Crab and GRB 160530A are among the sources detected during the 2016 flight. We present spectral analysis of these two point sources. Our GRB 160530A results are consistent with those from other instruments, confirming COSI’s spectral abilities. Furthermore, we discuss prospects for measuring the Crab polarization with COSI.
He, Jia-yao; Peng, Rong-fei; Zhang, Zhan-xia
2002-02-01
A self-constructed visible spectrophotometer using an acousto-optic tunable filter(AOTF) as a dispersing element is described. Two different AOTFs (one from The Institute for Silicate (Shanghai, China) and the other from Brimrose(USA)) are tested. The software written with visual C++ and operated on a Window98 platform is an applied program with dual database and multi-windows. Four independent windows, namely scanning, quantitative, calibration and result are incorporated. The Fourier self-deconvolution algorithm is also incorporated to improve the spectral resolution. The wavelengths are calibrated using the polynomial curve fitting method. The spectra and calibration curves of soluble aniline blue and phenol red are presented to show the feasibility of the constructed spectrophotometer.
Probabilistic Models for Solar Particle Events
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Dietrich, W. F.; Xapsos, M. A.; Welton, A. M.
2009-01-01
Probabilistic Models of Solar Particle Events (SPEs) are used in space mission design studies to provide a description of the worst-case radiation environment that the mission must be designed to tolerate.The models determine the worst-case environment using a description of the mission and a user-specified confidence level that the provided environment will not be exceeded. This poster will focus on completing the existing suite of models by developing models for peak flux and event-integrated fluence elemental spectra for the Z>2 elements. It will also discuss methods to take into account uncertainties in the data base and the uncertainties resulting from the limited number of solar particle events in the database. These new probabilistic models are based on an extensive survey of SPE measurements of peak and event-integrated elemental differential energy spectra. Attempts are made to fit the measured spectra with eight different published models. The model giving the best fit to each spectrum is chosen and used to represent that spectrum for any energy in the energy range covered by the measurements. The set of all such spectral representations for each element is then used to determine the worst case spectrum as a function of confidence level. The spectral representation that best fits these worst case spectra is found and its dependence on confidence level is parameterized. This procedure creates probabilistic models for the peak and event-integrated spectra.
Hobby, Kirsten; Gallagher, Richard T; Caldwell, Patrick; Wilson, Ian D
2009-01-01
This work describes the identification of 'isotopically enriched' metabolites of 4-cyanoaniline using the unique features of the software package 'Spectral Simplicity'. The software is capable of creating the theoretical mass spectra for partially isotope-enriched compounds, and subsequently performing an elemental composition analysis to give the elemental formula for the 'isotopically enriched' metabolite. A novel mass spectral correlation method, called 'FuzzyFit', was employed. 'FuzzyFit' utilises the expected experimental distribution of errors in both mass accuracy and isotope pattern and enables discrimination between statistically probable and improbable candidate formulae. The software correctly determined the molecular formulae of ten previously described metabolites of 4-cyanoaniline confirming the technique of partial isotope enrichment can produce results analogous to standard methodologies. Six previously unknown species were also identified, based on the presence of the unique 'designer' isotope ratio. Three of the unknowns were tentatively identified as N-acetylglutamine, O-methyl-N acetylglucuronide and a putative fatty acid conjugate. The discovery of a significant number of unknown species of a model drug with a comprehensive history of investigation highlights the potential for enhancement to the analytical process by the use of 'designer' isotope ratio compounds. The 'FuzzyFit' methodology significantly aided the elucidation of candidate formulae, by provision of a vastly simplified candidate formula data set. Copyright (c) 2008 John Wiley & Sons, Ltd.
On the Accuracy of Atmospheric Parameter Determination in BAFGK Stars
NASA Astrophysics Data System (ADS)
Ryabchikova, T.; Piskunov, N.; Shulyak, D.
2015-04-01
During the past few years, many papers determining the atmospheric parameters in FGK stars appeared in the literature where the accuracy of effective temperatures is given as 20-40 K. For main sequence stars within the 5 000-13 000 K temperature range, we have performed a comparative analysis of the parameters derived from the spectra by using the SME (Spectroscopy Made Easy) package and those found in the literature. Our sample includes standard stars Sirius, Procyon, δ Eri, and the Sun. Combining different spectral regions in the fitting procedure, we investigated an effect different atomic species have on the derived atmospheric parameters. The temperature difference may exceed 100 K depending on the spectral regions used in the SME procedure. It is shown that the atmospheric parameters derived with the SME procedure which includes wings of hydrogen lines in fitting agrees better with the results derived by the other methods and tools across a large part of the main sequence. For three stars—π Cet, 21 Peg, and Procyon—the atmospheric parameters were also derived by fitting a calculated energy distribution to the observed one. We found a substantial difference in the parameters inferred from different sets and combinations of spectrophotometric observations. An intercomparison of our results and literature data shows that the average accuracy of effective temperature determination for cool stars and for the early B-stars is 70-85 K and 170-200 K, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croft, S.; Favalli, Andrea; Weaver, Brian Phillip
2015-10-06
In this paper we develop and investigate several criteria for assessing how well a proposed spectral form fits observed spectra. We consider the classical improved figure of merit (FOM) along with several modifications, as well as criteria motivated by Poisson regression from the statistical literature. We also develop a new FOM that is based on the statistical idea of the bootstrap. A spectral simulator has been developed to assess the performance of these different criteria under multiple data configurations.
Impact of an AGN featureless continuum on estimation of stellar population properties
NASA Astrophysics Data System (ADS)
Cardoso, Leandro S. M.; Gomes, Jean Michel; Papaderos, Polychronis
2017-08-01
The effect of the featureless power-law (PL) continuum of an active galactic nucleus (AGN) on the estimation of physical properties of galaxies with optical population spectral synthesis (PSS) remains largely unknown. With the goal of a quantitative examination of this issue, we fit synthetic galaxy spectra representing a wide range of galaxy star formation histories (SFHs) and including distinct PL contributions of the form Fν ∝ ν- α with the PSS code Starlight to study to which extent various inferred quantities (e.g. stellar mass, mean age, and mean metallicity) match the input. The synthetic spectral energy distributions (SEDs) computed with our evolutionary spectral synthesis code include an AGN PL component with 0.5 ≤ α ≤ 2 and a fractional contribution 0.2 ≤ xAGN ≤ 0.8 to the monochromatic flux at 4020 Å. At the empirical AGN detection threshold xAGN ≃ 0.26 that we previously inferred in a pilot study on this subject, our results show that the neglect of a PL component in spectral fitting can lead to an overestimation by 2 dex in stellar mass and by up to 1 and 4 dex in the light- and mass-weighted mean stellar age, respectively, whereas the light- and mass-weighted mean stellar metallicity are underestimated by up to 0.3 and 0.6 dex, respectively. These biases, which become more severe with increasing xAGN, are essentially independent of the adopted SFH and show a complex behaviour with evolutionary time and α. Other fitting set-ups including either a single PL or multiple PLs in the base reveal, on average, much lower unsystematic uncertainties of the order of those typically found when fitting purely stellar SEDs with stellar templates, however, reaching locally up to 1, 3 and 0.4 dex in mass, age and metallicity, respectively. Our results underscore the importance of an accurate modelling of the AGN spectral contribution in PSS fits as a minimum requirement for the recovery of the physical and evolutionary properties of stellar populations in active galaxies. In particular, this study draws attention to the fact that the neglect of a PL in spectral modelling of these systems may lead to substantial overestimates in stellar mass and age, thereby leading to potentially significant biases in our understanding of the co-evolution of AGN with their galaxy hosts.
NASA Astrophysics Data System (ADS)
Wang, Ke-Yan; Li, Yun-Song; Liu, Kai; Wu, Cheng-Ke
2008-08-01
A novel compression algorithm for interferential multispectral images based on adaptive classification and curve-fitting is proposed. The image is first partitioned adaptively into major-interference region and minor-interference region. Different approximating functions are then constructed for two kinds of regions respectively. For the major interference region, some typical interferential curves are selected to predict other curves. These typical curves are then processed by curve-fitting method. For the minor interference region, the data of each interferential curve are independently approximated. Finally the approximating errors of two regions are entropy coded. The experimental results show that, compared with JPEG2000, the proposed algorithm not only decreases the average output bit-rate by about 0.2 bit/pixel for lossless compression, but also improves the reconstructed images and reduces the spectral distortion greatly, especially at high bit-rate for lossy compression.
NASA Astrophysics Data System (ADS)
McCann, C.; Repasky, K. S.; Morin, M.; Lawrence, R. L.; Powell, S. L.
2016-12-01
Compact, cost-effective, flight-based hyperspectral imaging systems can provide scientifically relevant data over large areas for a variety of applications such as ecosystem studies, precision agriculture, and land management. To fully realize this capability, unsupervised classification techniques based on radiometrically-calibrated data that cluster based on biophysical similarity rather than simply spectral similarity are needed. An automated technique to produce high-resolution, large-area, radiometrically-calibrated hyperspectral data sets based on the Landsat surface reflectance data product as a calibration target was developed and applied to three subsequent years of data covering approximately 1850 hectares. The radiometrically-calibrated data allows inter-comparison of the temporal series. Advantages of the radiometric calibration technique include the need for minimal site access, no ancillary instrumentation, and automated processing. Fitting the reflectance spectra of each pixel using a set of biophysically relevant basis functions reduces the data from 80 spectral bands to 9 parameters providing noise reduction and data compression. Examination of histograms of these parameters allows for determination of natural splitting into biophysical similar clusters. This method creates clusters that are similar in terms of biophysical parameters, not simply spectral proximity. Furthermore, this method can be applied to other data sets, such as urban scenes, by developing other physically meaningful basis functions. The ability to use hyperspectral imaging for a variety of important applications requires the development of data processing techniques that can be automated. The radiometric-calibration combined with the histogram based unsupervised classification technique presented here provide one potential avenue for managing big-data associated with hyperspectral imaging.
Calibration of the COBE FIRAS instrument
NASA Technical Reports Server (NTRS)
Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Hewagama, T.; Isaacman, R. B.; Jensen, K. A.; Mather, J. C.; Massa, D. L.; Meyer, S. S.
1994-01-01
The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite was designed to accurately measure the spectrum of the cosmic microwave background radiation (CMBR) in the frequency range 1-95/cm with an angular resolution of 7 deg. We describe the calibration of this instrument, including the method of obtaining calibration data, reduction of data, the instrument model, fitting the model to the calibration data, and application of the resulting model solution to sky observations. The instrument model fits well for calibration data that resemble sky condition. The method of propagating detector noise through the calibration process to yield a covariance matrix of the calibrated sky data is described. The final uncertainties are variable both in frequency and position, but for a typical calibrated sky 2.6 deg square pixel and 0.7/cm spectral element the random detector noise limit is of order of a few times 10(exp -7) ergs/sq cm/s/sr cm for 2-20/cm, and the difference between the sky and the best-fit cosmic blackbody can be measured with a gain uncertainty of less than 3%.
Jet Mixing Noise Scaling Laws SHJAR Data Vs. Predictions
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Bridges, James
2008-01-01
High quality jet noise spectral data measured at the anechoic dome at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent as well as convergent-divergent axisymmetric nozzles. The spectral measurements are shown in narrow band and cover 8193 equally spaced points in a typical Strouhal number range of (0.01 10.0). Measurements are reported as lossless (i.e. atmospheric attenuation is added to as-measured data), and at 24 equally spaced angles (50deg to 165deg) on a 100-diameter arc. Following the work of Viswanathan [Ref. 1], velocity power laws are derived using a least square fit on spectral power density as a function of jet temperature and observer angle. The goodness of the fit is studied at each angle, and alternative relationships are proposed to improve the spectral collapse when certain conditions are met. On the application side, power laws are extremely useful in identifying components from various noise generation mechanisms. From this analysis, jet noise prediction tools can be developed with physics derived from the different spectral components.
NASA Astrophysics Data System (ADS)
Brewick, Patrick T.; Smyth, Andrew W.
2016-12-01
The authors have previously shown that many traditional approaches to operational modal analysis (OMA) struggle to properly identify the modal damping ratios for bridges under traffic loading due to the interference caused by the driving frequencies of the traffic loads. This paper presents a novel methodology for modal parameter estimation in OMA that overcomes the problems presented by driving frequencies and significantly improves the damping estimates. This methodology is based on finding the power spectral density (PSD) of a given modal coordinate, and then dividing the modal PSD into separate regions, left- and right-side spectra. The modal coordinates were found using a blind source separation (BSS) algorithm and a curve-fitting technique was developed that uses optimization to find the modal parameters that best fit each side spectra of the PSD. Specifically, a pattern-search optimization method was combined with a clustering analysis algorithm and together they were employed in a series of stages in order to improve the estimates of the modal damping ratios. This method was used to estimate the damping ratios from a simulated bridge model subjected to moving traffic loads. The results of this method were compared to other established OMA methods, such as Frequency Domain Decomposition (FDD) and BSS methods, and they were found to be more accurate and more reliable, even for modes that had their PSDs distorted or altered by driving frequencies.
Is the Universe More Transparent to Gamma Rays than Previously Thought?
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.; Scully, Sean T.
2009-01-01
The MAGIC collaboration has recently reported the detection of the strong gamma-ray blazar 3C279 during a 1-2 day flare. They have used their spectral observations to draw conclusions regarding upper limits on the opacity of the Universe to high energy gamma-rays and, by implication, upper limits on the extragalactic mid-infrared background radiation. In this paper we examine the effect of gamma-ray absorption by the extragalactic infrared radiation on intrinsic spectra for this blazar and compare our results with the observational data on 3C279. We find agreement with our previous results, contrary to the recent assertion of the MAGIC group that the Universe is more transparent to gamma-rays than our calculations indicate. Our analysis indicates that in the energy range between approx. 80 and approx. 500 GeV, 3C279 has a best-fit intrinsic spectrum with a spectral index approx. 1.78 using our fast evolution model and approx. 2.19 using our baseline model. However, we also find that spectral indices in the range of 1.0 to 3.0 are almost as equally acceptable as the best fit spectral indices. Assuming the same intrinsic spectral index for this flare as for the 1991 flare from 3C279 observed by EGRET, viz., 2.02, which lies between our best fit indeces, we estimate that the MAGIC flare was approx.3 times brighter than the EGRET flare observed 15 years earlier.
Data Series Subtraction with Unknown and Unmodeled Background Noise
NASA Technical Reports Server (NTRS)
Vitale, Stefano; Congedo, Giuseppe; Dolesi, Rita; Ferroni, Valerio; Hueller, Mauro; Vetrugno, Daniele; Weber, William Joseph; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo;
2014-01-01
LISA Pathfinder (LPF), the precursor mission to a gravitational wave observatory of the European Space Agency, will measure the degree to which two test masses can be put into free fall, aiming to demonstrate a suppression of disturbance forces corresponding to a residual relative acceleration with a power spectral density (PSD) below (30 fm/sq s/Hz)(sup 2) around 1 mHz. In LPF data analysis, the disturbance forces are obtained as the difference between the acceleration data and a linear combination of other measured data series. In many circumstances, the coefficients for this linear combination are obtained by fitting these data series to the acceleration, and the disturbance forces appear then as the data series of the residuals of the fit. Thus the background noise or, more precisely, its PSD, whose knowledge is needed to build up the likelihood function in ordinary maximum likelihood fitting, is here unknown, and its estimate constitutes instead one of the goals of the fit. In this paper we present a fitting method that does not require the knowledge of the PSD of the background noise. The method is based on the analytical marginalization of the posterior parameter probability density with respect to the background noise PSD, and returns an estimate both for the fitting parameters and for the PSD. We show that both these estimates are unbiased, and that, when using averaged Welchs periodograms for the residuals, the estimate of the PSD is consistent, as its error tends to zero with the inverse square root of the number of averaged periodograms. Additionally, we find that the method is equivalent to some implementations of iteratively reweighted least-squares fitting. We have tested the method both on simulated data of known PSD and on data from several experiments performed with the LISA Pathfinder end-to-end mission simulator.
Cross-calibration of A.M. constellation sensors for long term monitoring of land surface processes
Meyer, D.; Chander, G.
2006-01-01
Data from multiple sensors must be used together to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products derived from different sensors (e.g., vegetation cover, albedo, surface temperature) can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectro-radiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Cross-calibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study extends on a previous study of Terra/MODIS and Landsat/ETM+ cross calibration by including the Terra/ASTER and EO-1/ALI sensors, exploring the impacts of cross-calibrating sensors when conditions described above are met to some degree but not perfectly. Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These instruments are cross calibrated using the Railroad Valley playa in Nevada. Best fit linear coefficients (slope and offset) are provided for ALI-to-MODIS and ETM+-to-MODIS cross calibrations, and root-mean-squared errors (RMSEs) and correlation coefficients are provided to quantify the uncertainty in these relationships. Due to problems with direct calibration of ASTER data, linear fits were developed between ASTER and ETM+ to assess the impacts of spectral bandpass differences between the two systems. In theory, the linear fits and uncertainties can be used to compare radiance and reflectance products derived from each instrument.
NASA Astrophysics Data System (ADS)
Takahashi, Wataru; Miyake, Yusuke; Hirata, Hiroshi
2014-10-01
This article describes an improved method for suppressing image artifacts in the visualization of 14N- and 15N-labeled nitroxyl radicals in a single image scan using electron paramagnetic resonance (EPR). The purpose of this work was to solve the problem of asymmetric EPR absorption spectra in spectral processing. A hybrid function of Gaussian and Lorentzian lineshapes was used to perform spectral line-fitting to successfully separate the two kinds of nitroxyl radicals. This approach can process the asymmetric EPR absorption spectra of the nitroxyl radicals being measured, and can suppress image artifacts due to spectral asymmetry. With this improved visualization method and a 750-MHz continuous-wave EPR imager, a temporal change in the distributions of a two-phase paraffin oil and water/glycerin solution system was visualized using lipophilic and hydrophilic nitroxyl radicals, i.e., 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy (16-DOXYL stearic acid) and 4-hydroxyl-2,2,6,6-tetramethylpiperidine-d17-1-15N-1-oxyl (TEMPOL-d17-15N). The results of the two-phase separation experiment verified that reasonable artifact suppression could be achieved by the present method that deals with asymmetric absorption spectra in the EPR imaging of 14N- and 15N-labeled nitroxyl radicals.
A Semi-Analytical Method for the PDFs of A Ship Rolling in Random Oblique Waves
NASA Astrophysics Data System (ADS)
Liu, Li-qin; Liu, Ya-liu; Xu, Wan-hai; Li, Yan; Tang, You-gang
2018-03-01
The PDFs (probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA (2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship's manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.
Estimating the Properties of Hard X-Ray Solar Flares by Constraining Model Parameters
NASA Technical Reports Server (NTRS)
Ireland, J.; Tolbert, A. K.; Schwartz, R. A.; Holman, G. D.; Dennis, B. R.
2013-01-01
We wish to better constrain the properties of solar flares by exploring how parameterized models of solar flares interact with uncertainty estimation methods. We compare four different methods of calculating uncertainty estimates in fitting parameterized models to Ramaty High Energy Solar Spectroscopic Imager X-ray spectra, considering only statistical sources of error. Three of the four methods are based on estimating the scale-size of the minimum in a hypersurface formed by the weighted sum of the squares of the differences between the model fit and the data as a function of the fit parameters, and are implemented as commonly practiced. The fourth method is also based on the difference between the data and the model, but instead uses Bayesian data analysis and Markov chain Monte Carlo (MCMC) techniques to calculate an uncertainty estimate. Two flare spectra are modeled: one from the Geostationary Operational Environmental Satellite X1.3 class flare of 2005 January 19, and the other from the X4.8 flare of 2002 July 23.We find that the four methods give approximately the same uncertainty estimates for the 2005 January 19 spectral fit parameters, but lead to very different uncertainty estimates for the 2002 July 23 spectral fit. This is because each method implements different analyses of the hypersurface, yielding method-dependent results that can differ greatly depending on the shape of the hypersurface. The hypersurface arising from the 2005 January 19 analysis is consistent with a normal distribution; therefore, the assumptions behind the three non- Bayesian uncertainty estimation methods are satisfied and similar estimates are found. The 2002 July 23 analysis shows that the hypersurface is not consistent with a normal distribution, indicating that the assumptions behind the three non-Bayesian uncertainty estimation methods are not satisfied, leading to differing estimates of the uncertainty. We find that the shape of the hypersurface is crucial in understanding the output from each uncertainty estimation technique, and that a crucial factor determining the shape of hypersurface is the location of the low-energy cutoff relative to energies where the thermal emission dominates. The Bayesian/MCMC approach also allows us to provide detailed information on probable values of the low-energy cutoff, Ec, a crucial parameter in defining the energy content of the flare-accelerated electrons. We show that for the 2002 July 23 flare data, there is a 95% probability that Ec lies below approximately 40 keV, and a 68% probability that it lies in the range 7-36 keV. Further, the low-energy cutoff is more likely to be in the range 25-35 keV than in any other 10 keV wide energy range. The low-energy cutoff for the 2005 January 19 flare is more tightly constrained to 107 +/- 4 keV with 68% probability.
NASA Astrophysics Data System (ADS)
Petržala, Jaromír
2018-07-01
The knowledge of the emission function of a city is crucial for simulation of sky glow in its vicinity. The indirect methods to achieve this function from radiances measured over a part of the sky have been recently developed. In principle, such methods represent an ill-posed inverse problem. This paper deals with the theoretical feasibility study of various approaches to solving of given inverse problem. Particularly, it means testing of fitness of various stabilizing functionals within the Tikhonov's regularization. Further, the L-curve and generalized cross validation methods were investigated as indicators of an optimal regularization parameter. At first, we created the theoretical model for calculation of a sky spectral radiance in the form of a functional of an emission spectral radiance. Consequently, all the mentioned approaches were examined in numerical experiments with synthetical data generated for the fictitious city and loaded by random errors. The results demonstrate that the second order Tikhonov's regularization method together with regularization parameter choice by the L-curve maximum curvature criterion provide solutions which are in good agreement with the supposed model emission functions.
NASA Astrophysics Data System (ADS)
Silveira, Landulfo; Leite, Kátia Ramos M.; Srougi, Miguel; Silveira, Fabrício L.; Pacheco, Marcos Tadeu T.; Zângaro, Renato A.; Pasqualucci, Carlos A.
2013-03-01
It has been proposed a spectral model to evaluate the biochemical differences between prostate carcinoma and benign fragments using dispersive Raman spectroscopy. We have examined 51 prostate fragments from surgically removed PrCa; each fragment was snap-frozen and stored (-80°C) prior spectral analysis. Raman spectrum was measured using a Raman spectrometer (830 nm excitation) coupled to a fiber-optic probe. Integration time and laser power were set to 50 s and 300 mW, respectively. It has been collected triplicate spectra from each fragment (total 153 spectra). Some samples exhibited a strong fluorescence, which was removed by a 7th order polynomial fitting. It has been developed a spectral model based on the least-squares fitting of the spectra of pure biochemicals (actin, collagen, elastin, carotene, glycogen, phosphatidylcholine, hemoglobin, and water) with the spectra of tissues, where the fitting parameters are the relative contribution of the compounds to the tissue spectrum. The spectra (600-1800 cm-1 range) are dominated by bands of proteins; it has been found a small difference in the mean spectra of PrCa compared to the benign tissue, mainly in the 1000-1400 cm-1 region, indicating similar biochemical constitution. The spectral fitting model revealed that elastin and phosphatidylcholine were increased in PrCa, whereas blood and water were reduced in malignant lesions (p < 0.05). A discrimination of PrCa from benign tissue using Mahalanobis distance applied to the contribution of elastin, hemoglobin and phosphatidylcholine resulted in sensitivity of 72% and specificity of 70%.
Nakagawa, Yoshihide; Amino, Mari; Inokuchi, Sadaki; Hayashi, Satoshi; Wakabayashi, Tsutomu; Noda, Tatsuya
2017-04-01
Amplitude spectral area (AMSA), an index for analysing ventricular fibrillation (VF) waveforms, is thought to predict the return of spontaneous circulation (ROSC) after electric shocks, but its validity is unconfirmed. We developed an equation to predict ROSC, where the change in AMSA (ΔAMSA) is added to AMSA measured immediately before the first shock (AMSA1). We examine the validity of this equation by comparing it with the conventional AMSA1-only equation. We retrospectively investigated 285 VF patients given prehospital electric shocks by emergency medical services. ΔAMSA was calculated by subtracting AMSA1 from last AMSA immediately before the last prehospital electric shock. Multivariate logistic regression analysis was performed using post-shock ROSC as a dependent variable. Analysis data were subjected to receiver operating characteristic curve analysis, goodness-of-fit testing using a likelihood ratio test, and the bootstrap method. AMSA1 (odds ratio (OR) 1.151, 95% confidence interval (CI) 1.086-1.220) and ΔAMSA (OR 1.289, 95% CI 1.156-1.438) were independent factors influencing ROSC induction by electric shock. Area under the curve (AUC) for predicting ROSC was 0.851 for AMSA1-only and 0.891 for AMSA1+ΔAMSA. Compared with the AMSA1-only equation, the AMSA1+ΔAMSA equation had significantly better goodness-of-fit (likelihood ratio test P<0.001) and showed good fit in the bootstrap method. Post-shock ROSC was accurately predicted by adding ΔAMSA to AMSA1. AMSA-based ROSC prediction enables application of electric shock to only those patients with high probability of ROSC, instead of interrupting chest compressions and delivering unnecessary shocks to patients with low probability of ROSC. Copyright © 2017 Elsevier B.V. All rights reserved.
A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jin; Yu, Yaming; Van Dyk, David A.
2014-10-20
Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use amore » principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.« less
De Beuckeleer, Liene I; Herrebout, Wouter A
2016-02-05
To rationalize the concentration dependent behavior observed for a large spectral data set of HCl recorded in liquid argon, least-squares based numerical methods are developed and validated. In these methods, for each wavenumber a polynomial is used to mimic the relation between monomer concentrations and measured absorbances. Least-squares fitting of higher degree polynomials tends to overfit and thus leads to compensation effects where a contribution due to one species is compensated for by a negative contribution of another. The compensation effects are corrected for by carefully analyzing, using AIC and BIC information criteria, the differences observed between consecutive fittings when the degree of the polynomial model is systematically increased, and by introducing constraints prohibiting negative absorbances to occur for the monomer or for one of the oligomers. The method developed should allow other, more complicated self-associating systems to be analyzed with a much higher accuracy than before. Copyright © 2015 Elsevier B.V. All rights reserved.
Phase-sensitive spectral estimation by the hybrid filter diagonalization method.
Celik, Hasan; Ridge, Clark D; Shaka, A J
2012-01-01
A more robust way to obtain a high-resolution multidimensional NMR spectrum from limited data sets is described. The Filter Diagonalization Method (FDM) is used to analyze phase-modulated data and cast the spectrum in terms of phase-sensitive Lorentzian "phase-twist" peaks. These spectra are then used to obtain absorption-mode phase-sensitive spectra. In contrast to earlier implementations of multidimensional FDM, the absolute phase of the data need not be known beforehand, and linear phase corrections in each frequency dimension are possible, if they are required. Regularization is employed to improve the conditioning of the linear algebra problems that must be solved to obtain the spectral estimate. While regularization smoothes away noise and small peaks, a hybrid method allows the true noise floor to be correctly represented in the final result. Line shape transformation to a Gaussian-like shape improves the clarity of the spectra, and is achieved by a conventional Lorentzian-to-Gaussian transformation in the time-domain, after inverse Fourier transformation of the FDM spectra. The results obtained highlight the danger of not using proper phase-sensitive line shapes in the spectral estimate. The advantages of the new method for the spectral estimate are the following: (i) the spectrum can be phased by conventional means after it is obtained; (ii) there is a true and accurate noise floor; and (iii) there is some indication of the quality of fit in each local region of the spectrum. The method is illustrated with 2D NMR data for the first time, but is applicable to n-dimensional data without any restriction on the number of time/frequency dimensions. Copyright © 2011. Published by Elsevier Inc.
Applications of broadband cavity enhanced spectroscopy for measurements of trace gases and aerosols
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Attwood, A. R.; Brock, C. A.; Brown, S. S.; Dube, W. P.; Flores, J. M.; Langford, A. O.; Min, K. E.; Rudich, Y.; Stutz, J.; Wagner, N.; Young, C.; Zarzana, K. J.
2015-12-01
Broadband cavity enhanced spectroscopy (BBCES) uses a broadband light source, optical cavity, and multichannel detector to measure light extinction with high sensitivity. This method differs from cavity ringdown spectroscopy, because it uses an inexpensive, incoherent light source and allows optical extinction to be determined simultaneously across a broad wavelength region.Spectral fitting methods can be used to retrieve multiple absorbers across the observed wavelength region. We have successfully used this method to measure glyoxal (CHOCHO), nitrous acid (HONO), and nitrogen dioxide (NO2) from ground-based and aircraft-based sampling platforms. The detection limit (2-sigma) in 5 s for retrievals of CHOCHO, HONO and NO2 is 32, 250 and 80 parts per trillion (pptv).Alternatively, gas-phase absorbers can be chemically removed to allow the accurate determination of aerosol extinction. In the laboratory, we have used the aerosol extinction measurements to determine scattering and absorption as a function of wavelength. We have deployed a ground-based field instrument to measure aerosol extinction, with a detection limit of approximately 0.2 Mm-1 in 1 min.BBCES methods are most widely used in the near-ultraviolet and visible spectral region. Recently, we have demonstrated measurements at 315-350 nm for formaldehyde (CH2O) and NO2. Extending the technique further into the ultraviolet spectral region will allow important additional measurements of trace gas species and aerosol extinction.
Use of field reflectance data for crop mapping using airborne hyperspectral image
NASA Astrophysics Data System (ADS)
Nidamanuri, Rama Rao; Zbell, Bernd
2011-09-01
Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question "what is the prospect of using independent reference reflectance spectra for image classification", while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of "non-existence of characteristic reflectance spectral signatures for vegetation", results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.
A direct potential fitting RKR method: Semiclassical vs. quantal comparisons
NASA Astrophysics Data System (ADS)
Tellinghuisen, Joel
2016-12-01
Quantal and semiclassical (SC) eigenvalues are compared for three diatomic molecular potential curves: the X state of CO, the X state of Rb2, and the A state of I2. The comparisons show higher levels of agreement than generally recognized, when the SC calculations incorporate a quantum defect correction to the vibrational quantum number, in keeping with the Kaiser modification. One particular aspect of this is better agreement between quantal and SC estimates of the zero-point vibrational energy, supporting the need for the Y00 correction in this context. The pursuit of a direct-potential-fitting (DPF) RKR method is motivated by the notion that some of the limitations of RKR potentials may be innate, from their generation by an exact inversion of approximate quantities: the vibrational energy Gυ and rotational constant Bυ from least-squares analysis of spectroscopic data. In contrast, the DPF RKR method resembles the quantal DPF methods now increasingly used to analyze diatomic spectral data, but with the eigenvalues obtained from SC phase integrals. Application of this method to the analysis of 9500 assigned lines in the I2A ← X spectrum fails to alter the quantal-SC disparities found for the A-state RKR curve from a previous analysis. On the other hand, the SC method can be much faster than the quantal method in exploratory work with different potential functions, where it is convenient to use finite-difference methods to evaluate the partial derivatives required in nonlinear fitting.
Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study
NASA Astrophysics Data System (ADS)
Szabo, A.; Koval, A.; Merka, J.; Narock, T. W.
2010-12-01
The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the ~2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions . The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed.
NASA Astrophysics Data System (ADS)
Bowler, Brendan P.; Liu, Michael C.; Cushing, Michael C.
2009-12-01
We present a near-infrared spectroscopic study of HD 114762B, the latest-type metal-poor companion discovered to date and the only ultracool subdwarf with a known metallicity, inferred from the primary star to be [Fe/H] = -0.7. We obtained a medium-resolution (R ~ 3800) Keck/OSIRIS 1.18-1.40 μm spectrum and a low-resolution (R ~ 150) Infrared Telescope Facility/SpeX 0.8-2.4 μm spectrum of HD 114762B to test atmospheric and evolutionary models for the first time in this mass-metallicity regime. HD 114762B exhibits spectral features common to both late-type dwarfs and subdwarfs, and we assign it a spectral type of d/sdM9 ± 1. We use a Monte Carlo technique to fit PHOENIX/GAIA synthetic spectra to the observations, accounting for the coarsely gridded nature of the models. Fits to the entire OSIRIS J-band and to the metal-sensitive J-band atomic absorption features (Fe I, K I, and Al I lines) yield model parameters that are most consistent with the metallicity of the primary star and the high surface gravity expected of old late-type objects. The effective temperatures and radii inferred from the model atmosphere fitting broadly agree with those predicted by the evolutionary models of Chabrier & Baraffe, and the model color-absolute magnitude relations accurately predict the metallicity of HD 114762B. We conclude that current low-mass, mildly metal-poor atmospheric and evolutionary models are mutually consistent for spectral fits to medium-resolution J-band spectra of HD 114762B, but are inconsistent for fits to low-resolution near-infrared spectra of mild subdwarfs. Finally, we develop a technique for estimating distances to ultracool subdwarfs based on a single near-infrared spectrum. We show that this "spectroscopic parallax" method enables distance estimates accurate to lsim10% of parallactic distances for ultracool subdwarfs near the hydrogen burning minimum mass. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Muir, Ryan D.; Pogranichney, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.
2014-01-01
Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment. PMID:25178010
Muir, Ryan D; Pogranichney, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J
2014-09-01
Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment.
A SIRTF interdiciplinary scientist proposal
NASA Technical Reports Server (NTRS)
Wright, E. L.
1986-01-01
Segal's chronometric cosmology provides an adequate fit to the radio source counts only for an unrealistic choice of spectral index. Since the typical observed spectral index of 0.75 gives a completely unacceptable X squared = 136 with 24 (or fewer) degrees of freedom, it is concluded that the actual Universe does not fit the chronometric model. Counts of ultraviolet excess quasistellar objects also show a steep N(S) curve that the chronometric cosmology cannot explain. Claims to the contrary by Segal, Loncaric, and Segal (1980) and Segal and Nicoll (1986) depend on a seemingly innocuous assumption that in fact destroys the power of the N(S) test. Even though the chronometric model gives a better fit that other non-evolving models it must be ruled out along with all non-evolving cosmologies.
The role of temperature in reported chickenpox cases from 2000 to 2011 in Japan.
Harigane, K; Sumi, A; Mise, K; Kobayashi, N
2015-09-01
Annual periodicities of reported chickenpox cases have been observed in several countries. Of these, Japan has reported a two-peaked, bimodal annual cycle of reported chickenpox cases. This study investigated the possible underlying association of the bimodal cycle observed in the surveillance data of reported chickenpox cases with the meteorological factors of temperature, relative humidity and rainfall. A time-series analysis consisting of the maximum entropy method spectral analysis and the least squares method was applied to the chickenpox data and meteorological data of 47 prefectures in Japan. In all of the power spectral densities for the 47 prefectures, the spectral lines were observed at the frequency positions corresponding to the 1-year and 6-month cycles. The optimum least squares fitting (LSF) curves calculated with the 1-year and 6-month cycles explained the underlying variation of the chickenpox data. The LSF curves reproduced the bimodal and unimodal cycles that were clearly observed in northern and southern Japan, respectively. The data suggest that the second peaks in the bimodal cycles in the reported chickenpox cases in Japan occurred at a temperature of approximately 8·5 °C.
NASA Astrophysics Data System (ADS)
Krishnan, Karthik; Reddy, Kasireddy V.; Ajani, Bhavya; Yalavarthy, Phaneendra K.
2017-02-01
CT and MR perfusion weighted imaging (PWI) enable quantification of perfusion parameters in stroke studies. These parameters are calculated from the residual impulse response function (IRF) based on a physiological model for tissue perfusion. The standard approach for estimating the IRF is deconvolution using oscillatory-limited singular value decomposition (oSVD) or Frequency Domain Deconvolution (FDD). FDD is widely recognized as the fastest approach currently available for deconvolution of CT Perfusion/MR PWI. In this work, three faster methods are proposed. The first is a direct (model based) crude approximation to the final perfusion quantities (Blood flow, Blood volume, Mean Transit Time and Delay) using the Welch-Satterthwaite approximation for gamma fitted concentration time curves (CTC). The second method is a fast accurate deconvolution method, we call Analytical Fourier Filtering (AFF). The third is another fast accurate deconvolution technique using Showalter's method, we call Analytical Showalter's Spectral Filtering (ASSF). Through systematic evaluation on phantom and clinical data, the proposed methods are shown to be computationally more than twice as fast as FDD. The two deconvolution based methods, AFF and ASSF, are also shown to be quantitatively accurate compared to FDD and oSVD.
NASA Astrophysics Data System (ADS)
Fu, Zewei; Hu, Juntao; Hu, Wenlong; Yang, Shiyu; Luo, Yunfeng
2018-05-01
Quantitative analysis of Ni2+/Ni3+ using X-ray photoelectron spectroscopy (XPS) is important for evaluating the crystal structure and electrochemical performance of Lithium-nickel-cobalt-manganese oxide (Li[NixMnyCoz]O2, NMC). However, quantitative analysis based on Gaussian/Lorentzian (G/L) peak fitting suffers from the challenges of reproducibility and effectiveness. In this study, the Ni2+ and Ni3+ standard samples and a series of NMC samples with different Ni doping levels were synthesized. The Ni2+/Ni3+ ratios in NMC were quantitatively analyzed by non-linear least-squares fitting (NLLSF). Two Ni 2p overall spectra of synthesized Li [Ni0.33Mn0.33Co0.33]O2(NMC111) and bulk LiNiO2 were used as the Ni2+ and Ni3+ reference standards. Compared to G/L peak fitting, the fitting parameters required no adjustment, meaning that the spectral fitting process was free from operator dependence and the reproducibility was improved. Comparison of residual standard deviation (STD) showed that the fitting quality of NLLSF was superior to that of G/L peaks fitting. Overall, these findings confirmed the reproducibility and effectiveness of the NLLSF method in XPS quantitative analysis of Ni2+/Ni3+ ratio in Li[NixMnyCoz]O2 cathode materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Shankar, N Udaya
Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30–6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal.more » We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.« less
Assessing FRET using Spectral Techniques
Leavesley, Silas J.; Britain, Andrea L.; Cichon, Lauren K.; Nikolaev, Viacheslav O.; Rich, Thomas C.
2015-01-01
Förster resonance energy transfer (FRET) techniques have proven invaluable for probing the complex nature of protein–protein interactions, protein folding, and intracellular signaling events. These techniques have traditionally been implemented with the use of one or more fluorescence band-pass filters, either as fluorescence microscopy filter cubes, or as dichroic mirrors and band-pass filters in flow cytometry. In addition, new approaches for measuring FRET, such as fluorescence lifetime and acceptor photobleaching, have been developed. Hyperspectral techniques for imaging and flow cytometry have also shown to be promising for performing FRET measurements. In this study, we have compared traditional (filter-based) FRET approaches to three spectral-based approaches: the ratio of acceptor-to-donor peak emission, linear spectral unmixing, and linear spectral unmixing with a correction for direct acceptor excitation. All methods are estimates of FRET efficiency, except for one-filter set and three-filter set FRET indices, which are included for consistency with prior literature. In the first part of this study, spectrofluorimetric data were collected from a CFP–Epac–YFP FRET probe that has been used for intracellular cAMP measurements. All comparisons were performed using the same spectrofluorimetric datasets as input data, to provide a relevant comparison. Linear spectral unmixing resulted in measurements with the lowest coefficient of variation (0.10) as well as accurate fits using the Hill equation. FRET efficiency methods produced coefficients of variation of less than 0.20, while FRET indices produced coefficients of variation greater than 8.00. These results demonstrate that spectral FRET measurements provide improved response over standard, filter-based measurements. Using spectral approaches, single-cell measurements were conducted through hyperspectral confocal microscopy, linear unmixing, and cell segmentation with quantitative image analysis. Results from these studies confirmed that spectral imaging is effective for measuring subcellular, time-dependent FRET dynamics and that additional fluorescent signals can be readily separated from FRET signals, enabling multilabel studies of molecular interactions. PMID:23929684
Assessing FRET using spectral techniques.
Leavesley, Silas J; Britain, Andrea L; Cichon, Lauren K; Nikolaev, Viacheslav O; Rich, Thomas C
2013-10-01
Förster resonance energy transfer (FRET) techniques have proven invaluable for probing the complex nature of protein-protein interactions, protein folding, and intracellular signaling events. These techniques have traditionally been implemented with the use of one or more fluorescence band-pass filters, either as fluorescence microscopy filter cubes, or as dichroic mirrors and band-pass filters in flow cytometry. In addition, new approaches for measuring FRET, such as fluorescence lifetime and acceptor photobleaching, have been developed. Hyperspectral techniques for imaging and flow cytometry have also shown to be promising for performing FRET measurements. In this study, we have compared traditional (filter-based) FRET approaches to three spectral-based approaches: the ratio of acceptor-to-donor peak emission, linear spectral unmixing, and linear spectral unmixing with a correction for direct acceptor excitation. All methods are estimates of FRET efficiency, except for one-filter set and three-filter set FRET indices, which are included for consistency with prior literature. In the first part of this study, spectrofluorimetric data were collected from a CFP-Epac-YFP FRET probe that has been used for intracellular cAMP measurements. All comparisons were performed using the same spectrofluorimetric datasets as input data, to provide a relevant comparison. Linear spectral unmixing resulted in measurements with the lowest coefficient of variation (0.10) as well as accurate fits using the Hill equation. FRET efficiency methods produced coefficients of variation of less than 0.20, while FRET indices produced coefficients of variation greater than 8.00. These results demonstrate that spectral FRET measurements provide improved response over standard, filter-based measurements. Using spectral approaches, single-cell measurements were conducted through hyperspectral confocal microscopy, linear unmixing, and cell segmentation with quantitative image analysis. Results from these studies confirmed that spectral imaging is effective for measuring subcellular, time-dependent FRET dynamics and that additional fluorescent signals can be readily separated from FRET signals, enabling multilabel studies of molecular interactions. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.
