Spectral mapping tools from the earth sciences applied to spectral microscopy data.
Harris, A Thomas
2006-08-01
Spectral imaging, originating from the field of earth remote sensing, is a powerful tool that is being increasingly used in a wide variety of applications for material identification. Several workers have used techniques like linear spectral unmixing (LSU) to discriminate materials in images derived from spectral microscopy. However, many spectral analysis algorithms rely on assumptions that are often violated in microscopy applications. This study explores algorithms originally developed as improvements on early earth imaging techniques that can be easily translated for use with spectral microscopy. To best demonstrate the application of earth remote sensing spectral analysis tools to spectral microscopy data, earth imaging software was used to analyze data acquired with a Leica confocal microscope with mechanical spectral scanning. For this study, spectral training signatures (often referred to as endmembers) were selected with the ENVI (ITT Visual Information Solutions, Boulder, CO) "spectral hourglass" processing flow, a series of tools that use the spectrally over-determined nature of hyperspectral data to find the most spectrally pure (or spectrally unique) pixels within the data set. This set of endmember signatures was then used in the full range of mapping algorithms available in ENVI to determine locations, and in some cases subpixel abundances of endmembers. Mapping and abundance images showed a broad agreement between the spectral analysis algorithms, supported through visual assessment of output classification images and through statistical analysis of the distribution of pixels within each endmember class. The powerful spectral analysis algorithms available in COTS software, the result of decades of research in earth imaging, are easily translated to new sources of spectral data. Although the scale between earth imagery and spectral microscopy is radically different, the problem is the same: mapping material locations and abundances based on unique spectral signatures. (c) 2006 International Society for Analytical Cytology.
The Spectral Image Processing System (SIPS): Software for integrated analysis of AVIRIS data
NASA Technical Reports Server (NTRS)
Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.
1992-01-01
The Spectral Image Processing System (SIPS) is a software package developed by the Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, in response to a perceived need to provide integrated tools for analysis of imaging spectrometer data both spectrally and spatially. SIPS was specifically designed to deal with data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the High Resolution Imaging Spectrometer (HIRIS), but was tested with other datasets including the Geophysical and Environmental Research Imaging Spectrometer (GERIS), GEOSCAN images, and Landsat TM. SIPS was developed using the 'Interactive Data Language' (IDL). It takes advantage of high speed disk access and fast processors running under the UNIX operating system to provide rapid analysis of entire imaging spectrometer datasets. SIPS allows analysis of single or multiple imaging spectrometer data segments at full spatial and spectral resolution. It also allows visualization and interactive analysis of image cubes derived from quantitative analysis procedures such as absorption band characterization and spectral unmixing. SIPS consists of three modules: SIPS Utilities, SIPS_View, and SIPS Analysis. SIPS version 1.1 is described below.
Analysis of spectrally resolved autofluorescence images by support vector machines
NASA Astrophysics Data System (ADS)
Mateasik, A.; Chorvat, D.; Chorvatova, A.
2013-02-01
Spectral analysis of the autofluorescence images of isolated cardiac cells was performed to evaluate and to classify the metabolic state of the cells in respect to the responses to metabolic modulators. The classification was done using machine learning approach based on support vector machine with the set of the automatically calculated features from recorded spectral profile of spectral autofluorescence images. This classification method was compared with the classical approach where the individual spectral components contributing to cell autofluorescence were estimated by spectral analysis, namely by blind source separation using non-negative matrix factorization. Comparison of both methods showed that machine learning can effectively classify the spectrally resolved autofluorescence images without the need of detailed knowledge about the sources of autofluorescence and their spectral properties.
Spectral Properties and Dynamics of Gold Nanorods Revealed by EMCCD Based Spectral-Phasor Method
Chen, Hongtao; Digman, Michelle A.
2015-01-01
Gold nanorods (NRs) with tunable plasmon-resonant absorption in the near-infrared region have considerable advantages over organic fluorophores as imaging agents. However, the luminescence spectral properties of NRs have not been fully explored at the single particle level in bulk due to lack of proper analytic tools. Here we present a global spectral phasor analysis method which allows investigations of NRs' spectra at single particle level with their statistic behavior and spatial information during imaging. The wide phasor distribution obtained by the spectral phasor analysis indicates spectra of NRs are different from particle to particle. NRs with different spectra can be identified graphically in corresponding spatial images with high spectral resolution. Furthermore, spectral behaviors of NRs under different imaging conditions, e.g. different excitation powers and wavelengths, were carefully examined by our laser-scanning multiphoton microscope with spectral imaging capability. Our results prove that the spectral phasor method is an easy and efficient tool in hyper-spectral imaging analysis to unravel subtle changes of the emission spectrum. Moreover, we applied this method to study the spectral dynamics of NRs during direct optical trapping and by optothermal trapping. Interestingly, spectral shifts were observed in both trapping phenomena. PMID:25684346
Spectral compression algorithms for the analysis of very large multivariate images
Keenan, Michael R.
2007-10-16
A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.
NASA Astrophysics Data System (ADS)
Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2010-02-01
Near-infrared spectroscopy is a promising, rapidly developing, reliable and noninvasive technique, used extensively in the biomedicine and in pharmaceutical industry. With the introduction of acousto-optic tunable filters (AOTF) and highly sensitive InGaAs focal plane sensor arrays, real-time high resolution hyper-spectral imaging has become feasible for a number of new biomedical in vivo applications. However, due to the specificity of the AOTF technology and lack of spectral calibration standardization, maintaining long-term stability and compatibility of the acquired hyper-spectral images across different systems is still a challenging problem. Efficiently solving both is essential as the majority of methods for analysis of hyper-spectral images relay on a priori knowledge extracted from large spectral databases, serving as the basis for reliable qualitative or quantitative analysis of various biological samples. In this study, we propose and evaluate fast and reliable spectral calibration of hyper-spectral imaging systems in the short wavelength infrared spectral region. The proposed spectral calibration method is based on light sources or materials, exhibiting distinct spectral features, which enable robust non-rigid registration of the acquired spectra. The calibration accounts for all of the components of a typical hyper-spectral imaging system such as AOTF, light source, lens and optical fibers. The obtained results indicated that practical, fast and reliable spectral calibration of hyper-spectral imaging systems is possible, thereby assuring long-term stability and inter-system compatibility of the acquired hyper-spectral images.
Ratiometric spectral imaging for fast tumor detection and chemotherapy monitoring in vivo
Hwang, Jae Youn; Gross, Zeev; Gray, Harry B.; Medina-Kauwe, Lali K.; Farkas, Daniel L.
2011-01-01
We report a novel in vivo spectral imaging approach to cancer detection and chemotherapy assessment. We describe and characterize a ratiometric spectral imaging and analysis method and evaluate its performance for tumor detection and delineation by quantitatively monitoring the specific accumulation of targeted gallium corrole (HerGa) into HER2-positive (HER2 +) breast tumors. HerGa temporal accumulation in nude mice bearing HER2 + breast tumors was monitored comparatively by a. this new ratiometric imaging and analysis method; b. established (reflectance and fluorescence) spectral imaging; c. more commonly used fluorescence intensity imaging. We also tested the feasibility of HerGa imaging in vivo using the ratiometric spectral imaging method for tumor detection and delineation. Our results show that the new method not only provides better quantitative information than typical spectral imaging, but also better specificity than standard fluorescence intensity imaging, thus allowing enhanced in vivo outlining of tumors and dynamic, quantitative monitoring of targeted chemotherapy agent accumulation into them. PMID:21721808
Classification of river water pollution using Hyperion data
NASA Astrophysics Data System (ADS)
Kar, Soumyashree; Rathore, V. S.; Champati ray, P. K.; Sharma, Richa; Swain, S. K.
2016-06-01
A novel attempt is made to use hyperspectral remote sensing to identify the spatial variability of metal pollutants present in river water. It was also attempted to classify the hyperspectral image - Earth Observation-1 (EO-1) Hyperion data of an 8 km stretch of the river Yamuna, near Allahabad city in India depending on its chemical composition. For validating image analysis results, a total of 10 water samples were collected and chemically analyzed using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). Two different spectral libraries from field and image data were generated for the 10 sample locations. Advanced per-pixel supervised classifications such as Spectral Angle Mapper (SAM), SAM target finder using BandMax and Support Vector Machine (SVM) were carried out along with the unsupervised clustering procedure - Iterative Self-Organizing Data Analysis Technique (ISODATA). The results were compared and assessed with respect to ground data. Analytical Spectral Devices (ASD), Inc. spectroradiometer, FieldSpec 4 was used to generate the spectra of the water samples which were compiled into a spectral library and used for Spectral Absorption Depth (SAD) analysis. The spectral depth pattern of image and field spectral libraries was found to be highly correlated (correlation coefficient, R2 = 0.99) which validated the image analysis results with respect to the ground data. Further, we carried out a multivariate regression analysis to assess the varying concentrations of metal ions present in water based on the spectral depth of the corresponding absorption feature. Spectral Absorption Depth (SAD) analysis along with metal analysis of field data revealed the order in which the metals affected the river pollution, which was in conformity with the findings of Central Pollution Control Board (CPCB). Therefore, it is concluded that hyperspectral imaging provides opportunity that can be used for satellite based remote monitoring of water quality from space.
Satellite image fusion based on principal component analysis and high-pass filtering.
Metwalli, Mohamed R; Nasr, Ayman H; Allah, Osama S Farag; El-Rabaie, S; Abd El-Samie, Fathi E
2010-06-01
This paper presents an integrated method for the fusion of satellite images. Several commercial earth observation satellites carry dual-resolution sensors, which provide high spatial resolution or simply high-resolution (HR) panchromatic (pan) images and low-resolution (LR) multi-spectral (MS) images. Image fusion methods are therefore required to integrate a high-spectral-resolution MS image with a high-spatial-resolution pan image to produce a pan-sharpened image with high spectral and spatial resolutions. Some image fusion methods such as the intensity, hue, and saturation (IHS) method, the principal component analysis (PCA) method, and the Brovey transform (BT) method provide HR MS images, but with low spectral quality. Another family of image fusion methods, such as the high-pass-filtering (HPF) method, operates on the basis of the injection of high frequency components from the HR pan image into the MS image. This family of methods provides less spectral distortion. In this paper, we propose the integration of the PCA method and the HPF method to provide a pan-sharpened MS image with superior spatial resolution and less spectral distortion. The experimental results show that the proposed fusion method retains the spectral characteristics of the MS image and, at the same time, improves the spatial resolution of the pan-sharpened image.
Aron, Miles; Browning, Richard; Carugo, Dario; Sezgin, Erdinc; Bernardino de la Serna, Jorge; Eggeling, Christian; Stride, Eleanor
2017-05-12
Spectral imaging with polarity-sensitive fluorescent probes enables the quantification of cell and model membrane physical properties, including local hydration, fluidity, and lateral lipid packing, usually characterized by the generalized polarization (GP) parameter. With the development of commercial microscopes equipped with spectral detectors, spectral imaging has become a convenient and powerful technique for measuring GP and other membrane properties. The existing tools for spectral image processing, however, are insufficient for processing the large data sets afforded by this technological advancement, and are unsuitable for processing images acquired with rapidly internalized fluorescent probes. Here we present a MATLAB spectral imaging toolbox with the aim of overcoming these limitations. In addition to common operations, such as the calculation of distributions of GP values, generation of pseudo-colored GP maps, and spectral analysis, a key highlight of this tool is reliable membrane segmentation for probes that are rapidly internalized. Furthermore, handling for hyperstacks, 3D reconstruction and batch processing facilitates analysis of data sets generated by time series, z-stack, and area scan microscope operations. Finally, the object size distribution is determined, which can provide insight into the mechanisms underlying changes in membrane properties and is desirable for e.g. studies involving model membranes and surfactant coated particles. Analysis is demonstrated for cell membranes, cell-derived vesicles, model membranes, and microbubbles with environmentally-sensitive probes Laurdan, carboxyl-modified Laurdan (C-Laurdan), Di-4-ANEPPDHQ, and Di-4-AN(F)EPPTEA (FE), for quantification of the local lateral density of lipids or lipid packing. The Spectral Imaging Toolbox is a powerful tool for the segmentation and processing of large spectral imaging datasets with a reliable method for membrane segmentation and no ability in programming required. The Spectral Imaging Toolbox can be downloaded from https://uk.mathworks.com/matlabcentral/fileexchange/62617-spectral-imaging-toolbox .
Fusion and quality analysis for remote sensing images using contourlet transform
NASA Astrophysics Data System (ADS)
Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram
2013-05-01
Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.
Methods for spectral image analysis by exploiting spatial simplicity
Keenan, Michael R.
2010-05-25
Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.
Methods for spectral image analysis by exploiting spatial simplicity
Keenan, Michael R.
2010-11-23
Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.
Hyperspectral Imaging Sensors and the Marine Coastal Zone
NASA Technical Reports Server (NTRS)
Richardson, Laurie L.
2000-01-01
Hyperspectral imaging sensors greatly expand the potential of remote sensing to assess, map, and monitor marine coastal zones. Each pixel in a hyperspectral image contains an entire spectrum of information. As a result, hyperspectral image data can be processed in two very different ways: by image classification techniques, to produce mapped outputs of features in the image on a regional scale; and by use of spectral analysis of the spectral data embedded within each pixel of the image. The latter is particularly useful in marine coastal zones because of the spectral complexity of suspended as well as benthic features found in these environments. Spectral-based analysis of hyperspectral (AVIRIS) imagery was carried out to investigate a marine coastal zone of South Florida, USA. Florida Bay is a phytoplankton-rich estuary characterized by taxonomically distinct phytoplankton assemblages and extensive seagrass beds. End-member spectra were extracted from AVIRIS image data corresponding to ground-truth sample stations and well-known field sites. Spectral libraries were constructed from the AVIRIS end-member spectra and used to classify images using the Spectral Angle Mapper (SAM) algorithm, a spectral-based approach that compares the spectrum, in each pixel of an image with each spectrum in a spectral library. Using this approach different phytoplankton assemblages containing diatoms, cyanobacteria, and green microalgae, as well as benthic community (seagrasses), were mapped.
Analysis of airborne MAIS imaging spectrometric data for mineral exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jinnian; Zheng Lanfen; Tong Qingxi
1996-11-01
The high spectral resolution imaging spectrometric system made quantitative analysis and mapping of surface composition possible. The key issue will be the quantitative approach for analysis of surface parameters for imaging spectrometer data. This paper describes the methods and the stages of quantitative analysis. (1) Extracting surface reflectance from imaging spectrometer image. Lab. and inflight field measurements are conducted for calibration of imaging spectrometer data, and the atmospheric correction has also been used to obtain ground reflectance by using empirical line method and radiation transfer modeling. (2) Determining quantitative relationship between absorption band parameters from the imaging spectrometer data andmore » chemical composition of minerals. (3) Spectral comparison between the spectra of spectral library and the spectra derived from the imagery. The wavelet analysis-based spectrum-matching techniques for quantitative analysis of imaging spectrometer data has beer, developed. Airborne MAIS imaging spectrometer data were used for analysis and the analysis results have been applied to the mineral and petroleum exploration in Tarim Basin area china. 8 refs., 8 figs.« less
Leavesley, Silas J; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter; Rich, Thomas C
2018-01-01
Spectral imaging technologies have been used for many years by the remote sensing community. More recently, these approaches have been applied to biomedical problems, where they have shown great promise. However, biomedical spectral imaging has been complicated by the high variance of biological data and the reduced ability to construct test scenarios with fixed ground truths. Hence, it has been difficult to objectively assess and compare biomedical spectral imaging assays and technologies. Here, we present a standardized methodology that allows assessment of the performance of biomedical spectral imaging equipment, assays, and analysis algorithms. This methodology incorporates real experimental data and a theoretical sensitivity analysis, preserving the variability present in biomedical image data. We demonstrate that this approach can be applied in several ways: to compare the effectiveness of spectral analysis algorithms, to compare the response of different imaging platforms, and to assess the level of target signature required to achieve a desired performance. Results indicate that it is possible to compare even very different hardware platforms using this methodology. Future applications could include a range of optimization tasks, such as maximizing detection sensitivity or acquisition speed, providing high utility for investigators ranging from design engineers to biomedical scientists. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Feasibility study of a novel miniaturized spectral imaging system architecture in UAV surveillance
NASA Astrophysics Data System (ADS)
Liu, Shuyang; Zhou, Tao; Jia, Xiaodong; Cui, Hushan; Huang, Chengjun
2016-01-01
The spectral imaging technology is able to analysis the spectral and spatial geometric character of the target at the same time. To break through the limitation brought by the size, weight and cost of the traditional spectral imaging instrument, a miniaturized novel spectral imaging based on CMOS processing has been introduced in the market. This technology has enabled the possibility of applying spectral imaging in the UAV platform. In this paper, the relevant technology and the related possible applications have been presented to implement a quick, flexible and more detailed remote sensing system.
Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis.
Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué
2015-10-01
In this paper a new methodology for the diagnosing of skin cancer on images of dermatologic spots using image processing is presented. Currently skin cancer is one of the most frequent diseases in humans. This methodology is based on Fourier spectral analysis by using filters such as the classic, inverse and k-law nonlinear. The sample images were obtained by a medical specialist and a new spectral technique is developed to obtain a quantitative measurement of the complex pattern found in cancerous skin spots. Finally a spectral index is calculated to obtain a range of spectral indices defined for skin cancer. Our results show a confidence level of 95.4%.
Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis
Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué
2015-01-01
In this paper a new methodology for the diagnosing of skin cancer on images of dermatologic spots using image processing is presented. Currently skin cancer is one of the most frequent diseases in humans. This methodology is based on Fourier spectral analysis by using filters such as the classic, inverse and k-law nonlinear. The sample images were obtained by a medical specialist and a new spectral technique is developed to obtain a quantitative measurement of the complex pattern found in cancerous skin spots. Finally a spectral index is calculated to obtain a range of spectral indices defined for skin cancer. Our results show a confidence level of 95.4%. PMID:26504638
Multispectral analysis tools can increase utility of RGB color images in histology
NASA Astrophysics Data System (ADS)
Fereidouni, Farzad; Griffin, Croix; Todd, Austin; Levenson, Richard
2018-04-01
Multispectral imaging (MSI) is increasingly finding application in the study and characterization of biological specimens. However, the methods typically used come with challenges on both the acquisition and the analysis front. MSI can be slow and photon-inefficient, leading to long imaging times and possible phototoxicity and photobleaching. The resulting datasets can be large and complex, prompting the development of a number of mathematical approaches for segmentation and signal unmixing. We show that under certain circumstances, just three spectral channels provided by standard color cameras, coupled with multispectral analysis tools, including a more recent spectral phasor approach, can efficiently provide useful insights. These findings are supported with a mathematical model relating spectral bandwidth and spectral channel number to achievable spectral accuracy. The utility of 3-band RGB and MSI analysis tools are demonstrated on images acquired using brightfield and fluorescence techniques, as well as a novel microscopy approach employing UV-surface excitation. Supervised linear unmixing, automated non-negative matrix factorization and phasor analysis tools all provide useful results, with phasors generating particularly helpful spectral display plots for sample exploration.
Automatic classification of spectral units in the Aristarchus plateau
NASA Astrophysics Data System (ADS)
Erard, S.; Le Mouelic, S.; Langevin, Y.
1999-09-01
A reduction scheme has been recently proposed for the NIR images of Clementine (Le Mouelic et al, JGR 1999). This reduction has been used to build an integrated UVvis-NIR image cube of the Aristarchus region, from which compositional and maturity variations can be studied (Pinet et al, LPSC 1999). We will present an analysis of this image cube, providing a classification in spectral types and spectral units. The image cube is processed with Gmode analysis using three different data sets: Normalized spectra provide a classification based mainly on spectral slope variations (ie. maturity and volcanic glasses). This analysis discriminates between craters plus ejecta, mare basalts, and DMD. Olivine-rich areas and Aristarchus central peak are also recognized. Continuum-removed spectra provide a classification more related to compositional variations, which correctly identifies olivine and pyroxenes-rich areas (in Aristarchus, Krieger, Schiaparelli\\ldots). A third analysis uses spectral parameters related to maturity and Fe composition (reflectance, 1 mu m band depth, and spectral slope) rather than intensities. It provides the most spatially consistent picture, but fails in detecting Vallis Schroeteri and DMDs. A supplementary unit, younger and rich in pyroxene, is found on Aristarchus south rim. In conclusion, Gmode analysis can discriminate between different spectral types already identified with more classic methods (PCA, linear mixing\\ldots). No previous assumption is made on the data structure, such as endmembers number and nature, or linear relationship between input variables. The variability of the spectral types is intrinsically accounted for, so that the level of analysis is always restricted to meaningful limits. A complete classification should integrate several analyses based on different sets of parameters. Gmode is therefore a powerful light toll to perform first look analysis of spectral imaging data. This research has been partly founded by the French Programme National de Planetologie.
Objective determination of image end-members in spectral mixture analysis of AVIRIS data
NASA Technical Reports Server (NTRS)
Tompkins, Stefanie; Mustard, John F.; Pieters, Carle M.; Forsyth, Donald W.
1993-01-01
Spectral mixture analysis has been shown to be a powerful, multifaceted tool for analysis of multi- and hyper-spectral data. Applications of AVIRIS data have ranged from mapping soils and bedrock to ecosystem studies. During the first phase of the approach, a set of end-members are selected from an image cube (image end-members) that best account for its spectral variance within a constrained, linear least squares mixing model. These image end-members are usually selected using a priori knowledge and successive trial and error solutions to refine the total number and physical location of the end-members. However, in many situations a more objective method of determining these essential components is desired. We approach the problem of image end-member determination objectively by using the inherent variance of the data. Unlike purely statistical methods such as factor analysis, this approach derives solutions that conform to a physically realistic model.
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-06-01
Hyperspectral imaging combines imaging and spectroscopy to provide detailed spectral information for each spatial point in the image. This gives a three-dimensional spatial-spatial-spectral datacube with hundreds of spectral images. Probe-based hyperspectral imaging systems have been developed so that they can be used in regions where conventional table-top platforms would find it difficult to access. A fiber bundle, which is made up of specially-arranged optical fibers, has recently been developed and integrated with a spectrograph-based hyperspectral imager. This forms a snapshot hyperspectral imaging probe, which is able to form a datacube using the information from each scan. Compared to the other configurations, which require sequential scanning to form a datacube, the snapshot configuration is preferred in real-time applications where motion artifacts and pixel misregistration can be minimized. Principal component analysis is a dimension-reducing technique that can be applied in hyperspectral imaging to convert the spectral information into uncorrelated variables known as principal components. A confidence ellipse can be used to define the region of each class in the principal component feature space and for classification. This paper demonstrates the use of the snapshot hyperspectral imaging probe to acquire data from samples of different colors. The spectral library of each sample was acquired and then analyzed using principal component analysis. Confidence ellipse was then applied to the principal components of each sample and used as the classification criteria. The results show that the applied analysis can be used to perform classification of the spectral data acquired using the snapshot hyperspectral imaging probe.
Research on hyperspectral dynamic scene and image sequence simulation
NASA Astrophysics Data System (ADS)
Sun, Dandan; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei
2016-10-01
This paper presents a simulation method of hyper-spectral dynamic scene and image sequence for hyper-spectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyper-spectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyper-spectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyper-spectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyper-spectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyper-spectral images are consistent with the theoretical analysis results.
Spectral mixture modeling: Further analysis of rock and soil types at the Viking Lander sites
NASA Technical Reports Server (NTRS)
Adams, John B.; Smith, Milton O.
1987-01-01
A new image processing technique was applied to Viking Lander multispectral images. Spectral endmembers were defined that included soil, rock and shade. Mixtures of these endmembers were found to account for nearly all the spectral variance in a Viking Lander image.
Spectral imaging: principles and applications.
Garini, Yuval; Young, Ian T; McNamara, George
2006-08-01
Spectral imaging extends the capabilities of biological and clinical studies to simultaneously study multiple features such as organelles and proteins qualitatively and quantitatively. Spectral imaging combines two well-known scientific methodologies, namely spectroscopy and imaging, to provide a new advantageous tool. The need to measure the spectrum at each point of the image requires combining dispersive optics with the more common imaging equipment, and introduces constrains as well. The principles of spectral imaging and a few representative applications are described. Spectral imaging analysis is necessary because the complex data structure cannot be analyzed visually. A few of the algorithms are discussed with emphasis on the usage for different experimental modes (fluorescence and bright field). Finally, spectral imaging, like any method, should be evaluated in light of its advantages to specific applications, a selection of which is described. Spectral imaging is a relatively new technique and its full potential is yet to be exploited. Nevertheless, several applications have already shown its potential. (c) 2006 International Society for Analytical Cytology.
NASA Astrophysics Data System (ADS)
Ozeki, Yasuyuki; Otsuka, Yoichi; Sato, Shuya; Hashimoto, Hiroyuki; Umemura, Wataru; Sumimura, Kazuhiko; Nishizawa, Norihiko; Fukui, Kiichi; Itoh, Kazuyoshi
2013-02-01
We have developed a video-rate stimulated Raman scattering (SRS) microscope with frame-by-frame wavenumber tunability. The system uses a 76-MHz picosecond Ti:sapphire laser and a subharmonically synchronized, 38-MHz Yb fiber laser. The Yb fiber laser pulses are spectrally sliced by a fast wavelength-tunable filter, which consists of a galvanometer scanner, a 4-f optical system and a reflective grating. The spectral resolution of the filter is ~ 3 cm-1. The wavenumber was scanned from 2800 to 3100 cm-1 with an arbitrary waveform synchronized to the frame trigger. For imaging, we introduced a 8-kHz resonant scanner and a galvanometer scanner. We were able to acquire SRS images of 500 x 480 pixels at a frame rate of 30.8 frames/s. Then these images were processed by principal component analysis followed by a modified algorithm of independent component analysis. This algorithm allows blind separation of constituents with overlapping Raman bands from SRS spectral images. The independent component (IC) spectra give spectroscopic information, and IC images can be used to produce pseudo-color images. We demonstrate various label-free imaging modalities such as 2D spectral imaging of the rat liver, two-color 3D imaging of a vessel in the rat liver, and spectral imaging of several sections of intestinal villi in the mouse. Various structures in the tissues such as lipid droplets, cytoplasm, fibrous texture, nucleus, and water-rich region were successfully visualized.
[Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].
Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong
2015-11-01
With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.
NASA Astrophysics Data System (ADS)
Uygur, Merve; Karaman, Muhittin; Kumral, Mustafa
2016-04-01
Çürüksu (Denizli) Graben hosts various geothermal fields such as Kızıldere, Yenice, Gerali, Karahayıt, and Tekkehamam. Neotectonic activities, which are caused by extensional tectonism, and deep circulation in sub-volcanic intrusions are heat sources of hydrothermal solutions. The temperature of hydrothermal solutions is between 53 and 260 degree Celsius. Phyllic, argillic, silicic, and carbonatization alterations and various hydrothermal minerals have been identified in various research studies of these areas. Surfaced hydrothermal alteration minerals are one set of potential indicators of geothermal resources. Developing the exploration tools to define the surface indicators of geothermal fields can assist in the recognition of geothermal resources. Thermal and hyperspectral imaging and analysis can be used for defining the surface indicators of geothermal fields. This study tests the hypothesis that hyperspectral image analysis based on EO-1 Hyperion images can be used for the delineation and definition of surfaced hydrothermal alteration in geothermal fields. Hyperspectral image analyses were applied to images covering the geothermal fields whose alteration characteristic are known. To reduce data dimensionality and identify spectral endmembers, Kruse's multi-step process was applied to atmospherically and geometrically-corrected hyperspectral images. Minimum Noise Fraction was used to reduce the spectral dimensions and isolate noise in the images. Extreme pixels were identified from high order MNF bands using the Pixel Purity Index. n-Dimensional Visualization was utilized for unique pixel identification. Spectral similarities between pixel spectral signatures and known endmember spectrum (USGS Spectral Library) were compared with Spectral Angle Mapper Classification. EO-1 Hyperion hyperspectral images and hyperspectral analysis are sensitive to hydrothermal alteration minerals, as their diagnostic spectral signatures span the visible and shortwave infrared seen in geothermal fields. Hyperspectral analysis results indicated that kaolinite, smectite, illite, montmorillonite, and sepiolite minerals were distributed in a wide area, which covered the hot spring outlet. Rectorite, lizardite, richterite, dumortierite, nontronite, erionite, and clinoptilolite were observed occasionally.
NASA Astrophysics Data System (ADS)
Dontu, S.; Miclos, S.; Savastru, D.; Tautan, M.
2017-09-01
In recent years many optoelectronic techniques have been developed for improvement and the development of devices for tissue analysis. Spectral-Domain Optical Coherence Tomography (SD-OCT) is a new medical interferometric imaging modality that provides depth resolved tissue structure information with resolution in the μm range. However, SD-OCT has its own limitations and cannot offer the biochemical information of the tissue. These data can be obtained with hyperspectral imaging, a non-invasive, sensitive and real time technique. In the present study we have combined Spectral-Domain Optical Coherence Tomography (SD-OCT) with Hyperspectral imaging (HSI) for tissue analysis. The Spectral-Domain Optical Coherence Tomography (SD-OCT) and Hyperspectral imaging (HSI) are two methods that have demonstrated significant potential in this context. Preliminary results using different tissue have highlighted the capabilities of this technique of combinations.
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Zaytsev, Kirill I.; Lesnichaya, Anastasiya D.; Kudrin, Konstantin G.; Cherkasova, Olga P.; Kurlov, Vladimir N.; Shikunova, Irina A.; Perchik, Alexei V.; Yurchenko, Stanislav O.; Reshetov, Igor V.
2016-09-01
In present paper, an ability to differentiate basal cell carcinoma (BCC) and healthy skin by combining multi-spectral autofluorescence imaging, principle component analysis (PCA), and linear discriminant analysis (LDA) has been demonstrated. For this purpose, the experimental setup, which includes excitation and detection branches, has been assembled. The excitation branch utilizes a mercury arc lamp equipped with a 365-nm narrow-linewidth excitation filter, a beam homogenizer, and a mechanical chopper. The detection branch employs a set of bandpass filters with the central wavelength of spectral transparency of λ = 400, 450, 500, and 550 nm, and a digital camera. The setup has been used to study three samples of freshly excised BCC. PCA and LDA have been implemented to analyze the data of multi-spectral fluorescence imaging. Observed results of this pilot study highlight the advantages of proposed imaging technique for skin cancer diagnosis.
A 1064 nm dispersive Raman spectral imaging system for food safety and quality evaluation
USDA-ARS?s Scientific Manuscript database
Raman spectral imaging is an effective method to analyze and evaluate chemical composition and structure of a sample, and has many applications for food safety and quality research. This study developed a 1064 nm Raman spectral imaging system for surface and subsurface analysis of food samples. A 10...
NASA Astrophysics Data System (ADS)
Huang, Z.; Chen, Q.; Shen, Y.; Chen, Q.; Liu, X.
2017-09-01
Variational pansharpening can enhance the spatial resolution of a hyperspectral (HS) image using a high-resolution panchromatic (PAN) image. However, this technology may lead to spectral distortion that obviously affect the accuracy of data analysis. In this article, we propose an improved variational method for HS image pansharpening with the constraint of spectral difference minimization. We extend the energy function of the classic variational pansharpening method by adding a new spectral fidelity term. This fidelity term is designed following the definition of spectral angle mapper, which means that for every pixel, the spectral difference value of any two bands in the HS image is in equal proportion to that of the two corresponding bands in the pansharpened image. Gradient descent method is adopted to find the optimal solution of the modified energy function, and the pansharpened image can be reconstructed. Experimental results demonstrate that the constraint of spectral difference minimization is able to preserve the original spectral information well in HS images, and reduce the spectral distortion effectively. Compared to original variational method, our method performs better in both visual and quantitative evaluation, and achieves a good trade-off between spatial and spectral information.
SPAM- SPECTRAL ANALYSIS MANAGER (DEC VAX/VMS VERSION)
NASA Technical Reports Server (NTRS)
Solomon, J. E.
1994-01-01
The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different machine environments. There is a DEC VAX/VMS version with a central memory requirement of approximately 242K of 8 bit bytes and a machine independent UNIX 4.2 version. The display device currently supported is the Raster Technologies display processor. Other 512 x 512 resolution color display devices, such as De Anza, may be added with minor code modifications. This program was developed in 1986.
SPAM- SPECTRAL ANALYSIS MANAGER (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Solomon, J. E.
1994-01-01
The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different machine environments. There is a DEC VAX/VMS version with a central memory requirement of approximately 242K of 8 bit bytes and a machine independent UNIX 4.2 version. The display device currently supported is the Raster Technologies display processor. Other 512 x 512 resolution color display devices, such as De Anza, may be added with minor code modifications. This program was developed in 1986.
Efficient geometric rectification techniques for spectral analysis algorithm
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Pang, S. S.; Curlander, J. C.
1992-01-01
The spectral analysis algorithm is a viable technique for processing synthetic aperture radar (SAR) data in near real time throughput rates by trading the image resolution. One major challenge of the spectral analysis algorithm is that the output image, often referred to as the range-Doppler image, is represented in the iso-range and iso-Doppler lines, a curved grid format. This phenomenon is known to be the fanshape effect. Therefore, resampling is required to convert the range-Doppler image into a rectangular grid format before the individual images can be overlaid together to form seamless multi-look strip imagery. An efficient algorithm for geometric rectification of the range-Doppler image is presented. The proposed algorithm, realized in two one-dimensional resampling steps, takes into consideration the fanshape phenomenon of the range-Doppler image as well as the high squint angle and updates of the cross-track and along-track Doppler parameters. No ground reference points are required.
NASA Technical Reports Server (NTRS)
Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.
1993-01-01
The Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, has developed a prototype interactive software system called the Spectral Image Processing System (SIPS) using IDL (the Interactive Data Language) on UNIX-based workstations. SIPS is designed to take advantage of the combination of high spectral resolution and spatial data presentation unique to imaging spectrometers. It streamlines analysis of these data by allowing scientists to rapidly interact with entire datasets. SIPS provides visualization tools for rapid exploratory analysis and numerical tools for quantitative modeling. The user interface is X-Windows-based, user friendly, and provides 'point and click' operation. SIPS is being used for multidisciplinary research concentrating on use of physically based analysis methods to enhance scientific results from imaging spectrometer data. The objective of this continuing effort is to develop operational techniques for quantitative analysis of imaging spectrometer data and to make them available to the scientific community prior to the launch of imaging spectrometer satellite systems such as the Earth Observing System (EOS) High Resolution Imaging Spectrometer (HIRIS).
NASA Astrophysics Data System (ADS)
Fu, Yan; Guo, Pei-yuan; Xiang, Ling-zi; Bao, Man; Chen, Xing-hai
2013-08-01
With the gradually mature of hyper spectral image technology, the application of the meat nondestructive detection and recognition has become one of the current research focuses. This paper for the study of marine and freshwater fish by the pre-processing and feature extraction of the collected spectral curve data, combined with BP network structure and LVQ network structure, a predictive model of hyper spectral image data of marine and freshwater fish has been initially established and finally realized the qualitative analysis and identification of marine and freshwater fish quality. The results of this study show that hyper spectral imaging technology combined with the BP and LVQ Artificial Neural Network Model can be used for the identification of marine and freshwater fish detection. Hyper-spectral data acquisition can be carried out without any pretreatment of the samples, thus hyper-spectral imaging technique is the lossless, high- accuracy and rapid detection method for quality of fish. In this study, only 30 samples are used for the exploratory qualitative identification of research, although the ideal study results are achieved, we will further increase the sample capacity to take the analysis of quantitative identification and verify the feasibility of this theory.
Analysis of hyperspectral fluorescence images for poultry skin tumor inspection
NASA Astrophysics Data System (ADS)
Kong, Seong G.; Chen, Yud-Ren; Kim, Intaek; Kim, Moon S.
2004-02-01
We present a hyperspectral fluorescence imaging system with a fuzzy inference scheme for detecting skin tumors on poultry carcasses. Hyperspectral images reveal spatial and spectral information useful for finding pathological lesions or contaminants on agricultural products. Skin tumors are not obvious because the visual signature appears as a shape distortion rather than a discoloration. Fluorescence imaging allows the visualization of poultry skin tumors more easily than reflectance. The hyperspectral image samples obtained for this poultry tumor inspection contain 65 spectral bands of fluorescence in the visible region of the spectrum at wavelengths ranging from 425 to 711 nm. The large amount of hyperspectral image data is compressed by use of a discrete wavelet transform in the spatial domain. Principal-component analysis provides an effective compressed representation of the spectral signal of each pixel in the spectral domain. A small number of significant features are extracted from two major spectral peaks of relative fluorescence intensity that have been identified as meaningful spectral bands for detecting tumors. A fuzzy inference scheme that uses a small number of fuzzy rules and Gaussian membership functions successfully detects skin tumors on poultry carcasses. Spatial-filtering techniques are used to significantly reduce false positives.
Detecting Unknown Artificial Urban Surface Materials Based on Spectral Dissimilarity Analysis.
Jilge, Marianne; Heiden, Uta; Habermeyer, Martin; Mende, André; Juergens, Carsten
2017-08-08
High resolution imaging spectroscopy data have been recognised as a valuable data resource for augmenting detailed material inventories that serve as input for various urban applications. Image-specific urban spectral libraries are successfully used in urban imaging spectroscopy studies. However, the regional- and sensor-specific transferability of such libraries is limited due to the wide range of different surface materials. With the developed methodology, incomplete urban spectral libraries can be utilised by assuming that unknown surface material spectra are dissimilar to the known spectra in a basic spectral library (BSL). The similarity measure SID-SCA (Spectral Information Divergence-Spectral Correlation Angle) is applied to detect image-specific unknown urban surfaces while avoiding spectral mixtures. These detected unknown materials are categorised into distinct and identifiable material classes based on their spectral and spatial metrics. Experimental results demonstrate a successful redetection of material classes that had been previously erased in order to simulate an incomplete BSL. Additionally, completely new materials e.g., solar panels were identified in the data. It is further shown that the level of incompleteness of the BSL and the defined dissimilarity threshold are decisive for the detection of unknown material classes and the degree of spectral intra-class variability. A detailed accuracy assessment of the pre-classification results, aiming to separate natural and artificial materials, demonstrates spectral confusions between spectrally similar materials utilizing SID-SCA. However, most spectral confusions occur between natural or artificial materials which are not affecting the overall aim. The dissimilarity analysis overcomes the limitations of working with incomplete urban spectral libraries and enables the generation of image-specific training databases.
Detecting Unknown Artificial Urban Surface Materials Based on Spectral Dissimilarity Analysis
Jilge, Marianne; Heiden, Uta; Habermeyer, Martin; Mende, André; Juergens, Carsten
2017-01-01
High resolution imaging spectroscopy data have been recognised as a valuable data resource for augmenting detailed material inventories that serve as input for various urban applications. Image-specific urban spectral libraries are successfully used in urban imaging spectroscopy studies. However, the regional- and sensor-specific transferability of such libraries is limited due to the wide range of different surface materials. With the developed methodology, incomplete urban spectral libraries can be utilised by assuming that unknown surface material spectra are dissimilar to the known spectra in a basic spectral library (BSL). The similarity measure SID-SCA (Spectral Information Divergence-Spectral Correlation Angle) is applied to detect image-specific unknown urban surfaces while avoiding spectral mixtures. These detected unknown materials are categorised into distinct and identifiable material classes based on their spectral and spatial metrics. Experimental results demonstrate a successful redetection of material classes that had been previously erased in order to simulate an incomplete BSL. Additionally, completely new materials e.g., solar panels were identified in the data. It is further shown that the level of incompleteness of the BSL and the defined dissimilarity threshold are decisive for the detection of unknown material classes and the degree of spectral intra-class variability. A detailed accuracy assessment of the pre-classification results, aiming to separate natural and artificial materials, demonstrates spectral confusions between spectrally similar materials utilizing SID-SCA. However, most spectral confusions occur between natural or artificial materials which are not affecting the overall aim. The dissimilarity analysis overcomes the limitations of working with incomplete urban spectral libraries and enables the generation of image-specific training databases. PMID:28786947
Fast algorithm for spectral mixture analysis of imaging spectrometer data
NASA Astrophysics Data System (ADS)
Schouten, Theo E.; Klein Gebbinck, Maurice S.; Liu, Z. K.; Chen, Shaowei
1996-12-01
Imaging spectrometers acquire images in many narrow spectral bands but have limited spatial resolution. Spectral mixture analysis (SMA) is used to determine the fractions of the ground cover categories (the end-members) present in each pixel. In this paper a new iterative SMA method is presented and tested using a 30 band MAIS image. The time needed for each iteration is independent of the number of bands, thus the method can be used for spectrometers with a large number of bands. Further a new method, based on K-means clustering, for obtaining endmembers from image data is described and compared with existing methods. Using the developed methods the available MAIS image was analyzed using 2 to 6 endmembers.
SAR image change detection using watershed and spectral clustering
NASA Astrophysics Data System (ADS)
Niu, Ruican; Jiao, L. C.; Wang, Guiting; Feng, Jie
2011-12-01
A new method of change detection in SAR images based on spectral clustering is presented in this paper. Spectral clustering is employed to extract change information from a pair images acquired on the same geographical area at different time. Watershed transform is applied to initially segment the big image into non-overlapped local regions, leading to reduce the complexity. Experiments results and system analysis confirm the effectiveness of the proposed algorithm.
Principal components analysis of Jupiter VIMS spectra
Bellucci, G.; Formisano, V.; D'Aversa, E.; Brown, R.H.; Baines, K.H.; Bibring, J.-P.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Chamberlain, M.C.; Hansen, G.; Hibbits, K.; Showalter, M.; Filacchione, G.
2004-01-01
During Cassini - Jupiter flyby occurred in December 2000, Visual-Infrared mapping spectrometer (VIMS) instrument took several image cubes of Jupiter at different phase angles and distances. We have analysed the spectral images acquired by the VIMS visual channel by means of a principal component analysis technique (PCA). The original data set consists of 96 spectral images in the 0.35-1.05 ??m wavelength range. The product of the analysis are new PC bands, which contain all the spectral variance of the original data. These new components have been used to produce a map of Jupiter made of seven coherent spectral classes. The map confirms previously published work done on the Great Red Spot by using NIMS data. Some other new findings, presently under investigation, are presented. ?? 2004 Published by Elsevier Ltd on behalf of COSPAR.
Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo
2017-01-01
Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise processing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selection and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels (disease severity) of intact Chardonnay grape bunches shortly before veraison. Instead of calculating texture features (spatial features) for the huge number of spectral bands independently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective extraction of texture parameters from the integral image representation of the image bands generated. Dimensionality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up to [Formula: see text] for detached berries used as a reference sample (training dataset). Our approach was validated by predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visually healthy and infected bunches proved to be challenging for a few samples, perhaps due to colonized berries or sparse mycelia hidden within the bunch or airborne conidia on the berries that were detected by qPCR. An advanced approach to hyperspectral image classification based on combined spatial and spectral image features, potentially applicable to many available hyperspectral sensor technologies, has been developed and validated to improve the detection of powdery mildew infection levels of Chardonnay grape bunches. The spatial-spectral approach improved especially the detection of light infection levels compared with pixel-wise spectral data analysis. This approach is expected to improve the speed and accuracy of disease detection once the thresholds for fungal biomass detected by hyperspectral imaging are established; it can also facilitate monitoring in plant phenotyping of grapevine and additional crops.
Hsieh, Sheng-Hsun; Li, Yung-Hui; Wang, Wei; Tien, Chung-Hao
2018-03-06
In this study, we maneuvered a dual-band spectral imaging system to capture an iridal image from a cosmetic-contact-lens-wearing subject. By using the independent component analysis to separate individual spectral primitives, we successfully distinguished the natural iris texture from the cosmetic contact lens (CCL) pattern, and restored the genuine iris patterns from the CCL-polluted image. Based on a database containing 200 test image pairs from 20 CCL-wearing subjects as the proof of concept, the recognition accuracy (False Rejection Rate: FRR) was improved from FRR = 10.52% to FRR = 0.57% with the proposed ICA anti-spoofing scheme.
NASA Astrophysics Data System (ADS)
Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.
2015-08-01
A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66-1.06, 1.06-1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.
Cutrale, Francesco; Salih, Anya; Gratton, Enrico
2013-01-01
The phasor global analysis algorithm is common for fluorescence lifetime applications, but has only been recently proposed for spectral analysis. Here the phasor representation and fingerprinting is exploited in its second harmonic to determine the number and spectra of photo-activated states as well as their conversion dynamics. We follow the sequence of photo-activation of proteins over time by rapidly collecting multiple spectral images. The phasor representation of the cumulative images provides easy identification of the spectral signatures of each photo-activatable protein. PMID:24040513
Hyperspectral Image Analysis for Skin Tumor Detection
NASA Astrophysics Data System (ADS)
Kong, Seong G.; Park, Lae-Jeong
This chapter presents hyperspectral imaging of fluorescence for nonin-vasive detection of tumorous tissue on mouse skin. Hyperspectral imaging sensors collect two-dimensional (2D) image data of an object in a number of narrow, adjacent spectral bands. This high-resolution measurement of spectral information reveals a continuous emission spectrum for each image pixel useful for skin tumor detection. The hyperspectral image data used in this study are fluorescence intensities of a mouse sample consisting of 21 spectral bands in the visible spectrum of wavelengths ranging from 440 to 640 nm. Fluorescence signals are measured using a laser excitation source with the center wavelength of 337 nm. An acousto-optic tunable filter is used to capture individual spectral band images at a 10-nm resolution. All spectral band images are spatially registered with the reference band image at 490 nm to obtain exact pixel correspondences by compensating the offsets caused during the image capture procedure. The support vector machines with polynomial kernel functions provide decision boundaries with a maximum separation margin to classify malignant tumor and normal tissue from the observed fluorescence spectral signatures for skin tumor detection.
NDVI and Panchromatic Image Correlation Using Texture Analysis
2010-03-01
6 Figure 5. Spectral reflectance of vegetation and soil from 0.4 to 1.1 mm (From Perry...should help the classification methods to be able to classify kelp. Figure 5. Spectral reflectance of vegetation and soil from 0.4 to 1.1 mm...1988). Image processing software for imaging spectrometry analysis. Remote Sensing of Enviroment , 24: 201–210. Perry, C., & Lautenschlager, L. F
Snapshot hyperspectral retinal imaging using compact spectral resolving detector array.
Li, Hao; Liu, Wenzhong; Dong, Biqin; Kaluzny, Joel V; Fawzi, Amani A; Zhang, Hao F
2017-06-01
Hyperspectral retinal imaging captures the light spectrum from each imaging pixel. It provides spectrally encoded retinal physiological and morphological information, which could potentially benefit diagnosis and therapeutic monitoring of retinal diseases. The key challenges in hyperspectral retinal imaging are how to achieve snapshot imaging to avoid motions between the images from multiple spectral bands, and how to design a compact snapshot imager suitable for clinical use. Here, we developed a compact, snapshot hyperspectral fundus camera for rodents using a novel spectral resolving detector array (SRDA), on which a thin-film Fabry-Perot cavity filter was monolithically fabricated on each imaging pixel. We achieved hyperspectral retinal imaging with 16 wavelength bands (460 to 630 nm) at 20 fps. We also demonstrated false-color vessel contrast enhancement and retinal oxygen saturation (sO 2 ) measurement through spectral analysis. This work could potentially bring hyperspectral retinal imaging from bench to bedside. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pan, Zhuokun; Huang, Jingfeng; Wang, Fumin
2013-12-01
Spectral feature fitting (SFF) is a commonly used strategy for hyperspectral imagery analysis to discriminate ground targets. Compared to other image analysis techniques, SFF does not secure higher accuracy in extracting image information in all circumstances. Multi range spectral feature fitting (MRSFF) from ENVI software allows user to focus on those interesting spectral features to yield better performance. Thus spectral wavelength ranges and their corresponding weights must be determined. The purpose of this article is to demonstrate the performance of MRSFF in oilseed rape planting area extraction. A practical method for defining the weighted values, the variance coefficient weight method, was proposed to set up criterion. Oilseed rape field canopy spectra from the whole growth stage were collected prior to investigating its phenological varieties; oilseed rape endmember spectra were extracted from the Hyperion image as identifying samples to be used in analyzing the oilseed rape field. Wavelength range divisions were determined by the difference between field-measured spectra and image spectra, and image spectral variance coefficient weights for each wavelength range were calculated corresponding to field-measured spectra from the closest date. By using MRSFF, wavelength ranges were classified to characterize the target's spectral features without compromising spectral profile's entirety. The analysis was substantially successful in extracting oilseed rape planting areas (RMSE ≤ 0.06), and the RMSE histogram indicated a superior result compared to a conventional SFF. Accuracy assessment was based on the mapping result compared with spectral angle mapping (SAM) and the normalized difference vegetation index (NDVI). The MRSFF yielded a robust, convincible result and, therefore, may further the use of hyperspectral imagery in precision agriculture.
Spectral imaging of histological and cytological specimens
NASA Astrophysics Data System (ADS)
Rothmann, Chana; Malik, Zvi
1999-05-01
Evaluation of cell morphology by bright field microscopy is the pillar of histopathological diagnosis. The need for quantitative and objective parameters for diagnosis has given rise to the development of morphometric methods. The development of spectral imaging for biological and medical applications introduced both fields to large amounts of information extracted from a single image. Spectroscopic analysis is based on the ability of a stained histological specimen to absorb, reflect, or emit photons in ways characteristic to its interactions with specific dyes. Spectral information obtained from a histological specimen is stored in a cube whose appellate signifies the two spatial dimensions of a flat sample (x and y) and the third dimension, the spectrum, representing the light intensity for every wavelength. The spectral information stored in the cube can be further processed by morphometric analysis and quantitative procedures. Such a procedure is spectral-similarity mapping (SSM), which enables the demarcation of areas occupied by the same type of material. SSM constructs new images of the specimen, revealing areas with similar stain-macromolecule characteristics and enhancing subcellular features. Spectral imaging combined with SSM reveals nuclear organization through the differentiation stages as well as in apoptotic and necrotic conditions and identifies specifically the nucleoli domains.
NASA Technical Reports Server (NTRS)
Davila, Joseph M.; Jones, Sahela
2011-01-01
Spectrographs have traditionally suffered from the inability to obtain line intensities, widths, and Doppler shifts over large spatial regions of the Sun quickly because of the narrow instantaneous field of view. This has limited the spectroscopic analysis of rapidly varying solar features like, flares, CME eruptions, coronal jets, and reconnection regions. Imagers have provided high time resolution images of the full Sun with limited spectral resolution. In this paper we present recent advances in deconvolving spectrally dispersed images obtained through broad slits. We use this new theoretical formulation to examine the effectiveness of various potential observing scenarios, spatial and spectral resolutions, signal to noise ratio, and other instrument characteristics. This information will lay the foundation for a new generation of spectral imagers optimized for slitless spectral operation, while retaining the ability to obtain spectral information in transient solar events.
Using spectral imaging for the analysis of abnormalities for colorectal cancer: When is it helpful?
Awan, Ruqayya; Al-Maadeed, Somaya; Al-Saady, Rafif
2018-01-01
The spectral imaging technique has been shown to provide more discriminative information than the RGB images and has been proposed for a range of problems. There are many studies demonstrating its potential for the analysis of histopathology images for abnormality detection but there have been discrepancies among previous studies as well. Many multispectral based methods have been proposed for histopathology images but the significance of the use of whole multispectral cube versus a subset of bands or a single band is still arguable. We performed comprehensive analysis using individual bands and different subsets of bands to determine the effectiveness of spectral information for determining the anomaly in colorectal images. Our multispectral colorectal dataset consists of four classes, each represented by infra-red spectrum bands in addition to the visual spectrum bands. We performed our analysis of spectral imaging by stratifying the abnormalities using both spatial and spectral information. For our experiments, we used a combination of texture descriptors with an ensemble classification approach that performed best on our dataset. We applied our method to another dataset and got comparable results with those obtained using the state-of-the-art method and convolutional neural network based method. Moreover, we explored the relationship of the number of bands with the problem complexity and found that higher number of bands is required for a complex task to achieve improved performance. Our results demonstrate a synergy between infra-red and visual spectrum by improving the classification accuracy (by 6%) on incorporating the infra-red representation. We also highlight the importance of how the dataset should be divided into training and testing set for evaluating the histopathology image-based approaches, which has not been considered in previous studies on multispectral histopathology images.
Using spectral imaging for the analysis of abnormalities for colorectal cancer: When is it helpful?
Al-Maadeed, Somaya; Al-Saady, Rafif
2018-01-01
The spectral imaging technique has been shown to provide more discriminative information than the RGB images and has been proposed for a range of problems. There are many studies demonstrating its potential for the analysis of histopathology images for abnormality detection but there have been discrepancies among previous studies as well. Many multispectral based methods have been proposed for histopathology images but the significance of the use of whole multispectral cube versus a subset of bands or a single band is still arguable. We performed comprehensive analysis using individual bands and different subsets of bands to determine the effectiveness of spectral information for determining the anomaly in colorectal images. Our multispectral colorectal dataset consists of four classes, each represented by infra-red spectrum bands in addition to the visual spectrum bands. We performed our analysis of spectral imaging by stratifying the abnormalities using both spatial and spectral information. For our experiments, we used a combination of texture descriptors with an ensemble classification approach that performed best on our dataset. We applied our method to another dataset and got comparable results with those obtained using the state-of-the-art method and convolutional neural network based method. Moreover, we explored the relationship of the number of bands with the problem complexity and found that higher number of bands is required for a complex task to achieve improved performance. Our results demonstrate a synergy between infra-red and visual spectrum by improving the classification accuracy (by 6%) on incorporating the infra-red representation. We also highlight the importance of how the dataset should be divided into training and testing set for evaluating the histopathology image-based approaches, which has not been considered in previous studies on multispectral histopathology images. PMID:29874262
NASA Astrophysics Data System (ADS)
Catelli, Emilio; Randeberg, Lise Lyngsnes; Alsberg, Bjørn Kåre; Gebremariam, Kidane Fanta; Bracci, Silvano
2017-04-01
Hyperspectral imaging (HSI) is a fast non-invasive imaging technology recently applied in the field of art conservation. With the help of chemometrics, important information about the spectral properties and spatial distribution of pigments can be extracted from HSI data. With the intent of expanding the applications of chemometrics to the interpretation of hyperspectral images of historical documents, and, at the same time, to study the colorants and their spatial distribution on ancient illuminated manuscripts, an explorative chemometric approach is here presented. The method makes use of chemometric tools for spectral de-noising (minimum noise fraction (MNF)) and image analysis (multivariate image analysis (MIA) and iterative key set factor analysis (IKSFA)/spectral angle mapper (SAM)) which have given an efficient separation, classification and mapping of colorants from visible-near-infrared (VNIR) hyperspectral images of an ancient illuminated fragment. The identification of colorants was achieved by extracting and interpreting the VNIR spectra as well as by using a portable X-ray fluorescence (XRF) spectrometer.