Gao, Bo-Cai; Liu, Ming
2013-01-01
Surface reflectance spectra retrieved from remotely sensed hyperspectral imaging data using radiative transfer models often contain residual atmospheric absorption and scattering effects. The reflectance spectra may also contain minor artifacts due to errors in radiometric and spectral calibrations. We have developed a fast smoothing technique for post-processing of retrieved surface reflectance spectra. In the present spectral smoothing technique, model-derived reflectance spectra are first fit using moving filters derived with a cubic spline smoothing algorithm. A common gain curve, which contains minor artifacts in the model-derived reflectance spectra, is then derived. This gain curve is finally applied to all of the reflectance spectra in a scene to obtain the spectrally smoothed surface reflectance spectra. Results from analysis of hyperspectral imaging data collected with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data are given. Comparisons between the smoothed spectra and those derived with the empirical line method are also presented. PMID:24129022
Kowal, Dominik; Urbanczyk, Waclaw; Mergo, Pawel
2018-01-01
In this paper we present an all-fiber interferometric sensor for the simultaneous measurement of strain and temperature. It is composed of a specially fabricated twin-core fiber spliced between two pieces of a single-mode fiber. Due to the refractive index difference between the two cores in a twin-core fiber, a differential interference pattern is produced at the sensor output. The phase response of the interferometer to strain and temperature is measured in the 850–1250 nm spectral range, showing zero sensitivity to strain at 1000 nm. Due to the significant difference in sensitivities to both parameters, our interferometer is suitable for two-parameter sensing. The simultaneous response of the interferometer to strain and temperature was studied using the two-wavelength interrogation method and a novel approach based on the spectral fitting of the differential phase response. As the latter technique uses all the gathered spectral information, it is more reliable and yields the results with better accuracy. PMID:29558386
Parks, David R.; Khettabi, Faysal El; Chase, Eric; Hoffman, Robert A.; Perfetto, Stephen P.; Spidlen, Josef; Wood, James C.S.; Moore, Wayne A.; Brinkman, Ryan R.
2017-01-01
We developed a fully automated procedure for analyzing data from LED pulses and multi-level bead sets to evaluate backgrounds and photoelectron scales of cytometer fluorescence channels. The method improves on previous formulations by fitting a full quadratic model with appropriate weighting and by providing standard errors and peak residuals as well as the fitted parameters themselves. Here we describe the details of the methods and procedures involved and present a set of illustrations and test cases that demonstrate the consistency and reliability of the results. The automated analysis and fitting procedure is generally quite successful in providing good estimates of the Spe (statistical photoelectron) scales and backgrounds for all of the fluorescence channels on instruments with good linearity. The precision of the results obtained from LED data is almost always better than for multi-level bead data, but the bead procedure is easy to carry out and provides results good enough for most purposes. Including standard errors on the fitted parameters is important for understanding the uncertainty in the values of interest. The weighted residuals give information about how well the data fits the model, and particularly high residuals indicate bad data points. Known photoelectron scales and measurement channel backgrounds make it possible to estimate the precision of measurements at different signal levels and the effects of compensated spectral overlap on measurement quality. Combining this information with measurements of standard samples carrying dyes of biological interest, we can make accurate comparisons of dye sensitivity among different instruments. Our method is freely available through the R/Bioconductor package flowQB. PMID:28160404
Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations
NASA Astrophysics Data System (ADS)
Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.
2011-06-01
The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared.
Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.
Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D
2011-06-01
The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared. Key Words: Astrobiology-Extrasolar terrestrial planets-Habitability-Planetary science-Radiative transfer. Astrobiology 11, 393-408.
Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations
NASA Technical Reports Server (NTRS)
Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas;
2011-01-01
The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth s time dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared.brightness
NASA Astrophysics Data System (ADS)
Lindsay, Sean; Wooden, D. H.; Woodward, C. E.; Harker, D. E.; Kelley, M. S.; Murphy, J. R.
2012-10-01
In cometary comae, the crystalline silicate forsterite (Mg2SiO4) is the dominant crystalline component. Within the 8 - 40 micron spectral range, the crystal shape has been demonstrated to have a measurable effect on the crystalline features’ shape and peak wavelength locations. We present discrete dipole approximation (DDA) absorption efficiencies for a variety of forsterite grain shapes to demonstrate: a) that the 10, 11, 19, 23, and 33.5 micron resonances are sensitive to grain shape; b) spectral trends are associated with variations in crystallographic axial ratios; and c) that groups of similar grain shapes (shape classes) have distinct spectral features. These computations are performed using DDSCAT v7.0 run on the NASA Advanced Supercomputing (NAS) facility Pleiades. We generate synthetic spectral energy distribution (SED) fits to the Infrared Space Observatory (ISO) SWS spectra for the coma of comet C/1995 O1 (Hale-Bopp) at a heliocentric distance of 2.8 AU. Hale-Bopp is best fit by equant grain shapes whereas rounded grain shapes fit significantly poorer than crystals with sharp edges with well-defined faces. Moreover, crystals that are not significantly elongated along a crystallographic axis fit better. By comparison with Kobatake et al. (2008) condensation experiments and Takigawa et al. (2009) evaporation experiments, our analyses suggest that the forsterite crystals in the coma of Hale-Bopp predominantly are high temperature condensates. The laboratory experiments show that grain shape and grain formation temperature, and hence disk environment, are causally linked. Specifically, the Kobatake et al. (2008) condensation experiment reveals three shape classes associated with temperature: 1) ‘Bulky’ grains (1300 K < T < 1700 K), 2) ‘Platy’ grains (1000 K < T < 1300 K), and 3) columnar/needle grains (T < 1000 K). We construct DDA grain shape analogs to these shape classes to connect grain shapes to distinguishable spectral signatures and crystal formation environments.
Distance and spectrum of the Apollo gamma-ray burst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilman, D.; Metzger, A.E.; Parker, R.H.
1980-03-15
The ..gamma..-ray spectrometer on Apollo 16 obtained spectral information with good energy resolution from more than 2500 burst photons in the energy range 0.06--5.16 MeV. The spectrum from 2 keV to 2 MeV, observed at X-ray energies by the Apollo X-ray spectrometer, is fitted by a thermal bremsstrahlung spectrum with kT=500 keV. The success of the fit implies that the source is optically thin, and it follows that it must be closer than 50 pc. Absence of spectral variability suggests that the burst results from isothermal changes in emission measure.
NASA Astrophysics Data System (ADS)
Joseph, R.; Courbin, F.; Starck, J.-L.
2016-05-01
We introduce a new algorithm for colour separation and deblending of multi-band astronomical images called MuSCADeT which is based on Morpho-spectral Component Analysis of multi-band images. The MuSCADeT algorithm takes advantage of the sparsity of astronomical objects in morphological dictionaries such as wavelets and their differences in spectral energy distribution (SED) across multi-band observations. This allows us to devise a model independent and automated approach to separate objects with different colours. We show with simulations that we are able to separate highly blended objects and that our algorithm is robust against SED variations of objects across the field of view. To confront our algorithm with real data, we use HST images of the strong lensing galaxy cluster MACS J1149+2223 and we show that MuSCADeT performs better than traditional profile-fitting techniques in deblending the foreground lensing galaxies from background lensed galaxies. Although the main driver for our work is the deblending of strong gravitational lenses, our method is fit to be used for any purpose related to deblending of objects in astronomical images. An example of such an application is the separation of the red and blue stellar populations of a spiral galaxy in the galaxy cluster Abell 2744. We provide a python package along with all simulations and routines used in this paper to contribute to reproducible research efforts. Codes can be found at http://lastro.epfl.ch/page-126973.html
Dust models compatible with Planck intensity and polarization data in translucent lines of sight
NASA Astrophysics Data System (ADS)
Guillet, V.; Fanciullo, L.; Verstraete, L.; Boulanger, F.; Jones, A. P.; Miville-Deschênes, M.-A.; Ysard, N.; Levrier, F.; Alves, M.
2018-02-01
Context. Current dust models are challenged by the dust properties inferred from the analysis of Planck observations in total and polarized emission. Aims: We propose new dust models compatible with polarized and unpolarized data in extinction and emission for translucent lines of sight (0.5 < AV < 2.5). Methods: We amended the DustEM tool to model polarized extinction and emission. We fit the spectral dependence of the mean extinction, polarized extinction, total and polarized spectral energy distributions (SEDs) with polycyclic aromatic hydrocarbons, astrosilicate and amorphous carbon (a-C) grains. The astrosilicate population is aligned along the magnetic field lines, while the a-C population may be aligned or not. Results: With their current optical properties, oblate astrosilicate grains are not emissive enough to reproduce the emission to extinction polarization ratio P353/pV derived with Planck data. Successful models are those using prolate astrosilicate grains with an elongation a/b = 3 and an inclusion of 20% porosity. The spectral dependence of the polarized SED is steeper in our models than in the data. Models perform slightly better when a-C grains are aligned. A small (6%) volume inclusion of a-C in the astrosilicate matrix removes the need for porosity and perfect grain alignment, and improves the fit to the polarized SED. Conclusions: Dust models based on astrosilicates can be reconciled with data by adapting the shape of grains and adding inclusions of porosity or a-C in the astrosilicate matrix.
Open-path FTIR data reduction algorithm with atmospheric absorption corrections: the NONLIN code
NASA Astrophysics Data System (ADS)
Phillips, William; Russwurm, George M.
1999-02-01
This paper describes the progress made to date in developing, testing, and refining a data reduction computer code, NONLIN, that alleviates many of the difficulties experienced in the analysis of open path FTIR data. Among the problems that currently effect FTIR open path data quality are: the inability to obtain a true I degree or background, spectral interferences of atmospheric gases such as water vapor and carbon dioxide, and matching the spectral resolution and shift of the reference spectra to a particular field instrument. This algorithm is based on a non-linear fitting scheme and is therefore not constrained by many of the assumptions required for the application of linear methods such as classical least squares (CLS). As a result, a more realistic mathematical model of the spectral absorption measurement process can be employed in the curve fitting process. Applications of the algorithm have proven successful in circumventing open path data reduction problems. However, recent studies, by one of the authors, of the temperature and pressure effects on atmospheric absorption indicate there exist temperature and water partial pressure effects that should be incorporated into the NONLIN algorithm for accurate quantification of gas concentrations. This paper investigates the sources of these phenomena. As a result of this study a partial pressure correction has been employed in NONLIN computer code. Two typical field spectra are examined to determine what effect the partial pressure correction has on gas quantification.
Infrared spectra in monitoring biochemical parameters of human blood
NASA Astrophysics Data System (ADS)
Prabhakar, S.; Jain, N.; Singh, R. A.
2012-05-01
Infrared spectroscopy is gaining recognition as a promising method. The infrared spectra of selected regions (2000-400cm-1) of blood tissue samples are reported. Present study related to the role of spectral peak fitting in the study of human blood and quantitative interpretations of infrared spectra based on chemometrics. The spectral variations are interpreted in terms of the biochemical and pathological processes involved. The mean RNA/DNA ratio of fitted intensities and analytical area as calculated from the transmittance peaks at 1121cm-1/1020cm-1 is found to be 0.911A.U and 2.00A.U. respectively. The ratio of 1659cm-1/1544cm-1 (amide-I/amide-II) bands is found to shed light on the change in the DNA content. The ratio of amide-I/amide-II is almost unity (≈1.054) for blood spectra. The deviation from unity is an indication of DNA absorption from the RBC cells. The total phosphate content has found to be 25.09A.U. The level for glycogen/phosphate ratio (areas under peaks 1030cm-1/1082cm-1) is found to be 0.286A.U. The ratio of unsaturated and saturated carbonyl compounds (C=O) in blood samples is in form of esters and the analytical areas under the spectral peaks at 1740cm-1 and 1731cm-1 for unsaturated esters and saturated esters respectively found to be 0.618A.U.
Radio outbursts in extragalactic sources
NASA Astrophysics Data System (ADS)
Kinzel, Wayne Morris
Three aspects of the flux density variability of extragalactic radio sources were examined: millimeter wavelength short timescale variability, the spectral evolution of outbursts, and whether the outbursts are periodically spaced. Observations of extragalactic radio sources were conducted using the Five College Radio Astronomy Observatory between January and June 1985 at 88.2 GHz and during June and July 1985 at 40.0 GHz. Many of the sources exhibited significant flux density variations during the observing span. In addition, the most rapid variations observed were comparable with those reported in previous works. Two sources, 0355+50 and OJ287, both exhibited outbursts whose rise and fall timescales were less than a month. An anomalous flux density dropout was observed in 3C446 and was interpreted as an occultation event. Data at five frequencies between 2.7 and 89.6 GHz from the Dent-Balonek monitoring program were used to investigate the spectral evolution of eight outbursts. Outburst profile fitting was used to deconvolve the individual outbursts from one another at each frequency. The fit profiles were used to generate multiple epoch spectra to investigate the evolution of the outbursts. A phase residual minimization method was used to examine four sources for periodic behavior.
Capabilities, methodologies, and use of the cambio file-translation application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasche, George P.
2007-03-01
This report describes the capabilities, methodologies, and uses of the Cambio computer application, designed to automatically read and display nuclear spectral data files of any known format in the world and to convert spectral data to one of several commonly used analysis formats. To further assist responders, Cambio incorporates an analysis method based on non-linear fitting techniques found in open literature and implemented in openly published source code in the late 1980s. A brief description is provided of how Cambio works, of what basic formats it can currently read, and how it can be used. Cambio was developed at Sandiamore » National Laboratories and is provided as a free service to assist nuclear emergency response analysts anywhere in the world in the fight against nuclear terrorism.« less
NASA Astrophysics Data System (ADS)
Martins, Luis Gustavo Nogueira; Stefanello, Michel Baptistella; Degrazia, Gervásio Annes; Acevedo, Otávio Costa; Puhales, Franciano Scremin; Demarco, Giuliano; Mortarini, Luca; Anfossi, Domenico; Roberti, Débora Regina; Costa, Felipe Denardin; Maldaner, Silvana
2016-11-01
In this study we analyze natural complex signals employing the Hilbert-Huang spectral analysis. Specifically, low wind meandering meteorological data are decomposed into turbulent and non turbulent components. These non turbulent movements, responsible for the absence of a preferential direction of the horizontal wind, provoke negative lobes in the meandering autocorrelation functions. The meandering characteristic time scales (meandering periods) are determined from the spectral peak provided by the Hilbert-Huang marginal spectrum. The magnitudes of the temperature and horizontal wind meandering period obtained agree with the results found from the best fit of the heuristic meandering autocorrelation functions. Therefore, the new method represents a new procedure to evaluate meandering periods that does not employ mathematical expressions to represent observed meandering autocorrelation functions.
Characterization of H 1743-322 during its 2003 outburst with TCAF Solution.
NASA Astrophysics Data System (ADS)
Nagarkoti, Shreeram; Debnath, Dipak; Chakrabarti, Sandip Kumar; Mondal, Santanu; Chatterjee, Arka
2016-07-01
Transiant black hole candidate (BHC) H 1743-322 became active in X-rays on 2003 March 21 after remaining dormant for around two decades. We study both the spectral and temporal properties of the source during its 2003 outburst under TCAF paradigm. The classification of different spectral states (hard, hard-intermediate, soft-intermediate, soft) and their intermediate transitions are more clear from the variation of TCAF model fitted/derived physical flow parameters and nature of quasi-periodic oscillations (if present). We also studied evolutions of low frequency QPOs during rising and declining phases of the outburst with propagating oscillatory shock (POS) model. We get a good estimation of the probable mass range of the objects from prediction methods using TCAF and POS model, as discussed in Molla et al. (2016).
Prediction of Soil pH Hyperspectral Spectrum in Guanzhong Area of Shaanxi Province Based on PLS
NASA Astrophysics Data System (ADS)
Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Cheng, Jie; Tong, Wei; Wei, Jing
2017-12-01
The soil pH of Fufeng County, Yangling County and Wugong County in Shaanxi Province was studied. The spectral reflectance was measured by ASD Field Spec HR portable terrain spectrum, and its spectral characteristics were analyzed. The first deviation of the original spectral reflectance of the soil, the second deviation, the logarithm of the reciprocal logarithm, the first order differential of the reciprocal logarithm and the second order differential of the reciprocal logarithm were used to establish the soil pH Spectral prediction model. The results showed that the correlation between the reflectance spectra after SNV pre-treatment and the soil pH was significantly improved. The optimal prediction model of soil pH established by partial least squares method was a prediction model based on the first order differential of the reciprocal logarithm of spectral reflectance. The principal component factor was 10, the decision coefficient Rc2 = 0.9959, the model root means square error RMSEC = 0.0076, the correction deviation SEC = 0.0077; the verification decision coefficient Rv2 = 0.9893, the predicted root mean square error RMSEP = 0.0157, The deviation of SEP = 0.0160, the model was stable, the fitting ability and the prediction ability were high, and the soil pH can be measured quickly.
Approximating Reflectance and Transmittance of Vegetation Using Multiple Spectral Invariants
NASA Astrophysics Data System (ADS)
Mottus, M.
2011-12-01
Canopy spectral invariants, eigenvalues of the radiative transfer equation and photon recollision probability are some of the new theoretical tools that have been applied in remote sensing of vegetation and atmosphere. The theoretical approach based on spectral invariants, informally also referred to as the p-theory, owns its attractivity to several factors. Firstly, it provides a rapid and physically-based way of describing canopy scattering. Secondly, the p-theory aims at parameterizing canopy structure in reflectance models using a simple and intuitive concept which can be applied at various structural levels, from shoot to tree crown. The theory has already been applied at scales from the molecular level to forest stands. The most important shortcoming of the p-theory lies in its inability to predict the directionality of scattering. The theory is currently based on only one physical parameter, the photon recollision probability p. It is evident that one parameter cannot contain enough information to reasonably predict the observed complex reflectance patterns produced by natural vegetation canopies. Without estimating scattering directionality, however, the theory cannot be compared with even the most simple (and well-tested) two-stream vegetation reflectance models. In this study, we evaluate the possibility to use additional parameters to fit the measured reflectance and transmittance of a vegetation stand. As a first step, the parameters are applied to separate canopy scattering into reflectance and transmittance. New parameters are introduced following the general approach of eigenvector expansion. Thus, the new parameters are coined higher-order spectral invariants. Calculation of higher-order invariants is based on separating first-order scattering from total scattering. Thus, the method explicitly accounts for different view geometries with different fractions of visible sunlit canopy (e.g., hot-spot). It additionally allows to produce different irradiation levels on leaf surfaces for direct and diffuse incidence, thus (in theory) allowing more accurate calculation of potential photosynthesis rates. Similarly to the p-theory, the use of multiple spectral invariants facilitates easy parametrization of canopy structure and scaling between different structural levels (leaf-shoot-stand). Spectral invariant-based remote sensing approaches are well suited for relatively large pixels even when no detailed ground truth information is available. In a case study, the theory of multiple spectral invariants was applied to measured canopy scattering. Spectral reflectance and transmittance measurements were carried out in gray alder (Alnus incana) plantation at Tartu Observatory, Estonia, in August 2006. The equations produced by the theory of spectral invariants were fitted to measured radiation fluxes. Preliminary results indicate that quantities with invariant-like behavior may indeed be used to approximate canopy scattering directionality.
NASA Astrophysics Data System (ADS)
Eldridge, John J.; Stanway, Elizabeth R.
2012-01-01
Young, massive stars dominate the rest-frame ultraviolet (UV) spectra of star-forming galaxies. At high redshifts (z > 2), these rest-frame UV features are shifted into the observed-frame optical and a combination of gravitational lensing, deep spectroscopy and spectral stacking analysis allows the stellar population characteristics of these sources to be investigated. We use our stellar population synthesis code Binary Population and Spectral Synthesis (BPASS) to fit two strong rest-frame UV spectral features in published Lyman-break galaxy spectra, taking into account the effects of binary evolution on the stellar spectrum. In particular, we consider the effects of quasi-homogeneous evolution (arising from the rotational mixing of rapidly rotating stars), metallicity and the relative abundance of carbon and oxygen on the observed strengths of He IIλ1640 Å and C IVλ1548, 1551 Å spectral lines. We find that Lyman-break galaxy spectra at z ˜ 2-3 are best fitted with moderately sub-solar metallicities, and with a depleted carbon-to-oxygen ratio. We also find that the spectra of the lowest metallicity sources are best fitted with model spectra in which the He II emission line is boosted by the inclusion of the effect of massive stars being spun-up during binary mass transfer so these rapidly rotating stars experience quasi-homogeneous evolution.
Zheng, Hanrong; Fang, Zujie; Wang, Zhaoyong; Lu, Bin; Cao, Yulong; Ye, Qing; Qu, Ronghui; Cai, Haiwen
2018-01-31
It is a basic task in Brillouin distributed fiber sensors to extract the peak frequency of the scattering spectrum, since the peak frequency shift gives information on the fiber temperature and strain changes. Because of high-level noise, quadratic fitting is often used in the data processing. Formulas of the dependence of the minimum detectable Brillouin frequency shift (BFS) on the signal-to-noise ratio (SNR) and frequency step have been presented in publications, but in different expressions. A detailed deduction of new formulas of BFS variance and its average is given in this paper, showing especially their dependences on the data range used in fitting, including its length and its center respective to the real spectral peak. The theoretical analyses are experimentally verified. It is shown that the center of the data range has a direct impact on the accuracy of the extracted BFS. We propose and demonstrate an iterative fitting method to mitigate such effects and improve the accuracy of BFS measurement. The different expressions of BFS variances presented in previous papers are explained and discussed.
Development and exploration of a new methodology for the fitting and analysis of XAS data.
Delgado-Jaime, Mario Ulises; Kennepohl, Pierre
2010-01-01
A new data analysis methodology for X-ray absorption near-edge spectroscopy (XANES) is introduced and tested using several examples. The methodology has been implemented within the context of a new Matlab-based program discussed in a companion related article [Delgado-Jaime et al. (2010), J. Synchrotron Rad. 17, 132-137]. The approach makes use of a Monte Carlo search method to seek appropriate starting points for a fit model, allowing for the generation of a large number of independent fits with minimal user-induced bias. The applicability of this methodology is tested using various data sets on the Cl K-edge XAS data for tetragonal CuCl(4)(2-), a common reference compound used for calibration and covalency estimation in M-Cl bonds. A new background model function that effectively blends together background profiles with spectral features is an important component of the discussed methodology. The development of a robust evaluation function to fit multiple-edge data is discussed and the implications regarding standard approaches to data analysis are discussed and explored within these examples.
Development and exploration of a new methodology for the fitting and analysis of XAS data
Delgado-Jaime, Mario Ulises; Kennepohl, Pierre
2010-01-01
A new data analysis methodology for X-ray absorption near-edge spectroscopy (XANES) is introduced and tested using several examples. The methodology has been implemented within the context of a new Matlab-based program discussed in a companion related article [Delgado-Jaime et al. (2010 ▶), J. Synchrotron Rad. 17, 132–137]. The approach makes use of a Monte Carlo search method to seek appropriate starting points for a fit model, allowing for the generation of a large number of independent fits with minimal user-induced bias. The applicability of this methodology is tested using various data sets on the Cl K-edge XAS data for tetragonal CuCl4 2−, a common reference compound used for calibration and covalency estimation in M—Cl bonds. A new background model function that effectively blends together background profiles with spectral features is an important component of the discussed methodology. The development of a robust evaluation function to fit multiple-edge data is discussed and the implications regarding standard approaches to data analysis are discussed and explored within these examples. PMID:20029120
Online spectral fit tool (OSFT) for analyzing reflectance spectra
NASA Astrophysics Data System (ADS)
Penttilä, A.; Kohout, T.; Muinonen, K.
2015-10-01
We present an algorithm and its implementation for fitting continuum and absorption bands to UV/VIS/NIR reflectance spectra. The implementation is done completely in JavaScript and HTML, and will run in any modern web browser without requiring external libraries to be installed.
SIRF: Simultaneous Satellite Image Registration and Fusion in a Unified Framework.
Chen, Chen; Li, Yeqing; Liu, Wei; Huang, Junzhou
2015-11-01
In this paper, we propose a novel method for image fusion with a high-resolution panchromatic image and a low-resolution multispectral (Ms) image at the same geographical location. The fusion is formulated as a convex optimization problem which minimizes a linear combination of a least-squares fitting term and a dynamic gradient sparsity regularizer. The former is to preserve accurate spectral information of the Ms image, while the latter is to keep sharp edges of the high-resolution panchromatic image. We further propose to simultaneously register the two images during the fusing process, which is naturally achieved by virtue of the dynamic gradient sparsity property. An efficient algorithm is then devised to solve the optimization problem, accomplishing a linear computational complexity in the size of the output image in each iteration. We compare our method against six state-of-the-art image fusion methods on Ms image data sets from four satellites. Extensive experimental results demonstrate that the proposed method substantially outperforms the others in terms of both spatial and spectral qualities. We also show that our method can provide high-quality products from coarsely registered real-world IKONOS data sets. Finally, a MATLAB implementation is provided to facilitate future research.
Investigation of physical parameters in stellar flares observed by GINGA
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1994-01-01
This program involves analysis and interpretation of results from GINGA Large Area Counter (LAC) observations from a group of large stellar x-ray flares. All LAC data are re-extracted using the standard Hayashida method of LAC background subtraction and analyzed using various models available with the XSPEC spectral fitting program. Temperature-emission measure histories are available for a total of 5 flares observed by GINGA. These will be used to compare physical parameters of these flares with solar and stellar flare models.
Investigation of physical parameters in stellar flares observed by GINGA
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1994-01-01
This program involves analysis and interpretation of results from GINGA Large Area Counter (LAC) observations from a group of large stellar X-ray flares. All LAC data are re-extracted using the standard Hayashida method of LAC background subtraction and analyzed using various models available with the XSPEC spectral fitting program.Temperature-emission measure histories are available for a total of 5 flares observed by GINGA. These will be used to compare physical parameters of these flares with solar and stellar flare models.
Initial study of Schroedinger eigenmaps for spectral target detection
NASA Astrophysics Data System (ADS)
Dorado-Munoz, Leidy P.; Messinger, David W.
2016-08-01
Spectral target detection refers to the process of searching for a specific material with a known spectrum over a large area containing materials with different spectral signatures. Traditional target detection methods in hyperspectral imagery (HSI) require assuming the data fit some statistical or geometric models and based on the model, to estimate parameters for defining a hypothesis test, where one class (i.e., target class) is chosen over the other classes (i.e., background class). Nonlinear manifold learning methods such as Laplacian eigenmaps (LE) have extensively shown their potential use in HSI processing, specifically in classification or segmentation. Recently, Schroedinger eigenmaps (SE), which is built upon LE, has been introduced as a semisupervised classification method. In SE, the former Laplacian operator is replaced by the Schroedinger operator. The Schroedinger operator includes by definition, a potential term V that steers the transformation in certain directions improving the separability between classes. In this regard, we propose a methodology for target detection that is not based on the traditional schemes and that does not need the estimation of statistical or geometric parameters. This method is based on SE, where the potential term V is taken into consideration to include the prior knowledge about the target class and use it to steer the transformation in directions where the target location in the new space is known and the separability between target and background is augmented. An initial study of how SE can be used in a target detection scheme for HSI is shown here. In-scene pixel and spectral signature detection approaches are presented. The HSI data used comprise various target panels for testing simultaneous detection of multiple objects with different complexities.
Fusion of shallow and deep features for classification of high-resolution remote sensing images
NASA Astrophysics Data System (ADS)
Gao, Lang; Tian, Tian; Sun, Xiao; Li, Hang
2018-02-01
Effective spectral and spatial pixel description plays a significant role for the classification of high resolution remote sensing images. Current approaches of pixel-based feature extraction are of two main kinds: one includes the widelyused principal component analysis (PCA) and gray level co-occurrence matrix (GLCM) as the representative of the shallow spectral and shape features, and the other refers to the deep learning-based methods which employ deep neural networks and have made great promotion on classification accuracy. However, the former traditional features are insufficient to depict complex distribution of high resolution images, while the deep features demand plenty of samples to train the network otherwise over fitting easily occurs if only limited samples are involved in the training. In view of the above, we propose a GLCM-based convolution neural network (CNN) approach to extract features and implement classification for high resolution remote sensing images. The employment of GLCM is able to represent the original images and eliminate redundant information and undesired noises. Meanwhile, taking shallow features as the input of deep network will contribute to a better guidance and interpretability. In consideration of the amount of samples, some strategies such as L2 regularization and dropout methods are used to prevent over-fitting. The fine-tuning strategy is also used in our study to reduce training time and further enhance the generalization performance of the network. Experiments with popular data sets such as PaviaU data validate that our proposed method leads to a performance improvement compared to individual involved approaches.
AVIRIS study of Death Valley evaporite deposits using least-squares band-fitting methods
NASA Technical Reports Server (NTRS)
Crowley, J. K.; Clark, R. N.
1992-01-01
Minerals found in playa evaporite deposits reflect the chemically diverse origins of ground waters in arid regions. Recently, it was discovered that many playa minerals exhibit diagnostic visible and near-infrared (0.4-2.5 micron) absorption bands that provide a remote sensing basis for observing important compositional details of desert ground water systems. The study of such systems is relevant to understanding solute acquisition, transport, and fractionation processes that are active in the subsurface. Observations of playa evaporites may also be useful for monitoring the hydrologic response of desert basins to changing climatic conditions on regional and global scales. Ongoing work using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to map evaporite minerals in the Death Valley salt pan is described. The AVIRIS data point to differences in inflow water chemistry in different parts of the Death Valley playa system and have led to the discovery of at least two new North American mineral occurrences. Seven segments of AVIRIS data were acquired over Death Valley on 31 July 1990, and were calibrated to reflectance by using the spectrum of a uniform area of alluvium near the salt pan. The calibrated data were subsequently analyzed by using least-squares spectral band-fitting methods, first described by Clark and others. In the band-fitting procedure, AVIRIS spectra are fit compared over selected wavelength intervals to a series of library reference spectra. Output images showing the degree of fit, band depth, and fit times the band depth are generated for each reference spectrum. The reference spectra used in the study included laboratory data for 35 pure evaporite spectra extracted from the AVIRIS image cube. Additional details of the band-fitting technique are provided by Clark and others elsewhere in this volume.
NASA Astrophysics Data System (ADS)
Gábor Hatvani, István; Kern, Zoltán; Leél-Őssy, Szabolcs; Demény, Attila
2018-01-01
Uneven spacing is a common feature of sedimentary paleoclimate records, in many cases causing difficulties in the application of classical statistical and time series methods. Although special statistical tools do exist to assess unevenly spaced data directly, the transformation of such data into a temporally equidistant time series which may then be examined using commonly employed statistical tools remains, however, an unachieved goal. The present paper, therefore, introduces an approach to obtain evenly spaced time series (using cubic spline fitting) from unevenly spaced speleothem records with the application of a spectral guidance to avoid the spectral bias caused by interpolation and retain the original spectral characteristics of the data. The methodology was applied to stable carbon and oxygen isotope records derived from two stalagmites from the Baradla Cave (NE Hungary) dating back to the late 18th century. To show the benefit of the equally spaced records to climate studies, their coherence with climate parameters is explored using wavelet transform coherence and discussed. The obtained equally spaced time series are available at https://doi.org/10.1594/PANGAEA.875917.
X-Ray Spectral Properties of Seven Heavily Obscured Seyfert 2 Galaxies
NASA Astrophysics Data System (ADS)
Marchesi, S.; Ajello, M.; Comastri, A.; Cusumano, G.; La Parola, V.; Segreto, A.
2017-02-01
We present the combined Chandra and Swift-BAT spectral analysis of seven Seyfert 2 galaxies selected from the Swift-BAT 100 month catalog. We selected nearby (z ≤ 0.03) sources lacking a ROSAT counterpart that never previously been observed with Chandra in the 0.3-10 keV energy range, and targeted these objects with 10 ks Chandra ACIS-S observations. The X-ray spectral fitting over the 0.3-150 keV energy range allows us to determine that all the objects are significantly obscured, with N H ≥ 1023 cm-2 at a >99% confidence level. Moreover, one to three sources are candidate Compton-thick Active Galactic Nuclei (CT-AGNs; I.e., N H ≥ 1024 cm-2). We also test the recent spectral curvature method developed by Koss et al. to find candidate CT-AGNs, finding a good agreement between our results and their predictions. Because the selection criteria we adopted were effective in detecting highly obscured AGNs, further observations of these and other Seyfert 2 galaxies selected from the Swift-BAT 100 month catalog will allow us to create a statistically significant sample of highly obscured AGNs, therefore providing a better understanding of the physics of the obscuration processes.
Laser plasma x-ray line spectra fitted using the Pearson VII function
NASA Astrophysics Data System (ADS)
Michette, A. G.; Pfauntsch, S. J.
2000-05-01
The Pearson VII function, which is more general than the Gaussian, Lorentzian and other profiles, is used to fit the x-ray spectral lines produced in a laser-generated plasma, instead of the more usual, but computationally expensive, Voigt function. The mean full-width half-maximum of the fitted lines is 0.102+/-0.014 nm, entirely consistent with the value expected from geometrical considerations, and the fitted line profiles are generally inconsistent with being either Lorentzian or Gaussian.
Deriving photometric redshifts using fuzzy archetypes and self-organizing maps - I. Methodology
NASA Astrophysics Data System (ADS)
Speagle, Joshua S.; Eisenstein, Daniel J.
2017-07-01
We propose a method to substantially increase the flexibility and power of template fitting-based photometric redshifts by transforming a large number of galaxy spectral templates into a corresponding collection of 'fuzzy archetypes' using a suitable set of perturbative priors designed to account for empirical variation in dust attenuation and emission-line strengths. To bypass widely separated degeneracies in parameter space (e.g. the redshift-reddening degeneracy), we train self-organizing maps (SOMs) on large 'model catalogues' generated from Monte Carlo sampling of our fuzzy archetypes to cluster the predicted observables in a topologically smooth fashion. Subsequent sampling over the SOM then allows full reconstruction of the relevant probability distribution functions (PDFs). This combined approach enables the multimodal exploration of known variation among galaxy spectral energy distributions with minimal modelling assumptions. We demonstrate the power of this approach to recover full redshift PDFs using discrete Markov chain Monte Carlo sampling methods combined with SOMs constructed from Large Synoptic Survey Telescope ugrizY and Euclid YJH mock photometry.
[Quantitative Analysis of Heavy Metals in Water with LIBS Based on Signal-to-Background Ratio].
Hu, Li; Zhao, Nan-jing; Liu, Wen-qing; Fang, Li; Zhang, Da-hai; Wang, Yin; Meng, De Shuo; Yu, Yang; Ma, Ming-jun
2015-07-01
There are many influence factors in the precision and accuracy of the quantitative analysis with LIBS technology. According to approximately the same characteristics trend of background spectrum and characteristic spectrum along with the change of temperature through in-depth analysis, signal-to-background ratio (S/B) measurement and regression analysis could compensate the spectral line intensity changes caused by system parameters such as laser power, spectral efficiency of receiving. Because the measurement dates were limited and nonlinear, we used support vector machine (SVM) for regression algorithm. The experimental results showed that the method could improve the stability and the accuracy of quantitative analysis of LIBS, and the relative standard deviation and average relative error of test set respectively were 4.7% and 9.5%. Data fitting method based on signal-to-background ratio(S/B) is Less susceptible to matrix elements and background spectrum etc, and provides data processing reference for real-time online LIBS quantitative analysis technology.
Turner, Clare E; Russell, Bruce R; Gant, Nicholas
2015-11-01
Magnetic resonance spectroscopy (MRS) is an analytical procedure that can be used to non-invasively measure the concentration of a range of neural metabolites. Creatine is an important neurometabolite with dietary supplementation offering therapeutic potential for neurological disorders with dysfunctional energetic processes. Neural creatine concentrations can be probed using proton MRS and quantified using a range of software packages based on different analytical methods. This experiment examines the differences in quantification performance of two commonly used analysis packages following a creatine supplementation strategy with potential therapeutic application. Human participants followed a seven day dietary supplementation regime in a placebo-controlled, cross-over design interspersed with a five week wash-out period. Spectroscopy data were acquired the day immediately following supplementation and analyzed with two commonly-used software packages which employ vastly different quantification methods. Results demonstrate that neural creatine concentration was augmented following creatine supplementation when analyzed using the peak fitting method of quantification (105.9%±10.1). In contrast, no change in neural creatine levels were detected with supplementation when analysis was conducted using the basis spectrum method of quantification (102.6%±8.6). Results suggest that software packages that employ the peak fitting procedure for spectral quantification are possibly more sensitive to subtle changes in neural creatine concentrations. The relative simplicity of the spectroscopy sequence and the data analysis procedure suggest that peak fitting procedures may be the most effective means of metabolite quantification when detection of subtle alterations in neural metabolites is necessary. The straightforward technique can be used on a clinical magnetic resonance imaging system. Copyright © 2015 Elsevier Inc. All rights reserved.
Statistical properties of Fermi GBM GRBs' spectra
NASA Astrophysics Data System (ADS)
Rácz, István I.; Balázs, Lajos G.; Horvath, Istvan; Tóth, L. Viktor; Bagoly, Zsolt
2018-03-01
Statistical studies of gamma-ray burst (GRB) spectra may result in important information on the physics of GRBs. The Fermi GBM catalogue contains GRB parameters (peak energy, spectral indices, and intensity) estimated fitting the gamma-ray spectral energy distribution of the total emission (fluence, flnc), and during the time of the peak flux (pflx). Using contingency tables, we studied the relationship of the models best-fitting pflx and flnc time intervals. Our analysis revealed an ordering of the spectra into a power law - Comptonized - smoothly broken power law - Band series. This result was further supported by a correspondence analysis of the pflx and flnc spectra categorical variables. We performed a linear discriminant analysis (LDA) to find a relationship between categorical (spectral) and model independent physical data. LDA resulted in highly significant physical differences among the spectral types, that is more pronounced in the case of the pflx spectra, than for the flnc spectra. We interpreted this difference as caused by the temporal variation of the spectrum during the outburst. This spectral variability is confirmed by the differences in the low-energy spectral index and peak energy, between the pflx and flnc spectra. We found that the synchrotron radiation is significant in GBM spectra. The mean low-energy spectral index is close to the canonical value of α = -2/3 during the peak flux. However, α is ˜ -0.9 for the spectra of the fluences. We interpret this difference as showing that the effect of cooling is important only for the fluence spectra.
THE IMPACT OF ACCURATE EXTINCTION MEASUREMENTS FOR X-RAY SPECTRAL MODELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Randall K.; Valencic, Lynne A.; Corrales, Lia, E-mail: lynne.a.valencic@nasa.gov
Interstellar extinction includes both absorption and scattering of photons from interstellar gas and dust grains, and it has the effect of altering a source's spectrum and its total observed intensity. However, while multiple absorption models exist, there are no useful scattering models in standard X-ray spectrum fitting tools, such as XSPEC. Nonetheless, X-ray halos, created by scattering from dust grains, are detected around even moderately absorbed sources, and the impact on an observed source spectrum can be significant, if modest, compared to direct absorption. By convolving the scattering cross section with dust models, we have created a spectral model asmore » a function of energy, type of dust, and extraction region that can be used with models of direct absorption. This will ensure that the extinction model is consistent and enable direct connections to be made between a source's X-ray spectral fits and its UV/optical extinction.« less
Atmospheric and Fundamental Parameters of Stars in Hubble's Next Generation Spectral Library
NASA Technical Reports Server (NTRS)
Heap, Sally
2010-01-01
Hubble's Next Generation Spectral Library (NGSL) consists of R approximately 1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. We are presently working to determine the atmospheric and fundamental parameters of the stars from the NGSL spectra themselves via full-spectrum fitting of model spectra to the observed (extinction-corrected) spectrum over the full wavelength range, 0.2-1.0 micron. We use two grids of model spectra for this purpose: the very low-resolution spectral grid from Castelli-Kurucz (2004), and the grid from MARCS (2008). Both the observed spectrum and the MARCS spectra are first degraded in resolution to match the very low resolution of the Castelli-Kurucz models, so that our fitting technique is the same for both model grids. We will present our preliminary results with a comparison with those from the Sloan/Segue Stellar Parameter Pipeline, ELODIE, and MILES, etc.
[Estimation of rice LAI by using NDVI at different spectral bandwidths].
Wang, Fu-min; Huang, Jing-feng; Tang, Yan-lin; Wang, Xiu-zhen
2007-11-01
The canopy hyperspectral reflectance data of rice at its different development stages were collected from field measurement, and the corresponding NDVIs as well as the correlation coefficients of NDVIs and LAI were computed at extending bandwidth of TM red and near-infrared (NIR) spectra. According to the variation characteristics of best fitted R2 with spectral bandwidth, the optimal bandwidth was determined. The results showed that the correlation coefficients of LAI and ND-VI and the maximum R2 of the best fitted functions at different spectral bandwidths had the same variation trend, i.e., decreased with increasing bandwidth when the bandwidth was less than 60 nm. However, when the bandwidth was beyond 60 nm, the maximum R2 somewhat fluctuated due to the effect of NIR. The analysis of R2 variation with bandwidth indicated that 15 nm was the optimal bandwidth for the estimation of rice LAI by using NDVI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Li; Chen, Shunli; Wang, Hongfei
2016-03-03
Reliably determination of the spectral features and their phases in sum-frequency generation vibrational spectroscopy (SFG-VS) for surfaces with closely overlapping peaks has been a standing issue. Here we present two approaches towards resolving such issue. The first utilizes the high resolution and accurate lineshape from the recently developed sub-wavenumber high resolution broadband SFG-VS (HR-BB-SFG-VS), from which the detail spectral parameters, including relative spectral phases, of overlapping peaks can be determined through reliable spectral fitting. These results are further validated by using the second method that utilizes the azimuthal angle phase dependence of the z-cut α-quartz crystal, a common phase standard,more » through the spectral interference between the SFG fields of the quartz surface, as the internal phase reference, and the adsorbed molecular layer. Even though this approach is limited to molecular layers that can be transferred or deposited onto the quartz surface, it is simple and straightforward, as it requires only an internal phase standard with a single measurement that is free of phase drifts. More importantly, it provides unambiguous SFG spectral phase information of such surfaces. Using this method, the absolute phase of the molecular susceptibility tensors of the CH3, CH2 and chiral C-H groups in different Langmuir-Blodgett (LB) molecular monolayers and drop-cast peptide films are determined. These two approaches are fully consistent with and complement to each other, making both easily applicable tools in SFG-VS studies. More importantly, as the HR-BB-SFG-VS technique can be easily applied to various surfaces and interfaces, such validation of the spectral and phase information from HR-BB-SFG-VS measurement demonstrates it as one most promising tool for interrogating the detailed structure and interactions of complex molecular interfaces.« less
NASA Astrophysics Data System (ADS)
Campbell, John L.; Ganly, Brianna; Heirwegh, Christopher M.; Maxwell, John A.
2018-01-01
Multiple ionization satellites are prominent features in X-ray spectra induced by MeV energy alpha particles. It follows that the accuracy of PIXE analysis using alpha particles can be improved if these features are explicitly incorporated in the peak model description when fitting the spectra with GUPIX or other codes for least-squares fitting PIXE spectra and extracting element concentrations. A method for this incorporation is described and is tested using spectra recorded on Mars by the Curiosity rover's alpha particle X-ray spectrometer. These spectra are induced by both PIXE and X-ray fluorescence, resulting in a spectral energy range from ∼1 to ∼25 keV. This range is valuable in determining the energy-channel calibration, which departs from linearity at low X-ray energies. It makes it possible to separate the effects of the satellites from an instrumental non-linearity component. The quality of least-squares spectrum fits is significantly improved, raising the level of confidence in analytical results from alpha-induced PIXE.
Temporal and Spectral Characteristics of X-Ray Bright Pleiads
NASA Astrophysics Data System (ADS)
Caillault, J.-P.; Gagne, M.; Yglesias, J.; Hartmann, L.; Prosser, C.; Stauffer, J.
1993-05-01
ROSAT PSPC observations of the Pleiades have allowed us to analyze the spectral and temporal characteristics of the X-ray sources within the cluster. Of the ~ 300 sources detected within the images, ~ 20-30 of them seem to be variable at the 99% confidence level (chi (2) -test). Numerous flares have also been found, the light curves of which we display. In addition, we have fit two-temperature Raymond-Smith thermal plasma models to the spectra of the ~ 6 brightest sources and examined whether these sources behave in accordance with coronal loop models. We also demonstrate that the two-temperature fit changes during a flare. We have constructed composite spectra for both shallow and deep convective zone stars in order to see whether there is a systematic change of spectral characteristics from spectral type F to M. Finally, in an attempt to discern possible evolutionary effects, we compare our results with those from the older Hyades cluster (Stern et al. 1993). This research was supported by NASA Grants NAG5-1608 to UGA and NAG5-1849 & NAGW-2698 to the CfA.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Ayan; Banerjee, Indrani; Banerjee, Anuvab; Debnath, Dipak; Chakrabarti, Sandip K.
2017-04-01
The black hole transient H1743-322 exhibited several outbursts with temporal and spectral variability since its discovery in 1977. These outbursts occur at a quasi-regular recurrence period of around 0.5-2 yr, since its rediscovery in 2003 March. We investigate accretion flow dynamics around the low-mass X-ray binary H1743-322 during its 2004 outburst using the RXTE (Rossi X-Ray Timing Explorer)/PCA archival data. We use two component advective flow (TCAF) solution to analyse the spectral data. From the fits with TCAF solution, we obtain day-to-day variation of physical accretion rates of Keplerian and sub-Keplerian components, size of the Compton cloud and its other properties. Analysis of the spectral properties of the 2004 outburst by keeping fitted normalization to be in a narrow range and its timing properties in terms of the presence and absence of quasi-periodic oscillations, enable us to constrain the mass of the black hole in a range of 10.31 M⊙-14.07 M⊙ that is consistent with other estimates reported in the literature.
NASA Technical Reports Server (NTRS)
Venters, Tonia M.; Pavlidou, Vasiliki
2011-01-01
The spectral shapes of the contributions of different classes of unresolved gamma-ray emitters can provide insight into their relative contributions to the extragalactic gamma-ray background (EGB) and the natures of their spectra at GeV energies, We calculate the spectral shapes of the contributions to the EGB arising from BL Lacertae type objects (BL Lacs) and flat-spectrum radio quasars (FSRQs) assuming blazar spectra can be described as broken power laws, We fit the resulting total blazar spectral shape to the Fermi Large Area Telescope measurements of the EGB, finding that the best-fit shape reproduces well the shape of the Fermi EGB for various break scenarios. We conclude that a scenario in which the contribution of blazars is dominant cannot be excluded on spectral grounds alone, even if spectral breaks are shown to be common among Fermi blazars. We also find that while the observation of a featureless (within uncertainties) power-law EGB spectrum by Fermi does not necessarily imply a single class of contributing unresolved sources with featureless individual spectra, such an observation and the collective spectra of the separate contributing populations determine the ratios of their contributions. As such, a comparison with studies including blazar gamma-ray luminosity functions could have profound implications for the blazar contribution to the EGB, blazar evolution, and blazar gamma-ray spectra and emission.
NASA Astrophysics Data System (ADS)
Gharekhan, Anita H.; Biswal, Nrusingh C.; Gupta, Sharad; Pradhan, Asima; Sureshkumar, M. B.; Panigrahi, Prasanta K.
2008-02-01
The statistical and characteristic features of the polarized fluorescence spectra from cancer, normal and benign human breast tissues are studied through wavelet transform and singular value decomposition. The discrete wavelets enabled one to isolate high and low frequency spectral fluctuations, which revealed substantial randomization in the cancerous tissues, not present in the normal cases. In particular, the fluctuations fitted well with a Gaussian distribution for the cancerous tissues in the perpendicular component. One finds non-Gaussian behavior for normal and benign tissues' spectral variations. The study of the difference of intensities in parallel and perpendicular channels, which is free from the diffusive component, revealed weak fluorescence activity in the 630nm domain, for the cancerous tissues. This may be ascribable to porphyrin emission. The role of both scatterers and fluorophores in the observed minor intensity peak for the cancer case is experimentally confirmed through tissue-phantom experiments. Continuous Morlet wavelet also highlighted this domain for the cancerous tissue fluorescence spectra. Correlation in the spectral fluctuation is further studied in different tissue types through singular value decomposition. Apart from identifying different domains of spectral activity for diseased and non-diseased tissues, we found random matrix support for the spectral fluctuations. The small eigenvalues of the perpendicular polarized fluorescence spectra of cancerous tissues fitted remarkably well with random matrix prediction for Gaussian random variables, confirming our observations about spectral fluctuations in the wavelet domain.
Parks, David R; El Khettabi, Faysal; Chase, Eric; Hoffman, Robert A; Perfetto, Stephen P; Spidlen, Josef; Wood, James C S; Moore, Wayne A; Brinkman, Ryan R
2017-03-01
We developed a fully automated procedure for analyzing data from LED pulses and multilevel bead sets to evaluate backgrounds and photoelectron scales of cytometer fluorescence channels. The method improves on previous formulations by fitting a full quadratic model with appropriate weighting and by providing standard errors and peak residuals as well as the fitted parameters themselves. Here we describe the details of the methods and procedures involved and present a set of illustrations and test cases that demonstrate the consistency and reliability of the results. The automated analysis and fitting procedure is generally quite successful in providing good estimates of the Spe (statistical photoelectron) scales and backgrounds for all the fluorescence channels on instruments with good linearity. The precision of the results obtained from LED data is almost always better than that from multilevel bead data, but the bead procedure is easy to carry out and provides results good enough for most purposes. Including standard errors on the fitted parameters is important for understanding the uncertainty in the values of interest. The weighted residuals give information about how well the data fits the model, and particularly high residuals indicate bad data points. Known photoelectron scales and measurement channel backgrounds make it possible to estimate the precision of measurements at different signal levels and the effects of compensated spectral overlap on measurement quality. Combining this information with measurements of standard samples carrying dyes of biological interest, we can make accurate comparisons of dye sensitivity among different instruments. Our method is freely available through the R/Bioconductor package flowQB. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
NASA Technical Reports Server (NTRS)
De Martino, I.; Atrio-Barandela, F.; Da Silva, A.; Ebling, H.; Kashlinsky, A.; Kocevski, D.; Martins, C. J. A. P.
2012-01-01
We study the capability of Planck data to constrain deviations of the cosmic microwave background (CMB) blackbody temperature from adiabatic evolution using the thermal Sunyaev-Zeldovich anisotropy induced by clusters of galaxies. We consider two types of data sets depending on how the cosmological signal is removed: using a CMB template or using the 217 GHz map. We apply two different statistical estimators, based on the ratio of temperature anisotropies at two different frequencies and on a fit to the spectral variation of the cluster signal with frequency. The ratio method is biased if CMB residuals with amplitude approximately 1 microK or larger are present in the data, while residuals are not so critical for the fit method. To test for systematics, we construct a template from clusters drawn from a hydro-simulation included in the pre-launch Planck Sky Model. We demonstrate that, using a proprietary catalog of X-ray-selected clusters with measured redshifts, electron densities, and X-ray temperatures, we can constrain deviations of adiabatic evolution, measured by the parameter a in the redshift scaling T (z) = T0(1 + z)(sup 1-alpha), with an accuracy of sigma(sub alpha) = 0.011 in the most optimal case and with sigma alpha = 0.018 for a less optimal case. These results represent a factor of 2-3 improvement over similar measurements carried out using quasar spectral lines and a factor 6-20 with respect to earlier results using smaller cluster samples.
Crustal interpretation of the MAGSAT data in the continental United States
NASA Technical Reports Server (NTRS)
Won, I. J.; Son, K. H.
1982-01-01
The processing of MAGSAT scalar data to construct a crustal magnetic anomaly map over the continental U.S. involves removal of the reference field model, a path-by-path subtraction of a low order polynomial through a least-squares fit to reduce orbital offset errors, and a two dimensional spectral filtering to mitigate the spectral bias induced by the path-by-path orbital correction scheme. The resultant anomaly map shows reasonably good correlations with an aeromagnetic map derived from the project MAGNET. Prominent satellite magnetic anomalies are identified in terms of geological provinces and age boundaries. An inversion method was applied to MAGSAT data which produces both the Curie depth topography and laterally varying magnetic susceptibility of the crust. A contoured Curie depth map thus derived shows general agreements with a crustal thickness map based on seismic data.
NASA Technical Reports Server (NTRS)
Leibacher, J. W.
1979-01-01
Data obtained by the Laboratoire de Physique Stellaire et Planetaire's ultraviolet spectrometer onboard the OSO-8 spacecraft were analyzed in an effort to dynamically model the solar chromosphere as an aid in enhancing knowledge of the dynamical processes themselves and of spectral line formation in the dynamic chromosphere. Repeated spectral scans of strong, optically thick resonance lines formed in the solar chromosphere were examined for indications of oscillatory velocities and intensities among other indications of velocity which were studied, the blue peak is reasonably well defined, and the position of a parabolic filter fitted by the least squares method was used to define it. Observed chromospheric oscillation periods are discussed as well as the variations in altitude of the emitting region which result primarily from the motion up and down during the oscillation.
Kerkhoff, M.J.; Lee, T.M.; Allen, E.R.; Lundgren, D.A.; Winefordner, J.D.
1985-01-01
A high-volume sampler fitted with a glass-fiber filter and backed by polyurethane foam (PUF) was employed to collect airborne particulate and gas-phase polycylic aromatic hydrocarbons (PAHs) in ambient air. Samples were collected from four sources representing a range of environmental conditions: gasoline engine exhaust, diesel engine exhaust, air near a heavily traveled interstate site, and air from a moderately polluted urban site. Spectral fingerprints of the unseparated particulate and gas-phase samples were obtained by constant energy synchronous luminescence spectroscopy (CESLS). Five major PAHs in the gas-phase extracts were characterized and estimated. The compatibility of a high-volume sampling method using polyurethane foam coupled with CESLS detection is explored for use as a screening technique for PAHs in ambient air. ?? 1985 American Chemical Society.
NASA Technical Reports Server (NTRS)
Blatherwick, R. D.; Murcray, F. J.; Murcray, D. G.; Locker, M. H.
1991-01-01
A ground-based solar spectrum at a spectral resolution of about 0.002/cm is used to determine the altitude of the HNO3 layer. The 870/cm spectral region, which is essentially free from absorptions from other species, is employed. The data were obtained with the University of Denver 2.5-m maximum path difference Fourier Transform interferometer spectrometer system. A set of 13 HNO3 vertical profiles were used in the analysis. The best fit obtained for the 'starting' profile (which is centered at 24 km), and the best fit for the profile centered at 26 km are shown. For displacements of greater than 2 km, the discrepancy between the synthetic and observed spectra becomes readily discernible by inspection of the spectra. It is shown that the 'best fit' rms residuals are quite sensitive to the assumed altitude of the HNO3 layer.
A Framework for Cloudy Model Optimization and Database Storage
NASA Astrophysics Data System (ADS)
Calvén, Emilia; Helton, Andrew; Sankrit, Ravi
2018-01-01
We present a framework for producing Cloudy photoionization models of the nebular emission from novae ejecta and storing a subset of the results in SQL database format for later usage. The database can be searched for models best fitting observed spectral line ratios. Additionally, the framework includes an optimization feature that can be used in tandem with the database to search for and improve on models by creating new Cloudy models while, varying the parameters. The database search and optimization can be used to explore the structures of nebulae by deriving their properties from the best-fit models. The goal is to provide the community with a large database of Cloudy photoionization models, generated from parameters reflecting conditions within novae ejecta, that can be easily fitted to observed spectral lines; either by directly accessing the database using the framework code or by usage of a website specifically made for this purpose.
Isotopic determination of uranium in soil by laser induced breakdown spectroscopy
Chan, George C. -Y.; Choi, Inhee; Mao, Xianglei; ...
2016-03-26
Laser-induced breakdown spectroscopy (LIBS) operated under ambient pressure has been evaluated for isotopic analysis of uranium in real-world samples such as soil, with U concentrations in the single digit percentage levels. The study addresses the requirements for spectral decomposition of 235U and 238U atomic emission peaks that are only partially resolved. Although non-linear least-square fitting algorithms are typically able to locate the optimal combination of fitting parameters that best describes the experimental spectrum even when all fitting parameters are treated as free independent variables, the analytical results of such an unconstrained free-parameter approach are ambiguous. In this work, five spectralmore » decomposition algorithms were examined, with different known physical properties (e.g., isotopic splitting, hyperfine structure) of the spectral lines sequentially incorporated into the candidate algorithms as constraints. It was found that incorporation of such spectral-line constraints into the decomposition algorithm is essential for the best isotopic analysis. The isotopic abundance of 235U was determined from a simple two-component Lorentzian fit on the U II 424.437 nm spectral profile. For six replicate measurements, each with only fifteen laser shots, on a soil sample with U concentration at 1.1% w/w, the determined 235U isotopic abundance was (64.6 ± 4.8)%, and agreed well with the certified value of 64.4%. Another studied U line - U I 682.691 nm possesses hyperfine structure that is comparatively broad and at a significant fraction as the isotopic shift. Thus, 235U isotopic analysis with this U I line was performed with spectral decomposition involving individual hyperfine components. For the soil sample with 1.1% w/w U, the determined 235U isotopic abundance was (60.9 ± 2.0)%, which exhibited a relative bias about 6% from the certified value. The bias was attributed to the spectral resolution of our measurement system - the measured line width for this U I line was larger than its isotopic splitting. In conclusion, although not the best emission line for isotopic analysis, this U I emission line is sensitive for element analysis with a detection limit of 500 ppm U in the soil matrix; the detection limit for the U II 424.437 nm line was 2000 ppm.« less
Iterative Addition of Kinetic Effects to Cold Plasma RF Wave Solvers
NASA Astrophysics Data System (ADS)
Green, David; Berry, Lee; RF-SciDAC Collaboration
2017-10-01
The hot nature of fusion plasmas requires a wave vector dependent conductivity tensor for accurate calculation of wave heating and current drive. Traditional methods for calculating the linear, kinetic full-wave plasma response rely on a spectral method such that the wave vector dependent conductivity fits naturally within the numerical method. These methods have seen much success for application to the well-confined core plasma of tokamaks. However, quantitative prediction of high power RF antenna designs for fusion applications has meant a requirement of resolving the geometric details of the antenna and other plasma facing surfaces for which the Fourier spectral method is ill-suited. An approach to enabling the addition of kinetic effects to the more versatile finite-difference and finite-element cold-plasma full-wave solvers was presented by where an operator-split iterative method was outlined. Here we expand on this approach, examine convergence and present a simplified kinetic current estimator for rapidly updating the right-hand side of the wave equation with kinetic corrections. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
Xia, Qiangwei; Wang, Tiansong; Park, Yoonsuk; Lamont, Richard J.; Hackett, Murray
2009-01-01
Differential analysis of whole cell proteomes by mass spectrometry has largely been applied using various forms of stable isotope labeling. While metabolic stable isotope labeling has been the method of choice, it is often not possible to apply such an approach. Four different label free ways of calculating expression ratios in a classic “two-state” experiment are compared: signal intensity at the peptide level, signal intensity at the protein level, spectral counting at the peptide level, and spectral counting at the protein level. The quantitative data were mined from a dataset of 1245 qualitatively identified proteins, about 56% of the protein encoding open reading frames from Porphyromonas gingivalis, a Gram-negative intracellular pathogen being studied under extracellular and intracellular conditions. Two different control populations were compared against P. gingivalis internalized within a model human target cell line. The q-value statistic, a measure of false discovery rate previously applied to transcription microarrays, was applied to proteomics data. For spectral counting, the most logically consistent estimate of random error came from applying the locally weighted scatter plot smoothing procedure (LOWESS) to the most extreme ratios generated from a control technical replicate, thus setting upper and lower bounds for the region of experimentally observed random error. PMID:19337574
NASA Technical Reports Server (NTRS)
Solarna, David; Moser, Gabriele; Le Moigne-Stewart, Jacqueline; Serpico, Sebastiano B.
2017-01-01
Because of the large variety of sensors and spacecraft collecting data, planetary science needs to integrate various multi-sensor and multi-temporal images. These multiple data represent a precious asset, as they allow the study of targets spectral responses and of changes in the surface structure; because of their variety, they also require accurate and robust registration. A new crater detection algorithm, used to extract features that will be integrated in an image registration framework, is presented. A marked point process-based method has been developed to model the spatial distribution of elliptical objects (i.e. the craters) and a birth-death Markov chain Monte Carlo method, coupled with a region-based scheme aiming at computational efficiency, is used to find the optimal configuration fitting the image. The extracted features are exploited, together with a newly defined fitness function based on a modified Hausdorff distance, by an image registration algorithm whose architecture has been designed to minimize the computational time.
Evaluation of algorithm methods for fluorescence spectra of cancerous and normal human tissues
NASA Astrophysics Data System (ADS)
Pu, Yang; Wang, Wubao; Alfano, Robert R.
2016-03-01
The paper focus on the various algorithms on to unravel the fluorescence spectra by unmixing methods to identify cancerous and normal human tissues from the measured fluorescence spectroscopy. The biochemical or morphologic changes that cause fluorescence spectra variations would appear earlier than the histological approach; therefore, fluorescence spectroscopy holds a great promise as clinical tool for diagnosing early stage of carcinomas and other deceases for in vivo use. The method can further identify tissue biomarkers by decomposing the spectral contributions of different fluorescent molecules of interest. In this work, we investigate the performance of blind source un-mixing methods (backward model) and spectral fitting approaches (forward model) in decomposing the contributions of key fluorescent molecules from the tissue mixture background when certain selected excitation wavelength is applied. Pairs of adenocarcinoma as well as normal tissues confirmed by pathologist were excited by selective wavelength of 340 nm. The emission spectra of resected fresh tissue were used to evaluate the relative changes of collagen, reduced nicotinamide adenine dinucleotide (NADH), and Flavin by various spectral un-mixing methods. Two categories of algorithms: forward methods and Blind Source Separation [such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA), and Nonnegative Matrix Factorization (NMF)] will be introduced and evaluated. The purpose of the spectral analysis is to discard the redundant information which conceals the difference between these two types of tissues, but keep their diagnostically significance. The facts predicted by different methods were compared to the gold standard of histopathology. The results indicate that these key fluorophores within tissue, e.g. tryptophan, collagen, and NADH, and flavin, show differences of relative contents of fluorophores among different types of human cancer and normal tissues. The sensitivity, specificity, and receiver operating characteristic (ROC) are finally employed as the criteria to evaluate the efficacy of these methods in cancer detection. The underlying physical and biological basis for these optical approaches will be discussed with examples. This ex vivo preliminary trial demonstrates that these different criteria from different methods can distinguish carcinoma from normal tissues with good sensitivity and specificity while among them, we found that ICA appears to be the superior method in predication accuracy.
NASA Astrophysics Data System (ADS)
Molla, Aslam Ali; Chakrabarti, Sandip K.; Debnath, Dipak; Mondal, Santanu
2017-01-01
The well-known black hole candidate (BHC) H 1743-322 exhibited temporal and spectral variabilities during several outbursts. The variation of the accretion rates and flow geometry that change on a daily basis during each of the outbursts can be very well understood using the recent implementation of the two-component advective flow solution of the viscous transonic flow equations as an additive table model in XSPEC. This has dramatically improved our understanding of accretion flow dynamics. Most interestingly, the solution allows us to treat the mass of the BHC as a free parameter and its mass could be estimated from spectral fits. In this paper, we fitted the data of two successive outbursts of H 1743-322 in 2010 and 2011 and studied the evolution of accretion flow parameters, such as two-component (Keplerian and sub-Keplerian) accretion rates, shock location (I.e., size of the Compton cloud), etc. We assume that the model normalization remains the same across the states in both these outbursts. We used this to estimate the mass of the black hole and found that it comes out in the range of 9.25{--}12.86 {M}⊙ . For the sake of comparison, we also estimated mass using the Photon index versus Quasi Periodic Oscillation frequency correlation method, which turns out to be 11.65+/- 0.67 {M}⊙ using GRO J1655-40 as a reference source. Combining these two estimates, the most probable mass of the compact object becomes {11.21}-1.96+1.65 {M}⊙ .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teimoorinia, H., E-mail: hteimoo@uvic.ca
2012-12-01
The aim of this work is to combine spectral energy distribution (SED) fitting with artificial neural network techniques to assign spectral characteristics to a sample of galaxies at 0.5 < z < 1. The sample is selected from the spectroscopic campaign of the ESO/GOODS-South field, with 142 sources having photometric data from the GOODS-MUSIC catalog covering bands between {approx}0.4 and 24 {mu}m in 10-13 filters. We use the CIGALE code to fit photometric data to Maraston's synthesis spectra to derive mass, specific star formation rate, and age, as well as the best SED of the galaxies. We use the spectralmore » models presented by Kinney et al. as targets in the wavelength interval {approx}1200-7500 A. Then a series of neural networks are trained, with average performance {approx}90%, to classify the best SED in a supervised manner. We consider the effects of the prominent features of the best SED on the performance of the trained networks and also test networks on the galaxy spectra of Coleman et al., which have a lower resolution than the target models. In this way, we conclude that the trained networks take into account all the features of the spectra simultaneously. Using the method, 105 out of 142 galaxies of the sample are classified with high significance. The locus of the classified galaxies in the three graphs of the physical parameters of mass, age, and specific star formation rate appears consistent with the morphological characteristics of the galaxies.« less
Herschel and SCUBA-2 observations of dust emission in a sample of Planck cold clumps
NASA Astrophysics Data System (ADS)
Juvela, Mika; He, Jinhua; Pattle, Katherine; Liu, Tie; Bendo, George; Eden, David J.; Fehér, Orsolya; Michel, Fich; Fuller, Gary; Hirano, Naomi; Kim, Kee-Tae; Li, Di; Liu, Sheng-Yuan; Malinen, Johanna; Marshall, Douglas J.; Paradis, Deborah; Parsons, Harriet; Pelkonen, Veli-Matti; Rawlings, Mark G.; Ristorcelli, Isabelle; Samal, Manash R.; Tatematsu, Ken'ichi; Thompson, Mark; Traficante, Alessio; Wang, Ke; Ward-Thompson, Derek; Wu, Yuefang; Yi, Hee-Weon; Yoo, Hyunju
2018-04-01
Context. Analysis of all-sky Planck submillimetre observations and the IRAS 100 μm data has led to the detection of a population of Galactic cold clumps. The clumps can be used to study star formation and dust properties in a wide range of Galactic environments. Aims: Our aim is to measure dust spectral energy distribution (SED) variations as a function of the spatial scale and the wavelength. Methods: We examined the SEDs at large scales using IRAS, Planck, and Herschel data. At smaller scales, we compared JCMT/SCUBA-2 850 μm maps with Herschel data that were filtered using the SCUBA-2 pipeline. Clumps were extracted using the Fellwalker method, and their spectra were modelled as modified blackbody functions. Results: According to IRAS and Planck data, most fields have dust colour temperatures TC 14-18 K and opacity spectral index values of β = 1.5-1.9. The clumps and cores identified in SCUBA-2 maps have T 13 K and similar β values. There are some indications of the dust emission spectrum becoming flatter at wavelengths longer than 500 μm. In fits involving Planck data, the significance is limited by the uncertainty of the corrections for CO line contamination. The fits to the SPIRE data give a median β value that is slightly above 1.8. In the joint SPIRE and SCUBA-2 850 μm fits, the value decreases to β 1.6. Most of the observed T-β anticorrelation can be explained by noise. Conclusions: The typical submillimetre opacity spectral index β of cold clumps is found to be 1.7. This is above the values of diffuse clouds, but lower than in some previous studies of dense clumps. There is only tentative evidence of a T-β anticorrelation and β decreasing at millimetre wavelengths. Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific consortium led and funded by Denmark.Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
SU-F-I-63: Relaxation Times of Lipid Resonances in NAFLD Animal Model Using Enhanced Curve Fitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, K-H; Yoo, C-H; Lim, S-I
Purpose: The objective of this study is to evaluate the relaxation time of methylene resonance in comparison with other lipid resonances. Methods: The examinations were performed on a 3.0T MRI scanner using a four-channel animal coil. Eight more Sprague-Dawley rats in the same baseline weight range were housed with ad libitum access to water and a high-fat (HF) diet (60% fat, 20% protein, and 20% carbohydrate). In order to avoid large blood vessels, a voxel (0.8×0.8×0.8 cm{sup 3}) was placed in a homogeneous area of the liver parenchyma during free breathing. Lipid relaxations in NC and HF diet rats weremore » estimated at a fixed repetition time (TR) of 6000 msec, and multi echo time (TEs) of 40–220 msec. All spectra for data measurement were processed using the Advanced Method for Accurate, Robust, and Efficient Spectral (AMARES) fitting algorithm of the Java-based Magnetic Resonance User Interface (jMRUI) package. Results: The mean T2 relaxation time of the methylene resonance in normal-chow diet was 37.1 msec (M{sub 0}, 2.9±0.5), with a standard deviation of 4.3 msec. The mean T2 relaxation time of the methylene resonance was 31.4 msec (M{sub 0}, 3.7±0.3), with a standard deviation of 1.8 msec. The T2 relaxation times of methylene protons were higher in normal-chow diet rats than in HF rats (p<0.05), and the extrapolated M{sub 0} values were higher in HF rats than in NC rats (p<0.005). The excellent linear fit with R{sup 2}>0.9971 and R{sup 2}>0.9987 indicates T2 relaxation decay curves with mono-exponential function. Conclusion: In in vivo, a sufficient spectral resolution and a sufficiently high signal-to-noise ratio (SNR) can be achieved, so that the data measured over short TE values can be extrapolated back to TE = 0 to produce better estimates of the relative weights of the spectral components. In the short term, treating the effective decay rate as exponential is an adequate approximation.« less
NASA Astrophysics Data System (ADS)
Franzetti, Paolo; Scodeggio, Marco
2012-10-01
GOSSIP fits the electro-magnetic emission of an object (the SED, Spectral Energy Distribution) against synthetic models to find the simulated one that best reproduces the observed data. It builds-up the observed SED of an object (or a large sample of objects) combining magnitudes in different bands and eventually a spectrum; then it performs a chi-square minimization fitting procedure versus a set of synthetic models. The fitting results are used to estimate a number of physical parameters like the Star Formation History, absolute magnitudes, stellar mass and their Probability Distribution Functions.
SDSS-IV MaNGA: bulge-disc decomposition of IFU data cubes (BUDDI)
NASA Astrophysics Data System (ADS)
Johnston, Evelyn J.; Häußler, Boris; Aragón-Salamanca, Alfonso; Merrifield, Michael R.; Bamford, Steven; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Fu, Hai; Law, David; Nitschelm, Christian; Thomas, Daniel; Roman Lopes, Alexandre; Wake, David; Yan, Renbin
2017-02-01
With the availability of large integral field unit (IFU) spectral surveys of nearby galaxies, there is now the potential to extract spectral information from across the bulges and discs of galaxies in a systematic way. This information can address questions such as how these components built up with time, how galaxies evolve and whether their evolution depends on other properties of the galaxy such as its mass or environment. We present bulge-disc decomposition of IFU data cubes (BUDDI), a new approach to fit the two-dimensional light profiles of galaxies as a function of wavelength to extract the spectral properties of these galaxies' discs and bulges. The fitting is carried out using GALFITM, a modified form of GALFIT which can fit multiwaveband images simultaneously. The benefit of this technique over traditional multiwaveband fits is that the stellar populations of each component can be constrained using knowledge over the whole image and spectrum available. The decomposition has been developed using commissioning data from the Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at APO (MaNGA) survey with redshifts z < 0.14 and coverage of at least 1.5 effective radii for a spatial resolution of 2.5 arcsec full width at half-maximum and field of view of > 22 arcsec, but can be applied to any IFU data of a nearby galaxy with similar or better spatial resolution and coverage. We present an overview of the fitting process, the results from our tests, and we finish with example stellar population analyses of early-type galaxies from the MaNGA survey to give an indication of the scientific potential of applying bulge-disc decomposition to IFU data.
Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations
Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.
2011-01-01
Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared. Key Words: Astrobiology—Extrasolar terrestrial planets—Habitability—Planetary science—Radiative transfer. Astrobiology 11, 393–408. PMID:21631250
NASA Astrophysics Data System (ADS)
Cui, Boya; Kielb, Edward; Luo, Jiajun; Tang, Yang; Grayson, Matthew
Superlattices and narrow gap semiconductors often host multiple conducting species, such as electrons and holes, requiring a mobility spectral analysis (MSA) method to separate contributions to the conductivity. Here, a least-squares MSA method is introduced: the QR-algorithm Fourier-domain MSA (FMSA). Like other MSA methods, the FMSA sorts the conductivity contributions of different carrier species from magnetotransport measurements, arriving at a best fit to the experimentally measured longitudinal and Hall conductivities σxx and σxy, respectively. This method distinguishes itself from other methods by using the so-called QR-algorithm of linear algebra to achieve rapid convergence of the mobility spectrum as the solution to an eigenvalue problem, and by alternately solving this problem in both the mobility domain and its Fourier reciprocal-space. The result accurately fits a mobility range spanning nearly four orders of magnitude (μ = 300 to 1,000,000 cm2/V .s). This method resolves the mobility spectra as well as, or better than, competing MSA methods while also achieving high computational efficiency, requiring less than 30 second on average to converge to a solution on a standard desktop computer. Acknowledgement: Funded by AFOSR FA9550-15-1-0377 and AFOSR FA9550-15-1-0247.
Fitting and Modeling in the ASC Data Analysis Environment
NASA Astrophysics Data System (ADS)
Doe, S.; Siemiginowska, A.; Joye, W.; McDowell, J.
As part of the AXAF Science Center (ASC) Data Analysis Environment, we will provide to the astronomical community a Fitting Application. We present a design of the application in this paper. Our design goal is to give the user the flexibility to use a variety of optimization techniques (Levenberg-Marquardt, maximum entropy, Monte Carlo, Powell, downhill simplex, CERN-Minuit, and simulated annealing) and fit statistics (chi (2) , Cash, variance, and maximum likelihood); our modular design allows the user easily to add their own optimization techniques and/or fit statistics. We also present a comparison of the optimization techniques to be provided by the Application. The high spatial and spectral resolutions that will be obtained with AXAF instruments require a sophisticated data modeling capability. We will provide not only a suite of astronomical spatial and spectral source models, but also the capability of combining these models into source models of up to four data dimensions (i.e., into source functions f(E,x,y,t)). We will also provide tools to create instrument response models appropriate for each observation.
Retrieval of volcanic ash composition and particle size using high spatial resolution satellite data
NASA Astrophysics Data System (ADS)
Williams, D.; Ramsey, M. S.
2017-12-01
Volcanic ash plumes are a complex mixture of glass, mineral and lithic fragments in suspension with multiple gas species. These plumes are rapidly injected into the atmosphere, traveling thousands of kilometers from their source and affecting lives and property. One important use of satellite-based data has been to monitor volcanic plumes and their associated hazards. For distal plumes, the transmissive properties of volcanic ash in the thermal infrared (TIR) region allows the effective radii, composition, and density to be determined using approaches such as radiative transfer modelling. Proximal to the vent, however, the plume remains opaque, rendering this method invalid. We take a new approach to proximal plume analysis by assuming the plume's upper layer behaves spectrally as a solid surface in the TIR, due to the temperature and density of the plume soon after ejection from the vent. If this hypothesis is true, linear mixing models can be employed together with an accurate spectral library to compute both the particle size and petrology of every plume pixel. This method is being applied to high spatial resolution TIR data from the ASTER sensor using the newly developed ASTER Volcanic Ash Library (AVAL). AVAL serves as the spectral end-member suite from which to model plume data of 4 volcanoes: Chaitén, Puyehue-Cordón Caulle, Sakurajima and Soufrière Hills Volcano (SHV). Preliminary results indicate that this approach may be valid. The Sakurajima and SHV AVAL spectra provide an excellent fit to the ASTER data, whereas crushed high silica glass served as an appropriate end-member for both Chaitén and Puyehue-Cordón Caulle. In all cases, the best-fit size fractions are < 45 µm. Analysis of the proximal plume is essential in understanding the volcanic processes occurring within the vent. This study provides unprecedented detail of this region of the plume, further demonstrating the need for the continuation of high spatial resolution TIR satellite missions.
Phenomenological Model for Infrared Emissions from High-Explosive Detonation Fireballs
2007-09-01
concentrations for H2O, CO2, CO, and HCl. Fitting this model to the observed MWIR spectra affords a compact, high-fidelity representation with... concentrations separates the TNT and ENE events. Spectrally-determined R values are somewhat consistent with stoichiometric expectations. Comparing...78 4.7.2 Atmospheric Water Vapor Concentration . . . . . . . . . . . . . . . . . 79 4.7.3 Spectral Resolution
Assessing diversity of prairie plants using remote sensing
NASA Astrophysics Data System (ADS)
Gamon, J. A.; Wang, R.
2017-12-01
Biodiversity loss endangers ecosystem services and is considered as a global change that may generate unacceptable environmental consequences for the Earth system. Global biodiversity observations are needed to provide a better understanding of biodiversity - ecosystem services relationships and to provide a stronger foundation for conserving the Earth's biodiversity. While remote sensing metrics have been applied to estimate α biodiversity directly through optical diversity, a better understanding of the mechanisms behind the optical diversity-biodiversity relationship is needed. We designed a series of experiments at Cedar Creek Ecosystem Science Reserve, MN, to investigate the scale dependence of optical diversity and explore how species richness, evenness, and composition affect optical diversity. We collected hyperspectral reflectance of 16 prairie species using both a full-range field spectrometer fitted with a leaf clip, and an imaging spectrometer carried by a tram system to simulate plot-level images with different species richness, evenness, and composition. Two indicators of spectral diversity were explored: the coefficient of variation (CV) of spectral reflectance in space, and spectral classification using a Partial Least Squares Discriminant Analysis (PLS-DA). Our results showed that sampling methods (leaf clip-derived data vs. image-derived data) affected the optical diversity estimation. Both optical diversity indices were affected by species richness and evenness (P<0.001 for each case). At fine spatial scales, species composition also had a substantial influence on optical diversity. CV was sensitive to the background soil influence, but the spectral classification method was insensitive to background. These results provide a critical foundation for assessing biodiversity using imaging spectrometry and these findings can be used to guide regional studies of biodiversity estimation using high spatial and spectral resolution remote sensing.
NASA Astrophysics Data System (ADS)
Debernardi, N.; Dunias, P.; van El, B.; Statham, A. E.
2014-03-01
A novel methodology is presented to mimic diffuse reflectance spectra of arbitrary biological tissues in the visible and near-infrared ranges. The prerequisite for this method is that the spectral information of basic components is sufficient to mimic an arbitrary tissue. Using a sterile disposable fiber optic probe the diffuse reflectance spectrum of a tissue (either in vivo or ex vivo) is measured, which forms the target spectrum. With the same type of fiber probe, a wide variety of basic components (ingredients) has been previously measured and all together forms a spectral database. A "recipe" for the optimal mixture of ingredients can then be derived using an algorithm that fits the absorption and scattering behavior of the target spectrum using the spectra of the basic components in the database. The spectral mimicking accuracy refines by adding more ingredients to the database. The validity of the principle is demonstrated by mimicking an arbitrary mixture of components. The method can be applied with different kinds of materials, e.g. gelatins, waxes and silicones, thus providing the possibility of mimicking the mechanical properties of target tissues as well. The algorithm can be extended from single point contact spectral measurement to contactless multi- and hyper-spectral camera acquisition. It can be applied to produce portable and durable tissue-like phantoms that provides consistent results over time for calibration, demonstration, comparison of instruments or other such tasks. They are also more readily available than living tissue or a cadaver and are not so limited by ease of handling and legislation; hence they are highly useful when developing new devices.
Iqbal, Zohaib; Wilson, Neil E; Keller, Margaret A; Michalik, David E; Church, Joseph A; Nielsen-Saines, Karin; Deville, Jaime; Souza, Raissa; Brecht, Mary-Lynn; Thomas, M Albert
2016-01-01
To measure cerebral metabolite levels in perinatally HIV-infected youths and healthy controls using the accelerated five dimensional (5D) echo planar J-resolved spectroscopic imaging (EP-JRESI) sequence, which is capable of obtaining two dimensional (2D) J-resolved spectra from three spatial dimensions (3D). After acquisition and reconstruction of the 5D EP-JRESI data, T1-weighted MRIs were used to classify brain regions of interest for HIV patients and healthy controls: right frontal white (FW), medial frontal gray (FG), right basal ganglia (BG), right occipital white (OW), and medial occipital gray (OG). From these locations, respective J-resolved and TE-averaged spectra were extracted and fit using two different quantitation methods. The J-resolved spectra were fit using prior knowledge fitting (ProFit) while the TE-averaged spectra were fit using the advanced method for accurate robust and efficient spectral fitting (AMARES). Quantitation of the 5D EP-JRESI data using the ProFit algorithm yielded significant metabolic differences in two spatial locations of the perinatally HIV-infected youths compared to controls: elevated NAA/(Cr+Ch) in the FW and elevated Asp/(Cr+Ch) in the BG. Using the TE-averaged data quantified by AMARES, an increase of Glu/(Cr+Ch) was shown in the FW region. A strong negative correlation (r < -0.6) was shown between tCh/(Cr+Ch) quantified using ProFit in the FW and CD4 counts. Also, strong positive correlations (r > 0.6) were shown between Asp/(Cr+Ch) and CD4 counts in the FG and BG. The complimentary results using ProFit fitting of J-resolved spectra and AMARES fitting of TE-averaged spectra, which are a subset of the 5D EP-JRESI acquisition, demonstrate an abnormal energy metabolism in the brains of perinatally HIV-infected youths. This may be a result of the HIV pathology and long-term combinational anti-retroviral therapy (cART). Further studies of larger perinatally HIV-infected cohorts are necessary to confirm these findings.
NASA Astrophysics Data System (ADS)
Klochkov, D.; Suleimanov, V.; Pühlhofer, G.; Yakovlev, D. G.; Santangelo, A.; Werner, K.
2015-01-01
Context. Central compact objects (CCOs) in supernova remnants are isolated thermally emitting neutron stars (NSs). They are most probably characterized by a magnetic field strength that is roughly two orders of magnitude lower than that of most of the radio and accreting pulsars. The thermal emission of CCOs can be modeled to obtain constraints on the physical parameters of the star such as its mass, radius, effective temperature, and chemical composition. Aims: The CCO in HESS J1731-347 is one of the brightest objects in this class. Starting from 2007, it was observed several times with different X-ray satellites. Here we present our analysis of two new XMM-Newton observations of the source performed in 2013 which increase the total exposure time of the data available for spectral analysis by a factor of about five compared to the analyses presented before. Methods: We use our numerical spectral models for carbon and hydrogen atmospheres to fit the spectrum of the CCO. From our fits, we derive constraints on the physical parameters of the emitting star such as its mass, radius, distance, and effective temperature. We also use the new data to derive new upper limits on the source pulsations and to confirm the absence of a long-term flux and spectral variability. Results: The analysis shows that atmosphere models are clearly preferred by the fit over the blackbody spectral function. Under the assumption that the X-ray emission is uniformly produced by the entire star surface (supported by the lack of pulsations), hydrogen atmosphere models lead to uncomfortably large distances of the CCO, above 7-8 kpc. On the other hand, the carbon atmosphere model formally excludes distances above 5-6 kpc and is compatible with the source located in the Scutum-Crux (~3 kpc) or Norma-Cygnus (~4.5 kpc) Galactic spiral arm. We provide and discuss the corresponding confidence contours in the NS mass-radius plane. The measured effective temperature indicates that the NS is exceptionally hot for the estimated age of ~30 kyr. We discuss possible cooling scenarios to explain this property, as well as possible additional constraints on the star mass and radius from cooling theory.