Hsieh, Sheng-Hsun; Wang, Wei; Tien, Chung-Hao
2018-01-01
In this study, we maneuvered a dual-band spectral imaging system to capture an iridal image from a cosmetic-contact-lens-wearing subject. By using the independent component analysis to separate individual spectral primitives, we successfully distinguished the natural iris texture from the cosmetic contact lens (CCL) pattern, and restored the genuine iris patterns from the CCL-polluted image. Based on a database containing 200 test image pairs from 20 CCL-wearing subjects as the proof of concept, the recognition accuracy (False Rejection Rate: FRR) was improved from FRR = 10.52% to FRR = 0.57% with the proposed ICA anti-spoofing scheme. PMID:29509692
3D tensor-based blind multispectral image decomposition for tumor demarcation
NASA Astrophysics Data System (ADS)
Kopriva, Ivica; Peršin, Antun
2010-03-01
Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).
NASA Technical Reports Server (NTRS)
Sabol, Donald E., Jr.; Roberts, Dar A.; Adams, John B.; Smith, Milton O.
1993-01-01
An important application of remote sensing is to map and monitor changes over large areas of the land surface. This is particularly significant with the current interest in monitoring vegetation communities. Most of traditional methods for mapping different types of plant communities are based upon statistical classification techniques (i.e., parallel piped, nearest-neighbor, etc.) applied to uncalibrated multispectral data. Classes from these techniques are typically difficult to interpret (particularly to a field ecologist/botanist). Also, classes derived for one image can be very different from those derived from another image of the same area, making interpretation of observed temporal changes nearly impossible. More recently, neural networks have been applied to classification. Neural network classification, based upon spectral matching, is weak in dealing with spectral mixtures (a condition prevalent in images of natural surfaces). Another approach to mapping vegetation communities is based on spectral mixture analysis, which can provide a consistent framework for image interpretation. Roberts et al. (1990) mapped vegetation using the band residuals from a simple mixing model (the same spectral endmembers applied to all image pixels). Sabol et al. (1992b) and Roberts et al. (1992) used different methods to apply the most appropriate spectral endmembers to each image pixel, thereby allowing mapping of vegetation based upon the the different endmember spectra. In this paper, we describe a new approach to classification of vegetation communities based upon the spectra fractions derived from spectral mixture analysis. This approach was applied to three 1992 AVIRIS images of Jasper Ridge, California to observe seasonal changes in surface composition.
NASA Astrophysics Data System (ADS)
Ma, Long; Zhao, Deping
2011-12-01
Spectral imaging technology have been used mostly in remote sensing, but have recently been extended to new area requiring high fidelity color reproductions like telemedicine, e-commerce, etc. These spectral imaging systems are important because they offer improved color reproduction quality not only for a standard observer under a particular illuminantion, but for any other individual exhibiting normal color vision capability under another illuminantion. A possibility for browsing of the archives is needed. In this paper, the authors present a new spectral image browsing architecture. The architecture for browsing is expressed as follow: (1) The spectral domain of the spectral image is reduced with the PCA transform. As a result of the PCA transform the eigenvectors and the eigenimages are obtained. (2) We quantize the eigenimages with the original bit depth of spectral image (e.g. if spectral image is originally 8bit, then quantize eigenimage to 8bit), and use 32bit floating numbers for the eigenvectors. (3) The first eigenimage is lossless compressed by JPEG-LS, the other eigenimages were lossy compressed by wavelet based SPIHT algorithm. For experimental evalution, the following measures were used. We used PSNR as the measurement for spectral accuracy. And for the evaluation of color reproducibility, ΔE was used.here standard D65 was used as a light source. To test the proposed method, we used FOREST and CORAL spectral image databases contrain 12 and 10 spectral images, respectively. The images were acquired in the range of 403-696nm. The size of the images were 128*128, the number of bands was 40 and the resolution was 8 bits per sample. Our experiments show the proposed compression method is suitable for browsing, i.e., for visual purpose.
NASA Astrophysics Data System (ADS)
Hirose, Misa; Toyota, Saori; Tsumura, Norimichi
2018-02-01
In this research, we evaluate the visibility of age spot and freckle with changing the blood volume based on simulated spectral reflectance distribution and the actual facial color images, and compare these results. First, we generate three types of spatial distribution of age spot and freckle in patch-like images based on the simulated spectral reflectance. The spectral reflectance is simulated using Monte Carlo simulation of light transport in multi-layered tissue. Next, we reconstruct the facial color image with changing the blood volume. We acquire the concentration distribution of melanin, hemoglobin and shading components by applying the independent component analysis on a facial color image. We reproduce images using the obtained melanin and shading concentration and the changed hemoglobin concentration. Finally, we evaluate the visibility of pigmentations using simulated spectral reflectance distribution and facial color images. In the result of simulated spectral reflectance distribution, we found that the visibility became lower as the blood volume increases. However, we can see that a specific blood volume reduces the visibility of the actual pigmentations from the result of the facial color images.
Spectral imaging as a potential tool for optical sentinel lymph node biopsies
NASA Astrophysics Data System (ADS)
O'Sullivan, Jack D.; Hoy, Paul R.; Rutt, Harvey N.
2011-07-01
Sentinel Lymph Node Biopsy (SLNB) is an increasingly standard procedure to help oncologists accurately stage cancers. It is performed as an alternative to full axillary lymph node dissection in breast cancer patients, reducing the risk of longterm health problems associated with lymph node removal. Intraoperative analysis is currently performed using touchprint cytology, which can introduce significant delay into the procedure. Spectral imaging is forming a multi-plane image where reflected intensities from a number of spectral bands are recorded at each pixel in the spatial plane. We investigate the possibility of using spectral imaging to assess sentinel lymph nodes of breast cancer patients with a view to eventually developing an optical technique that could significantly reduce the time required to perform this procedure. We investigate previously reported spectra of normal and metastatic tissue in the visible and near infrared region, using them as the basis of dummy spectral images. We analyse these images using the spectral angle map (SAM), a tool routinely used in other fields where spectral imaging is prevalent. We simulate random noise in these images in order to determine whether the SAM can discriminate between normal and metastatic pixels as the quality of the images deteriorates. We show that even in cases where noise levels are up to 20% of the maximum signal, the spectral angle map can distinguish healthy pixels from metastatic. We believe that this makes spectral imaging a good candidate for further study in the development of an optical SLNB.
NASA Technical Reports Server (NTRS)
1982-01-01
Model II Multispectral Camera is an advanced aerial camera that provides optimum enhancement of a scene by recording spectral signatures of ground objects only in narrow, preselected bands of the electromagnetic spectrum. Its photos have applications in such areas as agriculture, forestry, water pollution investigations, soil analysis, geologic exploration, water depth studies and camouflage detection. The target scene is simultaneously photographed in four separate spectral bands. Using a multispectral viewer, such as their Model 75 Spectral Data creates a color image from the black and white positives taken by the camera. With this optical image analysis unit, all four bands are superimposed in accurate registration and illuminated with combinations of blue green, red, and white light. Best color combination for displaying the target object is selected and printed. Spectral Data Corporation produces several types of remote sensing equipment and also provides aerial survey, image processing and analysis and number of other remote sensing services.
An excitation wavelength-scanning spectral imaging system for preclinical imaging
NASA Astrophysics Data System (ADS)
Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Rajwa, Bartek; Robinson, J. Paul
2008-02-01
Small-animal fluorescence imaging is a rapidly growing field, driven by applications in cancer detection and pharmaceutical therapies. However, the practical use of this imaging technology is limited by image-quality issues related to autofluorescence background from animal tissues, as well as attenuation of the fluorescence signal due to scatter and absorption. To combat these problems, spectral imaging and analysis techniques are being employed to separate the fluorescence signal from background autofluorescence. To date, these technologies have focused on detecting the fluorescence emission spectrum at a fixed excitation wavelength. We present an alternative to this technique, an imaging spectrometer that detects the fluorescence excitation spectrum at a fixed emission wavelength. The advantages of this approach include increased available information for discrimination of fluorescent dyes, decreased optical radiation dose to the animal, and ability to scan a continuous wavelength range instead of discrete wavelength sampling. This excitation-scanning imager utilizes an acousto-optic tunable filter (AOTF), with supporting optics, to scan the excitation spectrum. Advanced image acquisition and analysis software has also been developed for classification and unmixing of the spectral image sets. Filtering has been implemented in a single-pass configuration with a bandwidth (full width at half maximum) of 16nm at 550nm central diffracted wavelength. We have characterized AOTF filtering over a wide range of incident light angles, much wider than has been previously reported in the literature, and we show how changes in incident light angle can be used to attenuate AOTF side lobes and alter bandwidth. A new parameter, in-band to out-of-band ratio, was defined to assess the quality of the filtered excitation light. Additional parameters were measured to allow objective characterization of the AOTF and the imager as a whole. This is necessary for comparing the excitation-scanning imager to other spectral and fluorescence imaging technologies. The effectiveness of the hyperspectral imager was tested by imaging and analysis of mice with injected fluorescent dyes. Finally, a discussion of the optimization of spectral fluorescence imagers is given, relating the effects of filter quality on fluorescence images collected and the analysis outcome.
Spectral Analysis and Experimental Modeling of Ice Accretion Roughness
NASA Technical Reports Server (NTRS)
Orr, D. J.; Breuer, K. S.; Torres, B. E.; Hansman, R. J., Jr.
1996-01-01
A self-consistent scheme for relating wind tunnel ice accretion roughness to the resulting enhancement of heat transfer is described. First, a spectral technique of quantitative analysis of early ice roughness images is reviewed. The image processing scheme uses a spectral estimation technique (SET) which extracts physically descriptive parameters by comparing scan lines from the experimentally-obtained accretion images to a prescribed test function. Analysis using this technique for both streamwise and spanwise directions of data from the NASA Lewis Icing Research Tunnel (IRT) are presented. An experimental technique is then presented for constructing physical roughness models suitable for wind tunnel testing that match the SET parameters extracted from the IRT images. The icing castings and modeled roughness are tested for enhancement of boundary layer heat transfer using infrared techniques in a "dry" wind tunnel.
Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Kokaly, Raymond F.; Sutley, Steve J.; Dalton, J. Brad; McDougal, Robert R.; Gent, Carol A.
2003-01-01
Imaging spectroscopy is a tool that can be used to spectrally identify and spatially map materials based on their specific chemical bonds. Spectroscopic analysis requires significantly more sophistication than has been employed in conventional broadband remote sensing analysis. We describe a new system that is effective at material identification and mapping: a set of algorithms within an expert system decision‐making framework that we call Tetracorder. The expertise in the system has been derived from scientific knowledge of spectral identification. The expert system rules are implemented in a decision tree where multiple algorithms are applied to spectral analysis, additional expert rules and algorithms can be applied based on initial results, and more decisions are made until spectral analysis is complete. Because certain spectral features are indicative of specific chemical bonds in materials, the system can accurately identify and map those materials. In this paper we describe the framework of the decision making process used for spectral identification, describe specific spectral feature analysis algorithms, and give examples of what analyses and types of maps are possible with imaging spectroscopy data. We also present the expert system rules that describe which diagnostic spectral features are used in the decision making process for a set of spectra of minerals and other common materials. We demonstrate the applications of Tetracorder to identify and map surface minerals, to detect sources of acid rock drainage, and to map vegetation species, ice, melting snow, water, and water pollution, all with one set of expert system rules. Mineral mapping can aid in geologic mapping and fault detection and can provide a better understanding of weathering, mineralization, hydrothermal alteration, and other geologic processes. Environmental site assessment, such as mapping source areas of acid mine drainage, has resulted in the acceleration of site cleanup, saving millions of dollars and years in cleanup time. Imaging spectroscopy data and Tetracorder analysis can be used to study both terrestrial and planetary science problems. Imaging spectroscopy can be used to probe planetary systems, including their atmospheres, oceans, and land surfaces.
NASA Astrophysics Data System (ADS)
Yu, Shanshan; Murakami, Yuri; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki
2006-09-01
The article proposes a multispectral image compression scheme using nonlinear spectral transform for better colorimetric and spectral reproducibility. In the method, we show the reduction of colorimetric error under a defined viewing illuminant and also that spectral accuracy can be improved simultaneously using a nonlinear spectral transform called Labplus, which takes into account the nonlinearity of human color vision. Moreover, we show that the addition of diagonal matrices to Labplus can further preserve the spectral accuracy and has a generalized effect of improving the colorimetric accuracy under other viewing illuminants than the defined one. Finally, we discuss the usage of the first-order Markov model to form the analysis vectors for the higher order channels in Labplus to reduce the computational complexity. We implement a multispectral image compression system that integrates Labplus with JPEG2000 for high colorimetric and spectral reproducibility. Experimental results for a 16-band multispectral image show the effectiveness of the proposed scheme.
Biologically-inspired data decorrelation for hyper-spectral imaging
NASA Astrophysics Data System (ADS)
Picon, Artzai; Ghita, Ovidiu; Rodriguez-Vaamonde, Sergio; Iriondo, Pedro Ma; Whelan, Paul F.
2011-12-01
Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors) is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA), linear discriminant analysis (LDA), wavelet decomposition (WD), or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral) characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification
Information content exploitation of imaging spectrometer's images for lossless compression
NASA Astrophysics Data System (ADS)
Wang, Jianyu; Zhu, Zhenyu; Lin, Kan
1996-11-01
Imaging spectrometer, such as MAIS produces a tremendous volume of image data with up to 5.12 Mbps raw data rate, which needs urgently a real-time, efficient and reversible compression implementation. Between the lossy scheme with high compression ratio and the lossless scheme with high fidelity, we must make our choice based on the particular information content analysis of each imaging spectrometer's image data. In this paper, we present a careful analysis of information-preserving compression of imaging spectrometer MAIS with an entropy and autocorrelation study on the hyperspectral images. First, the statistical information in an actual MAIS image, captured in Marble Bar Australia, is measured with its entropy, conditional entropy, mutual information and autocorrelation coefficients on both spatial dimensions and spectral dimension. With these careful analyses, it is shown that there is high redundancy existing in the spatial dimensions, but the correlation in spectral dimension of the raw images is smaller than expected. The main reason of the nonstationarity on spectral dimension is attributed to the instruments's discrepancy on detector's response and channel's amplification in different spectral bands. To restore its natural correlation, we preprocess the signal in advance. There are two methods to accomplish this requirement: onboard radiation calibration and normalization. A better result can be achieved by the former one. After preprocessing, the spectral correlation increases so high that it contributes much redundancy in addition to spatial correlation. At last, an on-board hardware implementation for the lossless compression is presented with an ideal result.
NASA Astrophysics Data System (ADS)
Nallala, Jayakrupakar; Gobinet, Cyril; Diebold, Marie-Danièle; Untereiner, Valérie; Bouché, Olivier; Manfait, Michel; Sockalingum, Ganesh Dhruvananda; Piot, Olivier
2012-11-01
Innovative diagnostic methods are the need of the hour that could complement conventional histopathology for cancer diagnosis. In this perspective, we propose a new concept based on spectral histopathology, using IR spectral micro-imaging, directly applied to paraffinized colon tissue array stabilized in an agarose matrix without any chemical pre-treatment. In order to correct spectral interferences from paraffin and agarose, a mathematical procedure is implemented. The corrected spectral images are then processed by a multivariate clustering method to automatically recover, on the basis of their intrinsic molecular composition, the main histological classes of the normal and the tumoral colon tissue. The spectral signatures from different histological classes of the colonic tissues are analyzed using statistical methods (Kruskal-Wallis test and principal component analysis) to identify the most discriminant IR features. These features allow characterizing some of the biomolecular alterations associated with malignancy. Thus, via a single analysis, in a label-free and nondestructive manner, main changes associated with nucleotide, carbohydrates, and collagen features can be identified simultaneously between the compared normal and the cancerous tissues. The present study demonstrates the potential of IR spectral imaging as a complementary modern tool, to conventional histopathology, for an objective cancer diagnosis directly from paraffin-embedded tissue arrays.
[A spatial adaptive algorithm for endmember extraction on multispectral remote sensing image].
Zhu, Chang-Ming; Luo, Jian-Cheng; Shen, Zhan-Feng; Li, Jun-Li; Hu, Xiao-Dong
2011-10-01
Due to the problem that the convex cone analysis (CCA) method can only extract limited endmember in multispectral imagery, this paper proposed a new endmember extraction method by spatial adaptive spectral feature analysis in multispectral remote sensing image based on spatial clustering and imagery slice. Firstly, in order to remove spatial and spectral redundancies, the principal component analysis (PCA) algorithm was used for lowering the dimensions of the multispectral data. Secondly, iterative self-organizing data analysis technology algorithm (ISODATA) was used for image cluster through the similarity of the pixel spectral. And then, through clustering post process and litter clusters combination, we divided the whole image data into several blocks (tiles). Lastly, according to the complexity of image blocks' landscape and the feature of the scatter diagrams analysis, the authors can determine the number of endmembers. Then using hourglass algorithm extracts endmembers. Through the endmember extraction experiment on TM multispectral imagery, the experiment result showed that the method can extract endmember spectra form multispectral imagery effectively. What's more, the method resolved the problem of the amount of endmember limitation and improved accuracy of the endmember extraction. The method has provided a new way for multispectral image endmember extraction.
Lee-Felker, Stephanie A; Tekchandani, Leena; Thomas, Mariam; Gupta, Esha; Andrews-Tang, Denise; Roth, Antoinette; Sayre, James; Rahbar, Guita
2017-11-01
Purpose To compare the diagnostic performances of contrast material-enhanced spectral mammography and breast magnetic resonance (MR) imaging in the detection of index and secondary cancers in women with newly diagnosed breast cancer by using histologic or imaging follow-up as the standard of reference. Materials and Methods This institutional review board-approved, HIPAA-compliant, retrospective study included 52 women who underwent breast MR imaging and contrast-enhanced spectral mammography for newly diagnosed unilateral breast cancer between March 2014 and October 2015. Of those 52 patients, 46 were referred for contrast-enhanced spectral mammography and targeted ultrasonography because they had additional suspicious lesions at MR imaging. In six of the 52 patients, breast cancer had been diagnosed at an outside institution. These patients were referred for contrast-enhanced spectral mammography and targeted US as part of diagnostic imaging. Images from contrast-enhanced spectral mammography were analyzed by two fellowship-trained breast imagers with 2.5 years of experience with contrast-enhanced spectral mammography. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value were calculated for both imaging modalities and compared by using the Bennett statistic. Results Fifty-two women with 120 breast lesions were included for analysis (mean age, 50 years; range, 29-73 years). Contrast-enhanced spectral mammography had similar sensitivity to MR imaging (94% [66 of 70 lesions] vs 99% [69 of 70 lesions]), a significantly higher PPV than MR imaging (93% [66 of 71 lesions] vs 60% [69 of 115 lesions]), and fewer false-positive findings than MR imaging (five vs 45) (P < .001 for all results). In addition, contrast-enhanced spectral mammography depicted 11 of the 11 secondary cancers (100%) and MR imaging depicted 10 (91%). Conclusion Contrast-enhanced spectral mammography is potentially as sensitive as MR imaging in the evaluation of extent of disease in newly diagnosed breast cancer, with a higher PPV. © RSNA, 2017.
An adaptive band selection method for dimension reduction of hyper-spectral remote sensing image
NASA Astrophysics Data System (ADS)
Yu, Zhijie; Yu, Hui; Wang, Chen-sheng
2014-11-01
Hyper-spectral remote sensing data can be acquired by imaging the same area with multiple wavelengths, and it normally consists of hundreds of band-images. Hyper-spectral images can not only provide spatial information but also high resolution spectral information, and it has been widely used in environment monitoring, mineral investigation and military reconnaissance. However, because of the corresponding large data volume, it is very difficult to transmit and store Hyper-spectral images. Hyper-spectral image dimensional reduction technique is desired to resolve this problem. Because of the High relation and high redundancy of the hyper-spectral bands, it is very feasible that applying the dimensional reduction method to compress the data volume. This paper proposed a novel band selection-based dimension reduction method which can adaptively select the bands which contain more information and details. The proposed method is based on the principal component analysis (PCA), and then computes the index corresponding to every band. The indexes obtained are then ranked in order of magnitude from large to small. Based on the threshold, system can adaptively and reasonably select the bands. The proposed method can overcome the shortcomings induced by transform-based dimension reduction method and prevent the original spectral information from being lost. The performance of the proposed method has been validated by implementing several experiments. The experimental results show that the proposed algorithm can reduce the dimensions of hyper-spectral image with little information loss by adaptively selecting the band images.
Hyperspectral remote sensing image retrieval system using spectral and texture features.
Zhang, Jing; Geng, Wenhao; Liang, Xi; Li, Jiafeng; Zhuo, Li; Zhou, Qianlan
2017-06-01
Although many content-based image retrieval systems have been developed, few studies have focused on hyperspectral remote sensing images. In this paper, a hyperspectral remote sensing image retrieval system based on spectral and texture features is proposed. The main contributions are fourfold: (1) considering the "mixed pixel" in the hyperspectral image, endmembers as spectral features are extracted by an improved automatic pixel purity index algorithm, then the texture features are extracted with the gray level co-occurrence matrix; (2) similarity measurement is designed for the hyperspectral remote sensing image retrieval system, in which the similarity of spectral features is measured with the spectral information divergence and spectral angle match mixed measurement and in which the similarity of textural features is measured with Euclidean distance; (3) considering the limited ability of the human visual system, the retrieval results are returned after synthesizing true color images based on the hyperspectral image characteristics; (4) the retrieval results are optimized by adjusting the feature weights of similarity measurements according to the user's relevance feedback. The experimental results on NASA data sets can show that our system can achieve comparable superior retrieval performance to existing hyperspectral analysis schemes.
NASA Technical Reports Server (NTRS)
Conel, J. E.; Lang, H. R.; Paylor, E. D.; Alley, R. E.
1985-01-01
A Landsat-4 Thematic Mapper (TM) image of the Wind River Basin area in Wyoming is currently under analysis for stratigraphic and structural mapping and for assessment of spectral and spatial characteristics using visible, near infrared, and short wavelength infrared bands. To estimate the equivalent Lambertian surface reflectance, TM radiance data were calibrated to remove atmospheric and instrumental effects. Reflectance measurements for homogeneous natural and cultural targets were acquired about one year after data acquisition. Calibration data obtained during the analysis were used to calculate new gains and offsets to improve scanner response for earth science applications. It is shown that the principal component images calculated from the TM data were the result of linear transformations of ground reflectance. In images prepared from this transform, the separation of spectral classes was independent of systematic atmospheric and instrumental factors. Several examples of the processed images are provided.
Hyperspectral Image Denoising Using a Nonlocal Spectral Spatial Principal Component Analysis
NASA Astrophysics Data System (ADS)
Li, D.; Xu, L.; Peng, J.; Ma, J.
2018-04-01
Hyperspectral images (HSIs) denoising is a critical research area in image processing duo to its importance in improving the quality of HSIs, which has a negative impact on object detection and classification and so on. In this paper, we develop a noise reduction method based on principal component analysis (PCA) for hyperspectral imagery, which is dependent on the assumption that the noise can be removed by selecting the leading principal components. The main contribution of paper is to introduce the spectral spatial structure and nonlocal similarity of the HSIs into the PCA denoising model. PCA with spectral spatial structure can exploit spectral correlation and spatial correlation of HSI by using 3D blocks instead of 2D patches. Nonlocal similarity means the similarity between the referenced pixel and other pixels in nonlocal area, where Mahalanobis distance algorithm is used to estimate the spatial spectral similarity by calculating the distance in 3D blocks. The proposed method is tested on both simulated and real hyperspectral images, the results demonstrate that the proposed method is superior to several other popular methods in HSI denoising.
Global Learning Spectral Archive- A new Way to deal with Unknown Urban Spectra -
NASA Astrophysics Data System (ADS)
Jilge, M.; Heiden, U.; Habermeyer, M.; Jürgens, C.
2015-12-01
Rapid urbanization processes and the need of identifying urban materials demand urban planners and the remote sensing community since years. Urban planners cannot overcome the issue of up-to-date information of urban materials due to time-intensive fieldwork. Hyperspectral remote sensing can facilitate this issue by interpreting spectral signals to provide information of occurring materials. However, the complexity of urban areas and the occurrence of diverse urban materials vary due to regional and cultural aspects as well as the size of a city, which makes identification of surface materials a challenging analysis task. For the various surface material identification approaches, spectral libraries containing pure material spectra are commonly used, which are derived from field, laboratory or the hyperspectral image itself. One of the requirements for successful image analysis is that all spectrally different surface materials are represented by the library. Currently, a universal library, applicable in every urban area worldwide and taking each spectral variability into account, is and will not be existent. In this study, the issue of unknown surface material spectra and the demand of an urban site-specific spectral library is tackled by the development of a learning spectral archive tool. Starting with an incomplete library of labelled image spectra from several German cities, surface materials of pure image pixels will be identified in a hyperspectral image based on a similarity measure (e.g. SID-SAM). Additionally, unknown image spectra of urban objects are identified based on an object- and spectral-based-rule set. The detected unknown surface material spectra are entered with additional metadata, such as regional occurrence into the existing spectral library and thus, are reusable for further studies. Our approach is suitable for pure surface material detection of urban hyperspectral images that is globally applicable by taking incompleteness into account. The generically development enables the implementation of different hyperspectral sensors.
Onboard spectral imager data processor
NASA Astrophysics Data System (ADS)
Otten, Leonard J.; Meigs, Andrew D.; Franklin, Abraham J.; Sears, Robert D.; Robison, Mark W.; Rafert, J. Bruce; Fronterhouse, Donald C.; Grotbeck, Ronald L.
1999-10-01
Previous papers have described the concept behind the MightySat II.1 program, the satellite's Fourier Transform imaging spectrometer's optical design, the design for the spectral imaging payload, and its initial qualification testing. This paper discusses the on board data processing designed to reduce the amount of downloaded data by an order of magnitude and provide a demonstration of a smart spaceborne spectral imaging sensor. Two custom components, a spectral imager interface 6U VME card that moves data at over 30 MByte/sec, and four TI C-40 processors mounted to a second 6U VME and daughter card, are used to adapt the sensor to the spacecraft and provide the necessary high speed processing. A system architecture that offers both on board real time image processing and high-speed post data collection analysis of the spectral data has been developed. In addition to the on board processing of the raw data into a usable spectral data volume, one feature extraction technique has been incorporated. This algorithm operates on the basic interferometric data. The algorithm is integrated within the data compression process to search for uploadable feature descriptions.
Multispectral image fusion for target detection
NASA Astrophysics Data System (ADS)
Leviner, Marom; Maltz, Masha
2009-09-01
Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in an experiment using MSSF against two established methods: Averaging and Principle Components Analysis (PCA), and against its two source bands, visible and infrared. The task that we studied was: target detection in the cluttered environment. MSSF proved superior to the other fusion methods. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.
Rayleigh imaging in spectral mammography
NASA Astrophysics Data System (ADS)
Berggren, Karl; Danielsson, Mats; Fredenberg, Erik
2016-03-01
Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.
A new multi-spectral feature level image fusion method for human interpretation
NASA Astrophysics Data System (ADS)
Leviner, Marom; Maltz, Masha
2009-03-01
Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in a three-task experiment using MSSF against two established methods: averaging and principle components analysis (PCA), and against its two source bands, visible and infrared. The three tasks that we studied were: (1) simple target detection, (2) spatial orientation, and (3) camouflaged target detection. MSSF proved superior to the other fusion methods in all three tests; MSSF also outperformed the source images in the spatial orientation and camouflaged target detection tasks. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.
NASA Technical Reports Server (NTRS)
Clark, Roger N.; Swayze, Gregg A.
1995-01-01
One of the challenges of Imaging Spectroscopy is the identification, mapping and abundance determination of materials, whether mineral, vegetable, or liquid, given enough spectral range, spectral resolution, signal to noise, and spatial resolution. Many materials show diagnostic absorption features in the visual and near infrared region (0.4 to 2.5 micrometers) of the spectrum. This region is covered by the modern imaging spectrometers such as AVIRIS. The challenge is to identify the materials from absorption bands in their spectra, and determine what specific analyses must be done to derive particular parameters of interest, ranging from simply identifying its presence to deriving its abundance, or determining specific chemistry of the material. Recently, a new analysis algorithm was developed that uses a digital spectral library of known materials and a fast, modified-least-squares method of determining if a single spectral feature for a given material is present. Clark et al. made another advance in the mapping algorithm: simultaneously mapping multiple minerals using multiple spectral features. This was done by a modified-least-squares fit of spectral features, from data in a digital spectral library, to corresponding spectral features in the image data. This version has now been superseded by a more comprehensive spectral analysis system called Tricorder.
Spectral imaging perspective on cytomics.
Levenson, Richard M
2006-07-01
Cytomics involves the analysis of cellular morphology and molecular phenotypes, with reference to tissue architecture and to additional metadata. To this end, a variety of imaging and nonimaging technologies need to be integrated. Spectral imaging is proposed as a tool that can simplify and enrich the extraction of morphological and molecular information. Simple-to-use instrumentation is available that mounts on standard microscopes and can generate spectral image datasets with excellent spatial and spectral resolution; these can be exploited by sophisticated analysis tools. This report focuses on brightfield microscopy-based approaches. Cytological and histological samples were stained using nonspecific standard stains (Giemsa; hematoxylin and eosin (H&E)) or immunohistochemical (IHC) techniques employing three chromogens plus a hematoxylin counterstain. The samples were imaged using the Nuance system, a commercially available, liquid-crystal tunable-filter-based multispectral imaging platform. The resulting data sets were analyzed using spectral unmixing algorithms and/or learn-by-example classification tools. Spectral unmixing of Giemsa-stained guinea-pig blood films readily classified the major blood elements. Machine-learning classifiers were also successful at the same task, as well in distinguishing normal from malignant regions in a colon-cancer example, and in delineating regions of inflammation in an H&E-stained kidney sample. In an example of a multiplexed ICH sample, brown, red, and blue chromogens were isolated into separate images without crosstalk or interference from the (also blue) hematoxylin counterstain. Cytomics requires both accurate architectural segmentation as well as multiplexed molecular imaging to associate molecular phenotypes with relevant cellular and tissue compartments. Multispectral imaging can assist in both these tasks, and conveys new utility to brightfield-based microscopy approaches. Copyright 2006 International Society for Analytical Cytology.
Kopriva, Ivica; Persin, Antun; Puizina-Ivić, Neira; Mirić, Lina
2010-07-02
This study was designed to demonstrate robust performance of the novel dependent component analysis (DCA)-based approach to demarcation of the basal cell carcinoma (BCC) through unsupervised decomposition of the red-green-blue (RGB) fluorescent image of the BCC. Robustness to intensity fluctuation is due to the scale invariance property of DCA algorithms, which exploit spectral and spatial diversities between the BCC and the surrounding tissue. Used filtering-based DCA approach represents an extension of the independent component analysis (ICA) and is necessary in order to account for statistical dependence that is induced by spectral similarity between the BCC and surrounding tissue. This generates weak edges what represents a challenge for other segmentation methods as well. By comparative performance analysis with state-of-the-art image segmentation methods such as active contours (level set), K-means clustering, non-negative matrix factorization, ICA and ratio imaging we experimentally demonstrate good performance of DCA-based BCC demarcation in two demanding scenarios where intensity of the fluorescent image has been varied almost two orders of magnitude. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Sabol, Donald E., Jr.; Adams, John B.; Smith, Milton O.
1992-01-01
The conditions that affect the spectral detection of target materials at the subpixel scale are examined. Two levels of spectral mixture analysis for determining threshold detection limits of target materials in a spectral mixture are presented, the cases where the target is detected as: (1) a component of a spectral mixture (continuum threshold analysis) and (2) residuals (residual threshold analysis). The results of these two analyses are compared under various measurement conditions. The examples illustrate the general approach that can be used for evaluating the spectral detectability of terrestrial and planetary targets at the subpixel scale.
High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy.
Slipchenko, Mikhail N; Le, Thuc T; Chen, Hongtao; Cheng, Ji-Xin
2009-05-28
Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We used a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of the compound Raman microscope was evaluated on lipid bodies of cultured cells and live animals. Our data indicate that the in vivo fat contains much more unsaturated fatty acids (FAs) than the fat formed via de novo synthesis in 3T3-L1 cells. Furthermore, in vivo analysis of subcutaneous adipocytes and glands revealed a dramatic difference not only in the unsaturation level but also in the thermodynamic state of FAs inside their lipid bodies. Additionally, the compound Raman microscope allows tracking of the cellular uptake of a specific fatty acid and its abundance in nascent cytoplasmic lipid droplets. The high-speed vibrational imaging and spectral analysis capability renders compound Raman microscopy an indispensible analytical tool for the study of lipid-droplet biology.
NASA Astrophysics Data System (ADS)
Jia, S.
2015-12-01
As an effective method of extracting land cover fractions based on spectral endmembers, spectral mixture analysis (SMA) has been applied using remotely sensed imagery in different spatial, temporal, and spectral resolutions. A number of studies focused on arid/semiarid ecosystem have used SMA to obtain the land cover fractions of GV, NPV/litter, and bare soil (BS) using MODIS reflectance products to understand ecosystem phenology, track vegetation dynamics, and evaluate the impact of major disturbances. However, several challenges remain in the application of SMA in studying ecosystem phenology, including obtaining high quality endmembers and increasing computational efficiency when considering to long time series that cover a broad spatial extent. Okin (2007) proposes a variation of SMA, named as relative spectra mixture analysis (RSMA) to address the latter challenge by calculating the relative change of fraction of GV, NPV/litter, and BS compared with a baseline date. This approach assumes that the baseline image contains the spectral information of the bare soil that can be used as an endmember for spectral mixture analysis though it is mixed with the spectral reflectance of other non-soil land cover types. Using the baseline image, one can obtain the change of fractions of GV, NPV/litter, BS, and snow compared with the baseline image. However, RSMA results depend on the selection of baseline date and the fractional components during this date. In this study, we modified the strategy of implementing RSMA by introducing a step of obtaining a soil map as the baseline image using multiple-endmember SMA (MESMA) before applying RSMA. The fractions of land cover components from this modified RSMA are also validated using the field observations from two study area in semiarid savanna and grassland of Queensland, Australia.
NASA Astrophysics Data System (ADS)
Chauhan, H.; Krishna Mohan, B.
2014-11-01
The present study was undertaken with the objective to check effectiveness of spectral similarity measures to develop precise crop spectra from the collected hyperspectral field spectra. In Multispectral and Hyperspectral remote sensing, classification of pixels is obtained by statistical comparison (by means of spectral similarity) of known field or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been placed on use of various spectral similarity measures to select precise crop spectra from the set of field spectra. Conventionally crop spectra are developed after rejecting outliers based only on broad-spectrum analysis. Here a successful attempt has been made to develop precise crop spectra based on spectral similarity. As unevaluated data usage leads to uncertainty in the image classification, it is very crucial to evaluate the data. Hence, notwithstanding the conventional method, the data precision has been performed effectively to serve the purpose of the present research work. The effectiveness of developed precise field spectra was evaluated by spectral discrimination measures and found higher discrimination values compared to spectra developed conventionally. Overall classification accuracy for the image classified by field spectra selected conventionally is 51.89% and 75.47% for the image classified by field spectra selected precisely based on spectral similarity. KHAT values are 0.37, 0.62 and Z values are 2.77, 9.59 for image classified using conventional and precise field spectra respectively. Reasonable higher classification accuracy, KHAT and Z values shows the possibility of a new approach for field spectra selection based on spectral similarity measure.
An advanced scanning method for space-borne hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Wang, Yue-ming; Lang, Jun-Wei; Wang, Jian-Yu; Jiang, Zi-Qing
2011-08-01
Space-borne hyper-spectral imagery is an important means for the studies and applications of earth science. High cost efficiency could be acquired by optimized system design. In this paper, an advanced scanning method is proposed, which contributes to implement both high temporal and spatial resolution imaging system. Revisit frequency and effective working time of space-borne hyper-spectral imagers could be greatly improved by adopting two-axis scanning system if spatial resolution and radiometric accuracy are not harshly demanded. In order to avoid the quality degradation caused by image rotation, an idea of two-axis rotation has been presented based on the analysis and simulation of two-dimensional scanning motion path and features. Further improvement of the imagers' detection ability under the conditions of small solar altitude angle and low surface reflectance can be realized by the Ground Motion Compensation on pitch axis. The structure and control performance are also described. An intelligent integration technology of two-dimensional scanning and image motion compensation is elaborated in this paper. With this technology, sun-synchronous hyper-spectral imagers are able to pay quick visit to hot spots, acquiring both high spatial and temporal resolution hyper-spectral images, which enables rapid response of emergencies. The result has reference value for developing operational space-borne hyper-spectral imagers.
Quantitative Doppler Analysis Using Conventional Color Flow Imaging Acquisitions.
Karabiyik, Yucel; Ekroll, Ingvild Kinn; Eik-Nes, Sturla H; Lovstakken, Lasse
2018-05-01
Interleaved acquisitions used in conventional triplex mode result in a tradeoff between the frame rate and the quality of velocity estimates. On the other hand, workflow becomes inefficient when the user has to switch between different modes, and measurement variability is increased. This paper investigates the use of power spectral Capon estimator in quantitative Doppler analysis using data acquired with conventional color flow imaging (CFI) schemes. To preserve the number of samples used for velocity estimation, only spatial averaging was utilized, and clutter rejection was performed after spectral estimation. The resulting velocity spectra were evaluated in terms of spectral width using a recently proposed spectral envelope estimator. The spectral envelopes were also used for Doppler index calculations using in vivo and string phantom acquisitions. In vivo results demonstrated that the Capon estimator can provide spectral estimates with sufficient quality for quantitative analysis using packet-based CFI acquisitions. The calculated Doppler indices were similar to the values calculated using spectrograms estimated on a commercial ultrasound scanner.
Hyperspectral small animal fluorescence imaging: spectral selection imaging
NASA Astrophysics Data System (ADS)
Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul
2008-02-01
Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.
Analysis of background irradiation in thermal IR hyper-spectral imaging systems
NASA Astrophysics Data System (ADS)
Xu, Weiming; Yuan, Liyin; Lin, Ying; He, Zhiping; Shu, Rong; Wang, Jianyu
2010-04-01
Our group designed a thermal IR hyper-spectral imaging system in this paper mounted in a vacuum encapsulated cavity with temperature controlling equipments. The spectral resolution is 80 nm; the spatial resolution is 1.0 mrad; the spectral channels are 32. By comparing and verifying the theoretical simulated calculation and experimental results for this system, we obtained the precise relationship between the temperature and background irradiation of optical and mechanical structures, and found the most significant components in the optic path for improving imaging quality that should be traded especially, also we had a conclusion that it should cool the imaging optics and structures to about 100K if we need utilize the full dynamic range and capture high quality of imagery.
Signal-to-noise analysis of a birefringent spectral zooming imaging spectrometer
NASA Astrophysics Data System (ADS)
Li, Jie; Zhang, Xiaotong; Wu, Haiying; Qi, Chun
2018-05-01
Study of signal-to-noise ratio (SNR) of a novel spectral zooming imaging spectrometer (SZIS) based on two identical Wollaston prisms is conducted. According to the theory of radiometry and Fourier transform spectroscopy, we deduce the theoretical equations of SNR of SZIS in spectral domain with consideration of the incident wavelength and the adjustable spectral resolution. An example calculation of SNR of SZIS is performed over 400-1000 nm. The calculation results indicate that SNR with different spectral resolutions of SZIS can be optionally selected by changing the spacing between the two identical Wollaston prisms. This will provide theoretical basis for the design, development and engineering of the developed imaging spectrometer for broad spectrum and SNR requirements.
Wavelet packets for multi- and hyper-spectral imagery
NASA Astrophysics Data System (ADS)
Benedetto, J. J.; Czaja, W.; Ehler, M.; Flake, C.; Hirn, M.
2010-01-01
State of the art dimension reduction and classification schemes in multi- and hyper-spectral imaging rely primarily on the information contained in the spectral component. To better capture the joint spatial and spectral data distribution we combine the Wavelet Packet Transform with the linear dimension reduction method of Principal Component Analysis. Each spectral band is decomposed by means of the Wavelet Packet Transform and we consider a joint entropy across all the spectral bands as a tool to exploit the spatial information. Dimension reduction is then applied to the Wavelet Packets coefficients. We present examples of this technique for hyper-spectral satellite imaging. We also investigate the role of various shrinkage techniques to model non-linearity in our approach.
NASA Astrophysics Data System (ADS)
Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2009-02-01
Visualization of subcutaneous veins is very difficult with the naked eye, but important for diagnosis of medical conditions and different medical procedures such as catheter insertion and blood withdrawal. Moreover, recent studies showed that the images of subcutaneous veins could be used for biometric identification. The majority of methods used for enhancing the contrast between the subcutaneous veins and surrounding tissue are based on simple imaging systems utilizing CMOS or CCD cameras with LED illumination capable of acquiring images from the near infrared spectral region, usually near 900 nm. However, such simplified imaging methods cannot exploit the full potential of the spectral information. In this paper, a new highly versatile method for enhancing the contrast of subcutaneous veins based on state-of-the-art high-resolution hyper-spectral imaging system utilizing the spectral region from 550 to 1700 nm is presented. First, a detailed analysis of the contrast between the subcutaneous veins and the surrounding tissue as a function of wavelength, for several different positions on the human arm, was performed in order to extract the spectral regions with the highest contrast. The highest contrast images were acquired at 1100 nm, however, combining the individual images from the extracted spectral regions by the proposed contrast enhancement method resulted in a single image with up to ten-fold better contrast. Therefore, the proposed method has proved to be a useful tool for visualization of subcutaneous veins.
NASA Astrophysics Data System (ADS)
Bernat, Amir S.; Bar-Am, Kfir; Cataldo, Leigh; Bolton, Frank J.; Kahn, Bruce S.; Levitz, David
2018-02-01
Cervical cancer is a leading cause of death for women in low resource settings. In order to better detect cervical dysplasia, a low cost multi-spectral colposcope was developed utilizing low costs LEDs and an area scan camera. The device is capable of both traditional colposcopic imaging and multi-spectral image capture. Following initial bench testing, the device was deployed to a gynecology clinic where it was used to image patients in a colposcopy setting. Both traditional colposcopic images and spectral data from patients were uploaded to a cloud server for remote analysis. Multi-spectral imaging ( 30 second capture) took place before any clinical procedure; the standard of care was followed thereafter. If acetic acid was used in the standard of care, a post-acetowhitening colposcopic image was also captured. In analyzing the data, normal and abnormal regions were identified in the colposcopic images by an expert clinician. Spectral data were fit to a theoretical model based on diffusion theory, yielding information on scattering and absorption parameters. Data were grouped according to clinician labeling of the tissue, as well as any additional clinical test results available (Pap, HPV, biopsy). Altogether, N=20 patients were imaged in this study, with 9 of them abnormal. In comparing normal and abnormal regions of interest from patients, substantial differences were measured in blood content, while differences in oxygen saturation parameters were more subtle. These results suggest that optical measurements made using low cost spectral imaging systems can distinguish between normal and pathological tissues.
NASA Astrophysics Data System (ADS)
Usenik, Peter; Bürmen, Miran; Vrtovec, Tomaž; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan
2011-03-01
Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots which are difficult to diagnose. If detected early enough, such demineralization can be arrested and reversed by non-surgical means through well established dental treatments (fluoride therapy, anti-bacterial therapy, low intensity laser irradiation). Near-infrared (NIR) hyper-spectral imaging is a new promising technique for early detection of demineralization based on distinct spectral features of healthy and pathological dental tissues. In this study, we apply NIR hyper-spectral imaging to classify and visualize healthy and pathological dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized areas. For this purpose, a standardized teeth database was constructed consisting of 12 extracted human teeth with different degrees of natural dental lesions imaged by NIR hyper-spectral system, X-ray and digital color camera. The color and X-ray images of teeth were presented to a clinical expert for localization and classification of the dental tissues, thereby obtaining the gold standard. Principal component analysis was used for multivariate local modeling of healthy and pathological dental tissues. Finally, the dental tissues were classified by employing multiple discriminant analysis. High agreement was observed between the resulting classification and the gold standard with the classification sensitivity and specificity exceeding 85 % and 97 %, respectively. This study demonstrates that NIR hyper-spectral imaging has considerable diagnostic potential for imaging hard dental tissues.
Comparative Analysis of Haar and Daubechies Wavelet for Hyper Spectral Image Classification
NASA Astrophysics Data System (ADS)
Sharif, I.; Khare, S.
2014-11-01
With the number of channels in the hundreds instead of in the tens Hyper spectral imagery possesses much richer spectral information than multispectral imagery. The increased dimensionality of such Hyper spectral data provides a challenge to the current technique for analyzing data. Conventional classification methods may not be useful without dimension reduction pre-processing. So dimension reduction has become a significant part of Hyper spectral image processing. This paper presents a comparative analysis of the efficacy of Haar and Daubechies wavelets for dimensionality reduction in achieving image classification. Spectral data reduction using Wavelet Decomposition could be useful because it preserves the distinction among spectral signatures. Daubechies wavelets optimally capture the polynomial trends while Haar wavelet is discontinuous and resembles a step function. The performance of these wavelets are compared in terms of classification accuracy and time complexity. This paper shows that wavelet reduction has more separate classes and yields better or comparable classification accuracy. In the context of the dimensionality reduction algorithm, it is found that the performance of classification of Daubechies wavelets is better as compared to Haar wavelet while Daubechies takes more time compare to Haar wavelet. The experimental results demonstrate the classification system consistently provides over 84% classification accuracy.
Khouj, Yasser; Dawson, Jeremy; Coad, James; Vona-Davis, Linda
2018-01-01
Hyperspectral imaging (HSI) is a non-invasive optical imaging modality that shows the potential to aid pathologists in breast cancer diagnoses cases. In this study, breast cancer tissues from different patients were imaged by a hyperspectral system to detect spectral differences between normal and breast cancer tissues. Tissue samples mounted on slides were identified from 10 different patients. Samples from each patient included both normal and ductal carcinoma tissue, both stained with hematoxylin and eosin stain and unstained. Slides were imaged using a snapshot HSI system, and the spectral reflectance differences were evaluated. Analysis of the spectral reflectance values indicated that wavelengths near 550 nm showed the best differentiation between tissue types. This information was used to train image processing algorithms using supervised and unsupervised data. The K-means method was applied to the hyperspectral data cubes, and successfully detected spectral tissue differences with sensitivity of 85.45%, and specificity of 94.64% with true negative rate of 95.8%, and false positive rate of 4.2%. These results were verified by ground-truth marking of the tissue samples by a pathologist. In the hyperspectral image analysis, the image processing algorithm, K-means, shows the greatest potential for building a semi-automated system that could identify and sort between normal and ductal carcinoma in situ tissues.
NASA Astrophysics Data System (ADS)
Rendon Santillan, Jojene; Makinano-Santillan, Meriam
2018-04-01
We present a characterization, comparison and analysis of in-situ spectral reflectance of Sago and other palms (coconut, oil palm and nipa) to ascertain on which part of the electromagnetic spectrum these palms are distinguishable from each other. The analysis also aims to reveal information that will assist in selecting which band to use when mapping Sago palms using the images acquired by these sensors. The datasets used in the analysis consisted of averaged spectral reflectance curves of each palm species measured within the 345-1045 nm wavelength range using an Ocean Optics USB4000-VIS-NIR Miniature Fiber Optic Spectrometer. This in-situ reflectance data was also resampled to match the spectral response of the 4 bands of ALOS AVNIR-2, 3 bands of ASTER VNIR, 4 bands of Landsat 7 ETM+, 5 bands of Landsat 8, and 8 bands of Worldview-2 (WV2). Examination of the spectral reflectance curves showed that the near infra-red region, specifically at 770, 800 and 875 nm, provides the best wavelengths where Sago palms can be distinguished from other palms. The resampling of the in-situ reflectance spectra to match the spectral response of optical sensors made possible the analysis of the differences in reflectance values of Sago and other palms in different bands of the sensors. Overall, the knowledge learned from the analysis can be useful in the actual analysis of optical satellite images, specifically in determining which band to include or to exclude, or whether to use all bands of a sensor in discriminating and mapping Sago palms.
A hyperspectral image projector for hyperspectral imagers
NASA Astrophysics Data System (ADS)
Rice, Joseph P.; Brown, Steven W.; Neira, Jorge E.; Bousquet, Robert R.
2007-04-01
We have developed and demonstrated a Hyperspectral Image Projector (HIP) intended for system-level validation testing of hyperspectral imagers, including the instrument and any associated spectral unmixing algorithms. HIP, based on the same digital micromirror arrays used in commercial digital light processing (DLP*) displays, is capable of projecting any combination of many different arbitrarily programmable basis spectra into each image pixel at up to video frame rates. We use a scheme whereby one micromirror array is used to produce light having the spectra of endmembers (i.e. vegetation, water, minerals, etc.), and a second micromirror array, optically in series with the first, projects any combination of these arbitrarily-programmable spectra into the pixels of a 1024 x 768 element spatial image, thereby producing temporally-integrated images having spectrally mixed pixels. HIP goes beyond conventional DLP projectors in that each spatial pixel can have an arbitrary spectrum, not just arbitrary color. As such, the resulting spectral and spatial content of the projected image can simulate realistic scenes that a hyperspectral imager will measure during its use. Also, the spectral radiance of the projected scenes can be measured with a calibrated spectroradiometer, such that the spectral radiance projected into each pixel of the hyperspectral imager can be accurately known. Use of such projected scenes in a controlled laboratory setting would alleviate expensive field testing of instruments, allow better separation of environmental effects from instrument effects, and enable system-level performance testing and validation of hyperspectral imagers as used with analysis algorithms. For example, known mixtures of relevant endmember spectra could be projected into arbitrary spatial pixels in a hyperspectral imager, enabling tests of how well a full system, consisting of the instrument + calibration + analysis algorithm, performs in unmixing (i.e. de-convolving) the spectra in all pixels. We discuss here the performance of a visible prototype HIP. The technology is readily extendable to the ultraviolet and infrared spectral ranges, and the scenes can be static or dynamic.
The effect of input data transformations on object-based image analysis
LIPPITT, CHRISTOPHER D.; COULTER, LLOYD L.; FREEMAN, MARY; LAMANTIA-BISHOP, JEFFREY; PANG, WYSON; STOW, DOUGLAS A.
2011-01-01
The effect of using spectral transform images as input data on segmentation quality and its potential effect on products generated by object-based image analysis are explored in the context of land cover classification in Accra, Ghana. Five image data transformations are compared to untransformed spectral bands in terms of their effect on segmentation quality and final product accuracy. The relationship between segmentation quality and product accuracy is also briefly explored. Results suggest that input data transformations can aid in the delineation of landscape objects by image segmentation, but the effect is idiosyncratic to the transformation and object of interest. PMID:21673829
Ramanujan, V Krishnan; Ren, Songyang; Park, Sangyong; Farkas, Daniel L
2011-01-01
We report here a non-invasive multispectral imaging platform for monitoring spectral reflectance and fluorescence images from primary breast carcinoma and metastatic lymph nodes in preclinical rat model in vivo. The system is built around a monochromator light source and an acousto-optic tunable filter (AOTF) for spectral selection. Quantitative analysis of the measured reflectance profiles in the presence of a widely-used lymphazurin dye clearly demonstrates the capability of the proposed imaging platform to detect tumor-associated spectral signatures in the primary tumors as well as metastatic lymphatics. Tumor-associated changes in vascular oxygenation and interstitial fluid pressure are reasoned to be the physiological sources of the measured reflectance profiles. We also discuss the translational potential of our imaging platform in intra-operative clinical setting. PMID:21572915
Hyperspectral imaging of polymer banknotes for building and analysis of spectral library
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-11-01
The use of counterfeit banknotes increases crime rates and cripples the economy. New countermeasures are required to stop counterfeiters who use advancing technologies with criminal intent. Many countries started adopting polymer banknotes to replace paper notes, as polymer notes are more durable and have better quality. The research on authenticating such banknotes is of much interest to the forensic investigators. Hyperspectral imaging can be employed to build a spectral library of polymer notes, which can then be used for classification to authenticate these notes. This is however not widely reported and has become a research interest in forensic identification. This paper focuses on the use of hyperspectral imaging on polymer notes to build spectral libraries, using a pushbroom hyperspectral imager which has been previously reported. As an initial study, a spectral library will be built from three arbitrarily chosen regions of interest of five circulated genuine polymer notes. Principal component analysis is used for dimension reduction and to convert the information in the spectral library to principal components. A 99% confidence ellipse is formed around the cluster of principal component scores of each class and then used as classification criteria. The potential of the adopted methodology is demonstrated by the classification of the imaged regions as training samples.
Marker-Based Hierarchical Segmentation and Classification Approach for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.; Benediktsson, Jon Atli; Chanussot, Jocelyn
2011-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, pixelwise classification is performed and the most reliably classified pixels are selected as markers, with the corresponding class labels. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.
Time-resolved multispectral imaging of combustion reactions
NASA Astrophysics Data System (ADS)
Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Frédérick
2015-10-01
Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. These allow to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases, such as carbon dioxide (CO2), selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge of spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using a Telops MS-IR MW camera, which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profiles derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.
Time-resolved multispectral imaging of combustion reaction
NASA Astrophysics Data System (ADS)
Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Fréderick
2015-05-01
Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. This allows to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases such as carbon dioxide (CO2) selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge about spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using Telops MS-IR MW camera which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profile derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.