Nonlinear ultrasonic wave modulation for online fatigue crack detection
NASA Astrophysics Data System (ADS)
Sohn, Hoon; Lim, Hyung Jin; DeSimio, Martin P.; Brown, Kevin; Derriso, Mark
2014-02-01
This study presents a fatigue crack detection technique using nonlinear ultrasonic wave modulation. Ultrasonic waves at two distinctive driving frequencies are generated and corresponding ultrasonic responses are measured using permanently installed lead zirconate titanate (PZT) transducers with a potential for continuous monitoring. Here, the input signal at the lower driving frequency is often referred to as a 'pumping' signal, and the higher frequency input is referred to as a 'probing' signal. The presence of a system nonlinearity, such as a crack formation, can provide a mechanism for nonlinear wave modulation, and create spectral sidebands around the frequency of the probing signal. A signal processing technique combining linear response subtraction (LRS) and synchronous demodulation (SD) is developed specifically to extract the crack-induced spectral sidebands. The proposed crack detection method is successfully applied to identify actual fatigue cracks grown in metallic plate and complex fitting-lug specimens. Finally, the effect of pumping and probing frequencies on the amplitude of the first spectral sideband is investigated using the first sideband spectrogram (FSS) obtained by sweeping both pumping and probing signals over specified frequency ranges.
Hall, Gunnsteinn; Eliceiri, Kevin W.
2013-01-01
Abstract. Second-harmonic generation (SHG) microscopy has intrinsic contrast for imaging fibrillar collagen and has shown great promise for disease characterization and diagnostics. In addition to morphology, additional information is achievable as the initially emitted SHG radiation directionality is related to subresolution fibril size and distribution. We show that by two parameter fittings, both the emission pattern (FSHG/BSHG)creation and the reduced scattering coefficient μs′, can be obtained from the best fits between three-dimensional experimental data and Monte Carlo simulations. The improved simulation framework accounts for collection apertures for the detected forward and backward components. We apply the new simulation framework to mouse tail tendon for validation and show that the spectral slope of μs′ obtained is similar to that from bulk optical measurements and that the (FSHG/BSHG)creation values are also similar to previous results. Additionally, we find that the SHG emission becomes increasingly forward directed at longer wavelengths, which is consistent with decreased dispersion in refractive index between the laser and SHG wavelengths. As both the spectral slope of μs′ and (FSHG/BSHG)creation have been linked to the underlying tissue structure, simultaneously obtaining these parameters on a microscope platform from the same tissue provides a powerful method for tissue characterization. PMID:24220726
The relationship between kappa and temperature in energetic ion spectra at Jupiter
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Hamilton, D. C.
1995-01-01
A universal energy per charge kappa function fit is simultaneously applied to the spectra of Voyager 2 Low Energy Charged Particle (LECP) proton, helium, oxygen, sulfur, and carbon ions during 33 Jovian plasma sheet crossings from 26 to 160 R(sub J). The fits yield an approximately linear relationship between high energy spectral index, kappa, and core proton temperature of the form kappa (T(sub H)) approximately = eta dot T(sub H) + kappa(sub 0) with eta = 0.080 ke/V, kappa(sub 0) = 2.86, and T(sub H) measured in keV. Core proton temperatures range from 5 to 35 keV with spectral indices ranging from 3 to 6.
STAR-GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fadely, Ross; Willman, Beth; Hogg, David W.
2012-11-20
Ground-based optical surveys such as PanSTARRS, DES, and LSST will produce large catalogs to limiting magnitudes of r {approx}> 24. Star-galaxy separation poses a major challenge to such surveys because galaxies-even very compact galaxies-outnumber halo stars at these depths. We investigate photometric classification techniques on stars and galaxies with intrinsic FWHM <0.2 arcsec. We consider unsupervised spectral energy distribution template fitting and supervised, data-driven support vector machines (SVMs). For template fitting, we use a maximum likelihood (ML) method and a new hierarchical Bayesian (HB) method, which learns the prior distribution of template probabilities from the data. SVM requires training datamore » to classify unknown sources; ML and HB do not. We consider (1) a best-case scenario (SVM{sub best}) where the training data are (unrealistically) a random sampling of the data in both signal-to-noise and demographics and (2) a more realistic scenario where training is done on higher signal-to-noise data (SVM{sub real}) at brighter apparent magnitudes. Testing with COSMOS ugriz data, we find that HB outperforms ML, delivering {approx}80% completeness, with purity of {approx}60%-90% for both stars and galaxies. We find that no algorithm delivers perfect performance and that studies of metal-poor main-sequence turnoff stars may be challenged by poor star-galaxy separation. Using the Receiver Operating Characteristic curve, we find a best-to-worst ranking of SVM{sub best}, HB, ML, and SVM{sub real}. We conclude, therefore, that a well-trained SVM will outperform template-fitting methods. However, a normally trained SVM performs worse. Thus, HB template fitting may prove to be the optimal classification method in future surveys.« less
Chasing passive galaxies in the early Universe: a critical analysis in CANDELS GOODS-South
NASA Astrophysics Data System (ADS)
Merlin, E.; Fontana, A.; Castellano, M.; Santini, P.; Torelli, M.; Boutsia, K.; Wang, T.; Grazian, A.; Pentericci, L.; Schreiber, C.; Ciesla, L.; McLure, R.; Derriere, S.; Dunlop, J. S.; Elbaz, D.
2018-01-01
We search for passive galaxies at z > 3 in the GOODS-South field, using different techniques based on photometric data, and paying attention to develop methods that are sensitive to objects that have become passive shortly before the epoch of observation. We use CANDELS HST catalogues, ultra-deep Ks data and new IRAC photometry, performing spectral energy distribution fitting using models with abruptly quenched star formation histories. We then single out galaxies which are best fitted by a passively evolving model, and having only low probability (<5 per cent) star-forming solutions. We verify the effects of including nebular lines emission, and we consider possible solutions at different redshifts. The number of selected sources dramatically depends on the models used in the spectral energy distribution (SED) fitting. Without including emission lines and with photometric redshifts fixed at the CANDELS estimate, we single out 30 candidates; the inclusion of nebular lines emission reduces the sample to 10 objects; allowing for solutions at different redshifts, only two galaxies survive as robust candidates. Most of the candidates are not far-infrared emitters, corroborating their association with passive galaxies. Our results translate into an upper limit in the number density of ∼0.173 arcmin2 above the detection limit. However, we conclude that the selection of passive galaxies at z > 3 is still subject to significant uncertainties, being sensitive to assumptions in the SED modelling adopted and to the relatively low S/N of the objects. By means of dedicated simulations, we show that JWST will greatly enhance the accuracy, allowing for a much more robust classification.
INTEGRAL/SPI γ-ray line spectroscopy. Response and background characteristics
NASA Astrophysics Data System (ADS)
Diehl, Roland; Siegert, Thomas; Greiner, Jochen; Krause, Martin; Kretschmer, Karsten; Lang, Michael; Pleintinger, Moritz; Strong, Andrew W.; Weinberger, Christoph; Zhang, Xiaoling
2018-03-01
Context. The space based γ-ray observatory INTEGRAL of the European Space Agency (ESA) includes the spectrometer instrument "SPI". This is a coded mask telescope featuring a 19-element Germanium detector array for high-resolution γ-ray spectroscopy, encapsulated in a scintillation detector assembly that provides a veto for background from charged particles. In space, cosmic rays irradiate spacecraft and instruments, which, in spite of the vetoing detectors, results in a large instrumental background from activation of those materials, and leads to deterioration of the charge collection properties of the Ge detectors. Aim. We aim to determine the measurement characteristics of our detectors and their evolution with time, that is, their spectral response and instrumental background. These incur systematic variations in the SPI signal from celestial photons, hence their determination from a broad empirical database enables a reduction of underlying systematics in data analysis. For this, we explore compromises balancing temporal and spectral resolution within statistical limitations. Our goal is to enable modelling of background applicable to spectroscopic studies of the sky, accounting separately for changes of the spectral response and of instrumental background. Methods: We use 13.5 years of INTEGRAL/SPI data, which consist of spectra for each detector and for each pointing of the satellite. Spectral fits to each such spectrum, with independent but coherent treatment of continuum and line backgrounds, provides us with details about separated background components. From the strongest background lines, we first determine how the spectral response changes with time. Applying symmetry and long-term stability tests, we eliminate degeneracies and reduce statistical fluctuations of background parameters, with the aim of providing a self-consistent description of the spectral response for each individual detector. Accounting for this, we then determine how the instrumental background components change in intensities and other characteristics, most-importantly their relative distribution among detectors. Results: Spectral resolution of Ge detectors in space degrades with time, up to 15% within half a year, consistently for all detectors, and across the SPI energy range. Semi-annual annealing operations recover these losses, yet there is a small long-term degradation. The intensity of instrumental background varies anti-correlated to solar activity, in general. There are significant differences among different lines and with respect to continuum. Background lines are found to have a characteristic, well-defined and long-term consistent intensity ratio among detectors. We use this to categorise lines in groups of similar behaviour. The dataset of spectral-response and background parameters as fitted across the INTEGRAL mission allows studies of SPI spectral response and background behaviour in a broad perspective, and efficiently supports precision modelling of instrumental background.
NASA Astrophysics Data System (ADS)
Teng, Stacy H.
We present the largest X-ray survey (˜80 objects) of luminous and ultraluminous infrared galaxies (U/LIRGs) to date. The large infrared luminosities in these objects are thought to arise from either star formation triggered by the merging of disk galaxies or by nuclear activity. U/LIRGs have been purported to be the progenitors of some quasars. In this thesis, we utilize data from Chandra, XMM-Newton, and Suzaku X-ray observatories to quantify the contribution to the overall power of U/LIRGs by starbursts or active galactic nuclei (AGNs). A goal of this project is to statistically examine how the starburst-to-AGN ratio evolves as a function of merger stage. We find that a majority of U/LIRGs are X-ray faint. This may be a result of high obscuration or weak nuclear activity. The dearth of detected counts makes traditional fitting difficult. As a solution, we developed a method of using hardness ratios (HR) to estimate the spectral shapes of these weak sources. Both observational evidence and simulations show that this method is effective for sources with intrinsic column densities below ˜10 22 cm-2 and applicable to sources with only tens of detected counts. Applying the HR method and traditional spectral fitting to the U/LIRG data and that of 26 PG quasars, we find a correlation of AGN dominance with dust temperature, optical spectral type, and merger stage. The probability of having a powerful AGN increases along the merger sequence. However, the AGNs can turn on at any time, as evidenced by a large number of AGNs detected in binary U/LIRGs. Starburst dominates the total power in U/LIRGs prior to the merger. Then the black hole grows rapidly during coalescence. At this time, the AGN is likely to begin driving galactic scale winds which will quench star formation, resulting in a luminous quasar. These conclusions are in general agreement with results obtained at other wavelengths and current theoretical models.
Heiner, Zsuzsanna; Osvay, Károly
2009-08-10
The refractivity of wild-type bacteriorhodopsin (bR(WT)) suspended in tris(hydroxymethyl)aminomethane (TRIS) buffer has been measured in the spectral range of 390-840 nm by the method of angle of minimal deviation with the use of a hollow glass prism. The refractive indices of pure bR(WT) as well as of TRIS buffer have been determined from the concentration dependent refraction values. Sellmeier-type dispersion equations have been fitted for both the TRIS buffer and pure bR(WT).
Instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer
NASA Technical Reports Server (NTRS)
Share, G. H.; Kinzer, R. L.; Strickman, M. S.; Letaw, J. R.; Chupp, E. L.
1989-01-01
Preliminary identifications of instrumental and atmospheric background lines detected by the gamma-ray spectrometer on NASA's Solar Maximum Mission satellite (SMM) are presented. The long-term and stable operation of this experiment has provided data of high quality for use in this analysis. Methods are described for identifying radioactive isotopes which use their different decay times. Temporal evolution of the features are revealed by spectral comparisons, subtractions, and fits. An understanding of these temporal variations has enabled the data to be used for detecting celestial gamma-ray sources.
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Rudich, Y.; Brown, S. S.
2015-09-01
Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity enhanced spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99933 ± 0.00003 (670 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.49 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device (CCD) array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity enhanced spectroscopy and cavity ringdown spectroscopy agree within 2 % (slope for linear fit = 0.98 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity enhanced spectroscopy and calculated based on flow dilution are also well-correlated, with r2 = 0.9998. During constant, mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1-min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically-based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to trace gases, this approach will be appropriate for measurements of aerosol extinction in ambient air, and this spectral region is important for characterizing the strong ultraviolet absorption by brown carbon aerosol.
Zhao, Chenguang; Bolan, Patrick J.; Royce, Melanie; Lakkadi, Navneeth; Eberhardt, Steven; Sillerud, Laurel; Lee, Sang-Joon; Posse, Stefan
2012-01-01
Purpose To quantitatively measure tCho levels in healthy breasts using Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI). Material and Methods The 2-dimensional mapping of tCho at 3 Tesla across an entire breast slice using PEPSI and a hybrid spectral quantification method based on LCModel fitting and integration of tCho using the fitted spectrum were developed. This method was validated in 19 healthy females and compared with single voxel spectroscopy (SVS) and with PRESS prelocalized conventional Magnetic Resonance Spectroscopic Imaging (MRSI) using identical voxel size (8 cc) and similar scan times (~7 min). Results A tCho peak with a signal to noise ratio larger than 2 was detected in 10 subjects using both PEPSI and SVS. The average tCho concentration in these subjects was 0.45 ± 0.2 mmol/kg using PEPSI and 0.48±0.3 mmol/kg using SVS. Comparable results were obtained in 2 subjects using conventional MRSI. High lipid content in the spectra of 9 tCho negative subjects was associated with spectral line broadening of more than 26 Hz, which made tCho detection impossible. Conventional MRSI with PRESS prelocalization in glandular tissue in two of these subjects yielded tCho concentrations comparable to PEPSI. Conclusion The detection sensitivity of PEPSI is comparable to SVS and conventional PRESS-MRSI. PEPSI can be potentially used in the evaluation of tCho in breast cancer. A tCho threshold concentration value of ~0.7mmol/kg might be used to differentiate between cancerous and healthy (or benign) breast tissues based on this work and previous studies. PMID:22782667
Precision and Accuracy in PDV and VISAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, W. P.
2017-08-22
This is a technical report discussing our current level of understanding of a wide and varying distribution of uncertainties in velocity results from Photonic Doppler Velocimetry in its application to gas gun experiments. Using propagation of errors methods with statistical averaging of photon number fluctuation in the detected photocurrent and subsequent addition of electronic recording noise, we learn that the velocity uncertainty in VISAR can be written in closed form. For PDV, the non-linear frequency transform and peak fitting methods employed make propagation of errors estimates notoriously more difficult to write down in closed form expect in the limit ofmore » constant velocity and low time resolution (large analysis-window width). An alternative method of error propagation in PDV is to use Monte Carlo methods with a simulation of the time domain signal based on results from the spectral domain. A key problem for Monte Carlo estimation for an experiment is a correct estimate of that portion of the time-domain noise associated with the peak-fitting region-of-interesting in the spectral domain. Using short-time Fourier transformation spectral analysis and working with the phase dependent real and imaginary parts allows removal of amplitude-noise cross terms that invariably show up when working with correlation-based methods or FFT power spectra. Estimation of the noise associated with a given spectral region of interest is then possible. At this level of progress, we learn that Monte Carlo trials with random recording noise and initial (uncontrolled) phase yields velocity uncertainties that are not as large as those observed. In a search for additional noise sources, a speckleinterference modulation contribution with off axis rays was investigated, and was found to add a velocity variation beyond that from the recording noise (due to random interference between off axis rays), but in our experiments the speckle modulation precision was not as important as the recording noise precision. But from these investigations we do appreciate that the velocity-uncertainty itself has a wide distribution of values that varies with signal-amplitude modulation (is not a single value). To provide a rough rule of thumb for the velocity uncertainty, we computed the average of the relative standard deviation distributions from 60 recorded traces (with distributions of uncertainties roughly between 0.1 % to 1 % in each trace) and found a mean of the distribution of uncertainties for our experiments is not better than 0.4 % at an analysis window width of 5 ns (although for brief intervals it can be as good as 0.1 %). Further imagination and testing may be needed to reveal other possible hydrodynamics-related sources of velocity error in PDV.« less
Functional models for colloid retention in porous media at the triple line.
Dathe, Annette; Zevi, Yuniati; Richards, Brian K; Gao, Bin; Parlange, J-Yves; Steenhuis, Tammo S
2014-01-01
Spectral confocal microscope visualizations of microsphere movement in unsaturated porous media showed that attachment at the Air Water Solid (AWS) interface was an important retention mechanism. These visualizations can aid in resolving the functional form of retention rates of colloids at the AWS interface. In this study, soil adsorption isotherm equations were adapted by replacing the chemical concentration in the water as independent variable by the cumulative colloids passing by. In order of increasing number of fitted parameters, the functions tested were the Langmuir adsorption isotherm, the Logistic distribution, and the Weibull distribution. The functions were fitted against colloid concentrations obtained from time series of images acquired with a spectral confocal microscope for three experiments performed where either plain or carboxylated polystyrene latex microspheres were pulsed in a small flow chamber filled with cleaned quartz sand. Both moving and retained colloids were quantified over time. In fitting the models to the data, the agreement improved with increasing number of model parameters. The Weibull distribution gave overall the best fit. The logistic distribution did not fit the initial retention of microspheres well but otherwise the fit was good. The Langmuir isotherm only fitted the longest time series well. The results can be explained that initially when colloids are first introduced the rate of retention is low. Once colloids are at the AWS interface they act as anchor point for other colloids to attach and thereby increasing the retention rate as clusters form. Once the available attachment sites diminish, the retention rate decreases.
Mr-Moose: An advanced SED-fitting tool for heterogeneous multi-wavelength datasets
NASA Astrophysics Data System (ADS)
Drouart, G.; Falkendal, T.
2018-04-01
We present the public release of Mr-Moose, a fitting procedure that is able to perform multi-wavelength and multi-object spectral energy distribution (SED) fitting in a Bayesian framework. This procedure is able to handle a large variety of cases, from an isolated source to blended multi-component sources from an heterogeneous dataset (i.e. a range of observation sensitivities and spectral/spatial resolutions). Furthermore, Mr-Moose handles upper-limits during the fitting process in a continuous way allowing models to be gradually less probable as upper limits are approached. The aim is to propose a simple-to-use, yet highly-versatile fitting tool fro handling increasing source complexity when combining multi-wavelength datasets with fully customisable filter/model databases. The complete control of the user is one advantage, which avoids the traditional problems related to the "black box" effect, where parameter or model tunings are impossible and can lead to overfitting and/or over-interpretation of the results. Also, while a basic knowledge of Python and statistics is required, the code aims to be sufficiently user-friendly for non-experts. We demonstrate the procedure on three cases: two artificially-generated datasets and a previous result from the literature. In particular, the most complex case (inspired by a real source, combining Herschel, ALMA and VLA data) in the context of extragalactic SED fitting, makes Mr-Moose a particularly-attractive SED fitting tool when dealing with partially blended sources, without the need for data deconvolution.
MR-MOOSE: an advanced SED-fitting tool for heterogeneous multi-wavelength data sets
NASA Astrophysics Data System (ADS)
Drouart, G.; Falkendal, T.
2018-07-01
We present the public release of MR-MOOSE, a fitting procedure that is able to perform multi-wavelength and multi-object spectral energy distribution (SED) fitting in a Bayesian framework. This procedure is able to handle a large variety of cases, from an isolated source to blended multi-component sources from a heterogeneous data set (i.e. a range of observation sensitivities and spectral/spatial resolutions). Furthermore, MR-MOOSE handles upper limits during the fitting process in a continuous way allowing models to be gradually less probable as upper limits are approached. The aim is to propose a simple-to-use, yet highly versatile fitting tool for handling increasing source complexity when combining multi-wavelength data sets with fully customisable filter/model data bases. The complete control of the user is one advantage, which avoids the traditional problems related to the `black box' effect, where parameter or model tunings are impossible and can lead to overfitting and/or over-interpretation of the results. Also, while a basic knowledge of PYTHON and statistics is required, the code aims to be sufficiently user-friendly for non-experts. We demonstrate the procedure on three cases: two artificially generated data sets and a previous result from the literature. In particular, the most complex case (inspired by a real source, combining Herschel, ALMA, and VLA data) in the context of extragalactic SED fitting makes MR-MOOSE a particularly attractive SED fitting tool when dealing with partially blended sources, without the need for data deconvolution.
Foreground Bias from Parametric Models of Far-IR Dust Emission
NASA Technical Reports Server (NTRS)
Kogut, A.; Fixsen, D. J.
2016-01-01
We use simple toy models of far-IR dust emission to estimate the accuracy to which the polarization of the cosmic microwave background can be recovered using multi-frequency fits, if the parametric form chosen for the fitted dust model differs from the actual dust emission. Commonly used approximations to the far-IR dust spectrum yield CMB residuals comparable to or larger than the sensitivities expected for the next generation of CMB missions, despite fitting the combined CMB plus foreground emission to precision 0.1 percent or better. The Rayleigh-Jeans approximation to the dust spectrum biases the fitted dust spectral index by (Delta)(Beta)(sub d) = 0.2 and the inflationary B-mode amplitude by (Delta)(r) = 0.03. Fitting the dust to a modified blackbody at a single temperature biases the best-fit CMB by (Delta)(r) greater than 0.003 if the true dust spectrum contains multiple temperature components. A 13-parameter model fitting two temperature components reduces this bias by an order of magnitude if the true dust spectrum is in fact a simple superposition of emission at different temperatures, but fails at the level (Delta)(r) = 0.006 for dust whose spectral index varies with frequency. Restricting the observing frequencies to a narrow region near the foreground minimum reduces these biases for some dust spectra but can increase the bias for others. Data at THz frequencies surrounding the peak of the dust emission can mitigate these biases while providing a direct determination of the dust temperature profile.
NASA Astrophysics Data System (ADS)
Lilichenko, Mark; Kelley, Anne Myers
2001-04-01
A novel approach is presented for finding the vibrational frequencies, Franck-Condon factors, and vibronic linewidths that best reproduce typical, poorly resolved electronic absorption (or fluorescence) spectra of molecules in condensed phases. While calculation of the theoretical spectrum from the molecular parameters is straightforward within the harmonic oscillator approximation for the vibrations, "inversion" of an experimental spectrum to deduce these parameters is not. Standard nonlinear least-squares fitting methods such as Levenberg-Marquardt are highly susceptible to becoming trapped in local minima in the error function unless very good initial guesses for the molecular parameters are made. Here we employ a genetic algorithm to force a broad search through parameter space and couple it with the Levenberg-Marquardt method to speed convergence to each local minimum. In addition, a neural network trained on a large set of synthetic spectra is used to provide an initial guess for the fitting parameters and to narrow the range searched by the genetic algorithm. The combined algorithm provides excellent fits to a variety of single-mode absorption spectra with experimentally negligible errors in the parameters. It converges more rapidly than the genetic algorithm alone and more reliably than the Levenberg-Marquardt method alone, and is robust in the presence of spectral noise. Extensions to multimode systems, and/or to include other spectroscopic data such as resonance Raman intensities, are straightforward.
NASA Astrophysics Data System (ADS)
Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai
2016-05-01
The commonly employed calibration methods for laboratory-made spectrometers have several disadvantages, including poor calibration when the number of characteristic spectral peaks is low. Therefore, we present a wavelength calibration method using relative k-space distribution with low coherence interferometer. The proposed method utilizes an interferogram with a perfect sinusoidal pattern in k-space for calibration. Zero-crossing detection extracts the k-space distribution of a spectrometer from the interferogram in the wavelength domain, and a calibration lamp provides information about absolute wavenumbers. To assign wavenumbers, wavelength-to-k-space conversion is required for the characteristic spectrum of the calibration lamp with the extracted k-space distribution. Then, the wavelength calibration is completed by inverse conversion of the k-space into wavelength domain. The calibration performance of the proposed method was demonstrated with two experimental conditions of four and eight characteristic spectral peaks. The proposed method elicited reliable calibration results in both cases, whereas the conventional method of third-order polynomial curve fitting failed to determine wavelengths in the case of four characteristic peaks. Moreover, for optical coherence tomography imaging, the proposed method could improve axial resolution due to higher suppression of sidelobes in point spread function than the conventional method. We believe that our findings can improve not only wavelength calibration accuracy but also resolution for optical coherence tomography.
Weibull thermodynamics: Subexponential decay in the energy spectrum of cosmic-ray nuclei
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2017-10-01
The spectral number density of cosmic-ray nuclei is shown to be a multiply broken power law with subexponential spectral cutoff. To this end, a spectral fit is performed to data sets covering the 1GeV - 1011GeV interval of the all-particle cosmic-ray spectrum. The flux points of the ultra-high energy spectral tail measured with the Telescope Array indicate a Weibull cutoff exp(-(E /(kB T)) σ) and permit a precise determination of the cutoff temperature kB T =(2 . 5 ± 0 . 1) × 1010 GeV and the spectral index σ = 0 . 66 ± 0 . 02. Based on the spectral number density inferred from the least-squares fit, the thermodynamics of this stationary non-equilibrium system, a multi-component mixture of relativistic nuclei, is developed. The derivative of entropy with respect to internal energy defines the effective temperature of the nuclei, S,U = 1 /Teff ,kBTeff ≈ 16 . 1 GeV, and the functional dependence between the cutoff temperature in the Weibull exponential and the effective gas temperature is determined. The equipartition ratio is found to be U /(NkBTeff) ≈ 0 . 30. The isochoric and isobaric heat capacities of the nuclear gas are calculated, as well as the isothermal and adiabatic compressibilities and the isobaric expansion coefficient, and it is shown that this non-equilibrated relativistic gas mixture satisfies the thermodynamic inequalities 0
Richardson, Daniel R; Stauffer, Hans U; Roy, Sukesh; Gord, James R
2017-04-10
A comparison is made between two ultrashort-pulse coherent anti-Stokes Raman scattering (CARS) thermometry techniques-hybrid femtosecond/picosecond (fs/ps) CARS and chirped-probe-pulse (CPP) fs-CARS-that have become standards for high-repetition-rate thermometry in the combustion diagnostics community. These two variants of fs-CARS differ only in the characteristics of the ps-duration probe pulse; in hybrid fs/ps CARS a spectrally narrow, time-asymmetric probe pulse is used, whereas a highly chirped, spectrally broad probe pulse is used in CPP fs-CARS. Temperature measurements were performed using both techniques in near-adiabatic flames in the temperature range 1600-2400 K and for probe time delays of 0-30 ps. Under these conditions, both techniques are shown to exhibit similar temperature measurement accuracies and precisions to previously reported values and to each other. However, it is observed that initial calibration fits to the spectrally broad CPP results require more fitting parameters and a more robust optimization algorithm and therefore significantly increased computational cost and complexity compared to the fitting of hybrid fs/ps CARS data. The optimized model parameters varied more for the CPP measurements than for the hybrid fs/ps measurements for different experimental conditions.
Implementation of two-component advective flow solution in XSPEC
NASA Astrophysics Data System (ADS)
Debnath, Dipak; Chakrabarti, Sandip K.; Mondal, Santanu
2014-05-01
Spectral and temporal properties of black hole candidates can be explained reasonably well using Chakrabarti-Titarchuk solution of two-component advective flow (TCAF). This model requires two accretion rates, namely the Keplerian disc accretion rate and the halo accretion rate, the latter being composed of a sub-Keplerian, low-angular-momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disc rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time, we made it user friendly by implementing it into XSPEC software of Goddard Space Flight Center (GSFC)/NASA. This enables any user to extract physical parameters of the accretion flows, such as two accretion rates, the shock location, the shock strength, etc., for any black hole candidate. We provide some examples of fitting a few cases using this model. Most importantly, unlike any other model, we show that TCAF is capable of predicting timing properties from the spectral fits, since in TCAF, a shock is responsible for deciding spectral slopes as well as quasi-periodic oscillation frequencies. L86
Spectrally resolved laser interference microscopy
NASA Astrophysics Data System (ADS)
Butola, Ankit; Ahmad, Azeem; Dubey, Vishesh; Senthilkumaran, P.; Singh Mehta, Dalip
2018-07-01
We developed a new quantitative phase microscopy technique, namely, spectrally resolved laser interference microscopy (SR-LIM), with which it is possible to quantify multi-spectral phase information related to biological specimens without color crosstalk using a color CCD camera. It is a single shot technique where sequential switched on/off of red, green, and blue (RGB) wavelength light sources are not required. The method is implemented using a three-wavelength interference microscope and a customized compact grating based imaging spectrometer fitted at the output port. The results of the USAF resolution chart while employing three different light sources, namely, a halogen lamp, light emitting diodes, and lasers, are discussed and compared. The broadband light sources like the halogen lamp and light emitting diodes lead to stretching in the spectrally decomposed images, whereas it is not observed in the case of narrow-band light sources, i.e. lasers. The proposed technique is further successfully employed for single-shot quantitative phase imaging of human red blood cells at three wavelengths simultaneously without color crosstalk. Using the present technique, one can also use a monochrome camera, even though the experiments are performed using multi-color light sources. Finally, SR-LIM is not only limited to RGB wavelengths, it can be further extended to red, near infra-red, and infra-red wavelengths, which are suitable for various biological applications.
Spectrally-resolved measurements of aerosol extinction at ultraviolet and visible wavelengths
NASA Astrophysics Data System (ADS)
Flores, M.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Rudich, Y.
2012-12-01
Aerosols play an important role in the Earth's radiative budget. Aerosol extinction includes both the scattering and absorption of light, and these vary with wavelength, aerosol diameter, and aerosol composition. Historically, aerosol absorption has been measured using filter-based or extraction methods that are prone to artifacts. There have been few investigations of ambient aerosol optical properties at the blue end of the visible spectrum and into the ultraviolet. Brown carbon is particularly important in this spectral region, because it both absorbs and scatters light, and encompasses a large and variable group of organic compounds from biomass burning and secondary organic aerosol. We have developed a laboratory instrument that combines new, high-power LED light sources with high-finesse optical cavities to achieve sensitive measurements of aerosol optical extinction. This instrument contains two broadband channels, with spectral coverage from 360 - 390 nm and 385 - 420 nm. Using this instrument, we report aerosol extinction in the ultraviolet and near-visible spectral region as a function of chemical composition and structure. We have measured the extinction cross-sections between 360 - 420 nm with 0.5 nm resolution using different sizes and concentrations of polystyrene latex spheres, ammonium sulfate, and Suwannee River fulvic acid. Fitting the real and imaginary part of the refractive index allows the absorption and scattering to be determined.
Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps.
Sadeghi-Naini, Ali; Suraweera, Harini; Tran, William Tyler; Hadizad, Farnoosh; Bruni, Giancarlo; Rastegar, Rashin Fallah; Curpen, Belinda; Czarnota, Gregory J
2017-10-20
This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic.
Thweatt, W Dave; Harward, Charles N; Parrish, Milton E
2007-05-01
Acrolein and 1,3-butadiene in cigarette smoke generally are measured using two separate analytical methods, a carbonyl derivative HPLC method for acrolein and a volatile organic compound (VOC) GC/MS method for 1,3-butadiene. However, a single analytical method having improved sensitivity and real-time per puff measurement will offer more specific information for evaluating experimental carbon filtered cigarettes designed to reduce the smoke deliveries of these constituents. This paper describes an infrared technique using two lead-salt tunable diode lasers (TDLs) operating with liquid nitrogen cooling with emissions at 958.8 cm(-1) and 891.0 cm(-1) respectively for the simultaneous measurement of acrolein and 1,3-butadiene, respectively, in each puff of mainstream cigarette smoke in real time. The dual TDL system uses a 3.1l volume, 100 m astigmatic multiple pass absorption gas cell. Quantitation is based on a spectral fit that uses previously determined infrared molecular line parameters generated in our laboratory, including line positions, line strengths and nitrogen-broadened half-widths for these species. Since acrolein and ethylene absorption lines overlap and 1,3-butadiene, ethylene and propylene absorption lines overlap, the per puff deliveries of ethylene and propylene were determined since their overlapping absorption lines must be taken into account by the spectral fit. The acrolein and 1,3-butadiene total cigarette deliveries for the 1R5F Kentucky Reference cigarette were in agreement with the HPLC and GC/MS methods, respectively. The limit of detection (LOD) for 1,3-butadiene and acrolein was 4 ng/puff and 24 ng/puff, respectively, which is more than adequate to determine at which puff they break through the carbon filter. The retention and breakthrough behavior for the two primary smoke constituents depend on the cigarette design and characteristics of the carbon filter being evaluated.
NASA Astrophysics Data System (ADS)
Thweatt, W. Dave; Harward, Charles N., Sr.; Parrish, Milton E.
2007-05-01
Acrolein and 1,3-butadiene in cigarette smoke generally are measured using two separate analytical methods, a carbonyl derivative HPLC method for acrolein and a volatile organic compound (VOC) GC/MS method for 1,3-butadiene. However, a single analytical method having improved sensitivity and real-time per puff measurement will offer more specific information for evaluating experimental carbon filtered cigarettes designed to reduce the smoke deliveries of these constituents. This paper describes an infrared technique using two lead-salt tunable diode lasers (TDLs) operating with liquid nitrogen cooling with emissions at 958.8 cm -1 and 891.0 cm -1 respectively for the simultaneous measurement of acrolein and 1,3-butadiene, respectively, in each puff of mainstream cigarette smoke in real time. The dual TDL system uses a 3.1 l volume, 100 m astigmatic multiple pass absorption gas cell. Quantitation is based on a spectral fit that uses previously determined infrared molecular line parameters generated in our laboratory, including line positions, line strengths and nitrogen-broadened half-widths for these species. Since acrolein and ethylene absorption lines overlap and 1,3-butadiene, ethylene and propylene absorption lines overlap, the per puff deliveries of ethylene and propylene were determined since their overlapping absorption lines must be taken into account by the spectral fit. The acrolein and 1,3-butadiene total cigarette deliveries for the 1R5F Kentucky Reference cigarette were in agreement with the HPLC and GC/MS methods, respectively. The limit of detection (LOD) for 1,3-butadiene and acrolein was 4 ng/puff and 24 ng/puff, respectively, which is more than adequate to determine at which puff they break through the carbon filter. The retention and breakthrough behavior for the two primary smoke constituents depend on the cigarette design and characteristics of the carbon filter being evaluated.
Spectral catalogue of bright gamma-ray bursts detected with the BeppoSAX/GRBM
NASA Astrophysics Data System (ADS)
Guidorzi, C.; Lacapra, M.; Frontera, F.; Montanari, E.; Amati, L.; Calura, F.; Nicastro, L.; Orlandini, M.
2011-02-01
Context. The emission process responsible for the so-called "prompt" emission of gamma-ray bursts is still unknown. A number of empirical models fitting the typical spectrum still lack a satisfactory interpretation. A few GRB spectral catalogues derived from past and present experiments are known in the literature and allow to tackle the issue of spectral properties of gamma-ray bursts on a statistical ground. Aims: We extracted and studied the time-integrated photon spectra of the 200 brightest GRBs observed with the Gamma-Ray Burst Monitor which flew aboard the BeppoSAX mission (1996-2002) to provide an independent statistical characterisation of GRB spectra. Methods: The spectra have a time-resolution of 128 s and consist of 240 energy channels covering the 40-700 keV energy band. The 200 brightest GRBs were selected from the complete catalogue of 1082 GRBs detected with the GRBM (Frontera et al. 2009), whose products are publicly available and can be browsed/retrieved using a dedicated web interface. The spectra were fit with three models: a simple power law, a cut-off power law or a Band model. We derived the sample distributions of the best-fitting spectral parameters and investigated possible correlations between them. For a few, typically very long GRBs, we also provide a loose (128-s) time-resolved spectroscopic analysis. Results: The typical photon spectrum of a bright GRB consists of a low-energy index around 1.0 and a peak energy of the ν F_ν spectrum Ep ≃ 240 keV in agreement with previous results on a sample of bright CGRO/BATSE bursts. Spectra of ~ 35% of GRBs can be fit with a power law with a photon index around 2, indicative of peak energies either close to or outside the GRBM energy boundaries. We confirm the correlation between Ep and fluence, in agreement with previous results, with a logarithmic dispersion of 0.13 around the power law with index 0.21 ± 0.06. This is shallower than its analogous in the GRB rest-frame, the Amati relation, between the intrinsic peak energy and the isotropic-equivalent released energy (slope of ~ 0.5). The reason for this difference mainly lies in the instrumental selection effect connected with the finite energy range of the GRBM particularly at low energies. Conclusions: We confirm the statistical properties of the low-energy index and peak energy distributions found by other experiments. These properties are not yet systematically explained in the current literature with the proposed emission processes. The capability of measuring time-resolved spectra over a broadband energy range, ensuring precise measurements of parameters such as Ep, will be of key importance for future experiments.
Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2.
Urboniene, V; Vrublevskaja, O; Trinkunas, G; Gall, A; Robert, B; Valkunas, L
2007-09-15
We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll (Bchl) molecules of the peripheral light-harvesting (or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850 nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments (detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature-dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires the lowest exciton states to be additionally shifted to the red, suggesting the reorganization of the exciton spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Imran; Olimov, Kh. K., E-mail: olimov@comsats.edu.pk
The reconstructed experimental transverse momentum (p{sub t}) distributions of {Delta}{sup 0}(1232) resonances produced in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c and the corresponding spectra calculated using Modified FRITIOF model were analyzed in the framework of Hagedorn Thermodynamic Model. The spectral temperatures of {Delta}{sup 0}(1232) resonances were extracted from fitting their p{sub t} spectra with one-temperature Hagedorn function. The extracted spectral temperatures of {Delta}{sup 0}(1232) were compared with the corresponding temperatures of {pi}{sup -} mesons in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c obtained similarly from fitting the p{sub t} spectra of {pi}{sup -}more » by one-temperature Hagedorn function. The spectral temperatures of {Delta}{sup 0}(1232) resonances agreed within uncertainties with the corresponding temperatures of {pi}{sup -} mesons produced in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zafar, A., E-mail: zafara@ornl.gov; Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830; Martin, E. H.
2016-11-15
An electron density diagnostic (≥10{sup 10} cm{sup −3}) capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free spectral line profile of the n = 6–2 hydrogen Balmer series transition. The profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The quasi-static approach used to calculate the Doppler-free spectral line profile is outlined here and the results from the model are presented for H-δ spectra for electron densities of 10{sup 10}–10{sup 13} cm{supmore » −3}. The profile shows complex behavior due to the interaction between the magnetic substates of the atom.« less
Zhang, T; Yang, M; Xiao, X; Feng, Z; Li, C; Zhou, Z; Ren, Q; Li, X
2014-03-01
Many infectious diseases exhibit repetitive or regular behaviour over time. Time-domain approaches, such as the seasonal autoregressive integrated moving average model, are often utilized to examine the cyclical behaviour of such diseases. The limitations for time-domain approaches include over-differencing and over-fitting; furthermore, the use of these approaches is inappropriate when the assumption of linearity may not hold. In this study, we implemented a simple and efficient procedure based on the fast Fourier transformation (FFT) approach to evaluate the epidemic dynamic of scarlet fever incidence (2004-2010) in China. This method demonstrated good internal and external validities and overcame some shortcomings of time-domain approaches. The procedure also elucidated the cycling behaviour in terms of environmental factors. We concluded that, under appropriate circumstances of data structure, spectral analysis based on the FFT approach may be applicable for the study of oscillating diseases.
A new splitting scheme to the discrete Boltzmann equation for non-ideal gases on non-uniform meshes
NASA Astrophysics Data System (ADS)
Patel, Saumil; Lee, Taehun
2016-12-01
We present a novel numerical procedure for solving the discrete Boltzmann equations (DBE) on non-uniform meshes. Our scheme is based on the Strang splitting method where we seek to investigate two-phase flow applications. In this note, we investigate the onset of parasitic currents which arise in many computational two-phase algorithms. To the best of our knowledge, the results presented in this work show, for the first time, a spectral element discontinuous Galerkin (SEDG) discretization of a discrete Boltzmann equation which successfully eliminates parasitic currents on non-uniform meshes. With the hope that this technique can be used for applications in complex geometries, calculations are performed on non-uniform mesh distributions by using high-order (spectral), body-fitting quadrilateral elements. Validation and verification of our work is carried out by comparing results against the classical 2D Young-Laplace law problem for a static drop.
NASA Astrophysics Data System (ADS)
Galliano, Frédéric
2018-05-01
This article presents a new dust spectral energy distribution (SED) model, named HerBIE, aimed at eliminating the noise-induced correlations and large scatter obtained when performing least-squares fits. The originality of this code is to apply the hierarchical Bayesian approach to full dust models, including realistic optical properties, stochastic heating, and the mixing of physical conditions in the observed regions. We test the performances of our model by applying it to synthetic observations. We explore the impact on the recovered parameters of several effects: signal-to-noise ratio, SED shape, sample size, the presence of intrinsic correlations, the wavelength coverage, and the use of different SED model components. We show that this method is very efficient: the recovered parameters are consistently distributed around their true values. We do not find any clear bias, even for the most degenerate parameters, or with extreme signal-to-noise ratios.
A New Method to Constrain Supernova Fractions Using X-ray Observations of Clusters of Galaxies
NASA Technical Reports Server (NTRS)
Bulbul, Esra; Smith, Randall K.; Loewenstein, Michael
2012-01-01
Supernova (SN) explosions enrich the intracluster medium (ICM) both by creating and dispersing metals. We introduce a method to measure the number of SNe and relative contribution of Type Ia supernovae (SNe Ia) and core-collapse supernovae (SNe cc) by directly fitting X-ray spectral observations. The method has been implemented as an XSPEC model called snapec. snapec utilizes a single-temperature thermal plasma code (apec) to model the spectral emission based on metal abundances calculated using the latest SN yields from SN Ia and SN cc explosion models. This approach provides a self-consistent single set of uncertainties on the total number of SN explosions and relative fraction of SN types in the ICM over the cluster lifetime by directly allowing these parameters to be determined by SN yields provided by simulations. We apply our approach to XMM-Newton European Photon Imaging Camera (EPIC), Reflection Grating Spectrometer (RGS), and 200 ks simulated Astro-H observations of a cooling flow cluster, A3112.We find that various sets of SN yields present in the literature produce an acceptable fit to the EPIC and RGS spectra of A3112. We infer that 30.3% plus or minus 5.4% to 37.1% plus or minus 7.1% of the total SN explosions are SNe Ia, and the total number of SN explosions required to create the observed metals is in the range of (1.06 plus or minus 0.34) x 10(exp 9), to (1.28 plus or minus 0.43) x 10(exp 9), fromsnapec fits to RGS spectra. These values may be compared to the enrichment expected based on well-established empirically measured SN rates per star formed. The proportions of SNe Ia and SNe cc inferred to have enriched the ICM in the inner 52 kiloparsecs of A3112 is consistent with these specific rates, if one applies a correction for the metals locked up in stars. At the same time, the inferred level of SN enrichment corresponds to a star-to-gas mass ratio that is several times greater than the 10% estimated globally for clusters in the A3112 mass range.
Swift Observations Of High-z Radio-loud Quasars Detected With Bat
NASA Technical Reports Server (NTRS)
Sambruna, Rita M.; Tueller, J.; Markwardt, C.; Mushotzky, R.; Tavecchio, F.
2006-01-01
We present follow-up Swift observations of 4 high-z radio-loud quasars detected with the BAT during the 15-month survey in 15-150 keV. The 0.5-8-keV spectra are best fitted either with a power law with no excess absorption over the Galactic value (0212+735, 0836+710, 2149--307 in higher state) or by a downward-curved broken power law model (0537--286, 2149--307 in lower state). The BAT spectra integrated over the whole 15 months of the survey are fitted with a single power law, with a range of spectral slopes, Gamma=l.3-2.3. Comparison with previous SAX observations shows that there is a trend for the 15-150-keV continuum to soften with fading intensity; on the contrary, little or no spectral variations are observed at medium-hard X-rays. This may suggest either/both dramatic variability above 10-keV, or/and two separate spectral components.
pyblocxs: Bayesian Low-Counts X-ray Spectral Analysis in Sherpa
NASA Astrophysics Data System (ADS)
Siemiginowska, A.; Kashyap, V.; Refsdal, B.; van Dyk, D.; Connors, A.; Park, T.
2011-07-01
Typical X-ray spectra have low counts and should be modeled using the Poisson distribution. However, χ2 statistic is often applied as an alternative and the data are assumed to follow the Gaussian distribution. A variety of weights to the statistic or a binning of the data is performed to overcome the low counts issues. However, such modifications introduce biases or/and a loss of information. Standard modeling packages such as XSPEC and Sherpa provide the Poisson likelihood and allow computation of rudimentary MCMC chains, but so far do not allow for setting a full Bayesian model. We have implemented a sophisticated Bayesian MCMC-based algorithm to carry out spectral fitting of low counts sources in the Sherpa environment. The code is a Python extension to Sherpa and allows to fit a predefined Sherpa model to high-energy X-ray spectral data and other generic data. We present the algorithm and discuss several issues related to the implementation, including flexible definition of priors and allowing for variations in the calibration information.
NASA Astrophysics Data System (ADS)
Nishimura, Takahiro; Kimura, Hitoshi; Ogura, Yusuke; Tanida, Jun
2018-06-01
This paper presents an experimental assessment and analysis of super-resolution microscopy based on multiple-point spread function fitting of spectrally demultiplexed images using a designed DNA structure as a test target. For the purpose, a DNA structure was designed to have binding sites at a certain interval that is smaller than the diffraction limit. The structure was labeled with several types of quantum dots (QDs) to acquire their spatial information as spectrally encoded images. The obtained images are analyzed with a point spread function multifitting algorithm to determine the QD locations that indicate the binding site positions. The experimental results show that the labeled locations can be observed beyond the diffraction-limited resolution using three-colored fluorescence images that were obtained with a confocal fluorescence microscope. Numerical simulations show that labeling with eight types of QDs enables the positions aligned at 27.2-nm pitches on the DNA structure to be resolved with high accuracy.
Spectrum of Very High Energy Gamma-Rays from the blazar 1ES 1959+650 during Flaring Activity in 2002
NASA Astrophysics Data System (ADS)
Daniel, M. K.; Badran, H. M.; Bond, I. H.; Boyle, P. J.; Bradbury, S. M.; Buckley, J. H.; Carter-Lewis, D. A.; Catanese, M.; Celik, O.; Cogan, P.; Cui, W.; D'Vali, M.; de la Calle Perez, I.; Duke, C.; Falcone, A.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortson, L. F.; Gaidos, J. A.; Gammell, S.; Gibbs, K.; Gillanders, G. H.; Grube, J.; Hall, J.; Hall, T. A.; Hanna, D.; Hillas, A. M.; Holder, J.; Horan, D.; Humensky, T. B.; Jarvis, A.; Jordan, M.; Kenny, G. E.; Kertzman, M.; Kieda, D.; Kildea, J.; Knapp, J.; Kosack, K.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Le Bohec, S.; Linton, E.; Lloyd-Evans, J.; Milovanovic, A.; Moriarty, P.; Müller, D.; Nagai, T.; Nolan, S.; Ong, R. A.; Pallassini, R.; Petry, D.; Power-Mooney, B.; Quinn, J.; Quinn, M.; Ragan, K.; Rebillot, P.; Reynolds, P. T.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Swordy, S. P.; Syson, A.; Vassiliev, V. V.; Wakely, S. P.; Walker, G.; Weekes, T. C.; Zweerink, J.
2005-03-01
The blazar 1ES 1959+650 was observed in a flaring state with the Whipple 10 m Imaging Atmospheric Cerenkov Telescope in 2002 May. A spectral analysis has been carried out on the data from that time period, and the resulting very high energy gamma-ray spectrum (E>=316 GeV) can be well fitted by a power law of differential spectral index α=2.78+/-0.12stat+/-0.21sys. On 2002 June 4, the source flared dramatically in the gamma-ray range without any coincident increase in the X-ray emission, providing the first unambiguous example of an ``orphan'' gamma-ray flare from a blazar. The gamma-ray spectrum for these data can also be described by a simple power-law fit with α=2.82+/-0.15stat+/-0.30sys. There is no compelling evidence for spectral variability or for any cutoff to the spectrum.
Multi-spectral temperature measurement method for gas turbine blade
NASA Astrophysics Data System (ADS)
Gao, Shan; Feng, Chi; Wang, Lixin; Li, Dong
2016-02-01
One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.
Infrared Reflectance Analysis of Epitaxial n-Type Doped GaN Layers Grown on Sapphire.
Tsykaniuk, Bogdan I; Nikolenko, Andrii S; Strelchuk, Viktor V; Naseka, Viktor M; Mazur, Yuriy I; Ware, Morgan E; DeCuir, Eric A; Sadovyi, Bogdan; Weyher, Jan L; Jakiela, Rafal; Salamo, Gregory J; Belyaev, Alexander E
2017-12-01
Infrared (IR) reflectance spectroscopy is applied to study Si-doped multilayer n + /n 0 /n + -GaN structure grown on GaN buffer with GaN-template/sapphire substrate. Analysis of the investigated structure by photo-etching, SEM, and SIMS methods showed the existence of the additional layer with the drastic difference in Si and O doping levels and located between the epitaxial GaN buffer and template. Simulation of the experimental reflectivity spectra was performed in a wide frequency range. It is shown that the modeling of IR reflectance spectrum using 2 × 2 transfer matrix method and including into analysis the additional layer make it possible to obtain the best fitting of the experimental spectrum, which follows in the evaluation of GaN layer thicknesses which are in good agreement with the SEM and SIMS data. Spectral dependence of plasmon-LO-phonon coupled modes for each GaN layer is obtained from the spectral dependence of dielectric of Si doping impurity, which is attributed to compensation effects by the acceptor states.
NASA Astrophysics Data System (ADS)
Luo, Y.; Nissen-Meyer, T.; Morency, C.; Tromp, J.
2008-12-01
Seismic imaging in the exploration industry is often based upon ray-theoretical migration techniques (e.g., Kirchhoff) or other ideas which neglect some fraction of the seismic wavefield (e.g., wavefield continuation for acoustic-wave first arrivals) in the inversion process. In a companion paper we discuss the possibility of solving the full physical forward problem (i.e., including visco- and poroelastic, anisotropic media) using the spectral-element method. With such a tool at hand, we can readily apply the adjoint method to tomographic inversions, i.e., iteratively improving an initial 3D background model to fit the data. In the context of this inversion process, we draw connections between kernels in adjoint tomography and basic imaging principles in migration. We show that the images obtained by migration are nothing but particular kinds of adjoint kernels (mainly density kernels). Migration is basically a first step in the iterative inversion process of adjoint tomography. We apply the approach to basic 2D problems involving layered structures, overthrusting faults, topography, salt domes, and poroelastic regions.
Wang, Lin; Zhao, Dong-Zhi; Yang, Jian-Hong; Chen, Yan-Long
2010-12-01
Chromophoric dissolved organic matter (CDOM) near ultraviolet absorption spectra contains CDOM molecular structure, composition and other important physical and chemical information. Based on the measured data of CDOM absorption coefficient in March 2009 in the north area of Yellow Sea, the present paper analyzed near ultraviolet absorption spectral properties of CDOM. The results showed that due to the impact of near-shore terrigenous input, the composition of CDOM is quite different in the north area of Yellow Sea, and this area is a typical case II water; fitted slope with specific range of spectral band and absorption coefficient at specific band can indicate the relative size of CDOM molecular weight, correlation between spectral slope of the Sg,275-300), Sg,300-350, Sg,350-400 and Sg,250-275 and the relative size of CDOM molecular weight indicative parameter M increases in turn and the highest is up to 0.95. Correlation between a(g)(lambda) and M value increases gradually with the increase in wavelength, and the highest is up to 0.92 at 400 nm; being correlated or not between spectral slope and absorption coefficient is decided by the fitting-band wavelength range for the spectra slope and the wavelength for absorption coefficient. Correlation between Sg,275-300 and a(g)(400) is the largest, up to 0.87.
PCA/HEXTE Observations of Coma and A2319
NASA Technical Reports Server (NTRS)
Rephaeli, Yoel
1998-01-01
The Coma cluster was observed in 1996 for 90 ks by the PCA and HEXTE instruments aboard the RXTE satellite, the first simultaneous, pointing measurement of Coma in the broad, 2-250 keV, energy band. The high sensitivity achieved during this long observation allows precise determination of the spectrum. Our analysis of the measurements clearly indicates that in addition to the main thermal emission from hot intracluster gas at kT=7.5 keV, a second spectral component is required to best-fit the data. If thermal, it can be described with a temperature of 4.7 keV contributing about 20% of the total flux. The additional spectral component can also be described by a power-law, possibly due to Compton scattering of relativistic electrons by the CMB. This interpretation is based on the diffuse radio synchrotron emission, which has a spectral index of 2.34, within the range allowed by fits to the RXTE spectral data. A Compton origin of the measured nonthermal component would imply that the volume-averaged magnetic field in the central region of Coma is B =0.2 micro-Gauss, a value deduced directly from the radio and X-ray measurements (and thus free of the usual assumption of energy equipartition). Barring the presence of unknown systematic errors in the RXTE source or background measurements, our spectral analysis yields considerable evidence for Compton X-ray emission in the Coma cluster.
Improving alpine-region spectral unmixing with optimal-fit snow endmembers
NASA Technical Reports Server (NTRS)
Painter, Thomas H.; Roberts, Dar A.; Green, Robert O.; Dozier, Jeff
1995-01-01
Surface albedo and snow-covered-area (SCA) are crucial inputs to the hydrologic and climatologic modeling of alpine and seasonally snow-covered areas. Because the spectral albedo and thermal regime of pure snow depend on grain size, areal distribution of snow grain size is required. Remote sensing has been shown to be an effective (and necessary) means of deriving maps of grain size distribution and snow-covered-area. Developed here is a technique whereby maps of grain size distribution improve estimates of SCA from spectral mixture analysis with AVIRIS data.
Total atmospheric ozone determined from spectral measurements of direct solar UV irradiance
NASA Astrophysics Data System (ADS)
Huber, Martin; Blumthaler, Mario; Ambach, Walter; Staehelin, Johannes
1995-01-01
With a double monochromator, high resolution spectral measurements of direct solar UV-irradiance were performed in Arosa during February and March, 1993. Total atmospheric ozone amount is determined by fitting model calculations to the measured spectra. The results are compared with the operationally performed measurements of a Dobson and a Brewer spectrometer. The total ozone amount determined from spectral measurements differs from the results of the Dobson instrument by -1.1±0.9% and from those of the Brewer instrument by -0.4±0.7%.
NASA Astrophysics Data System (ADS)
McCann, Cooper Patrick
Low-cost flight-based hyperspectral imaging systems have the potential to provide valuable information for ecosystem and environmental studies as well as aide in land management and land health monitoring. This thesis describes (1) a bootstrap method of producing mesoscale, radiometrically-referenced hyperspectral data using the Landsat surface reflectance (LaSRC) data product as a reference target, (2) biophysically relevant basis functions to model the reflectance spectra, (3) an unsupervised classification technique based on natural histogram splitting of these biophysically relevant parameters, and (4) local and multi-temporal anomaly detection. The bootstrap method extends standard processing techniques to remove uneven illumination conditions between flight passes, allowing the creation of radiometrically self-consistent data. Through selective spectral and spatial resampling, LaSRC data is used as a radiometric reference target. Advantages of the bootstrap method include the need for minimal site access, no ancillary instrumentation, and automated data processing. Data from a flight on 06/02/2016 is compared with concurrently collected ground based reflectance spectra as a means of validation achieving an average error of 2.74%. Fitting reflectance spectra using basis functions, based on biophysically relevant spectral features, allows both noise and data reductions while shifting information from spectral bands to biophysical features. Histogram splitting is used to determine a clustering based on natural splittings of these fit parameters. The Indian Pines reference data enabled comparisons of the efficacy of this technique to established techniques. The splitting technique is shown to be an improvement over the ISODATA clustering technique with an overall accuracy of 34.3/19.0% before merging and 40.9/39.2% after merging. This improvement is also seen as an improvement of kappa before/after merging of 24.8/30.5 for the histogram splitting technique compared to 15.8/28.5 for ISODATA. Three hyperspectral flights over the Kevin Dome area, covering 1843 ha, acquired 06/21/2014, 06/24/2015 and 06/26/2016 are examined with different methods of anomaly detection. Detection of anomalies within a single data set is examined to determine, on a local scale, areas that are significantly different from the surrounding area. Additionally, the detection and identification of persistent anomalies and non-persistent anomalies was investigated across multiple data sets.
Discovery and characterization of 3000+ main-sequence binaries from APOGEE spectra
NASA Astrophysics Data System (ADS)
El-Badry, Kareem; Ting, Yuan-Sen; Rix, Hans-Walter; Quataert, Eliot; Weisz, Daniel R.; Cargile, Phillip; Conroy, Charlie; Hogg, David W.; Bergemann, Maria; Liu, Chao
2018-05-01
We develop a data-driven spectral model for identifying and characterizing spatially unresolved multiple-star systems and apply it to APOGEE DR13 spectra of main-sequence stars. Binaries and triples are identified as targets whose spectra can be significantly better fit by a superposition of two or three model spectra, drawn from the same isochrone, than any single-star model. From an initial sample of ˜20 000 main-sequence targets, we identify ˜2500 binaries in which both the primary and secondary stars contribute detectably to the spectrum, simultaneously fitting for the velocities and stellar parameters of both components. We additionally identify and fit ˜200 triple systems, as well as ˜700 velocity-variable systems in which the secondary does not contribute detectably to the spectrum. Our model simplifies the process of simultaneously fitting single- or multi-epoch spectra with composite models and does not depend on a velocity offset between the two components of a binary, making it sensitive to traditionally undetectable systems with periods of hundreds or thousands of years. In agreement with conventional expectations, almost all the spectrally identified binaries with measured parallaxes fall above the main sequence in the colour-magnitude diagram. We find excellent agreement between spectrally and dynamically inferred mass ratios for the ˜600 binaries in which a dynamical mass ratio can be measured from multi-epoch radial velocities. We obtain full orbital solutions for 64 systems, including 14 close binaries within hierarchical triples. We make available catalogues of stellar parameters, abundances, mass ratios, and orbital parameters.
Comparative research on activation technique for GaAs photocathodes
NASA Astrophysics Data System (ADS)
Chen, Liang; Qian, Yunsheng; Chang, Benkang; Chen, Xinlong; Yang, Rui
2012-03-01
The properties of GaAs photocathodes mainly depend on the material design and activation technique. In early researches, high-low temperature two-step activation has been proved to get more quantum efficiency than high-temperature single-step activation. But the variations of surface barriers for two activation techniques have not been well studied, thus the best activation temperature, best Cs-O ratio and best activation time for two-step activation technique have not been well found. Because the surface photovoltage spectroscopy (SPS) before activation is only in connection with the body parameters for GaAs photocathode such as electron diffusion length and the spectral response current (SRC) after activation is in connection with not only body parameters but also surface barriers, thus the surface escape probability (SEP) can be well fitted through the comparative research between SPS before activation and SEP after activation. Through deduction for the tunneling process of surface barriers by Schrödinger equation, the width and height for surface barrier I and II can be well fitted through the curves of SEP. The fitting results were well proved and analyzed by quantitative analysis of angle-dependent X-ray photoelectron spectroscopy (ADXPS) which can also study the surface chemical compositions, atomic concentration percentage and layer thickness for GaAs photocathodes. This comparative research method for fitting parameters of surface barriers through SPS before activation and SRC after activation shows a better real-time in system method for the researches of activation techniques.
NASA Astrophysics Data System (ADS)
Koychev Demirov, Encho
1994-12-01
The paper presents a numerical solution of barotropic and two-layer eigen-oscillation problems for the Black Sea on a boundary fitted coordinate system. This solution is compared with model and empirical data obtained by other workers. Frequencies of the eigen-oscillations found by the numerical solution of spectral problem are compared with the data obtained by spectral analysis of the sea-level oscillations measured near the town of Achtopol and Cape Irakli in stormy sea on 17-21 February 1979. Extreme oscillations of the sea-level result from resonant amplifications of three eigenmodes of the Black Sea of 68.3 -1, 36.6 -1 and 27.3 -1 cycles h -1 frequency.
NASA Technical Reports Server (NTRS)
Balasubramaniam, K. S.; West, E. A.
1991-01-01
The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.
The energy spectra of solar flare electrons
NASA Technical Reports Server (NTRS)
Evenson, P. A.; Hovestadt, D.; Meyer, P.; Moses, D.
1985-01-01
A survey of 50 electron energy spectra from .1 to 100 MeV originating from solar flares was made by the combination of data from two spectrometers onboard the International Sun Earth Explorer-3 spacecraft. The observed spectral shapes of flare events can be divided into two classes through the criteria of fit to an acceleration model. This standard two step acceleration model, which fits the spectral shape of the first class of flares, involves an impulsive step that accelerates particles up to 100 keV and a second step that further accelerates these particles up to 100 MeV by a single shock. This fit fails for the second class of flares that can be characterized as having excessively hard spectra above 1 MeV relative to the predictions of the model. Correlations with soft X-ray and meter radio observations imply that the acceleration of the high energy particles in the second class of flares is dominated by the impulsive phase of the flares.
Candidates source regions of martian meteorites as identified by OMEGA/MEx
NASA Astrophysics Data System (ADS)
Ody, A.; Poulet, F.; Quantin, C.; Bibring, J.-P.; Bishop, J. L.; Dyar, M. D.
2015-09-01
The objective of this study is to identify and map spectral analogues of some key martian meteorites (basaltic shergottites Los Angeles, Shergotty, QUE 94201, lherzolitic shergottite ALH A77005, Nakhla, Chassigny and the orthopyroxenite ALH 84001) in order to localize terrain candidates for their source regions. We develop a best fit procedure to reproduce the near-infrared (NIR) spectral properties of the martian surface as seen by the hyperspectral imaging spectrometer OMEGA/MEx from the NIR spectra of the martian meteorites. The fitting process is tested and validated, and Root Mean Square (RMS) global maps for each meteorite are obtained. It is found that basaltic shergottites have NIR spectral properties the most representative of the martian surface with the best spectral analogues found in early Hesperian volcanic provinces. Sites with spectral properties similar to those of ALH A77005 are scarce. They are mainly localized in olivine-bearing regions such as Nili Fossae and small Noachian/early Hesperian terrains. The only plausible source region candidate for Chassigny is the Nili Patera caldera dated to 1.6 Ga. Widespread spectral analogues for the ALH 84001 meteorite are found northeast of Syrtis Major and northwest of the Hellas basin. While this distribution is in agreement with the low-calcium-pyroxene-rich composition and old age (4.1 Ga) of this meteorite, the modal mineralogy of these candidates is not consistent with that of this meteorite. No convincing spectral analogue is found for the Amazonian-aged Nakhla meteorite suggesting that its olivine/high-calcium-pyroxene-rich composition could be representative of the Amazonian terrains buried under dust. Finally, some young rayed craters are proposed as possible candidates for source craters of the studied martian meteorites.
Autonomous frequency domain identification: Theory and experiment
NASA Technical Reports Server (NTRS)
Yam, Yeung; Bayard, D. S.; Hadaegh, F. Y.; Mettler, E.; Milman, M. H.; Scheid, R. E.
1989-01-01
The analysis, design, and on-orbit tuning of robust controllers require more information about the plant than simply a nominal estimate of the plant transfer function. Information is also required concerning the uncertainty in the nominal estimate, or more generally, the identification of a model set within which the true plant is known to lie. The identification methodology that was developed and experimentally demonstrated makes use of a simple but useful characterization of the model uncertainty based on the output error. This is a characterization of the additive uncertainty in the plant model, which has found considerable use in many robust control analysis and synthesis techniques. The identification process is initiated by a stochastic input u which is applied to the plant p giving rise to the output. Spectral estimation (h = P sub uy/P sub uu) is used as an estimate of p and the model order is estimated using the produce moment matrix (PMM) method. A parametric model unit direction vector p is then determined by curve fitting the spectral estimate to a rational transfer function. The additive uncertainty delta sub m = p - unit direction vector p is then estimated by the cross spectral estimate delta = P sub ue/P sub uu where e = y - unit direction vectory y is the output error, and unit direction vector y = unit direction vector pu is the computed output of the parametric model subjected to the actual input u. The experimental results demonstrate the curve fitting algorithm produces the reduced-order plant model which minimizes the additive uncertainty. The nominal transfer function estimate unit direction vector p and the estimate delta of the additive uncertainty delta sub m are subsequently available to be used for optimization of robust controller performance and stability.
de Klerk, Helen M; Gilbertson, Jason; Lück-Vogel, Melanie; Kemp, Jaco; Munch, Zahn
2016-11-01
Traditionally, to map environmental features using remote sensing, practitioners will use training data to develop models on various satellite data sets using a number of classification approaches and use test data to select a single 'best performer' from which the final map is made. We use a combination of an omission/commission plot to evaluate various results and compile a probability map based on consistently strong performing models across a range of standard accuracy measures. We suggest that this easy-to-use approach can be applied in any study using remote sensing to map natural features for management action. We demonstrate this approach using optical remote sensing products of different spatial and spectral resolution to map the endemic and threatened flora of quartz patches in the Knersvlakte, South Africa. Quartz patches can be mapped using either SPOT 5 (used due to its relatively fine spatial resolution) or Landsat8 imagery (used because it is freely accessible and has higher spectral resolution). Of the variety of classification algorithms available, we tested maximum likelihood and support vector machine, and applied these to raw spectral data, the first three PCA summaries of the data, and the standard normalised difference vegetation index. We found that there is no 'one size fits all' solution to the choice of a 'best fit' model (i.e. combination of classification algorithm or data sets), which is in agreement with the literature that classifier performance will vary with data properties. We feel this lends support to our suggestion that rather than the identification of a 'single best' model and a map based on this result alone, a probability map based on the range of consistently top performing models provides a rigorous solution to environmental mapping. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reliable Quantitative Mineral Abundances of the Martian Surface using THEMIS
NASA Astrophysics Data System (ADS)
Smith, R. J.; Huang, J.; Ryan, A. J.; Christensen, P. R.
2013-12-01
The following presents a proof of concept that given quality data, Thermal Emission Imaging System (THEMIS) data can be used to derive reliable quantitative mineral abundances of the Martian surface using a limited mineral library. The THEMIS instrument aboard the Mars Odyssey spacecraft is a multispectral thermal infrared imager with a spatial resolution of 100 m/pixel. The relatively high spatial resolution along with global coverage makes THEMIS datasets powerful tools for comprehensive fine scale petrologic analyses. However, the spectral resolution of THEMIS is limited to 8 surface sensitive bands between 6.8 and 14.0 μm with an average bandwidth of ~ 1 μm, which complicates atmosphere-surface separation and spectral analysis. This study utilizes the atmospheric correction methods of both Bandfield et al. [2004] and Ryan et al. [2013] joined with the iterative linear deconvolution technique pioneered by Huang et al. [in review] in order to derive fine-scale quantitative mineral abundances of the Martian surface. In general, it can be assumed that surface emissivity combines in a linear fashion in the thermal infrared (TIR) wavelengths such that the emitted energy is proportional to the areal percentage of the minerals present. TIR spectra are unmixed using a set of linear equations involving an endmember library of lab measured mineral spectra. The number of endmembers allowed in a spectral library are restricted to a quantity of n-1 (where n = the number of spectral bands of an instrument), preserving one band for blackbody. Spectral analysis of THEMIS data is thus allowed only seven endmembers. This study attempts to prove that this limitation does not prohibit the derivation of meaningful spectral analyses from THEMIS data. Our study selects THEMIS stamps from a region of Mars that is well characterized in the TIR by the higher spectral resolution, lower spatial resolution Thermal Emission Spectrometer (TES) instrument (143 bands at 10 cm-1 sampling and 3x5 km pixel). Multiple atmospheric corrections are performed for one image using the methods of Bandfield et al. [2004] and Ryan et al. [2013]. 7x7 pixel areas were selected, averaged, and compared using each atmospherically corrected image to ensure consistency. Corrections that provided reliable data were then used for spectral analyses. Linear deconvolution is performed using an iterative spectral analysis method [Huang et al. in review] that takes an endmember spectral library, and creates mineral combinations based on prescribed mineral group selections. The script then performs a spectral mixture analysis on each surface spectrum using all possible mineral combinations, and reports the best modeled fit to the measured spectrum. Here we present initial results from Syrtis Planum where multiple atmospherically corrected THEMIS images were deconvolved to produce similar spectral analysis results, within the detection limit of the instrument. THEMIS mineral abundances are comparable to TES-derived abundances. References: Bandfield, JL et al. [2004], JGR 109, E10008 Huang, J et al., JGR, in review Ryan, AJ et al. [2013], AGU Fall Meeting
VizieR Online Data Catalog: Parameters and IR excesses of Gaia DR1 stars (McDonald+, 2017)
NASA Astrophysics Data System (ADS)
McDonald, I.; Zijlstra, A. A.; Watson, R. A.
2017-08-01
Spectral energy distribution fits are presented for stars from the Tycho-Gaia Astrometric Solution (TGAS) from Gaia Data Release 1. Hipparcos-Gaia stars are presented in a separate table. Effective temperatures, bolometric luminosities, and infrared excesses are presented (alongside other parameters pertinent to the model fits), plus the source photometry used. (3 data files).
A New Stellar Atmosphere Grid and Comparisons with HST /STIS CALSPEC Flux Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohlin, Ralph C.; Fleming, Scott W.; Gordon, Karl D.
The Space Telescope Imaging Spectrograph has measured the spectral energy distributions for several stars of types O, B, A, F, and G. These absolute fluxes from the CALSPEC database are fit with a new spectral grid computed from the ATLAS-APOGEE ATLAS9 model atmosphere database using a chi-square minimization technique in four parameters. The quality of the fits are compared for complete LTE grids by Castelli and Kurucz (CK04) and our new comprehensive LTE grid (BOSZ). For the cooler stars, the fits with the MARCS LTE grid are also evaluated, while the hottest stars are also fit with the NLTE Lanzmore » and Hubeny OB star grids. Unfortunately, these NLTE models do not transition smoothly in the infrared to agree with our new BOSZ LTE grid at the NLTE lower limit of T {sub eff} = 15,000 K. The new BOSZ grid is available via the Space Telescope Institute MAST archive and has a much finer sampled IR wavelength scale than CK04, which will facilitate the modeling of stars observed by the James Webb Space Telescope . Our result for the angular diameter of Sirius agrees with the ground-based interferometric value.« less
A New Stellar Atmosphere Grid and Comparisons with HST/STIS CALSPEC Flux Distributions
NASA Astrophysics Data System (ADS)
Bohlin, Ralph C.; Mészáros, Szabolcs; Fleming, Scott W.; Gordon, Karl D.; Koekemoer, Anton M.; Kovács, József
2017-05-01
The Space Telescope Imaging Spectrograph has measured the spectral energy distributions for several stars of types O, B, A, F, and G. These absolute fluxes from the CALSPEC database are fit with a new spectral grid computed from the ATLAS-APOGEE ATLAS9 model atmosphere database using a chi-square minimization technique in four parameters. The quality of the fits are compared for complete LTE grids by Castelli & Kurucz (CK04) and our new comprehensive LTE grid (BOSZ). For the cooler stars, the fits with the MARCS LTE grid are also evaluated, while the hottest stars are also fit with the NLTE Lanz & Hubeny OB star grids. Unfortunately, these NLTE models do not transition smoothly in the infrared to agree with our new BOSZ LTE grid at the NLTE lower limit of T eff = 15,000 K. The new BOSZ grid is available via the Space Telescope Institute MAST archive and has a much finer sampled IR wavelength scale than CK04, which will facilitate the modeling of stars observed by the James Webb Space Telescope. Our result for the angular diameter of Sirius agrees with the ground-based interferometric value.
Chen, Ze-yong; Peng, Rong-fei; Zhang, Zhan-xia
2002-06-01
An atomic emission spectrometer based on acousto-optic tunable filter (AOTF) was self-constructed and was used to evaluate its practical use in atomic emission analysis. The AOTF used was of model TEAF5-0.36-0.52-S (Brimrose, USA) and the frequency of the direct digital RF synthesizer ranges from 100 MHz to 200 MHz. ICP and PMT were used as light source and detector respectively. The software, written in Visual C++ and running on the Windows 98 platform, is of an utility program system having two data banks and multiwindows. The wavelength calibration was performed with 14 emission lines of Ca, Y, Li, Eu, Sr and Ba using a tenth-order polynomial for line fitting method. The absolute error of the peak position was less than 0.1 nm, and the peak deviation was only 0.04 nm as the PMT varied from 337.5 V to 412.5 V. The scanning emission spectra and the calibration curves of Ba, Y, Eu, Sc and Sr are presented. Their average correlation coefficient was 0.9991 and their detection limits were in the range of 0.051 to 0.97 micrograms.mL-1 respectively. The detection limit can be improved under optimized operating conditions. However, the spectral resolution is only 2.1 nm at the wavelength of 488 nm. Evidently, this poor spectral resolution would restrict the application of AOTF in atomic emission spectral analysis, unless an enhancing techniques is integrated in it.
Thermospheric nitric oxide from the ATLAS 1 and Spacelab 1 missions
NASA Technical Reports Server (NTRS)
Torr, Marsha R.; Torr, D. G.; Chang, T.; Richards, P.; Swift, W.; Li, N.
1995-01-01
Spectral and spatial images obtained with the Imaging Spectrometric Observatory on the ATLAS 1 and Spacelab 1 missions are used to study the ultraviolet emissions of nitric oxide in the thermosphere. By synthetically fitting the measured NO gamma bands, intensities are derived as a function of altitude and latitude. We find that the NO concentrations inferred from the ATLAS 1 measurements are higher than predicted by our thermospheric airglow model and tend to lie to the high side of a number of earlier measurements. By comparison with synthetic spectral fits, the shape of the NO gamma bands is used to derive temperature as a function of altitude. Using the simultaneous spectral and spatial imaging capability of the instrument, we present the first simultaneously acquired altitude images of NO gamma band temperature and intensity in the thermosphere. The lower thermospheric temperature images show structure as a function of altitude. The spatial imaging technique appears to be a viable means of obtaining temperatures in the middle and lower thermosphere, provided that good information is also obtained at the higher altitudes, as the contribution of the overlying, hotter NO is nonnegligible. By fitting both self-absorbed and nonabsorbed bands of the NO gamma system, we show that the self absorption effects are observable up to 200 km, although small above 150 km. The spectral resolution of the instrument (1.6 A) allows separation of the N(+)(S-5) doublet, and we show the contribution of this feature to the combination of the NO gamma (1, 0) band and the N(+)(S-5) doublet as a function of altitude (less than 10% below 200 km). Spectral images including the NO delta bands support previous findings that the fluorescence efficiency is much higher than that determined from laboratory measurements. The Spacelab 1 data indicate the presence of a significant population of hot NO in the vehicle environment of that early shuttle mission.
Star formation history of the galaxy merger Mrk848 with SDSS-IV MaNGA
NASA Astrophysics Data System (ADS)
Yuan, Fang-Ting; Shen, Shiyin; Hao, Lei; Fernandez, Maria Argudo
2017-03-01
With the 3D data of SDSS-IV MaNGA (Bundy et al. 2015) spectra and multi-wavelength SED modeling, we expect to have a better understanding of the distribution of dust, gas and star formation of galaxy mergers. For a case study of the merging galaxy Mrk848, we use both UV-to-IR broadband SED and the MaNGA integral field spectroscopy to obtain its star formation histories at the tail and core regions. From the SED fitting and full spectral fitting, we find that the star formation in the tail regions are affected by the interaction earlier than the core regions. The core regions show apparently two times of star formation and a strong burst within 500Myr, indicating the recent star formation is triggered by the interaction. The star formation histories derived from these two methods are basically consistent.
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.
2000-01-01
We present two algorithms for the separation of spectral features caused by atmospheric and surface components in Thermal Emission Spectrometer (TES) data. One algorithm uses radiative transfer and successive least squares fitting to find spectral shapes first for atmospheric dust, then for water-ice aerosols, and then, finally, for surface emissivity. A second independent algorithm uses a combination of factor analysis, target transformation, and deconvolution to simultaneously find dust, water ice, and surface emissivity spectral shapes. Both algorithms have been applied to TES spectra, and both find very similar atmospheric and surface spectral shapes. For TES spectra taken during aerobraking and science phasing periods in nadir-geometry these two algorithms give meaningful and usable surface emissivity spectra that can be used for mineralogical identification.
Program Package for the Analysis of High Resolution High Signal-To-Noise Stellar Spectra
NASA Astrophysics Data System (ADS)
Piskunov, N.; Ryabchikova, T.; Pakhomov, Yu.; Sitnova, T.; Alekseeva, S.; Mashonkina, L.; Nordlander, T.
2017-06-01
The program package SME (Spectroscopy Made Easy), designed to perform an analysis of stellar spectra using spectral fitting techniques, was updated due to adding new functions (isotopic and hyperfine splittins) in VALD and including grids of NLTE calculations for energy levels of few chemical elements. SME allows to derive automatically stellar atmospheric parameters: effective temperature, surface gravity, chemical abundances, radial and rotational velocities, turbulent velocities, taking into account all the effects defining spectral line formation. SME package uses the best grids of stellar atmospheres that allows us to perform spectral analysis with the similar accuracy in wide range of stellar parameters and metallicities - from dwarfs to giants of BAFGK spectral classes.
Hofmann, Matthias J.; Koelsch, Patrick
2015-01-01
Vibrational sum-frequency generation (SFG) spectroscopy has become an established technique for in situ surface analysis. While spectral recording procedures and hardware have been optimized, unique data analysis routines have yet to be established. The SFG intensity is related to probing geometries and properties of the system under investigation such as the absolute square of the second-order susceptibility χ(2)2. A conventional SFG intensity measurement does not grant access to the complex parts of χ(2) unless further assumptions have been made. It is therefore difficult, sometimes impossible, to establish a unique fitting solution for SFG intensity spectra. Recently, interferometric phase-sensitive SFG or heterodyne detection methods have been introduced to measure real and imaginary parts of χ(2) experimentally. Here, we demonstrate that iterative phase-matching between complex spectra retrieved from maximum entropy method analysis and fitting of intensity SFG spectra (iMEMfit) leads to a unique solution for the complex parts of χ(2) and enables quantitative analysis of SFG intensity spectra. A comparison between complex parts retrieved by iMEMfit applied to intensity spectra and phase sensitive experimental data shows excellent agreement between the two methods. PMID:26450297
Iqbal, Zohaib; Wilson, Neil E; Thomas, M Albert
2016-03-01
Several different pathologies, including many neurodegenerative disorders, affect the energy metabolism of the brain. Glutamate, a neurotransmitter in the brain, can be used as a biomarker to monitor these metabolic processes. One method that is capable of quantifying glutamate concentration reliably in several regions of the brain is TE-averaged (1) H spectroscopic imaging. However, this type of method requires the acquisition of multiple TE lines, resulting in long scan durations. The goal of this experiment was to use non-uniform sampling, compressed sensing reconstruction and an echo planar readout gradient to reduce the scan time by a factor of eight to acquire TE-averaged spectra in three spatial dimensions. Simulation of glutamate and glutamine showed that the 2.2-2.4 ppm spectral region contained 95% glutamate signal using the TE-averaged method. Peak integration of this spectral range and home-developed, prior-knowledge-based fitting were used for quantitation. Gray matter brain phantom measurements were acquired on a Siemens 3 T Trio scanner. Non-uniform sampling was applied retrospectively to these phantom measurements and quantitative results of glutamate with respect to creatine 3.0 (Glu/Cr) ratios showed a coefficient of variance of 16% for peak integration and 9% for peak fitting using eight-fold acceleration. In vivo scans of the human brain were acquired as well and five different brain regions were quantified using the prior-knowledge-based algorithm. Glu/Cr ratios from these regions agreed with previously reported results in the literature. The method described here, called accelerated TE-averaged echo planar spectroscopic imaging (TEA-EPSI), is a significant methodological advancement and may be a useful tool for categorizing glutamate changes in pathologies where affected brain regions are not known a priori. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Disentangling AGN and Star Formation in Soft X-Rays
NASA Technical Reports Server (NTRS)
LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.
2012-01-01
We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L(sub x,AGN) and L(sub x,SF)) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L(sub x,AGN) and L(sub x,SF))from Monte Carlo simulations. These simulated luminosities agree with L(sub x,AGN) and L(sub x,SF) derived from Chandra imaging analysis within a 3sigma confidence level. Using the infrared [Ne ii]12.8 micron and [O iv]26 micron lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L(sub x,SF) and L(sub x,AGN) at the 3 sigma level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.
First confirmed ultra-compact dwarf galaxy in the NGC 5044 group
NASA Astrophysics Data System (ADS)
Faifer, Favio R.; Escudero, Carlos G.; Scalia, María C.; Smith Castelli, Analía V.; Norris, Mark; De Rossi, María E.; Forte, Juan C.; Cellone, Sergio A.
2017-03-01
Context. Ultra-compact dwarfs (UCDs) are stellar systems displaying colours and metallicities between those of globular clusters (GCs) and early-type dwarf galaxies, as well as sizes of Reff ≲ 100 pc and luminosities in the range -13.5
Spectral matching technology for light-emitting diode-based jaundice photodynamic therapy device
NASA Astrophysics Data System (ADS)
Gan, Ru-ting; Guo, Zhen-ning; Lin, Jie-ben
2015-02-01
The objective of this paper is to obtain the spectrum of light-emitting diode (LED)-based jaundice photodynamic therapy device (JPTD), the bilirubin absorption spectrum in vivo was regarded as target spectrum. According to the spectral constructing theory, a simple genetic algorithm as the spectral matching algorithm was first proposed in this study. The optimal combination ratios of LEDs were obtained, and the required LEDs number was then calculated. Meanwhile, the algorithm was compared with the existing spectral matching algorithms. The results show that this algorithm runs faster with higher efficiency, the switching time consumed is 2.06 s, and the fitting spectrum is very similar to the target spectrum with 98.15% matching degree. Thus, blue LED-based JPTD can replace traditional blue fluorescent tube, the spectral matching technology that has been put forward can be applied to the light source spectral matching for jaundice photodynamic therapy and other medical phototherapy.
NASA Astrophysics Data System (ADS)
Zechmeister, M.; Reiners, A.; Amado, P. J.; Azzaro, M.; Bauer, F. F.; Béjar, V. J. S.; Caballero, J. A.; Guenther, E. W.; Hagen, H.-J.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Launhardt, R.; Montes, D.; Morales, J. C.; Quirrenbach, A.; Reffert, S.; Ribas, I.; Seifert, W.; Tal-Or, L.; Wolthoff, V.