Diagnosis of skin cancer using image processing
NASA Astrophysics Data System (ADS)
Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué; Coronel-Beltrán, Ángel
2014-10-01
In this papera methodology for classifying skin cancerin images of dermatologie spots based on spectral analysis using the K-law Fourier non-lineartechnique is presented. The image is segmented and binarized to build the function that contains the interest area. The image is divided into their respective RGB channels to obtain the spectral properties of each channel. The green channel contains more information and therefore this channel is always chosen. This information is point to point multiplied by a binary mask and to this result a Fourier transform is applied written in nonlinear form. If the real part of this spectrum is positive, the spectral density takeunit values, otherwise are zero. Finally the ratio of the sum of the unit values of the spectral density with the sum of values of the binary mask are calculated. This ratio is called spectral index. When the value calculated is in the spectral index range three types of cancer can be detected. Values found out of this range are benign injure.
Optical perception for detection of cutaneous T-cell lymphoma by multi-spectral imaging
NASA Astrophysics Data System (ADS)
Hsiao, Yu-Ping; Wang, Hsiang-Chen; Chen, Shih-Hua; Tsai, Chung-Hung; Yang, Jen-Hung
2014-12-01
In this study, the spectrum of each picture element of the patient’s skin image was obtained by multi-spectral imaging technology. Spectra of normal or pathological skin were collected from 15 patients. Principal component analysis and principal component scores of skin spectra were employed to distinguish the spectral characteristics with different diseases. Finally, skin regions with suspected cutaneous T-cell lymphoma (CTCL) lesions were successfully predicted by evaluation and classification of the spectra of pathological skin. The sensitivity and specificity of this technique were 89.65% and 95.18% after the analysis of about 109 patients. The probability of atopic dermatitis and psoriasis patients misinterpreted as CTCL were 5.56% and 4.54%, respectively.
Li, Qingli; Zhang, Jingfa; Wang, Yiting; Xu, Guoteng
2009-12-01
A molecular spectral imaging system has been developed based on microscopy and spectral imaging technology. The system is capable of acquiring molecular spectral images from 400 nm to 800 nm with 2 nm wavelength increments. The basic principles, instrumental systems, and system calibration method as well as its applications for the calculation of the stain-uptake by tissues are introduced. As a case study, the system is used for determining the pathogenesis of diabetic retinopathy and evaluating the therapeutic effects of erythropoietin. Some molecular spectral images of retinal sections of normal, diabetic, and treated rats were collected and analyzed. The typical transmittance curves of positive spots stained for albumin and advanced glycation end products are retrieved from molecular spectral data with the spectral response calibration algorithm. To explore and evaluate the protective effect of erythropoietin (EPO) on retinal albumin leakage of streptozotocin-induced diabetic rats, an algorithm based on Beer-Lambert's law is presented. The algorithm can assess the uptake by histologic retinal sections of stains used in quantitative pathology to label albumin leakage and advanced glycation end products formation. Experimental results show that the system is helpful for the ophthalmologist to reveal the pathogenesis of diabetic retinopathy and explore the protective effect of erythropoietin on retinal cells of diabetic rats. It also highlights the potential of molecular spectral imaging technology to provide more effective and reliable diagnostic criteria in pathology.
Huang, Hui; Liu, Li; Ngadi, Michael O; Gariépy, Claude; Prasher, Shiv O
2014-01-01
Marbling is an important quality attribute of pork. Detection of pork marbling usually involves subjective scoring, which raises the efficiency costs to the processor. In this study, the ability to predict pork marbling using near-infrared (NIR) hyperspectral imaging (900-1700 nm) and the proper image processing techniques were studied. Near-infrared images were collected from pork after marbling evaluation according to current standard chart from the National Pork Producers Council. Image analysis techniques-Gabor filter, wide line detector, and spectral averaging-were applied to extract texture, line, and spectral features, respectively, from NIR images of pork. Samples were grouped into calibration and validation sets. Wavelength selection was performed on calibration set by stepwise regression procedure. Prediction models of pork marbling scores were built using multiple linear regressions based on derivatives of mean spectra and line features at key wavelengths. The results showed that the derivatives of both texture and spectral features produced good results, with correlation coefficients of validation of 0.90 and 0.86, respectively, using wavelengths of 961, 1186, and 1220 nm. The results revealed the great potential of the Gabor filter for analyzing NIR images of pork for the effective and efficient objective evaluation of pork marbling.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2014-03-01
We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. The estimated images of absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of reduced scattering coefficients showed a broad scattering spectrum, exhibiting larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. In vivo experiments with exposed brain of rats during CSD confirmed the possibility of the method to evaluate both hemodynamics and changes in tissue morphology due to electrical depolarization.
Application and evaluation of ISVR method in QuickBird image fusion
NASA Astrophysics Data System (ADS)
Cheng, Bo; Song, Xiaolu
2014-05-01
QuickBird satellite images are widely used in many fields, and applications have put forward high requirements for the integration of the spatial information and spectral information of the imagery. A fusion method for high resolution remote sensing images based on ISVR is identified in this study. The core principle of ISVS is taking the advantage of radicalization targeting to remove the effect of different gain and error of satellites' sensors. Transformed from DN to radiance, the multi-spectral image's energy is used to simulate the panchromatic band. The linear regression analysis is carried through the simulation process to find a new synthetically panchromatic image, which is highly linearly correlated to the original panchromatic image. In order to evaluate, test and compare the algorithm results, this paper used ISVR and other two different fusion methods to give a comparative study of the spatial information and spectral information, taking the average gradient and the correlation coefficient as an indicator. Experiments showed that this method could significantly improve the quality of fused image, especially in preserving spectral information, to maximize the spectral information of original multispectral images, while maintaining abundant spatial information.
Imaging of blood cells based on snapshot Hyper-Spectral Imaging systems
NASA Astrophysics Data System (ADS)
Robison, Christopher J.; Kolanko, Christopher; Bourlai, Thirimachos; Dawson, Jeremy M.
2015-05-01
Snapshot Hyper-Spectral imaging systems are capable of capturing several spectral bands simultaneously, offering coregistered images of a target. With appropriate optics, these systems are potentially able to image blood cells in vivo as they flow through a vessel, eliminating the need for a blood draw and sample staining. Our group has evaluated the capability of a commercial Snapshot Hyper-Spectral imaging system, the Arrow system from Rebellion Photonics, in differentiating between white and red blood cells on unstained blood smear slides. We evaluated the imaging capabilities of this hyperspectral camera; attached to a microscope at varying objective powers and illumination intensity. Hyperspectral data consisting of 25, 443x313 hyperspectral bands with ~3nm spacing were captured over the range of 419 to 494nm. Open-source hyper-spectral data cube analysis tools, used primarily in Geographic Information Systems (GIS) applications, indicate that white blood cells features are most prominent in the 428-442nm band for blood samples viewed under 20x and 50x magnification over a varying range of illumination intensities. These images could potentially be used in subsequent automated white blood cell segmentation and counting algorithms for performing in vivo white blood cell counting.
Aldossari, M; Alfalou, A; Brosseau, C
2014-09-22
This study presents and validates an optimized method of simultaneous compression and encryption designed to process images with close spectra. This approach is well adapted to the compression and encryption of images of a time-varying scene but also to static polarimetric images. We use the recently developed spectral fusion method [Opt. Lett.35, 1914-1916 (2010)] to deal with the close resemblance of the images. The spectral plane (containing the information to send and/or to store) is decomposed in several independent areas which are assigned according a specific way. In addition, each spectrum is shifted in order to minimize their overlap. The dual purpose of these operations is to optimize the spectral plane allowing us to keep the low- and high-frequency information (compression) and to introduce an additional noise for reconstructing the images (encryption). Our results show that not only can the control of the spectral plane enhance the number of spectra to be merged, but also that a compromise between the compression rate and the quality of the reconstructed images can be tuned. We use a root-mean-square (RMS) optimization criterion to treat compression. Image encryption is realized at different security levels. Firstly, we add a specific encryption level which is related to the different areas of the spectral plane, and then, we make use of several random phase keys. An in-depth analysis at the spectral fusion methodology is done in order to find a good trade-off between the compression rate and the quality of the reconstructed images. Our new proposal spectral shift allows us to minimize the image overlap. We further analyze the influence of the spectral shift on the reconstructed image quality and compression rate. The performance of the multiple-image optical compression and encryption method is verified by analyzing several video sequences and polarimetric images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikova, Olga S.; Tai, Tamin; Bocharova, Vera
The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating for the first time co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. We discuss the basic instrumental setup and operation and the multimodal imaging capability and utility are demonstrated using a phase separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showedmore » that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm x 390 nm), band excitation (781 nm x 781 nm), mass spectrometry (690 nm x 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 10 nm deep into the sample and the mass spectral image from 110-140 nm in depth. Moreover, because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the mass spectral image was estimated to be between 1.5 m 2.6 m, based on the ability to distinguish surface features in that image that were also observed in the other images.« less
Ovchinnikova, Olga S.; Tai, Tamin; Bocharova, Vera; ...
2015-03-18
The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating for the first time co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. We discuss the basic instrumental setup and operation and the multimodal imaging capability and utility are demonstrated using a phase separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showedmore » that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm x 390 nm), band excitation (781 nm x 781 nm), mass spectrometry (690 nm x 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 10 nm deep into the sample and the mass spectral image from 110-140 nm in depth. Moreover, because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the mass spectral image was estimated to be between 1.5 m 2.6 m, based on the ability to distinguish surface features in that image that were also observed in the other images.« less
NASA Astrophysics Data System (ADS)
Chlebda, Damian K.; Majda, Alicja; Łojewski, Tomasz; Łojewska, Joanna
2016-11-01
Differentiation of the written text can be performed with a non-invasive and non-contact tool that connects conventional imaging methods with spectroscopy. Hyperspectral imaging (HSI) is a relatively new and rapid analytical technique that can be applied in forensic science disciplines. It allows an image of the sample to be acquired, with full spectral information within every pixel. For this paper, HSI and three statistical methods (hierarchical cluster analysis, principal component analysis, and spectral angle mapper) were used to distinguish between traces of modern black gel pen inks. Non-invasiveness and high efficiency are among the unquestionable advantages of ink differentiation using HSI. It is also less time-consuming than traditional methods such as chromatography. In this study, a set of 45 modern gel pen ink marks deposited on a paper sheet were registered. The spectral characteristics embodied in every pixel were extracted from an image and analysed using statistical methods, externally and directly on the hypercube. As a result, different black gel inks deposited on paper can be distinguished and classified into several groups, in a non-invasive manner.
Blind source separation of ex-vivo aorta tissue multispectral images
Galeano, July; Perez, Sandra; Montoya, Yonatan; Botina, Deivid; Garzón, Johnson
2015-01-01
Blind Source Separation methods (BSS) aim for the decomposition of a given signal in its main components or source signals. Those techniques have been widely used in the literature for the analysis of biomedical images, in order to extract the main components of an organ or tissue under study. The analysis of skin images for the extraction of melanin and hemoglobin is an example of the use of BSS. This paper presents a proof of concept of the use of source separation of ex-vivo aorta tissue multispectral Images. The images are acquired with an interference filter-based imaging system. The images are processed by means of two algorithms: Independent Components analysis and Non-negative Matrix Factorization. In both cases, it is possible to obtain maps that quantify the concentration of the main chromophores present in aortic tissue. Also, the algorithms allow for spectral absorbance of the main tissue components. Those spectral signatures were compared against the theoretical ones by using correlation coefficients. Those coefficients report values close to 0.9, which is a good estimator of the method’s performance. Also, correlation coefficients lead to the identification of the concentration maps according to the evaluated chromophore. The results suggest that Multi/hyper-spectral systems together with image processing techniques is a potential tool for the analysis of cardiovascular tissue. PMID:26137366
NASA Astrophysics Data System (ADS)
Bangs, Corey F.; Kruse, Fred A.; Olsen, Chris R.
2013-05-01
Hyperspectral data were assessed to determine the effect of integrating spectral data and extracted texture feature data on classification accuracy. Four separate spectral ranges (hundreds of spectral bands total) were used from the Visible and Near Infrared (VNIR) and Shortwave Infrared (SWIR) portions of the electromagnetic spectrum. Haralick texture features (contrast, entropy, and correlation) were extracted from the average gray-level image for each of the four spectral ranges studied. A maximum likelihood classifier was trained using a set of ground truth regions of interest (ROIs) and applied separately to the spectral data, texture data, and a fused dataset containing both. Classification accuracy was measured by comparison of results to a separate verification set of test ROIs. Analysis indicates that the spectral range (source of the gray-level image) used to extract the texture feature data has a significant effect on the classification accuracy. This result applies to texture-only classifications as well as the classification of integrated spectral data and texture feature data sets. Overall classification improvement for the integrated data sets was near 1%. Individual improvement for integrated spectral and texture classification of the "Urban" class showed approximately 9% accuracy increase over spectral-only classification. Texture-only classification accuracy was highest for the "Dirt Path" class at approximately 92% for the spectral range from 947 to 1343nm. This research demonstrates the effectiveness of texture feature data for more accurate analysis of hyperspectral data and the importance of selecting the correct spectral range to be used for the gray-level image source to extract these features.
Cloud-based processing of multi-spectral imaging data
NASA Astrophysics Data System (ADS)
Bernat, Amir S.; Bolton, Frank J.; Weiser, Reuven; Levitz, David
2017-03-01
Multispectral imaging holds great promise as a non-contact tool for the assessment of tissue composition. Performing multi - spectral imaging on a hand held mobile device would allow to bring this technology and with it knowledge to low resource settings to provide a state of the art classification of tissue health. This modality however produces considerably larger data sets than white light imaging and requires preliminary image analysis for it to be used. The data then needs to be analyzed and logged, while not requiring too much of the system resource or a long computation time and battery use by the end point device. Cloud environments were designed to allow offloading of those problems by allowing end point devices (smartphones) to offload computationally hard tasks. For this end we present a method where the a hand held device based around a smartphone captures a multi - spectral dataset in a movie file format (mp4) and compare it to other image format in size, noise and correctness. We present the cloud configuration used for segmenting images to frames where they can later be used for further analysis.
Wavelength Scanning with a Tilting Interference Filter for Glow-Discharge Elemental Imaging.
Storey, Andrew P; Ray, Steven J; Hoffmann, Volker; Voronov, Maxim; Engelhard, Carsten; Buscher, Wolfgang; Hieftje, Gary M
2017-06-01
Glow discharges have long been used for depth profiling and bulk analysis of solid samples. In addition, over the past decade, several methods of obtaining lateral surface elemental distributions have been introduced, each with its own strengths and weaknesses. Challenges for each of these techniques are acceptable optical throughput and added instrumental complexity. Here, these problems are addressed with a tilting-filter instrument. A pulsed glow discharge is coupled to an optical system comprising an adjustable-angle tilting filter, collimating and imaging lenses, and a gated, intensified charge-coupled device (CCD) camera, which together provide surface elemental mapping of solid samples. The tilting-filter spectrometer is instrumentally simpler, produces less image distortion, and achieves higher optical throughput than a monochromator-based instrument, but has a much more limited tunable spectral range and poorer spectral resolution. As a result, the tilting-filter spectrometer is limited to single-element or two-element determinations, and only when the target spectral lines fall within an appropriate spectral range and can be spectrally discerned. Spectral interferences that result from heterogeneous impurities can be flagged and overcome by observing the spatially resolved signal response across the available tunable spectral range. The instrument has been characterized and evaluated for the spatially resolved analysis of glow-discharge emission from selected but representative samples.
The application of hypserspectral imaging analysis to fresh food safety inspection
USDA-ARS?s Scientific Manuscript database
Line-scan hyperspectral images of fresh matured tomatoes were collected for image analysis. Algorithms were developed, based on spectral analysis, to detect defect of cracks on fresh produce. Four wavebands of 569 nm, 645 nm, 702 nm and 887 nm were selected from spectra analysis to use the relative...
Pu, Hongbin; Sun, Da-Wen; Ma, Ji; Cheng, Jun-Hu
2015-01-01
The potential of visible and near infrared hyperspectral imaging was investigated as a rapid and nondestructive technique for classifying fresh and frozen-thawed meats by integrating critical spectral and image features extracted from hyperspectral images in the region of 400-1000 nm. Six feature wavelengths (400, 446, 477, 516, 592 and 686 nm) were identified using uninformative variable elimination and successive projections algorithm. Image textural features of the principal component images from hyperspectral images were obtained using histogram statistics (HS), gray level co-occurrence matrix (GLCM) and gray level-gradient co-occurrence matrix (GLGCM). By these spectral and textural features, probabilistic neural network (PNN) models for classification of fresh and frozen-thawed pork meats were established. Compared with the models using the optimum wavelengths only, optimum wavelengths with HS image features, and optimum wavelengths with GLCM image features, the model integrating optimum wavelengths with GLGCM gave the highest classification rate of 93.14% and 90.91% for calibration and validation sets, respectively. Results indicated that the classification accuracy can be improved by combining spectral features with textural features and the fusion of critical spectral and textural features had better potential than single spectral extraction in classifying fresh and frozen-thawed pork meat. Copyright © 2014 Elsevier Ltd. All rights reserved.
Identification and evaluation of composition in food powder using point-scan Raman spectral imaging
USDA-ARS?s Scientific Manuscript database
This study used Raman spectral imaging coupled with self-modeling mixture analysis (SMA) for identification of three components mixed into a complex food powder mixture. Vanillin, melamine, and sugar were mixed together at 10 different concentration levels (spanning 1% to 10%, w/w) into powdered non...
NASA Astrophysics Data System (ADS)
Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der
2010-08-01
Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.
NASA Astrophysics Data System (ADS)
Nishimura, Takahiro; Kimura, Hitoshi; Ogura, Yusuke; Tanida, Jun
2018-06-01
This paper presents an experimental assessment and analysis of super-resolution microscopy based on multiple-point spread function fitting of spectrally demultiplexed images using a designed DNA structure as a test target. For the purpose, a DNA structure was designed to have binding sites at a certain interval that is smaller than the diffraction limit. The structure was labeled with several types of quantum dots (QDs) to acquire their spatial information as spectrally encoded images. The obtained images are analyzed with a point spread function multifitting algorithm to determine the QD locations that indicate the binding site positions. The experimental results show that the labeled locations can be observed beyond the diffraction-limited resolution using three-colored fluorescence images that were obtained with a confocal fluorescence microscope. Numerical simulations show that labeling with eight types of QDs enables the positions aligned at 27.2-nm pitches on the DNA structure to be resolved with high accuracy.
NASA Astrophysics Data System (ADS)
Roy, Ankita
2007-12-01
This research using Hyperspectral imaging involves recognizing targets through spatial and spectral matching and spectral un-mixing of data ranging from remote sensing to medical imaging kernels for clinical studies based on Hyperspectral data-sets generated using the VFTHSI [Visible Fourier Transform Hyperspectral Imager], whose high resolution Si detector makes the analysis achievable. The research may be broadly classified into (I) A Physically Motivated Correlation Formalism (PMCF), which places both spatial and spectral data on an equivalent mathematical footing in the context of a specific Kernel and (II) An application in RF plasma specie detection during carbon nanotube growing process. (III) Hyperspectral analysis for assessing density and distribution of retinopathies like age related macular degeneration (ARMD) and error estimation enabling the early recognition of ARMD, which is treated as an ill-conditioned inverse imaging problem. The broad statistical scopes of this research are two fold-target recognition problems and spectral unmixing problems. All processes involve experimental and computational analysis of Hyperspectral data sets is presented, which is based on the principle of a Sagnac Interferometer, calibrated to obtain high SNR levels. PMCF computes spectral/spatial/cross moments and answers the question of how optimally the entire hypercube should be sampled and finds how many spatial-spectral pixels are required precisely for a particular target recognition. Spectral analysis of RF plasma radicals, typically Methane plasma and Argon plasma using VFTHSI has enabled better process monitoring during growth of vertically aligned multi-walled carbon nanotubes by instant registration of the chemical composition or density changes temporally, which is key since a significant correlation can be found between plasma state and structural properties. A vital focus of this dissertation is towards medical Hyperspectral imaging applied to retinopathies like age related macular degeneration targets taken with a Fundus imager, which is akin to the VFTHSI. Detection of the constituent components in the diseased hyper-pigmentation area is also computed. The target or reflectance matrix is treated as a highly ill-conditioned spectral un-mixing problem, to which methodologies like inverse techniques, principal component analysis (PCA) and receiver operating curves (ROC) for precise spectral recognition of infected area. The region containing ARMD was easily distinguishable from the spectral mesh plots over the entire band-pass area. Once the location was detected the PMCF coefficients were calculated by cross correlating a target of normal oxygenated retina with the deoxygenated one. The ROCs generated using PMCF shows 30% higher detection probability with improved accuracy than ROCs based on Spectral Angle Mapper (SAM). By spectral unmixing methods, the important endmembers/carotenoids of the MD pigment were found to be Xanthophyl and lutein, while beta-carotene which showed a negative correlation in the unconstrained inverse problem is a supplement given to ARMD patients to prevent the disease and does not occur in the eye. Literature also shows degeneration of meso-zeaxanthin. Ophthalmologists may assert the presence of ARMD and commence the diagnosis process if the Xanthophyl pigment have degenerated 89.9%, while the lutein has decayed almost 80%, as found deduced computationally. This piece of current research takes it to the next level of precise investigation in the continuing process of improved clinical findings by correlating the microanatomy of the diseased fovea and shows promise of an early detection of this disease.
Practical Approach for Hyperspectral Image Processing in Python
NASA Astrophysics Data System (ADS)
Annala, L.; Eskelinen, M. A.; Hämäläinen, J.; Riihinen, A.; Pölönen, I.
2018-04-01
Python is a very popular programming language among data scientists around the world. Python can also be used in hyperspectral data analysis. There are some toolboxes designed for spectral imaging, such as Spectral Python and HyperSpy, but there is a need for analysis pipeline, which is easy to use and agile for different solutions. We propose a Python pipeline which is built on packages xarray, Holoviews and scikit-learn. We have developed some of own tools, MaskAccessor, VisualisorAccessor and a spectral index library. They also fulfill our goal of easy and agile data processing. In this paper we will present our processing pipeline and demonstrate it in practice.
Optimal wavelength band clustering for multispectral iris recognition.
Gong, Yazhuo; Zhang, David; Shi, Pengfei; Yan, Jingqi
2012-07-01
This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3 clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative clustering based on two-dimensional principal component analysis. The experimental results suggest (1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance of iris multispectral recognition based on a three wavelengths-bands fusion.
The magnifying glass - A feature space local expansion for visual analysis. [and image enhancement
NASA Technical Reports Server (NTRS)
Juday, R. D.
1981-01-01
The Magnifying Glass Transformation (MGT) technique is proposed, as a multichannel spectral operation yielding visual imagery which is enhanced in a specified spectral vicinity, guided by the statistics of training samples. An application example is that in which the discrimination among spectral neighbors within an interactive display may be increased without altering distant object appearances or overall interpretation. A direct histogram specification technique is applied to the channels within the multispectral image so that a subset of the spectral domain occupies an increased fraction of the domain. The transformation is carried out by obtaining the training information, establishing the condition of the covariance matrix, determining the influenced solid, and initializing the lookup table. Finally, the image is transformed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virnstein, R.; Tepera, M.; Beazley, L.
1997-06-01
A pilot study is very briefly summarized in the article. The study tested the potential of multi-spectral digital imagery for discrimination of seagrass densities and species, algae, and bottom types. Imagery was obtained with the Compact Airborne Spectral Imager (casi) and two flight lines flown with hyper-spectral mode. The photogrammetric method used allowed interpretation of the highest quality product, eliminating limitations caused by outdated or poor quality base maps and the errors associated with transfer of polygons. Initial image analysis indicates that the multi-spectral imagery has several advantages, including sophisticated spectral signature recognition and classification, ease of geo-referencing, and rapidmore » mosaicking.« less
Yoshida, Keiichiro; Nishidate, Izumi; Ishizuka, Tomohiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2015-05-01
In order to estimate multispectral images of the absorption and scattering properties in the cerebral cortex of in vivo rat brain, we investigated spectral reflectance images estimated by the Wiener estimation method using a digital RGB camera. A Monte Carlo simulation-based multiple regression analysis for the corresponding spectral absorbance images at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm) was then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentrations of oxygenated hemoglobin and that of deoxygenated hemoglobin were estimated as the absorption parameters, whereas the coefficient a and the exponent b of the reduced scattering coefficient spectrum approximated by a power law function were estimated as the scattering parameters. The spectra of absorption and reduced scattering coefficients were reconstructed from the absorption and scattering parameters, and the spectral images of absorption and reduced scattering coefficients were then estimated. In order to confirm the feasibility of this method, we performed in vivo experiments on exposed rat brain. The estimated images of the absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of the reduced scattering coefficients had a broad scattering spectrum, exhibiting a larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. The changes in the estimated absorption and scattering parameters during normoxia, hyperoxia, and anoxia indicate the potential applicability of the method by which to evaluate the pathophysiological conditions of in vivo brain due to the loss of tissue viability.
Compositional variability of the Martian surface
NASA Technical Reports Server (NTRS)
Adams, John B.; Smith, Milton O.
1991-01-01
Spectral reflectance data from Viking Landers and Orbiters and from telescopic observations were analyzed with the objective of isolating compositional information about the Martian surface and assessing compositional variability. Two approaches were used to calibrate the data to reflectance to permit direct comparisons with laboratory reference spectra of well characterized materials. In Viking Lander multispectral images (six spectral bands) most of the spectral variation is caused by changes in lighting geometry within individual scenes, from scene to scene, and over time. Lighting variations are both wavelength independent and wavelength dependent. By calibrating lander image radiance values to reflectance using spectral mixture analysis, the possible range of compositions was assessed with reference to a collection of laboratory samples, also resampled to the lander spectral bands. All spectra from the lander images studied plot (in six-space) within a planar triangle having at the apexes the respective spectra of tan basaltic palagonite, gray basalt, and shale. Within this plane all lander spectra fit as mixtures of these three endmembers. Reference spectra that plot outside of the triangle are unable to account for the spectral variation observed in the images.
Statistical analysis and machine learning algorithms for optical biopsy
NASA Astrophysics Data System (ADS)
Wu, Binlin; Liu, Cheng-hui; Boydston-White, Susie; Beckman, Hugh; Sriramoju, Vidyasagar; Sordillo, Laura; Zhang, Chunyuan; Zhang, Lin; Shi, Lingyan; Smith, Jason; Bailin, Jacob; Alfano, Robert R.
2018-02-01
Analyzing spectral or imaging data collected with various optical biopsy methods is often times difficult due to the complexity of the biological basis. Robust methods that can utilize the spectral or imaging data and detect the characteristic spectral or spatial signatures for different types of tissue is challenging but highly desired. In this study, we used various machine learning algorithms to analyze a spectral dataset acquired from human skin normal and cancerous tissue samples using resonance Raman spectroscopy with 532nm excitation. The algorithms including principal component analysis, nonnegative matrix factorization, and autoencoder artificial neural network are used to reduce dimension of the dataset and detect features. A support vector machine with a linear kernel is used to classify the normal tissue and cancerous tissue samples. The efficacies of the methods are compared.
Valm, Alex M; Mark Welch, Jessica L; Rieken, Christopher W; Hasegawa, Yuko; Sogin, Mitchell L; Oldenbourg, Rudolf; Dewhirst, Floyd E; Borisy, Gary G
2011-03-08
Microbes in nature frequently function as members of complex multitaxon communities, but the structural organization of these communities at the micrometer level is poorly understood because of limitations in labeling and imaging technology. We report here a combinatorial labeling strategy coupled with spectral image acquisition and analysis that greatly expands the number of fluorescent signatures distinguishable in a single image. As an imaging proof of principle, we first demonstrated visualization of Escherichia coli labeled by fluorescence in situ hybridization (FISH) with 28 different binary combinations of eight fluorophores. As a biological proof of principle, we then applied this Combinatorial Labeling and Spectral Imaging FISH (CLASI-FISH) strategy using genus- and family-specific probes to visualize simultaneously and differentiate 15 different phylotypes in an artificial mixture of laboratory-grown microbes. We then illustrated the utility of our method for the structural analysis of a natural microbial community, namely, human dental plaque, a microbial biofilm. We demonstrate that 15 taxa in the plaque community can be imaged simultaneously and analyzed and that this community was dominated by early colonizers, including species of Streptococcus, Prevotella, Actinomyces, and Veillonella. Proximity analysis was used to determine the frequency of inter- and intrataxon cell-to-cell associations which revealed statistically significant intertaxon pairings. Cells of the genera Prevotella and Actinomyces showed the most interspecies associations, suggesting a central role for these genera in establishing and maintaining biofilm complexity. The results provide an initial systems-level structural analysis of biofilm organization.
Reliable Quantitative Mineral Abundances of the Martian Surface using THEMIS
NASA Astrophysics Data System (ADS)
Smith, R. J.; Huang, J.; Ryan, A. J.; Christensen, P. R.
2013-12-01
The following presents a proof of concept that given quality data, Thermal Emission Imaging System (THEMIS) data can be used to derive reliable quantitative mineral abundances of the Martian surface using a limited mineral library. The THEMIS instrument aboard the Mars Odyssey spacecraft is a multispectral thermal infrared imager with a spatial resolution of 100 m/pixel. The relatively high spatial resolution along with global coverage makes THEMIS datasets powerful tools for comprehensive fine scale petrologic analyses. However, the spectral resolution of THEMIS is limited to 8 surface sensitive bands between 6.8 and 14.0 μm with an average bandwidth of ~ 1 μm, which complicates atmosphere-surface separation and spectral analysis. This study utilizes the atmospheric correction methods of both Bandfield et al. [2004] and Ryan et al. [2013] joined with the iterative linear deconvolution technique pioneered by Huang et al. [in review] in order to derive fine-scale quantitative mineral abundances of the Martian surface. In general, it can be assumed that surface emissivity combines in a linear fashion in the thermal infrared (TIR) wavelengths such that the emitted energy is proportional to the areal percentage of the minerals present. TIR spectra are unmixed using a set of linear equations involving an endmember library of lab measured mineral spectra. The number of endmembers allowed in a spectral library are restricted to a quantity of n-1 (where n = the number of spectral bands of an instrument), preserving one band for blackbody. Spectral analysis of THEMIS data is thus allowed only seven endmembers. This study attempts to prove that this limitation does not prohibit the derivation of meaningful spectral analyses from THEMIS data. Our study selects THEMIS stamps from a region of Mars that is well characterized in the TIR by the higher spectral resolution, lower spatial resolution Thermal Emission Spectrometer (TES) instrument (143 bands at 10 cm-1 sampling and 3x5 km pixel). Multiple atmospheric corrections are performed for one image using the methods of Bandfield et al. [2004] and Ryan et al. [2013]. 7x7 pixel areas were selected, averaged, and compared using each atmospherically corrected image to ensure consistency. Corrections that provided reliable data were then used for spectral analyses. Linear deconvolution is performed using an iterative spectral analysis method [Huang et al. in review] that takes an endmember spectral library, and creates mineral combinations based on prescribed mineral group selections. The script then performs a spectral mixture analysis on each surface spectrum using all possible mineral combinations, and reports the best modeled fit to the measured spectrum. Here we present initial results from Syrtis Planum where multiple atmospherically corrected THEMIS images were deconvolved to produce similar spectral analysis results, within the detection limit of the instrument. THEMIS mineral abundances are comparable to TES-derived abundances. References: Bandfield, JL et al. [2004], JGR 109, E10008 Huang, J et al., JGR, in review Ryan, AJ et al. [2013], AGU Fall Meeting
Classification of Hyperspectral Data Based on Guided Filtering and Random Forest
NASA Astrophysics Data System (ADS)
Ma, H.; Feng, W.; Cao, X.; Wang, L.
2017-09-01
Hyperspectral images usually consist of more than one hundred spectral bands, which have potentials to provide rich spatial and spectral information. However, the application of hyperspectral data is still challengeable due to "the curse of dimensionality". In this context, many techniques, which aim to make full use of both the spatial and spectral information, are investigated. In order to preserve the geometrical information, meanwhile, with less spectral bands, we propose a novel method, which combines principal components analysis (PCA), guided image filtering and the random forest classifier (RF). In detail, PCA is firstly employed to reduce the dimension of spectral bands. Secondly, the guided image filtering technique is introduced to smooth land object, meanwhile preserving the edge of objects. Finally, the features are fed into RF classifier. To illustrate the effectiveness of the method, we carry out experiments over the popular Indian Pines data set, which is collected by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. By comparing the proposed method with the method of only using PCA or guided image filter, we find that effect of the proposed method is better.
Techniques for identifying dust devils in mars pathfinder images
Metzger, S.M.; Carr, J.R.; Johnson, J. R.; Parker, T.J.; Lemmon, M.T.
2000-01-01
Image processing methods used to identify and enhance dust devil features imaged by IMP (Imager for Mars Pathfinder) are reviewed. Spectral differences, visible red minus visible blue, were used for initial dust devil searches, driven by the observation that Martian dust has high red and low blue reflectance. The Martian sky proved to be more heavily dust-laden than pre-Pathfinder predictions, based on analysis of images from the Hubble Space Telescope. As a result, these initial spectral difference methods failed to contrast dust devils with background dust haze. Imager artifacts (dust motes on the camera lens, flat-field effects caused by imperfections in the CCD, and projection onto a flat sensor plane by a convex lens) further impeded the ability to resolve subtle dust devil features. Consequently, reference images containing sky with a minimal horizon were first subtracted from each spectral filter image to remove camera artifacts and reduce the background dust haze signal. Once the sky-flat preprocessing step was completed, the red-minus-blue spectral difference scheme was attempted again. Dust devils then were successfully identified as bright plumes. False-color ratios using calibrated IMP images were found useful for visualizing dust plumes, verifying initial discoveries as vortex-like features. Enhancement of monochromatic (especially blue filter) images revealed dust devils as silhouettes against brighter background sky. Experiments with principal components transformation identified dust devils in raw, uncalibrated IMP images and further showed relative movement of dust devils across the Martian surface. A variety of methods therefore served qualitative and quantitative goals for dust plume identification and analysis in an environment where such features are obscure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Testa, Paola; Reale, Fabio, E-mail: ptesta@cfa.harvard.edu
2012-05-01
We use coronal imaging observations with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), and Hinode/Extreme-ultraviolet Imaging Spectrometer (EIS) spectral data to explore the potential of narrowband EUV imaging data for diagnosing the presence of hot (T {approx}> 5 MK) coronal plasma in active regions. We analyze observations of two active regions (AR 11281, AR 11289) with simultaneous AIA imaging and EIS spectral data, including the Ca XVII line (at 192.8 A), which is one of the few lines in the EIS spectral bands sensitive to hot coronal plasma even outside flares. After careful co-alignment of the imaging and spectral data,more » we compare the morphology in a three-color image combining the 171, 335, and 94 A AIA spectral bands, with the image obtained for Ca XVII emission from the analysis of EIS spectra. We find that in the selected active regions the Ca XVII emission is strong only in very limited areas, showing striking similarities with the features bright in the 94 A (and 335 A) AIA channels and weak in the 171 A band. We conclude that AIA imaging observations of the solar corona can be used to track hot plasma (6-8 MK), and so to study its spatial variability and temporal evolution at high spatial and temporal resolution.« less
Comparison of existing digital image analysis systems for the analysis of Thematic Mapper data
NASA Technical Reports Server (NTRS)
Likens, W. C.; Wrigley, R. C.
1984-01-01
Most existing image analysis systems were designed with the Landsat Multi-Spectral Scanner in mind, leaving open the question of whether or not these systems could adequately process Thematic Mapper data. In this report, both hardware and software systems have been evaluated for compatibility with TM data. Lack of spectral analysis capability was not found to be a problem, though techniques for spatial filtering and texture varied. Computer processing speed and data storage of currently existing mini-computer based systems may be less than adequate. Upgrading to more powerful hardware may be required for many TM applications.
NASA Astrophysics Data System (ADS)
Guha, Arindam; Singh, Vivek Kr.; Parveen, Reshma; Kumar, K. Vinod; Jeyaseelan, A. T.; Dhanamjaya Rao, E. N.
2013-04-01
Bauxite deposits of Jharkhand in India are resulted from the lateritization process and therefore are often associated with the laterites. In the present study, ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) image is processed to delineate bauxite rich pockets within the laterites. In this regard, spectral signatures of lateritic bauxite samples are analyzed in the laboratory with reference to the spectral features of gibbsite (main mineral constituent of bauxite) and goethite (main mineral constituent of laterite) in VNIR-SWIR (visible-near infrared and short wave infrared) electromagnetic domain. The analysis of spectral signatures of lateritic bauxite samples helps in understanding the differences in the spectral features of bauxites and laterites. Based on these differences; ASTER data based relative band depth and simple ratio images are derived for spatial mapping of the bauxites developed within the lateritic province. In order to integrate the complementary information of different index image, an index based principal component (IPC) image is derived to incorporate the correlative information of these indices to delineate bauxite rich pockets. The occurrences of bauxite rich pockets derived from density sliced IPC image are further delimited by the topographic controls as it has been observed that the major bauxite occurrences of the area are controlled by slope and altitude. In addition to above, IPC image is draped over the digital elevation model (DEM) to illustrate how bauxite rich pockets are distributed with reference to the topographic variability of the terrain. Bauxite rich pockets delineated in the IPC image are also validated based on the known mine occurrences and existing geological map of the bauxite. It is also conceptually validated based on the spectral similarity of the bauxite pixels delineated in the IPC image with the ASTER convolved laboratory spectra of bauxite samples.
NASA Technical Reports Server (NTRS)
Harwit, M.; Swift, R.; Wattson, R.; Decker, J.; Paganetti, R.
1976-01-01
A spectrometric imager and a thermal imager, which achieve multiplexing by the use of binary optical encoding masks, were developed. The masks are based on orthogonal, pseudorandom digital codes derived from Hadamard matrices. Spatial and/or spectral data is obtained in the form of a Hadamard transform of the spatial and/or spectral scene; computer algorithms are then used to decode the data and reconstruct images of the original scene. The hardware, algorithms and processing/display facility are described. A number of spatial and spatial/spectral images are presented. The achievement of a signal-to-noise improvement due to the signal multiplexing was also demonstrated. An analysis of the results indicates both the situations for which the multiplex advantage may be gained, and the limitations of the technique. A number of potential applications of the spectrometric imager are discussed.
Bednarkiewicz, Artur; Whelan, Maurice P
2008-01-01
Fluorescence lifetime imaging (FLIM) is very demanding from a technical and computational perspective, and the output is usually a compromise between acquisition/processing time and data accuracy and precision. We present a new approach to acquisition, analysis, and reconstruction of microscopic FLIM images by employing a digital micromirror device (DMD) as a spatial illuminator. In the first step, the whole field fluorescence image is collected by a color charge-coupled device (CCD) camera. Further qualitative spectral analysis and sample segmentation are performed to spatially distinguish between spectrally different regions on the sample. Next, the fluorescence of the sample is excited segment by segment, and fluorescence lifetimes are acquired with a photon counting technique. FLIM image reconstruction is performed by either raster scanning the sample or by directly accessing specific regions of interest. The unique features of the DMD illuminator allow the rapid on-line measurement of global good initial parameters (GIP), which are supplied to the first iteration of the fitting algorithm. As a consequence, a decrease of the computation time required to obtain a satisfactory quality-of-fit is achieved without compromising the accuracy and precision of the lifetime measurements.
Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.
Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin
2014-10-23
A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.
Plant Leaf Chlorophyll Content Retrieval Based on a Field Imaging Spectroscopy System
Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin
2014-01-01
A field imaging spectrometer system (FISS; 380–870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%–35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector. PMID:25341439
NASA Astrophysics Data System (ADS)
Scanlan, Neil W.; Schott, John R.; Brown, Scott D.
2004-01-01
Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.
NASA Astrophysics Data System (ADS)
Scanlan, Neil W.; Schott, John R.; Brown, Scott D.
2003-12-01
Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.
Spectral analysis of the Crab Nebula and GRB 160530A with the Compton Spectrometer and Imager
NASA Astrophysics Data System (ADS)
Sleator, Clio; Boggs, Steven E.; Chiu, Jeng-Lun; Kierans, Carolyn; Lowell, Alexander; Tomsick, John; Zoglauer, Andreas; Amman, Mark; Chang, Hsiang-Kuang; Tseng, Chao-Hsiung; Yang, Chien-Ying; Lin, Chih H.; Jean, Pierre; von Ballmoos, Peter
2017-08-01
The Compton Spectrometer and Imager (COSI) is a balloon-borne soft gamma-ray (0.2-5 MeV) telescope designed to study astrophysical sources including gamma-ray bursts and compact objects. As a compact Compton telescope, COSI has inherent sensitivity to polarization. COSI utilizes 12 germanium detectors to provide excellent spectral resolution. On May 17, 2016, COSI was launched from Wanaka, New Zealand and completed a successful 46-day flight on NASA’s new Superpressure balloon. To perform spectral analysis with COSI, we have developed an accurate instrument model as required for the response matrix. With carefully chosen background regions, we are able to fit the background-subtracted spectra in XSPEC. We have developed a model of the atmosphere above COSI based on the NRLMSISE-00 Atmosphere Model to include in our spectral fits. The Crab and GRB 160530A are among the sources detected during the 2016 flight. We present spectral analysis of these two point sources. Our GRB 160530A results are consistent with those from other instruments, confirming COSI’s spectral abilities. Furthermore, we discuss prospects for measuring the Crab polarization with COSI.
Hyperspectral imaging of the human iris
NASA Astrophysics Data System (ADS)
Di Cecilia, Luca; Marazzi, Francesco; Rovati, Luigi
2017-07-01
We describe an optical system and a method for measuring the human iris spectral reflectance in vivo by hyperspectral imaging analysis. It is important to monitor age-related changes in the reflectance properties of the iris as they are a prognostic factor for several eye pathologies. In this paper, we report the outcomes of our most recent research, resulting from the improvement of our imaging system. In particular, a custom tunable light source was developed: the images are now acquired in the spectral range 440 - 900 nm. With this system, we are able to obtain a spectral resolution of 20nm, while each image of 2048 x 1536 pixels has a spatial resolution of 10.7 μm. The results suggest that the instrument could be exploited for measuring iris pigmentation changes over time. These measurements could provide new diagnostic capabilities in ophthalmology. Further studies are required to determine the measurements' repeatability and to develop a spectral library for results evaluation and to detect differences among subsequent screenings of the same subject.
TU-CD-207-01: Characterization of Breast Tissue Composition Using Spectral Mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, H; Cho, H; Kumar, N
Purpose: To investigate the feasibility of characterizing the chemical composition of breast tissue, in terms of water and lipid, by using spectral mammography in simulation and postmortem studies. Methods: Analytical simulations were performed to obtain low- and high-energy signals of breast tissue based on previously reported water, lipid, and protein contents. Dual-energy decomposition was used to characterize the simulated breast tissue into water and lipid basis materials and the measured water density was compared to the known value. In experimental studies, postmortem breasts were imaged with a spectral mammography system based on a scanning multi-slit Si strip photon-counting detector. Low-more » and high-energy images were acquired simultaneously from a single exposure by sorting the recorded photons into the corresponding energy bins. Dual-energy material decomposition of the low- and high-energy images yielded individual pixel measurements of breast tissue composition in terms of water and lipid thicknesses. After imaging, each postmortem breast was chemically decomposed into water, lipid and protein. The water density calculated from chemical analysis was used as the reference gold standard. Correlation of the water density measurements between spectral mammography and chemical analysis was analyzed using linear regression. Results: Both simulation and postmortem studies showed good linear correlation between the decomposed water thickness using spectral mammography and chemical analysis. The slope of the linear fitting function in the simulation and postmortem studies were 1.15 and 1.21, respectively. Conclusion: The results indicate that breast tissue composition, in terms of water and lipid, can be accurately measured using spectral mammography. Quantitative breast tissue composition can potentially be used to stratify patients according to their breast cancer risk.« less
Spatial-spectral preprocessing for endmember extraction on GPU's
NASA Astrophysics Data System (ADS)
Jimenez, Luis I.; Plaza, Javier; Plaza, Antonio; Li, Jun
2016-10-01
Spectral unmixing is focused in the identification of spectrally pure signatures, called endmembers, and their corresponding abundances in each pixel of a hyperspectral image. Mainly focused on the spectral information contained in the hyperspectral images, endmember extraction techniques have recently included spatial information to achieve more accurate results. Several algorithms have been developed for automatic or semi-automatic identification of endmembers using spatial and spectral information, including the spectral-spatial endmember extraction (SSEE) where, within a preprocessing step in the technique, both sources of information are extracted from the hyperspectral image and equally used for this purpose. Previous works have implemented the SSEE technique in four main steps: 1) local eigenvectors calculation in each sub-region in which the original hyperspectral image is divided; 2) computation of the maxima and minima projection of all eigenvectors over the entire hyperspectral image in order to obtain a candidates pixels set; 3) expansion and averaging of the signatures of the candidate set; 4) ranking based on the spectral angle distance (SAD). The result of this method is a list of candidate signatures from which the endmembers can be extracted using various spectral-based techniques, such as orthogonal subspace projection (OSP), vertex component analysis (VCA) or N-FINDR. Considering the large volume of data and the complexity of the calculations, there is a need for efficient implementations. Latest- generation hardware accelerators such as commodity graphics processing units (GPUs) offer a good chance for improving the computational performance in this context. In this paper, we develop two different implementations of the SSEE algorithm using GPUs. Both are based on the eigenvectors computation within each sub-region of the first step, one using the singular value decomposition (SVD) and another one using principal component analysis (PCA). Based on our experiments with hyperspectral data sets, high computational performance is observed in both cases.
Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters.
Luo, Yuan; Russo, Juan M; Kostuk, Raymond K; Barbastathis, George
2010-04-15
Holographic imaging filters are required to have high Bragg selectivity, namely, narrow angular and spectral bandwidth, to obtain spatial-spectral information within a three-dimensional object. In this Letter, we present the design of holographic imaging filters formed using silicon oxide nanoparticles (nano-SiO(2)) in phenanthrenquinone-poly(methyl methacrylate) (PQ-PMMA) polymer recording material. This combination offers greater Bragg selectivity and increases the diffraction efficiency of holographic filters. The holographic filters with optimized ratio of nano-SiO(2) in PQ-PMMA can significantly improve the performance of Bragg selectivity and diffraction efficiency by 53% and 16%, respectively. We present experimental results and data analysis demonstrating this technique in use for holographic spatial-spectral imaging filters.
NASA Technical Reports Server (NTRS)
Herrmann, Karin; Ammer, Ulrich; Rock, Barrett; Paley, Helen N.
1988-01-01
This study evaluated the utility of data collected by the high-spectral resolution airborne imaging spectrometer (AIS-2, tree mode, spectral range 0.8-2.2 microns) and the broad-band Daedalus airborne thematic mapper (ATM, spectral range 0.42-13.0 micron) in assessing forest decline damage at a predominantly Scotch pine forest in the FRG. Analysis of spectral radiance values from the ATM and raw digital number values from AIS-2 showed that higher reflectance in the near infrared was characteristic of high damage (heavy chlorosis, limited needle loss) in Scotch pine canopies. A classification image of a portion of the AIS-2 flight line agreed very well with a damage assessment map produced by standard aerial photointerpretation techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, X; Arbique, G; Guild, J
Purpose: To evaluate the quantitative image quality of spectral reconstructions of phantom data from a spectral CT scanner. Methods: The spectral CT scanner (IQon Spectral CT, Philips Healthcare) is equipped with a dual-layer detector and generates conventional 80-140 kVp images and variety of spectral reconstructions, e.g., virtual monochromatic (VM) images, virtual non-contrast (VNC) images, iodine maps, and effective atomic number (Z) images. A cylindrical solid water phantom (Gammex 472, 33 cm diameter and 5 cm thick) with iodine (2.0-20.0 mg I/ml) and calcium (50-600 mg/ml) rod inserts was scanned at 120 kVp and 27 mGy CTDIvol. Spectral reconstructions were evaluatedmore » by comparing image measurements with theoretical values calculated from nominal rod compositions provided by the phantom manufacturer. The theoretical VNC was calculated using water and iodine basis material decomposition, and the theoretical Z was calculated using two common methods, the chemical formula method (Z1) and the dual-energy ratio method (Z2). Results: Beam-hardening-like artifacts between high-attenuation calcium rods (≥300 mg/ml, >800 HU) influenced quantitative measurements, so the quantitative analysis was only performed on iodine rods using the images from the scan with all the calcium rods removed. The CT numbers of the iodine rods in the VM images (50∼150 keV) were close to theoretical values with average difference of 2.4±6.9 HU. Compared with theoretical values, the average difference for iodine concentration, VNC CT number and effective Z of iodine rods were −0.10±0.38 mg/ml, −0.1±8.2 HU, 0.25±0.06 (Z1) and −0.23±0.07 (Z2). Conclusion: The results indicate that the spectral CT scanner generates quantitatively accurate spectral reconstructions at clinically relevant iodine concentrations. Beam-hardening-like artifacts still exist when high-attenuation objects are present and their impact on patient images needs further investigation. YY is an employee of Philips Healthcare.« less
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele
2011-06-01
Recent advances in micro-optical element fabrication using gray scale technology have opened up the opportunity to create simultaneous multi-spectral imaging with fine structure diffractive lenses. This paper will discuss an approach that uses diffractive optical lenses configured in an array (lenslet array) and placed in close proximity to the focal plane array which enables a small compact simultaneous multispectral imaging camera [1]. The lenslet array is designed so that all lenslets have a common focal length with each lenslet tuned for a different wavelength. The number of simultaneous spectral images is determined by the number of individually configured lenslets in the array. The number of spectral images can be increased by a factor of 2 when using it with a dual-band focal plane array (MWIR/LWIR) by exploiting multiple diffraction orders. In addition, modulation of the focal length of the lenslet array with piezoelectric actuation will enable spectral bin fill-in allowing additional spectral coverage while giving up simultaneity. Different lenslet array spectral imaging concept designs are presented in this paper along with a unique concept for prefiltering the radiation focused on the detector. This approach to spectral imaging has applications in the detection of chemical agents in both aerosolized form and as a liquid on a surface. It also can be applied to the detection of weaponized biological agent and IED detection in various forms from manufacturing to deployment and post detection during forensic analysis.
Chavez, P.S.; Kwarteng, A.Y.
1989-01-01
A challenge encountered with Landsat Thematic Mapper (TM) data, which includes data from size reflective spectral bands, is displaying as much information as possible in a three-image set for color compositing or digital analysis. Principal component analysis (PCA) applied to the six TM bands simultaneously is often used to address this problem. However, two problems that can be encountered using the PCA method are that information of interest might be mathematically mapped to one of the unused components and that a color composite can be difficult to interpret. "Selective' PCA can be used to minimize both of these problems. The spectral contrast among several spectral regions was mapped for a northern Arizona site using Landsat TM data. Field investigations determined that most of the spectral contrast seen in this area was due to one of the following: the amount of iron and hematite in the soils and rocks, vegetation differences, standing and running water, or the presence of gypsum, which has a higher moisture retention capability than do the surrounding soils and rocks. -from Authors
NASA Astrophysics Data System (ADS)
Zhan, Yuanzeng; Mao, Tianming; Gong, Fang; Wang, Difeng; Chen, Jianyu
2010-10-01
As an effective survey tool for oil spill detection, the airborne hyper-spectral sensor affords the potentiality for retrieving the quantitative information of oil slick which is useful for the cleanup of spilled oil. But many airborne hyper-spectral images are affected by sun glitter which distorts radiance values and spectral ratios used for oil slick detection. In 2005, there's an oil spill event leaking at oil drilling platform in The South China Sea, and an AISA+ airborne hyper-spectral image recorded this event will be selected for studying in this paper, which is affected by sun glitter terribly. Through a spectrum analysis of the oil and water samples, two features -- "spectral rotation" and "a pair of fixed points" can be found in spectral curves between crude oil film and water. Base on these features, an oil film information retrieval method which can overcome the influence of sun glitter is presented. Firstly, the radiance of the image is converted to normal apparent reflectance (NormAR). Then, based on the features of "spectral rotation" (used for distinguishing oil film and water) and "a pair of fixed points" (used for overcoming the effect of sun glitter), NormAR894/NormAR516 is selected as an indicator of oil film. Finally, by using a threshold combined with the technologies of image filter and mathematic morphology, the distribution and relative thickness of oil film are retrieved.
Ganz, J; Baker, R P; Hamilton, M K; Melancon, E; Diba, P; Eisen, J S; Parthasarathy, R
2018-05-02
Normal gut function requires rhythmic and coordinated movements that are affected by developmental processes, physical and chemical stimuli, and many debilitating diseases. The imaging and characterization of gut motility, especially regarding periodic, propagative contractions driving material transport, are therefore critical goals. Previous image analysis approaches have successfully extracted properties related to the temporal frequency of motility modes, but robust measures of contraction magnitude, especially from in vivo image data, remain challenging to obtain. We developed a new image analysis method based on image velocimetry and spectral analysis that reveals temporal characteristics such as frequency and wave propagation speed, while also providing quantitative measures of the amplitude of gut motion. We validate this approach using several challenges to larval zebrafish, imaged with differential interference contrast microscopy. Both acetylcholine exposure and feeding increase frequency and amplitude of motility. Larvae lacking enteric nervous system gut innervation show the same average motility frequency, but reduced and less variable amplitude compared to wild types. Our image analysis approach enables insights into gut dynamics in a wide variety of developmental and physiological contexts and can also be extended to analyze other types of cell movements. © 2018 John Wiley & Sons Ltd.
LWIR hyperspectral imager based on a diffractive optics lens
NASA Astrophysics Data System (ADS)
Gupta, Neelam
2009-05-01
A diffractive optics lens based longwave infrared hyperspectral imager has been used to collect laboratory and outdoor field test data. The imager uses a specially designed diffractive optics Ge lens with a 320×256 HgCdTe focal plane array (FPA) cooled with a Sterling-cooler. The imager operates in 8-10.5 μm (long wave IR, LWIR) spectral region and an image cube with 50 to 200 bands can be acquired rapidly. Spectral images at different wavelengths are obtained by moving the lens along its optical axis. An f/2.38 diffractive lens is used with a focal length of 70 mm at 8 μm. The IFOV is 0.57 mrad which corresponds to an FOV of 10.48°. The spectral resolution of the imager is 0.034 μm at 9 μm. The pixel size is 40×40 μm2 in the FPA. In post processing of image cube data contributions due to wavelengths other than the focused one are removed and a correction to account for the change in magnification due to the motion of the lens is applied to each spectral image. A brief description of the imager, data collection and analysis to characterize the performance of the imager will be presented in this paper.
Saliency detection algorithm based on LSC-RC
NASA Astrophysics Data System (ADS)
Wu, Wei; Tian, Weiye; Wang, Ding; Luo, Xin; Wu, Yingfei; Zhang, Yu
2018-02-01
Image prominence is the most important region in an image, which can cause the visual attention and response of human beings. Preferentially allocating the computer resources for the image analysis and synthesis by the significant region is of great significance to improve the image area detecting. As a preprocessing of other disciplines in image processing field, the image prominence has widely applications in image retrieval and image segmentation. Among these applications, the super-pixel segmentation significance detection algorithm based on linear spectral clustering (LSC) has achieved good results. The significance detection algorithm proposed in this paper is better than the regional contrast ratio by replacing the method of regional formation in the latter with the linear spectral clustering image is super-pixel block. After combining with the latest depth learning method, the accuracy of the significant region detecting has a great promotion. At last, the superiority and feasibility of the super-pixel segmentation detection algorithm based on linear spectral clustering are proved by the comparative test.
Separation of β-amyloid binding and white matter uptake of 18F-flutemetamol using spectral analysis
Heurling, Kerstin; Buckley, Christopher; Vandenberghe, Rik; Laere, Koen Van; Lubberink, Mark
2015-01-01
The kinetic components of the β-amyloid ligand 18F-flutemetamol binding in grey and white matter were investigated through spectral analysis, and a method developed for creation of parametric images separating grey and white matter uptake. Tracer uptake in grey and white matter and cerebellar cortex was analyzed through spectral analysis in six subjects, with (n=4) or without (n=2) apparent β-amyloid deposition, having undergone dynamic 18F-flutemetamol scanning with arterial blood sampling. The spectra were divided into three components: slow, intermediate and fast basis function rates. The contribution of each of the components to total volume of distribution (VT) was assessed for different tissue types. The slow component dominated in white matter (average 90%), had a higher contribution to grey matter VT in subjects with β-amyloid deposition (average 44%) than without (average 6%) and was absent in cerebellar cortex, attributing the slow component of 18F-flutemetamol uptake in grey matter to β-amyloid binding. Parametric images of voxel-based spectral analysis were created for VT, the slow component and images segmented based on the slow component contribution; confirming that grey matter and white matter uptake can be discriminated on voxel-level using a threshold for the contribution from the slow component to VT. PMID:26550542
Ocean wavenumber estimation from wave-resolving time series imagery
Plant, N.G.; Holland, K.T.; Haller, M.C.
2008-01-01
We review several approaches that have been used to estimate ocean surface gravity wavenumbers from wave-resolving remotely sensed image sequences. Two fundamentally different approaches that utilize these data exist. A power spectral density approach identifies wavenumbers where image intensity variance is maximized. Alternatively, a cross-spectral correlation approach identifies wavenumbers where intensity coherence is maximized. We develop a solution to the latter approach based on a tomographic analysis that utilizes a nonlinear inverse method. The solution is tolerant to noise and other forms of sampling deficiency and can be applied to arbitrary sampling patterns, as well as to full-frame imagery. The solution includes error predictions that can be used for data retrieval quality control and for evaluating sample designs. A quantitative analysis of the intrinsic resolution of the method indicates that the cross-spectral correlation fitting improves resolution by a factor of about ten times as compared to the power spectral density fitting approach. The resolution analysis also provides a rule of thumb for nearshore bathymetry retrievals-short-scale cross-shore patterns may be resolved if they are about ten times longer than the average water depth over the pattern. This guidance can be applied to sample design to constrain both the sensor array (image resolution) and the analysis array (tomographic resolution). ?? 2008 IEEE.
NASA Astrophysics Data System (ADS)
Dafu, Shen; Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang
2017-07-01
The purpose of this study is to improve the reconstruction precision and better copy the color of spectral image surfaces. A new spectral reflectance reconstruction algorithm based on an iterative threshold combined with weighted principal component space is presented in this paper, and the principal component with weighted visual features is the sparse basis. Different numbers of color cards are selected as the training samples, a multispectral image is the testing sample, and the color differences in the reconstructions are compared. The channel response value is obtained by a Mega Vision high-accuracy, multi-channel imaging system. The results show that spectral reconstruction based on weighted principal component space is superior in performance to that based on traditional principal component space. Therefore, the color difference obtained using the compressive-sensing algorithm with weighted principal component analysis is less than that obtained using the algorithm with traditional principal component analysis, and better reconstructed color consistency with human eye vision is achieved.
NASA Technical Reports Server (NTRS)
Haralick, R. H. (Principal Investigator); Bosley, R. J.
1974-01-01
The author has identified the following significant results. A procedure was developed to extract cross-band textural features from ERTS MSS imagery. Evolving from a single image texture extraction procedure which uses spatial dependence matrices to measure relative co-occurrence of nearest neighbor grey tones, the cross-band texture procedure uses the distribution of neighboring grey tone N-tuple differences to measure the spatial interrelationships, or co-occurrences, of the grey tone N-tuples present in a texture pattern. In both procedures, texture is characterized in such a way as to be invariant under linear grey tone transformations. However, the cross-band procedure complements the single image procedure by extracting texture information and spectral information contained in ERTS multi-images. Classification experiments show that when used alone, without spectral processing, the cross-band texture procedure extracts more information than the single image texture analysis. Results show an improvement in average correct classification from 86.2% to 88.8% for ERTS image no. 1021-16333 with the cross-band texture procedure. However, when used together with spectral features, the single image texture plus spectral features perform better than the cross-band texture plus spectral features, with an average correct classification of 93.8% and 91.6%, respectively.
Liu, Jui-Nung; Schulmerich, Matthew V.; Bhargava, Rohit; Cunningham, Brian T.
2014-01-01
Fourier transform infrared (FT-IR) imaging spectrometers are almost universally used to record microspectroscopic imaging data in the mid-infrared (mid-IR) spectral region. While the commercial standard, interferometry necessitates collection of large spectral regions, requires a large data handling overhead for microscopic imaging and is slow. Here we demonstrate an approach for mid-IR spectroscopic imaging at selected discrete wavelengths using narrowband resonant filtering of a broadband thermal source, enabled by high-performance guided-mode Fano resonances in one-layer, large-area mid-IR photonic crystals on a glass substrate. The microresonant devices enable discrete frequency IR (DF-IR), in which a limited number of wavelengths that are of interest are recorded using a mechanically robust instrument. This considerably simplifies instrumentation as well as overhead of data acquisition, storage and analysis for large format imaging with array detectors. To demonstrate the approach, we perform DF-IR spectral imaging of a polymer USAF resolution target and human tissue in the C−H stretching region (2600−3300 cm−1). DF-IR spectroscopy and imaging can be generalized to other IR spectral regions and can serve as an analytical tool for environmental and biomedical applications. PMID:25089433
Remote Sensing of Landscapes with Spectral Images
NASA Astrophysics Data System (ADS)
Adams, John B.; Gillespie, Alan R.
2006-05-01
Remote Sensing of Landscapes with Spectral Images describes how to process and interpret spectral images using physical models to bridge the gap between the engineering and theoretical sides of remote-sensing and the world that we encounter when we venture outdoors. The emphasis is on the practical use of images rather than on theory and mathematical derivations. Examples are drawn from a variety of landscapes and interpretations are tested against the reality seen on the ground. The reader is led through analysis of real images (using figures and explanations); the examples are chosen to illustrate important aspects of the analytic framework. This textbook will form a valuable reference for graduate students and professionals in a variety of disciplines including ecology, forestry, geology, geography, urban planning, archeology and civil engineering. It is supplemented by a web-site hosting digital color versions of figures in the book as well as ancillary images (www.cambridge.org/9780521662214). Presents a coherent view of practical remote sensing, leading from imaging and field work to the generation of useful thematic maps Explains how to apply physical models to help interpret spectral images Supplemented by a website hosting digital colour versions of figures in the book, as well as additional colour figures
Quantitative Hyperspectral Reflectance Imaging
Klein, Marvin E.; Aalderink, Bernard J.; Padoan, Roberto; de Bruin, Gerrit; Steemers, Ted A.G.
2008-01-01
Hyperspectral imaging is a non-destructive optical analysis technique that can for instance be used to obtain information from cultural heritage objects unavailable with conventional colour or multi-spectral photography. This technique can be used to distinguish and recognize materials, to enhance the visibility of faint or obscured features, to detect signs of degradation and study the effect of environmental conditions on the object. We describe the basic concept, working principles, construction and performance of a laboratory instrument specifically developed for the analysis of historical documents. The instrument measures calibrated spectral reflectance images at 70 wavelengths ranging from 365 to 1100 nm (near-ultraviolet, visible and near-infrared). By using a wavelength tunable narrow-bandwidth light-source, the light energy used to illuminate the measured object is minimal, so that any light-induced degradation can be excluded. Basic analysis of the hyperspectral data includes a qualitative comparison of the spectral images and the extraction of quantitative data such as mean spectral reflectance curves and statistical information from user-defined regions-of-interest. More sophisticated mathematical feature extraction and classification techniques can be used to map areas on the document, where different types of ink had been applied or where one ink shows various degrees of degradation. The developed quantitative hyperspectral imager is currently in use by the Nationaal Archief (National Archives of The Netherlands) to study degradation effects of artificial samples and original documents, exposed in their permanent exhibition area or stored in their deposit rooms. PMID:27873831
Man-made objects cuing in satellite imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skurikhin, Alexei N
2009-01-01
We present a multi-scale framework for man-made structures cuing in satellite image regions. The approach is based on a hierarchical image segmentation followed by structural analysis. A hierarchical segmentation produces an image pyramid that contains a stack of irregular image partitions, represented as polygonized pixel patches, of successively reduced levels of detail (LOOs). We are jumping off from the over-segmented image represented by polygons attributed with spectral and texture information. The image is represented as a proximity graph with vertices corresponding to the polygons and edges reflecting polygon relations. This is followed by the iterative graph contraction based on Boruvka'smore » Minimum Spanning Tree (MST) construction algorithm. The graph contractions merge the patches based on their pairwise spectral and texture differences. Concurrently with the construction of the irregular image pyramid, structural analysis is done on the agglomerated patches. Man-made object cuing is based on the analysis of shape properties of the constructed patches and their spatial relations. The presented framework can be used as pre-scanning tool for wide area monitoring to quickly guide the further analysis to regions of interest.« less
Developing an Automated Science Analysis System for Mars Surface Exploration for MSL and Beyond
NASA Technical Reports Server (NTRS)
Gulick, V. C.; Hart, S. D.; Shi, X.; Siegel, V. L.
2004-01-01
We are developing an automated science analysis system that could be utilized by robotic or human explorers on Mars (or even in remote locations on Earth) to improve the quality and quantity of science data returned. Three components of this system (our rock, layer, and horizon detectors) [1] have been incorporated into the JPL CLARITY system for possible use by MSL and future Mars robotic missions. Two other components include a multi-spectral image compression (SPEC) algorithm for pancam-type images with multiple filters and image fusion algorithms that identify the in focus regions of individual images in an image focal series [2]. Recently, we have been working to combine image and spectral data, and other knowledge to identify both rocks and minerals. Here we present our progress on developing an igneous rock detection system.
NASA Astrophysics Data System (ADS)
Pacholski, Michaeleen L.
2004-06-01
Principal component analysis (PCA) has been successfully applied to time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra, images and depth profiles. Although SIMS spectral data sets can be small (in comparison to datasets typically discussed in literature from other analytical techniques such as gas or liquid chromatography), each spectrum has thousands of ions resulting in what can be a difficult comparison of samples. Analysis of industrially-derived samples means the identity of most surface species are unknown a priori and samples must be analyzed rapidly to satisfy customer demands. PCA enables rapid assessment of spectral differences (or lack there of) between samples and identification of chemically different areas on sample surfaces for images. Depth profile analysis helps define interfaces and identify low-level components in the system.
Validation of luminescent source reconstruction using spectrally resolved bioluminescence images
NASA Astrophysics Data System (ADS)
Virostko, John M.; Powers, Alvin C.; Jansen, E. D.
2008-02-01
This study examines the accuracy of the Living Image® Software 3D Analysis Package (Xenogen, Alameda, CA) in reconstruction of light source depth and intensity. Constant intensity light sources were placed in an optically homogeneous medium (chicken breast). Spectrally filtered images were taken at 560, 580, 600, 620, 640, and 660 nanometers. The Living Image® Software 3D Analysis Package was employed to reconstruct source depth and intensity using these spectrally filtered images. For sources shallower than the mean free path of light there was proportionally higher inaccuracy in reconstruction. For sources deeper than the mean free path, the average error in depth and intensity reconstruction was less than 4% and 12%, respectively. The ability to distinguish multiple sources decreased with increasing source depth and typically required a spatial separation of twice the depth. The constant intensity light sources were also implanted in mice to examine the effect of optical inhomogeneity. The reconstruction accuracy suffered in inhomogeneous tissue with accuracy influenced by the choice of optical properties used in reconstruction.
Observer model optimization of a spectral mammography system
NASA Astrophysics Data System (ADS)
Fredenberg, Erik; Åslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats
2010-04-01
Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. Contrast-enhanced spectral imaging has been thoroughly investigated, but unenhanced imaging may be more useful because it comes as a bonus to the conventional non-energy-resolved absorption image at screening; there is no additional radiation dose and no need for contrast medium. We have used a previously developed theoretical framework and system model that include quantum and anatomical noise to characterize the performance of a photon-counting spectral mammography system with two energy bins for unenhanced imaging. The theoretical framework was validated with synthesized images. Optimal combination of the energy-resolved images for detecting large unenhanced tumors corresponded closely, but not exactly, to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, deteriorated detectability. For small microcalcifications or tumors on uniform backgrounds, however, energy subtraction was suboptimal whereas energy weighting provided a minute improvement. The performance was largely independent of beam quality, detector energy resolution, and bin count fraction. It is clear that inclusion of anatomical noise and imaging task in spectral optimization may yield completely different results than an analysis based solely on quantum noise.
Topochemical Analysis of Cell Wall Components by TOF-SIMS.
Aoki, Dan; Fukushima, Kazuhiko
2017-01-01
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a recently developing analytical tool and a type of imaging mass spectrometry. TOF-SIMS provides mass spectral information with a lateral resolution on the order of submicrons, with widespread applicability. Sometimes, it is described as a surface analysis method without the requirement for sample pretreatment; however, several points need to be taken into account for the complete utilization of the capabilities of TOF-SIMS. In this chapter, we introduce methods for TOF-SIMS sample treatments, as well as basic knowledge of wood samples TOF-SIMS spectral and image data analysis.
NASA Astrophysics Data System (ADS)
Chung, Hyunkoo; Lu, Guolan; Tian, Zhiqiang; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei
2016-03-01
Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications. HSI acquires two dimensional images at various wavelengths. The combination of both spectral and spatial information provides quantitative information for cancer detection and diagnosis. This paper proposes using superpixels, principal component analysis (PCA), and support vector machine (SVM) to distinguish regions of tumor from healthy tissue. The classification method uses 2 principal components decomposed from hyperspectral images and obtains an average sensitivity of 93% and an average specificity of 85% for 11 mice. The hyperspectral imaging technology and classification method can have various applications in cancer research and management.
Reflectance Prediction Modelling for Residual-Based Hyperspectral Image Coding
Xiao, Rui; Gao, Junbin; Bossomaier, Terry
2016-01-01
A Hyperspectral (HS) image provides observational powers beyond human vision capability but represents more than 100 times the data compared to a traditional image. To transmit and store the huge volume of an HS image, we argue that a fundamental shift is required from the existing “original pixel intensity”-based coding approaches using traditional image coders (e.g., JPEG2000) to the “residual”-based approaches using a video coder for better compression performance. A modified video coder is required to exploit spatial-spectral redundancy using pixel-level reflectance modelling due to the different characteristics of HS images in their spectral and shape domain of panchromatic imagery compared to traditional videos. In this paper a novel coding framework using Reflectance Prediction Modelling (RPM) in the latest video coding standard High Efficiency Video Coding (HEVC) for HS images is proposed. An HS image presents a wealth of data where every pixel is considered a vector for different spectral bands. By quantitative comparison and analysis of pixel vector distribution along spectral bands, we conclude that modelling can predict the distribution and correlation of the pixel vectors for different bands. To exploit distribution of the known pixel vector, we estimate a predicted current spectral band from the previous bands using Gaussian mixture-based modelling. The predicted band is used as the additional reference band together with the immediate previous band when we apply the HEVC. Every spectral band of an HS image is treated like it is an individual frame of a video. In this paper, we compare the proposed method with mainstream encoders. The experimental results are fully justified by three types of HS dataset with different wavelength ranges. The proposed method outperforms the existing mainstream HS encoders in terms of rate-distortion performance of HS image compression. PMID:27695102
Hyperspectral Fluorescence and Reflectance Imaging Instrument
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; O'Neal, S. Duane; Lanoue, Mark; Russell, Jeffrey
2008-01-01
The system is a single hyperspectral imaging instrument that has the unique capability to acquire both fluorescence and reflectance high-spatial-resolution data that is inherently spatially and spectrally registered. Potential uses of this instrument include plant stress monitoring, counterfeit document detection, biomedical imaging, forensic imaging, and general materials identification. Until now, reflectance and fluorescence spectral imaging have been performed by separate instruments. Neither a reflectance spectral image nor a fluorescence spectral image alone yields as much information about a target surface as does a combination of the two modalities. Before this system was developed, to benefit from this combination, analysts needed to perform time-consuming post-processing efforts to co-register the reflective and fluorescence information. With this instrument, the inherent spatial and spectral registration of the reflectance and fluorescence images minimizes the need for this post-processing step. The main challenge for this technology is to detect the fluorescence signal in the presence of a much stronger reflectance signal. To meet this challenge, the instrument modulates artificial light sources from ultraviolet through the visible to the near-infrared part of the spectrum; in this way, both the reflective and fluorescence signals can be measured through differencing processes to optimize fluorescence and reflectance spectra as needed. The main functional components of the instrument are a hyperspectral imager, an illumination system, and an image-plane scanner. The hyperspectral imager is a one-dimensional (line) imaging spectrometer that includes a spectrally dispersive element and a two-dimensional focal plane detector array. The spectral range of the current imaging spectrometer is between 400 to 1,000 nm, and the wavelength resolution is approximately 3 nm. The illumination system consists of narrowband blue, ultraviolet, and other discrete wavelength light-emitting-diode (LED) sources and white-light LED sources designed to produce consistently spatially stable light. White LEDs provide illumination for the measurement of reflectance spectra, while narrowband blue and UV LEDs are used to excite fluorescence. Each spectral type of LED can be turned on or off depending on the specific remote-sensing process being performed. Uniformity of illumination is achieved by using an array of LEDs and/or an integrating sphere or other diffusing surface. The image plane scanner uses a fore optic with a field of view large enough to provide an entire scan line on the image plane. It builds up a two-dimensional image in pushbroom fashion as the target is scanned across the image plane either by moving the object or moving the fore optic. For fluorescence detection, spectral filtering of a narrowband light illumination source is sometimes necessary to minimize the interference of the source spectrum wings with the fluorescence signal. Spectral filtering is achieved with optical interference filters and absorption glasses. This dual spectral imaging capability will enable the optimization of reflective, fluorescence, and fused datasets as well as a cost-effective design for multispectral imaging solutions. This system has been used in plant stress detection studies and in currency analysis.
Collewet, Guylaine; Moussaoui, Saïd; Deligny, Cécile; Lucas, Tiphaine; Idier, Jérôme
2018-06-01
Multi-tissue partial volume estimation in MRI images is investigated with a viewpoint related to spectral unmixing as used in hyperspectral imaging. The main contribution of this paper is twofold. It firstly proposes a theoretical analysis of the statistical optimality conditions of the proportion estimation problem, which in the context of multi-contrast MRI data acquisition allows to appropriately set the imaging sequence parameters. Secondly, an efficient proportion quantification algorithm based on the minimisation of a penalised least-square criterion incorporating a regularity constraint on the spatial distribution of the proportions is proposed. Furthermore, the resulting developments are discussed using empirical simulations. The practical usefulness of the spectral unmixing approach for partial volume quantification in MRI is illustrated through an application to food analysis on the proving of a Danish pastry. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Shih-Wei; Chen, Shih-Hua; Chen, Weichung; Wu, I.-Chen; Wu, Ming Tsang; Kuo, Chie-Tong; Wang, Hsiang-Chen
2016-03-01
This study presents a method to identify early esophageal cancer within endoscope using hyperspectral imaging technology. The research samples are three kinds of endoscopic images including white light endoscopic, chromoendoscopic, and narrow-band endoscopic images with different stages of pathological changes (normal, dysplasia, dysplasia - esophageal cancer, and esophageal cancer). Research is divided into two parts: first, we analysis the reflectance spectra of endoscopic images with different stages to know the spectral responses by pathological changes. Second, we identified early cancerous lesion of esophagus by principal component analysis (PCA) of the reflectance spectra of endoscopic images. The results of this study show that the identification of early cancerous lesion is possible achieve from three kinds of images. In which the spectral characteristics of NBI endoscopy images of a gray area than those without the existence of the problem the first two, and the trend is very clear. Therefore, if simply to reflect differences in the degree of spectral identification, chromoendoscopic images are suitable samples. The best identification of early esophageal cancer is using the NBI endoscopic images. Based on the results, the use of hyperspectral imaging technology in the early endoscopic esophageal cancer lesion image recognition helps clinicians quickly diagnose. We hope for the future to have a relatively large amount of endoscopic image by establishing a hyperspectral imaging database system developed in this study, so the clinician can take this repository more efficiently preliminary diagnosis.
High-resolution CASSINI-VIMS mosaics of Titan and the icy Saturnian satellites
Jaumann, R.; Stephan, K.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; McCord, T.B.; Coradini, A.; Capaccioni, F.; Filacchione, G.; Cerroni, P.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Combes, M.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D.L.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Soderbloom, L.A.; Griffith, C.; Matz, K.-D.; Roatsch, Th.; Scholten, F.; Porco, C.C.
2006-01-01
The Visual Infrared Mapping Spectrometer (VIMS) onboard the CASSINI spacecraft obtained new spectral data of the icy satellites of Saturn after its arrival at Saturn in June 2004. VIMS operates in a spectral range from 0.35 to 5.2 ??m, generating image cubes in which each pixel represents a spectrum consisting of 352 contiguous wavebands. As an imaging spectrometer VIMS combines the characteristics of both a spectrometer and an imaging instrument. This makes it possible to analyze the spectrum of each pixel separately and to map the spectral characteristics spatially, which is important to study the relationships between spectral information and geological and geomorphologic surface features. The spatial analysis of the spectral data requires the determination of the exact geographic position of each pixel on the specific surface and that all 352 spectral elements of each pixel show the same region of the target. We developed a method to reproject each pixel geometrically and to convert the spectral data into map projected image cubes. This method can also be applied to mosaic different VIMS observations. Based on these mosaics, maps of the spectral properties for each Saturnian satellite can be derived and attributed to geographic positions as well as to geological and geomorphologic surface features. These map-projected mosaics are the basis for all further investigations. ?? 2006 Elsevier Ltd. All rights reserved.
Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri
2014-01-01
In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.
Beam profile for the Herschel-SPIRE Fourier transform spectrometer.
Makiwa, Gibion; Naylor, David A; Ferlet, Marc; Salji, Carl; Swinyard, Bruce; Polehampton, Edward; van der Wiel, Matthijs H D
2013-06-01
One of the instruments on board the Herschel Space Observatory is the Spectral and Photometric Imaging Receiver (SPIRE). SPIRE employs a Fourier transform spectrometer with feed-horn-coupled bolometers to provide imaging spectroscopy. To interpret the resultant spectral images requires knowledge of the wavelength-dependent beam, which in the case of SPIRE is complicated by the use of multimoded feed horns. In this paper we describe a series of observations and the analysis conducted to determine the wavelength dependence of the SPIRE spectrometer beam profile.
Mapping the Spectral and Biochemical Characteristics of Riparian Vegetation and Soils
NASA Astrophysics Data System (ADS)
Balaji Bhaskar, M. S.
2016-12-01
Salt cedar (Tamarix ramosissima), an invasive plant species, has successfully invaded large extents of several riparian zones along the western United States and northern Mexico. Mapping the distribution and abundance of Tamarix over these large areas through a, multi-seasonal, cost-effective monitoring approach using satellite remote sensing is very essential. Hence, the objectives of this study are: 1) to identify the spectral characteristics of the major riparian, agricultural vegetation types and soils in the Lower Colorado River (LCR) region; and 2) to determine the biochemical characteristics of the vegetation and soils. Ground truth surveys were conducted at 79 locations where the spectral reflectance measurements of vegetation, type of plant species, plant heights, soil samples and GPS co-ordinates were recorded. All the sampling was designed to coincide with the satellite overpass period. From the LANDSAT TM image, dark-object-subtracted (DOS) digital number (DN) values of six LANDSAT single bands (1-5 and 7) were extracted and all the spectral ratios and vegetative indices were calculated. The NDVI, R1,5 and R1,7 were identified as the best ratios to distinguish the major vegetation types. The LANDSAT TM color-composite spectral ratio image (NDVI, R1,5 and R1,7 as GBR) can clearly identify and map the areas infested with Tamarix. The salt cedar infested riparian soils showed high concentrations of Ca, Mg and Na concentrations compared to other soils and the spectral reflectance of soils with high Na concentrations were significantly higher in the 350-2500 nm spectral range compared to other soils. The Leaf Area Index (LAI) data shows that the salt cedar has higher LAI compared to other riparian vegetation. The spectral and satellite image analysis shows that the selected spectral ratios can be applied to multiple satellite overpasses for monitoring the seasonal progression of the riparian growth over time. Extending the image analysis over wider areas of western United States can improve the understanding of the riparian dynamics in this region.
Multimodal device for assessment of skin malformations
NASA Astrophysics Data System (ADS)
Bekina, A.; Garancis, V.; Rubins, U.; Spigulis, J.; Valeine, L.; Berzina, A.
2013-11-01
A variety of multi-spectral imaging devices is commercially available and used for skin diagnostics and monitoring; however, an alternative cost-efficient device can provide an advanced spectral analysis of skin. A compact multimodal device for diagnosis of pigmented skin lesions was developed and tested. A polarized LED light source illuminates the skin surface at four different wavelengths - blue (450 nm), green (545 nm), red (660 nm) and infrared (940 nm). Spectra of reflected light from the 25 mm wide skin spot are imaged by a CMOS sensor. Four spectral images are obtained for mapping of the main skin chromophores. The specific chromophore distribution differences between different skin malformations were analyzed and information of subcutaneous structures was consecutively extracted.
Evaluation of skin melanoma in spectral range 450-950 nm using principal component analysis
NASA Astrophysics Data System (ADS)
Jakovels, D.; Lihacova, I.; Kuzmina, I.; Spigulis, J.
2013-06-01
Diagnostic potential of principal component analysis (PCA) of multi-spectral imaging data in the wavelength range 450- 950 nm for distant skin melanoma recognition is discussed. Processing of the measured clinical data by means of PCA resulted in clear separation between malignant melanomas and pigmented nevi.
Detection of urban expansion in an urban-rural landscape with multitemporal QuickBird images
Lu, Dengsheng; Hetrick, Scott; Moran, Emilio; Li, Guiying
2011-01-01
Accurately detecting urban expansion with remote sensing techniques is a challenge due to the complexity of urban landscapes. This paper explored methods for detecting urban expansion with multitemporal QuickBird images in Lucas do Rio Verde, Mato Grosso, Brazil. Different techniques, including image differencing, principal component analysis (PCA), and comparison of classified impervious surface images with the matched filtering method, were used to examine urbanization detection. An impervious surface image classified with the hybrid method was used to modify the urbanization detection results. As a comparison, the original multispectral image and segmentation-based mean-spectral images were used during the detection of urbanization. This research indicates that the comparison of classified impervious surface images with matched filtering method provides the best change detection performance, followed by the image differencing method based on segmentation-based mean spectral images. The PCA is not a good method for urban change detection in this study. Shadows and high spectral variation within the impervious surfaces represent major challenges to the detection of urban expansion when high spatial resolution images are used. PMID:21799706
Models of formation and some algorithms of hyperspectral image processing
NASA Astrophysics Data System (ADS)
Achmetov, R. N.; Stratilatov, N. R.; Yudakov, A. A.; Vezenov, V. I.; Eremeev, V. V.
2014-12-01
Algorithms and information technologies for processing Earth hyperspectral imagery are presented. Several new approaches are discussed. Peculiar properties of processing the hyperspectral imagery, such as multifold signal-to-noise reduction, atmospheric distortions, access to spectral characteristics of every image point, and high dimensionality of data, were studied. Different measures of similarity between individual hyperspectral image points and the effect of additive uncorrelated noise on these measures were analyzed. It was shown that these measures are substantially affected by noise, and a new measure free of this disadvantage was proposed. The problem of detecting the observed scene object boundaries, based on comparing the spectral characteristics of image points, is considered. It was shown that contours are processed much better when spectral characteristics are used instead of energy brightness. A statistical approach to the correction of atmospheric distortions, which makes it possible to solve the stated problem based on analysis of a distorted image in contrast to analytical multiparametric models, was proposed. Several algorithms used to integrate spectral zonal images with data from other survey systems, which make it possible to image observed scene objects with a higher quality, are considered. Quality characteristics of hyperspectral data processing were proposed and studied.
Energy-Discriminative Performance of a Spectral Micro-CT System
He, Peng; Yu, Hengyong; Bennett, James; Ronaldson, Paul; Zainon, Rafidah; Butler, Anthony; Butler, Phil; Wei, Biao; Wang, Ge
2013-01-01
Experiments were performed to evaluate the energy-discriminative performance of a spectral (multi-energy) micro-CT system. The system, designed by MARS (Medipix All Resolution System) Bio-Imaging Ltd. (Christchurch, New Zealand), employs a photon-counting energy-discriminative detector technology developed by CERN (European Organization for Nuclear Research). We used the K-edge attenuation characteristic of some known materials to calibrate the detector’s photon energy discrimination. For tomographic analysis, we used the compressed sensing (CS) based ordered-subset simultaneous algebraic reconstruction techniques (OS-SART) to reconstruct sample images, which is effective to reduce noise and suppress artifacts. Unlike conventional CT, the principal component analysis (PCA) method can be applied to extract and quantify additional attenuation information from a spectral CT dataset. Our results show that the spectral CT has a good energy-discriminative performance and provides more attenuation information than the conventional CT. PMID:24004864
A Study on Spectral Signature Analysis of Wetland Vegetation Based on Ground Imaging Spectrum Data
NASA Astrophysics Data System (ADS)
Ling, Chengxing; Liu, Hua; Ju, Hongbo; Zhang, Huaiqing; You, Jia; Li, Weina
2017-10-01
The objective of this study was to verify the application of imaging spectrometer in wetland vegetation remote sensing monitoring, based on analysis of wetland vegetation spectral features. Spectral information of Carex vegetation spectral data under different water environment was collected bySOC710VP and ASD FieldSpec 3; Meanwhile, the chlorophyll contents of wheat leaves were tested in the lab. A total 9 typical vegetation indices were calculated by using two instruments’ data which were spectral values from 400nm to 1000 nm. Then features between the same vegetation indices and soil water contents for two applications were analyzed and compared. The results showed that there were same spectrum curve trends of Carex vegetation (soil moisture content of 51%, 32%, 14% and three regional comparative analysis)reflectance between SOC710VP and ASD FieldSpec 3, including the two reflectance peak of 550nm and 730 nm, two reflectance valley of 690 nm and 970nm, and continuous near infrared reflectance platform. However, The two also have a very clear distinction: (1) The reflection spectra of SOC710VP leaves of Carex Carex leaf spectra in the three soil moisture environment values are greater than ASD FieldSpec 3 collected value; (2) The SOC710VP reflectivity curve does not have the smooth curve of the original spectrum measured by the ASD FieldSpec 3, the amplitude of fluctuation is bigger, and it is more obvious in the near infrared band. It is concluded that SOC710VP spectral data are reliable, with the image features, spectral curve features reliable. It has great potential in the research of hyperspectral remote sensing technology in the development of wetland near earth, remote sensing monitoring of wetland resources.
5-ALA induced fluorescent image analysis of actinic keratosis
NASA Astrophysics Data System (ADS)
Cho, Yong-Jin; Bae, Youngwoo; Choi, Eung-Ho; Jung, Byungjo
2010-02-01
In this study, we quantitatively analyzed 5-ALA induced fluorescent images of actinic keratosis using digital fluorescent color and hyperspectral imaging modalities. UV-A was utilized to induce fluorescent images and actinic keratosis (AK) lesions were demarcated from surrounding the normal region with different methods. Eight subjects with AK lesion were participated in this study. In the hyperspectral imaging modality, spectral analysis method was utilized for hyperspectral cube image and AK lesions were demarcated from the normal region. Before image acquisition, we designated biopsy position for histopathology of AK lesion and surrounding normal region. Erythema index (E.I.) values on both regions were calculated from the spectral cube data. Image analysis of subjects resulted in two different groups: the first group with the higher fluorescence signal and E.I. on AK lesion than the normal region; the second group with lower fluorescence signal and without big difference in E.I. between two regions. In fluorescent color image analysis of facial AK, E.I. images were calculated on both normal and AK lesions and compared with the results of hyperspectral imaging modality. The results might indicate that the different intensity of fluorescence and E.I. among the subjects with AK might be interpreted as different phases of morphological and metabolic changes of AK lesions.
NASA Astrophysics Data System (ADS)
Xu, Jingjiang; Guo, Baoshan; Wong, Kenneth K. Y.; Tsia, Kevin K.
2014-02-01
Routine procedures in standard histopathology involve laborious steps of tissue processing and staining for final examination. New techniques which can bypass these procedures and thus minimize the tissue handling error would be of great clinical value. Coherent anti-Stokes Raman scattering (CARS) microscopy is an attractive tool for label-free biochemical-specific characterization of biological specimen. However, a vast majority of prior works on CARS (or stimulated Raman scattering (SRS)) bioimaging restricted analyses on a narrowband or well-distinctive Raman spectral signatures. Although hyperspectral SRS/CARS imaging has recently emerged as a better solution to access wider-band spectral information in the image, studies mostly focused on a limited spectral range, e.g. CH-stretching vibration of lipids, or non-biological samples. Hyperspectral image information in the congested fingerprint spectrum generally remains untapped for biological samples. In this regard, we further explore ultrabroadband hyperspectral multiplex (HM-CARS) to perform chemoselective histological imaging with the goal of exploring its utility in stain-free clinical histopathology. Using the supercontinuum Stokes, our system can access the CARS spectral window as wide as >2000cm-1. In order to unravel the congested CARS spectra particularly in the fingerprint region, we first employ a spectral phase-retrieval algorithm based on Kramers-Kronig (KK) transform to minimize the non-resonant background in the CARS spectrum. We then apply principal component analysis (PCA) to identify and map the spatial distribution of different biochemical components in the tissues. We demonstrate chemoselective HM-CARS imaging of a colon tissue section which displays the key cellular structures that correspond well with standard stained-tissue observation.
Technology in the Assessment of Learning Disability.
ERIC Educational Resources Information Center
Bigler, Erin D.; Lajiness-O'Neill, Renee; Howes, Nancy-Louise
1998-01-01
Reviews recent neuroradiologic and brain imaging techniques in the assessment of learning disability. Technologies reviewed include computerized tomography; magnetic resonance imaging; electrophysiological and metabolic imaging; computerized electroencepholographic studies of evoked potentials, event-related potentials, spectral analysis, and…
NASA Technical Reports Server (NTRS)
Rock, B. N.; Moss, D. M.; Miller, J. R.; Freemantle, J. R.; Boyer, M. G.
1990-01-01
Ground-based spectral characteristics of fir wave damage and an analysis of calibrated FLI data acquired along the same fir wave utilized for the in situ measurements are presented. Derivative curve data were produced from both in situ and FLI reflectance measurements for the red edge spectral region for birch and for various portions of a fir wave. The results suggested that with proper atmospheric correction of airborne imaging spectrometer data sets, the derivative curve approach will provide an accurate means of assessing red edge parameters, and that such data will permit identification of specific types of forest damage on the basis of spectral fine features.
Comparative analysis of data quality and applications in vegetation of HJ-1A CCD images
NASA Astrophysics Data System (ADS)
Wei, Hongwei; Tian, Qingjiu; Huang, Yan; Wang, Yan
2014-05-01
To study the data quality and to find the differences in vegetation monitoring applications, the same region at Chuzhou Lai 'an, the data of HJ-1A CCD1 on the April 1st, 2012 and the data of HJ-1A CCD2 on the March 31, 2012 have being comparative analysis by the method of objective quality (image)assessment which selecting over five spectral image evaluation parameters: radiation precision (mean, variance, inclination, steepness), information entropy, signal-to-noise ratio, sharpness, contrast, and normalized differential vegetation index. The results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality except radiation precision conform to their design theory, so the conclusion is that the difference of them without considering on the usual unless continuation;and Combination of field observation data Lai'an spectral data and GPS data (each point),selecting the normalized difference vegetation index as CCD1, CCD2 in vegetation monitoring application on the evaluation of the differences, and the specific process is based on GPS data is divided into nine small plots of spectral data ,and image data of nine one-to-one correspondence plots, and their normalized difference vegetation index values were calculated ,and measured spectra data resampling HJ-1A CCD1, CCD2 spectral response function calculated NDVI, and the results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality, and, the differences of wheat `s reflection and normalized vegetation index is mainly due to calibration coefficients of CCD1 and CCD2, the differences of the solar elevation angle when obtaining the image and atmospheric conditions, so it has to consider the performance indicators as well as access conditions of CCD1 and CCD2, and to be take the normalization techniques for processing for the comparison analysis in the use of HJ-1A CCD Data to surface dynamic changes; Finally, in order to study the response of the spectral response function proposed spectral response function of impact factor, and in view of the spectral response function measured spectral data resampling only HJ-1A CCD spectral response function, calculated according to the formula of the equivalent reflectivity quantitative spectral response function, and spectral normalization of proposed theoretical Technical Support. The Objective evaluation of its application of HJ-1A CCD1, and CCD2 data quality differences research has important implications for broader application to further promote China-made remote sensing satellite data, future research also needs calibration coefficient, the solar elevation angle atmospheric conditions and its image scanning angle be taken into account, and to make the corresponding normalized its impact quantitative research has important significance for the timing changes in the application of the ecological environment in China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R; Albanese, K; Lakshmanan, M
Purpose: This study intends to characterize the spectral and spatial resolution limits of various fan beam geometries for differentiation of normal and neoplastic breast structures via coded aperture coherent scatter spectral imaging techniques. In previous studies, pencil beam raster scanning methods using coherent scatter computed tomography and selected volume tomography have yielded excellent results for tumor discrimination. However, these methods don’t readily conform to clinical constraints; primarily prolonged scan times and excessive dose to the patient. Here, we refine a fan beam coded aperture coherent scatter imaging system to characterize the tradeoffs between dose, scan time and image quality formore » breast tumor discrimination. Methods: An X-ray tube (125kVp, 400mAs) illuminated the sample with collimated fan beams of varying widths (3mm to 25mm). Scatter data was collected via two linear-array energy-sensitive detectors oriented parallel and perpendicular to the beam plane. An iterative reconstruction algorithm yields images of the sample’s spatial distribution and respective spectral data for each location. To model in-vivo tumor analysis, surgically resected breast tumor samples were used in conjunction with lard, which has a form factor comparable to adipose (fat). Results: Quantitative analysis with current setup geometry indicated optimal performance for beams up to 10mm wide, with wider beams producing poorer spatial resolution. Scan time for a fixed volume was reduced by a factor of 6 when scanned with a 10mm fan beam compared to a 1.5mm pencil beam. Conclusion: The study demonstrates the utility of fan beam coherent scatter spectral imaging for differentiation of normal and neoplastic breast tissues has successfully reduced dose and scan times whilst sufficiently preserving spectral and spatial resolution. Future work to alter the coded aperture and detector geometries could potentially allow the use of even wider fans, thereby making coded aperture coherent scatter imaging a clinically viable method for breast cancer detection. United States Department of Homeland Security; Duke University Medical Center - Department of Radiology; Carl E Ravin Advanced Imaging Laboratories; Duke University Medical Physics Graduate Program.« less
Some spectral and spatial characteristics of LANDSAT data
NASA Technical Reports Server (NTRS)
1982-01-01
Activities are provided for: (1) developing insight into the way in which the LANDSAT MSS produces multispectral data; (2) promoting understanding of what a "pixel" means in a LANDSAT image and the implications of the term "mixed pixel"; (3) explaining the concept of spectral signatures; (4) deriving a simple signature for a class or feature by analysis: of the four band images; (5) understanding the production of false color composites; (6) appreciating the use of color additive techniques; (7) preparing Diazo images; and (8) making quick visual identifications of major land cover types by their characteristic gray tones or colors in LANDSAT images.
Preliminary PCA/TT Results on MRO CRISM Multispectral Images
NASA Astrophysics Data System (ADS)
Klassen, David R.; Smith, M. D.
2010-10-01
Mars Reconnaissance Orbiter arrived at Mars in March 2006 and by September had achieved its science-phase orbit with the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) beginning its visible to near-infrared (VIS/NIR) spectral imaging shortly thereafter. One goal of CRISM is to fill in the spatial gaps between the various targeted observations, eventually mapping the entire surface. Due to the large volume of data this would create, the instrument works in a reduced spectral sampling mode creating "multispectral” images. From these data we can create image cubes using 64 wavelengths from 0.410 to 3.923 µm. We present here our analysis of these multispectral mode data products using Principal Components Analysis (PCA) and Target Transformation (TT) [1]. Previous work with ground-based images [2-5] has shown that over an entire visible hemisphere, there are only three to four meaningful components using 32-105 wavelengths over 1.5-4.1 µm the first two are consistent over all temporal scales. The TT retrieved spectral endmembers show nearly the same level of consistency [5]. The preliminary work on the CRISM images cubes implies similar results; three to four significant principal components that are fairly consistent over time. These components are then used in TT to find spectral endmembers which can be used to characterize the surface reflectance for future use in radiative transfer cloud optical depth retrievals. We present here the PCA/TT results comparing the principal components and recovered endmembers from six reconstructed CRISM multi-spectral image cubes. References: [1] Bandfield, J. L., et al. (2000) JGR, 105, 9573. [2] Klassen, D. R. and Bell III, J. F. (2001) BAAS 33, 1069. [3] Klassen, D. R. and Bell III, J. F. (2003) BAAS, 35, 936. [4] Klassen, D. R., Wark, T. J., Cugliotta, C. G. (2005) BAAS, 37, 693. [5] Klassen, D. R. (2009) Icarus, 204, 32.
Joint spatial-spectral hyperspectral image clustering using block-diagonal amplified affinity matrix
NASA Astrophysics Data System (ADS)
Fan, Lei; Messinger, David W.
2018-03-01
The large number of spectral channels in a hyperspectral image (HSI) produces a fine spectral resolution to differentiate between materials in a scene. However, difficult classes that have similar spectral signatures are often confused while merely exploiting information in the spectral domain. Therefore, in addition to spectral characteristics, the spatial relationships inherent in HSIs should also be considered for incorporation into classifiers. The growing availability of high spectral and spatial resolution of remote sensors provides rich information for image clustering. Besides the discriminating power in the rich spectrum, contextual information can be extracted from the spatial domain, such as the size and the shape of the structure to which one pixel belongs. In recent years, spectral clustering has gained popularity compared to other clustering methods due to the difficulty of accurate statistical modeling of data in high dimensional space. The joint spatial-spectral information could be effectively incorporated into the proximity graph for spectral clustering approach, which provides a better data representation by discovering the inherent lower dimensionality from the input space. We embedded both spectral and spatial information into our proposed local density adaptive affinity matrix, which is able to handle multiscale data by automatically selecting the scale of analysis for every pixel according to its neighborhood of the correlated pixels. Furthermore, we explored the "conductivity method," which aims at amplifying the block diagonal structure of the affinity matrix to further improve the performance of spectral clustering on HSI datasets.
Spec Tool; an online education and research resource
NASA Astrophysics Data System (ADS)
Maman, S.; Shenfeld, A.; Isaacson, S.; Blumberg, D. G.
2016-06-01
Education and public outreach (EPO) activities related to remote sensing, space, planetary and geo-physics sciences have been developed widely in the Earth and Planetary Image Facility (EPIF) at Ben-Gurion University of the Negev, Israel. These programs aim to motivate the learning of geo-scientific and technologic disciplines. For over the past decade, the facility hosts research and outreach activities for researchers, local community, school pupils, students and educators. As software and data are neither available nor affordable, the EPIF Spec tool was created as a web-based resource to assist in initial spectral analysis as a need for researchers and students. The tool is used both in the academic courses and in the outreach education programs and enables a better understanding of the theoretical data of spectroscopy and Imaging Spectroscopy in a 'hands-on' activity. This tool is available online and provides spectra visualization tools and basic analysis algorithms including Spectral plotting, Spectral angle mapping and Linear Unmixing. The tool enables to visualize spectral signatures from the USGS spectral library and additional spectra collected in the EPIF such as of dunes in southern Israel and from Turkmenistan. For researchers and educators, the tool allows loading collected samples locally for further analysis.
The MIND PALACE: A Multi-Spectral Imaging and Spectroscopy Database for Planetary Science
NASA Astrophysics Data System (ADS)
Eshelman, E.; Doloboff, I.; Hara, E. K.; Uckert, K.; Sapers, H. M.; Abbey, W.; Beegle, L. W.; Bhartia, R.
2017-12-01
The Multi-Instrument Database (MIND) is the web-based home to a well-characterized set of analytical data collected by a suite of deep-UV fluorescence/Raman instruments built at the Jet Propulsion Laboratory (JPL). Samples derive from a growing body of planetary surface analogs, mineral and microbial standards, meteorites, spacecraft materials, and other astrobiologically relevant materials. In addition to deep-UV spectroscopy, datasets stored in MIND are obtained from a variety of analytical techniques obtained over multiple spatial and spectral scales including electron microscopy, optical microscopy, infrared spectroscopy, X-ray fluorescence, and direct fluorescence imaging. Multivariate statistical analysis techniques, primarily Principal Component Analysis (PCA), are used to guide interpretation of these large multi-analytical spectral datasets. Spatial co-referencing of integrated spectral/visual maps is performed using QGIS (geographic information system software). Georeferencing techniques transform individual instrument data maps into a layered co-registered data cube for analysis across spectral and spatial scales. The body of data in MIND is intended to serve as a permanent, reliable, and expanding database of deep-UV spectroscopy datasets generated by this unique suite of JPL-based instruments on samples of broad planetary science interest.
A comparison of autonomous techniques for multispectral image analysis and classification
NASA Astrophysics Data System (ADS)
Valdiviezo-N., Juan C.; Urcid, Gonzalo; Toxqui-Quitl, Carina; Padilla-Vivanco, Alfonso
2012-10-01
Multispectral imaging has given place to important applications related to classification and identification of objects from a scene. Because of multispectral instruments can be used to estimate the reflectance of materials in the scene, these techniques constitute fundamental tools for materials analysis and quality control. During the last years, a variety of algorithms has been developed to work with multispectral data, whose main purpose has been to perform the correct classification of the objects in the scene. The present study introduces a brief review of some classical as well as a novel technique that have been used for such purposes. The use of principal component analysis and K-means clustering techniques as important classification algorithms is here discussed. Moreover, a recent method based on the min-W and max-M lattice auto-associative memories, that was proposed for endmember determination in hyperspectral imagery, is introduced as a classification method. Besides a discussion of their mathematical foundation, we emphasize their main characteristics and the results achieved for two exemplar images conformed by objects similar in appearance, but spectrally different. The classification results state that the first components computed from principal component analysis can be used to highlight areas with different spectral characteristics. In addition, the use of lattice auto-associative memories provides good results for materials classification even in the cases where some spectral similarities appears in their spectral responses.
Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps.
Sadeghi-Naini, Ali; Suraweera, Harini; Tran, William Tyler; Hadizad, Farnoosh; Bruni, Giancarlo; Rastegar, Rashin Fallah; Curpen, Belinda; Czarnota, Gregory J
2017-10-20
This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic.
NASA Technical Reports Server (NTRS)
Ustin, S. L.; Rock, B. N.; Woodward, R. A.
1986-01-01
Airborne Imaging Spectrometer (AIS) data were analyzed to deduce plant density and species composition in three semi-arid shrub-dominated communities of Owens Valley, CA, occurring on either a sand, granite alluvium, or basalt substrate. The high-spectral resolution AIS data were related to spectra obtained with field portable spectrometers, which in turn were related to plant and soil characteristics of the communities. Many of the dominant species have unique spectral features which permit their identification in AIS pixel images. The canopy-induced shadow may be a major factor influencing substrate spectral properties during fall and winter, because of low sun angles. Moreover, changes in spectral signatures following dormancy and leaf senescence tend to decrease contrasts between the plant community and the geologic substrate, also suggesting that fall and winter are a difficult time of year for spectral analyses.
MANTiS: a program for the analysis of X-ray spectromicroscopy data.
Lerotic, Mirna; Mak, Rachel; Wirick, Sue; Meirer, Florian; Jacobsen, Chris
2014-09-01
Spectromicroscopy combines spectral data with microscopy, where typical datasets consist of a stack of images taken across a range of energies over a microscopic region of the sample. Manual analysis of these complex datasets can be time-consuming, and can miss the important traits in the data. With this in mind we have developed MANTiS, an open-source tool developed in Python for spectromicroscopy data analysis. The backbone of the package involves principal component analysis and cluster analysis, classifying pixels according to spectral similarity. Our goal is to provide a data analysis tool which is comprehensive, yet intuitive and easy to use. MANTiS is designed to lead the user through the analysis using story boards that describe each step in detail so that both experienced users and beginners are able to analyze their own data independently. These capabilities are illustrated through analysis of hard X-ray imaging of iron in Roman ceramics, and soft X-ray imaging of a malaria-infected red blood cell.
Comparing methods for analysis of biomedical hyperspectral image data
NASA Astrophysics Data System (ADS)
Leavesley, Silas J.; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter F.; Annamdevula, Naga S.; Rich, Thomas C.
2017-02-01
Over the past 2 decades, hyperspectral imaging technologies have been adapted to address the need for molecule-specific identification in the biomedical imaging field. Applications have ranged from single-cell microscopy to whole-animal in vivo imaging and from basic research to clinical systems. Enabling this growth has been the availability of faster, more effective hyperspectral filtering technologies and more sensitive detectors. Hence, the potential for growth of biomedical hyperspectral imaging is high, and many hyperspectral imaging options are already commercially available. However, despite the growth in hyperspectral technologies for biomedical imaging, little work has been done to aid users of hyperspectral imaging instruments in selecting appropriate analysis algorithms. Here, we present an approach for comparing the effectiveness of spectral analysis algorithms by combining experimental image data with a theoretical "what if" scenario. This approach allows us to quantify several key outcomes that characterize a hyperspectral imaging study: linearity of sensitivity, positive detection cut-off slope, dynamic range, and false positive events. We present results of using this approach for comparing the effectiveness of several common spectral analysis algorithms for detecting weak fluorescent protein emission in the midst of strong tissue autofluorescence. Results indicate that this approach should be applicable to a very wide range of applications, allowing a quantitative assessment of the effectiveness of the combined biology, hardware, and computational analysis for detecting a specific molecular signature.
Hyperspectral imaging spectro radiometer improves radiometric accuracy
NASA Astrophysics Data System (ADS)
Prel, Florent; Moreau, Louis; Bouchard, Robert; Bullis, Ritchie D.; Roy, Claude; Vallières, Christian; Levesque, Luc
2013-06-01
Reliable and accurate infrared characterization is necessary to measure the specific spectral signatures of aircrafts and associated infrared counter-measures protections (i.e. flares). Infrared characterization is essential to improve counter measures efficiency, improve friend-foe identification and reduce the risk of friendly fire. Typical infrared characterization measurement setups include a variety of panchromatic cameras and spectroradiometers. Each instrument brings essential information; cameras measure the spatial distribution of targets and spectroradiometers provide the spectral distribution of the emitted energy. However, the combination of separate instruments brings out possible radiometric errors and uncertainties that can be reduced with Hyperspectral imagers. These instruments combine both spectral and spatial information into the same data. These instruments measure both the spectral and spatial distribution of the energy at the same time ensuring the temporal and spatial cohesion of collected information. This paper presents a quantitative analysis of the main contributors of radiometric uncertainties and shows how a hyperspectral imager can reduce these uncertainties.
Skin condition measurement by using multispectral imaging system (Conference Presentation)
NASA Astrophysics Data System (ADS)
Jung, Geunho; Kim, Sungchul; Kim, Jae Gwan
2017-02-01
There are a number of commercially available low level light therapy (LLLT) devices in a market, and face whitening or wrinkle reduction is one of targets in LLLT. The facial improvement could be known simply by visual observation of face, but it cannot provide either quantitative data or recognize a subtle change. Clinical diagnostic instruments such as mexameter can provide a quantitative data, but it costs too high for home users. Therefore, we designed a low cost multi-spectral imaging device by adding additional LEDs (470nm, 640nm, white LED, 905nm) to a commercial USB microscope which has two LEDs (395nm, 940nm) as light sources. Among various LLLT skin treatments, we focused on getting melanin and wrinkle information. For melanin index measurements, multi-spectral images of nevus were acquired and melanin index values from color image (conventional method) and from multi-spectral images were compared. The results showed that multi-spectral analysis of melanin index can visualize nevus with a different depth and concentration. A cross section of wrinkle on skin resembles a wedge which can be a source of high frequency components when the skin image is Fourier transformed into a spatial frequency domain map. In that case, the entropy value of the spatial frequency map can represent the frequency distribution which is related with the amount and thickness of wrinkle. Entropy values from multi-spectral images can potentially separate the percentage of thin and shallow wrinkle from thick and deep wrinkle. From the results, we found that this low cost multi-spectral imaging system could be beneficial for home users of LLLT by providing the treatment efficacy in a quantitative way.