2018-01-01
Context. The CARMENES survey is a high-precision radial velocity (RV) programme that aims to detect Earth-like planets orbiting low-mass stars. Aims: We develop least-squares fitting algorithms to derive the RVs and additional spectral diagnostics implemented in the SpEctrum Radial Velocity AnaLyser (SERVAL), a publicly available python code. Methods: We measured the RVs using high signal-to-noise templates created by coadding all available spectra of each star. We define the chromatic index as the RV gradient as a function of wavelength with the RVs measured in the echelle orders. Additionally, we computed the differential line width by correlating the fit residuals with the second derivative of the template to track variations in the stellar line width. Results: Using HARPS data, our SERVAL code achieves a RV precision at the level of 1 m/s. Applying the chromatic index to CARMENES data of the active star YZ CMi, we identify apparent RV variations induced by stellar activity. The differential line width is found to be an alternative indicator to the commonly used full width half maximum. Conclusions: We find that at the red optical wavelengths (700-900 nm) obtained by the visual channel of CARMENES, the chromatic index is an excellent tool to investigate stellar active regions and to identify and perhaps even correct for activity-induced RV variations.
Spectroscopic Diagnostics and an Arc Jet Heated Air Plasma
NASA Technical Reports Server (NTRS)
Mack, Larry Howard, Jr.
1996-01-01
Spectral radiation measurements were made in the range of 200 to 900 nm across a section of the plenum of an arc jet wind tunnel using a series of optical fibers. The spectra contained line radiation from Oxygen and Nitrogen atoms and molecular radiation from N2(+), N2, and NO. Abel inversion technique is used to obtain radial distribution of the spectra. The analysis yielded radial profiles of the electronic excitation, vibrational and rotational temperatures of the flow field. Spectral fitting yielded branching ratios for different vibrational and rotational bands. Relatively mild flow conditions, i.e. enthalpy and mass flow rate, were used for prolonged measurements of up to and over two hours to establish the best experimental methods of temperature determinations. Signal to noise was improved by at least an order of magnitude enabling the molecular vibrational band heads of N2(+) (first negative system), N2 (second positive system), and NO (beta, gamma, delta, and epsilon systems) to be resolved in the lower ultraviolet wavelength regions. The increased signal to noise ratio also enabled partial resolution of the rotational lines of N2(+) and N2 in certain regions of minimal overlap. Comparison of the spectra with theoretical models such as the NEQAIR2 code are presented and show potential for fitting the spectra when reliable calibration is performed for the complete wavelength range.
NASA Technical Reports Server (NTRS)
Reginald, Nelson L.; Davila, Joseph M.; SaintCyr, O.; Rabin, Douglas M.; Guhathakurta, Madhulika; Hassler, Donald M.; Gashut, Hadi
2011-01-01
An experiment was conducted in conjunction with the total solar eclipse on 29 March 2006 in Libya to measure both the electron temperature and its flow speed simultaneously at multiple locations in the low solar corona by measuring the visible K-coronal spectrum. Coronal model spectra incorporating the effects of electron temperature and its flow speed were matched with the measured K-coronal spectra to interpret the observations. Results show electron temperatures of (1.10 +/- 0.05) MK, (0.70 +/- 0.08) MK, and (0.98 +/- 0.12) MK, at 1.1 Solar Radius from Sun center in the solar north, east and west, respectively, and (0.93 +/- 0.12) MK, at 1.2 Solar Radius from Sun center in the solar west. The corresponding outflow speeds obtained from the spectral fit are (103 +/- 92) km/s, (0 + 10) km/s, (0+10) km/s, and (0+10) km/s. Since the observations were taken only at 1.1 Solar Radius and 1.2 Solar Radius from Sun center, these speeds, consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working. The electron temperature at 1.1 Solar Radius from Sun center is larger at the north (polar region) than the east and west (equatorial region).
ACCRETION FLOW DYNAMICS OF MAXI J1836-194 DURING ITS 2011 OUTBURST FROM TCAF SOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, Arghajit; Debnath, Dipak; Chakrabarti, Sandip K.
2016-03-20
The Galactic transient X-ray binary MAXI J1836-194 was discovered on 2011 August 29. Here we make a detailed study of the spectral and timing properties of its 2011 outburst using archival data from the RXTE Proportional Counter Array instrument. The evolution of accretion flow dynamics of the source during the outburst through spectral analysis with Chakrabarti–Titarchuk’s two-component advective flow (TCAF) solution as a local table model in XSPEC. We also fitted spectra with combined disk blackbody and power-law models and compared it with the TCAF model fitted results. The source is found to be in hard and hard-intermediate spectral states onlymore » during the entire phase of this outburst. No soft or soft-intermediate spectral states are observed. This could be due to the fact that this object belongs to a special class of sources (e.g., MAXI J1659-152, Swift J1753.5-0127, etc.) that have very short orbital periods and that the companion is profusely mass-losing or the disk is immersed inside an excretion disk. In these cases, flows in the accretion disk are primarily dominated by low viscous sub-Keplerian flow and the Keplerian rate is not high enough to initiate softer states. Low-frequency quasi-periodic oscillations (QPOs) are observed sporadically although as in normal outbursts of transient black holes, monotonic evolutions of QPO frequency during both rising and declining phases are observed. From the TCAF fits, we find the mass of the black hole in the range of 7.5–11 M{sub ⊙}, and from time differences between peaks of the Keplerian and sub-Keplerian accretion rates we obtain a viscous timescale for this particular outburst, ∼10 days.« less
Constraining the High-Energy Emission from Gamma-Ray Bursts with Fermi
NASA Technical Reports Server (NTRS)
Gehrels, Neil; Harding, A. K.; Hays, E.; Racusin, J. L.; Sonbas, E.; Stamatikos, M.; Guirec, S.
2012-01-01
We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the nuF(sub v) spectra (E(sub pk)). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E(sub pk) than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cut-off in their high-energy spectra, which if assumed to be due to gamma gamma attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.
Constraining the High-energy Emission from Gamma-Ray Bursts with Fermi
NASA Astrophysics Data System (ADS)
Fermi Large Area Telescope Team; Ackermann, M.; Ajello, M.; Baldini, L.; Barbiellini, G.; Baring, M. G.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Brigida, M.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cutini, S.; D'Ammando, F.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Granot, J.; Grenier, I. A.; Grove, J. E.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hays, E.; Horan, D.; Jóhannesson, G.; Kataoka, J.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J.; McGlynn, S.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Ritz, S.; Ryde, F.; Sgrò, C.; Siskind, E. J.; Sonbas, E.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Stawarz, Łukasz; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Uehara, T.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Fermi Gamma-ray Burst Monitor Team; Connaughton, V.; Briggs, M. S.; Guirec, S.; Goldstein, A.; Burgess, J. M.; Bhat, P. N.; Bissaldi, E.; Camero-Arranz, A.; Fishman, J.; Fitzpatrick, G.; Foley, S.; Gruber, D.; Jenke, P.; Kippen, R. M.; Kouveliotou, C.; McBreen, S.; Meegan, C.; Paciesas, W. S.; Preece, R.; Rau, A.; Tierney, D.; van der Horst, A. J.; von Kienlin, A.; Wilson-Hodge, C.; Xiong, S.
2012-08-01
We examine 288 gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field of view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the νF ν spectra (E pk). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E pk than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cutoff in their high-energy spectra, which if assumed to be due to γγ attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.
NASA Astrophysics Data System (ADS)
Bhardwaj, Kaushal; Patra, Swarnajyoti
2018-04-01
Inclusion of spatial information along with spectral features play a significant role in classification of remote sensing images. Attribute profiles have already proved their ability to represent spatial information. In order to incorporate proper spatial information, multiple attributes are required and for each attribute large profiles need to be constructed by varying the filter parameter values within a wide range. Thus, the constructed profiles that represent spectral-spatial information of an hyperspectral image have huge dimension which leads to Hughes phenomenon and increases computational burden. To mitigate these problems, this work presents an unsupervised feature selection technique that selects a subset of filtered image from the constructed high dimensional multi-attribute profile which are sufficiently informative to discriminate well among classes. In this regard the proposed technique exploits genetic algorithms (GAs). The fitness function of GAs are defined in an unsupervised way with the help of mutual information. The effectiveness of the proposed technique is assessed using one-against-all support vector machine classifier. The experiments conducted on three hyperspectral data sets show the robustness of the proposed method in terms of computation time and classification accuracy.
NASA Astrophysics Data System (ADS)
Hughes, Chris W.; Williams, Simon D. P.
2010-10-01
We investigate spatial variations in the shape of the spectrum of sea level variability based on a homogeneously sampled 12 year gridded altimeter data set. We present a method of plotting spectral information as color, focusing on periods between 2 and 24 weeks, which shows that significant spatial variations in the spectral shape exist and contain useful dynamical information. Using the Bayesian Information Criterion, we determine that, typically, a fifth-order autoregressive model is needed to capture the structure in the spectrum. Using this model, we show that statistical errors in fitted local trends range between less than 1 and more than 5 times of what would be calculated assuming "white" noise and that the time needed to detect a 1 mm/yr trend ranges between about 5 years and many decades. For global mean sea level, the statistical error reduces to 0.1 mm/yr over 12 years, with only 2 years needed to detect a 1 mm/yr trend. We find significant regional differences in trend from the global mean. The patterns of these regional differences are indicative of a sea level trend dominated by dynamical ocean processes over this period.
Yang, Guang; Nawaz, Tahir; Barrick, Thomas R; Howe, Franklyn A; Slabaugh, Greg
2015-12-01
Many approaches have been considered for automatic grading of brain tumors by means of pattern recognition with magnetic resonance spectroscopy (MRS). Providing an improved technique which can assist clinicians in accurately identifying brain tumor grades is our main objective. The proposed technique, which is based on the discrete wavelet transform (DWT) of whole-spectral or subspectral information of key metabolites, combined with unsupervised learning, inspects the separability of the extracted wavelet features from the MRS signal to aid the clustering. In total, we included 134 short echo time single voxel MRS spectra (SV MRS) in our study that cover normal controls, low grade and high grade tumors. The combination of DWT-based whole-spectral or subspectral analysis and unsupervised clustering achieved an overall clustering accuracy of 94.8% and a balanced error rate of 7.8%. To the best of our knowledge, it is the first study using DWT combined with unsupervised learning to cluster brain SV MRS. Instead of dimensionality reduction on SV MRS or feature selection using model fitting, our study provides an alternative method of extracting features to obtain promising clustering results.
NASA Technical Reports Server (NTRS)
Porter, R. L.; Ferland, G. J.; Kraemer, S. B.; Armentrout, B. K.; Arnaud, K. A.; Turner, T. J.
2007-01-01
We discuss new functionality of the spectral simulation code CLOUDY which allows the user to calculate grids with one or more initial parameters varied and formats the predicted spectra in the standard FITS format. These files can then be imported into the x-ray spectral analysis software XSPEC and used as theoretical models for observations. We present and verify a test case. Finally, we consider a few observations and discuss our results.
Model-independent Exoplanet Transit Spectroscopy
NASA Astrophysics Data System (ADS)
Aronson, Erik; Piskunov, Nikolai
2018-05-01
We propose a new data analysis method for obtaining transmission spectra of exoplanet atmospheres and brightness variation across the stellar disk from transit observations. The new method is capable of recovering exoplanet atmosphere absorption spectra and stellar specific intensities without relying on theoretical models of stars and planets. We simultaneously fit both stellar specific intensity and planetary radius directly to transit light curves. This allows stellar models to be removed from the data analysis. Furthermore, we use a data quality weighted filtering technique to achieve an optimal trade-off between spectral resolution and reconstruction fidelity homogenizing the signal-to-noise ratio across the wavelength range. Such an approach is more efficient than conventional data binning onto a low-resolution wavelength grid. We demonstrate that our analysis is capable of reproducing results achieved by using an explicit quadratic limb-darkening equation and that the filtering technique helps eliminate spurious spectral features in regions with strong telluric absorption. The method is applied to the VLT FORS2 observations of the exoplanets GJ 1214 b and WASP-49 b, and our results are in agreement with previous studies. Comparisons between obtained stellar specific intensity and numerical models indicates that the method is capable of accurately reconstructing the specific intensity. The proposed method enables more robust characterization of exoplanetary atmospheres by separating derivation of planetary transmission and stellar specific intensity spectra (that is model-independent) from chemical and physical interpretation.
Babaei, Behzad; Abramowitch, Steven D.; Elson, Elliot L.; Thomopoulos, Stavros; Genin, Guy M.
2015-01-01
The viscoelastic behaviour of a biological material is central to its functioning and is an indicator of its health. The Fung quasi-linear viscoelastic (QLV) model, a standard tool for characterizing biological materials, provides excellent fits to most stress–relaxation data by imposing a simple form upon a material's temporal relaxation spectrum. However, model identification is challenging because the Fung QLV model's ‘box’-shaped relaxation spectrum, predominant in biomechanics applications, can provide an excellent fit even when it is not a reasonable representation of a material's relaxation spectrum. Here, we present a robust and simple discrete approach for identifying a material's temporal relaxation spectrum from stress–relaxation data in an unbiased way. Our ‘discrete QLV’ (DQLV) approach identifies ranges of time constants over which the Fung QLV model's typical box spectrum provides an accurate representation of a particular material's temporal relaxation spectrum, and is effective at providing a fit to this model. The DQLV spectrum also reveals when other forms or discrete time constants are more suitable than a box spectrum. After validating the approach against idealized and noisy data, we applied the methods to analyse medial collateral ligament stress–relaxation data and identify the strengths and weaknesses of an optimal Fung QLV fit. PMID:26609064
Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Fredriksson, Ingemar; Larsson, Marcus; Strömberg, Tomas
2012-04-01
Model based data analysis of diffuse reflectance spectroscopy data enables the estimation of optical and structural tissue parameters. The aim of this study was to present an inverse Monte Carlo method based on spectra from two source-detector distances (0.4 and 1.2 mm), using a multilayered tissue model. The tissue model variables include geometrical properties, light scattering properties, tissue chromophores such as melanin and hemoglobin, oxygen saturation and average vessel diameter. The method utilizes a small set of presimulated Monte Carlo data for combinations of different levels of epidermal thickness and tissue scattering. The path length distributions in the different layers are stored and the effect of the other parameters is added in the post-processing. The accuracy of the method was evaluated using Monte Carlo simulations of tissue-like models containing discrete blood vessels, evaluating blood tissue fraction and oxygenation. It was also compared to a homogeneous model. The multilayer model performed better than the homogeneous model and all tissue parameters significantly improved spectral fitting. Recorded in vivo spectra were fitted well at both distances, which we previously found was not possible with a homogeneous model. No absolute intensity calibration is needed and the algorithm is fast enough for real-time processing.
A new method for the measurement of tremor at rest.
Comby, B; Chevalier, G; Bouchoucha, M
1992-01-01
This paper establishes a standard method for measuring human tremor. The electronic instrument described is an application of this method. It solves the need for an effective and simple tremor-measuring instrument fit for wide distribution. This instrument consists of a piezoelectric accelerometer connected to an electronic circuit and to an LCD display. The signal is also analysed by a computer after accelerometer analogic/digital conversion in order to test the method. The tremor of 1079 healthy subjects was studied. Spectral analysis showed frequency peaks between 5.85 and 8.80 Hz. Chronic cigarette-smoking and coffee drinking did not modify the tremor as compared with controls. Relaxation session decreased tremor significantly in healthy subjects (P less than 0.01). This new tremor-measuring method opens new horizons in the understanding of physiological and pathological tremor, stress, anxiety and in the means to avoid or compensate them.
Polynomial coefficients for calculating O2 Schumann-Runge cross sections at 0.5/cm resolution
NASA Technical Reports Server (NTRS)
Minschwaner, K.; Anderson, G. P.; Hall, L. A.; Yoshino, K.
1992-01-01
O2 cross sections from 49,000 to 57,000/cm have been fitted with temperature dependent polynomial expressions, providing an accurate and efficient means of determining Schumann-Runge band cross sections for temperatures between 130 and 500 K. The least squares fits were carried out on a 0.5/cm spectral grid, using cross sections obtained from a Schumann-Runge line-by-line model that incorporates the most recent spectroscopic data. The O2 cross sections do not include the underlying Herzberg continuum, but they do contain contributions from the temperature dependent Schumann-Runge continuum. The cross sections are suitable for use in UV transmission calculations at high spectral resolution. They should also prove useful for updating existing parameterizations of ultraviolet transmission and O2 photolysis.
Catching the radio flare in CTA 102. I. Light curve analysis
NASA Astrophysics Data System (ADS)
Fromm, C. M.; Perucho, M.; Ros, E.; Savolainen, T.; Lobanov, A. P.; Zensus, J. A.; Aller, M. F.; Aller, H. D.; Gurwell, M. A.; Lähteenmäki, A.
2011-07-01
Context. The blazar CTA 102 (z = 1.037) underwent a historical radio outburst in April 2006. This event offered a unique chance to study the physical properties of the jet. Aims: We used multifrequency radio and mm observations to analyze the evolution of the spectral parameters during the flare as a test of the shock-in-jet model under these extreme conditions. Methods: For the analysis of the flare we took into account that the flaring spectrum is superimposed on a quiescent spectrum. We reconstructed the latter from archival data and fitted a synchrotron self-absorbed distribution of emission. The uncertainties of the derived spectral parameters were calculated using Monte Carlo simulations. The spectral evolution is modeled by the shock-in-jet model, and the derived results are discussed in the context of a geometrical model (varying viewing angle) and shock-shock interaction Results: The evolution of the flare in the turnover frequency-turnover flux density (νm - Sm) plane shows a double peak structure. The nature of this evolution is dicussed in the frame of shock-in-jet models. We discard the generation of the double peak structure in the νm - Sm plane purely based on geometrical changes (variation of the Doppler factor). The detailed modeling of the spectral evolution favors a shock-shock interaction as a possible physical mechanism behind the deviations from the standard shock-in-jet model.
X-Ray Spectral Properties of Seven Heavily Obscured Seyfert 2 Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchesi, S.; Ajello, M.; Comastri, A.
2017-02-10
We present the combined Chandra and Swift -BAT spectral analysis of seven Seyfert 2 galaxies selected from the Swift -BAT 100 month catalog. We selected nearby ( z ≤ 0.03) sources lacking a ROSAT counterpart that never previously been observed with Chandra in the 0.3–10 keV energy range, and targeted these objects with 10 ks Chandra ACIS-S observations. The X-ray spectral fitting over the 0.3–150 keV energy range allows us to determine that all the objects are significantly obscured, with N{sub H} ≥ 10{sup 23} cm{sup −2} at a >99% confidence level. Moreover, one to three sources are candidate Compton-thickmore » Active Galactic Nuclei (CT-AGNs; i.e., N{sub H}≥10{sup 24} cm{sup −2}). We also test the recent spectral curvature method developed by Koss et al. to find candidate CT-AGNs, finding a good agreement between our results and their predictions. Because the selection criteria we adopted were effective in detecting highly obscured AGNs, further observations of these and other Seyfert 2 galaxies selected from the Swift -BAT 100 month catalog will allow us to create a statistically significant sample of highly obscured AGNs, therefore providing a better understanding of the physics of the obscuration processes.« less
NASA Astrophysics Data System (ADS)
Trautner, Stefan; Jasik, Juraj; Parigger, Christian G.; Pedarnig, Johannes D.; Spendelhofer, Wolfgang; Lackner, Johannes; Veis, Pavel; Heitz, Johannes
2017-03-01
Laser-induced breakdown spectroscopy (LIBS) for composition analysis of polymer materials results in optical spectra containing atomic and ionic emission lines as well as molecular emission bands. In the present work, the molecular bands are analyzed to obtain spectroscopic information about the plasma state in an effort to quantify the content of different elements in the polymers. Polyethylene (PE) and a rubber material from tire production are investigated employing 157 nm F2 laser and 532 nm Nd:YAG laser ablation in nitrogen and argon gas background or in air. The optical detection reaches from ultraviolet (UV) over the visible (VIS) to the near infrared (NIR) spectral range. In the UV/VIS range, intense molecular emissions, C2 Swan and CN violet bands, are measured with an Echelle spectrometer equipped with an intensified CCD camera. The measured molecular emission spectra can be fitted by vibrational-rotational transitions by open access programs and data sets with good agreement between measured and fitted spectra. The fits allow determining vibrational-rotational temperatures. A comparison to electronic temperatures Te derived earlier from atomic carbon vacuum-UV (VUV) emission lines show differences, which can be related to different locations of the atomic and molecular species in the expanding plasma plume. In the NIR spectral region, we also observe the CN red bands with a conventional CDD Czerny Turner spectrometer. The emission of the three strong atomic sulfur lines between 920 and 925 nm is overlapped by these bands. Fitting of the CN red bands allows a separation of both spectral contributions. This makes a quantitative evaluation of sulfur contents in the start material in the order of 1 wt% feasible.
Hadley, Odelle L; Corrigan, Craig E; Kirchstetter, Thomas W
2008-11-15
This study presents a method for analyzing the black carbon (BC) mass loading on a quartz fiber filter using a modified thermal-optical analysis method, wherein light transmitted through the sample is measured over a spectral region instead of at a single wavelength. Evolution of the spectral light transmission signal depends on the relative amounts of light-absorbing BC and char, the latter of which forms when organic carbon in the sample pyrolyzes during heating. Absorption selectivities of BC and char are found to be distinct and are used to apportion the amount of light attenuated by each component in the sample. Light attenuation is converted to mass concentration on the basis of derived mass attenuation efficiencies (MAEs) of BC and char. The fractions of attenuation due to each component are scaled by their individual MAE values and added together as the total mass of light absorbing carbon (LAC). An iterative algorithm is used to find the MAE values for both BC and char that provide the best fit to the carbon mass remaining on the filter (derived from direct measurements of thermally evolved CO2) at temperatures higher than 480 degrees C. This method was applied to measure the BC concentration in precipitation samples collected in northern California. The uncertainty in the measured BC concentration of samples that contained a high concentration of organics susceptible to char ranged from 12% to 100%, depending on the mass loading of BC on the filter. The lower detection limit for this method was approximately 0.35 microg of BC, and the uncertainty approached 20% for BC mass loading greater than 1.0 microg of BC.
Empirical Green's function analysis: Taking the next step
Hough, S.E.
1997-01-01
An extension of the empirical Green's function (EGF) method is presented that involves determination of source parameters using standard EGF deconvolution, followed by inversion for a common attenuation parameter for a set of colocated events. Recordings of three or more colocated events can thus be used to constrain a single path attenuation estimate. I apply this method to recordings from the 1995-1996 Ridgecrest, California, earthquake sequence; I analyze four clusters consisting of 13 total events with magnitudes between 2.6 and 4.9. I first obtain corner frequencies, which are used to infer Brune stress drop estimates. I obtain stress drop values of 0.3-53 MPa (with all but one between 0.3 and 11 MPa), with no resolved increase of stress drop with moment. With the corner frequencies constrained, the inferred attenuation parameters are very consistent; they imply an average shear wave quality factor of approximately 20-25 for alluvial sediments within the Indian Wells Valley. Although the resultant spectral fitting (using corner frequency and ??) is good, the residuals are consistent among the clusters analyzed. Their spectral shape is similar to the the theoretical one-dimensional response of a layered low-velocity structure in the valley (an absolute site response cannot be determined by this method, because of an ambiguity between absolute response and source spectral amplitudes). I show that even this subtle site response can significantly bias estimates of corner frequency and ??, if it is ignored in an inversion for only source and path effects. The multiple-EGF method presented in this paper is analogous to a joint inversion for source, path, and site effects; the use of colocated sets of earthquakes appears to offer significant advantages in improving resolution of all three estimates, especially if data are from a single site or sites with similar site response.
Ding, Huanjun; Molloi, Sabee
2012-01-01
Purpose A simple and accurate measurement of breast density is crucial for the understanding of its impact in breast cancer risk models. The feasibility to quantify volumetric breast density with a photon-counting spectral mammography system has been investigated using both computer simulations and physical phantom studies. Methods A computer simulation model involved polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector has been evaluated for breast density quantification. The figure-of-merit (FOM), which was defined as the signal-to-noise ratio (SNR) of the dual energy image with respect to the square root of mean glandular dose (MGD), was chosen to optimize the imaging protocols, in terms of tube voltage and splitting energy. A scanning multi-slit photon-counting spectral mammography system has been employed in the experimental study to quantitatively measure breast density using dual energy decomposition with glandular and adipose equivalent phantoms of uniform thickness. Four different phantom studies were designed to evaluate the accuracy of the technique, each of which addressed one specific variable in the phantom configurations, including thickness, density, area and shape. In addition to the standard calibration fitting function used for dual energy decomposition, a modified fitting function has been proposed, which brought the tube voltages used in the imaging tasks as the third variable in dual energy decomposition. Results For an average sized breast of 4.5 cm thick, the FOM was maximized with a tube voltage of 46kVp and a splitting energy of 24 keV. To be consistent with the tube voltage used in current clinical screening exam (~ 32 kVp), the optimal splitting energy was proposed to be 22 keV, which offered a FOM greater than 90% of the optimal value. In the experimental investigation, the root-mean-square (RMS) error in breast density quantification for all four phantom studies was estimated to be approximately 1.54% using standard calibration function. The results from the modified fitting function, which integrated the tube voltage as a variable in the calibration, indicated a RMS error of approximately 1.35% for all four studies. Conclusions The results of the current study suggest that photon-counting spectral mammography systems may potentially be implemented for an accurate quantification of volumetric breast density, with an RMS error of less than 2%, using the proposed dual energy imaging technique. PMID:22771941
Optical Characterization of Paper Aging Based on Laser-Induced Fluorescence (LIF) Spectroscopy.
Zhang, Hao; Wang, Shun; Chang, Keke; Sun, Haifeng; Guo, Qingqian; Ma, Liuzheng; Yang, Yatao; Zou, Caihong; Wang, Ling; Hu, Jiandong
2018-06-01
Paper aging and degradation are growing concerns for those who are responsible for the conservation of documents, archives, and libraries. In this study, the paper aging was investigated using laser-induced fluorescence spectroscopy (LIFS), where the fluorescence properties of 47 paper samples with different ages were explored. The paper exhibits fluorescence in the blue-green spectral region with two peaks at about 448 nm and 480 nm under the excitation of 405 nm laser. Both fluorescence peaks changed in absolute intensities and thus the ratio of peak intensities was also influenced with the increasing ages. By applying principal component analysis (PCA) and k-means clustering algorithm, all 47 paper samples were classified into nine groups based on the differences in paper age. Then the first-derivative fluorescence spectral curves were proposed to figure out the relationship between the spectral characteristic and the paper age, and two quantitative models were established based on the changes of first-derivative spectral peak at 443 nm, where one is an exponential fitting curve with an R-squared value of 0.99 and another is a linear fitting curve with an R-squared value of 0.88. The results demonstrated that the combination of fluorescence spectroscopy and PCA can be used for the classification of paper samples with different ages. Moreover, the first-derivative fluorescence spectral curves can be used to quantitatively evaluate the age-related changes of paper samples.
Tomographic separation of composite spectra. 2: The components of 29 UW Canis Majoris
NASA Technical Reports Server (NTRS)
Bagnuolo, William G., Jr.; Gies, Douglas R.; Hahula, Michael E.; Wiemker, Rafael; Wiggs, Michael S.
1994-01-01
We have analyzed the UV photospheric lines of 29 CMa, a 4.39 day period, double-lined O-type spectroscopic binary. Archival data from International Ultraviolet Explorer (IUE)(28 spectra well distributed in oribital phase) were analyzed with several techniques. We find that the mass ratio is q = 1.20 +/- 0.16 (secondary more massive) based on three independent arguments. A tomography algorithm was used to produce the separate spectra of the two stars in six UV spectral regions. The MK spectral classifications of the primary and secondary, O7.5-8 Iab and O9.7 Ib, respectively, were estimated through a comparison of UV line ratios with those in spectral standard stars. The flux ratio of the stars in the UV is 0.36 +/- 0.07 (primary brighter). The primary has a strong P Cygni NIV wavelength 1718 feature, indicating a strong stellar wind. We also present tomographic reconstructions of visual spectral data in the range 4300-4950 A, based on seven observations of differing orbital phases, which confirm the UV classifications, and show that the primary is an Of star. From the spectral classifications, we estimate the temperatures of the stars to be 33,750 K and 29,000 K for primary and secondary, respectively. We then fit visual and UV light curves and show that reasonably good fits can be obtained with these temperatures, a semicontact configuration, an inclination of 74 deg. +/- 2 deg., and an intensity ratio r is less than 0.5.
A pratical deconvolution algorithm in multi-fiber spectra extraction
NASA Astrophysics Data System (ADS)
Zhang, Haotong; Li, Guangwei; Bai, Zhongrui
2015-08-01
Deconvolution algorithm is a very promising method in multi-fiber spectroscopy data reduction, the method can extract spectra to the photo noise level as well as improve the spectral resolution, but as mentioned in Bolton & Schlegel (2010), it is limited by its huge computation requirement and thus can not be implemented directly in actual data reduction. We develop a practical algorithm to solve the computation problem. The new algorithm can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. We further consider the influence of noise, which is thought to be an intrinsic ill-posed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. A series of simulations based on LAMOST data are carried out to test our method under more real situations with poisson noise and extreme cross talk, i.e., the fiber-to-fiber distance is comparable to the FWHM of the fiber profile. Compared with the results of traditional extraction methods, i.e., the Aperture Extraction Method and the Profile Fitting Method, our method shows both higher S/N and spectral resolution. The computaion time for a noise added image with 250 fibers and 4k pixels in wavelength direction, is about 2 hours when the fiber cross talk is not in the extreme case and 3.5 hours for the extreme fiber cross talk. We finally apply our method to real LAMOST data. We find that the 1D spectrum extracted by our method has both higher SNR and resolution than the traditional methods, but there are still some suspicious weak features possibly caused by the noise sensitivity of the method around the strong emission lines. How to further attenuate the noise influence will be the topic of our future work. As we have demonstrated, multi-fiber spectra extracted by our method will have higher resolution and signal to noise ratio thus will provide more accurate information (such as higher radial velocity and metallicity measurement accuracy in stellar physics) to astronomers than traditional methods.
TU-CD-207-01: Characterization of Breast Tissue Composition Using Spectral Mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, H; Cho, H; Kumar, N
Purpose: To investigate the feasibility of characterizing the chemical composition of breast tissue, in terms of water and lipid, by using spectral mammography in simulation and postmortem studies. Methods: Analytical simulations were performed to obtain low- and high-energy signals of breast tissue based on previously reported water, lipid, and protein contents. Dual-energy decomposition was used to characterize the simulated breast tissue into water and lipid basis materials and the measured water density was compared to the known value. In experimental studies, postmortem breasts were imaged with a spectral mammography system based on a scanning multi-slit Si strip photon-counting detector. Low-more » and high-energy images were acquired simultaneously from a single exposure by sorting the recorded photons into the corresponding energy bins. Dual-energy material decomposition of the low- and high-energy images yielded individual pixel measurements of breast tissue composition in terms of water and lipid thicknesses. After imaging, each postmortem breast was chemically decomposed into water, lipid and protein. The water density calculated from chemical analysis was used as the reference gold standard. Correlation of the water density measurements between spectral mammography and chemical analysis was analyzed using linear regression. Results: Both simulation and postmortem studies showed good linear correlation between the decomposed water thickness using spectral mammography and chemical analysis. The slope of the linear fitting function in the simulation and postmortem studies were 1.15 and 1.21, respectively. Conclusion: The results indicate that breast tissue composition, in terms of water and lipid, can be accurately measured using spectral mammography. Quantitative breast tissue composition can potentially be used to stratify patients according to their breast cancer risk.« less
Compact multispectral photodiode arrays using micropatterned dichroic filters
NASA Astrophysics Data System (ADS)
Chandler, Eric V.; Fish, David E.
2014-05-01
The next generation of multispectral instruments requires significant improvements in both spectral band customization and portability to support the widespread deployment of application-specific optical sensors. The benefits of spectroscopy are well established for numerous applications including biomedical instrumentation, industrial sorting and sensing, chemical detection, and environmental monitoring. In this paper, spectroscopic (and by extension hyperspectral) and multispectral measurements are considered. The technology, tradeoffs, and application fits of each are evaluated. In the majority of applications, monitoring 4-8 targeted spectral bands of optimized wavelength and bandwidth provides the necessary spectral contrast and correlation. An innovative approach integrates precision spectral filters at the photodetector level to enable smaller sensors, simplify optical designs, and reduce device integration costs. This method supports user-defined spectral bands to create application-specific sensors in a small footprint with scalable cost efficiencies. A range of design configurations, filter options and combinations are presented together with typical applications ranging from basic multi-band detection to stringent multi-channel fluorescence measurement. An example implementation packages 8 narrowband silicon photodiodes into a 9x9mm ceramic LCC (leadless chip carrier) footprint. This package is designed for multispectral applications ranging from portable color monitors to purpose- built OEM industrial and scientific instruments. Use of an eight-channel multispectral photodiode array typically eliminates 10-20 components from a device bill-of-materials (BOM), streamlining the optical path and shrinking the footprint by 50% or more. A stepwise design approach for multispectral sensors is discussed - including spectral band definition, optical design tradeoffs and constraints, and device integration from prototype through scalable volume production. Additional customization options are explored for application-specific OEM sensors integrated into portable devices using multispectral photodiode arrays.
A fast method to compute Three-Dimensional Infrared Radiative Transfer in non scattering medium
NASA Astrophysics Data System (ADS)
Makke, Laurent; Musson-Genon, Luc; Carissimo, Bertrand
2014-05-01
The Atmospheric Radiation field has seen the development of more accurate and faster methods to take into account absoprtion in participating media. Radiative fog appears with clear sky condition due to a significant cooling during the night, so scattering is left out. Fog formation modelling requires accurate enough method to compute cooling rates. Thanks to High Performance Computing, multi-spectral approach of Radiative Transfer Equation resolution is most often used. Nevertheless, the coupling of three-dimensionnal radiative transfer with fluid dynamics is very detrimental to the computational cost. To reduce the time spent in radiation calculations, the following method uses analytical absorption functions fitted by Sasamori (1968) on Yamamoto's charts (Yamamoto,1956) to compute a local linear absorption coefficient. By averaging radiative properties, this method eliminates the spectral integration. For an isothermal atmosphere, analytical calculations lead to an explicit formula between emissivities functions and linear absorption coefficient. In the case of cooling to space approximation, this analytical expression gives very accurate results compared to correlated k-distribution. For non homogeneous paths, we propose a two steps algorithm. One-dimensional radiative quantities and linear absorption coefficient are computed by a two-flux method. Then, three-dimensional RTE under the grey medium assumption is solved with the DOM. Comparisons with measurements of radiative quantities during ParisFOG field (2006) shows the cability of this method to handle strong vertical variations of pressure/temperature and gases concentrations.
The stationary non-equilibrium plasma of cosmic-ray electrons and positrons
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2016-06-01
The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.
Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran
NASA Astrophysics Data System (ADS)
Azizi, H.; Tarverdi, M. A.; Akbarpour, A.
2010-07-01
The use of satellite images for mineral exploration has been very successful in pointing out the presence of minerals such as smectite and kaolinite which are important in the identification of hydrothermal alterations. Shortwave infrared (SWIR) bands from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with the wavelength of ASTER SWIR bands between 1.65 and 2.43 μm has a good potential for mapping a hydrothermal alteration minerals such as alunite, pyrophyllite, kaolinite, illite-muscovite-sericite, and carbonate. In this range, hydroxide minerals which have been produced by hydrothermal alteration exhibit good absorption compared to shorter or longer wavelengths. In this research which aims to remove atmospheric and topographic effects from ASTER SWIR data, the authors used the log-residual method (LRM) with the minimum noise fraction (MNF) transformation to create a pixel purity index (PPI) which was used to extract the most spectrally pure pixels from multispectral images. Spectral analyses of the clay mineralogy of the study area (east Zanjan, in northern Iran) were obtained by matching the unknown spectra of the purest pixels to the U.S. Geological Survey (USGS) mineral library. Three methods, spectral feature fitting (SFF), spectral angle mapping (SAM), and binary encoding (BE) were used to generate a score between 0 and 1, where a value of 1 indicates a perfect match showing the exact mineral type. In this way, it was possible to identify certain mineral classes, including chlorite, carbonate, calcite-dolomite-magnesite, kaolinite-smectite, alunite, and illite. In this research, two main propylitic and phyllic-argillic zones could be separated using their compositions of these minerals. These two alteration zones are important for porphyry copper deposits and gold mineralization in this part of Iran.
NASA Astrophysics Data System (ADS)
Zernickel, A.; Schilke, P.; Schmiedeke, A.; Lis, D. C.; Brogan, C. L.; Ceccarelli, C.; Comito, C.; Emprechtinger, M.; Hunter, T. R.; Möller, T.
2012-10-01
Aims: We aim at deriving the molecular abundances and temperatures of the hot molecular cores in the high-mass star-forming region NGC 6334I and consequently deriving their physical and astrochemical conditions. Methods: In the framework of the Herschel guaranteed time key program CHESS (Chemical HErschel Surveys of Star forming regions), NGC 6334I is investigated by using the Heterodyne Instrument for the Far-Infrared (HIFI) aboard the Herschel Space Observatory. A spectral line survey is carried out in the frequency range 480-1907 GHz, and further auxiliary interferometric data from the Submillimeter Array (SMA) in the 230 GHz band provide spatial information for disentangling the different physical components contributing to the HIFI spectrum. The spectral lines in the processed Herschel data are identified with the aid of former surveys and spectral line catalogs. The observed spectrum is then compared to a simulated synthetic spectrum, assuming local thermal equilibrium, and best fit parameters are derived using a model optimization package. Results: A total of 46 molecules are identified, with 31 isotopologues, resulting in about 4300 emission and absorption lines. High-energy levels (Eu > 1000 K) of the dominant emitter methanol and vibrationally excited HCN (ν2 = 1) are detected. The number of unidentified lines remains low with 75, or <2% of the lines detected. The modeling suggests that several spectral features need two or more components to be fitted properly. Other components could be assigned to cold foreground clouds or to outflows, most visible in the SiO and H2O emission. A chemical variation between the two embedded hot cores is found, with more N-bearing molecules identified in SMA1 and O-bearing molecules in SMA2. Conclusions: Spectral line surveys give powerful insights into the study of the interstellar medium. Different molecules trace different physical conditions like the inner hot core, the envelope, the outflows or the cold foreground clouds. The derived molecular abundances provide further constraints for astrochemical models. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.
2016-01-01
Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to trace gases, this approach will be appropriate for measurements of aerosol extinction in ambient air, and this spectral region is important for characterizing the strong ultraviolet absorption by brown carbon aerosol.
Spectral and Temporal Characteristics of X-Ray-Bright Stars in the Pleiades
NASA Technical Reports Server (NTRS)
Gagne, Marc; Caillault, Jean-Pierre; Stauffer, John R.
1995-01-01
We follow up our deep ROSAT imaging survey of the Pleiades (Stauffer et al. 1994) with an analysis of the spectral and temporal characteristics of the X-ray-bright stars in the Pleiades. Raymond & Smith (1977) one and two-temperature models have been used to fit the position-sensitive proportional counter (PSPC) pulse-height spectra of the dozen or so brightest sources associated with late-type Pleiades members. The best-fit temperatures suggest hot coronal temperatures for K, M, and rapidly rotating G stars, and cooler temperatures for F and slowly rotating G stars. In order to probe the many less X-ray-luminous stars, we have generated composite spectra by combining net counts from all Pleiades members according to spectral type and rotational velocity. Model fits to the composite spectra confirm the trend seen in the individual spectral fits. Particularly interesting is the apparent dependence of coronal temperature on L(sub x)/L(sub bol). A hardness-ratio analysis also confirms some of these trends. The PSPC data have also revealed a dozen or so strong X-ray flares with peak X-ray luminosities in excess of approx. 10(exp 30) ergs/sec. We have modeled the brightest of these flares with a simple quasi-static cooling loop model. The peak temperature and emission measure and the inferred electron density and plasma volume suggest a very large scale flaring event. The PSPC data were collected over a period of approx. 18 months, allowing us to search for source variability on timescales ranging from less than a day (in the case of flares) to more than a year between individual exposures. On approximately year-long timescales, roughly 25% of the late-type stars are variable. Since the Pleiades was also intensively monitored by the imaging instruments on the Einstein Observatory, we have examined X-ray luminosity variations on the 10 yr timescale between Einstein and ROSAT and find that up to 40% of the late-type stars are X-ray variable. Since there is only marginal evidence for increased variability on decade-long timescales, the variability observed on long and short timescales may have a common physical origin.
NASA Astrophysics Data System (ADS)
Baines, Kevin; Sromovsky, Lawrence A.; Fry, Patrick M.; Carlson, Robert W.; Momary, Thomas W.
2016-10-01
We report results incorporating the red-tinted photochemically-generated aerosols of Carlson et al (2016, Icarus 274, 106-115) in spectral models of Jupiter's Great Red Spot (GRS). Spectral models of the 0.35-1.0-micron spectrum show good agreement with Cassini/VIMS near-center-meridian and near-limb GRS spectra for model morphologies incorporating an optically-thin layer of Carlson (2016) aerosols at high altitudes, either at the top of the tropospheric GRS cloud, or in a distinct stratospheric haze layer. Specifically, a two-layer "crème brûlée" structure of the Mie-scattering Carlson et al (2016) chromophore attached to the top of a conservatively scattering (hereafter, "white") optically-thick cloud fits the spectra well. Currently, best agreement (reduced χ2 of 0.89 for the central-meridian spectrum) is found for a 0.195-0.217-bar, 0.19 ± 0.02 opacity layer of chromophores with mean particle radius of 0.14 ± 0.01 micron. As well, a structure with a detached stratospheric chromophore layer ~0.25 bar above a white tropospheric GRS cloud provides a good spectral match (reduced χ2 of 1.16). Alternatively, a cloud morphology with the chromophore coating white particles in a single optically- and physically-thick cloud (the "coated-shell model", initially explored by Carlson et al 2016) was found to give significantly inferior fits (best reduced χ2 of 2.9). Overall, we find that models accurately fit the GRS spectrum if (1) most of the optical depth of the chromophore is in a layer near the top of the main cloud or in a distinct separated layer above it, but is not uniformly distributed within the main cloud, (2) the chromophore consists of relatively small, 0.1-0.2-micron-radius particles, and (3) the chromophore layer optical depth is small, ~ 0.1-0.2. Thus, our analysis supports the exogenic origin of the red chromophore consistent with the Carlson et al (2016) photolytic production mechanism rather than an endogenic origin, such as upwelling of material from the depths of Jupiter.