NASA Astrophysics Data System (ADS)
Micijevic, E.; Haque, M. O.
2016-12-01
With its forty-four year continuous data record, the Landsat image archive provides an invaluable source of information for essential climate variables, global land change studies and a variety of other applications. The latest in the series, Landsat 8, carries the Operational Land Imager (OLI), the sensor with an improved design compared to its predecessors, but with similar radiometric, spatial and spectral characteristics, to provide image data continuity. Sentinel 2A (S2A), launched in June 2015, carries the Multispectral Imager (MSI) that has a number of bands with spectral and radiometric characteristics similar to L8 OLI. As such, it offers an opportunity to augment the Landsat data record through increased frequency of acquisitions, when combined with OLI. In this study, we compared Top-of-Atmosphere (TOA) reflectance of matching spectral bands in MSI and OLI products. Comparison between S2A MSI and L8 OLI sensors was performed using image data acquired near simultaneously primarily over Pseudo Invariant Calibration Site (PICS) Libya 4, but also over other calibration test sites. Spectral differences between the two sensors were accounted for using their spectral filter profiles and a spectral signature of the site derived from EO1 Hyperion hyperspectral imagery. Temporal stability was also assessed through temporal trending of Top-of-Atmosphere (TOA) reflectance measured by the two sensors over PICS. The performed analysis suggests good agreement between the two sensors, within 5% for the costal aerosol band and better than 3% for other matching bands. It is important to note that whenever data from different sensors are used together in a study, the special attention need to be paid to the spectral band differences between the sensors because the necessary spectral difference adjustment is target dependent and may vary a lot from target to target.
Omucheni, Dickson L; Kaduki, Kenneth A; Bulimo, Wallace D; Angeyo, Hudson K
2014-12-11
Multispectral imaging microscopy is a novel microscopic technique that integrates spectroscopy with optical imaging to record both spectral and spatial information of a specimen. This enables acquisition of a large and more informative dataset than is achievable in conventional optical microscopy. However, such data are characterized by high signal correlation and are difficult to interpret using univariate data analysis techniques. In this work, the development and application of a novel method which uses principal component analysis (PCA) in the processing of spectral images obtained from a simple multispectral-multimodal imaging microscope to detect Plasmodium parasites in unstained thin blood smear for malaria diagnostics is reported. The optical microscope used in this work has been modified by replacing the broadband light source (tungsten halogen lamp) with a set of light emitting diodes (LEDs) emitting thirteen different wavelengths of monochromatic light in the UV-vis-NIR range. The LEDs are activated sequentially to illuminate same spot of the unstained thin blood smears on glass slides, and grey level images are recorded at each wavelength. PCA was used to perform data dimensionality reduction and to enhance score images for visualization as well as for feature extraction through clusters in score space. Using this approach, haemozoin was uniquely distinguished from haemoglobin in unstained thin blood smears on glass slides and the 590-700 spectral range identified as an important band for optical imaging of haemozoin as a biomarker for malaria diagnosis. This work is of great significance in reducing the time spent on staining malaria specimens and thus drastically reducing diagnosis time duration. The approach has the potential of replacing a trained human eye with a trained computerized vision system for malaria parasite blood screening.
[Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].
Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing
2015-10-01
Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.
Cellular imaging using temporally flickering nanoparticles.
Ilovitsh, Tali; Danan, Yossef; Meir, Rinat; Meiri, Amihai; Zalevsky, Zeev
2015-02-04
Utilizing the surface plasmon resonance effect in gold nanoparticles enables their use as contrast agents in a variety of applications for compound cellular imaging. However, most techniques suffer from poor signal to noise ratio (SNR) statistics due to high shot noise that is associated with low photon count in addition to high background noise. We demonstrate an effective way to improve the SNR, in particular when the inspected signal is indistinguishable in the given noisy environment. We excite the temporal flickering of the scattered light from gold nanoparticle that labels a biological sample. By preforming temporal spectral analysis of the received spatial image and by inspecting the proper spectral component corresponding to the modulation frequency, we separate the signal from the wide spread spectral noise (lock-in amplification).
Alternative techniques for high-resolution spectral estimation of spectrally encoded endoscopy
NASA Astrophysics Data System (ADS)
Mousavi, Mahta; Duan, Lian; Javidi, Tara; Ellerbee, Audrey K.
2015-09-01
Spectrally encoded endoscopy (SEE) is a minimally invasive optical imaging modality capable of fast confocal imaging of internal tissue structures. Modern SEE systems use coherent sources to image deep within the tissue and data are processed similar to optical coherence tomography (OCT); however, standard processing of SEE data via the Fast Fourier Transform (FFT) leads to degradation of the axial resolution as the bandwidth of the source shrinks, resulting in a well-known trade-off between speed and axial resolution. Recognizing the limitation of FFT as a general spectral estimation algorithm to only take into account samples collected by the detector, in this work we investigate alternative high-resolution spectral estimation algorithms that exploit information such as sparsity and the general region position of the bulk sample to improve the axial resolution of processed SEE data. We validate the performance of these algorithms using bothMATLAB simulations and analysis of experimental results generated from a home-built OCT system to simulate an SEE system with variable scan rates. Our results open a new door towards using non-FFT algorithms to generate higher quality (i.e., higher resolution) SEE images at correspondingly fast scan rates, resulting in systems that are more accurate and more comfortable for patients due to the reduced image time.
NASA Astrophysics Data System (ADS)
Wicaksono, Pramaditya; Salivian Wisnu Kumara, Ignatius; Kamal, Muhammad; Afif Fauzan, Muhammad; Zhafarina, Zhafirah; Agus Nurswantoro, Dwi; Noviaris Yogyantoro, Rifka
2017-12-01
Although spectrally different, seagrass species may not be able to be mapped from multispectral remote sensing images due to the limitation of their spectral resolution. Therefore, it is important to quantitatively assess the possibility of mapping seagrass species using multispectral images by resampling seagrass species spectra to multispectral bands. Seagrass species spectra were measured on harvested seagrass leaves. Spectral resolution of multispectral images used in this research was adopted from WorldView-2, Quickbird, Sentinel-2A, ASTER VNIR, and Landsat 8 OLI. These images are widely available and can be a good representative and baseline for previous or future remote sensing images. Seagrass species considered in this research are Enhalus acoroides (Ea), Thalassodendron ciliatum (Tc), Thalassia hemprichii (Th), Cymodocea rotundata (Cr), Cymodocea serrulata (Cs), Halodule uninervis (Hu), Halodule pinifolia (Hp), Syringodum isoetifolium (Si), Halophila ovalis (Ho), and Halophila minor (Hm). Multispectral resampling analysis indicate that the resampled spectra exhibit similar shape and pattern with the original spectra but less precise, and they lose the unique absorption feature of seagrass species. Relying on spectral bands alone, multispectral image is not effective in mapping these seagrass species individually, which is shown by the poor and inconsistent result of Spectral Angle Mapper (SAM) classification technique in classifying seagrass species using seagrass species spectra as pure endmember. Only Sentinel-2A produced acceptable classification result using SAM.
Spectrally optimal illuminations for diabetic retinopathy detection in retinal imaging
NASA Astrophysics Data System (ADS)
Bartczak, Piotr; Fält, Pauli; Penttinen, Niko; Ylitepsa, Pasi; Laaksonen, Lauri; Lensu, Lasse; Hauta-Kasari, Markku; Uusitalo, Hannu
2017-04-01
Retinal photography is a standard method for recording retinal diseases for subsequent analysis and diagnosis. However, the currently used white light or red-free retinal imaging does not necessarily provide the best possible visibility of different types of retinal lesions, important when developing diagnostic tools for handheld devices, such as smartphones. Using specifically designed illumination, the visibility and contrast of retinal lesions could be improved. In this study, spectrally optimal illuminations for diabetic retinopathy lesion visualization are implemented using a spectrally tunable light source based on digital micromirror device. The applicability of this method was tested in vivo by taking retinal monochrome images from the eyes of five diabetic volunteers and two non-diabetic control subjects. For comparison to existing methods, we evaluated the contrast of retinal images taken with our method and red-free illumination. The preliminary results show that the use of optimal illuminations improved the contrast of diabetic lesions in retinal images by 30-70%, compared to the traditional red-free illumination imaging.
Metric for evaluation of filter efficiency in spectral cameras.
Nahavandi, Alireza Mahmoudi; Tehran, Mohammad Amani
2016-11-10
Although metric functions that show the performance of a colorimetric imaging device have been investigated, a metric for performance analysis of a set of filters in wideband filter-based spectral cameras has rarely been studied. Based on a generalization of Vora's Measure of Goodness (MOG) and the spanning theorem, a single function metric that estimates the effectiveness of a filter set is introduced. The improved metric, named MMOG, varies between one, for a perfect, and zero, for the worst possible set of filters. Results showed that MMOG exhibits a trend that is more similar to the mean square of spectral reflectance reconstruction errors than does Vora's MOG index, and it is robust to noise in the imaging system. MMOG as a single metric could be exploited for further analysis of manufacturing errors.
Design framework for a spectral mask for a plenoptic camera
NASA Astrophysics Data System (ADS)
Berkner, Kathrin; Shroff, Sapna A.
2012-01-01
Plenoptic cameras are designed to capture different combinations of light rays from a scene, sampling its lightfield. Such camera designs capturing directional ray information enable applications such as digital refocusing, rotation, or depth estimation. Only few address capturing spectral information of the scene. It has been demonstrated that by modifying a plenoptic camera with a filter array containing different spectral filters inserted in the pupil plane of the main lens, sampling of the spectral dimension of the plenoptic function is performed. As a result, the plenoptic camera is turned into a single-snapshot multispectral imaging system that trades-off spatial with spectral information captured with a single sensor. Little work has been performed so far on analyzing diffraction effects and aberrations of the optical system on the performance of the spectral imager. In this paper we demonstrate simulation of a spectrally-coded plenoptic camera optical system via wave propagation analysis, evaluate quality of the spectral measurements captured at the detector plane, and demonstrate opportunities for optimization of the spectral mask for a few sample applications.
NASA Astrophysics Data System (ADS)
Lazcano, R.; Madroñal, D.; Fabelo, H.; Ortega, S.; Salvador, R.; Callicó, G. M.; Juárez, E.; Sanz, C.
2017-10-01
Hyperspectral Imaging (HI) assembles high resolution spectral information from hundreds of narrow bands across the electromagnetic spectrum, thus generating 3D data cubes in which each pixel gathers the spectral information of the reflectance of every spatial pixel. As a result, each image is composed of large volumes of data, which turns its processing into a challenge, as performance requirements have been continuously tightened. For instance, new HI applications demand real-time responses. Hence, parallel processing becomes a necessity to achieve this requirement, so the intrinsic parallelism of the algorithms must be exploited. In this paper, a spatial-spectral classification approach has been implemented using a dataflow language known as RVCCAL. This language represents a system as a set of functional units, and its main advantage is that it simplifies the parallelization process by mapping the different blocks over different processing units. The spatial-spectral classification approach aims at refining the classification results previously obtained by using a K-Nearest Neighbors (KNN) filtering process, in which both the pixel spectral value and the spatial coordinates are considered. To do so, KNN needs two inputs: a one-band representation of the hyperspectral image and the classification results provided by a pixel-wise classifier. Thus, spatial-spectral classification algorithm is divided into three different stages: a Principal Component Analysis (PCA) algorithm for computing the one-band representation of the image, a Support Vector Machine (SVM) classifier, and the KNN-based filtering algorithm. The parallelization of these algorithms shows promising results in terms of computational time, as the mapping of them over different cores presents a speedup of 2.69x when using 3 cores. Consequently, experimental results demonstrate that real-time processing of hyperspectral images is achievable.
The abundances of major elements in Cas A and Tycho supernova remnants
NASA Technical Reports Server (NTRS)
Gorenstein, P.
1995-01-01
The objective of this program was to map the abundances of major elements such as O, Si, S, and Fe in the supernova remnants, Tycho and Cas A. The approach was based upon using archival cosmic X-ray data from several space missions, notably, the Einstein Observatory, EXOSAT, ROSAT, BBSRT, and ASCA. Two of the missions, Einstein and ROSAT, had high resolution telescopes that provided excellent images, but no spectral information. Two missions with much poorer resolution telescopes, BBXRT and ASCA, gave good spectral information through pulse height of signals in their cooled solid state detector, but rather crude spatial information. Our goal was to extract spectral information from the combined analysis of the Einstein and ROSAT images of Cas A and Tycho and to verify or refine the spectral map by checking its agreement with the BBSRT or ASCA spectra results for larger regions. In particular, we note that the Einstein and ROSAT telescopes have different spectral responses. The Einstein bandwidth includes the 2-4 keV region which is absent from ROSAT. Hence, by forming linear combinations of the Einstein and ROSAT images, we are able to resolve the contributions of the 0.5-2 keV band from the 2-4 keV band. The former contains lines of O and Fe while the latter is dominated by Si and S. We correct for the expansion that has taken place in the remnants during the ten-year interval between the Einstein and ROSAT measurements, but we must assume that no significant spectral changes have occurred during that time. The analysis of the Tycho SNR was completed and the results have been published. A copy of the paper is included. The analysis of Cas A has proved to be more complicated. It is continuing with support from another program. Part of the problem may be due to difficulties in the aspect information which is needed to precisely register the ROSAT and Einstein images.
FUNSTAT and statistical image representations
NASA Technical Reports Server (NTRS)
Parzen, E.
1983-01-01
General ideas of functional statistical inference analysis of one sample and two samples, univariate and bivariate are outlined. ONESAM program is applied to analyze the univariate probability distributions of multi-spectral image data.
NASA Astrophysics Data System (ADS)
Aldossari, M.; Alfalou, A.; Brosseau, C.
2017-08-01
In an earlier study [Opt. Express 22, 22349-22368 (2014)], a compression and encryption method that simultaneous compress and encrypt closely resembling images was proposed and validated. This multiple-image optical compression and encryption (MIOCE) method is based on a special fusion of the different target images spectra in the spectral domain. Now for the purpose of assessing the capacity of the MIOCE method, we would like to evaluate and determine the influence of the number of target images. This analysis allows us to evaluate the performance limitation of this method. To achieve this goal, we use a criterion based on the root-mean-square (RMS) [Opt. Lett. 35, 1914-1916 (2010)] and compression ratio to determine the spectral plane area. Then, the different spectral areas are merged in a single spectrum plane. By choosing specific areas, we can compress together 38 images instead of 26 using the classical MIOCE method. The quality of the reconstructed image is evaluated by making use of the mean-square-error criterion (MSE).
Brückner, Michael; Becker, Katja; Popp, Jürgen; Frosch, Torsten
2015-09-24
A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. Copyright © 2015 Elsevier B.V. All rights reserved.
Near-infrared hyperspectral imaging for quality analysis of agricultural and food products
NASA Astrophysics Data System (ADS)
Singh, C. B.; Jayas, D. S.; Paliwal, J.; White, N. D. G.
2010-04-01
Agricultural and food processing industries are always looking to implement real-time quality monitoring techniques as a part of good manufacturing practices (GMPs) to ensure high-quality and safety of their products. Near-infrared (NIR) hyperspectral imaging is gaining popularity as a powerful non-destructive tool for quality analysis of several agricultural and food products. This technique has the ability to analyse spectral data in a spatially resolved manner (i.e., each pixel in the image has its own spectrum) by applying both conventional image processing and chemometric tools used in spectral analyses. Hyperspectral imaging technique has demonstrated potential in detecting defects and contaminants in meats, fruits, cereals, and processed food products. This paper discusses the methodology of hyperspectral imaging in terms of hardware, software, calibration, data acquisition and compression, and development of prediction and classification algorithms and it presents a thorough review of the current applications of hyperspectral imaging in the analyses of agricultural and food products.
Physical Interpretation of the Correlation Between Multi-Angle Spectral Data and Canopy Height
NASA Technical Reports Server (NTRS)
Schull, M. A.; Ganguly, S.; Samanta, A.; Huang, D.; Shabanov, N. V.; Jenkins, J. P.; Chiu, J. C.; Marshak, A.; Blair, J. B.; Myneni, R. B.;
2007-01-01
Recent empirical studies have shown that multi-angle spectral data can be useful for predicting canopy height, but the physical reason for this correlation was not understood. We follow the concept of canopy spectral invariants, specifically escape probability, to gain insight into the observed correlation. Airborne Multi-Angle Imaging Spectrometer (AirMISR) and airborne Laser Vegetation Imaging Sensor (LVIS) data acquired during a NASA Terrestrial Ecology Program aircraft campaign underlie our analysis. Two multivariate linear regression models were developed to estimate LVIS height measures from 28 AirMISR multi-angle spectral reflectances and from the spectrally invariant escape probability at 7 AirMISR view angles. Both models achieved nearly the same accuracy, suggesting that canopy spectral invariant theory can explain the observed correlation. We hypothesize that the escape probability is sensitive to the aspect ratio (crown diameter to crown height). The multi-angle spectral data alone therefore may not provide enough information to retrieve canopy height globally
Novel spectral imaging system combining spectroscopy with imaging applications for biology
NASA Astrophysics Data System (ADS)
Malik, Zvi; Cabib, Dario; Buckwald, Robert A.; Garini, Yuval; Soenksen, Dirk G.
1995-02-01
A novel analytical spectral-imaging system and its results in the examination of biological specimens are presented. The SpectraCube 1000 system measures the transmission, absorbance, or fluorescence spectra of images studied by light microscopy. The system is based on an interferometer combined with a CCD camera, enabling measurement of the interferogram for each pixel constructing the image. Fourier transformation of the interferograms derives pixel by pixel spectra for 170 X 170 pixels of the image. A special `similarity mapping' program has been developed, enabling comparisons of spectral algorithms of all the spatial and spectral information measured by the system in the image. By comparing the spectrum of each pixel in the specimen with a selected reference spectrum (similarity mapping), there is a depiction of the spatial distribution of macromolecules possessing the characteristics of the reference spectrum. The system has been applied to analyses of bone marrow blood cells as well as fluorescent specimens, and has revealed information which could not be unveiled by other techniques. Similarity mapping has enabled visualization of fine details of chromatin packing in the nucleus of cells and other cytoplasmic compartments. Fluorescence analysis by the system has enabled the determination of porphyrin concentrations and distribution in cytoplasmic organelles of living cells.
Hyperspectral laser-induced autofluorescence imaging of dental caries
NASA Astrophysics Data System (ADS)
Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan
2012-01-01
Dental caries is a disease characterized by demineralization of enamel crystals leading to the penetration of bacteria into the dentine and pulp. Early detection of enamel demineralization resulting in increased enamel porosity, commonly known as white spots, is a difficult diagnostic task. Laser induced autofluorescence was shown to be a useful method for early detection of demineralization. The existing studies involved either a single point spectroscopic measurements or imaging at a single spectral band. In the case of spectroscopic measurements, very little or no spatial information is acquired and the measured autofluorescence signal strongly depends on the position and orientation of the probe. On the other hand, single-band spectral imaging can be substantially affected by local spectral artefacts. Such effects can significantly interfere with automated methods for detection of early caries lesions. In contrast, hyperspectral imaging effectively combines the spatial information of imaging methods with the spectral information of spectroscopic methods providing excellent basis for development of robust and reliable algorithms for automated classification and analysis of hard dental tissues. In this paper, we employ 405 nm laser excitation of natural caries lesions. The fluorescence signal is acquired by a state-of-the-art hyperspectral imaging system consisting of a high-resolution acousto-optic tunable filter (AOTF) and a highly sensitive Scientific CMOS camera in the spectral range from 550 nm to 800 nm. The results are compared to the contrast obtained by near-infrared hyperspectral imaging technique employed in the existing studies on early detection of dental caries.
NASA Astrophysics Data System (ADS)
Mohd Asaari, Mohd Shahrimie; Mishra, Puneet; Mertens, Stien; Dhondt, Stijn; Inzé, Dirk; Wuyts, Nathalie; Scheunders, Paul
2018-04-01
The potential of close-range hyperspectral imaging (HSI) as a tool for detecting early drought stress responses in plants grown in a high-throughput plant phenotyping platform (HTPPP) was explored. Reflectance spectra from leaves in close-range imaging are highly influenced by plant geometry and its specific alignment towards the imaging system. This induces high uninformative variability in the recorded signals, whereas the spectral signature informing on plant biological traits remains undisclosed. A linear reflectance model that describes the effect of the distance and orientation of each pixel of a plant with respect to the imaging system was applied. By solving this model for the linear coefficients, the spectra were corrected for the uninformative illumination effects. This approach, however, was constrained by the requirement of a reference spectrum, which was difficult to obtain. As an alternative, the standard normal variate (SNV) normalisation method was applied to reduce this uninformative variability. Once the envisioned illumination effects were eliminated, the remaining differences in plant spectra were assumed to be related to changes in plant traits. To distinguish the stress-related phenomena from regular growth dynamics, a spectral analysis procedure was developed based on clustering, a supervised band selection, and a direct calculation of a spectral similarity measure against a reference. To test the significance of the discrimination between healthy and stressed plants, a statistical test was conducted using a one-way analysis of variance (ANOVA) technique. The proposed analysis techniques was validated with HSI data of maize plants (Zea mays L.) acquired in a HTPPP for early detection of drought stress in maize plant. Results showed that the pre-processing of reflectance spectra with the SNV effectively reduces the variability due to the expected illumination effects. The proposed spectral analysis method on the normalized spectra successfully detected drought stress from the third day of drought induction, confirming the potential of HSI for drought stress detection studies and further supporting its adoption in HTPPP.
Guided filter and principal component analysis hybrid method for hyperspectral pansharpening
NASA Astrophysics Data System (ADS)
Qu, Jiahui; Li, Yunsong; Dong, Wenqian
2018-01-01
Hyperspectral (HS) pansharpening aims to generate a fused HS image with high spectral and spatial resolution through integrating an HS image with a panchromatic (PAN) image. A guided filter (GF) and principal component analysis (PCA) hybrid HS pansharpening method is proposed. First, the HS image is interpolated and the PCA transformation is performed on the interpolated HS image. The first principal component (PC1) channel concentrates on the spatial information of the HS image. Different from the traditional PCA method, the proposed method sharpens the PAN image and utilizes the GF to obtain the spatial information difference between the HS image and the enhanced PAN image. Then, in order to reduce spectral and spatial distortion, an appropriate tradeoff parameter is defined and the spatial information difference is injected into the PC1 channel through multiplying by this tradeoff parameter. Once the new PC1 channel is obtained, the fused image is finally generated by the inverse PCA transformation. Experiments performed on both synthetic and real datasets show that the proposed method outperforms other several state-of-the-art HS pansharpening methods in both subjective and objective evaluations.
Global spectral graph wavelet signature for surface analysis of carpal bones
NASA Astrophysics Data System (ADS)
Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A.
2018-02-01
Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.
Global spectral graph wavelet signature for surface analysis of carpal bones.
Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A
2018-02-05
Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.
Analysis for signal-to-noise ratio of hyper-spectral imaging FTIR interferometer
NASA Astrophysics Data System (ADS)
Li, Xun-niu; Zheng, Wei-jian; Lei, Zheng-gang; Wang, Hai-yang; Fu, Yan-peng
2013-08-01
Signal-to-noise Ratio of hyper-spectral imaging FTIR interferometer system plays a decisive role on the performance of the instrument. It is necessary to analyze them in the development process. Based on the simplified target/background model, the energy transfer model of the LWIR hyper-spectral imaging interferometer has been discussed. The noise equivalent spectral radiance (NESR) and its influencing factors of the interferometer system was analyzed, and the signal-to-noise(SNR) was calculated by using the properties of NESR and incident radiance. In a typical application environment, using standard atmospheric model of USA(1976 COESA) as a background, and set a reasonable target/background temperature difference, and take Michelson spatial modulation Fourier Transform interferometer as an example, the paper had calculated the NESR and the SNR of the interferometer system which using the commercially LWIR cooled FPA and UFPA detector. The system noise sources of the instrument were also analyzed in the paper. The results of those analyses can be used to optimize and pre-estimate the performance of the interferometer system, and analysis the applicable conditions of use different detectors. It has important guiding significance for the LWIR interferometer spectrometer design.
Ivorra, Eugenio; Verdu, Samuel; Sánchez, Antonio J; Grau, Raúl; Barat, José M
2016-10-19
A technique that combines the spatial resolution of a 3D structured-light (SL) imaging system with the spectral analysis of a hyperspectral short-wave near infrared system was developed for freshness predictions of gilthead sea bream on the first storage days (Days 0-6). This novel approach allows the hyperspectral analysis of very specific fish areas, which provides more information for freshness estimations. The SL system obtains a 3D reconstruction of fish, and an automatic method locates gilthead's pupils and irises. Once these regions are positioned, the hyperspectral camera acquires spectral information and a multivariate statistical study is done. The best region is the pupil with an R² of 0.92 and an RMSE of 0.651 for predictions. We conclude that the combination of 3D technology with the hyperspectral analysis offers plenty of potential and is a very promising technique to non destructively predict gilthead freshness.
Ivorra, Eugenio; Verdu, Samuel; Sánchez, Antonio J.; Grau, Raúl; Barat, José M.
2016-01-01
A technique that combines the spatial resolution of a 3D structured-light (SL) imaging system with the spectral analysis of a hyperspectral short-wave near infrared system was developed for freshness predictions of gilthead sea bream on the first storage days (Days 0–6). This novel approach allows the hyperspectral analysis of very specific fish areas, which provides more information for freshness estimations. The SL system obtains a 3D reconstruction of fish, and an automatic method locates gilthead’s pupils and irises. Once these regions are positioned, the hyperspectral camera acquires spectral information and a multivariate statistical study is done. The best region is the pupil with an R2 of 0.92 and an RMSE of 0.651 for predictions. We conclude that the combination of 3D technology with the hyperspectral analysis offers plenty of potential and is a very promising technique to non destructively predict gilthead freshness. PMID:27775556
Flame analysis using image processing techniques
NASA Astrophysics Data System (ADS)
Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng
2018-04-01
This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.
Digital imaging biomarkers feed machine learning for melanoma screening.
Gareau, Daniel S; Correa da Rosa, Joel; Yagerman, Sarah; Carucci, John A; Gulati, Nicholas; Hueto, Ferran; DeFazio, Jennifer L; Suárez-Fariñas, Mayte; Marghoob, Ashfaq; Krueger, James G
2017-07-01
We developed an automated approach for generating quantitative image analysis metrics (imaging biomarkers) that are then analysed with a set of 13 machine learning algorithms to generate an overall risk score that is called a Q-score. These methods were applied to a set of 120 "difficult" dermoscopy images of dysplastic nevi and melanomas that were subsequently excised/classified. This approach yielded 98% sensitivity and 36% specificity for melanoma detection, approaching sensitivity/specificity of expert lesion evaluation. Importantly, we found strong spectral dependence of many imaging biomarkers in blue or red colour channels, suggesting the need to optimize spectral evaluation of pigmented lesions. © 2016 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ren, Ruizhi; Gu, Lingjia; Fu, Haoyang; Sun, Chenglin
2017-04-01
An effective super-resolution (SR) algorithm is proposed for actual spectral remote sensing images based on sparse representation and wavelet preprocessing. The proposed SR algorithm mainly consists of dictionary training and image reconstruction. Wavelet preprocessing is used to establish four subbands, i.e., low frequency, horizontal, vertical, and diagonal high frequency, for an input image. As compared to the traditional approaches involving the direct training of image patches, the proposed approach focuses on the training of features derived from these four subbands. The proposed algorithm is verified using different spectral remote sensing images, e.g., moderate-resolution imaging spectroradiometer (MODIS) images with different bands, and the latest Chinese Jilin-1 satellite images with high spatial resolution. According to the visual experimental results obtained from the MODIS remote sensing data, the SR images using the proposed SR algorithm are superior to those using a conventional bicubic interpolation algorithm or traditional SR algorithms without preprocessing. Fusion algorithms, e.g., standard intensity-hue-saturation, principal component analysis, wavelet transform, and the proposed SR algorithms are utilized to merge the multispectral and panchromatic images acquired by the Jilin-1 satellite. The effectiveness of the proposed SR algorithm is assessed by parameters such as peak signal-to-noise ratio, structural similarity index, correlation coefficient, root-mean-square error, relative dimensionless global error in synthesis, relative average spectral error, spectral angle mapper, and the quality index Q4, and its performance is better than that of the standard image fusion algorithms.
Hyperspectral imaging using the single-pixel Fourier transform technique
NASA Astrophysics Data System (ADS)
Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo
2017-03-01
Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.
Predictive spectroscopy and chemical imaging based on novel optical systems
NASA Astrophysics Data System (ADS)
Nelson, Matthew Paul
1998-10-01
This thesis describes two futuristic optical systems designed to surpass contemporary spectroscopic methods for predictive spectroscopy and chemical imaging. These systems are advantageous to current techniques in a number of ways including lower cost, enhanced portability, shorter analysis time, and improved S/N. First, a novel optical approach to predicting chemical and physical properties based on principal component analysis (PCA) is proposed and evaluated. A regression vector produced by PCA is designed into the structure of a set of paired optical filters. Light passing through the paired filters produces an analog detector signal directly proportional to the chemical/physical property for which the regression vector was designed. Second, a novel optical system is described which takes a single-shot approach to chemical imaging with high spectroscopic resolution using a dimension-reduction fiber-optic array. Images are focused onto a two- dimensional matrix of optical fibers which are drawn into a linear distal array with specific ordering. The distal end is imaged with a spectrograph equipped with an ICCD camera for spectral analysis. Software is used to extract the spatial/spectral information contained in the ICCD images and deconvolute them into wave length-specific reconstructed images or position-specific spectra which span a multi-wavelength space. This thesis includes a description of the fabrication of two dimension-reduction arrays as well as an evaluation of the system for spatial and spectral resolution, throughput, image brightness, resolving power, depth of focus, and channel cross-talk. PCA is performed on the images by treating rows of the ICCD images as spectra and plotting the scores of each PC as a function of reconstruction position. In addition, iterative target transformation factor analysis (ITTFA) is performed on the spectroscopic images to generate ``true'' chemical maps of samples. Univariate zero-order images, univariate first-order spectroscopic images, bivariate first-order spectroscopic images, and multivariate first-order spectroscopic images of the temporal development of laser-induced plumes are presented and interpreted. Reconstructed chemical images generated using bivariate and trivariate wavelength techniques, bimodal and trimodal PCA methods, and bimodal and trimodal ITTFA approaches are also included.
Potential clinical applications of photoacoustics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosencwaig, A.
1982-09-01
Photoacoustic spectroscopy offers the opportunity for extending the exact science of noninvasive spectral analysis to intact medical substances such as tissues. Thermal-wave imaging offers the potential for microscopic imaging of thermal features in biological matter.
NASA Astrophysics Data System (ADS)
An, G. Q.
2018-04-01
Takes the Yellow River Delta as an example, this paper studies the characteristics of remote sensing imagery with dominant ecological functional land use types, compares the advantages and disadvantages of different image in interpreting ecological land use, and uses research results to analyse the changing trend of ecological land in the study area in the past 30 years. The main methods include multi-period, different sensor images and different seasonal spectral curves, vegetation index, GIS and data analysis methods. The results show that the main ecological land in the Yellow River Delta included coastal beaches, saline-alkaline lands, and water bodies. These lands have relatively distinct spectral and texture features. The spectral features along the beach show characteristics of absorption in the green band and reflection in the red band. This feature is less affected by the acquisition year, season, and sensor type. Saline-alkali land due to the influence of some saline-alkaline-tolerant plants such as alkali tent, Tamarix and other vegetation, the spectral characteristics have a certain seasonal changes, winter and spring NDVI index is less than the summer and autumn vegetation index. The spectral characteristics of a water body generally decrease rapidly with increasing wavelength, and the reflectance in the red band increases with increasing sediment concentration. In conclusion, according to the spectral characteristics and image texture features of the ecological land in the Yellow River Delta, the accuracy of image interpretation of such ecological land can be improved.
Spectral Imaging of Portolan Charts
NASA Astrophysics Data System (ADS)
France, Fenella G.; Wilson, Meghan A.; Ghez, Anita
2018-05-01
Spectral imaging of Portolan Charts, early nautical charts, provided extensive new information about their construction and creation. The origins of the portolan chart style have been a continual source of perplexity to numerous generations of cartographic historians. The spectral imaging system utilized incorporates a 50 megapixel mono-chrome camera with light emitting diode (LED) illumination panels that cover the range from 365 nm to 1050 nm to capture visible and non-visible information. There is little known about how portolan charts evolved, and what influenced their creation. These early nautical charts began as working navigational tools of medieval mariners, initially made in the 1300s in Italy, Portugal and Spain; however the origin and development of the portolan chart remained shrouded in mystery. Questions about these early navigational charts included whether colorants were commensurate with the time period and geographical location, and if different, did that give insight into trade routes, or possible later additions to the charts? For example; spectral data showed the red pigment on both the 1320 portolan chart and the 1565 Galapagos Islands matched vermillion, an opaque red pigment used since antiquity. The construction of these charts was also of great interest. Spectral imaging with a range of illumination modes revealed the presence of a "hidden circle" often referred to in relation to their construction. This paper will present in-depth analysis of how spectral imaging of the Portolans revealed similarities and differences, new hidden information and shed new light on construction and composition.
NASA Astrophysics Data System (ADS)
Prabhat, Prashant; Peet, Michael; Erdogan, Turan
2016-03-01
In order to design a fluorescence experiment, typically the spectra of a fluorophore and of a filter set are overlaid on a single graph and the spectral overlap is evaluated intuitively. However, in a typical fluorescence imaging system the fluorophores and optical filters are not the only wavelength dependent variables - even the excitation light sources have been changing. For example, LED Light Engines may have a significantly different spectral response compared to the traditional metal-halide lamps. Therefore, for a more accurate assessment of fluorophore-to-filter-set compatibility, all sources of spectral variation should be taken into account simultaneously. Additionally, intuitive or qualitative evaluation of many spectra does not necessarily provide a realistic assessment of the system performance. "SearchLight" is a freely available web-based spectral plotting and analysis tool that can be used to address the need for accurate, quantitative spectral evaluation of fluorescence measurement systems. This tool is available at: http://searchlight.semrock.com/. Based on a detailed mathematical framework [1], SearchLight calculates signal, noise, and signal-to-noise ratio for multiple combinations of fluorophores, filter sets, light sources and detectors. SearchLight allows for qualitative and quantitative evaluation of the compatibility of filter sets with fluorophores, analysis of bleed-through, identification of optimized spectral edge locations for a set of filters under specific experimental conditions, and guidance regarding labeling protocols in multiplexing imaging assays. Entire SearchLight sessions can be shared with colleagues and collaborators and saved for future reference. [1] Anderson, N., Prabhat, P. and Erdogan, T., Spectral Modeling in Fluorescence Microscopy, http://www.semrock.com (2010).
Multispectral Snapshot Imagers Onboard Small Satellite Formations for Multi-Angular Remote Sensing
NASA Technical Reports Server (NTRS)
Nag, Sreeja; Hewagama, Tilak; Georgiev, Georgi; Pasquale, Bert; Aslam, Shahid; Gatebe, Charles K.
2017-01-01
Multispectral snapshot imagers are capable of producing 2D spatial images with a single exposure at selected, numerous wavelengths using the same camera, therefore operate differently from push broom or whiskbroom imagers. They are payloads of choice in multi-angular, multi-spectral imaging missions that use small satellites flying in controlled formation, to retrieve Earth science measurements dependent on the targets Bidirectional Reflectance-Distribution Function (BRDF). Narrow fields of view are needed to capture images with moderate spatial resolution. This paper quantifies the dependencies of the imagers optical system, spectral elements and camera on the requirements of the formation mission and their impact on performance metrics such as spectral range, swath and signal to noise ratio (SNR). All variables and metrics have been generated from a comprehensive, payload design tool. The baseline optical parameters selected (diameter 7 cm, focal length 10.5 cm, pixel size 20 micron, field of view 1.15 deg) and snapshot imaging technologies are available. The spectral components shortlisted were waveguide spectrometers, acousto-optic tunable filters (AOTF), electronically actuated Fabry-Perot interferometers, and integral field spectrographs. Qualitative evaluation favored AOTFs because of their low weight, small size, and flight heritage. Quantitative analysis showed that waveguide spectrometers perform better in terms of achievable swath (10-90 km) and SNR (greater than 20) for 86 wavebands, but the data volume generated will need very high bandwidth communication to downlink. AOTFs meet the external data volume caps well as the minimum spectral (wavebands) and radiometric (SNR) requirements, therefore are found to be currently feasible in spite of lower swath and SNR.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Ishizuka, Tomohiro; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2015-07-01
We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green, blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. We performed simultaneous recordings of spectral diffuse reflectance images and of the electrophysiological signals for in vivo exposed rat brain during the cortical spreading depression evoked by the topical application of KCl. Changes in the total hemoglobin concentration and the tissue oxygen saturation imply the temporary change in cerebral blood flow during CSD. Change in the reduced scattering coefficient was observed before the profound increase in the total hemoglobin concentration, and its occurrence was synchronized with the negative dc shift of the local field potential.
Spectrum Analyzers Incorporating Tunable WGM Resonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry; Maleki, Lute
2009-01-01
A photonic instrument is proposed to boost the resolution for ultraviolet/ optical/infrared spectral analysis and spectral imaging allowing the detection of narrow (0.00007-to-0.07-picometer wavelength resolution range) optical spectral signatures of chemical elements in space and planetary atmospheres. The idea underlying the proposal is to exploit the advantageous spectral characteristics of whispering-gallery-mode (WGM) resonators to obtain spectral resolutions at least three orders of magnitude greater than those of optical spectrum analyzers now in use. Such high resolutions would enable measurement of spectral features that could not be resolved by prior instruments.
Multimodal Spectral Imaging of Cells Using a Transmission Diffraction Grating on a Light Microscope
Isailovic, Dragan; Xu, Yang; Copus, Tyler; Saraswat, Suraj; Nauli, Surya M.
2011-01-01
A multimodal methodology for spectral imaging of cells is presented. The spectral imaging setup uses a transmission diffraction grating on a light microscope to concurrently record spectral images of cells and cellular organelles by fluorescence, darkfield, brightfield, and differential interference contrast (DIC) spectral microscopy. Initially, the setup was applied for fluorescence spectral imaging of yeast and mammalian cells labeled with multiple fluorophores. Fluorescence signals originating from fluorescently labeled biomolecules in cells were collected through triple or single filter cubes, separated by the grating, and imaged using a charge-coupled device (CCD) camera. Cellular components such as nuclei, cytoskeleton, and mitochondria were spatially separated by the fluorescence spectra of the fluorophores present in them, providing detailed multi-colored spectral images of cells. Additionally, the grating-based spectral microscope enabled measurement of scattering and absorption spectra of unlabeled cells and stained tissue sections using darkfield and brightfield or DIC spectral microscopy, respectively. The presented spectral imaging methodology provides a readily affordable approach for multimodal spectral characterization of biological cells and other specimens. PMID:21639978
Deblurring sequential ocular images from multi-spectral imaging (MSI) via mutual information.
Lian, Jian; Zheng, Yuanjie; Jiao, Wanzhen; Yan, Fang; Zhao, Bojun
2018-06-01
Multi-spectral imaging (MSI) produces a sequence of spectral images to capture the inner structure of different species, which was recently introduced into ocular disease diagnosis. However, the quality of MSI images can be significantly degraded by motion blur caused by the inevitable saccades and exposure time required for maintaining a sufficiently high signal-to-noise ratio. This degradation may confuse an ophthalmologist, reduce the examination quality, or defeat various image analysis algorithms. We propose an early work specially on deblurring sequential MSI images, which is distinguished from many of the current image deblurring techniques by resolving the blur kernel simultaneously for all the images in an MSI sequence. It is accomplished by incorporating several a priori constraints including the sharpness of the latent clear image, the spatial and temporal smoothness of the blur kernel and the similarity between temporally-neighboring images in MSI sequence. Specifically, we model the similarity between MSI images with mutual information considering the different wavelengths used for capturing different images in MSI sequence. The optimization of the proposed approach is based on a multi-scale framework and stepwise optimization strategy. Experimental results from 22 MSI sequences validate that our approach outperforms several state-of-the-art techniques in natural image deblurring.
Interpretation of AIS Images of Cuprite, Nevada Using Constraints of Spectral Mixtures
NASA Technical Reports Server (NTRS)
Smith, M. O.; Adams, J. B.
1985-01-01
A technique is outlined that tests the hypothesis Airborne Imaging Spectrometer (AIS) image spectra are produced by mixtures of surface materials. This technique allows separation of AIS images into concentration images of spectral endmembers (e.g., surface materials causing spectral variation). Using a spectral reference library it was possible to uniquely identify these spectral endmembers with respect to the reference library and to calibrate the AIS images.
Rapid microscopy measurement of very large spectral images.
Lindner, Moshe; Shotan, Zav; Garini, Yuval
2016-05-02
The spectral content of a sample provides important information that cannot be detected by the human eye or by using an ordinary RGB camera. The spectrum is typically a fingerprint of the chemical compound, its environmental conditions, phase and geometry. Thus measuring the spectrum at each point of a sample is important for a large range of applications from art preservation through forensics to pathological analysis of a tissue section. To date, however, there is no system that can measure the spectral image of a large sample in a reasonable time. Here we present a novel method for scanning very large spectral images of microscopy samples even if they cannot be viewed in a single field of view of the camera. The system is based on capturing information while the sample is being scanned continuously 'on the fly'. Spectral separation implements Fourier spectroscopy by using an interferometer mounted along the optical axis. High spectral resolution of ~5 nm at 500 nm could be achieved with a diffraction-limited spatial resolution. The acquisition time is fairly high and takes 6-8 minutes for a sample size of 10mm x 10mm measured under a bright-field microscope using a 20X magnification.
Impact of JPEG2000 compression on spatial-spectral endmember extraction from hyperspectral data
NASA Astrophysics Data System (ADS)
Martín, Gabriel; Ruiz, V. G.; Plaza, Antonio; Ortiz, Juan P.; García, Inmaculada
2009-08-01
Hyperspectral image compression has received considerable interest in recent years. However, an important issue that has not been investigated in the past is the impact of lossy compression on spectral mixture analysis applications, which characterize mixed pixels in terms of a suitable combination of spectrally pure spectral substances (called endmembers) weighted by their estimated fractional abundances. In this paper, we specifically investigate the impact of JPEG2000 compression of hyperspectral images on the quality of the endmembers extracted by algorithms that incorporate both the spectral and the spatial information (useful for incorporating contextual information in the spectral endmember search). The two considered algorithms are the automatic morphological endmember extraction (AMEE) and the spatial spectral endmember extraction (SSEE) techniques. Experimental results are conducted using a well-known data set collected by AVIRIS over the Cuprite mining district in Nevada and with detailed ground-truth information available from U. S. Geological Survey. Our experiments reveal some interesting findings that may be useful to specialists applying spatial-spectral endmember extraction algorithms to compressed hyperspectral imagery.
Automated thermal mapping techniques using chromatic image analysis
NASA Technical Reports Server (NTRS)
Buck, Gregory M.
1989-01-01
Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.
NASA Technical Reports Server (NTRS)
Lang, H. R.; Conel, J. E.; Paylor, E. D.
1984-01-01
A LIDQA evaluation for geologic applications of a LANDSAT TM scene covering the Wind River/Bighorn Basin area, Wyoming, is examined. This involves a quantitative assessment of data quality including spatial and spectral characteristics. Analysis is concentrated on the 6 visible, near infrared, and short wavelength infrared bands. Preliminary analysis demonstrates that: (1) principal component images derived from the correlation matrix provide the most useful geologic information. To extract surface spectral reflectance, the TM radiance data must be calibrated. Scatterplots demonstrate that TM data can be calibrated and sensor response is essentially linear. Low instrumental offset and gain settings result in spectral data that do not utilize the full dynamic range of the TM system.
NASA Astrophysics Data System (ADS)
Zhu, Yizheng; Li, Chengshuai
2016-03-01
Morphological assessment of spermatozoa is of critical importance for in vitro fertilization (IVF), especially intracytoplasmic sperm injection (ICSI)-based IVF. In ICSI, a single sperm cell is selected and injected into an egg to achieve fertilization. The quality of the sperm cell is found to be highly correlated to IVF success. Sperm morphology, such as shape, head birefringence and motility, among others, are typically evaluated under a microscope. Current observation relies on conventional techniques such as differential interference contrast microscopy and polarized light microscopy. Their qualitative nature, however, limits the ability to provide accurate quantitative analysis. Here, we demonstrate quantitative morphological measurement of sperm cells using two types of spectral interferometric techniques, namely spectral modulation interferometry and spectral multiplexing interferometry. Both are based on spectral-domain low coherence interferometry, which is known for its exquisite phase determination ability. While spectral modulation interferometry encodes sample phase in a single spectrum, spectral multiplexing interferometry does so for sample birefringence. Therefore they are capable of highly sensitive phase and birefringence imaging. These features suit well in the imaging of live sperm cells, which are small, dynamic objects with only low to moderate levels of phase and birefringence contrast. We will introduce the operation of both techniques and demonstrate their application to measuring the phase and birefringence morphology of sperm cells.
Optical spectral imaging of degeneration of articular cartilage
NASA Astrophysics Data System (ADS)
Kinnunen, Jussi; Jurvelin, Jukka S.; Mäkitalo, Jaana; Hauta-Kasari, Markku; Vahimaa, Pasi; Saarakkala, Simo
2010-07-01
Osteoarthritis (OA) is a common musculoskeletal disorder often diagnosed during arthroscopy. In OA, visual color changes of the articular cartilage surface are typically observed. We demonstrate in vitro the potential of visible light spectral imaging (420 to 720 nm) to quantificate these color changes. Intact bovine articular cartilage samples (n=26) are degraded both enzymatically using the collagenase and mechanically using the emery paper (P60 grit, 269 μm particle size). Spectral images are analyzed by using standard CIELAB color coordinates and the principal component analysis (PCA). After collagenase digestion, changes in the CIELAB coordinates and projection of the spectra to PCA eigenvector are statistically significant (p<0.05). After mechanical degradation, the grinding tracks could not be visualized in the RGB presentation, i.e., in the visual appearance of the sample to the naked eye under the D65 illumination. However, after projecting to the chosen eigenvector, the grinding tracks are revealed. The tracks are also seen by using only one wavelength, i.e., 469 nm, however, the contrast in the projection image is 1.6 to 2.5 times higher. Our results support the idea that the spectral imaging can be used for evaluation of the integrity of the cartilage surface.
Noninvasive tumor detection using spectrally-resolved in-vivo imaging
NASA Astrophysics Data System (ADS)
Kostenich, Gennady; Kimel, Sol; Malik, Zvi; Orenstein, Arie
2000-11-01
A novel spectral image-analysis system was used for tumor fluorescence and reflectance imaging in an animal model and in patients. Transcutaneous fluorescence imaging was carried out on Balb/c mice bearing subcutaneous C26 colon carcinoma after intraperitoneal (i.p.) administration of 5-aminolevulinic acid (ALA), a metabolic precursor of protoporphyrin-IX (PP), and of a novel photosensitizer tetrahydroporphyrin (THP). Tumors were clearly observable by fluorescence detection using green light excitation. Tumor versus normal tissue uptake of the photosensitizing agents was determined by monitoring fluorescence intensity. Maximal PP accumulation in tumor was observed 3 h after i.p. injection of ALA, whereas THP showed selective accumulation in tumor 24 h after administration. Reflectance spectroscopy was employed to study pigmented human skin lesions (nevus, pigmented BCC and pigmented melanoma). In the near-infrared region (800-880 nm) pigmented BCC and melanoma exhibited a differently shaped reflectance spectrum compared to normal skin and nevus. Spatially and spectrally resolved imaging, in combination with mathematical algorithms (such as normalization, spectral similarity mapping and division) allowed unambiguous detection of malignancies. Optical biopsy results from a total of 51 patients showed 45 benign nevi, 3 pigmented BCC and 3 malignant melanomas, as confirmed by histology.
Ground-based Observation System Development for the Moon Hyper-spectral Imaging
NASA Astrophysics Data System (ADS)
Wang, Yang; Huang, Yu; Wang, Shurong; Li, Zhanfeng; Zhang, Zihui; Hu, Xiuqing; Zhang, Peng
2017-05-01
The Moon provides a suitable radiance source for on-orbit calibration of space-borne optical instruments. A ground-based observation system dedicated to the hyper-spectral radiometry of the Moon has been developed for improving and validating the current lunar model. The observation instrument using a dispersive imaging spectrometer is particularly designed for high-accuracy observations of the lunar radiance. The simulation and analysis of the push-broom mechanism is made in detail for lunar observations, and the automated tracking and scanning is well accomplished in different observational condition. A three-month series of hyper-spectral imaging experiments of the Moon have been performed in the wavelength range from 400 to 1000 nm near Lijiang Observatory (Yunnan, China) at phase angles -83°-87°. Preliminary results and data comparison are presented, and it shows the instrument performance and lunar observation capability of this system are well validated. Beyond previous measurements, this observation system provides the entire lunar disk images of continuous spectral coverage by adopting the push-broom mode with special scanning scheme and leads to the further research of lunar photometric model.
Physically motivated correlation formalism in hyperspectral imaging
NASA Astrophysics Data System (ADS)
Roy, Ankita; Rafert, J. Bruce
2004-05-01
Most remote sensing data-sets contain a limiting number of independent spatial and spectral measurements, beyond which no effective increase in information is achieved. This paper presents a Physically Motivated Correlation Formalism (PMCF) ,which places both Spatial and Spectral data on an equivalent mathematical footing in the context of a specific Kernel, such that, optimal combinations of independent data can be selected from the entire Hypercube via the method of "Correlation Moments". We present an experimental and computational analysis of Hyperspectral data sets using the Michigan Tech VFTHSI [Visible Fourier Transform Hyperspectral Imager] based on a Sagnac Interferometer, adjusted to obtain high SNR levels. The captured Signal Interferograms of different targets - aerial snaps of Houghton and lab-based data (white light , He-Ne laser , discharge tube sources) with the provision of customized scan of targets with the same exposures are processed using inverse imaging transformations and filtering techniques to obtain the Spectral profiles and generate Hypercubes to compute Spectral/Spatial/Cross Moments. PMCF answers the question of how optimally the entire hypercube should be sampled and finds how many spatial-spectral pixels are required for a particular target recognition.
Breast tissue decomposition with spectral distortion correction: A postmortem study
Ding, Huanjun; Zhao, Bo; Baturin, Pavlo; Behroozi, Farnaz; Molloi, Sabee
2014-01-01
Purpose: To investigate the feasibility of an accurate measurement of water, lipid, and protein composition of breast tissue using a photon-counting spectral computed tomography (CT) with spectral distortion corrections. Methods: Thirty-eight postmortem breasts were imaged with a cadmium-zinc-telluride-based photon-counting spectral CT system at 100 kV. The energy-resolving capability of the photon-counting detector was used to separate photons into low and high energy bins with a splitting energy of 42 keV. The estimated mean glandular dose for each breast ranged from 1.8 to 2.2 mGy. Two spectral distortion correction techniques were implemented, respectively, on the raw images to correct the nonlinear detector response due to pulse pileup and charge-sharing artifacts. Dual energy decomposition was then used to characterize each breast in terms of water, lipid, and protein content. In the meantime, the breasts were chemically decomposed into their respective water, lipid, and protein components to provide a gold standard for comparison with dual energy decomposition results. Results: The accuracy of the tissue compositional measurement with spectral CT was determined by comparing to the reference standard from chemical analysis. The averaged root-mean-square error in percentage composition was reduced from 15.5% to 2.8% after spectral distortion corrections. Conclusions: The results indicate that spectral CT can be used to quantify the water, lipid, and protein content in breast tissue. The accuracy of the compositional analysis depends on the applied spectral distortion correction technique. PMID:25281953
NASA Technical Reports Server (NTRS)
Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.
2012-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.
NASA Astrophysics Data System (ADS)
Berezin, Mikhail Y.
2016-03-01
Recent advances in relatively unexplored short wave infrared (SWIR) range from 800-1600 nm detectors make wide-field imaging in this spectral range attractive to biology. The distinct advantages of SWIR region over the visible and near infrared (NIR) in tissue analysis are two-fold: (i) high abundance endogenous chromophores (i.e. water and lipids) enable tissue component differentiation based on wavelength-dependent absorption properties and (ii) the weak scattering of tissue permits better resolution of imaging in thick specimens. When combined with high spectral resolution, SWIR imaging produces a spectroscopic image, where every pixel corresponds to the entire high-resolution spectrum. This hyperspectral (HS) approach provides rich information about the relative abundance of individual chromophores and their interactions that contribute to the intensity and location of the optical signal. The presentation discusses the challenges in the SWIR-HS instrument design and data analysis and demonstrates some of the promising applications of this technology in life science and medicine.
Spatial compression algorithm for the analysis of very large multivariate images
Keenan, Michael R [Albuquerque, NM
2008-07-15
A method for spatially compressing data sets enables the efficient analysis of very large multivariate images. The spatial compression algorithms use a wavelet transformation to map an image into a compressed image containing a smaller number of pixels that retain the original image's information content. Image analysis can then be performed on a compressed data matrix consisting of a reduced number of significant wavelet coefficients. Furthermore, a block algorithm can be used for performing common operations more efficiently. The spatial compression algorithms can be combined with spectral compression algorithms to provide further computational efficiencies.
Miniature spectrometer and multispectral imager as a potential diagnostic aid in dermatology
NASA Astrophysics Data System (ADS)
Zeng, Haishan; MacAulay, Calum E.; McLean, David I.; Lui, Harvey; Palcic, Branko
1995-04-01
A miniature spectrometer system has been constructed for both reflectance and autofluorescence spectral measurements of skin. The system is based on PC plug-in spectrometer, therefore, it is miniature and easy to operate. The spectrometer has been used clinically to collect spectral data from various skin lesions including skin cancer. To date, 48 patients with a total of 71 diseased skin sites have been measured. Analysis of these preliminary data suggests that unique spectral characteristics exist for certain types of skin lesions, i.e. seborrheic keratosis, psoriasis, etc.. These spectral characteristics will help the differential diagnosis in Dermatology practice. In conjunction with the spectral point measurements, we are building and testing a multispectral imaging system to measure the spatial distribution of skin reflectance and autofluorescence. Preliminary results indicate that a cutaneous squamous cell carcinoma has a weak autofluorescence signal at the edge of the lesion, but a higher autofluorescence signal in the central area.
NASA Technical Reports Server (NTRS)
Mustard, John F.
1993-01-01
A linear mixing model is used to model the spectral variability of an AVIRIS scene from the western foothills of the Sierra Nevada and calibrate these radiance data to reflectance. Five spectral endmembers from the AVIRIS data, plus an ideal 'shade' endmember were required to model the continuum reflectance of each pixel in the image. Three of the endmembers were interpreted to model the surface constituents green vegetation, dry grass, and illumination. Comparison of the fraction images to the bedrock geology maps indicates that substrate composition must be a factor contributing to the spectral properties of these endmembers. Detailed examination of the reflectance spectra of the three soil endmembers reveals that differences in the amount of ferric and ferrous iron and/or organic constituents in the soils is largely responsible for the differences in spectral properties of these endmembers.
USDA-ARS?s Scientific Manuscript database
Infrared imaging is gaining attention as a technique used in the examination of cotton fibers. This type of imaging combines spectral analysis with spatial resolution to create visual images that examine sample composition and distribution. Herein, we report the use of an infrared instrument equippe...
The application of UV multispectral technology in extract trace evdidence
NASA Astrophysics Data System (ADS)
Guo, Jingjing; Xu, Xiaojing; Li, Zhihui; Xu, Lei; Xie, Lanchi
2015-11-01
Multispectral imaging is becoming more and more important in the field of examination of material evidence, especially the ultraviolet spectral imaging. Fingerprints development, questioned document detection, trace evidence examination-all can used of it. This paper introduce a UV multispectral equipment which was developed by BITU & IFSC, it can extract trace evidence-extract fingerprints. The result showed that this technology can develop latent sweat-sebum mixed fingerprint on photo and ID card blood fingerprint on steel hold. We used the UV spectrum data analysis system to make the UV spectral image clear to identify and analyse.
Spectral Indices of Faint Radio Sources
NASA Astrophysics Data System (ADS)
Gim, Hansung B.; Hales, Christopher A.; Momjian, Emmanuel; Yun, Min Su
2015-01-01
The significant improvement in bandwidth and the resultant sensitivity offered by the Karl G. Jansky Very Large Array (VLA) allows us to explore the faint radio source population. Through the study of the radio continuum we can explore the spectral indices of these radio sources. Robust radio spectral indices are needed for accurate k-corrections, for example in the study of the radio - far-infrared (FIR) correlation. We present an analysis of measuring spectral indices using two different approaches. In the first, we use the standard wideband imaging algorithm in the data reduction package CASA. In the second, we use a traditional approach of imaging narrower bandwidths to derive the spectral indices. For these, we simulated data to match the observing parameter space of the CHILES Con Pol survey (Hales et al. 2014). We investigate the accuracy and precision of spectral index measurements as a function of signal-to noise, and explore the requirements to reliably probe possible evolution of the radio-FIR correlation in CHILES Con Pol.
Detection of latent fingerprints by ultraviolet spectral imaging
NASA Astrophysics Data System (ADS)
Huang, Wei; Xu, Xiaojing; Wang, Guiqiang
2013-12-01
Spectral imaging technology research is becoming more popular in the field of forensic science. Ultraviolet spectral imaging technology is an especial part of the full spectrum of imaging technology. This paper finished the experiment contents of the ultraviolet spectrum imaging method and image acquisition system based on ultraviolet spectral imaging technology. Ultraviolet spectral imaging experiments explores a wide variety of ultraviolet reflectance spectra of the object material curve and its ultraviolet spectrum of imaging modalities, can not only gives a reference for choosing ultraviolet wavelength to show the object surface potential traces of substances, but also gives important data for the ultraviolet spectrum of imaging technology development.
NASA Astrophysics Data System (ADS)
Yong, Sang-Soon; Ra, Sung-Woong
2007-10-01
Multi-Spectral Camera(MSC) is a main payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The MSC instrument has one(1) channel for panchromatic imaging and four(4) channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). The instrument images the earth using a push-broom motion with a swath width of 15 km and a ground sample distance (GSD) of 1 m over the entire field of view (FOV) at altitude 685 Km. The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/ offset and on-board image data compression/ storage. The compression method on KOMPSAT-2 MSC was selected and used to match EOS input rate and PDTS output data rate on MSC image data chain. At once the MSC performance was carefully handled to minimize any degradation so that it was analyzed and restored in KGS(KOMPSAT Ground Station) during LEOP and Cal./Val.(Calibration and Validation) phase. In this paper, on-orbit image data chain in MSC and image data processing on KGS including general MSC description is briefly described. The influences on image performance between on-board compression algorithms and between performance restoration methods in ground station are analyzed, and the relation between both methods is to be analyzed and discussed.
Spectral-Spatial Scale Invariant Feature Transform for Hyperspectral Images.
Al-Khafaji, Suhad Lateef; Jun Zhou; Zia, Ali; Liew, Alan Wee-Chung
2018-02-01
Spectral-spatial feature extraction is an important task in hyperspectral image processing. In this paper we propose a novel method to extract distinctive invariant features from hyperspectral images for registration of hyperspectral images with different spectral conditions. Spectral condition means images are captured with different incident lights, viewing angles, or using different hyperspectral cameras. In addition, spectral condition includes images of objects with the same shape but different materials. This method, which is named spectral-spatial scale invariant feature transform (SS-SIFT), explores both spectral and spatial dimensions simultaneously to extract spectral and geometric transformation invariant features. Similar to the classic SIFT algorithm, SS-SIFT consists of keypoint detection and descriptor construction steps. Keypoints are extracted from spectral-spatial scale space and are detected from extrema after 3D difference of Gaussian is applied to the data cube. Two descriptors are proposed for each keypoint by exploring the distribution of spectral-spatial gradient magnitude in its local 3D neighborhood. The effectiveness of the SS-SIFT approach is validated on images collected in different light conditions, different geometric projections, and using two hyperspectral cameras with different spectral wavelength ranges and resolutions. The experimental results show that our method generates robust invariant features for spectral-spatial image matching.
Optimization of Immunolabeled Plasmonic Nanoparticles for Cell Surface Receptor Analysis
Seekell, Kevin; Price, Hillel; Marinakos, Stella; Wax, Adam
2011-01-01
Noble metal nanoparticles hold great potential as optical contrast agents due to a unique feature, known as the plasmon resonance, which produces enhanced scattering and absorption at specific frequencies. The plasmon resonance also provides a spectral tunability that is not often found in organic fluorophores or other labeling methods. The ability to functionalize these nanoparticles with antibodies has led to their development as contrast agents for molecular optical imaging. In this review article, we present methods for optimizing the spectral agility of these labels. We discuss synthesis of gold nanorods, a plasmonic nanoparticle in which the plasmonic resonance can be tuned during synthesis to provide imaging within the spectral window commonly utilized in biomedical applications. We describe recent advances in our group to functionalize gold and silver nanoparticles using distinct antibodies, including EGFR, HER-2 and IGF-1, selected for their relevance to tumor imaging. Finally, we present characterization of these nanoparticle labels to verify their spectral properties and molecular specificity. PMID:21911063
Geometrical calibration of an AOTF hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Špiclin, Žiga; Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2010-02-01
Optical aberrations present an important problem in optical measurements. Geometrical calibration of an imaging system is therefore of the utmost importance for achieving accurate optical measurements. In hyper-spectral imaging systems, the problem of optical aberrations is even more pronounced because optical aberrations are wavelength dependent. Geometrical calibration must therefore be performed over the entire spectral range of the hyper-spectral imaging system, which is usually far greater than that of the visible light spectrum. This problem is especially adverse in AOTF (Acousto- Optic Tunable Filter) hyper-spectral imaging systems, as the diffraction of light in AOTF filters is dependent on both wavelength and angle of incidence. Geometrical calibration of hyper-spectral imaging system was performed by stable caliber of known dimensions, which was imaged at different wavelengths over the entire spectral range. The acquired images were then automatically registered to the caliber model by both parametric and nonparametric transformation based on B-splines and by minimizing normalized correlation coefficient. The calibration method was tested on an AOTF hyper-spectral imaging system in the near infrared spectral range. The results indicated substantial wavelength dependent optical aberration that is especially pronounced in the spectral range closer to the infrared part of the spectrum. The calibration method was able to accurately characterize the aberrations and produce transformations for efficient sub-pixel geometrical calibration over the entire spectral range, finally yielding better spatial resolution of hyperspectral imaging system.
Raman spectroscopic imaging as complementary tool for histopathologic assessment of brain tumors
NASA Astrophysics Data System (ADS)
Krafft, Christoph; Bergner, Norbert; Romeike, Bernd; Reichart, Rupert; Kalff, Rolf; Geiger, Kathrin; Kirsch, Matthias; Schackert, Gabriele; Popp, Jürgen
2012-02-01
Raman spectroscopy enables label-free assessment of brain tissues and tumors based on their biochemical composition. Combination of the Raman spectra with the lateral information allows grading of tumors, determining the primary tumor of brain metastases and delineating tumor margins - even during surgery after coupling with fiber optic probes. This contribution presents exemplary Raman spectra and images collected from low grade and high grade regions of astrocytic gliomas and brain metastases. A region of interest in dried tissue sections encompassed slightly increased cell density. Spectral unmixing by vertex component analysis (VCA) and N-FINDR resolved cell nuclei in score plots and revealed the spectral contributions of nucleic acids, cholesterol, cholesterol ester and proteins in endmember signatures. The results correlated with the histopathological analysis after staining the specimens by hematoxylin and eosin. For a region of interest in non-dried, buffer immersed tissue sections image processing was not affected by drying artifacts such as denaturation of biomolecules and crystallization of cholesterol. Consequently, the results correspond better to in vivo situations. Raman spectroscopic imaging of a brain metastases from renal cell carcinoma showed an endmember with spectral contributions of glycogen which can be considered as a marker for this primary tumor.
3-D interactive visualisation tools for Hi spectral line imaging
NASA Astrophysics Data System (ADS)
van der Hulst, J. M.; Punzo, D.; Roerdink, J. B. T. M.
2017-06-01
Upcoming HI surveys will deliver such large datasets that automated processing using the full 3-D information to find and characterize HI objects is unavoidable. Full 3-D visualization is an essential tool for enabling qualitative and quantitative inspection and analysis of the 3-D data, which is often complex in nature. Here we present SlicerAstro, an open-source extension of 3DSlicer, a multi-platform open source software package for visualization and medical image processing, which we developed for the inspection and analysis of HI spectral line data. We describe its initial capabilities, including 3-D filtering, 3-D selection and comparative modelling.
Uncooled spectrometer for x-ray astrophysics
NASA Astrophysics Data System (ADS)
Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika; Sieger, Ladislav
2017-05-01
In the field of X-ray detection for Astrophysics there are mainly two objectives; first is to create 2D images as a result of sensing radiation by detectors consisting of a pixels matrix and the second is a spectral analysis of the incident radiation. For spectral analysis, the basis is usually the principle of diffraction. This paper describes the new design of X-ray spectrometer based on Timepix detector with optics positioned in front of it. The advantage of this setup is the ability to get the image and spectrum from the same devices. With other modifications is possible to shift detection threshold into areas of soft X-ray radiation.
Excitation-scanning hyperspectral imaging as a means to discriminate various tissues types
NASA Astrophysics Data System (ADS)
Deal, Joshua; Favreau, Peter F.; Lopez, Carmen; Lall, Malvika; Weber, David S.; Rich, Thomas C.; Leavesley, Silas J.
2017-02-01
Little is currently known about the fluorescence excitation spectra of disparate tissues and how these spectra change with pathological state. Current imaging diagnostic techniques have limited capacity to investigate fluorescence excitation spectral characteristics. This study utilized excitation-scanning hyperspectral imaging to perform a comprehensive assessment of fluorescence spectral signatures of various tissues. Immediately following tissue harvest, a custom inverted microscope (TE-2000, Nikon Instruments) with Xe arc lamp and thin film tunable filter array (VersaChrome, Semrock, Inc.) were used to acquire hyperspectral image data from each sample. Scans utilized excitation wavelengths from 340 nm to 550 nm in 5 nm increments. Hyperspectral images were analyzed with custom Matlab scripts including linear spectral unmixing (LSU), principal component analysis (PCA), and Gaussian mixture modeling (GMM). Spectra were examined for potential characteristic features such as consistent intensity peaks at specific wavelengths or intensity ratios among significant wavelengths. The resultant spectral features were conserved among tissues of similar molecular composition. Additionally, excitation spectra appear to be a mixture of pure endmembers with commonalities across tissues of varied molecular composition, potentially identifiable through GMM. These results suggest the presence of common autofluorescent molecules in most tissues and that excitationscanning hyperspectral imaging may serve as an approach for characterizing tissue composition as well as pathologic state. Future work will test the feasibility of excitation-scanning hyperspectral imaging as a contrast mode for discriminating normal and pathological tissues.
Hierarchical Processing of Auditory Objects in Humans
Kumar, Sukhbinder; Stephan, Klaas E; Warren, Jason D; Friston, Karl J; Griffiths, Timothy D
2007-01-01
This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG), containing the primary auditory cortex, planum temporale (PT), and superior temporal sulcus (STS), and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal “templates” in the PT before further analysis of the abstracted form in anterior temporal lobe areas. PMID:17542641
2008-05-01
the vegetation’s uptake of water column nutrients produces a spectral response; and 3) the spectral and spatial resolutions ...analysis. This allowed us to evaluate these assumptions at the landscape level, by using the high spectral and spatial resolution of the hyperspectral... spatial resolution (2.5 m pixels) HyMap hyperspectral imagery of the entire wetland. After using a hand-held spectrometer to characterize
NASA Astrophysics Data System (ADS)
Everard, Colm D.; Kim, Moon S.; Lee, Hoonsoo; O'Donnell, Colm P.
2016-05-01
An imaging device to detect fecal contamination in fresh produce fields could allow the producer avoid harvesting fecal contaminated produce. E.coli O157:H7 outbreaks have been associated with fecal contaminated leafy greens. In this study, in-field spectral profiles of bovine fecal matter, soil, and spinach leaves are compared. A common aperture imager designed with two identical monochromatic cameras, a beam splitter, and optical filters was used to simultaneously capture two-spectral images of leaves contaminated with both fecal matter and soil. The optical filters where 10 nm full width half maximum bandpass filters, one at 690 nm and the second at 710 nm. These were mounted in front of the object lenses. New images were created using the ratio of these two spectral images on a pixel by pixel basis. Image analysis results showed that the fecal matter contamination could be distinguished from soil and leaf on the ratio images. The use of this technology has potential to allow detection of fecal contamination in produce fields which can be a source of foodbourne illnesses. It has the added benefit of mitigating cross-contamination during harvesting and processing.
Spectral-domain optical coherence tomography for endoscopic imaging
NASA Astrophysics Data System (ADS)
Chen, Xiaodong; Li, Qiao; Li, Wanhui; Wang, Yi; Yu, Daoyin
2007-02-01
Optical coherence tomography (OCT) is an emerging cross-sectional imaging technology. It uses broadband light sources to achieve axial image resolutions on the few micron scale. OCT is widely applied to medical imaging, it can get cross-sectional image of bio-tissue (transparent and turbid) with non-invasion and non-touch. In this paper, the principle of OCT is presented and the crucial parameters of the system are discussed in theory. With analysis of different methods and medical endoscopic system's feature, a design which combines the spectral domain OCT (SDOCT) technique and endoscopy is put forward. SDOCT provides direct access to the spectrum of the optical signal. It is shown to provide higher imaging speed when compared to time domain OCT. At the meantime, a novel OCT probe which uses advanced micromotor to drive reflecting prism is designed according to alimentary tract endoscopic feature. A simple optical coherence tomography system has been developed based on a fiber-based Michelson interferometer and spectrometer. An experiment which uses motor to drive prism to realize rotating imaging is done. Images obtained with this spectral interferometer are presented. The results verify the feasibility of endoscopic optical coherence tomography system with rotating scan.
Recent progress of push-broom infrared hyper-spectral imager in SITP
NASA Astrophysics Data System (ADS)
Wang, Yueming; Hu, Weida; Shu, Rong; Li, Chunlai; Yuan, Liyin; Wang, Jianyu
2017-02-01
In the past decades, hyper-spectral imaging technologies were well developed in SITP, CAS. Many innovations for system design and key parts of hyper-spectral imager were finished. First airborne hyper-spectral imager operating from VNIR to TIR in the world was emerged in SITP. It is well known as OMIS(Operational Modular Imaging Spectrometer). Some new technologies were introduced to improve the performance of hyper-spectral imaging system in these years. A high spatial space-borne hyper-spectral imager aboard Tiangong-1 spacecraft was launched on Sep.29, 2011. Thanks for ground motion compensation and high optical efficiency prismatic spectrometer, a large amount of hyper-spectral imagery with high sensitivity and good quality were acquired in the past years. Some important phenomena were observed. To diminish spectral distortion and expand field of view, new type of prismatic imaging spectrometer based curved prism were proposed by SITP. A prototype of hyper-spectral imager based spherical fused silica prism were manufactured, which can operate from 400nm 2500nm. We also made progress in the development of LWIR hyper-spectral imaging technology. Compact and low F number LWIR imaging spectrometer was designed, manufactured and integrated. The spectrometer operated in a cryogenically-cooled vacuum box for background radiation restraint. The system performed well during flight experiment in an airborne platform. Thanks high sensitivity FPA and high performance optics, spatial resolution and spectral resolution and SNR of system are improved enormously. However, more work should be done for high radiometric accuracy in the future.
NASA Astrophysics Data System (ADS)
Wang, Jinnian; Zheng, Lanfen; Tong, Qingxi
1998-08-01
In this paper, we reported some research result in applying hyperspectral remote sensing data in identification and classification of wetland plant species and associations. Hyperspectral data were acquired by Modular Airborne Imaging Spectrometer (MAIS) over Poyang Lake wetland, China. A derivative spectral matching algorithm was used in hyperspectral vegetation analysis. The field measurement spectra were as reference for derivative spectral matching. In the study area, seven wetland plant associations were identified and classified with overall average accuracy is 84.03%.
NGEE Arctic TIR and Digital Photos, Drained Thaw Lake Basin, Barrow, Alaska, July 2015
Shawn Serbin; Wil Lieberman-Cribbin; Kim Ely; Alistair Rogers
2016-11-01
FLIR thermal infrared (TIR), digital camera photos, and plot notes across the Barrow, Alaska DTLB site. Data were collected together with measurements of canopy spectral reflectance (see associated metadata record (NGEE Arctic HR1024i Canopy Spectral Reflectance, Drained Thaw Lake Basin, Barrow, Alaska, July 2015 ). Data contained within this archive include exported FLIR images (analyzed with FLIR-Tools), digital photos, TIR report, and sample notes. Further TIR image analysis can be conducted in FLIR-Tools.
Counter Unmanned Aerial Systems Testing: Evaluation of VIS SWIR MWIR and LWIR passive imagers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birch, Gabriel Carlisle; Woo, Bryana Lynn
This report contains analysis of unmanned aerial systems as imaged by visible, short-wave infrared, mid-wave infrared, and long-wave infrared passive devices. Testing was conducted at the Nevada National Security Site (NNSS) during the week of August 15, 2016. Target images in all spectral bands are shown and contrast versus background is reported. Calculations are performed to determine estimated pixels-on-target for detection and assessment levels, and the number of pixels needed to cover a hemisphere for detection or assessment at defined distances. Background clutter challenges are qualitatively discussed for different spectral bands, and low contrast scenarios are highlighted for long-wave infraredmore » imagers.« less
Basic research planning in mathematical pattern recognition and image analysis
NASA Technical Reports Server (NTRS)
Bryant, J.; Guseman, L. F., Jr.
1981-01-01
Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis.
NASA Astrophysics Data System (ADS)
Meerdink, S.; Roberts, D. A.; Roth, K. L.
2015-12-01
Accurate knowledge of the spatial distribution of plant species is required for many research and management agendas that track ecosystem health. Because of this, there is continuous development of research focused on remotely-sensed species classifications for many diverse ecosystems. While plant species have been mapped using airborne imaging spectroscopy, the geographic extent has been limited due to data availability and spectrally similar species continue to be difficult to separate. The proposed Hyperspectral Infrared Imager (HyspIRI) space-borne mission, which includes a visible near infrared/shortwave infrared (VSWIR) imaging spectrometer and thermal infrared (TIR) multi-spectral imager, would present an opportunity to improve species discrimination over a much broader scale. Here we evaluate: 1) the capability of VSWIR and/or TIR spectra to discriminate plant species; 2) the accuracy of species classifications within an ecosystem; and 3) the potential for discriminating among species across a range of ecosystems. Simulated HyspIRI imagery was acquired in spring/summer of 2013 spanning from Santa Barbara to Bakersfield, CA with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the MODIS/ASTER Airborne Simulator (MASTER) instruments. Three spectral libraries were created from these images: AVIRIS (224 bands from 0.4 - 2.5 µm), MASTER (8 bands from 7.5 - 12 µm), and AVIRIS + MASTER. We used canonical discriminant analysis (CDA) as a dimension reduction technique and then classified plant species using linear discriminant analysis (LDA). Our results show the inclusion of TIR spectra improved species discrimination, but only for plant species with emissivities departing from that of a gray body. Ecosystems with species that have high spectral contrast had higher classification accuracies. Mapping plant species across all ecosystems resulted in a classification with lower accuracies than a single ecosystem due to the complex nature of incorporating more plant species.
Turner, J; Parisi, A V; Downs, N; Lynch, M
2014-12-01
Engaging students and the public in understanding UV radiation and its effects is achievable using the real time experiment that incorporates blueprint paper, an "educational toy" that is a safe and easy demonstration of the cyanotype chemical process. The cyanotype process works through the presence of UV radiation. The blueprint paper was investigated to be used as not only engagement in discussion for public outreach about UV radiation, but also as a practical way to introduce the exploration of measurement of UV radiation exposure and as a consequence, digital image analysis. Tests of print methods and experiments, dose response, spectral response and dark response were investigated. Two methods of image analysis for dose response calculation are provided using easy to access software and two methods of pixel count analysis were used to determine spectral response characteristics. Variation in manufacture of the blueprint paper product indicates some variance between measurements. Most importantly, as a result of this investigation, a preliminary spectral response range for the radiation required to produce the cyanotype reaction is presented here, which has until now been unknown.
Wavelet Filter Banks for Super-Resolution SAR Imaging
NASA Technical Reports Server (NTRS)
Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess
2011-01-01
This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.
Mapping of Geographically Isolated Wetlands of Western Siberia Using High Resolution Space Images
NASA Astrophysics Data System (ADS)
Dyukarev, E.; Pologova, N.; Dyukarev, A.; Lane, C.; Autrey, B. C.
2014-12-01
Using the remote sensing data for integrated study of natural objects is actual for investigation of difficult to access areas of West Siberia. The research of this study focuses on determining the extent and spectral signatures of isolated wetlands within Ob-Tom Interfluve area using Landsat and Quickbird space images. High-resolution space images were carefully examined and wetlands were manually delineated. Wetlands have clear visible signs at the high resolution space images. 567 wetlands were recognized as isolated wetlands with the area about 10 000 ha (of 2.5% of the study area). Isolated wetlands with area less 2 ha are the most frequent. Half of the total amount of wetlands has area less than 6.4 ha. The largest isolated wetland occupies 797 ha, and only 5% have area more than 50 ha. The Landsat 7 ETM+ data were used for analysis of vegetation structure and spectral characteristics of wetlands. The masked isolated wetlands image was classified into 12 land cover classes using ISODATA unsupervised classification. The attribution of unsupervised classification results allowed us to clearly recognize 7 types of wetlands: tall, low and sparse ryams (Pine-Shrub-Sphagnum community), open wetlands with shrub, moss or sedge cover, and open water objects. Analysis of spectral profiles for all classes has shown that Landsat spectral bands 4 and 5 have higher variability. These bands allow to separate wetland classed definitely. Accuracy assessment of isolated wetland map shows a good agreement with expert field data. The work was supported by grants ISTC № 4079.
EO-1 analysis applicable to coastal characterization
NASA Astrophysics Data System (ADS)
Burke, Hsiao-hua K.; Misra, Bijoy; Hsu, Su May; Griffin, Michael K.; Upham, Carolyn; Farrar, Kris
2003-09-01
The EO-1 satellite is part of NASA's New Millennium Program (NMP). It consists of three imaging sensors: the multi-spectral Advanced Land Imager (ALI), Hyperion and Atmospheric Corrector. Hyperion provides a high-resolution hyperspectral imager capable of resolving 220 spectral bands (from 0.4 to 2.5 micron) with a 30 m resolution. The instrument images a 7.5 km by 100 km land area per image. Hyperion is currently the only space-borne HSI data source since the launch of EO-1 in late 2000. The discussion begins with the unique capability of hyperspectral sensing to coastal characterization: (1) most ocean feature algorithms are semi-empirical retrievals and HSI has all spectral bands to provide legacy with previous sensors and to explore new information, (2) coastal features are more complex than those of deep ocean that coupled effects are best resolved with HSI, and (3) with contiguous spectral coverage, atmospheric compensation can be done with more accuracy and confidence, especially since atmospheric aerosol effects are the most pronounced in the visible region where coastal feature lie. EO-1 data from Chesapeake Bay from 19 February 2002 are analyzed. In this presentation, it is first illustrated that hyperspectral data inherently provide more information for feature extraction than multispectral data despite Hyperion has lower SNR than ALI. Chlorophyll retrievals are also shown. The results compare favorably with data from other sources. The analysis illustrates the potential value of Hyperion (and HSI in general) data to coastal characterization. Future measurement requirements (air borne and space borne) are also discussed.
Evolution of miniature detectors and focal plane arrays for infrared sensors
NASA Astrophysics Data System (ADS)
Watts, Louis A.
1993-06-01
Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.
Evolution of miniature detectors and focal plane arrays for infrared sensors
NASA Technical Reports Server (NTRS)
Watts, Louis A.
1993-01-01
Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.
Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi
2013-01-01
Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.
Zu, Qin; Zhang, Shui-fa; Cao, Yang; Zhao, Hui-yi; Dang, Chang-qing
2015-02-01
Weeds automatic identification is the key technique and also the bottleneck for implementation of variable spraying and precision pesticide. Therefore, accurate, rapid and non-destructive automatic identification of weeds has become a very important research direction for precision agriculture. Hyperspectral imaging system was used to capture the hyperspectral images of cabbage seedlings and five kinds of weeds such as pigweed, barnyard grass, goosegrass, crabgrass and setaria with the wavelength ranging from 1000 to 2500 nm. In ENVI, by utilizing the MNF rotation to implement the noise reduction and de-correlation of hyperspectral data and reduce the band dimensions from 256 to 11, and extracting the region of interest to get the spectral library as standard spectra, finally, using the SAM taxonomy to identify cabbages and weeds, the classification effect was good when the spectral angle threshold was set as 0. 1 radians. In HSI Analyzer, after selecting the training pixels to obtain the standard spectrum, the SAM taxonomy was used to distinguish weeds from cabbages. Furthermore, in order to measure the recognition accuracy of weeds quantificationally, the statistical data of the weeds and non-weeds were obtained by comparing the SAM classification image with the best classification effects to the manual classification image. The experimental results demonstrated that, when the parameters were set as 5-point smoothing, 0-order derivative and 7-degree spectral angle, the best classification result was acquired and the recognition rate of weeds, non-weeds and overall samples was 80%, 97.3% and 96.8% respectively. The method that combined the spectral imaging technology and the SAM taxonomy together took full advantage of fusion information of spectrum and image. By applying the spatial classification algorithms to establishing training sets for spectral identification, checking the similarity among spectral vectors in the pixel level, integrating the advantages of spectra and images meanwhile considering their accuracy and rapidity and improving weeds detection range in the full range that could detect weeds between and within crop rows, the above method contributes relevant analysis tools and means to the application field requiring the accurate information of plants in agricultural precision management
Research on the principle and experimentation of optical compressive spectral imaging
NASA Astrophysics Data System (ADS)
Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Ji, Yiqun; Shen, Weimin
2013-12-01
The optical compressive spectral imaging method is a novel spectral imaging technique that draws in the inspiration of compressed sensing, which takes on the advantages such as reducing acquisition data amount, realizing snapshot imaging, increasing signal to noise ratio and so on. Considering the influence of the sampling quality on the ultimate imaging quality, researchers match the sampling interval with the modulation interval in former reported imaging system, while the depressed sampling rate leads to the loss on the original spectral resolution. To overcome that technical defect, the demand for the matching between the sampling interval and the modulation interval is disposed of and the spectral channel number of the designed experimental device increases more than threefold comparing to that of the previous method. Imaging experiment is carried out by use of the experiment installation and the spectral data cube of the shooting target is reconstructed with the acquired compressed image by use of the two-step iterative shrinkage/thresholding algorithms. The experimental result indicates that the spectral channel number increases effectively and the reconstructed data stays high-fidelity. The images and spectral curves are able to accurately reflect the spatial and spectral character of the target.
Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.
Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca
2015-08-12
Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights.
Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping
Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca
2015-01-01
Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights. PMID:26274960
Spatial-scanning hyperspectral imaging probe for bio-imaging applications
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2016-03-01
The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50 000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications.
Mattson, Eric C; Unger, Miriam; Clède, Sylvain; Lambert, François; Policar, Clotilde; Imtiaz, Asher; D'Souza, Roshan; Hirschmugl, Carol J
2013-10-07
Advancements in widefield infrared spectromicroscopy have recently been demonstrated following the commissioning of IRENI (InfraRed ENvironmental Imaging), a Fourier Transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center. The present study demonstrates the effects of magnification, spatial oversampling, spectral pre-processing and deconvolution, focusing on the intracellular detection and distribution of an exogenous metal tris-carbonyl derivative 1 in a single MDA-MB-231 breast cancer cell. We demonstrate here that spatial oversampling for synchrotron-based infrared imaging is critical to obtain accurate diffraction-limited images at all wavelengths simultaneously. Resolution criteria and results from raw and deconvoluted images for two Schwarzschild objectives (36×, NA 0.5 and 74×, NA 0.65) are compared to each other and to prior reports for raster-scanned, confocal microscopes. The resolution of the imaging data can be improved by deconvolving the instrumental broadening that is determined with the measured PSFs, which is implemented with GPU programming architecture for fast hyperspectral processing. High definition, rapidly acquired, FTIR chemical images of respective spectral signatures of the cell 1 and shows that 1 is localized next to the phosphate- and Amide-rich regions, in agreement with previous infrared and luminescence studies. The infrared image contrast, localization and definition are improved after applying proven spectral pre-processing (principal component analysis based noise reduction and RMie scattering correction algorithms) to individual pixel spectra in the hyperspectral cube.
Liu, Zhongming; de Zwart, Jacco A.; Chang, Catie; Duan, Qi; van Gelderen, Peter; Duyn, Jeff H.
2014-01-01
Spontaneous activity in the human brain occurs in complex spatiotemporal patterns that may reflect functionally specialized neural networks. Here, we propose a subspace analysis method to elucidate large-scale networks by the joint analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. The new approach is based on the notion that the neuroelectrical activity underlying the fMRI signal may have EEG spectral features that report on regional neuronal dynamics and interregional interactions. Applying this approach to resting healthy adults, we indeed found characteristic spectral signatures in the EEG correlates of spontaneous fMRI signals at individual brain regions as well as the temporal synchronization among widely distributed regions. These spectral signatures not only allowed us to parcel the brain into clusters that resembled the brain's established functional subdivision, but also offered important clues for disentangling the involvement of individual regions in fMRI network activity. PMID:23796947
Preliminary experimental results from a MARS Micro-CT system.
He, Peng; Yu, Hengyong; Thayer, Patrick; Jin, Xin; Xu, Qiong; Bennett, James; Tappenden, Rachael; Wei, Biao; Goldstein, Aaron; Renaud, Peter; Butler, Anthony; Butler, Phillip; Wang, Ge
2012-01-01
The Medipix All Resolution System (MARS) system is a commercial spectral/multi-energy micro-CT scanner designed and assembled by the MARS Bioimaging, Ltd. in New Zealand. This system utilizes the state-of-the-art Medipix photon-counting, energy-discriminating detector technology developed by a collaboration at European Organization for Nuclear Research (CERN). In this paper, we report our preliminary experimental results using this system, including geometrical alignment, photon energy characterization, protocol optimization, and spectral image reconstruction. We produced our scan datasets with a multi-material phantom, and then applied ordered subset-simultaneous algebraic reconstruction technique (OS-SART) to reconstruct images in different energy ranges and principal component analysis (PCA) to evaluate spectral deviation among the energy ranges.
NASA Technical Reports Server (NTRS)
Poonai, P.; Floyd, W. J.; Hall, R.
1974-01-01
The distribution of natural vegetation types on North Merritt Island, Florida, was studied by analysis of ERTS multispectral scanner data on the image-100 computer system. The boundaries of six distinct plant associations were located on photos made on the image analyzer, with an insignificant mean error of -24.38 meters. The six plant associations are described; each had a characteristic spectral signature. The difference in average reflectance grey level between the lowest of the four spectral scanning bands and the highest spectral scanning band for the six vegetation types was determined. The decreasing trend of the differences is strongly negatively correlated with height of land.
Local spectral anisotropy is a valid cue for figure-ground organization in natural scenes.
Ramenahalli, Sudarshan; Mihalas, Stefan; Niebur, Ernst
2014-10-01
An important step in the process of understanding visual scenes is its organization in different perceptual objects which requires figure-ground segregation. The determination of which side of an occlusion boundary is figure (closer to the observer) and which is ground (further away from the observer) is made through a combination of global cues, like convexity, and local cues, like T-junctions. We here focus on a novel set of local cues in the intensity patterns along occlusion boundaries which we show to differ between figure and ground. Image patches are extracted from natural scenes from two standard image sets along the boundaries of objects and spectral analysis is performed separately on figure and ground. On the figure side, oriented spectral power orthogonal to the occlusion boundary significantly exceeds that parallel to the boundary. This "spectral anisotropy" is present only for higher spatial frequencies, and absent on the ground side. The difference in spectral anisotropy between the two sides of an occlusion border predicts which is the figure and which the background with an accuracy exceeding 60% per patch. Spectral anisotropy of close-by locations along the boundary co-varies but is largely independent over larger distances which allows to combine results from different image regions. Given the low cost of this strictly local computation, we propose that spectral anisotropy along occlusion boundaries is a valuable cue for figure-ground segregation. A data base of images and extracted patches labeled for figure and ground is made freely available. Copyright © 2014 Elsevier Ltd. All rights reserved.
Local spectral anisotropy is a valid cue for figure-ground organization in natural scenes
Ramenahalli, Sudarshan; Mihalas, Stefan; Niebur, Ernst
2016-01-01
An important step in the process of understanding visual scenes is its organization in different perceptual objects which requires figure-ground segregation. The determination which side of an occlusion boundary is figure (closer to the observer) and which is ground (further away from the observer) is made through a combination of global cues, like convexity, and local cues, like T-junctions. We here focus on a novel set of local cues in the intensity patterns along occlusion boundaries which we show to differ between figure and ground. Image patches are extracted from natural scenes from two standard image sets along the boundaries of objects and spectral analysis is performed separately on figure and ground. On the figure side, oriented spectral power orthogonal to the occlusion boundary significantly exceeds that parallel to the boundary. This “spectral anisotropy” is present only for higher spatial frequencies, and absent on the ground side. The difference in spectral anisotropy between the two sides of an occlusion border predicts which is the figure and which the background with an accuracy exceeding 60% per patch. Spectral anisotropy of close-by locations along the boundary co-varies but is largely independent over larger distances which allows to combine results from different image regions. Given the low cost of this strictly local computation, we propose that spectral anisotropy along occlusion boundaries is a valuable cue for figure-ground segregation. A data base of images and extracted patches labeled for figure and ground is made freely available. PMID:25175115
A method based on IHS cylindrical transform model for quality assessment of image fusion
NASA Astrophysics Data System (ADS)
Zhu, Xiaokun; Jia, Yonghong
2005-10-01
Image fusion technique has been widely applied to remote sensing image analysis and processing, and methods for quality assessment of image fusion in remote sensing have also become the research issues at home and abroad. Traditional assessment methods combine calculation of quantitative indexes and visual interpretation to compare fused images quantificationally and qualitatively. However, in the existing assessment methods, there are two defects: on one hand, most imdexes lack the theoretic support to compare different fusion methods. On the hand, there is not a uniform preference for most of the quantitative assessment indexes when they are applied to estimate the fusion effects. That is, the spatial resolution and spectral feature could not be analyzed synchronously by these indexes and there is not a general method to unify the spatial and spectral feature assessment. So in this paper, on the basis of the approximate general model of four traditional fusion methods, including Intensity Hue Saturation(IHS) triangle transform fusion, High Pass Filter(HPF) fusion, Principal Component Analysis(PCA) fusion, Wavelet Transform(WT) fusion, a correlation coefficient assessment method based on IHS cylindrical transform is proposed. By experiments, this method can not only get the evaluation results of spatial and spectral features on the basis of uniform preference, but also can acquire the comparison between fusion image sources and fused images, and acquire differences among fusion methods. Compared with the traditional assessment methods, the new methods is more intuitionistic, and in accord with subjective estimation.
"Relative CIR": an image enhancement and visualization technique
Fleming, Michael D.
1993-01-01
Many techniques exist to spectrally and spatially enhance digital multispectral scanner data. One technique enhances an image while keeping the colors as they would appear in a color-infrared (CIR) image. This "relative CIR" technique generates an image that is both spectrally and spatially enhanced, while displaying a maximum range of colors. The technique enables an interpreter to visualize either spectral or land cover classes by their relative CIR characteristics. A relative CIR image is generated by developed spectral statistics for each class in the classifications and then, using a nonparametric approach for spectral enhancement, the means of the classes for each band are ranked. A 3 by 3 pixel smoothing filter is applied to the classification for spatial enhancement and the classes are mapped to the representative rank for each band. Practical applications of the technique include displaying an image classification product as a CIR image that was not derived directly from a spectral image, visualizing how a land cover classification would look as a CIR image, and displaying a spectral classification or intermediate product that will be used to label spectral classes.
Masè, Michela; Cristoforetti, Alessandro; Avogaro, Laura; Tessarolo, Francesco; Piccoli, Federico; Caola, Iole; Pederzolli, Carlo; Graffigna, Angelo; Ravelli, Flavia
2015-01-01
The assessment of collagen structure in cardiac pathology, such as atrial fibrillation (AF), is essential for a complete understanding of the disease. This paper introduces a novel methodology for the quantitative description of collagen network properties, based on the combination of nonlinear optical microscopy with a spectral approach of image processing and analysis. Second-harmonic generation (SHG) microscopy was applied to atrial tissue samples from cardiac surgery patients, providing label-free, selective visualization of the collagen structure. The spectral analysis framework, based on 2D-FFT, was applied to the SHG images, yielding a multiparametric description of collagen fiber orientation (angle and anisotropy indexes) and texture scale (dominant wavelength and peak dispersion indexes). The proof-of-concept application of the methodology showed the capability of our approach to detect and quantify differences in the structural properties of the collagen network in AF versus sinus rhythm patients. These results suggest the potential of our approach in the assessment of collagen properties in cardiac pathologies related to a fibrotic structural component.
Hyperspectral microscopy and cluster analysis for oral cancer diagnosis
NASA Astrophysics Data System (ADS)
Jarman, Anneliese; Manickavasagam, Arunthathi; Hosny, Neveen; Festy, Frederic
2017-02-01
Oral cancer incidences have been increasing in recent years and late detection often leads to poor prognosis. Raman spectroscopy has been identified has a valuable diagnostic tool for cancer but its time consuming nature has prevented its clinical use. For Raman to become a realistic aid to histopathology, a rapid pre-screening technique is required to find small regions of interest on tissue sections [1]. The aim of this work is to investigate the feasibility of hyperspectral imaging in the visible spectral range as a fast imaging technique before Raman is performed. We have built a hyperspectral microscope which captures 300 focused and intensity corrected images with wavelength ranging from 450- 750 nm in around 30 minutes with sub-micron spatial resolution and around 10 nm spectral resolution. Hyperstacks of known absorbing samples, including fluorescent dyes and dried blood droplets, show excellent results with spectrally accurate transmission spectra and concentration-dependent intensity variations. We successfully showed the presence of different components from a non-absorbent saliva droplet sample. Data analysis is the greatest hurdle to the interpretation of more complex data such as unstained tissue sections.
NASA Astrophysics Data System (ADS)
Tampubolon, Togi; Abdullah, Khiruddin bin; San, Lim Hwee
2013-09-01
The spectral characteristics of land cover are basic references in classifying satellite image for geophysics analysis. It can be obtained from the measurements using spectrometer and satellite image processing. The aims of this study to investigate the spectral characteristics of land cover based on the results of measurement using Spectrometer Cropscan MSR 16R and Landsat satellite imagery. The area of study in this research is in Medan, (Deli Serdang, North Sumatera) Indonesia. The scope of this study is the basic survey from the measurements of spectral land cover which is covered several type of land such as a cultivated and managed terrestrial areas, natural and semi-natural, cultivated aquatic or regularly flooded areas, natural and semi-natural aquatic, artificial surfaces and associated areas, bare areas, artificial waterbodies and natural waterbodies. The measurement and verification were conducted using a spectrometer provided their spectral characteristics and Landsat imagery, respectively. The results of the spectral characteristics of land cover shows that each type of land cover have a unique characteristic. The correlation of spectral land cover based on spectrometer Cropscan MSR 16R and Landsat satellite image are above 90 %. However, the land cover of artificial waterbodiese have a correlation under 40 %. That is because the measurement of spectrometer Cropscan MSR 16R and acquisition of Landsat satellite imagery has a time different.
Characterizing pigments with hyperspectral imaging variable false-color composites
NASA Astrophysics Data System (ADS)
Hayem-Ghez, Anita; Ravaud, Elisabeth; Boust, Clotilde; Bastian, Gilles; Menu, Michel; Brodie-Linder, Nancy
2015-11-01
Hyperspectral imaging has been used for pigment characterization on paintings for the last 10 years. It is a noninvasive technique, which mixes the power of spectrophotometry and that of imaging technologies. We have access to a visible and near-infrared hyperspectral camera, ranging from 400 to 1000 nm in 80-160 spectral bands. In order to treat the large amount of data that this imaging technique generates, one can use statistical tools such as principal component analysis (PCA). To conduct the characterization of pigments, researchers mostly use PCA, convex geometry algorithms and the comparison of resulting clusters to database spectra with a specific tolerance (like the Spectral Angle Mapper tool on the dedicated software ENVI). Our approach originates from false-color photography and aims at providing a simple tool to identify pigments thanks to imaging spectroscopy. It can be considered as a quick first analysis to see the principal pigments of a painting, before using a more complete multivariate statistical tool. We study pigment spectra, for each kind of hue (blue, green, red and yellow) to identify the wavelength maximizing spectral differences. The case of red pigments is most interesting because our methodology can discriminate the red pigments very well—even red lakes, which are always difficult to identify. As for the yellow and blue categories, it represents a good progress of IRFC photography for pigment discrimination. We apply our methodology to study the pigments on a painting by Eustache Le Sueur, a French painter of the seventeenth century. We compare the results to other noninvasive analysis like X-ray fluorescence and optical microscopy. Finally, we draw conclusions about the advantages and limits of the variable false-color image method using hyperspectral imaging.
Spectral analysis for automated exploration and sample acquisition
NASA Technical Reports Server (NTRS)
Eberlein, Susan; Yates, Gigi
1992-01-01
Future space exploration missions will rely heavily on the use of complex instrument data for determining the geologic, chemical, and elemental character of planetary surfaces. One important instrument is the imaging spectrometer, which collects complete images in multiple discrete wavelengths in the visible and infrared regions of the spectrum. Extensive computational effort is required to extract information from such high-dimensional data. A hierarchical classification scheme allows multispectral data to be analyzed for purposes of mineral classification while limiting the overall computational requirements. The hierarchical classifier exploits the tunability of a new type of imaging spectrometer which is based on an acousto-optic tunable filter. This spectrometer collects a complete image in each wavelength passband without spatial scanning. It may be programmed to scan through a range of wavelengths or to collect only specific bands for data analysis. Spectral classification activities employ artificial neural networks, trained to recognize a number of mineral classes. Analysis of the trained networks has proven useful in determining which subsets of spectral bands should be employed at each step of the hierarchical classifier. The network classifiers are capable of recognizing all mineral types which were included in the training set. In addition, the major components of many mineral mixtures can also be recognized. This capability may prove useful for a system designed to evaluate data in a strange environment where details of the mineral composition are not known in advance.
Review of spectral imaging technology in biomedical engineering: achievements and challenges.
Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin
2013-10-01
Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.
Hyper-spectral imaging: A promising tool for quantitative pigment analysis of varved lake sediments
NASA Astrophysics Data System (ADS)
Butz, Christoph; Grosjean, Martin; Tylmann, Wojciech
2015-04-01
Varved lake sediments are good archives for past environmental and climate conditions from annual to multi-millennial scales. Among other proxies, concentrations of sedimentary photopigments have been used for temperature reconstructions. However, obtaining well calibrated annually resolved records from sediments still remains challenging. Most laboratory methods used to analyse lake sediments require physical subsampling and are destructive in the process. Hence, temporal resolution and number of data are limited by the amount of material available in the core. Furthermore, for very low sediment accumulation rates annual subsampling is often very difficult or even impossible. To address these problems we explore hyper-spectral imaging as a non-destructive method to analyse lake sediments based on their reflectance spectra in the visible and near infrared spectrum. In contrast to other scanning methods like X-ray fluorescence, VIS/NIR reflectance spectrometry distinguishes between biogeochemical substances rather than single elements. Among others Rein (2003) has shown that VIS-RS can be used to detect relative concentrations of sedimentary photopigments (e.g. chlorins, carotenoids) and clay minerals. In this study hyper-spectral imaging is used to infer ecological proxy data from reflectance spectra of varved lake sediments. Hyper-spectral imaging permits the measurement of an entire sediment core in a single run at high spatial (30x30µm/pixel) and spectral resolutions (~2.8nm) within the visual to near infrared spectrum (400-1000nm). This allows the analysis of data time series and spatial mapping of sedimentary substances (e.g. chlorophylls/bacterio-chlorophylls and diagenetic products) at sub-varve scales. The method is demonstrated on two varved lake sediments from northern Poland showing the distributions of relative concentrations of two types of sedimentary pigments (Chlorophyll-a + derivatives and Bacterio-pheophytin-a) within individual varve years. The relative concentrations from the spectral data set have then been calibrated with absolute concentrations derived by High-Performance-Liquid-Chromatography (HPLC). This results in very high-resolution data sets of absolute sedimentary pigment concentrations suitable for the analysis of seasonal pigment variations.
Terrain Extraction by Integrating Terrestrial Laser Scanner Data and Spectral Information
NASA Astrophysics Data System (ADS)
Lau, C. L.; Halim, S.; Zulkepli, M.; Azwan, A. M.; Tang, W. L.; Chong, A. K.
2015-10-01
The extraction of true terrain points from unstructured laser point cloud data is an important process in order to produce an accurate digital terrain model (DTM). However, most of these spatial filtering methods just utilizing the geometrical data to discriminate the terrain points from nonterrain points. The point cloud filtering method also can be improved by using the spectral information available with some scanners. Therefore, the objective of this study is to investigate the effectiveness of using the three-channel (red, green and blue) of the colour image captured from built-in digital camera which is available in some Terrestrial Laser Scanner (TLS) for terrain extraction. In this study, the data acquisition was conducted at a mini replica landscape in Universiti Teknologi Malaysia (UTM), Skudai campus using Leica ScanStation C10. The spectral information of the coloured point clouds from selected sample classes are extracted for spectral analysis. The coloured point clouds which within the corresponding preset spectral threshold are identified as that specific feature point from the dataset. This process of terrain extraction is done through using developed Matlab coding. Result demonstrates that a higher spectral resolution passive image is required in order to improve the output. This is because low quality of the colour images captured by the sensor contributes to the low separability in spectral reflectance. In conclusion, this study shows that, spectral information is capable to be used as a parameter for terrain extraction.
Evaluation techniques and metrics for assessment of pan+MSI fusion (pansharpening)
NASA Astrophysics Data System (ADS)
Mercovich, Ryan A.
2015-05-01
Fusion of broadband panchromatic data with narrow band multispectral data - pansharpening - is a common and often studied problem in remote sensing. Many methods exist to produce data fusion results with the best possible spatial and spectral characteristics, and a number have been commercially implemented. This study examines the output products of 4 commercial implementations with regard to their relative strengths and weaknesses for a set of defined image characteristics and analyst use-cases. Image characteristics used are spatial detail, spatial quality, spectral integrity, and composite color quality (hue and saturation), and analyst use-cases included a variety of object detection and identification tasks. The imagery comes courtesy of the RIT SHARE 2012 collect. Two approaches are used to evaluate the pansharpening methods, analyst evaluation or qualitative measure and image quality metrics or quantitative measures. Visual analyst evaluation results are compared with metric results to determine which metrics best measure the defined image characteristics and product use-cases and to support future rigorous characterization the metrics' correlation with the analyst results. Because pansharpening represents a trade between adding spatial information from the panchromatic image, and retaining spectral information from the MSI channels, the metrics examined are grouped into spatial improvement metrics and spectral preservation metrics. A single metric to quantify the quality of a pansharpening method would necessarily be a combination of weighted spatial and spectral metrics based on the importance of various spatial and spectral characteristics for the primary task of interest. Appropriate metrics and weights for such a combined metric are proposed here, based on the conducted analyst evaluation. Additionally, during this work, a metric was developed specifically focused on assessment of spatial structure improvement relative to a reference image and independent of scene content. Using analysis of Fourier transform images, a measure of high-frequency content is computed in small sub-segments of the image. The average increase in high-frequency content across the image is used as the metric, where averaging across sub-segments combats the scene dependent nature of typical image sharpness techniques. This metric had an improved range of scores, better representing difference in the test set than other common spatial structure metrics.
2015-11-05
AFRL-AFOSR-VA-TR-2015-0359 Integrated Spectral Low Noise Image Sensor with Nanowire Polarization Filters for Low Contrast Imaging Viktor Gruev...To) 02/15/2011 - 08/15/2015 4. TITLE AND SUBTITLE Integrated Spectral Low Noise Image Sensor with Nanowire Polarization Filters for Low Contrast...investigate alternative spectral imaging architectures based on my previous experience in this research area. I will develop nanowire polarization
NASA Astrophysics Data System (ADS)
Bogdanov, Valery L.; Boyce-Jacino, Michael
1999-05-01
Confined arrays of biochemical probes deposited on a solid support surface (analytical microarray or 'chip') provide an opportunity to analysis multiple reactions simultaneously. Microarrays are increasingly used in genetics, medicine and environment scanning as research and analytical instruments. A power of microarray technology comes from its parallelism which grows with array miniaturization, minimization of reagent volume per reaction site and reaction multiplexing. An optical detector of microarray signals should combine high sensitivity, spatial and spectral resolution. Additionally, low-cost and a high processing rate are needed to transfer microarray technology into biomedical practice. We designed an imager that provides confocal and complete spectrum detection of entire fluorescently-labeled microarray in parallel. Imager uses microlens array, non-slit spectral decomposer, and high- sensitive detector (cooled CCD). Two imaging channels provide a simultaneous detection of localization, integrated and spectral intensities for each reaction site in microarray. A dimensional matching between microarray and imager's optics eliminates all in moving parts in instrumentation, enabling highly informative, fast and low-cost microarray detection. We report theory of confocal hyperspectral imaging with microlenses array and experimental data for implementation of developed imager to detect fluorescently labeled microarray with a density approximately 103 sites per cm2.
Analysis of multimode fiber bundles for endoscopic spectral-domain optical coherence tomography
Risi, Matthew D.; Makhlouf, Houssine; Rouse, Andrew R.; Gmitro, Arthur F.
2016-01-01
A theoretical analysis of the use of a fiber bundle in spectral-domain optical coherence tomography (OCT) systems is presented. The fiber bundle enables a flexible endoscopic design and provides fast, parallelized acquisition of the OCT data. However, the multimode characteristic of the fibers in the fiber bundle affects the depth sensitivity of the imaging system. A description of light interference in a multimode fiber is presented along with numerical simulations and experimental studies to illustrate the theoretical analysis. PMID:25967012
Sogani, Julie; Morris, Elizabeth A; Kaplan, Jennifer B; D'Alessio, Donna; Goldman, Debra; Moskowitz, Chaya S; Jochelson, Maxine S
2017-01-01
Purpose To assess the extent of background parenchymal enhancement (BPE) at contrast material-enhanced (CE) spectral mammography and breast magnetic resonance (MR) imaging, to evaluate interreader agreement in BPE assessment, and to examine the relationships between clinical factors and BPE. Materials and Methods This was a retrospective, institutional review board-approved, HIPAA-compliant study. Two hundred seventy-eight women from 25 to 76 years of age with increased breast cancer risk who underwent CE spectral mammography and MR imaging for screening or staging from 2010 through 2014 were included. Three readers independently rated BPE on CE spectral mammographic and MR images with the ordinal scale: minimal, mild, moderate, or marked. To assess pairwise agreement between BPE levels on CE spectral mammographic and MR images and among readers, weighted κ coefficients with quadratic weights were calculated. For overall agreement, mean κ values and bootstrapped 95% confidence intervals were calculated. The univariate and multivariate associations between BPE and clinical factors were examined by using generalized estimating equations separately for CE spectral mammography and MR imaging. Results Most women had minimal or mild BPE at both CE spectral mammography (68%-76%) and MR imaging (69%-76%). Between CE spectral mammography and MR imaging, the intrareader agreement ranged from moderate to substantial (κ = 0.55-0.67). Overall agreement on BPE levels between CE spectral mammography and MR imaging and among readers was substantial (κ = 0.66; 95% confidence interval: 0.61, 0.70). With both modalities, BPE demonstrated significant association with menopausal status, prior breast radiation therapy, hormonal treatment, breast density on CE spectral mammographic images, and amount of fibroglandular tissue on MR images (P < .001 for all). Conclusion There was substantial agreement between readers for BPE detected on CE spectral mammographic and MR images. © RSNA, 2016.