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions
NASA Astrophysics Data System (ADS)
Novosad, Philip; Reader, Andrew J.
2016-06-01
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [11C]SCH23390 data, showing promising results.
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.
Novosad, Philip; Reader, Andrew J
2016-06-21
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [(11)C]SCH23390 data, showing promising results.
Submillimeter Spectroscopic Study of Semiconductor Processing Plasmas
NASA Astrophysics Data System (ADS)
Helal, Yaser H.
Plasmas used for manufacturing processes of semiconductor devices are complex and challenging to characterize. The development and improvement of plasma processes and models rely on feedback from experimental measurements. Current diagnostic methods are not capable of measuring absolute densities of plasma species with high resolution without altering the plasma, or without input from other measurements. At pressures below 100 mTorr, spectroscopic measurements of rotational transitions in the submillimeter/terahertz (SMM) spectral region are narrow enough in relation to the sparsity of spectral lines that absolute specificity of measurement is possible. The frequency resolution of SMM sources is such that spectral absorption features can be fully resolved. Processing plasmas are a similar pressure and temperature to the environment used to study astrophysical species in the SMM spectral region. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied in the laboratory and their absorption spectra have been cataloged or are in the literature for the purpose of astrophysical study. Recent developments in SMM devices have made its technology commercially available for applications outside of specialized laboratories. The methods developed over several decades in the SMM spectral region for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500 - 750 GHz radiation through a commercial inductively coupled plasma chamber. The measurement of transmission spectra was simultaneously fit for background and absorption signal. The measured absorption signal was used to calculate absolute densities and temperatures of polar species. Measurements of molecular species were demonstrated for inductively coupled plasmas.
Atmospheric Retrieval Analysis of the Directly Imaged Exoplanet HR 8799b
NASA Astrophysics Data System (ADS)
Lee, Jae-Min; Heng, Kevin; Irwin, Patrick G. J.
2013-12-01
Directly imaged exoplanets are unexplored laboratories for the application of the spectral and temperature retrieval method, where the chemistry and composition of their atmospheres are inferred from inverse modeling of the available data. As a pilot study, we focus on the extrasolar gas giant HR 8799b, for which more than 50 data points are available. We upgrade our non-linear optimal estimation retrieval method to include a phenomenological model of clouds that requires the cloud optical depth and monodisperse particle size to be specified. Previous studies have focused on forward models with assumed values of the exoplanetary properties; there is no consensus on the best-fit values of the radius, mass, surface gravity, and effective temperature of HR 8799b. We show that cloud-free models produce reasonable fits to the data if the atmosphere is of super-solar metallicity and non-solar elemental abundances. Intermediate cloudy models with moderate values of the cloud optical depth and micron-sized particles provide an equally reasonable fit to the data and require a lower mean molecular weight. We report our best-fit values for the radius, mass, surface gravity, and effective temperature of HR 8799b. The mean molecular weight is about 3.8, while the carbon-to-oxygen ratio is about unity due to the prevalence of carbon monoxide. Our study emphasizes the need for robust claims about the nature of an exoplanetary atmosphere to be based on analyses involving both photometry and spectroscopy and inferred from beyond a few photometric data points, such as are typically reported for hot Jupiters.
On the Confounding Effect of Temperature on Chemical Shift-Encoded Fat Quantification
Hernando, Diego; Sharma, Samir D.; Kramer, Harald; Reeder, Scott B.
2014-01-01
Purpose To characterize the confounding effect of temperature on chemical shift-encoded (CSE) fat quantification. Methods The proton resonance frequency of water, unlike triglycerides, depends on temperature. This leads to a temperature dependence of the spectral models of fat (relative to water) that are commonly used by CSE-MRI methods. Simulation analysis was performed for 1.5 Tesla CSE fat–water signals at various temperatures and echo time combinations. Oil–water phantoms were constructed and scanned at temperatures between 0 and 40°C using spectroscopy and CSE imaging at three echo time combinations. An explanted human liver, rejected for transplantation due to steatosis, was scanned using spectroscopy and CSE imaging. Fat–water reconstructions were performed using four different techniques: magnitude and complex fitting, with standard or temperature-corrected signal modeling. Results In all experiments, magnitude fitting with standard signal modeling resulted in large fat quantification errors. Errors were largest for echo time combinations near TEinit ≈ 1.3 ms, ΔTE ≈ 2.2 ms. Errors in fat quantification caused by temperature-related frequency shifts were smaller with complex fitting, and were avoided using a temperature-corrected signal model. Conclusion Temperature is a confounding factor for fat quantification. If not accounted for, it can result in large errors in fat quantifications in phantom and ex vivo acquisitions. PMID:24123362
Development and use of Fourier self deconvolution and curve-fitting in the study of coal oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, J.A.
1986-01-01
Techniques have been developed for modeling highly overlapped band multiplets. The method is based on a least-squares fit of spectra by a series of bands of known shape. Using synthetic spectra, it was shown that when bands are separated by less than their full width at half height (FWHH), valid analytical data can only be obtained after the width of each component band is narrowed by Fourier self deconvolution (FSD). The optimum method of spectral fitting determined from the study of synthetic spectra was then applied to the characterization of oxidized coals. A medium volatile bituminous coal which was airmore » oxidized at 200/sup 0/C for different lengths of time, was extracted with chloroform. A comparison of the infrared spectra of the whole coal and the extract indicated that the extracted material contains a smaller amount of carbonyl, ether, and ester groups, while the aromatic content is much higher. Oxidation does not significantly affect the aromatic content of the whole cola. Most of the aromatic groups in the CHCl/sub 3/ extract show evidence of reaction, however. The production of relatively large amounts of intramolecular aromatic anhydrides is seen in the spectrum of the extract of coals which have undergone extensive oxidation,while there is only a slight indication of this anhydride in the whole coal.« less
The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars
NASA Astrophysics Data System (ADS)
Arzoumanian, Zaven; Brazier, Adam; Burke-Spolaor, Sarah; Chamberlin, Sydney; Chatterjee, Shami; Christy, Brian; Cordes, James M.; Cornish, Neil J.; Crawford, Fronefield; Thankful Cromartie, H.; Crowter, Kathryn; DeCesar, Megan E.; Demorest, Paul B.; Dolch, Timothy; Ellis, Justin A.; Ferdman, Robert D.; Ferrara, Elizabeth C.; Fonseca, Emmanuel; Garver-Daniels, Nathan; Gentile, Peter A.; Halmrast, Daniel; Huerta, E. A.; Jenet, Fredrick A.; Jessup, Cody; Jones, Glenn; Jones, Megan L.; Kaplan, David L.; Lam, Michael T.; Lazio, T. Joseph W.; Levin, Lina; Lommen, Andrea; Lorimer, Duncan R.; Luo, Jing; Lynch, Ryan S.; Madison, Dustin; Matthews, Allison M.; McLaughlin, Maura A.; McWilliams, Sean T.; Mingarelli, Chiara; Ng, Cherry; Nice, David J.; Pennucci, Timothy T.; Ransom, Scott M.; Ray, Paul S.; Siemens, Xavier; Simon, Joseph; Spiewak, Renée; Stairs, Ingrid H.; Stinebring, Daniel R.; Stovall, Kevin; Swiggum, Joseph K.; Taylor, Stephen R.; Vallisneri, Michele; van Haasteren, Rutger; Vigeland, Sarah J.; Zhu, Weiwei; The NANOGrav Collaboration
2018-04-01
We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, and six high-timing-precision pulsars were observed weekly. All were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and (for binary pulsars) orbital parameters; time-variable dispersion delays; and parameters that quantify pulse-profile evolution with frequency. The timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of significant orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. A companion paper uses these data to constrain the strength of the gravitational-wave background.
Iqbal, Zohaib; Wilson, Neil E; Thomas, M Albert
2017-07-24
1 H Magnetic Resonance Spectroscopic imaging (SI) is a powerful tool capable of investigating metabolism in vivo from mul- tiple regions. However, SI techniques are time consuming, and are therefore difficult to implement clinically. By applying non-uniform sampling (NUS) and compressed sensing (CS) reconstruction, it is possible to accelerate these scans while re- taining key spectral information. One recently developed method that utilizes this type of acceleration is the five-dimensional echo planar J-resolved spectroscopic imaging (5D EP-JRESI) sequence, which is capable of obtaining two-dimensional (2D) spectra from three spatial dimensions. The prior-knowledge fitting (ProFit) algorithm is typically used to quantify 2D spectra in vivo, however the effects of NUS and CS reconstruction on the quantitation results are unknown. This study utilized a simulated brain phantom to investigate the errors introduced through the acceleration methods. Errors (normalized root mean square error >15%) were found between metabolite concentrations after twelve-fold acceleration for several low concentra- tion (<2 mM) metabolites. The Cramér Rao lower bound% (CRLB%) values, which are typically used for quality control, were not reflective of the increased quantitation error arising from acceleration. Finally, occipital white (OWM) and gray (OGM) human brain matter were quantified in vivo using the 5D EP-JRESI sequence with eight-fold acceleration.
Meyer, D.; Chander, G.
2006-01-01
Increasingly, data from multiple sensors are used to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products (e.g., vegetation cover, albedo, surface temperature) derived from different sensors can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectroradiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Crosscalibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study explores the impacts of cross-calibrating sensors when such conditions are met to some degree but not perfectly. In order to constrain the range of conditions at some level, the analysis is limited to sensors where cross-calibration studies have been conducted (Enhanced Thematic Mapper Plus (ETM+) on Landsat-7 (L7), Advance Land Imager (ALI) and Hyperion on Earth Observer-1 (EO-1)) and including systems having somewhat dissimilar geometry, spatial resolution & spectral response characteristics but are still part of the so-called "A.M. constellation" (Moderate Resolution Imaging Spectrometer (MODIS) aboard the Terra platform). Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These instruments are cross calibrated using the Railroad Valley playa in Nevada. Best fit linear coefficients (slope and offset) are provided for ALI-to-MODIS and ETM+-to-MODIS cross calibrations, and root-mean-squared errors (RMSEs) and correlation coefficients are provided to quantify the uncertainty in these relationships. In theory, the linear fits and uncertainties can be used to compare radiance and reflectance products derived from each instrument.
On the Unusually High Temperature of the Cluster of Galaxies 1E 0657-56
NASA Technical Reports Server (NTRS)
Yaqoob, Tahir
1999-01-01
A recent X-ray observation of the cluster 1E 0657-56 (z = 0.296) with ASC,4 implied an unusually high temperature of approx. 17 keV. Such a high temperature would make it the hottest known cluster and severely constrain cosmological models since, in a Universe with critical density (Omega = 1) the probability of observing such a cluster is only approx. 4 x 10(exp -5). Here we test the robustness of this observational result since it has such important implications. We analysed the data using a variety of different data analysis methods and spectral analysis assumptions and find a temperature of approx. 11 - 12 keV in all cases, except for one class of spectral fits. These are fits in which the absorbing column density is fixed at the Galactic value. Using simulated data for a 12 keV cluster, we show that a high temperature of approx. 17 keV is artificially obtained if the true spectrum has a stronger low-energy cut-off than that for Galactic absorption only. The apparent extra absorption may be astrophysical in origin, (either intrinsic or line-of-sight), or it may be a problem with the low-energy CCD efficiency. Although significantly lower than previous measurements, this temperature of kT approx. 11 - 12 keV is still relatively high since only a few clusters have been found to have temperatures higher than 10 keV and the data therefore still present some difficulty for an Omega = 1 Universe. Our results will also be useful to anyone who wants to estimate the systematic errors involved in different methods of background subtraction of ASCA data for sources with similar signal-to-noise to that of the IE 0657-56 data reported here.
Zhao, Chenguang; Bolan, Patrick J; Royce, Melanie; Lakkadi, Navneeth; Eberhardt, Steven; Sillerud, Laurel; Lee, Sang-Joon; Posse, Stefan
2012-11-01
To quantitatively measure tCho levels in healthy breasts using Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI). The two-dimensional mapping of tCho at 3 Tesla across an entire breast slice using PEPSI and a hybrid spectral quantification method based on LCModel fitting and integration of tCho using the fitted spectrum were developed. This method was validated in 19 healthy females and compared with single voxel spectroscopy (SVS) and with PRESS prelocalized conventional Magnetic Resonance Spectroscopic Imaging (MRSI) using identical voxel size (8 cc) and similar scan times (∼7 min). A tCho peak with a signal to noise ratio larger than 2 was detected in 10 subjects using both PEPSI and SVS. The average tCho concentration in these subjects was 0.45 ± 0.2 mmol/kg using PEPSI and 0.48 ± 0.3 mmol/kg using SVS. Comparable results were obtained in two subjects using conventional MRSI. High lipid content in the spectra of nine tCho negative subjects was associated with spectral line broadening of more than 26 Hz, which made tCho detection impossible. Conventional MRSI with PRESS prelocalization in glandular tissue in two of these subjects yielded tCho concentrations comparable to PEPSI. The detection sensitivity of PEPSI is comparable to SVS and conventional PRESS-MRSI. PEPSI can be potentially used in the evaluation of tCho in breast cancer. A tCho threshold concentration value of ∼0.7 mmol/kg might be used to differentiate between cancerous and healthy (or benign) breast tissues based on this work and previous studies. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Burns, G.; French, J.
2007-05-01
Spectral calibrations, airglow and possibly auroral contaminations, solar and telluric absorption features and the selection of transition probabilities can all influence rotational temperatures derived from measurements of hydroxyl airglow intensities. Consideration and examples are given of these influences. Measurements and analyses are outlined for data checking that should be undertaken if a hydroxyl airglow data set is to be used to determine climate trends. Multiple spectral calibrations should be conducted throughout the observing period, with regular inter- comparisons to other calibration sources also required. Uncertainties in spectral calibrations should be expressed as a temperature equivalent. Sufficient spectral scans at maximum resolution should be obtained under all extreme observing conditions (at the lowest solar depression angle operated both morning and night, moon and cloud both separately and combined, aurora and under conditions of enhanced atomic oxygen airglow, and under clear sky conditions but with high atmospheric water vapour content) so that an uncertainty for the derived rotational temperatures can be determined for the established data selection criteria. Once the varying emission and absorption features for the hydroxyl region of interest at your site are understood for the observing site, then the spectral resolution of the observing instrument can be reduced to increase temporal resolution with reasonable confidence. This confidence should be tested by investigating the average rotational temperatures derived from all possible line intensity ratios under the extreme observing conditions noted. If a spectral-fitting rotational temperature determination is used, the residuals from the fit should be summed and similarly examined. Hydroxyl measurements provide a cost effective means of monitoring the temperature of the climate-sensitive mesopause region on an almost nightly basis. If care is taken, they provide a valuable data set for investigating climate change.
NASA Technical Reports Server (NTRS)
Liang, Z.; Fixsen, D. J.; Gold, B.
2012-01-01
We show that a one-component variable-emissivity-spectral-index model (the free- model) provides more physically motivated estimates of dust temperature at the Galactic polar caps than one- or two-component fixed-emissivity-spectral-index models (fixed- models) for interstellar dust thermal emission at far-infrared and millimeter wavelengths. For the comparison we have fit all-sky one-component dust models with fixed or variable emissivity spectral index to a new and improved version of the 210-channel dust spectra from the COBE-FIRAS, the 100-240 micrometer maps from the COBE-DIRBE and the 94 GHz dust map from the WMAP. The best model, the free-alpha model, is well constrained by data at 60-3000 GHz over 86 per cent of the total sky area. It predicts dust temperature (T(sub dust)) to be 13.7-22.7 (plus or minus 1.3) K, the emissivity spectral index (alpha) to be 1.2-3.1 (plus or minus 0.3) and the optical depth (tau) to range 0.6-46 x 10(exp -5) with a 23 per cent uncertainty. Using these estimates, we present all-sky evidence for an inverse correlation between the emissivity spectral index and dust temperature, which fits the relation alpha = 1/(delta + omega (raised dot) T(sub dust) with delta = -.0.510 plus or minus 0.011 and omega = 0.059 plus or minus 0.001. This best model will be useful to cosmic microwave background experiments for removing foreground dust contamination and it can serve as an all-sky extended-frequency reference for future higher resolution dust models.
Emissivity model of steel 430 during the growth of oxide layer at 800-1100 K and 1.5 μm
NASA Astrophysics Data System (ADS)
Xing, Wei; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue
2018-01-01
This work studied the variation in spectral emissivity with growth of oxide layer at the different temperatures. For this reason, we measured the normal spectral emissivity during the growth of oxide layer on the sample surface at a wavelength of 1.5 μm over a temperature range 800-1100 K. In the experiment, the temperature was measured by the two thermocouples, which were symmetrically welded onto the front surface of specimens. The average of their readings was regarded as the true temperature. The detector should be perpendicular to the specimen surface as accurately as possible. The variation in spectral emissivity with growth of oxide layer was evaluated at a certain temperature. Altogether 11 emissivity models were evaluated. The conclusion was gained that the more the number of parameters used in the models was, the better the fitting accuracy became. On the whole, all the PEE models, the four-parameter LEE model and the five-parameter PFE, PLE and LEE models could be employed to well fit this kind of variation. The variation in spectral emissivity with temperature was determined at a certain thickness of oxide film. Almost all the models studied in this paper could be used to accurately evaluate this variation. The approximate models of spectral emissivity as a function of temperature and oxide-layer thickness were proposed. The strong oscillations of spectral emissivity were observed, which were affirmed to arise from the interference effect between the two radiations stemming from the oxide layer and from the substrate. The uncertainties in the temperature of steel 430 generated only by the surface oxidization were approximately 4.1-10.7 K in this experiment.
NASA Astrophysics Data System (ADS)
Leja, Joel; Johnson, Benjamin D.; Conroy, Charlie; van Dokkum, Pieter
2018-02-01
Forward modeling of the full galaxy SED is a powerful technique, providing self-consistent constraints on stellar ages, dust properties, and metallicities. However, the accuracy of these results is contingent on the accuracy of the model. One significant source of uncertainty is the contribution of obscured AGN, as they are relatively common and can produce substantial mid-IR (MIR) emission. Here we include emission from dusty AGN torii in the Prospector SED-fitting framework, and fit the UV–IR broadband photometry of 129 nearby galaxies. We find that 10% of the fitted galaxies host an AGN contributing >10% of the observed galaxy MIR luminosity. We demonstrate the necessity of this AGN component in the following ways. First, we compare observed spectral features to spectral features predicted from our model fit to the photometry. We find that the AGN component greatly improves predictions for observed Hα and Hβ luminosities, as well as mid-infrared Akari and Spitzer/IRS spectra. Second, we show that inclusion of the AGN component changes stellar ages and SFRs by up to a factor of 10, and dust attenuations by up to a factor of 2.5. Finally, we show that the strength of our model AGN component correlates with independent AGN indicators, suggesting that these galaxies truly host AGN. Notably, only 46% of the SED-detected AGN would be detected with a simple MIR color selection. Based on these results, we conclude that SED models which fit MIR data without AGN components are vulnerable to substantial bias in their derived parameters.
The EPIC-MOS Particle-Induced Background Spectrum
NASA Technical Reports Server (NTRS)
Kuntz, K. D.; Snowden, S. L.
2006-01-01
We have developed a method for constructing a spectrum of the particle-induced instrumental background of the XMM-Newton EPIC MOS detectors that can be used for observations of the diffuse background and extended sources that fill a significant fraction of the instrument field of view. The strength and spectrum of the particle-induced background, that is, the background due to the interaction of particles with the detector and the detector surroundings, is temporally variable as well as spatially variable over individual chips. Our method uses a combination of the filter-wheel-closed data and a database of unexposed-region data to construct a spectrum of the "quiescent" background. We show that, using this method of background subtraction, the differences between independent observations of the same region of "blank sky" are consistent with the statistical uncertainties except when there is clear evidence of solar wind charge exchange emission. We use the blank sky observations to show that contamination by SWCX emission is a strong function of the solar wind proton flux, and that observations through the flanks of the magnetosheath appear to be contaminated only at much higher solar wind fluxes. We have also developed a spectral model of the residual soft proton flares, which allows their effects to be removed to a substantial degree during spectral fitting.
NASA Astrophysics Data System (ADS)
Tang, Jian; Deng, Chunfeng; Wu, Chunlei; Lu, Biao; Hu, Yonghong
2017-12-01
The characteristics of plasmas in a titanium hydride vacuum arc ion source were experimentally investigated by a temporally- and spatially-integrated optical emission spectroscopy method. A plasma emission spectral fitting model was developed to calculate the plasmas temperature and relative density of each particle component, assuming plasmas were in local thermodynamic equilibrium state and optical thin in this study. The good agreement was founded between the predicted and measured spectra in the interesting regions of 330-340 nm and 498-503 nm for Ti+ ion and Ti atom respectively, while varying the plasma temperature and density. Compared with conventional Boltzmann plot method, this method, therefore, made a significant improvement on the plasma diagnosis in dealing with the spectral profile with many lines overlapped. At the same time, to understand the mechanism of the occluded-gas vacuum arc discharge plasmas, the plasmas emission spectra, ion relative density, and temperature with different discharge conditions were studied. The results indicated that the rate of Ti metal evaporation and H desorption from the electrode would be enhanced with arc current, and the ionization temperature increased with the feed-in power of arc discharge, leading more H+ and Ti+ ions, but reducing the H+ proportion in arc discharged plasmas.
Wu, Jing; Philip, Ana-Maria; Podkowinski, Dominika; Gerendas, Bianca S; Langs, Georg; Simader, Christian; Waldstein, Sebastian M; Schmidt-Erfurth, Ursula M
2016-01-01
Development of image analysis and machine learning methods for segmentation of clinically significant pathology in retinal spectral-domain optical coherence tomography (SD-OCT), used in disease detection and prediction, is limited due to the availability of expertly annotated reference data. Retinal segmentation methods use datasets that either are not publicly available, come from only one device, or use different evaluation methodologies making them difficult to compare. Thus we present and evaluate a multiple expert annotated reference dataset for the problem of intraretinal cystoid fluid (IRF) segmentation, a key indicator in exudative macular disease. In addition, a standardized framework for segmentation accuracy evaluation, applicable to other pathological structures, is presented. Integral to this work is the dataset used which must be fit for purpose for IRF segmentation algorithm training and testing. We describe here a multivendor dataset comprised of 30 scans. Each OCT scan for system training has been annotated by multiple graders using a proprietary system. Evaluation of the intergrader annotations shows a good correlation, thus making the reproducibly annotated scans suitable for the training and validation of image processing and machine learning based segmentation methods. The dataset will be made publicly available in the form of a segmentation Grand Challenge.
Wu, Jing; Philip, Ana-Maria; Podkowinski, Dominika; Gerendas, Bianca S.; Langs, Georg; Simader, Christian
2016-01-01
Development of image analysis and machine learning methods for segmentation of clinically significant pathology in retinal spectral-domain optical coherence tomography (SD-OCT), used in disease detection and prediction, is limited due to the availability of expertly annotated reference data. Retinal segmentation methods use datasets that either are not publicly available, come from only one device, or use different evaluation methodologies making them difficult to compare. Thus we present and evaluate a multiple expert annotated reference dataset for the problem of intraretinal cystoid fluid (IRF) segmentation, a key indicator in exudative macular disease. In addition, a standardized framework for segmentation accuracy evaluation, applicable to other pathological structures, is presented. Integral to this work is the dataset used which must be fit for purpose for IRF segmentation algorithm training and testing. We describe here a multivendor dataset comprised of 30 scans. Each OCT scan for system training has been annotated by multiple graders using a proprietary system. Evaluation of the intergrader annotations shows a good correlation, thus making the reproducibly annotated scans suitable for the training and validation of image processing and machine learning based segmentation methods. The dataset will be made publicly available in the form of a segmentation Grand Challenge. PMID:27579177
Method of photon spectral analysis
Gehrke, Robert J.; Putnam, Marie H.; Killian, E. Wayne; Helmer, Richard G.; Kynaston, Ronnie L.; Goodwin, Scott G.; Johnson, Larry O.
1993-01-01
A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and .gamma.-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2000 keV), as well as high-energy .gamma. rays (>1 MeV). A 8192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The .gamma.-ray portion of each spectrum is analyzed by a standard Ge .gamma.-ray analysis program. This method can be applied to any analysis involving x- and .gamma.-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the .gamma.-ray analysis and accommodated during the x-ray analysis.
Method of photon spectral analysis
Gehrke, R.J.; Putnam, M.H.; Killian, E.W.; Helmer, R.G.; Kynaston, R.L.; Goodwin, S.G.; Johnson, L.O.
1993-04-27
A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and [gamma]-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2,000 keV), as well as high-energy [gamma] rays (>1 MeV). A 8,192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The [gamma]-ray portion of each spectrum is analyzed by a standard Ge [gamma]-ray analysis program. This method can be applied to any analysis involving x- and [gamma]-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the [gamma]-ray analysis and accommodated during the x-ray analysis.
NASA Astrophysics Data System (ADS)
Pound, Marc W.; Wolfire, Mark G.; Mundy, Lee G.; Teuben, Peter; Lord, Steve
2011-02-01
DIRT is a Java applet for modelling astrophysical processes in circumstellar dust shells around young and evolved stars. With DIRT, you can: select and display over 500,000 pre-run model spectral energy distributions (SEDs) find the best-fit model to your data set account for beam size in model fitting manipulate data and models with an interactive viewer display gas and dust density and temperature profiles display model intensity profiles at various wavelengths
Spectral Modeling of the EGRET 3EG Gamma Ray Sources Near the Galactic Plane
NASA Technical Reports Server (NTRS)
Bertsch, D. L.; Hartman, R. C.; Hunter, S. D.; Thompson, D. J.; Lin, Y. C.; Kniffen, D. A.; Kanbach, G.; Mayer-Hasselwander, H. A.; Reimer, O.; Sreekumar, P.
1999-01-01
The third EGRET catalog lists 84 sources within 10 deg of the Galactic Plane. Five of these are well-known spin-powered pulsars, 2 and possibly 3 others are blazars, and the remaining 74 are classified as unidentified, although 6 of these are likely to be artifacts of nearby strong sources. Several of the remaining 68 unidentified sources have been noted as having positional agreement with supernovae remnants and OB associations. Others may be radio-quiet pulsars like Geminga, and still others may belong to a totally new class of sources. The question of the energy spectral distributions of these sources is an important clue to their identification. In this paper, the spectra of the sources within 10 deg of Galactic Plane are fit with three different functional forms; a single power law, two power laws, and a power law with an exponential cutoff. Where possible, the best fit is selected with statistical tests. Twelve, and possibly an additional 5 sources, are found to have spectra that are fit by a breaking power law or by the power law with exponential cutoff function.
NASA Astrophysics Data System (ADS)
Giovannoli, E.; Buat, V.
2013-03-01
We use the code CIGALE (Code Investigating Galaxies Emission: Burgarella et al. 2005; Noll et al. 2009) which provides physical information about galaxies by fitting their UV (ultraviolet)-to-IR (infrared) spectral energy distribuition (SED). CIGALE is based on the use of a UV-optical stellar SED plus a dust IR-emitting component. We study a sample of 136 Luminous Infrared Galaxies (LIRGs) at z˜0.7 in the ECDF-S previously studied in Giovannoli et al. (2011). We focus on the way the empirical Dale & Helou (2002) templates reproduce the observed SEDs of the LIRGs. Fig. 1 shows the total infrared luminosity (L IR ) provided by CIGALE using the 64 templates (x axis) and using 2 templates (y axis) representative of the whole sample. Despite the larger dispersion when only 1 or 2 Herschel data are available, the agreement between both values is good with Δ log L IR = 0.0013 ± 0.045 dex. We conclude that 2 IR SEDs can be used alone to determine the L IR of LIRGs at z˜0.7 in an SED-fitting procedure.
LEPTONIC AND LEPTO-HADRONIC MODELING OF THE 2010 NOVEMBER FLARE FROM 3C 454.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diltz, C.; Böttcher, M.
In this study, we use a one-zone leptonic and a lepto-hadronic model to investigate the multi-wavelength emission and prominent flare of the flat spectrum radio quasar 3C 454.3 in 2010 November. We perform a parameter study with both models to obtain broadband fits to the spectral energy distribution (SED) of 3C 454.3. Starting with the baseline parameters obtained from the fits, we then investigate different flaring scenarios for both models to explain an extreme outburst and spectral hardening of 3C 454.3 that occurred in 2010 November. We find that the one-zone lepto-hadronic model can successfully explain both the broadband multi-wavelengthmore » SED and light curves in the optical R, Swift X-Ray Telescope, and Fermi γ -ray band passes for 3C 454.3 during quiescence and the peak of the 2010 November flare. We also find that the one-zone leptonic model produces poor fits to the broadband spectra in the X-ray and high-energy γ -ray band passes for the 2010 November flare.« less
Is There Evidence for X-Ray Emitting Plasma Very Close to the Photospheres of O Stars?
NASA Technical Reports Server (NTRS)
Leutenegger, Maurice A.
2008-01-01
Aims. We reexamine the implications of the recent HESS observations of the blazar 1ES0229+200 for constraining the extragalactic mid-infrared background radiation. Methods. We examine the effect of gamma-ray absorption by the extragalactic infrared radiation on predicted intrinsic spectra for this blazar and compare our results with the observational data. Results. We find agreement with our previous results on the shape of the infrared spectral energy distribution, contrary to the recent assertion of the HESS group. Our analysis indicates that 1ES0229+200 has a very hard intrinsic spectrum with a spectral index between 1.1 +/- 0.3 and 1.5 +/- 0.3 in the energy range between approx.0.5 TeV and approx.15 TeV. Conclusions. Under the assumptions that (1) the models of Stecker et al. (2006, ApJ, 648, 774) as derived from numerous detailed infrared observations are reasonable, and (2) spectral indexes in the range 1 < gamma < 1.5 are obtainable from relativistic shock acceleration under the astrophysical conditions extant in blazar flares (Stecker et al. 2007, ApJ, 667, L29), the fits to the observations of 1ES0229+200 using our previous infrared spectral energy distributions are consistent with both the infrared and gamma-ray observations. Our analysis presents evidence indicating that the energy spectrum of relativistic particles in 1ES0229+200 is produced by relativistic shock acceleration, producing an intrinsic -ray spectrum with index 1 < gamma < 1.5 and with no evidence of a peak in the spectral energy distribution up to energies approx.15 TeV.
A New Method for Atmospheric Correction of MRO/CRISM Data.
NASA Astrophysics Data System (ADS)
Noe Dobrea, Eldar Z.; Dressing, C.; Wolff, M. J.
2009-09-01
The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter (MRO) collects hyperspectral images from 0.362 to 3.92 μm at 6.55 nanometers/channel, and at a spatial resolution of 20 m/pixel. The 1-2.6 μm spectral range is often used to identify and map the distribution of hydrous minerals using mineralogically diagnostic bands at 1.4 μm, 1.9 μm, and 2 - 2.5 micron region. Atmospheric correction of the 2-μm CO2 band typically employs the same methodology applied to OMEGA data (Mustard et al., Nature 454, 2008): an atmospheric opacity spectrum, obtained from the ratio of spectra from the base to spectra from the peak of Olympus Mons, is rescaled for each spectrum in the observation to fit the 2-μm CO2 band, and is subsequently used to correct the data. Three important aspects are not considered in this correction: 1) absorptions due to water vapor are improperly accounted for, 2) the band-center of each channel shifts slightly with time, and 3) multiple scattering due to atmospheric aerosols is not considered. The second issue results in miss-registration of the sharp CO2 features in the 2-μm triplet, and hence poor atmospheric correction. This leads to the necessity to ratio all spectra using the spectrum of a spectrally "bland” region in each observation in order to distinguish features 1.9 μm. Here, we present an improved atmospheric correction method, which uses emission phase function (EPF) observations to correct for molecular opacity, and a discrete ordinate radiative transfer algorithm (DISORT - Stamnes et al., Appl. Opt. 27, 1988) to correct for the effects of multiple scattering. This method results in a significant improvement in the correction of the 2-μm CO2 band, allowing us to forgo the use of spectral ratios that affect the spectral shape and preclude the derivation of reflectance values in the data.
NASA Astrophysics Data System (ADS)
Gomes, J. M.; Papaderos, P.
2017-07-01
The goal of population spectral synthesis (pss; also referred to as inverse, semi-empirical evolutionary- or fossil record approach) is to decipher from the spectrum of a galaxy the mass, age and metallicity of its constituent stellar populations. This technique, which is the reverse of but complementary to evolutionary synthesis, has been established as fundamental tool in extragalactic research. It has been extensively applied to large spectroscopic data sets, notably the SDSS, leading to important insights into the galaxy assembly history. However, despite significant improvements over the past decade, all current pss codes suffer from two major deficiencies that inhibit us from gaining sharp insights into the star-formation history (SFH) of galaxies and potentially introduce substantial biases in studies of their physical properties (e.g., stellar mass, mass-weighted stellar age and specific star formation rate). These are I) the neglect of nebular emission in spectral fits, consequently; II) the lack of a mechanism that ensures consistency between the best-fitting SFH and the observed nebular emission characteristics of a star-forming (SF) galaxy (e.g., hydrogen Balmer-line luminosities and equivalent widths-EWs, shape of the continuum in the region around the Balmer and Paschen jump). In this article, we present fado (Fitting Analysis using Differential evolution Optimization) - a conceptually novel, publicly available pss tool with the distinctive capability of permitting identification of the SFH that reproduces the observed nebular characteristics of a SF galaxy. This so-far unique self-consistency concept allows us to significantly alleviate degeneracies in current spectral synthesis, thereby opening a new avenue to the exploration of the assembly history of galaxies. The innovative character of fado is further augmented by its mathematical foundation: fado is the first pss code employing genetic differential evolution optimization. This, in conjunction with various other currently unique elements in its mathematical concept and numerical realization (e.g., mid-analysis optimization of the spectral library using artificial intelligence, test for convergence through a procedure inspired by Markov chain Monte Carlo techniques, quasi-parallelization embedded within a modular architecture) results in key improvements with respect to computational efficiency and uniqueness of the best-fitting SFHs. Furthermore, fado incorporates within a single code the entire chain of pre-processing, modeling, post-processing, storage and graphical representation of the relevant output from pss, including emission-line measurements and estimates of uncertainties for all primary and secondary products from spectral synthesis (e.g., mass contributions of individual stellar populations, mass- and luminosity-weighted stellar ages and metallicities). This integrated concept greatly simplifies and accelerates a lengthy sequence of individual time-consuming steps that are generally involved in pss modeling, further enhancing the overall efficiency of the code and inviting to its automated application to large spectroscopic data sets. The distribution package of the FADO v.1 tool contains the binary and its auxiliary files. FADO v.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A63
The direct cooling tail method for X-ray burst analysis to constrain neutron star masses and radii
NASA Astrophysics Data System (ADS)
Suleimanov, Valery F.; Poutanen, Juri; Nättilä, Joonas; Kajava, Jari J. E.; Revnivtsev, Mikhail G.; Werner, Klaus
2017-04-01
Determining neutron star (NS) radii and masses can help to understand the properties of matter at supra-nuclear densities. Thermal emission during thermonuclear X-ray bursts from NSs in low-mass X-ray binaries provides a unique opportunity to study NS parameters, because of the high fluxes, large luminosity variations and the related changes in the spectral properties. The standard cooling tail method uses hot NS atmosphere models to convert the observed spectral evolution during cooling stages of X-ray bursts to the Eddington flux FEdd and the stellar angular size Ω. These are then translated to the constraints on the NS mass M and radius R. Here we present the improved, direct cooling tail method that generalizes the standard approach. First, we adjust the cooling tail method to account for the bolometric correction to the flux. Then, we fit the observed dependence of the blackbody normalization on flux with a theoretical model directly on the M-R plane by interpolating theoretical dependences to a given gravity, hence ensuring only weakly informative priors for M and R instead of FEdd and Ω. The direct cooling method is demonstrated using a photospheric radius expansion burst from SAX J1810.8-2609, which has happened when the system was in the hard state. Comparing to the standard cooling tail method, the confidence regions are shifted by 1σ towards larger radii, giving R = 11.5-13.0 km at M = 1.3-1.8 M⊙ for this NS.
A Stochastic Model of Space-Time Variability of Mesoscale Rainfall: Statistics of Spatial Averages
NASA Technical Reports Server (NTRS)
Kundu, Prasun K.; Bell, Thomas L.
2003-01-01
A characteristic feature of rainfall statistics is that they depend on the space and time scales over which rain data are averaged. A previously developed spectral model of rain statistics that is designed to capture this property, predicts power law scaling behavior for the second moment statistics of area-averaged rain rate on the averaging length scale L as L right arrow 0. In the present work a more efficient method of estimating the model parameters is presented, and used to fit the model to the statistics of area-averaged rain rate derived from gridded radar precipitation data from TOGA COARE. Statistical properties of the data and the model predictions are compared over a wide range of averaging scales. An extension of the spectral model scaling relations to describe the dependence of the average fraction of grid boxes within an area containing nonzero rain (the "rainy area fraction") on the grid scale L is also explored.
Kang, Jinho; Shin, Junho; Kim, Chur; Jung, Kwangyun; Park, Suhyeon; Kim, Jungwon
2014-10-20
We characterize the timing jitter spectral density of the time-of-flight (TOF) in the indoor atmospheric transfer of optical pulse train over 10 decades of Fourier frequency range (10 μHz - 100 kHz) with sub-100-as resolution using a balanced optical cross-correlator (BOC). Based on the well-known theory for atmospheric transfer of a laser beam, we could fit the measured timing jitter power spectral density to the theory and analyze it with a fairly good agreement from 20 mHz to 10 Hz Fourier frequency range. Moreover, we demonstrate that the BOC-based timing stabilization method can suppress the excess fluctuations in timing from >200 fs (rms) to 2.6 fs (rms) maintained over 130 hours when an optical pulse train is transferred over a 76.2-m long free-space beam path in laboratory environment. The demonstrated stabilization result corresponds to 4 × 10(-20) overlapping Allan deviation at 117,000 s averaging time.
NASA Astrophysics Data System (ADS)
Lu, Liping; Wu, Jie; Wei, Liangshu; Wu, Fang
2016-12-01
β-carotene can self-assemble to form J- or H-type aggregate in hydrophilic environments, which is crucial for the proper functioning of biological system. Although several ways controlling the formation of the two types of aggregate in hydrated ethanol have been investigated in recent years, our study provided another way to control whether J- or H- β-carotene was formed and presented a method to investigate the aggregated structure. For this purpose, the aggregates of β-carotene formed at different temperatures were studied by UV-Vis spectra and a computational method based on Frenkel exciton was applied to simulate the absorption spectra to obtain the aggregated structure of the β-carotene. The analysis showed that β-carotene formed weakly coupled H-aggregate at 15 °C in 1:1 ethanol-water solvent, and with the increase of temperature it tended to form J-type of aggregate. The absorption spectral simulation based on one-dimensional Frenkel exciton model revealed that good fit with the experiment was obtained with distance between neighbor molecules r = 0.82 nm, disorder of the system D = 1500 cm- 1 for H-type and r = 1.04 nm, D = 1800 cm- 1 for J-type.
Imaging Young Stellar Objects with VLTi/PIONIER
NASA Astrophysics Data System (ADS)
Kluska, J.; Malbet, F.; Berger, J.-P.; Benisty, M.; Lazareff, B.; Le Bouquin, J.-B.; Baron, F.; Dominik, C.; Isella, A.; Juhasz, A.; Kraus, S.; Lachaume, R.; Ménard, F.; Millan-Gabet, R.; Monnier, J.; Pinte, C.; Soulez, F.; Tallon, M.; Thi, W.-F.; Thiébaut, É.; Zins, G.
2014-04-01
Optical interferometry imaging is designed to help us to reveal complex astronomical sources without a prior model. Among these complex objects are the young stars and their environments, which have a typical morphology with a point-like source, surrounded by circumstellar material with unknown morphology. To image them, we have developed a numerical method that removes completely the stellar point source and reconstructs the rest of the image, using the differences in the spectral behavior between the star and its circumstellar material. We aim to reveal the first Astronomical Units of these objects where many physical phenomena could interplay: the dust sublimation causing a puffed-up inner rim, a dusty halo, a dusty wind or an inner gaseous component. To investigate more deeply these regions, we carried out the first Large Program survey of HAeBe stars with two main goals: statistics on the geometry of these objects at the first astronomical unit scale and imaging their very close environment. The images reveal the environment, which is not polluted by the star and allows us to derive the best fit for the flux ratio and the spectral slope. We present the first images from this survey and the application of the imaging method on other astronomical objects.
Ganapolskii, E M; Eremenko, Z E; Tarasov, Yu V
2009-04-01
The influence of random axially homogeneous surface roughness on spectral properties of dielectric resonators of circular disk form is studied both theoretically and experimentally. To solve the equations governing the dynamics of electromagnetic fields, the method of eigenmode separation is applied previously developed with reference to inhomogeneous systems subject to arbitrary external static potential. We prove theoretically that it is the gradient mechanism of wave-surface scattering that is highly responsible for nondissipative loss in the resonator. The influence of side-boundary inhomogeneities on the resonator spectrum is shown to be described in terms of effective renormalization of mode wave numbers jointly with azimuth indices in the characteristic equation. To study experimentally the effect of inhomogeneities on the resonator spectrum, the method of modeling in the millimeter wave range is applied. As a model object, we use a dielectric disk resonator (DDR) fitted with external inhomogeneities randomly arranged at its side boundary. Experimental results show good agreement with theoretical predictions as regards the predominance of the gradient scattering mechanism. It is shown theoretically and confirmed in the experiment that TM oscillations in the DDR are less affected by surface inhomogeneities than TE oscillations with the same azimuth indices. The DDR model chosen for our study as well as characteristic equations obtained thereupon enable one to calculate both the eigenfrequencies and the Q factors of resonance spectral lines to fairly good accuracy. The results of calculations agree well with obtained experimental data.