Spectral unmixing of multi-color tissue specific in vivo fluorescence in mice
NASA Astrophysics Data System (ADS)
Zacharakis, Giannis; Favicchio, Rosy; Garofalakis, Anikitos; Psycharakis, Stylianos; Mamalaki, Clio; Ripoll, Jorge
2007-07-01
Fluorescence Molecular Tomography (FMT) has emerged as a powerful tool for monitoring biological functions in vivo in small animals. It provides the means to determine volumetric images of fluorescent protein concentration by applying the principles of diffuse optical tomography. Using different probes tagged to different proteins or cells, different biological functions and pathways can be simultaneously imaged in the same subject. In this work we present a spectral unmixing algorithm capable of separating signal from different probes when combined with the tomographic imaging modality. We show results of two-color imaging when the algorithm is applied to separate fluorescence activity originating from phantoms containing two different fluorophores, namely CFSE and SNARF, with well separated emission spectra, as well as Dsred- and GFP-fused cells in F5-b10 transgenic mice in vivo. The same algorithm can furthermore be applied to tissue-specific spectroscopy data. Spectral analysis of a variety of organs from control, DsRed and GFP F5/B10 transgenic mice showed that fluorophore detection by optical systems is highly tissue-dependent. Spectral data collected from different organs can provide useful insight into experimental parameter optimisation (choice of filters, fluorophores, excitation wavelengths) and spectral unmixing can be applied to measure the tissue-dependency, thereby taking into account localized fluorophore efficiency. Summed up, tissue spectral unmixing can be used as criteria in choosing the most appropriate tissue targets as well as fluorescent markers for specific applications.
Rowan, L.C.; Schmidt, R.G.; Mars, J.C.
2006-01-01
The Reko Diq, Pakistan mineralized study area, approximately 10??km in diameter, is underlain by a central zone of hydrothermally altered rocks associated with Cu-Au mineralization. The surrounding country rocks are a variable mixture of unaltered volcanic rocks, fluvial deposits, and eolian quartz sand. Analysis of 15-band Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the study area, aided by laboratory spectral reflectance and spectral emittance measurements of field samples, shows that phyllically altered rocks are laterally extensive, and contain localized areas of argillically altered rocks. In the visible through shortwave-infrared (VNIR + SWIR) phyllically altered rocks are characterized by Al-OH absorption in ASTER band 6 because of molecular vibrations in muscovite, whereas argillically altered rocks have an absorption feature in band 5 resulting from alunite. Propylitically altered rocks form a peripheral zone and are present in scattered exposures within the main altered area. Chlorite and muscovite cause distinctive absorption features at 2.33 and 2.20????m, respectively, although less intense 2.33????m absorption is also present in image spectra of country rocks. Important complementary lithologic information was derived by analysis of the spectral emittance data in the 5 thermal-infrared (TIR) bands. Silicified rocks were not distinguished in the 9 VNIR + SWIR bands because of the lack of diagnostic spectral absorption features in quartz in this wavelength region. Quartz-bearing surficial deposits, as well as hydrothermally silicified rocks, were mapped in the TIR bands by using a band 13/band 12 ratio image, which is sensitive to the intensity of the quartz reststrahlen feature. Improved distinction between the quartzose surficial deposits and silicified bedrock was achieved by using matched-filter processing with TIR image spectra for reference. ?? 2006 Elsevier Inc. All rights reserved.
Unmixing-Based Denoising as a Pre-Processing Step for Coral Reef Analysis
NASA Astrophysics Data System (ADS)
Cerra, D.; Traganos, D.; Gege, P.; Reinartz, P.
2017-05-01
Coral reefs, among the world's most biodiverse and productive submerged habitats, have faced several mass bleaching events due to climate change during the past 35 years. In the course of this century, global warming and ocean acidification are expected to cause corals to become increasingly rare on reef systems. This will result in a sharp decrease in the biodiversity of reef communities and carbonate reef structures. Coral reefs may be mapped, characterized and monitored through remote sensing. Hyperspectral images in particular excel in being used in coral monitoring, being characterized by very rich spectral information, which results in a strong discrimination power to characterize a target of interest, and separate healthy corals from bleached ones. Being submerged habitats, coral reef systems are difficult to analyse in airborne or satellite images, as relevant information is conveyed in bands in the blue range which exhibit lower signal-to-noise ratio (SNR) with respect to other spectral ranges; furthermore, water is absorbing most of the incident solar radiation, further decreasing the SNR. Derivative features, which are important in coral analysis, result greatly affected by the resulting noise present in relevant spectral bands, justifying the need of new denoising techniques able to keep local spatial and spectral features. In this paper, Unmixing-based Denoising (UBD) is used to enable analysis of a hyperspectral image acquired over a coral reef system in the Red Sea based on derivative features. UBD reconstructs pixelwise a dataset with reduced noise effects, by forcing each spectrum to a linear combination of other reference spectra, exploiting the high dimensionality of hyperspectral datasets. Results show clear enhancements with respect to traditional denoising methods based on spatial and spectral smoothing, facilitating the coral detection task.
Multichannel spectral mode of the ALOHA up-conversion interferometer
NASA Astrophysics Data System (ADS)
Lehmann, L.; Darré, P.; Boulogne, H.; Delage, L.; Grossard, L.; Reynaud, F.
2018-06-01
In this paper, we propose a multichannel spectral configuration of the Astronomical Light Optical Hybrid Analysis (ALOHA) instrument dedicated to high-resolution imaging. A frequency conversion process is implemented in each arm of an interferometer to transfer the astronomical light to a shorter wavelength domain. Exploiting the spectral selectivity of this non-linear optical process, we propose to use a set of independent pump lasers in order to simultaneously study multiple spectral channels. This principle is experimentally demonstrated with a dual-channel configuration as a proof-of-principle.
Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder
NASA Astrophysics Data System (ADS)
August, Isaac; Oiknine, Yaniv; Abuleil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian
2016-03-01
Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.
Spectral imaging of neurosurgical target tissues through operation microscope
NASA Astrophysics Data System (ADS)
Antikainen, Jukka; von Und Zu Fraunberg, Mikael; Orava, Joni; Jaaskelainen, Juha E.; Hauta-Kasari, Markku
2011-11-01
It has been noticed that spectral information can be used for analyzing and separating different biological tissues. However, most of the studies for spectral image acquisitions are mainly done in vitro. Usually the main restrictions for in vivo measurements are the size or the weight of the spectral camera. If the camera weights too much, the surgery microscope cannot be stabilized. If the size of the camera is too big, it will disturb the surgeon or even risk the safety of the patient. The main goal of this study was to develop an independent spectral imaging device which can be used for collecting spectral information from the neurosurgeries without any previously described restrictions. Size of the imaging system is small enough not to disturb the surgeon during the surgery. The developed spectral imaging system is used for collecting a spectral database which can be used for the future imaging systems.
August, Isaac; Oiknine, Yaniv; AbuLeil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian
2016-03-23
Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.
Reconstruction of hyperspectral image using matting model for classification
NASA Astrophysics Data System (ADS)
Xie, Weiying; Li, Yunsong; Ge, Chiru
2016-05-01
Although hyperspectral images (HSIs) captured by satellites provide much information in spectral regions, some bands are redundant or have large amounts of noise, which are not suitable for image analysis. To address this problem, we introduce a method for reconstructing the HSI with noise reduction and contrast enhancement using a matting model for the first time. The matting model refers to each spectral band of an HSI that can be decomposed into three components, i.e., alpha channel, spectral foreground, and spectral background. First, one spectral band of an HSI with more refined information than most other bands is selected, and is referred to as an alpha channel of the HSI to estimate the hyperspectral foreground and hyperspectral background. Finally, a combination operation is applied to reconstruct the HSI. In addition, the support vector machine (SVM) classifier and three sparsity-based classifiers, i.e., orthogonal matching pursuit (OMP), simultaneous OMP, and OMP based on first-order neighborhood system weighted classifiers, are utilized on the reconstructed HSI and the original HSI to verify the effectiveness of the proposed method. Specifically, using the reconstructed HSI, the average accuracy of the SVM classifier can be improved by as much as 19%.
Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging
NASA Astrophysics Data System (ADS)
Wang, Hsiang-Chen; Tsai, Meng-Tsan; Chiang, Chun-Ping
2013-05-01
Color reproduction systems based on the multi-spectral imaging technique (MSI) for both directly estimating reflection spectra and direct visualization of oral tissues using various light sources are proposed. Images from three oral cancer patients were taken as the experimental samples, and spectral differences between pre-cancerous and normal oral mucosal tissues were calculated at three time points during 5-aminolevulinic acid photodynamic therapy (ALA-PDT) to analyze whether they were consistent with disease processes. To check the successful treatment of oral cancer with ALA-PDT, oral cavity images by swept source optical coherence tomography (SS-OCT) are demonstrated. This system can also reproduce images under different light sources. For pre-cancerous detection, the oral images after the second ALA-PDT are assigned as the target samples. By using RGB LEDs with various correlated color temperatures (CCTs) for color difference comparison, the light source with a CCT of about 4500 K was found to have the best ability to enhance the color difference between pre-cancerous and normal oral mucosal tissues in the oral cavity. Compared with the fluorescent lighting commonly used today, the color difference can be improved by 39.2% from 16.5270 to 23.0023. Hence, this light source and spectral analysis increase the efficiency of the medical diagnosis of oral cancer and aid patients in receiving early treatment.
NASA Astrophysics Data System (ADS)
Shi, Cheng; Liu, Fang; Li, Ling-Ling; Hao, Hong-Xia
2014-01-01
The goal of pan-sharpening is to get an image with higher spatial resolution and better spectral information. However, the resolution of the pan-sharpened image is seriously affected by the thin clouds. For a single image, filtering algorithms are widely used to remove clouds. These kinds of methods can remove clouds effectively, but the detail lost in the cloud removal image is also serious. To solve this problem, a pan-sharpening algorithm to remove thin cloud via mask dodging and nonsampled shift-invariant shearlet transform (NSST) is proposed. For the low-resolution multispectral (LR MS) and high-resolution panchromatic images with thin clouds, a mask dodging method is used to remove clouds. For the cloud removal LR MS image, an adaptive principal component analysis transform is proposed to balance the spectral information and spatial resolution in the pan-sharpened image. Since the clouds removal process causes the detail loss problem, a weight matrix is designed to enhance the details of the cloud regions in the pan-sharpening process, but noncloud regions remain unchanged. And the details of the image are obtained by NSST. Experimental results over visible and evaluation metrics demonstrate that the proposed method can keep better spectral information and spatial resolution, especially for the images with thin clouds.
Atmospheric correction for remote sensing image based on multi-spectral information
NASA Astrophysics Data System (ADS)
Wang, Yu; He, Hongyan; Tan, Wei; Qi, Wenwen
2018-03-01
The light collected from remote sensors taken from space must transit through the Earth's atmosphere. All satellite images are affected at some level by lightwave scattering and absorption from aerosols, water vapor and particulates in the atmosphere. For generating high-quality scientific data, atmospheric correction is required to remove atmospheric effects and to convert digital number (DN) values to surface reflectance (SR). Every optical satellite in orbit observes the earth through the same atmosphere, but each satellite image is impacted differently because atmospheric conditions are constantly changing. A physics-based detailed radiative transfer model 6SV requires a lot of key ancillary information about the atmospheric conditions at the acquisition time. This paper investigates to achieve the simultaneous acquisition of atmospheric radiation parameters based on the multi-spectral information, in order to improve the estimates of surface reflectance through physics-based atmospheric correction. Ancillary information on the aerosol optical depth (AOD) and total water vapor (TWV) derived from the multi-spectral information based on specific spectral properties was used for the 6SV model. The experimentation was carried out on images of Sentinel-2, which carries a Multispectral Instrument (MSI), recording in 13 spectral bands, covering a wide range of wavelengths from 440 up to 2200 nm. The results suggest that per-pixel atmospheric correction through 6SV model, integrating AOD and TWV derived from multispectral information, is better suited for accurate analysis of satellite images and quantitative remote sensing application.
A hybrid spatial-spectral denoising method for infrared hyperspectral images using 2DPCA
NASA Astrophysics Data System (ADS)
Huang, Jun; Ma, Yong; Mei, Xiaoguang; Fan, Fan
2016-11-01
The traditional noise reduction methods for 3-D infrared hyperspectral images typically operate independently in either the spatial or spectral domain, and such methods overlook the relationship between the two domains. To address this issue, we propose a hybrid spatial-spectral method in this paper to link both domains. First, principal component analysis and bivariate wavelet shrinkage are performed in the 2-D spatial domain. Second, 2-D principal component analysis transformation is conducted in the 1-D spectral domain to separate the basic components from detail ones. The energy distribution of noise is unaffected by orthogonal transformation; therefore, the signal-to-noise ratio of each component is used as a criterion to determine whether a component should be protected from over-denoising or denoised with certain 1-D denoising methods. This study implements the 1-D wavelet shrinking threshold method based on Stein's unbiased risk estimator, and the quantitative results on publicly available datasets demonstrate that our method can improve denoising performance more effectively than other state-of-the-art methods can.
Microspectroscopy of spectral biomarkers associated with human corneal stem cells
Nakamura, Takahiro; Kelly, Jemma G.; Trevisan, Júlio; Cooper, Leanne J.; Bentley, Adam J.; Carmichael, Paul L.; Scott, Andrew D.; Cotte, Marine; Susini, Jean; Martin-Hirsch, Pierre L.; Kinoshita, Shigeru; Martin, Francis L.
2010-01-01
Purpose Synchrotron-based radiation (SRS) Fourier-transform infrared (FTIR) microspectroscopy potentially provides novel biomarkers of the cell differentiation process. Because such imaging gives a “biochemical-cell fingerprint” through a cell-sized aperture, we set out to determine whether distinguishing chemical entities associated with putative stem cells (SCs), transit-amplifying (TA) cells, or terminally-differentiated (TD) cells could be identified in human corneal epithelium. Methods Desiccated cryosections (10 μm thick) of cornea on barium fluoride infrared transparent windows were interrogated using SRS FTIR microspectroscopy. Infrared analysis was performed through the acquisition of point spectra or image maps. Results Point spectra were subjected to principal component analysis (PCA) to identify distinguishing chemical entities. Spectral image maps to highlight SCs, TA cells, and TD cells of the cornea were then generated. Point spectrum analysis using PCA highlighted remarkable segregation between the three cell classes. Discriminating chemical entities were associated with several spectral differences over the DNA/RNA (1,425–900 cm−1) and protein/lipid (1,800–1480 cm−1) regions. Prominent biomarkers of SCs compared to TA cells and/or TD cells were 1,040 cm−1, 1,080 cm−1, 1,107 cm−1, 1,225 cm−1, 1,400 cm−1, 1,525 cm−1, 1,558 cm−1, and 1,728 cm−1. Chemical entities associated with DNA/RNA conformation (1,080 cm−1 and 1,225 cm−1) were associated with SCs, whereas protein/lipid biochemicals (1,558 cm−1 and 1,728 cm−1) most distinguished TA cells and TD cells. Conclusions SRS FTIR microspectroscopy can be employed to identify differential spectral biomarkers of SCs, TA cells, and/or TD cells in human cornea. This nondestructive imaging technology is a novel approach to characterizing SCs in situ. PMID:20520745
NASA Astrophysics Data System (ADS)
Ghrefat, Habes A.; Goodell, Philip C.
2011-08-01
The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR-SWIR (0.4-2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen analysis between the various datasets helped to uncover the most optimum spatial-spectral-temporal and radiometric-resolution sensor characteristics for remote sensing based on monitoring of seasonal land cover, surface water, groundwater, and alluvial sediment input changes within the basin. The results demonstrated good agreement between ground truth data and XRD analysis of samples, and the results of Matched Filtering (MF) mapping method.
Gao, Bo-Cai; Liu, Ming
2013-01-01
Surface reflectance spectra retrieved from remotely sensed hyperspectral imaging data using radiative transfer models often contain residual atmospheric absorption and scattering effects. The reflectance spectra may also contain minor artifacts due to errors in radiometric and spectral calibrations. We have developed a fast smoothing technique for post-processing of retrieved surface reflectance spectra. In the present spectral smoothing technique, model-derived reflectance spectra are first fit using moving filters derived with a cubic spline smoothing algorithm. A common gain curve, which contains minor artifacts in the model-derived reflectance spectra, is then derived. This gain curve is finally applied to all of the reflectance spectra in a scene to obtain the spectrally smoothed surface reflectance spectra. Results from analysis of hyperspectral imaging data collected with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data are given. Comparisons between the smoothed spectra and those derived with the empirical line method are also presented. PMID:24129022
NASA Astrophysics Data System (ADS)
Stavros, E. N.; Seidel, F.; Cable, M. L.; Green, R. O.; Freeman, A.
2017-12-01
While, imaging spectrometers offer additional information that provide value added products for applications that are otherwise underserved, there is need to demonstrate their ability to augment the multi-spectral (e.g., Landsat) optical record by both providing more frequent temporal revisit and lengthening the existing record. Here we test the hypothesis that imaging spectroscopic optical data is compatible with multi-spectral data to within ±5% radiometric accuracy, as desirable to continue the long-term Landsat data record. We use a coincident Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) flight with over-passing Operational Land Imager (OLI) data on Landsat 8 to document a procedure for simulating OLI multi-spectral bands from AVIRIS, evaluate influencing factors on the observed radiance, and assess AVIRIS radiometric accuracy compared to OLI. The procedure for simulating OLI data includes spectral convolution, accounting for atmospheric effects introduced by different sensor altitude and viewing geometries, and spatial resampling. After accounting for these influences, we expect the remaining differences between the simulated and the real OLI data result from differences in sensor calibration, surface bi-directional reflectance, from the different viewing geometries, and spatial sampling. The median radiometric percent difference for each band in the data used range from 0.6% to 8.3%. After bias-correction to minimize potential calibration discrepancies, we find no more than 1.2% radiometric percent difference for any OLI band. This analysis therefore successfully demonstrates that imaging spectrometer data can not only address novel applications, but also contribute to the Landsat-type or other multi-spectral data records to sustain legacy applications.
AOTF hyperspectral microscopic imaging for foodborne pathogenic bacteria detection
NASA Astrophysics Data System (ADS)
Park, Bosoon; Lee, Sangdae; Yoon, Seung-Chul; Sundaram, Jaya; Windham, William R.; Hinton, Arthur, Jr.; Lawrence, Kurt C.
2011-06-01
Hyperspectral microscope imaging (HMI) method which provides both spatial and spectral information can be effective for foodborne pathogen detection. The AOTF-based hyperspectral microscope imaging method can be used to characterize spectral properties of biofilm formed by Salmonella enteritidis as well as Escherichia coli. The intensity of spectral imagery and the pattern of spectral distribution varied with system parameters (integration time and gain) of HMI system. The preliminary results demonstrated determination of optimum parameter values of HMI system and the integration time must be no more than 250 ms for quality image acquisition from biofilm formed by S. enteritidis. Among the contiguous spectral imagery between 450 and 800 nm, the intensity of spectral images at 498, 522, 550 and 594 nm were distinctive for biofilm; whereas, the intensity of spectral images at 546 nm was distinctive for E. coli. For more accurate comparison of intensity from spectral images, a calibration protocol, using neutral density filters and multiple exposures, need to be developed to standardize image acquisition. For the identification or classification of unknown food pathogen samples, ground truth regions-of-interest pixels need to be selected for "spectrally pure fingerprints" for the Salmonella and E. coli species.
Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells
NASA Astrophysics Data System (ADS)
Itoh, Kazuyoshi
2015-12-01
Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.
Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop
NASA Technical Reports Server (NTRS)
Vane, G. (Editor); Goetz, A. F. H. (Editor)
1985-01-01
The Airborne Imaging Spectrometer (AIS) Data Analysis Workshop was held at the Jet Propulsion Laboratory on April 8 to 10, 1985. It was attended by 92 people who heard reports on 30 investigations currently under way using AIS data that have been collected over the past two years. Written summaries of 27 of the presentations are in these Proceedings. Many of the results presented at the Workshop are preliminary because most investigators have been working with this fundamentally new type of data for only a relatively short time. Nevertheless, several conclusions can be drawn from the Workshop presentations concerning the value of imaging spectrometry to Earth remote sensing. First, work with AIS has shown that direct identification of minerals through high spectral resolution imaging is a reality for a wide range of materials and geological settings. Second, there are strong indications that high spectral resolution remote sensing will enhance the ability to map vegetation species. There are also good indications that imaging spectrometry will be useful for biochemical studies of vegetation. Finally, there are a number of new data analysis techniques under development which should lead to more efficient and complete information extraction from imaging spectrometer data. The results of the Workshop indicate that as experience is gained with this new class of data, and as new analysis methodologies are developed and applied, the value of imaging spectrometry should increase.
Generalization of the Lyot filter and its application to snapshot spectral imaging.
Gorman, Alistair; Fletcher-Holmes, David William; Harvey, Andrew Robert
2010-03-15
A snapshot multi-spectral imaging technique is described which employs multiple cascaded birefringent interferometers to simultaneously spectrally filter and demultiplex multiple spectral images onto a single detector array. Spectral images are recorded directly without the need for inversion and without rejection of light and so the technique offers the potential for high signal-to-noise ratio. An example of an eight-band multi-spectral movie sequence is presented; we believe this is the first such demonstration of a technique able to record multi-spectral movie sequences without the need for computer reconstruction.
CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels.
Kartasalo, Kimmo; Pölönen, Risto-Pekka; Ojala, Marisa; Rasku, Jyrki; Lekkala, Jukka; Aalto-Setälä, Katriina; Kallio, Pasi
2015-10-26
Orientation and the degree of isotropy are important in many biological systems such as the sarcomeres of cardiomyocytes and other fibrillar structures of the cytoskeleton. Image based analysis of such structures is often limited to qualitative evaluation by human experts, hampering the throughput, repeatability and reliability of the analyses. Software tools are not readily available for this purpose and the existing methods typically rely at least partly on manual operation. We developed CytoSpectre, an automated tool based on spectral analysis, allowing the quantification of orientation and also size distributions of structures in microscopy images. CytoSpectre utilizes the Fourier transform to estimate the power spectrum of an image and based on the spectrum, computes parameter values describing, among others, the mean orientation, isotropy and size of target structures. The analysis can be further tuned to focus on targets of particular size at cellular or subcellular scales. The software can be operated via a graphical user interface without any programming expertise. We analyzed the performance of CytoSpectre by extensive simulations using artificial images, by benchmarking against FibrilTool and by comparisons with manual measurements performed for real images by a panel of human experts. The software was found to be tolerant against noise and blurring and superior to FibrilTool when analyzing realistic targets with degraded image quality. The analysis of real images indicated general good agreement between computational and manual results while also revealing notable expert-to-expert variation. Moreover, the experiment showed that CytoSpectre can handle images obtained of different cell types using different microscopy techniques. Finally, we studied the effect of mechanical stretching on cardiomyocytes to demonstrate the software in an actual experiment and observed changes in cellular orientation in response to stretching. CytoSpectre, a versatile, easy-to-use software tool for spectral analysis of microscopy images was developed. The tool is compatible with most 2D images and can be used to analyze targets at different scales. We expect the tool to be useful in diverse applications dealing with structures whose orientation and size distributions are of interest. While designed for the biological field, the software could also be useful in non-biological applications.
Infrared and visible image fusion with spectral graph wavelet transform.
Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Zong, Jing-guo
2015-09-01
Infrared and visible image fusion technique is a popular topic in image analysis because it can integrate complementary information and obtain reliable and accurate description of scenes. Multiscale transform theory as a signal representation method is widely used in image fusion. In this paper, a novel infrared and visible image fusion method is proposed based on spectral graph wavelet transform (SGWT) and bilateral filter. The main novelty of this study is that SGWT is used for image fusion. On the one hand, source images are decomposed by SGWT in its transform domain. The proposed approach not only effectively preserves the details of different source images, but also excellently represents the irregular areas of the source images. On the other hand, a novel weighted average method based on bilateral filter is proposed to fuse low- and high-frequency subbands by taking advantage of spatial consistency of natural images. Experimental results demonstrate that the proposed method outperforms seven recently proposed image fusion methods in terms of both visual effect and objective evaluation metrics.
Spectral Analysis of Breast Cancer on Tissue Microarrays: Seeing Beyond Morphology
2005-04-01
Harvey N., Szymanski J.J., Bloch J.J., Mitchell M. investigation of image feature extraction by a genetic algorithm. Proc. SPIE 1999;3812:24-31. 11...automated feature extraction using multiple data sources. Proc. SPIE 2003;5099:190-200. 15 4 Spectral-Spatial Analysis of Urine Cytology Angeletti et al...Appendix Contents: 1. Harvey, N.R., Levenson, R.M., Rimm, D.L. (2003) Investigation of Automated Feature Extraction Techniques for Applications in
In vivo and in vitro hyperspectral imaging of cervical neoplasia
NASA Astrophysics Data System (ADS)
Wang, Chaojian; Zheng, Wenli; Bu, Yanggao; Chang, Shufang; Tong, Qingping; Zhang, Shiwu; Xu, Ronald X.
2014-02-01
Cervical cancer is a prevalent disease in many developing countries. Colposcopy is the most common approach for screening cervical intraepithelial neoplasia (CIN). However, its clinical efficacy heavily relies on the examiner's experience. Spectroscopy is a potentially effective method for noninvasive diagnosis of cervical neoplasia. In this paper, we introduce a hyperspectral imaging technique for noninvasive detection and quantitative analysis of cervical neoplasia. A hyperspectral camera is used to collect the reflectance images of the entire cervix under xenon lamp illumination, followed by standard colposcopy examination and cervical tissue biopsy at both normal and abnormal sites in different quadrants. The collected reflectance data are calibrated and the hyperspectral signals are extracted. Further spectral analysis and image processing works are carried out to classify tissue into different types based on the spectral characteristics at different stages of cervical intraepithelial neoplasia. The hyperspectral camera is also coupled with a lab microscope to acquire the hyperspectral transmittance images of the pathological slides. The in vivo and the in vitro imaging results are compared with clinical findings to assess the accuracy and efficacy of the method.
Terahertz imaging applied to cancer diagnosis.
Brun, M-A; Formanek, F; Yasuda, A; Sekine, M; Ando, N; Eishii, Y
2010-08-21
We report on terahertz (THz) time-domain spectroscopy imaging of 10 microm thick histological sections. The sections are prepared according to standard pathological procedures and deposited on a quartz window for measurements in reflection geometry. Simultaneous acquisition of visible images enables registration of THz images and thus the use of digital pathology tools to investigate the links between the underlying cellular structure and specific THz information. An analytic model taking into account the polarization of the THz beam, its incidence angle, the beam shift between the reference and sample pulses as well as multiple reflections within the sample is employed to determine the frequency-dependent complex refractive index. Spectral images are produced through segmentation of the extracted refractive index data using clustering methods. Comparisons of visible and THz images demonstrate spectral differences not only between tumor and healthy tissues but also within tumors. Further visualization using principal component analysis suggests different mechanisms as to the origin of image contrast.
Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging
Mo, Changyeun; Kim, Giyoung; Lim, Jongguk; Kim, Moon S.; Cho, Hyunjeong; Cho, Byoung-Kwan
2015-01-01
Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to discrimination between sound and discolored lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained in the 400–1000 nm wavelength range. The optimal wavebands for discriminating between discolored and sound lettuce surfaces were determined using one-way analysis of variance. Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted in enhanced classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) algorithms at wavelengths of 552/701 nm and 557–701 nm, respectively, exhibited better classification performances compared to results obtained for all possible two-waveband combinations. These results suggest that hyperspectral reflectance imaging techniques can potentially be used to discriminate between discolored and sound fresh-cut lettuce. PMID:26610510
Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging.
Mo, Changyeun; Kim, Giyoung; Lim, Jongguk; Kim, Moon S; Cho, Hyunjeong; Cho, Byoung-Kwan
2015-11-20
Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to discrimination between sound and discolored lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained in the 400-1000 nm wavelength range. The optimal wavebands for discriminating between discolored and sound lettuce surfaces were determined using one-way analysis of variance. Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted in enhanced classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) algorithms at wavelengths of 552/701 nm and 557-701 nm, respectively, exhibited better classification performances compared to results obtained for all possible two-waveband combinations. These results suggest that hyperspectral reflectance imaging techniques can potentially be used to discriminate between discolored and sound fresh-cut lettuce.
NASA Astrophysics Data System (ADS)
Iabchoon, Sanwit; Wongsai, Sangdao; Chankon, Kanoksuk
2017-10-01
Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.
NASA Technical Reports Server (NTRS)
Heydorn, R. D.
1984-01-01
The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of the Earth from remotely sensed measurement of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inference about the Earth.
Optimization of compressive 4D-spatio-spectral snapshot imaging
NASA Astrophysics Data System (ADS)
Zhao, Xia; Feng, Weiyi; Lin, Lihua; Su, Wu; Xu, Guoqing
2017-10-01
In this paper, a modified 3D computational reconstruction method in the compressive 4D-spectro-volumetric snapshot imaging system is proposed for better sensing spectral information of 3D objects. In the design of the imaging system, a microlens array (MLA) is used to obtain a set of multi-view elemental images (EIs) of the 3D scenes. Then, these elemental images with one dimensional spectral information and different perspectives are captured by the coded aperture snapshot spectral imager (CASSI) which can sense the spectral data cube onto a compressive 2D measurement image. Finally, the depth images of 3D objects at arbitrary depths, like a focal stack, are computed by inversely mapping the elemental images according to geometrical optics. With the spectral estimation algorithm, the spectral information of 3D objects is also reconstructed. Using a shifted translation matrix, the contrast of the reconstruction result is further enhanced. Numerical simulation results verify the performance of the proposed method. The system can obtain both 3D spatial information and spectral data on 3D objects using only one single snapshot, which is valuable in the agricultural harvesting robots and other 3D dynamic scenes.
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions
NASA Astrophysics Data System (ADS)
Novosad, Philip; Reader, Andrew J.
2016-06-01
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [11C]SCH23390 data, showing promising results.
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.
Novosad, Philip; Reader, Andrew J
2016-06-21
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [(11)C]SCH23390 data, showing promising results.
Chandra/ACIS Observations of the 30 Doradus Star-Forming Complex
NASA Astrophysics Data System (ADS)
Townsley, Leisa; Broos, Patrick; Feigelson, Eric; Burrows, David; Chu, You-Hua; Garmire, Gordon; Griffiths, Richard; Maeda, Yoshitomo; Pavlov, George; Tsuboi, Yohko
2002-04-01
30 Doradus is the archetype giant extragalactic H II region, a massive star-forming complex in the Large Magellanic Cloud. We examine high-spatial-resolution X-ray images and spectra of the essential parts of 30 Doradus, obtained with the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. The central cluster of young high-mass stars, R136, is resolved at the arcsecond level, allowing spectral analysis of bright constituents; other OB/Wolf-Rayet binaries and multiple systems (e.g. R139, R140) are also detected. Spatially-resolved spectra are presented for N157B, the composite SNR containing a 16-msec pulsar. The spectrally soft superbubble structures seen by ROSAT are dramatically imaged by Chandra; we explore the spectral differences they exhibit. Taken together, the components of 30 Doradus give us an excellent microscopic view of high-energy phenomena seen on larger scales in more distant galaxies as starbursts and galactic winds.
A new COmpact hyperSpectral Imaging system (COSI) for UAS
NASA Astrophysics Data System (ADS)
Sima, Aleksandra; Baeck, Pieter-Jan; Delalieux, Stephanie; Livens, Stefan; Blommaert, Joris; Delauré, Bavo; Boonen, Miet
2016-04-01
This presentation gives an overview of the new COmpact hyperSpectral Imaging (COSI) system recently developed at the Flemish Institute for Technological Research (VITO, Belgium) and suitable for multirotor Remotely Piloted Aircraft Systems (RPAS) platforms. The camera is compact and lightweight, with a total mass of less than 500g including: an embedded computer, storage and power distribution unit. Such device miniaturization was possible thanks to the application of linear variable filters technology, in which image lines in the across flight direction correspond to different spectral bands as well as a different location on the ground (frame camera). The scanning motion is required to retrieve the complete spectrum for every point on the ground. The COSI camera captures data in 72 narrow (FWHM: 5nm to 10 nm) bands in the spectral range of 600-900 nm. Such spectral information is highly favourable for vegetation studies, since the main chlorophyll absorption feature centred around 680 nm is measured, as well as, the red-edge region (680 nm to 730 nm) which is often linked to plant stress. The NIR region furthermore reflects the internal plant structure, and is often linked to leaf area index and plant biomass. Next to the high spectral resolution, the COSI imager also provides a very high spatial data resolution i.e. images captured with a 9mm lens at 40m altitude cover a swath of ~40m with a ~2cm ground sampling distance. A dedicated data processing chain transforms the raw images into various information and action maps representing the status of the vegetation health and thus allowing for optimization of the management decisions within agricultural fields. In a number of test flights, hyperspectral COSI imager data were acquired covering diverse environments, e.g.: strawberry fields, natural grassland or pear orchards. Next to the COSI system overview, examples of collected data will be presented together with the results of the spectral data analysis. Lessons learned and an outlook on further improvements will be also shared with the audience.
NASA Astrophysics Data System (ADS)
Ozolinsh, Maris; Fomins, Sergejs
2010-11-01
Multispectral color analysis was used for spectral scanning of Ishihara and Rabkin color deficiency test book images. It was done using tunable liquid-crystal LC filters built in the Nuance II analyzer. Multispectral analysis keeps both, information on spatial content of tests and on spectral content. Images were taken in the range of 420-720nm with a 10nm step. We calculated retina neural activity charts taking into account cone sensitivity functions, and processed charts in order to find the visibility of latent symbols in color deficiency plates using cross-correlation technique. In such way the quantitative measure is found for each of diagnostics plate for three different color deficiency carrier types - protanopes, deutanopes and tritanopes. Multispectral color analysis allows to determine the CIE xyz color coordinates of pseudoisochromatic plate design elements and to perform statistical analysis of these data to compare the color quality of available color deficiency test books.
Non-Invasive Survey of Old Paintings Using Vnir Hyperspectral Sensor
NASA Astrophysics Data System (ADS)
Matouskova, E.; Pavelka, K.; Svadlenkova, Z.
2013-07-01
Hyperspectral imaging is relatively new method developed primarily for army applications with respect to detection of possible chemical weapon existence and as an efficient assistant for a geological survey. The method is based on recording spectral profile for many hundreds of narrow spectral band. The technique gives full spectral curve of explored pixel which is an unparalleled signature of pixels material. Spectral signatures can then be compared with pre-defined spectral libraries or they can be created with respect to application. A new project named "New Modern Methods of Non-invasive Survey of Historical Site Objects" started at CTU in Prague with the New Year. The project is designed for 4 years and is funded by the Ministry of Culture in the Czech Republic. It is focused on material and chemical composition, damage diagnostics, condition description of paintings, images, construction components and whole structure object analysis in cultural heritage domain. This paper shows first results of the project on painting documentation field as well as used instrument. Hyperspec VNIR by Headwall Photonics was used for this analysis. It operates in the spectral range between 400 and 1000 nm. Comparison with infrared photography is discussed. The goal of this contribution is a non-destructive deep exploration of specific paintings. Two original 17th century paintings by Flemish authors Thomas van Apshoven ("On the Road") and David Teniers the Younger ("The Interior of a Mill") were chosen for the first analysis with a kind permission of academic painter Mr. M. Martan. Both paintings oil painted on wooden panel. This combination was chosen because of the possibility of underdrawing visualization which is supposed to be the most uncomplicated painting combination for this type of analysis.
Parallel-multiplexed excitation light-sheet microscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Xu, Dongli; Zhou, Weibin; Peng, Leilei
2017-02-01
Laser scanning light-sheet imaging allows fast 3D image of live samples with minimal bleach and photo-toxicity. Existing light-sheet techniques have very limited capability in multi-label imaging. Hyper-spectral imaging is needed to unmix commonly used fluorescent proteins with large spectral overlaps. However, the challenge is how to perform hyper-spectral imaging without sacrificing the image speed, so that dynamic and complex events can be captured live. We report wavelength-encoded structured illumination light sheet imaging (λ-SIM light-sheet), a novel light-sheet technique that is capable of parallel multiplexing in multiple excitation-emission spectral channels. λ-SIM light-sheet captures images of all possible excitation-emission channels in true parallel. It does not require compromising the imaging speed and is capable of distinguish labels by both excitation and emission spectral properties, which facilitates unmixing fluorescent labels with overlapping spectral peaks and will allow more labels being used together. We build a hyper-spectral light-sheet microscope that combined λ-SIM with an extended field of view through Bessel beam illumination. The system has a 250-micron-wide field of view and confocal level resolution. The microscope, equipped with multiple laser lines and an unlimited number of spectral channels, can potentially image up to 6 commonly used fluorescent proteins from blue to red. Results from in vivo imaging of live zebrafish embryos expressing various genetic markers and sensors will be shown. Hyper-spectral images from λ-SIM light-sheet will allow multiplexed and dynamic functional imaging in live tissue and animals.
Lau, Justin Y C; Geraghty, Benjamin J; Chen, Albert P; Cunningham, Charles H
2018-09-01
For 13 C echo-planar imaging (EPI) with spectral-spatial excitation, main field inhomogeneity can result in reduced flip angle and spatial artifacts. A hybrid time-resolved pulse sequence, multi-echo spectral-spatial EPI, is proposed combining broader spectral-spatial passbands for greater off-resonance tolerance with a multi-echo acquisition to separate signals from potentially co-excited resonances. The performance of the imaging sequence and the reconstruction pipeline were evaluated for 1 H imaging using a series of increasingly dilute 1,4-dioxane solutions and for 13 C imaging using an ethylene glycol phantom. Hyperpolarized [1- 13 C]pyruvate was administered to two healthy rats. Multi-echo data of the rat kidneys were acquired to test realistic cases of off-resonance. Analysis of separated images of water and 1,4-dioxane following multi-echo signal decomposition showed water-to-dioxane 1 H signal ratios that were in agreement with the independent measurements by 1 H spectroscopy for all four concentrations of 1,4-dioxane. The 13 C signal ratio of two co-excited resonances of ethylene glycol was accurately recovered after correction for the spectral profile of the redesigned spectral-spatial pulse. In vivo, successful separation of lactate and pyruvate-hydrate signals was achieved for all except the early time points during which signal variations exceeded the temporal resolution of the multi-echo acquisition. Improved tolerance to off-resonance in the new 13 C data acquisition pipeline was demonstrated in vitro and in vivo. Magn Reson Med 80:925-934, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Deglint, Jason; Chung, Audrey G.; Chwyl, Brendan; Amelard, Robert; Kazemzadeh, Farnoud; Wang, Xiao Yu; Clausi, David A.; Wong, Alexander
2016-03-01
Traditional photoplethysmographic imaging (PPGI) systems use the red, green, and blue (RGB) broadband measurements of a consumer digital camera to remotely estimate a patients heart rate; however, these broadband RGB signals are often corrupted by ambient noise, making the extraction of subtle fluctuations indicative of heart rate difficult. Therefore, the use of narrow-band spectral measurements can significantly improve the accuracy. We propose a novel digital spectral demultiplexing (DSD) method to infer narrow-band spectral information from acquired broadband RGB measurements in order to estimate heart rate via the computation of motion- compensated skin erythema fluctuation. Using high-resolution video recordings of human participants, multiple measurement locations are automatically identified on the cheeks of an individual, and motion-compensated broadband reflectance measurements are acquired at each measurement location over time via measurement location tracking. The motion-compensated broadband reflectance measurements are spectrally demultiplexed using a non-linear inverse model based on the spectral sensitivity of the camera's detector. A PPG signal is then computed from the demultiplexed narrow-band spectral information via skin erythema fluctuation analysis, with improved signal-to-noise ratio allowing for reliable remote heart rate measurements. To assess the effectiveness of the proposed system, a set of experiments involving human motion in a front-facing position were performed under ambient lighting conditions. Experimental results indicate that the proposed system achieves robust and accurate heart rate measurements and can provide additional information about the participant beyond the capabilities of traditional PPGI methods.
A database for spectral image quality
NASA Astrophysics Data System (ADS)
Le Moan, Steven; George, Sony; Pedersen, Marius; Blahová, Jana; Hardeberg, Jon Yngve
2015-01-01
We introduce a new image database dedicated to multi-/hyperspectral image quality assessment. A total of nine scenes representing pseudo-at surfaces of different materials (textile, wood, skin. . . ) were captured by means of a 160 band hyperspectral system with a spectral range between 410 and 1000nm. Five spectral distortions were designed, applied to the spectral images and subsequently compared in a psychometric experiment, in order to provide a basis for applications such as the evaluation of spectral image difference measures. The database can be downloaded freely from http://www.colourlab.no/cid.
Submillimeter, millimeter, and microwave spectral line catalogue, revision 3
NASA Technical Reports Server (NTRS)
Pickett, H. M.; Poynter, R. L.; Cohen, E. A.
1992-01-01
A computer-accessible catalog of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10,000 GHz (i.e., wavelengths longer than 30 micrometers) is described. The catalog can be used as a planning or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, the lower state energy, and the quantum number assignment. This edition of the catalog has information on 206 atomic and molecular species and includes a total of 630,924 lines. The catalog was constructed by using theoretical least square fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalog will add more atoms and molecules and update the present listings as new data appear. The catalog is available as a magnetic data tape recorded in card images, with one card image per spectral line, from the National Space Science Data Center, located at Goddard Space Flight Center.
Results of ACTIM: an EDA study on spectral laser imaging
NASA Astrophysics Data System (ADS)
Hamoir, Dominique; Hespel, Laurent; Déliot, Philippe; Boucher, Yannick; Steinvall, Ove; Ahlberg, Jörgen; Larsson, Hakan; Letalick, Dietmar; Lutzmann, Peter; Repasi, Endre; Ritt, Gunnar
2011-11-01
The European Defence Agency (EDA) launched the Active Imaging (ACTIM) study to investigate the potential of active imaging, especially that of spectral laser imaging. The work included a literature survey, the identification of promising military applications, system analyses, a roadmap and recommendations. Passive multi- and hyper-spectral imaging allows discriminating between materials. But the measured radiance in the sensor is difficult to relate to spectral reflectance due to the dependence on e.g. solar angle, clouds, shadows... In turn, active spectral imaging offers a complete control of the illumination, thus eliminating these effects. In addition it allows observing details at long ranges, seeing through degraded atmospheric conditions, penetrating obscurants (foliage, camouflage...) or retrieving polarization information. When 3D, it is suited to producing numerical terrain models and to performing geometry-based identification. Hence fusing the knowledge of ladar and passive spectral imaging will result in new capabilities. We have identified three main application areas for active imaging, and for spectral active imaging in particular: (1) long range observation for identification, (2) mid-range mapping for reconnaissance, (3) shorter range perception for threat detection. We present the system analyses that have been performed for confirming the interests, limitations and requirements of spectral active imaging in these three prioritized applications.
Resolution Enhancement of Hyperion Hyperspectral Data using Ikonos Multispectral Data
2007-09-01
spatial - resolution hyperspectral image to produce a sharpened product. The result is a product that has the spectral properties of the ...multispectral sensors. In this work, we examine the benefits of combining data from high- spatial - resolution , low- spectral - resolution spectral imaging...sensors with data obtained from high- spectral - resolution , low- spatial - resolution spectral imaging sensors.
Preliminary results of the comparative study between EO-1/Hyperion and ALOS/PALSAR
NASA Astrophysics Data System (ADS)
Koizumi, E.; Furuta, R.; Yamamoto, A.
2011-12-01
[Introduction]Hyper-spectral remote sensing images have been used for land-cover classification due to their high spectral resolutions. Synthetic Aperture Radar (SAR) remote sensing data are also useful to probe surface condition because radar image reflects surface geometry, although there are not so many reports about the land-cover detection with combination use of both hyper-spectral data and SAR data. Among SAR sensors, L-band SAR is thought to be useful tool to find physical properties because its comparatively long wave length can through small objects on surface. We are comparing the result of land cover classification and/or physical values from hyper-spectral and L-band SAR data to find the relationship between these two quite different sensors and to confirm the possibility of the combined analysis of hyper-spectral and L-band SAR data, and in this presentation we will report the preliminary result of this study. There are only few sources of both hyper-spectral and L-band SAR data from the space in this time, however, several space organizations plan to launch new satellites on which hyper-spectral or L-band SAR equipments are mounted in next few years. So, the importance of the combined analysis will increase more than ever. [Target Area]We are performing and planning analyses on the following areas in this study. (a)South of Cairo, Nile river area, Egypt, for sand, sandstone, limestone, river, crops. (b)Mount Sakurajima, Japan, for igneous rock and other related geological property. [Methods and Results]EO-1 Hyperion data are analyzed in this study as hyper-spectral data. The Hyperion equipment has 242 channels but some of them include full noise or have no data. We selected channels for analysis by checking each channel, and select about 150 channels (depend on the area). Before analysis, the atmospheric correction of ATCOR-3 was applied for the selected channels. The corrected data were analyzed by unsupervised classification or principal component analysis (PCA). We also did the unsupervised classification with the several components from PCA. According to the analysis results, several classifications can be extracted for each category (vegetation, sand and rocks, and water). One of the interesting results is that there are a few classes for sand as those of other categories, and these classes seem to reflect artificial and natural surface changes that are some result of excavation or scratching. ALOS PALSAR data are analyzed as L-band SAR data. We selected the Dual Polarization data for each target area. The data were converted to backscattered images, and then calculated some image statistic values. The topographic information also calculates with SAR interferometry technique as reference. Comparing the Hyperion classification results with the result of the calculation of statistic values from PALSAR, there are some areas where relativities seem to be confirmed. To confirm the combined analysis between hyper-spectral and L-band SAR data to detect and classify the surface material, further studies are still required. We will continue to investigate more efficient analytic methods and to examine other functions like the adopted channels, the number of class in classification, the kind of statistic information, and so on, to refine the method.
NASA Astrophysics Data System (ADS)
Liu, Chanjuan; van Netten, Jaap J.; Klein, Marvin E.; van Baal, Jeff G.; Bus, Sicco A.; van der Heijden, Ferdi
2013-12-01
Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.
NASA Technical Reports Server (NTRS)
Adams, J. B.; Smith, M. O.; Johnson, P. E.
1986-01-01
A Viking Lander 1 image was modeled as mixtures of reflectance spectra of palagonite dust, gray andesitelike rock, and a coarse rocklike soil. The rocks are covered to varying degrees by dust but otherwise appear unweathered. Rocklike soil occurs as lag deposits in deflation zones around stones and on top of a drift and as a layer in a trench dug by the lander. This soil probably is derived from the rocks by wind abrasion and/or spallation. Dust is the major component of the soil and covers most of the surface. The dust is unrelated spectrally to the rock but is equivalent to the global-scale dust observed telescopically. A new method was developed to model a multispectral image as mixtures of end-member spectra and to compare image spectra directly with laboratory reference spectra. The method for the first time uses shade and secondary illumination effects as spectral end-members; thus the effects of topography and illumination on all scales can be isolated or removed. The image was calibrated absolutely from the laboratory spectra, in close agreement with direct calibrations. The method has broad applications to interpreting multispectral images, including satellite images.
Using spectral information in forensic imaging.
Miskelly, Gordon M; Wagner, John H
2005-12-20
Improved detection of forensic evidence by combining narrow band photographic images taken at a range of wavelengths is dependent on the substance of interest having a significantly different spectrum from the underlying substrate. While some natural substances such as blood have distinctive spectral features which are readily distinguished from common colorants, this is not true for visualization agents commonly used in forensic science. We now show that it is possible to select reagents with narrow spectral features that lead to increased visibility using digital cameras and computer image enhancement programs even if their coloration is much less intense to the unaided eye than traditional reagents. The concept is illustrated by visualising latent fingermarks on paper with the zinc complex of Ruhemann's Purple, cyanoacrylate-fumed fingerprints with Eu(tta)(3)(phen), and soil prints with 2,6-bis(benzimidazol-2-yl)-4-[4'-(dimethylamino)phenyl]pyridine [BBIDMAPP]. In each case background correction is performed at one or two wavelengths bracketing the narrow absorption or emission band of these compounds. However, compounds with sharp spectral features would also lead to improved detection using more advanced algorithms such as principal component analysis.
NASA Astrophysics Data System (ADS)
Coddington, Odele; Platnick, Steven; Pilewskie, Peter; Schmidt, Sebastian
2016-04-01
The NASA Pre-Aerosol, Cloud and ocean Ecosystem (PACE) Science Definition Team (SDT) report released in 2012 defined imager stability requirements for the Ocean Color Instrument (OCI) at the sub-percent level. While the instrument suite and measurement requirements are currently being determined, the PACE SDT report provided details on imager options and spectral specifications. The options for a threshold instrument included a hyperspectral imager from 350-800 nm, two near-infrared (NIR) channels, and three short wave infrared (SWIR) channels at 1240, 1640, and 2130 nm. Other instrument options include a variation of the threshold instrument with 3 additional spectral channels at 940, 1378, and 2250 nm and the inclusion of a spectral polarimeter. In this work, we present cloud retrieval information content studies of optical thickness, droplet effective radius, and thermodynamic phase to quantify the potential for continuing the low cloud climate data record established by the MOderate Resolution and Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) missions with the PACE OCI instrument (i.e., non-polarized cloud reflectances and in the absence of midwave and longwave infrared channels). The information content analysis is performed using the GEneralized Nonlinear Retrieval Analysis (GENRA) methodology and the Collection 6 simulated cloud reflectance data for the common MODIS/VIIRS algorithm (MODAWG) for Cloud Mask, Cloud-Top, and Optical Properties. We show that using both channels near 2 microns improves the probability of cloud phase discrimination with shortwave-only cloud reflectance retrievals. Ongoing work will extend the information content analysis, currently performed for dark ocean surfaces, to different land surface types.
Spectroscopically Enhanced Method and System for Multi-Factor Biometric Authentication
NASA Astrophysics Data System (ADS)
Pishva, Davar
This paper proposes a spectroscopic method and system for preventing spoofing of biometric authentication. One of its focus is to enhance biometrics authentication with a spectroscopic method in a multifactor manner such that a person's unique ‘spectral signatures’ or ‘spectral factors’ are recorded and compared in addition to a non-spectroscopic biometric signature to reduce the likelihood of imposter getting authenticated. By using the ‘spectral factors’ extracted from reflectance spectra of real fingers and employing cluster analysis, it shows how the authentic fingerprint image presented by a real finger can be distinguished from an authentic fingerprint image embossed on an artificial finger, or molded on a fingertip cover worn by an imposter. This paper also shows how to augment two widely used biometrics systems (fingerprint and iris recognition devices) with spectral biometrics capabilities in a practical manner and without creating much overhead or inconveniencing their users.
Semiconductor Laser Multi-Spectral Sensing and Imaging
Le, Han Q.; Wang, Yang
2010-01-01
Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers. PMID:22315555
Semiconductor laser multi-spectral sensing and imaging.
Le, Han Q; Wang, Yang
2010-01-01
Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.
Spectrally-encoded color imaging
Kang, DongKyun; Yelin, Dvir; Bouma, Brett E.; Tearney, Guillermo J.
2010-01-01
Spectrally-encoded endoscopy (SEE) is a technique for ultraminiature endoscopy that encodes each spatial location on the sample with a different wavelength. One limitation of previous incarnations of SEE is that it inherently creates monochromatic images, since the spectral bandwidth is expended in the spatial encoding process. Here we present a spectrally-encoded imaging system that has color imaging capability. The new imaging system utilizes three distinct red, green, and blue spectral bands that are configured to illuminate the grating at different incident angles. By careful selection of the incident angles, the three spectral bands can be made to overlap on the sample. To demonstrate the method, a bench-top system was built, comprising a 2400-lpmm grating illuminated by three 525-μm-diameter beams with three different spectral bands. Each spectral band had a bandwidth of 75 nm, producing 189 resolvable points. A resolution target, color phantoms, and excised swine small intestine were imaged to validate the system's performance. The color SEE system showed qualitatively and quantitatively similar color imaging performance to that of a conventional digital camera. PMID:19688002
Duan, Xinhui; Arbique, Gary; Guild, Jeffrey; Xi, Yin; Anderson, Jon
2018-05-01
The purpose of this study was to evaluate the quantitative accuracy of spectral images from a detector-based spectral CT scanner using a phantom with iodine-loaded inserts. A 40-cm long-body phantom with seven iodine inserts (2-20 mg/ml of iodine) was used in the study. The inserts could be placed at 5.5 or 10.5 cm from the phantom axis. The phantom was scanned five times for each insert configuration using 120 kVp tube voltage. A set of iodine, virtual noncontrast, effective atomic number, and virtual monoenergetic spectral CT images were generated and measurements were made for all the iodine rods. Measured values were compared with reference values calculated from the chemical composition information provided by the phantom manufacturer. Radiation dose from the spectral CT was compared to a conventional CT using a CTDI (32 cm) phantom. Good agreement between measurements and reference values was achieved for all types of spectral images. The differences ranged from -0.46 to 0.1 mg/ml for iodine concentration, -9.95 to 6.41 HU for virtual noncontrast images, 0.12 to 0.35 for effective Z images, and -17.7 to 55.7 HU for virtual monoenergetic images. For a similar CTDIvol, image noise from the conventional CT was 10% lower than the spectral CT. The detector-based spectral CT can achieve accurate spectral measurements on iodine concentration, virtual non-contrast images, effective atomic numbers, and virtual monoenergetic images. © 2018 American Association of Physicists in Medicine.
Parallel Computing for the Computed-Tomography Imaging Spectrometer
NASA Technical Reports Server (NTRS)
Lee, Seungwon
2008-01-01
This software computes the tomographic reconstruction of spatial-spectral data from raw detector images of the Computed-Tomography Imaging Spectrometer (CTIS), which enables transient-level, multi-spectral imaging by capturing spatial and spectral information in a single snapshot.
Spectral Unmixing Analysis of Time Series Landsat 8 Images
NASA Astrophysics Data System (ADS)
Zhuo, R.; Xu, L.; Peng, J.; Chen, Y.