The tilt effect in DOAS observations
NASA Astrophysics Data System (ADS)
Lampel, Johannes; Wang, Yang; Hilboll, Andreas; Beirle, Steffen; Sihler, Holger; Puķīte, Janis; Platt, Ulrich; Wagner, Thomas
2017-12-01
Experience of differential atmospheric absorption spectroscopy (DOAS) shows that a spectral shift between measurement spectra and reference spectra is frequently required in order to achieve optimal fit results, while the straightforward calculation of the optical density proves inferior. The shift is often attributed to temporal instabilities of the instrument but implicitly solved the problem of the tilt effect discussed/explained in this paper. Spectral positions of Fraunhofer and molecular absorption lines are systematically shifted for different measurement geometries due to an overall slope - or tilt - of the intensity spectrum. The phenomenon has become known as the tilt effect for limb satellite observations, where it is corrected for in a first-order approximation, whereas the remaining community is less aware of its cause and consequences. It is caused by the measurement process, because atmospheric absorption and convolution in the spectrometer do not commute. Highly resolved spectral structures in the spectrum will first be modified by absorption and scattering processes in the atmosphere before they are recorded with a spectrometer, which convolves them with a specific instrument function. In the DOAS spectral evaluation process, however, the polynomial (or other function used for this purpose) accounting for broadband absorption is applied after the convolution is performed. In this paper, we derive that changing the order of the two modifications of the spectra leads to different results. Assuming typical geometries for the observations of scattered sunlight and a spectral resolution of 0.6 nm, this effect can be interpreted as a spectral shift of up to 1.5 pm, which is confirmed in the actual analysis of the ground-based measurements of scattered sunlight as well as in numerical radiative transfer simulations. If no spectral shift is allowed by the fitting routine, residual structures of up to 2.5 × 10-3 peak-to-peak are observed. Thus, this effect needs to be considered for DOAS applications aiming at an rms of the residual of 10-3 and below.
High-angular-resolution stellar imaging with occultations from the Cassini spacecraft - III. Mira
NASA Astrophysics Data System (ADS)
Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Hedman, Matthew M.
2016-04-01
We present an analysis of spectral and spatial data of Mira obtained by the Cassini spacecraft, which not only observed the star's spectra over a broad range of near-infrared wavelengths, but was also able to obtain high-resolution spatial information by watching the star pass behind Saturn's rings. The observed spectral range of 1-5 microns reveals the stellar atmosphere in the crucial water-bands which are unavailable to terrestrial observers, and the simultaneous spatial sampling allows the origin of spectral features to be located in the stellar environment. Models are fitted to the data, revealing the spectral and spatial structure of molecular layers surrounding the star. High-resolution imagery is recovered revealing the layered and asymmetric nature of the stellar atmosphere. The observational data set is also used to confront the state-of-the-art cool opacity-sampling dynamic extended atmosphere models of Mira variables through a detailed spectral and spatial comparison, revealing in general a good agreement with some specific departures corresponding to particular spectral features.
NASA Astrophysics Data System (ADS)
Topping, David O.; Allan, James; Rami Alfarra, M.; Aumont, Bernard
2017-06-01
Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA) formation is thought to be hampered by the complexity of the system. While there are fundamental models now available that can simulate the tens of thousands of reactions thought to take place, validation against experiments is highly challenging. Techniques capable of identifying individual molecules such as chromatography are generally only capable of quantifying a subset of the material present, making it unsuitable for a carbon budget analysis. Integrative analytical methods such as the Aerosol Mass Spectrometer (AMS) are capable of quantifying all mass, but because of their inability to isolate individual molecules, comparisons have been limited to simple data products such as total organic mass and the O : C ratio. More detailed comparisons could be made if more of the mass spectral information could be used, but because a discrete inversion of AMS data is not possible, this activity requires a system of predicting mass spectra based on molecular composition. In this proof-of-concept study, the ability to train supervised methods to predict electron impact ionisation (EI) mass spectra for the AMS is evaluated. Supervised Training Regression for the Arbitrary Prediction of Spectra (STRAPS) is not built from first principles. A methodology is constructed whereby the presence of specific mass-to-charge ratio (m/z) channels is fitted as a function of molecular structure before the relative peak height for each channel is similarly fitted using a range of regression methods. The widely used AMS mass spectral database is used as a basis for this, using unit mass resolution spectra of laboratory standards. Key to the fitting process is choice of structural information, or molecular fingerprint. Our approach relies on using supervised methods to automatically optimise the relationship between spectral characteristics and these molecular fingerprints. Therefore, any internal mechanisms or instrument features impacting on fragmentation are implicitly accounted for in the fitted model. Whilst one might expect a collection of keys specifically designed according to EI fragmentation principles to offer a robust basis, the suitability of a range of commonly available fingerprints is evaluated. Using available fingerprints in isolation, initial results suggest the generic public MACCS
fingerprints provide the most accurate trained model when combined with both decision trees and random forests, with median cosine angles of 0.94-0.97 between modelled and measured spectra. There is some sensitivity to choice of fingerprint, but most sensitivity is in choice of regression technique. Support vector machines perform the worst, with median values of 0.78-0.85 and lower ranges approaching 0.4, depending on the fingerprint used. More detailed analysis of modelled versus mass spectra demonstrates important composition-dependent sensitivities on a compound-by-compound basis. This is further demonstrated when we apply the trained methods to a model α-pinene SOA system, using output from the GECKO-A model. This shows that use of a generic fingerprint referred to as FP4
and one designed for vapour pressure predictions (Nanoolal
) gives plausible mass spectra, whilst the use of the MACCS keys in isolation performs poorly in this application, demonstrating the need for evaluating model performance against other SOA systems rather than existing laboratory databases on single compounds. Given the limited number of compounds used within the AMS training dataset, it is difficult to prescribe which combination of approach would lead to a robust generic model across all expected compositions. Nonetheless, the study demonstrates the use of a methodology that would be improved with more training data, fingerprints designed explicitly for fragmentation mechanisms occurring within the AMS, and data from additional mixed systems for further validation. To facilitate further development of the method, including application to other instruments, the model code for re-training is provided via a public Github and Zenodo software repository.
Laser Diagnostics for Spacecraft Propulsion
2015-10-13
intensity and wavelength (modulation frequency up to 1 MHz) – Baseline fit + Beer - Lambert Law gives absorbance of spectral feature • Species... Lambert Law Iν(L)= Iν0exp(-k νL) Iν(L) Transmitted spectral intensity after traveling through a distance, L, through the medium [W/cm2s−1] Iν0...other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
NASA Astrophysics Data System (ADS)
Bradley, Christine L.; Kupinski, Meredith; Diner, David J.; Xu, Feng; Chipman, Russell A.
2015-09-01
Many models used to represent the boundary condition for the separation of atmospheric scattering from the surface reflectance in polarized remote sensing measurements assume that the polarized surface reflectance is spectrally neutral. The Spectral Invariance Hypothesis asserts that the magnitude and shape of the polarized bidirectional reflectance factor (pBRF) is equal for all wavelengths. In order to test this hypothesis, JPL's Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) is used to measure polarization information of different outdoor surface types. GroundMSPI measures the linear polarization Stokes parameters (I, Q, U), at three wavelengths, 470 nm, 660 nm, and 865 nm. The camera is mounted on a two-axis gimbal to accurately select the view azimuth and elevation directions. On clear sky days we acquired day-long scans of scenes that contain various surface types such as grass, dirt, cement, brick, and asphalt and placed a Spectralon panel in the camera field of view to provide a reflectance reference. Over the course of each day, changing solar position in the sky provides a large range of scattering angles for this study. The polarized bidirectional reflectance factor (pBRF) is measured for the three wavelengths and the best fit slope of the spectral correlation is reported. This work reports the range of best fit slopes measured for five region types.
Spectrum synthesis of the Type Ia supernovae SN 1992A and SN 1981B
NASA Technical Reports Server (NTRS)
Nugent, Peter; Baron, E.; Hauschildt, Peter H.; Branch, David
1995-01-01
We present non-local thermodynamic equilibrium (non-LTE) synthetic spectra for the Type Ia supernovae SN 1992A and SN 1981B, near maximum light. At this epoch both supernovae were observed from the UV through the optical. This wide spectral coverage is essential for determining the density structure of a SN Ia. Our fits are in good agreement with observation and provide some insight as to the differences between these supernovae. We also discuss the application of the expanding photosphere method to SNe Ia which gives a distance that is independent of those based on the decay of Ni-56 and Cepheid variable stars.
NASA Astrophysics Data System (ADS)
Tran, Henry K.; Stanton, John F.; Miller, Terry A.
2018-01-01
The limitations associated with the common practice of fitting a quadratic Hamiltonian to vibronic levels of a Jahn-Teller system have been explored quantitatively. Satisfactory results for the prototypical X∼2E‧ state of Li3 are obtained from fits to both experimental spectral data and to an "artificial" spectrum calculated by a quartic Hamiltonian which accurately reproduces the adiabatic potential obtained from state-of-the-art quantum chemistry calculations. However the values of the Jahn-Teller parameters, stabilization energy, and pseudo-rotation barrier obtained from the quadratic fit differ markedly from those associated with the ab initio potential. Nonetheless the RMS deviations of the fits are not strikingly different. Guidelines are suggested for comparing parameters obtained from fits to experiment to those obtained by direct calculation, but a principal conclusion of this work is that such comparisons must be done with a high degree of caution.
Thrane, Jan-Erik; Kyle, Marcia; Striebel, Maren; Haande, Sigrid; Grung, Merete; Rohrlack, Thomas; Andersen, Tom
2015-01-01
The Gauss-peak spectra (GPS) method represents individual pigment spectra as weighted sums of Gaussian functions, and uses these to model absorbance spectra of phytoplankton pigment mixtures. We here present several improvements for this type of methodology, including adaptation to plate reader technology and efficient model fitting by open source software. We use a one-step modeling of both pigment absorption and background attenuation with non-negative least squares, following a one-time instrument-specific calibration. The fitted background is shown to be higher than a solvent blank, with features reflecting contributions from both scatter and non-pigment absorption. We assessed pigment aliasing due to absorption spectra similarity by Monte Carlo simulation, and used this information to select a robust set of identifiable pigments that are also expected to be common in natural samples. To test the method’s performance, we analyzed absorbance spectra of pigment extracts from sediment cores, 75 natural lake samples, and four phytoplankton cultures, and compared the estimated pigment concentrations with concentrations obtained using high performance liquid chromatography (HPLC). The deviance between observed and fitted spectra was generally very low, indicating that measured spectra could successfully be reconstructed as weighted sums of pigment and background components. Concentrations of total chlorophylls and total carotenoids could accurately be estimated for both sediment and lake samples, but individual pigment concentrations (especially carotenoids) proved difficult to resolve due to similarity between their absorbance spectra. In general, our modified-GPS method provides an improvement of the GPS method that is a fast, inexpensive, and high-throughput alternative for screening of pigment composition in samples of phytoplankton material. PMID:26359659
Constraining the red shifts of TeV BL Lac objects
NASA Astrophysics Data System (ADS)
Qin, Longhua; Wang, Jiancheng; Yan, Dahai; Yang, Chuyuan; Yuan, Zunli; Zhou, Ming
2018-01-01
We present a model-dependent method to estimate the red shifts of three TeV BL Lac objects (BL Lacs) through fitting their (quasi-)simultaneous multi-waveband spectral energy distributions (SEDs) with a one-zone leptonic synchrotron self-Compton model. Considering the impact of electron energy distributions (EEDs) on the results, we use three types of EEDs to fit the SEDs: a power-law EED with exponential cut-off (PLC), a log-parabola (PLLP) EED and the broken power-law (BPL) EED. We also use a parameter α to describe the uncertainties of the extragalactic background light models, as in Abdo et al. We then use a Markov chain Monte Carlo method to explore the multi-dimensional parameter space and obtain the uncertainties of the model parameters based on the observational data. We apply our method to obtain the red shifts of three TeV BL Lac objects in the marginalized 68 per cent confidence, and find that the PLC EED does not fit the SEDs. For 3C66A, the red shift is 0.14-0.31 and 0.16-0.32 in the BPL and PLLP EEDs. For PKS1424+240, the red shift is 0.55-0.68 and 0.55-0.67 in the BPL and PLLP EEDs. For PG1553+113, the red shift is 0.22-0.48 and 0.22-0.39 in the BPL and PLLP EEDs. We also estimate the red shift of PKS1424+240 in the high stage to be 0.46-0.67 in the PLLP EED, roughly consistent with that in the low stage.
Compton thick active galactic nuclei in Chandra surveys
NASA Astrophysics Data System (ADS)
Brightman, Murray; Nandra, Kirpal; Salvato, Mara; Hsu, Li-Ting; Aird, James; Rangel, Cyprian
2014-09-01
We present the results from an X-ray spectral analysis of active galactic nuclei (AGN) in the ChandraDeep Field-South, All-wavelength Extended Groth-strip International Survey (AEGIS)-Deep X-ray survey (XD) and Chandra-Cosmic Evolution Surveys (COSMOS), focusing on the identification and characterization of the most heavily obscured, Compton thick (CT, NH > 1024 cm-2) sources. Our sample is comprised of 3184 X-ray selected extragalactic sources, which has a high rate of redshift completeness (96.6 per cent), and includes additional spectroscopic redshifts and improved photometric redshifts over previous studies. We use spectral models designed for heavily obscured AGN which self-consistently include all major spectral signatures of heavy absorption. We validate our spectral fitting method through simulations, identify CT sources not selected through this method using X-ray colours and take considerations for the constraints on NH given the low count nature of many of our sources. After these considerations, we identify a total of 100 CT AGN with best-fitting NH > 1024 cm-2 and NH constrained to be above 1023.5 cm-2 at 90 per cent confidence. These sources cover an intrinsic 2-10 keV X-ray luminosity range of 1042-3 × 1045 erg s-1 and a redshift range of z = 0.1-4. This sample will enable characterization of these heavily obscured AGN across cosmic time and to ascertain their cosmological significance. These survey fields are sites of extensive multiwavelength coverage, including near-infrared Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data and far-infrared Herschel data, enabling forthcoming investigations into the host properties of CT AGN. Furthermore, by using the torus models to test different covering factor scenarios, and by investigating the inclusion of the soft scattered emission, we find evidence that the covering factor of the obscuring material decreases with LX for all redshifts, consistent with the receding torus model, and that this factor increases with redshift, consistent with an increase in the obscured fraction towards higher redshifts. The strong relationship between the parameters of obscuration and LX points towards an origin intrinsic to the AGN; however, the increase of the covering factor with redshift may point towards contributions to the obscuration by the host galaxy. We make NH, Γ (with uncertainties), observed X-ray fluxes and intrinsic 2-10 keV luminosities for all sources analysed in this work publicly available in an online catalogue.
PEPSI deep spectra. III. Chemical analysis of the ancient planet-host star Kepler-444
NASA Astrophysics Data System (ADS)
Mack, C. E.; Strassmeier, K. G.; Ilyin, I.; Schuler, S. C.; Spada, F.; Barnes, S. A.
2018-04-01
Context. With the Large Binocular Telescope (LBT), we obtained a spectrum with PEPSI, its new optical high-resolution échelle spectrograph. The spectrum has very high resolution and a high signal-to-noise (S/N) and is of the K0V host Kepler-444, which is known to host five sub-Earth-sized rocky planets. The spectrum has a resolution of R ≈ 250 000, a continuous wavelength coverage from 4230 Å to 9120 Å, and an S/N between 150-550:1 (blue to red). Aim. We performed a detailed chemical analysis to determine the photospheric abundances of 18 chemical elements. These were used to place constraints on the bulk composition of the five rocky planets. Methods: Our spectral analysis employs the equivalent-width method for most of our spectral lines, but we used spectral synthesis to fit a small number of lines that required special care. In both cases, we derived our abundances using the MOOG spectral analysis package and Kurucz model atmospheres. Results: We find no correlation between elemental abundance and condensation temperature among the refractory elements (TC > 950 K). In addition, using our spectroscopic stellar parameters and isochrone fitting, we find an age of 10 ± 1.5 Gyr, which is consistent with the asteroseismic age of 11 ± 1 Gyr. Finally, from the photospheric abundances of Mg, Si, and Fe, we estimate that the typical Fe-core mass fraction for the rocky planets in the Kepler-444 system is approximately 24%. Conclusions: If our estimate of the Fe-core mass fraction is confirmed by more detailed modeling of the disk chemistry and simulations of planet formation and evolution in the Kepler-444 system, then this would suggest that rocky planets in more metal-poor and α-enhanced systems may tend to be less dense than their counterparts of comparable size in more metal-rich systems. Based on data acquired with PEPSI using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Leibniz-Institute for Astrophysics Potsdam (AIP), and Heidelberg University; the Ohio State University; and the Research Corporation, on behalf of the University of Notre Dame, University of Minnesota and University of Virginia.
Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination
NASA Astrophysics Data System (ADS)
Zhong, Xin; Wang, Xinwei; Zhou, Yan
2018-01-01
A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.
Method for exploiting bias in factor analysis using constrained alternating least squares algorithms
Keenan, Michael R.
2008-12-30
Bias plays an important role in factor analysis and is often implicitly made use of, for example, to constrain solutions to factors that conform to physical reality. However, when components are collinear, a large range of solutions may exist that satisfy the basic constraints and fit the data equally well. In such cases, the introduction of mathematical bias through the application of constraints may select solutions that are less than optimal. The biased alternating least squares algorithm of the present invention can offset mathematical bias introduced by constraints in the standard alternating least squares analysis to achieve factor solutions that are most consistent with physical reality. In addition, these methods can be used to explicitly exploit bias to provide alternative views and provide additional insights into spectral data sets.
3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography
Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.
2015-01-01
We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938
NASA Astrophysics Data System (ADS)
Yi, Cancan; Lv, Yong; Xiao, Han; Ke, Ke; Yu, Xun
2017-12-01
For laser-induced breakdown spectroscopy (LIBS) quantitative analysis technique, baseline correction is an essential part for the LIBS data preprocessing. As the widely existing cases, the phenomenon of baseline drift is generated by the fluctuation of laser energy, inhomogeneity of sample surfaces and the background noise, which has aroused the interest of many researchers. Most of the prevalent algorithms usually need to preset some key parameters, such as the suitable spline function and the fitting order, thus do not have adaptability. Based on the characteristics of LIBS, such as the sparsity of spectral peaks and the low-pass filtered feature of baseline, a novel baseline correction and spectral data denoising method is studied in this paper. The improved technology utilizes convex optimization scheme to form a non-parametric baseline correction model. Meanwhile, asymmetric punish function is conducted to enhance signal-noise ratio (SNR) of the LIBS signal and improve reconstruction precision. Furthermore, an efficient iterative algorithm is applied to the optimization process, so as to ensure the convergence of this algorithm. To validate the proposed method, the concentration analysis of Chromium (Cr),Manganese (Mn) and Nickel (Ni) contained in 23 certified high alloy steel samples is assessed by using quantitative models with Partial Least Squares (PLS) and Support Vector Machine (SVM). Because there is no prior knowledge of sample composition and mathematical hypothesis, compared with other methods, the method proposed in this paper has better accuracy in quantitative analysis, and fully reflects its adaptive ability.
NASA Astrophysics Data System (ADS)
Xu, Saiping; Zhao, Qianjun; Yin, Kai; Cui, Bei; Zhang, Xiupeng
2016-10-01
Hollow village is a special phenomenon in the process of urbanization in China, which causes the waste of land resources. Therefore, it's imminent to carry out the hollow village recognition and renovation. However, there are few researches on the remote sensing identification of hollow village. In this context, in order to recognize the abandoned homesteads by remote sensing technique, the experiment was carried out as follows. Firstly, Gram-Schmidt transform method was utilized to complete the image fusion between multi-spectral images and panchromatic image of WorldView-2. Then the fusion images were made edge enhanced by high pass filtering. The multi-resolution segmentation and spectral difference segmentation were carried out to obtain the image objects. Secondly, spectral characteristic parameters were calculated, such as the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), the normalized difference Soil index (NDSI) etc. The shape feature parameters were extracted, such as Area, Length/Width Ratio and Rectangular Fit etc.. Thirdly, the SEaTH algorithm was used to determine the thresholds and optimize the feature space. Furthermore, the threshold classification method and the random forest classifier were combined, and the appropriate amount of samples were selected to train the classifier in order to determine the important feature parameters and the best classifier parameters involved in classification. Finally, the classification results was verified by computing the confusion matrix. The classification results were continuous and the phenomenon of salt and pepper using pixel classification was avoided effectively. In addition, the results showed that the extracted Abandoned Homesteads were in complete shapes, which could be distinguished from those confusing classes such as Homestead in Use and Roads.
LIDAR TS for ITER core plasma. Part III: calibration and higher edge resolution
NASA Astrophysics Data System (ADS)
Nielsen, P.; Gowers, C.; Salzmann, H.
2017-12-01
Calibration, after initial installation, of the proposed two wavelength LIDAR Thomson Scattering System requires no access to the front end and does not require a foreign gas fill for Raman scattering. As already described, the variation of solid angle of collection with scattering position is a simple geometrical variation over the unvignetted region. The additional loss over the vignetted region can easily be estimated and in the case of a small beam dump located between the Be tiles, it is within the specified accuracy of the density. The only additional calibration is the absolute spectral transmission of the front-end optics. Over time we expect the transmission of the two front-end mirrors to suffer a deterioration mainly due to depositions. The reduction in transmission is likely to be worse towards the blue end of the scattering spectrum. It is therefore necessary to have a method to monitor such changes and to determine its spectral variation. Standard methods use two lasers at different wavelength with a small time separation. Using the two-wavelength approach, a method has been developed to determine the relative spectral variation of the transmission loss, using simply the measured signals in plasmas with peak temperatures of 4-6 keV . Comparing the calculated line integral of the fitted density over the full chord to the corresponding interferometer data we also have an absolute calibration. At the outer plasma boundary, the standard resolution of the LIDAR Thomson Scattering System is not sufficient to determine the edge gradient in an H-mode plasma. However, because of the step like nature of the signal here, it is possible to carry out a deconvolution of the scattered signals, thereby achieving an effective resolution of ~ 1-2 cm in the outer 10-20 cm.
Detector response function of an energy-resolved CdTe single photon counting detector.
Liu, Xin; Lee, Hyoung Koo
2014-01-01
While spectral CT using single photon counting detector has shown a number of advantages in diagnostic imaging, knowledge of the detector response function of an energy-resolved detector is needed to correct the signal bias and reconstruct the image more accurately. The objective of this paper is to study the photo counting detector response function using laboratory sources, and investigate the signal bias correction method. Our approach is to model the detector response function over the entire diagnostic energy range (20 keV
NASA Astrophysics Data System (ADS)
Qie, G.; Wang, G.; Wang, M.
2016-12-01
Mixed pixels and shadows due to buildings in urban areas impede accurate estimation and mapping of city vegetation carbon density. In most of previous studies, these factors are often ignored, which thus result in underestimation of city vegetation carbon density. In this study we presented an integrated methodology to improve the accuracy of mapping city vegetation carbon density. Firstly, we applied a linear shadow remove analysis (LSRA) on remotely sensed Landsat 8 images to reduce the shadow effects on carbon estimation. Secondly, we integrated a linear spectral unmixing analysis (LSUA) with a linear stepwise regression (LSR), a logistic model-based stepwise regression (LMSR) and k-Nearest Neighbors (kNN), and utilized and compared the integrated models on shadow-removed images to map vegetation carbon density. This methodology was examined in Shenzhen City of Southeast China. A data set from a total of 175 sample plots measured in 2013 and 2014 was used to train the models. The independent variables statistically significantly contributing to improving the fit of the models to the data and reducing the sum of squared errors were selected from a total of 608 variables derived from different image band combinations and transformations. The vegetation fraction from LSUA was then added into the models as an important independent variable. The estimates obtained were evaluated using a cross-validation method. Our results showed that higher accuracies were obtained from the integrated models compared with the ones using traditional methods which ignore the effects of mixed pixels and shadows. This study indicates that the integrated method has great potential on improving the accuracy of urban vegetation carbon density estimation. Key words: Urban vegetation carbon, shadow, spectral unmixing, spatial modeling, Landsat 8 images
Multi-scale comparison of source parameter estimation using empirical Green's function approach
NASA Astrophysics Data System (ADS)
Chen, X.; Cheng, Y.
2015-12-01
Analysis of earthquake source parameters requires correction of path effect, site response, and instrument responses. Empirical Green's function (EGF) method is one of the most effective methods in removing path effects and station responses by taking the spectral ratio between a larger and smaller event. Traditional EGF method requires identifying suitable event pairs, and analyze each event individually. This allows high quality estimations for strictly selected events, however, the quantity of resolvable source parameters is limited, which challenges the interpretation of spatial-temporal coherency. On the other hand, methods that exploit the redundancy of event-station pairs are proposed, which utilize the stacking technique to obtain systematic source parameter estimations for a large quantity of events at the same time. This allows us to examine large quantity of events systematically, facilitating analysis of spatial-temporal patterns, and scaling relationship. However, it is unclear how much resolution is scarified during this process. In addition to the empirical Green's function calculation, choice of model parameters and fitting methods also lead to biases. Here, using two regional focused arrays, the OBS array in the Mendocino region, and the borehole array in the Salton Sea geothermal field, I compare the results from the large scale stacking analysis, small-scale cluster analysis, and single event-pair analysis with different fitting methods to systematically compare the results within completely different tectonic environment, in order to quantify the consistency and inconsistency in source parameter estimations, and the associated problems.
NASA Astrophysics Data System (ADS)
Li, Zhijun; Feng, Maria Q.; Luo, Longxi; Feng, Dongming; Xu, Xiuli
2018-01-01
Uncertainty of modal parameters estimation appear in structural health monitoring (SHM) practice of civil engineering to quite some significant extent due to environmental influences and modeling errors. Reasonable methodologies are needed for processing the uncertainty. Bayesian inference can provide a promising and feasible identification solution for the purpose of SHM. However, there are relatively few researches on the application of Bayesian spectral method in the modal identification using SHM data sets. To extract modal parameters from large data sets collected by SHM system, the Bayesian spectral density algorithm was applied to address the uncertainty of mode extraction from output-only response of a long-span suspension bridge. The posterior most possible values of modal parameters and their uncertainties were estimated through Bayesian inference. A long-term variation and statistical analysis was performed using the sensor data sets collected from the SHM system of the suspension bridge over a one-year period. The t location-scale distribution was shown to be a better candidate function for frequencies of lower modes. On the other hand, the burr distribution provided the best fitting to the higher modes which are sensitive to the temperature. In addition, wind-induced variation of modal parameters was also investigated. It was observed that both the damping ratios and modal forces increased during the period of typhoon excitations. Meanwhile, the modal damping ratios exhibit significant correlation with the spectral intensities of the corresponding modal forces.
Deriving Stellar Masses for the ALFALFA α.100 Sample
NASA Astrophysics Data System (ADS)
Hess, Logan; Cornell 2017 Summer REU
2018-01-01
For this project, we explore different methods of deriving the stellar masses of galaxies in the ALFALFA (Arecibo Legacy Fast ALFA) α.100 survey. In particular, we measure the effectiveness of SED (Spectral Energy Distribution) on the sample. SED fitting was preformed by MAGPHYS (Multi-wavelength Analysis of Galaxy Physical Properties), utilizing a wide range of photometry in the UV, optical, and IR bands. Photometry was taken from GALAX GR6/7 (UV), SDSS DR13 (optical), WISE All-Sky (near-IR), and Herschel PACS/SPIRE (far-IR). The efficiency of SED fitting increases with a broader range of photometry, however detection rates varied significantly across the different bands. Using a more “comprehensive” sample of galaxies, the GSWLC-A (GALAX, SDSS, WISE Legacy Catalog All-Sky Survey), we aimed to measure which combination of bands provided the largest sample return with the lowest amount of uncertainty, which could then be used to estimate the masses of the galaxies in the α.100 sample.
Feasibility of quasi-random band model in evaluating atmospheric radiance
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Mirakhur, N.
1980-01-01
The use of the quasi-random band model in evaluating upwelling atmospheric radiation is investigated. The spectral transmittance and total band adsorptance are evaluated for selected molecular bands by using the line by line model, quasi-random band model, exponential sum fit method, and empirical correlations, and these are compared with the available experimental results. The atmospheric transmittance and upwelling radiance were calculated by using the line by line and quasi random band models and were compared with the results of an existing program called LOWTRAN. The results obtained by the exponential sum fit and empirical relations were not in good agreement with experimental results and their use cannot be justified for atmospheric studies. The line by line model was found to be the best model for atmospheric applications, but it is not practical because of high computational costs. The results of the quasi random band model compare well with the line by line and experimental results. The use of the quasi random band model is recommended for evaluation of the atmospheric radiation.
Temperature Dependence of the Tunneling Conductance in Ba_1-xK_xBiO_3
NASA Astrophysics Data System (ADS)
Miyakawa, N.; Ozyuzer, L.; Zasadzinski, J. F.
1997-03-01
Tunneling measurements have been made on high-density polycrystalline pellets of Ba_1-xK_xBiO3 using a point contact method. The temperature dependence (up to 30 K) and magnetic field dependence (up to 6T) of the tunneling conductance has been measured. It is found that at temperatures less than 4.2 K the gap region conductance can be fit with a BCS density of states (dos) and thermal smearing only. However, as the temperature is increased a quasiparticle recombination rate, Γ, which increases as T^n (n ~ 3) must be included in the dos to fit the data. The behavior of Γ (T) does not follow the strong-coupling theory of Kaplan et al. (S.B. Kaplan et al. Phys. Rev. B 14), 4854 (1976) We investigate whether this anomalous power law dependence can come out of Eliashberg theory using the electron-phonon spectral function, a^2F(ω) for Ba_1-xK_xBiO_3.
NASA Astrophysics Data System (ADS)
Maldonado, Jessica; Povich, Matthew S.
2016-01-01
We present a novel method for constraining the duration of star formation in very young, massive star-forming regions. Constraints on stellar population ages are derived from probabilistic HR diagrams (pHRDs) generated by fitting stellar model spectra to the infrared (IR) spectral energy distributions (SEDs) of Herbig Ae/Be stars and their less-evolved, pre-main sequence progenitors. Stellar samples for the pHRDs are selected based on the detection of X-ray emission associated with the IR source, and the lack of detectible IR excess emission at wavelengths ≤4.5 µm. The SED model fits were used to create two-dimensional probability distributions of the stellar parameters, specifically bolometric luminosity versus temperature and mass versus evolutionary age. We present first results from the pHRD analysis of the relatively evolved Carina Nebula and the unevolved M17 SWex infrared dark cloud, which reveal the expected, strikingly different star formation durations between these two regions. In the future, we will apply this method to analyze available X-ray and IR data from the MYStIX project on other Galactic massive star forming regions within 3 kpc of the Sun.
Single-Shot MR Spectroscopic Imaging with Partial Parallel Imaging
Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan
2010-01-01
An MR spectroscopic imaging (MRSI) pulse sequence based on Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI) is introduced that measures 2-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3 T whole body scanner equipped with 12-channel array coil. Four-step interleaved phase encoding and 4-fold SENSE acceleration were used to encode a 16×16 spatial matrix with 390 Hz spectral width. Comparison with conventional PEPSI and PEPSI with 4-fold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of Inositol, Choline, Creatine and NAA in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement. PMID:19097245
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Atwell, William; Tylka, Allan J.; Dietrich, William F.; Cucinotta, Francis A.
2010-01-01
For radiation dose assessments of major solar particle events (SPEs), spectral functional forms of SPEs have been made by fitting available satellite measurements up to approx.100 MeV. However, very high-energy protons (above 500 MeV) have been observed with neutron monitors (NMs) in ground level enhancements (GLEs), which generally present the most severe radiation hazards to astronauts. Due to technical difficulties in converting NM data into absolutely normalized fluence measurements, those functional forms were made with little or no use of NM data. A new analysis of NM data has found that a double power law in rigidity (the so-called Band function) generally provides a satisfactory representation of the combined satellite and NM data from approx.10 MeV to approx.10 GeV in major SPEs (Tylka & Dietrich 2009). We use the Band function fits to re-assess human exposures from large SPEs. Using different spectral representations of large SPEs, variations of exposure levels were compared. The results can be applied to the development of approaches of improved radiation protection for astronauts, as well as the optimization of mission planning and shielding for future space missions.
Use of a priori spectral information in the measurement of x-ray flux with filtered diode arrays
Marrs, R. E.; Widmann, K.; Brown, G. V.; ...
2015-10-29
Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums.more » If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Here, examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.« less
Synthetic Spectral Analysis of the Far Ultraviolet Spectra of the Old Nova HR Del
NASA Astrophysics Data System (ADS)
Robertson, Jordan; Sion, E.
2012-05-01
We present a synthetic spectral analysis of the archival IUE far ultraviolet spectra of the post-nova, HR Del (Nova Del 1967). The system has an estimated white dwarf mass of 0.55 Msun (Ritter and Kolb 2003), orbital period P_orb = 0.214165 days, estimated orbital inclination of 40 degrees (Keurster 1988) and distance determinations in the literature ranging from 970 pc to 285 pc. The spectra reveal P Cygni profiles indicative of wind outflow from the disk and closely resemble the IUE spectra of UX UMa nova-likes, which have never had recorded outbursts. We de-reddened the archival IUE spectra using E(B-V) = 0.16. Our synthetic spectral analysis utilized optically thick, steady state accretion disk models and white dwarf model atmospheres that we constructed using TLUSTY and SYNSPEC (Hubeny 1988, Hubeny and Lanz (1995). Our input parameters were the white dwarf mass, inclination and a range of accretion rates for which we found the best-fitting model. We report the results of our model fitting and compare HR Del with other post-novae at comparable times past their nova outburst. This work was supported by NSF grant 0807892 to Villanova University
Exploring the spectral variability of the Seyfert 1.5 galaxy Markarian 530 with Suzaku
NASA Astrophysics Data System (ADS)
Ehler, H. J. S.; Gonzalez, A. G.; Gallo, L. C.
2018-05-01
A 2012 Suzaku observation of the Seyfert 1.5 galaxy Markarian 530 was analysed and found to exhibit two distinct modes of variability, which were found to be independent from one another. Firstly, the spectrum undergoes a smooth transition from a soft to a hard spectrum. Secondly, the spectrum displays more rapid variability seemingly confined to a very narrow energy band (˜1 - 3 keV). Three physical models (blurred reflection, partial covering, and soft Comptonisation) were explored to characterise the average spectrum of the observation as well as the spectral state change. All three models were found to fit the average spectrum and the spectral changes equally well. The more rapid variability appears as two cycles of a sinusoidal function, but we cannot attribute this to periodic variability. The Fe Kα band exhibits a narrow 6.4 keV emission line consistent with an origin from the distant torus. In addition, features blueward of the neutral iron line are consistent with emission from He-like and H-like iron that could be originating from the highly ionised layer of the torus, but a broad Gaussian profile at ˜6.7 keV also fits the spectrum well.
Bednarkiewicz, Artur; Whelan, Maurice P
2008-01-01
Fluorescence lifetime imaging (FLIM) is very demanding from a technical and computational perspective, and the output is usually a compromise between acquisition/processing time and data accuracy and precision. We present a new approach to acquisition, analysis, and reconstruction of microscopic FLIM images by employing a digital micromirror device (DMD) as a spatial illuminator. In the first step, the whole field fluorescence image is collected by a color charge-coupled device (CCD) camera. Further qualitative spectral analysis and sample segmentation are performed to spatially distinguish between spectrally different regions on the sample. Next, the fluorescence of the sample is excited segment by segment, and fluorescence lifetimes are acquired with a photon counting technique. FLIM image reconstruction is performed by either raster scanning the sample or by directly accessing specific regions of interest. The unique features of the DMD illuminator allow the rapid on-line measurement of global good initial parameters (GIP), which are supplied to the first iteration of the fitting algorithm. As a consequence, a decrease of the computation time required to obtain a satisfactory quality-of-fit is achieved without compromising the accuracy and precision of the lifetime measurements.
NASA Astrophysics Data System (ADS)
Ragland, S.; Akeson, R. L.; Armandroff, T.; Colavita, M. M.; Danchi, W. C.; Hillenbrand, L. A.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W. A.; Vasisht, G.; Wizinowich, P. L.
2009-09-01
We present spatially resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85 m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 μm wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br γ emission line. The measured disk size at and around Br γ suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.
Computer Processing Of Tunable-Diode-Laser Spectra
NASA Technical Reports Server (NTRS)
May, Randy D.
1991-01-01
Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.
Quality monitoring of extra-virgin olive oil using an optical sensor
NASA Astrophysics Data System (ADS)
Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Paolesse, R.; Di Natale, C.; Del Nobile, A.; Benedetto, A.; Mentana, A.
2006-04-01
An optical sensor for the detection of olive oil aroma is presented. It is capable of distinguishing different ageing levels of extra-virgin olive oils, and shows effective potential for achieving a non destructive olfactory perception of oil ageing. The sensor is an optical scanner, fitted with an array of metalloporphyrin-based sensors. The scanner provides exposure of the sensors to the flow of the oil vapor being tested, and their sequential spectral interrogation. Spectral data are then processed using chemometric methodologies.
Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory
NASA Astrophysics Data System (ADS)
Ofengeim, D. D.; Kaminker, A. D.; Klochkov, D.; Suleimanov, V.; Yakovlev, D. G.
2015-12-01
The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.
Understanding the features in the ultrafast transient absorption spectra of CdSe quantum dots
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Do, Thanh Nhut; Ong, Xuanwei; Chan, Yinthai; Tan, Howe-Siang
2016-12-01
We describe a model to explain the features of the ultrafast transient absorption (TA) spectra of CdSe core type quantum dots (QDs). The measured TA spectrum consists of contributions by the ground state bleach (GSB), stimulated emission (SE) and excited state absorption (ESA) processes associated with the three lowest energy transition of the QDs. We model the shapes of the GSB, SE and ESA spectral components after fits to the linear absorption. The spectral positions of the ESA components take into account the biexcitonic binding energy. In order to obtain the correct weightage of the GSB, SE and ESA components to the TA spectrum, we enumerate the set of coherence transfer pathways associated with these processes. From our fits of the experimental TA spectra of 65 Å diameter QDs, biexcitonic binding energies for the three lowest energy transitions are obtained.
Hα line shape in front of the limiter in the HT-6M tokamak
NASA Astrophysics Data System (ADS)
Wan, Baonian; Li, Jiangang; Luo, Jiarong; Xie, Jikang; Wu, Zhenwei; Zhang, Xianmei; HT-6M Group
1999-11-01
The Hα line shape in front of the limiter in the HT-6M tokamak is analysed by multi-Gaussian fitting. The energy distribution of neutral hydrogen atoms reveals that Hα radiation is contributed by Franck-Condon atoms, atoms reflected at the limiter surface and charge exchange. Multi-Gaussian fitting of the Hα spectral profile indicates contributions of 60% from reflection particles and 40% from molecule dissociation to recycling. Ion temperatures in central regions are obtained from the spectral width of charge exchange components. Dissociation of hydrogen molecules and reflection of particles at the limiter surface are dominant in edge recycling. Reduction of particle reflection at the limiter surface is important for controlling edge recycling. The measured profiles of neutral hydrogen atom density are reproduced by a particle continuity equation and a simplified one dimensional Monte Carlo simulation code.
Statistical parameters of thermally driven turbulent anabatic flow
NASA Astrophysics Data System (ADS)
Hilel, Roni; Liberzon, Dan
2016-11-01
Field measurements of thermally driven turbulent anabatic flow over a moderate slope are reported. A collocated hot-films-sonic anemometer (Combo) obtained the finer scales of the flow by implementing a Neural Networks based in-situ calibration technique. Eight days of continuous measurements of the wind and temperature fluctuations reviled a diurnal pattern of unstable stratification that forced development of highly turbulent unidirectional up slope flow. Empirical fits of important turbulence statistics were obtained from velocity fluctuations' time series alongside fully resolved spectra of velocity field components and characteristic length scales. TKE and TI showed linear dependence on Re, while velocity derivative skewness and dissipation rates indicated the anisotropic nature of the flow. Empirical fits of normalized velocity fluctuations power density spectra were derived as spectral shapes exhibited high level of similarity. Bursting phenomenon was detected at 15% of the total time. Frequency of occurrence, spectral characteristics and possible generation mechanism are discussed. BSF Grant #2014075.
Study of the gamma-ray spectrum from the Galactic Center in view of multi-TeV dark matter candidates
NASA Astrophysics Data System (ADS)
Belikov, Alexander V.; Zaharijas, Gabrijela; Silk, Joseph
2012-10-01
Motivated by the complex gamma-ray spectrum of the Galactic Center source now measured over five decades in energy, we revisit the issue of the role of dark matter (DM) annihilations in this interesting region. We reassess whether the emission measured by the HESS collaboration could be a signature of dark matter annihilation, and we use the Fermi LAT spectrum to model the emission from SgrA*, using power-law spectral fits. We find that good fits are achieved by a power law with an index ˜2.5-2.6, in combination with a spectrum similar to the one observed from pulsar population and with a spectrum from a ≳10TeV DM annihilating to a mixture of bb¯ and harder τ+τ- channels and with boost factors of the order of a hundred. Alternatively, we also consider the combination of a log-parabola fit with the DM contribution. Finally, as both the spectrum of gamma rays from the Galactic Center and the spectrum of cosmic ray electrons exhibit a cutoff at TeV energies, we study the dark matter fits to both data sets. Constraining the spectral shape of the purported dark matter signal provides a robust way of comparing data. We find a marginal overlap only between the 99.999% C.L. regions in parameter space.