2018-05-01
Temporal analysis of Landsat 8 images opens up new opportunities in the unmixing procedure. Although spectral analysis of time series Landsat imagery has its own advantage, it has rarely been studied. Nevertheless, using the temporal information can provide improved unmixing performance when compared to independent image analyses. Moreover, different land cover types may demonstrate different temporal patterns, which can aid the discrimination of different natures. Therefore, this letter presents time series K-P-Means, a new solution to the problem of unmixing time series Landsat imagery. The proposed approach is to obtain the "purified" pixels in order to achieve optimal unmixing performance. The vertex component analysis (VCA) is used to extract endmembers for endmember initialization. First, nonnegative least square (NNLS) is used to estimate abundance maps by using the endmember. Then, the estimated endmember is the mean value of "purified" pixels, which is the residual of the mixed pixel after excluding the contribution of all nondominant endmembers. Assembling two main steps (abundance estimation and endmember update) into the iterative optimization framework generates the complete algorithm. Experiments using both simulated and real Landsat 8 images show that the proposed "joint unmixing" approach provides more accurate endmember and abundance estimation results compared with "separate unmixing" approach.
USDA-ARS?s Scientific Manuscript database
Spectral scattering is useful for assessing the firmness and soluble solids content (SSC) of apples. In previous research, mean reflectance extracted from the hyperspectral scattering profiles was used for this purpose since the method is simple and fast and also gives relatively good predictions. T...
NASA Astrophysics Data System (ADS)
Zhou, Xiran; Liu, Jun; Liu, Shuguang; Cao, Lei; Zhou, Qiming; Huang, Huawen
2014-02-01
High spatial resolution and spectral fidelity are basic standards for evaluating an image fusion algorithm. Numerous fusion methods for remote sensing images have been developed. Some of these methods are based on the intensity-hue-saturation (IHS) transform and the generalized IHS (GIHS), which may cause serious spectral distortion. Spectral distortion in the GIHS is proven to result from changes in saturation during fusion. Therefore, reducing such changes can achieve high spectral fidelity. A GIHS-based spectral preservation fusion method that can theoretically reduce spectral distortion is proposed in this study. The proposed algorithm consists of two steps. The first step is spectral modulation (SM), which uses the Gaussian function to extract spatial details and conduct SM of multispectral (MS) images. This method yields a desirable visual effect without requiring histogram matching between the panchromatic image and the intensity of the MS image. The second step uses the Gaussian convolution function to restore lost edge details during SM. The proposed method is proven effective and shown to provide better results compared with other GIHS-based methods.
Hyperspectral imaging for the detection of retinal disease
NASA Astrophysics Data System (ADS)
Harvey, Andrew R.; Lawlor, Joanne; McNaught, Andrew I.; Williams, John W.; Fletcher-Holmes, David W.
2002-11-01
Hyperspectral imaging (HSI) shows great promise for the detection and classification of several diseases, particularly in the fields of "optical biopsy" as applied to oncology, and functional retinal imaging in ophthalmology. In this paper, we discuss the application of HSI to the detection of retinal diseases and technological solutions that address some of the fundamental difficulties of spectral imaging within the eye. HSI of the retina offers a route to non-invasively deduce biochemical and metabolic processes within the retina. For example it shows promise for the mapping of retinal blood perfusion using spectral signatures of oxygenated and deoxygenated hemoglobin. Compared with other techniques using just a few spectral measurements, it offers improved classification in the presence of spectral cross-contamination by pigments and other components within the retina. There are potential applications for this imaging technique in the investigation and treatment of the eye complications of diabetes, and other diseases involving disturbances to the retinal, or optic-nerve-head circulation. It is well known that high-performance HSI requires high signal-to-noise ratios (SNR) whereas the application of any imaging technique within the eye must cope with the twin limitations of the small numerical aperture provided by the entrance pupil to the eye and the limit on the radiant power at the retina. We advocate the use of spectrally-multiplexed spectral imaging techniques (the traditional filter wheel is a traditional example). These approaches enable a flexible approach to spectral imaging, with wider spectral range, higher SNRs and lower light intensity at the retina than could be achieved using a Fourier-transform (FT) approach. We report the use of spectral imaging to provide calibrated spectral albedo images of healthy and diseased retinas and the use of this data for screening purposes. These images clearly demonstrate the ability to distinguish between oxygenated and deoxygenated hemoglobin using spectral imaging and this shows promise for the early detection of various retinopathies.
Morris, Elizabeth A.; Kaplan, Jennifer B.; D’Alessio, Donna; Goldman, Debra; Moskowitz, Chaya S.
2017-01-01
Purpose To assess the extent of background parenchymal enhancement (BPE) at contrast material–enhanced (CE) spectral mammography and breast magnetic resonance (MR) imaging, to evaluate interreader agreement in BPE assessment, and to examine the relationships between clinical factors and BPE. Materials and Methods This was a retrospective, institutional review board–approved, HIPAA-compliant study. Two hundred seventy-eight women from 25 to 76 years of age with increased breast cancer risk who underwent CE spectral mammography and MR imaging for screening or staging from 2010 through 2014 were included. Three readers independently rated BPE on CE spectral mammographic and MR images with the ordinal scale: minimal, mild, moderate, or marked. To assess pairwise agreement between BPE levels on CE spectral mammographic and MR images and among readers, weighted κ coefficients with quadratic weights were calculated. For overall agreement, mean κ values and bootstrapped 95% confidence intervals were calculated. The univariate and multivariate associations between BPE and clinical factors were examined by using generalized estimating equations separately for CE spectral mammography and MR imaging. Results Most women had minimal or mild BPE at both CE spectral mammography (68%–76%) and MR imaging (69%–76%). Between CE spectral mammography and MR imaging, the intrareader agreement ranged from moderate to substantial (κ = 0.55–0.67). Overall agreement on BPE levels between CE spectral mammography and MR imaging and among readers was substantial (κ = 0.66; 95% confidence interval: 0.61, 0.70). With both modalities, BPE demonstrated significant association with menopausal status, prior breast radiation therapy, hormonal treatment, breast density on CE spectral mammographic images, and amount of fibroglandular tissue on MR images (P < .001 for all). Conclusion There was substantial agreement between readers for BPE detected on CE spectral mammographic and MR images. © RSNA, 2016 PMID:27379544
NASA Astrophysics Data System (ADS)
Duann, Jeng-Ren; Jan, Chia-Ing; Ou-Yang, Mang; Lin, Chia-Yi; Mo, Jen-Feng; Lin, Yung-Jiun; Tsai, Ming-Hsui; Chiou, Jin-Chern
2013-12-01
Recently, hyperspectral imaging (HSI) systems, which can provide 100 or more wavelengths of emission autofluorescence measures, have been used to delineate more complete spectral patterns associated with certain molecules relevant to cancerization. Such a spectral fingerprint may reliably correspond to a certain type of molecule and thus can be treated as a biomarker for the presence of that molecule. However, the outcomes of HSI systems can be a complex mixture of characteristic spectra of a variety of molecules as well as optical interferences due to reflection, scattering, and refraction. As a result, the mixed nature of raw HSI data might obscure the extraction of consistent spectral fingerprints. Here we present the extraction of the characteristic spectra associated with keratinized tissues from the HSI data of tissue sections from 30 oral cancer patients (31 tissue samples in total), excited at two different wavelength ranges (330 to 385 and 470 to 490 nm), using independent and principal component analysis (ICA and PCA) methods. The results showed that for both excitation wavelength ranges, ICA was able to resolve much more reliable spectral fingerprints associated with the keratinized tissues for all the oral cancer tissue sections with significantly higher mean correlation coefficients as compared to PCA (p<0.001).
NASA Astrophysics Data System (ADS)
Addink, Elisabeth A.; Van Coillie, Frieke M. B.; De Jong, Steven M.
2012-04-01
Traditional image analysis methods are mostly pixel-based and use the spectral differences of landscape elements at the Earth surface to classify these elements or to extract element properties from the Earth Observation image. Geographic object-based image analysis (GEOBIA) has received considerable attention over the past 15 years for analyzing and interpreting remote sensing imagery. In contrast to traditional image analysis, GEOBIA works more like the human eye-brain combination does. The latter uses the object's color (spectral information), size, texture, shape and occurrence to other image objects to interpret and analyze what we see. GEOBIA starts by segmenting the image grouping together pixels into objects and next uses a wide range of object properties to classify the objects or to extract object's properties from the image. Significant advances and improvements in image analysis and interpretation are made thanks to GEOBIA. In June 2010 the third conference on GEOBIA took place at the Ghent University after successful previous meetings in Calgary (2008) and Salzburg (2006). This special issue presents a selection of the 2010 conference papers that are worked out as full research papers for JAG. The papers cover GEOBIA applications as well as innovative methods and techniques. The topics range from vegetation mapping, forest parameter estimation, tree crown identification, urban mapping, land cover change, feature selection methods and the effects of image compression on segmentation. From the original 94 conference papers, 26 full research manuscripts were submitted; nine papers were selected and are presented in this special issue. Selection was done on the basis of quality and topic of the studies. The next GEOBIA conference will take place in Rio de Janeiro from 7 to 9 May 2012 where we hope to welcome even more scientists working in the field of GEOBIA.
Optimisation and evaluation of hyperspectral imaging system using machine learning algorithm
NASA Astrophysics Data System (ADS)
Suthar, Gajendra; Huang, Jung Y.; Chidangil, Santhosh
2017-10-01
Hyperspectral imaging (HSI), also called imaging spectrometer, originated from remote sensing. Hyperspectral imaging is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the objects physiology, morphology, and composition. The present work involves testing and evaluating the performance of the hyperspectral imaging system. The methodology involved manually taking reflectance of the object in many images or scan of the object. The object used for the evaluation of the system was cabbage and tomato. The data is further converted to the required format and the analysis is done using machine learning algorithm. The machine learning algorithms applied were able to distinguish between the object present in the hypercube obtain by the scan. It was concluded from the results that system was working as expected. This was observed by the different spectra obtained by using the machine-learning algorithm.
Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T
2016-07-08
A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.
NASA Astrophysics Data System (ADS)
Blackford, Ethan B.; Estepp, Justin R.; McDuff, Daniel J.
2018-02-01
Imaging photoplethysmography uses camera image sensors to measure variations in light absorption related to the delivery of the blood volume pulse to peripheral tissues. The characteristics of the measured BVP waveform depends on the spectral absorption of various tissue components including melanin, hemoglobin, water, and yellow pigments. Signal quality and artifact rejection can be enhanced by taking into account the spectral properties of the BVP waveform and surrounding tissue. The current literature regarding the spectral relationships of remote PPG is limited. To supplement this fundamental data, we present an analysis of remotely-measured, visible and near-infrared spectroscopy to better understand the spectral signature of remotely measured BVP signals. To do so, spectra were measured from the right cheek of 25, stationary participants whose heads were stabilized by a chinrest. A collimating lens was used to collect reflected light from a region of 3 cm in diameter. The spectrometer provided 3 nm resolution measurements from 500-1000 nm. Measurements were acquired at a rate of 50 complete spectra per second for a period of five minutes. Reference physiology, including electrocardiography was simultaneously and synchronously acquired. The spectral data were analyzed to determine the relationship between light wavelength and the resulting remote-BVP signal-to-noise ratio and to identify those bands best suited for pulse rate measurement. To our knowledge this is the most comprehensive dataset of remotely-measured spectral iPPG data. In due course, we plan to release this dataset for research purposes.
NASA Astrophysics Data System (ADS)
Butz, Christoph; Grosjean, Martin; Enters, Dirk; Tylmann, Wojciech
2014-05-01
Varved lake sediments have successfully been used to make inferences about past environmental and climate conditions from annual to multi-millennial scales. Among other proxies, concentrations of sedimentary photopigments have been used for temperature reconstructions. However, obtaining well calibrated annually resolved records from sediments still remains challenging. Most laboratory methods used to analyse lake sediments require physical subsampling and are destructive in the process. Hence, temporal resolution and number of data are limited by the amount of material available in the core. Furthermore, for very low sediment accumulation rates annual subsampling is often very difficult or even impossible. To address these problems we explore hyper-spectral imaging as a new method to analyse lake sediments based on their reflectance spectra in the visible and near infrared spectrum. In contrast to other fast and non-destructive methods like X-ray fluorescence, VIS/NIR reflectance spectrometry distinguishes between biogeochemical substances rather than single elements. Rein (2003) has shown that VIS-RS can be used to detect relative concentrations of sedimentary photopigments (e.g. chlorins, carotenoids) and clay minerals. This study presents an advanced approach using a hyper-spectral camera and remote sensing techniques to infer climate proxy data from reflectance spectra of varved lake sediments. Hyper-spectral imaging allows analysing an entire sediment core in a single measurement, producing a spectral dataset with very high spatial (30x30µm/pixel) and spectral resolutions (~1nm) and a higher spectral range (400-1000nm) compared to previously used spectrophotometers. This allows the analysis of data time series at sub-varve scales or spatial mapping of sedimentary substances (e.g. chlorophyll-a and diagenetic products) at very high resolution. The method is demonstrated on varved lake sediments from northern Poland showing the change of the relative concentrations of chlorin pigments within individual varve years. In a next step absolute concentrations of chlorins derived from HPLC measurements have been calibrated to the spectral data using a linear regression model. This results in a very high-resolution dataset of absolute sedimentary pigment concentrations. In a second example µXRF measurements are used to validate a spectral index for clay mineral detection.
NASA Technical Reports Server (NTRS)
Swayze, Gregg A.; Clark, Roger N.
1995-01-01
The rapid development of sophisticated imaging spectrometers and resulting flood of imaging spectrometry data has prompted a rapid parallel development of spectral-information extraction technology. Even though these extraction techniques have evolved along different lines (band-shape fitting, endmember unmixing, near-infrared analysis, neural-network fitting, and expert systems to name a few), all are limited by the spectrometer's signal to noise (S/N) and spectral resolution in producing useful information. This study grew from a need to quantitatively determine what effects these parameters have on our ability to differentiate between mineral absorption features using a band-shape fitting algorithm. We chose to evaluate the AVIRIS, HYDICE, MIVIS, GERIS, VIMS, NIMS, and ASTER instruments because they collect data over wide S/N and spectral-resolution ranges. The study evaluates the performance of the Tricorder algorithm, in differentiating between mineral spectra in the 0.4-2.5 micrometer spectral region. The strength of the Tricorder algorithm is in its ability to produce an easily understood comparison of band shape that can concentrate on small relevant portions of the spectra, giving it an advantage over most unmixing schemes, and in that it need not spend large amounts of time reoptimizing each time a new mineral component is added to its reference library, as is the case with neural-network schemes. We believe the flexibility of the Tricorder algorithm is unparalleled among spectral-extraction techniques and that the results from this study, although dealing with minerals, will have direct applications to spectral identification in other disciplines.
Multispectral Live-Cell Imaging.
Cohen, Sarah; Valm, Alex M; Lippincott-Schwartz, Jennifer
2018-06-01
Fluorescent proteins and vital dyes are invaluable tools for studying dynamic processes within living cells. However, the ability to distinguish more than a few different fluorescent reporters in a single sample is limited by the spectral overlap of available fluorophores. Here, we present a protocol for imaging live cells labeled with six fluorophores simultaneously. A confocal microscope with a spectral detector is used to acquire images, and linear unmixing algorithms are applied to identify the fluorophores present in each pixel of the image. We describe the application of this method to visualize the dynamics of six different organelles, and to quantify the contacts between organelles. However, this method can be used to image any molecule amenable to tagging with a fluorescent probe. Thus, multispectral live-cell imaging is a powerful tool for systems-level analysis of cellular organization and dynamics. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.
A median-Gaussian filtering framework for Moiré pattern noise removal from X-ray microscopy image.
Wei, Zhouping; Wang, Jian; Nichol, Helen; Wiebe, Sheldon; Chapman, Dean
2012-02-01
Moiré pattern noise in Scanning Transmission X-ray Microscopy (STXM) imaging introduces significant errors in qualitative and quantitative image analysis. Due to the complex origin of the noise, it is difficult to avoid Moiré pattern noise during the image data acquisition stage. In this paper, we introduce a post-processing method for filtering Moiré pattern noise from STXM images. This method includes a semi-automatic detection of the spectral peaks in the Fourier amplitude spectrum by using a local median filter, and elimination of the spectral noise peaks using a Gaussian notch filter. The proposed median-Gaussian filtering framework shows good results for STXM images with the size of power of two, if such parameters as threshold, sizes of the median and Gaussian filters, and size of the low frequency window, have been properly selected. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.
1987-01-01
Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.
Proceedings of the Third Airborne Imaging Spectrometer Data Analysis Workshop
NASA Technical Reports Server (NTRS)
Vane, Gregg (Editor)
1987-01-01
Summaries of 17 papers presented at the workshop are published. After an overview of the imaging spectrometer program, time was spent discussing AIS calibration, performance, information extraction techniques, and the application of high spectral resolution imagery to problems of geology and botany.
Automated processing for proton spectroscopic imaging using water reference deconvolution.
Maudsley, A A; Wu, Z; Meyerhoff, D J; Weiner, M W
1994-06-01
Automated formation of MR spectroscopic images (MRSI) is necessary before routine application of these methods is possible for in vivo studies; however, this task is complicated by the presence of spatially dependent instrumental distortions and the complex nature of the MR spectrum. A data processing method is presented for completely automated formation of in vivo proton spectroscopic images, and applied for analysis of human brain metabolites. This procedure uses the water reference deconvolution method (G. A. Morris, J. Magn. Reson. 80, 547(1988)) to correct for line shape distortions caused by instrumental and sample characteristics, followed by parametric spectral analysis. Results for automated image formation were found to compare favorably with operator dependent spectral integration methods. While the water reference deconvolution processing was found to provide good correction of spatially dependent resonance frequency shifts, it was found to be susceptible to errors for correction of line shape distortions. These occur due to differences between the water reference and the metabolite distributions.
Estimating dry grass residues using landscape integration analysis
NASA Technical Reports Server (NTRS)
Hart, Quinn J.; Ustin, Susan L.; Duan, Lian; Scheer, George
1993-01-01
The acreage of grassland and grassland-savannah is extensive in California, making direct measurement and assessment logistically impossible. Grasslands cover the entire Central Valley up to about 1200 m elevation in the Coast Range and Sierra Nevada Range. Kuchler's map shows 5.35 M ha grassland with an additional 3.87 M ha in Oak savannah. The goal of this study was to examine the use of high spectral resolution sensors to distinguish between dry grass and soil in remotely sensed images. Spectral features that distinguish soils and dry plant material in the shortwave infrared (SWIR) region are thought to be primarily caused by cellulose and lignin, biochemicals which are absent from soils or occur as breakdown products in humid substances that lack the narrow-band features. We have used spectral mixing analysis (SMA) combined with Geographic Information Systems (GIS) analysis to characterize plant communities and dry grass biomass. The GIS was used to overlay elevation maps, and vegetation maps, with the SMA results. The advantage of non-image data is that it provides an independent source of information for the community classification.
Comparison and evaluation on image fusion methods for GaoFen-1 imagery
NASA Astrophysics Data System (ADS)
Zhang, Ningyu; Zhao, Junqing; Zhang, Ling
2016-10-01
Currently, there are many research works focusing on the best fusion method suitable for satellite images of SPOT, QuickBird, Landsat and so on, but only a few of them discuss the application of GaoFen-1 satellite images. This paper proposes a novel idea by using four fusion methods, such as principal component analysis transform, Brovey transform, hue-saturation-value transform, and Gram-Schmidt transform, from the perspective of keeping the original image spectral information. The experimental results showed that the transformed images by the four fusion methods not only retain high spatial resolution on panchromatic band but also have the abundant spectral information. Through comparison and evaluation, the integration of Brovey transform is better, but the color fidelity is not the premium. The brightness and color distortion in hue saturation-value transformed image is the largest. Principal component analysis transform did a good job in color fidelity, but its clarity still need improvement. Gram-Schmidt transform works best in color fidelity, and the edge of the vegetation is the most obvious, the fused image sharpness is higher than that of principal component analysis. Brovey transform, is suitable for distinguishing the Gram-Schmidt transform, and the most appropriate for GaoFen-1 satellite image in vegetation and non-vegetation area. In brief, different fusion methods have different advantages in image quality and class extraction, and should be used according to the actual application information and image fusion algorithm.
NASA Astrophysics Data System (ADS)
Dennison, P. E.; Kokaly, R. F.; Daughtry, C. S. T.; Roberts, D. A.; Thompson, D. R.; Chambers, J. Q.; Nagler, P. L.; Okin, G. S.; Scarth, P.
2016-12-01
Terrestrial vegetation is dynamic, expressing seasonal, annual, and long-term changes in response to climate and disturbance. Phenology and disturbance (e.g. drought, insect attack, and wildfire) can result in a transition from photosynthesizing "green" vegetation to non-photosynthetic vegetation (NPV). NPV cover can include dead and senescent vegetation, plant litter, agricultural residues, and non-photosynthesizing stem tissue. NPV cover is poorly captured by conventional remote sensing vegetation indices, but it is readily separable from substrate cover based on spectral absorption features in the shortwave infrared. We will present past research motivating the need for global NPV measurements, establishing that mapping seasonal NPV cover is critical for improving our understanding of ecosystem function and carbon dynamics. We will also present new research that helps determine a best achievable accuracy for NPV cover estimation. To test the sensitivity of different NPV cover estimation methods, we simulated satellite imaging spectrometer data using field spectra collected over mixtures of NPV, green vegetation, and soil substrate. We incorporated atmospheric transmittance and modeled sensor noise to create simulated spectra with spectral resolutions ranging from 10 to 30 nm. We applied multiple methods of NPV estimation to the simulated spectra, including spectral indices, spectral feature analysis, multiple endmember spectral mixture analysis, and partial least squares regression, and compared the accuracy and bias of each method. These results prescribe sensor characteristics for an imaging spectrometer mission with NPV measurement capabilities, as well as a "Quantified Earth Science Objective" for global measurement of NPV cover. Copyright 2016, all rights reserved.
NASA Technical Reports Server (NTRS)
Cocks, T. D.; Green, A. A.
1986-01-01
Analysis of Airborne Imaging Spectrometer (AIS) data acquired in Australia has revealed a number of operational problems. Horizontal striping in AIS imagery and spectral distortions due to order overlap were investigated. Horizontal striping, caused by grating position errors can be removed with little or no effect on spectral details. Order overlap remains a problem that seriously compromises identification of subtle mineral absorption features within AIS spectra. A spectrometric model of the AIS was developed to assist in identifying spurious spectral features, and will be used in efforts to restore the spectral integrity of the data.
Spectral features based tea garden extraction from digital orthophoto maps
NASA Astrophysics Data System (ADS)
Jamil, Akhtar; Bayram, Bulent; Kucuk, Turgay; Zafer Seker, Dursun
2018-05-01
The advancements in the photogrammetry and remote sensing technologies has made it possible to extract useful tangible information from data which plays a pivotal role in various application such as management and monitoring of forests and agricultural lands etc. This study aimed to evaluate the effectiveness of spectral signatures for extraction of tea gardens from 1 : 5000 scaled digital orthophoto maps obtained from Rize city in Turkey. First, the normalized difference vegetation index (NDVI) was derived from the input images to suppress the non-vegetation areas. NDVI values less than zero were discarded and the output images was normalized in the range 0-255. Individual pixels were then mapped into meaningful objects using global region growing technique. The resulting image was filtered and smoothed to reduce the impact of noise. Furthermore, geometrical constraints were applied to remove small objects (less than 500 pixels) followed by morphological opening operator to enhance the results. These objects served as building blocks for further image analysis. Finally, for the classification stage, a range of spectral values were empirically calculated for each band and applied on candidate objects to extract tea gardens. For accuracy assessment, we employed an area based similarity metric by overlapping obtained tea garden boundaries with the manually digitized tea garden boundaries created by experts of photogrammetry. The overall accuracy of the proposed method scored 89 % for tea gardens from 10 sample orthophoto maps. We concluded that exploiting the spectral signatures using object based analysis is an effective technique for extraction of dominant tree species from digital orthophoto maps.
IRIS: a novel spectral imaging system for the analysis of cultural heritage objects
NASA Astrophysics Data System (ADS)
Papadakis, V. M.; Orphanos, Y.; Kogou, S.; Melessanaki, K.; Pouli, P.; Fotakis, C.
2011-06-01
A new portable spectral imaging system is herein presented capable of acquiring images of high resolution (2MPixels) ranging from 380 nm up to 950 nm. The system consists of a digital color CCD camera, 15 interference filters covering all the sensitivity range of the detector and a robust filter changing system. The acquisition software has been developed in "LabView" programming language allowing easy handling and modification by end-users. The system has been tested and evaluated on a series of objects of Cultural Heritage (CH) value including paintings, encrusted stonework, ceramics etc. This paper aims to present the system, as well as, its application and advantages in the analysis of artworks with emphasis on the detailed compositional and structural information of layered surfaces based on reflection & fluorescence spectroscopy. Specific examples will be presented and discussed on the basis of system improvements.
NASA Astrophysics Data System (ADS)
Haugen, Paul
Mid-infrared (MIR) spectroscopy has been a tool used to identify specific features of normal and malignant tissue samples by utilizing MIR characteristics, specifically in the "fingerprint" region. The fingerprint region is a biologically significant spectral region typically identified between 1500 and 500 cm-1. MIR spectroscopy can be used to study molecular changes and variations occurring in samples, which can then be used to fingerprint specific spectral characteristics and biomarkers in order to categorize the specimens. The most common instruments currently used in this analysis are Fourier transform infrared (FTIR) spectrometers, although properties inherent in these instruments, such as slow data collection time and an inability to specify sample location for the spectral data collection, have placed a ceiling on the clinical practicality of their use for specimen classification and identification. In this thesis, we use a prototype of an infrared hyperspectral imaging microscopy platform based around tunable quantum cascade laser (QCL) technology that has a spectral coverage from 1800-900 cm-1. The quantum cascade lasers are coupled with a series of MIR refractive objectives and an uncooled microbolometer camera. The speed of spectral imaging improves to 30 frames per second, and the high magnification objective has a 1.34 microm pixel resolution with a 0.70 numerical aperture and 4.3 microm spatial resolution. We are able to specify data collection at specific discrete wavelengths as opposed to the full spectrum, which improves the data collection time and de-clutters the data for analysis expediency. Finally, we perform spectral imaging real-time, which aides in selecting precise regions of interest on the target sample. This thesis demonstrates the advantages of exploiting the capabilities of the QCL microscope to advance MIR spectroscopy in the identification of distinguishing traits of normal and malignant breast and cervical tissue samples.
Sub-pixel mapping of hyperspectral imagery using super-resolution
NASA Astrophysics Data System (ADS)
Sharma, Shreya; Sharma, Shakti; Buddhiraju, Krishna M.
2016-04-01
With the development of remote sensing technologies, it has become possible to obtain an overview of landscape elements which helps in studying the changes on earth's surface due to climate, geological, geomorphological and human activities. Remote sensing measures the electromagnetic radiations from the earth's surface and match the spectral similarity between the observed signature and the known standard signatures of the various targets. However, problem lies when image classification techniques assume pixels to be pure. In hyperspectral imagery, images have high spectral resolution but poor spatial resolution. Therefore, the spectra obtained is often contaminated due to the presence of mixed pixels and causes misclassification. To utilise this high spectral information, spatial resolution has to be enhanced. Many factors make the spatial resolution one of the most expensive and hardest to improve in imaging systems. To solve this problem, post-processing of hyperspectral images is done to retrieve more information from the already acquired images. The algorithm to enhance spatial resolution of the images by dividing them into sub-pixels is known as super-resolution and several researches have been done in this domain.In this paper, we propose a new method for super-resolution based on ant colony optimization and review the popular methods of sub-pixel mapping of hyperspectral images along with their comparative analysis.
Multispectral Imaging in Cultural Heritage Conservation
NASA Astrophysics Data System (ADS)
Del Pozo, S.; Rodríguez-Gonzálvez, P.; Sánchez-Aparicio, L. J.; Muñoz-Nieto, A.; Hernández-López, D.; Felipe-García, B.; González-Aguilera, D.
2017-08-01
This paper sums up the main contribution derived from the thesis entitled "Multispectral imaging for the analysis of materials and pathologies in civil engineering, constructions and natural spaces" awarded by CIPA-ICOMOS for its connection with the preservation of Cultural Heritage. This thesis is framed within close-range remote sensing approaches by the fusion of sensors operating in the optical domain (visible to shortwave infrared spectrum). In the field of heritage preservation, multispectral imaging is a suitable technique due to its non-destructive nature and its versatility. It combines imaging and spectroscopy to analyse materials and land covers and enables the use of a variety of different geomatic sensors for this purpose. These sensors collect both spatial and spectral information for a given scenario and a specific spectral range, so that, their smaller storage units save the spectral properties of the radiation reflected by the surface of interest. The main goal of this research work is to characterise different construction materials as well as the main pathologies of Cultural Heritage elements by combining active and passive sensors recording data in different ranges. Conclusions about the suitability of each type of sensor and spectral range are drawn in relation to each particular case study and damage. It should be emphasised that results are not limited to images, since 3D intensity data from laser scanners can be integrated with 2D data from passive sensors obtaining high quality products due to the added value that metric brings to multispectral images.
Analytical robustness of quantitative NIR chemical imaging for Islamic paper characterization
NASA Astrophysics Data System (ADS)
Mahgoub, Hend; Gilchrist, John R.; Fearn, Thomas; Strlič, Matija
2017-07-01
Recently, spectral imaging techniques such as Multispectral (MSI) and Hyperspectral Imaging (HSI) have gained importance in the field of heritage conservation. This paper explores the analytical robustness of quantitative chemical imaging for Islamic paper characterization by focusing on the effect of different measurement and processing parameters, i.e. acquisition conditions and calibration on the accuracy of the collected spectral data. This will provide a better understanding of the technique that can provide a measure of change in collections through imaging. For the quantitative model, special calibration target was devised using 105 samples from a well-characterized reference Islamic paper collection. Two material properties were of interest: starch sizing and cellulose degree of polymerization (DP). Multivariate data analysis methods were used to develop discrimination and regression models which were used as an evaluation methodology for the metrology of quantitative NIR chemical imaging. Spectral data were collected using a pushbroom HSI scanner (Gilden Photonics Ltd) in the 1000-2500 nm range with a spectral resolution of 6.3 nm using a mirror scanning setup and halogen illumination. Data were acquired at different measurement conditions and acquisition parameters. Preliminary results showed the potential of the evaluation methodology to show that measurement parameters such as the use of different lenses and different scanning backgrounds may not have a great influence on the quantitative results. Moreover, the evaluation methodology allowed for the selection of the best pre-treatment method to be applied to the data.
Design of a modified endoscope illuminator for spectral imaging of colorectal tissues
NASA Astrophysics Data System (ADS)
Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.
2017-02-01
The gold standard for locating colonic polyps is a white light endoscope in a colonoscopy, however, polyps smaller than 5 mm can be easily missed. Modified procedures such as narrow band imaging have shown only marginal increases in detection rates. Spectral imaging is a potential solution to improve the sensitivity and specificity of colonoscopies by providing the ability to distinguish molecular fluorescence differences in tissues. The goal of this work is to implement a spectral endoscopic light source to acquire spectral image data of colorectal tissues. A beta-version endoscope light source was developed, by retrofitting a white light endoscope light source (Olympus, CLK-4) with 16 narrow band LEDs. This redesigned, beta-prototype uses high-power LEDs with a minimum output of 500 mW to provide sufficient spectral output (0.5 mW) through the endoscope. A mounting apparatus was designed to provide sufficient heat dissipation. Here, we report recent results of our tests to characterize the intensity output through the light source and endoscope to determine the flat spectral output for imaging and intensity losses through the endoscope. We also report preliminary spectral imaging data from transverse pig colon that demonstrates the ability to result in working practical spectral data. Preliminary results of this revised prototype spectral endoscope system demonstrate that there is sufficient power to allow the imaging process to continue and potentially determine spectral differences in cancerous and normal tissue from imaging ex vivo pairs. Future work will focus on building a spectral library for the colorectal region and refining the user interface the system for in vivo use.
Collaborative classification of hyperspectral and visible images with convolutional neural network
NASA Astrophysics Data System (ADS)
Zhang, Mengmeng; Li, Wei; Du, Qian
2017-10-01
Recent advances in remote sensing technology have made multisensor data available for the same area, and it is well-known that remote sensing data processing and analysis often benefit from multisource data fusion. Specifically, low spatial resolution of hyperspectral imagery (HSI) degrades the quality of the subsequent classification task while using visible (VIS) images with high spatial resolution enables high-fidelity spatial analysis. A collaborative classification framework is proposed to fuse HSI and VIS images for finer classification. First, the convolutional neural network model is employed to extract deep spectral features for HSI classification. Second, effective binarized statistical image features are learned as contextual basis vectors for the high-resolution VIS image, followed by a classifier. The proposed approach employs diversified data in a decision fusion, leading to an integration of the rich spectral information, spatial information, and statistical representation information. In particular, the proposed approach eliminates the potential problems of the curse of dimensionality and excessive computation time. The experiments evaluated on two standard data sets demonstrate better classification performance offered by this framework.
Bispectral infrared forest fire detection and analysis using classification techniques
NASA Astrophysics Data System (ADS)
Aranda, Jose M.; Melendez, Juan; de Castro, Antonio J.; Lopez, Fernando
2004-01-01
Infrared cameras are well established as a useful tool for fire detection, but their use for quantitative forest fire measurements faces difficulties, due to the complex spatial and spectral structure of fires. In this work it is shown that some of these difficulties can be overcome by applying classification techniques, a standard tool for the analysis of satellite multispectral images, to bi-spectral images of fires. Images were acquired by two cameras that operate in the medium infrared (MIR) and thermal infrared (TIR) bands. They provide simultaneous and co-registered images, calibrated in brightness temperatures. The MIR-TIR scatterplot of these images can be used to classify the scene into different fire regions (background, ashes, and several ember and flame regions). It is shown that classification makes possible to obtain quantitative measurements of physical fire parameters like rate of spread, embers temperature, and radiated power in the MIR and TIR bands. An estimation of total radiated power and heat release per unit area is also made and compared with values derived from heat of combustion and fuel consumption.
Retinal oxygen saturation evaluation by multi-spectral fundus imaging
NASA Astrophysics Data System (ADS)
Khoobehi, Bahram; Ning, Jinfeng; Puissegur, Elise; Bordeaux, Kimberly; Balasubramanian, Madhusudhanan; Beach, James
2007-03-01
Purpose: To develop a multi-spectral method to measure oxygen saturation of the retina in the human eye. Methods: Five Cynomolgus monkeys with normal eyes were anesthetized with intramuscular ketamine/xylazine and intravenous pentobarbital. Multi-spectral fundus imaging was performed in five monkeys with a commercial fundus camera equipped with a liquid crystal tuned filter in the illumination light path and a 16-bit digital camera. Recording parameters were controlled with software written specifically for the application. Seven images at successively longer oxygen-sensing wavelengths were recorded within 4 seconds. Individual images for each wavelength were captured in less than 100 msec of flash illumination. Slightly misaligned images of separate wavelengths due to slight eye motion were registered and corrected by translational and rotational image registration prior to analysis. Numerical values of relative oxygen saturation of retinal arteries and veins and the underlying tissue in between the artery/vein pairs were evaluated by an algorithm previously described, but which is now corrected for blood volume from averaged pixels (n > 1000). Color saturation maps were constructed by applying the algorithm at each image pixel using a Matlab script. Results: Both the numerical values of relative oxygen saturation and the saturation maps correspond to the physiological condition, that is, in a normal retina, the artery is more saturated than the tissue and the tissue is more saturated than the vein. With the multi-spectral fundus camera and proper registration of the multi-wavelength images, we were able to determine oxygen saturation in the primate retinal structures on a tolerable time scale which is applicable to human subjects. Conclusions: Seven wavelength multi-spectral imagery can be used to measure oxygen saturation in retinal artery, vein, and tissue (microcirculation). This technique is safe and can be used to monitor oxygen uptake in humans. This work is original and is not under consideration for publication elsewhere.
Temporal observations of bright soil exposures at Gusev crater, Mars
Rice, M.S.; Bell, J.F.; Cloutis, E.A.; Wray, J.J.; Herkenhoff, K. E.; Sullivan, R.; Johnson, J. R.; Anderson, R.B.
2011-01-01
The Mars Exploration Rover Spirit has discovered bright soil deposits in its wheel tracks that previously have been confirmed to contain ferric sulfates and/or opaline silica. Repeated Pancam multispectral observations have been acquired at four of these deposits to monitor spectral and textural changes over time during exposure to Martian surface conditions. Previous studies suggested that temporal spectral changes occur because of mineralogic changes (e.g., phase transitions accompanying dehydration). In this study, we present a multispectral and temporal analysis of eight Pancam image sequences at the Tyrone exposure, three at the Gertrude Weise exposure, two at the Kit Carson exposure, and ten at the Ulysses exposure that have been acquired as of sol 2132 (1 January 2010). We compare observed variations in Pancam data to spectral changes predicted by laboratory experiments for the dehydration of ferric sulfates. We also present a spectral analysis of repeated Mars Reconnaissance Orbiter HiRISE observations spanning 32 sols and a textural analysis of Spirit Microscopic Imager observations of Ulysses spanning 102 sols. At all bright soil exposures, we observe no statistically significant spectral changes with time that are uniquely diagnostic of dehydration and/or mineralogic phase changes. However, at Kit Carson and Ulysses, we observe significant textural changes, including slumping within the wheel trench, movement of individual grains, disappearance of fines, and dispersal of soil clods. All observed textural changes are consistent with aeolian sorting and/or minor amounts of air fall dust deposition.
Temporal observations of bright soil exposures at Gusev crater, Mars
Rice, M.S.; Bell, J.F.; Cloutis, E.A.; Wray, J.J.; Herkenhoff, K. E.; Sullivan, R.; Johnson, J. R.; Anderson, R.B.
2011-01-01
The Mars Exploration Rover Spirit has discovered bright soil deposits in its wheel tracks that previously have been confirmed to contain ferric sulfates and/or opaline silica. Repeated Pancam multispectral observations have been acquired at four of these deposits to monitor spectral and textural changes over time during exposure to Martian surface conditions. Previous studies suggested that temporal spectral changes occur because of mineralogic changes (e.g., phase transitions accompanying dehydration). In this study, we present a multispectral and temporal analysis of eight Pancam image sequences at the Tyrone exposure, three at the Gertrude Weise exposure, two at the Kit Carson exposure, and ten at the Ulysses exposure that have been acquired as of sol 2132 (1 January 2010). We compare observed variations in Pancam data to spectral changes predicted by laboratory experiments for the dehydration of ferric sulfates. We also present a spectral analysis of repeated Mars Reconnaissance Orbiter HiRISE observations spanning 32 sols and a textural analysis of Spirit Microscopic Imager observations of Ulysses spanning 102 sols. At all bright soil exposures, we observe no statistically significant spectral changes with time that are uniquely diagnostic of dehydration and/or mineralogic phase changes. However, at Kit Carson and Ulysses, we observe significant textural changes, including slumping within the wheel trench, movement of individual grains, disappearance of fines, and dispersal of soil clods. All observed textural changes are consistent with aeolian sorting and/or minor amounts of air fall dust deposition. Copyright 2011 by the American Geophysical Union.
Fast Infrared Chemical Imaging with a Quantum Cascade Laser
2015-01-01
Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm–1) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues. PMID:25474546
Fast infrared chemical imaging with a quantum cascade laser.
Yeh, Kevin; Kenkel, Seth; Liu, Jui-Nung; Bhargava, Rohit
2015-01-06
Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm(-1)) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues.
Quantification of fibre polymerization through Fourier space image analysis
Nekouzadeh, Ali; Genin, Guy M.
2011-01-01
Quantification of changes in the total length of randomly oriented and possibly curved lines appearing in an image is a necessity in a wide variety of biological applications. Here, we present an automated approach based upon Fourier space analysis. Scaled, band-pass filtered power spectral densities of greyscale images are integrated to provide a quantitative measurement of the total length of lines of a particular range of thicknesses appearing in an image. A procedure is presented to correct for changes in image intensity. The method is most accurate for two-dimensional processes with fibres that do not occlude one another. PMID:24959096
Qiao, Xiaojun; Jiang, Jinbao; Qi, Xiaotong; Guo, Haiqiang; Yuan, Deshuai
2017-04-01
It's well-known fungi-contaminated peanuts contain potent carcinogen. Efficiently identifying and separating the contaminated can help prevent aflatoxin entering in food chain. In this study, shortwave infrared (SWIR) hyperspectral images for identifying the prepared contaminated kernels. Feature selection method of analysis of variance (ANOVA) and feature extraction method of nonparametric weighted feature extraction (NWFE) were used to concentrate spectral information into a subspace where contaminated and healthy peanuts can have favorable separability. Then, peanut pixels were classified using SVM. Moreover, image segmentation method of region growing was applied to segment the image as kernel-scale patches and meanwhile to number the kernels. The result shows that pixel-wise classification accuracies are 99.13% for breed A, 96.72% for B and 99.73% for C in learning images, and are 96.32%, 94.2% and 97.51% in validation images. Contaminated peanuts were correctly marked as aberrant kernels in both learning images and validation images. Copyright © 2016 Elsevier Ltd. All rights reserved.
FFT-enhanced IHS transform method for fusing high-resolution satellite images
Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.
2007-01-01
Existing image fusion techniques such as the intensity-hue-saturation (IHS) transform and principal components analysis (PCA) methods may not be optimal for fusing the new generation commercial high-resolution satellite images such as Ikonos and QuickBird. One problem is color distortion in the fused image, which causes visual changes as well as spectral differences between the original and fused images. In this paper, a fast Fourier transform (FFT)-enhanced IHS method is developed for fusing new generation high-resolution satellite images. This method combines a standard IHS transform with FFT filtering of both the panchromatic image and the intensity component of the original multispectral image. Ikonos and QuickBird data are used to assess the FFT-enhanced IHS transform method. Experimental results indicate that the FFT-enhanced IHS transform method may improve upon the standard IHS transform and the PCA methods in preserving spectral and spatial information. ?? 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
Analytical design of a hyper-spectral imaging spectrometer utilizing a convex grating
NASA Astrophysics Data System (ADS)
Kim, Seo H.; Kong, Hong J.; Ku, Hana; Lee, Jun H.
2012-09-01
This paper describes about the new design method for hyper-spectral Imaging spectrometers utilizing convex grating. Hyper-spectral imaging systems are power tools in the field of remote sensing. HSI systems collect at least 100 spectral bands of 10~20 nm width. Because the spectral signature is different and induced unique for each material, it should be possible to discriminate between one material and another based on difference in spectral signature of material. I mathematically analyzed parameters for the intellectual initial design. Main concept of this is the derivative of "ring of minimum aberration without vignetting". This work is a kind of analytical design of an Offner imaging spectrometer. Also, several experiment methods will be contrived to evaluate the performance of imaging spectrometer.
NASA Astrophysics Data System (ADS)
Peller, Joseph; Thompson, Kyle J.; Siddiqui, Imran; Martinie, John; Iannitti, David A.; Trammell, Susan R.
2017-02-01
Pancreatic cancer is the fourth leading cause of cancer death in the US. Currently, surgery is the only treatment that offers a chance of cure, however, accurately identifying tumor margins in real-time is difficult. Research has demonstrated that optical spectroscopy can be used to distinguish between healthy and diseased tissue. The design of a single-pixel imaging system for cancer detection is discussed. The system differentiates between healthy and diseased tissue based on differences in the optical reflectance spectra of these regions. In this study, pancreatic tissue samples from 6 patients undergoing Whipple procedures are imaged with the system (total number of tissue sample imaged was N=11). Regions of healthy and unhealthy tissue are determined based on SAM analysis of these spectral images. Hyperspectral imaging results are then compared to white light imaging and histological analysis. Cancerous regions were clearly visible in the hyperspectral images. Margins determined via spectral imaging were in good agreement with margins identified by histology, indicating that hyperspectral imaging system can differentiate between healthy and diseased tissue. After imaging the system was able to detect cancerous regions with a sensitivity of 74.50±5.89% and a specificity of 75.53±10.81%. Possible applications of this imaging system include determination of tumor margins during surgery/biopsy and assistance with cancer diagnosis and staging.
NASA Astrophysics Data System (ADS)
Li, Jianping
2014-05-01
Suspension assay using optically color-encoded microbeads is a novel way to increase the reaction speed and multiplex of biomolecular detection and analysis. To boost the detection speed, a hyperspectral imaging (HSI) system is of great interest for quickly decoding the color codes of the microcarriers. Imaging Fourier transform spectrometer (IFTS) is a potential candidate for this task due to its advantages in HSI measurement. However, conventional IFTS is only popular in IR spectral bands because it is easier to track its scanning mirror position in longer wavelengths so that the fundamental Nyquist criterion can be satisfied when sampling the interferograms; the sampling mechanism for shorter wavelengths IFTS used to be very sophisticated, high-cost and bulky. In order to overcome this handicap and take better usage of its advantages for HSI applications, a new wide spectral range IFTS platform is proposed based on an optical beam-folding position-tracking technique. This simple technique has successfully extended the spectral range of an IFTS to cover 350-1000nm. Test results prove that the system has achieved good spectral and spatial resolving performances with instrumentation flexibilities. Accurate and fast measurement results on novel colloidal photonic crystal microbeads also demonstrate its practical potential for high-throughput and multiplex suspension molecular assays.
Artifacts reduction in VIR/Dawn data.
Carrozzo, F G; Raponi, A; De Sanctis, M C; Ammannito, E; Giardino, M; D'Aversa, E; Fonte, S; Tosi, F
2016-12-01
Remote sensing images are generally affected by different types of noise that degrade the quality of the spectral data (i.e., stripes and spikes). Hyperspectral images returned by a Visible and InfraRed (VIR) spectrometer onboard the NASA Dawn mission exhibit residual systematic artifacts. VIR is an imaging spectrometer coupling high spectral and spatial resolutions in the visible and infrared spectral domain (0.25-5.0 μm). VIR data present one type of noise that may mask or distort real features (i.e., spikes and stripes), which may lead to misinterpretation of the surface composition. This paper presents a technique for the minimization of artifacts in VIR data that include a new instrument response function combining ground and in-flight radiometric measurements, correction of spectral spikes, odd-even band effects, systematic vertical stripes, high-frequency noise, and comparison with ground telescopic spectra of Vesta and Ceres. We developed a correction of artifacts in a two steps process: creation of the artifacts matrix and application of the same matrix to the VIR dataset. In the approach presented here, a polynomial function is used to fit the high frequency variations. After applying these corrections, the resulting spectra show improvements of the quality of the data. The new calibrated data enhance the significance of results from the spectral analysis of Vesta and Ceres.
Wendl, Christina M; Eiglsperger, Johannes; Dendl, Lena-Marie; Brodoefel, Harald; Schebesch, Karl-Michael; Stroszczynski, Christian; Fellner, Claudia
2018-05-01
The aim of our study was to systematically compare two-point Dixon fat suppression (FS) and spectral FS techniques in contrast enhanced imaging of the head and neck region. Three independent readers analysed coronal T 1 weighted images recorded after contrast medium injection with Dixon and spectral FS techniques with regard to FS homogeneity, motion artefacts, lesion contrast, image sharpness and overall image quality. 85 patients were prospectively enrolled in the study. Images generated with Dixon-FS technique were of higher overall image quality and had a more homogenous FS over the whole field of view compared with the standard spectral fat-suppressed images (p < 0.001). Concerning motion artefacts, flow artefacts, lesion contrast and image sharpness no statistically significant difference was observed. The Dixon-FS technique is superior to the spectral technique due to improved homogeneity of FS and overall image quality while maintaining lesion contrast. Advances in knowledge: T 1 with Dixon FS technique offers, compared to spectral FS, significantly improved FS homogeneity and over all image quality in imaging of the head and neck region.
Martinez-Marin, David; Sreedhar, Hari; Varma, Vishal K; Eloy, Catarina; Sobrinho-Simões, Manuel; Kajdacsy-Balla, André; Walsh, Michael J
2017-07-01
Fourier transform infrared (FT-IR) microscopy was used to image tissue samples from twenty patients diagnosed with thyroid carcinoma. The spectral data were then used to differentiate between follicular thyroid carcinoma and follicular variant of papillary thyroid carcinoma using principle component analysis coupled with linear discriminant analysis and a Naïve Bayesian classifier operating on a set of computed spectral metrics. Classification of patients' disease type was accomplished by using average spectra from a wide region containing follicular cells, colloid, and fibrosis; however, classification of disease state at the pixel level was only possible when the extracted spectra were limited to follicular epithelial cells in the samples, excluding the relatively uninformative areas of fibrosis. The results demonstrate the potential of FT-IR microscopy as a tool to assist in the difficult diagnosis of these subtypes of thyroid cancer, and also highlights the importance of selectively and separately analyzing spectral information from different features of a tissue of interest.
NASA Astrophysics Data System (ADS)
Mehl, Patrick M.; Chao, Kevin; Kim, Moon S.; Chen, Yud-Ren
2001-03-01
Presence of natural or exogenous contaminations on apple cultivars is a food safety and quality concern touching the general public and strongly affecting this commodity market. Accumulations of human pathogens are usually observed on surface lesions of commodities. Detections of either lesions or directly of the pathogens are essential for assuring the quality and safety of commodities. We are presenting the application of hyperspectral image analysis towards the development of multispectral techniques for the detection of defects on chosen apple cultivars, such as Golden Delicious, Red Delicious, and Gala apples. Separate apple cultivars possess different spectral characteristics leading to different approaches for analysis. General preprocessing analysis with morphological treatments is followed by different image treatments and condition analysis for highlighting lesions and contaminations on the apple cultivars. Good isolations of scabs, fungal and soil contaminations and bruises are observed with hyperspectral imaging processing either using principal component analysis or utilizing the chlorophyll absorption peak. Applications of hyperspectral results to a multispectral detection are limited by the spectral capabilities of our RGB camera using either specific band pass filters and using direct neutral filters. Good separations of defects are obtained for Golden Delicious apples. It is however limited for the other cultivars. Having an extra near infrared channel will increase the detection level utilizing the chlorophyll absorption band for detection as demonstrated by the present hyperspectral imaging analysis
Image enhancement by spectral-error correction for dual-energy computed tomography.
Park, Kyung-Kook; Oh, Chang-Hyun; Akay, Metin
2011-01-01
Dual-energy CT (DECT) was reintroduced recently to use the additional spectral information of X-ray attenuation and aims for accurate density measurement and material differentiation. However, the spectral information lies in the difference between low and high energy images or measurements, so that it is difficult to acquire accurate spectral information due to amplification of high pixel noise in the resulting difference image. In this work, an image enhancement technique for DECT is proposed, based on the fact that the attenuation of a higher density material decreases more rapidly as X-ray energy increases. We define as spectral error the case when a pixel pair of low and high energy images deviates far from the expected attenuation trend. After analyzing the spectral-error sources of DECT images, we propose a DECT image enhancement method, which consists of three steps: water-reference offset correction, spectral-error correction, and anti-correlated noise reduction. It is the main idea of this work that makes spectral errors distributed like random noise over the true attenuation and suppressed by the well-known anti-correlated noise reduction. The proposed method suppressed noise of liver lesions and improved contrast between liver lesions and liver parenchyma in DECT contrast-enhanced abdominal images and their two-material decomposition.
NASA Technical Reports Server (NTRS)
Key, J.
1990-01-01
The spectral and textural characteristics of polar clouds and surfaces for a 7-day summer series of AVHRR data in two Arctic locations are examined, and the results used in the development of a cloud classification procedure for polar satellite data. Since spatial coherence and texture sensitivity tests indicate that a joint spectral-textural analysis based on the same cell size is inappropriate, cloud detection with AVHRR data and surface identification with passive microwave data are first done on the pixel level as described by Key and Barry (1989). Next, cloud patterns within 250-sq-km regions are described, then the spectral and local textural characteristics of cloud patterns in the image are determined and each cloud pixel is classified by statistical methods. Results indicate that both spectral and textural features can be utilized in the classification of cloudy pixels, although spectral features are most useful for the discrimination between cloud classes.
Spectral K-edge subtraction imaging
NASA Astrophysics Data System (ADS)
Zhu, Y.; Samadi, N.; Martinson, M.; Bassey, B.; Wei, Z.; Belev, G.; Chapman, D.
2014-05-01
We describe a spectral x-ray transmission method to provide images of independent material components of an object using a synchrotron x-ray source. The imaging system and process is similar to K-edge subtraction (KES) imaging where two imaging energies are prepared above and below the K-absorption edge of a contrast element and a quantifiable image of the contrast element and a water equivalent image are obtained. The spectral method, termed ‘spectral-KES’ employs a continuous spectrum encompassing an absorption edge of an element within the object. The spectrum is prepared by a bent Laue monochromator with good focal and energy dispersive properties. The monochromator focuses the spectral beam at the object location, which then diverges onto an area detector such that one dimension in the detector is an energy axis. A least-squares method is used to interpret the transmitted spectral data with fits to either measured and/or calculated absorption of the contrast and matrix material-water. The spectral-KES system is very simple to implement and is comprised of a bent Laue monochromator, a stage for sample manipulation for projection and computed tomography imaging, and a pixelated area detector. The imaging system and examples of its applications to biological imaging are presented. The system is particularly well suited for a synchrotron bend magnet beamline with white beam access.
Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2011-04-01
In this study, we propose and evaluate a method for spectral characterization of acousto-optic tunable filter (AOTF) hyperspectral imaging systems in the near-infrared (NIR) spectral region from 900 nm to 1700 nm. The proposed spectral characterization method is based on the SRM-2035 standard reference material, exhibiting distinct spectral features, which enables robust non-rigid matching of the acquired and reference spectra. The matching is performed by simultaneously optimizing the parameters of the AOTF tuning curve, spectral resolution, baseline, and multiplicative effects. In this way, the tuning curve (frequency-wavelength characteristics) and the corresponding spectral resolution of the AOTF hyperspectral imaging system can be characterized simultaneously. Also, the method enables simple spectral characterization of the entire imaging plane of hyperspectral imaging systems. The results indicate that the method is accurate and efficient and can easily be integrated with systems operating in diffuse reflection or transmission modes. Therefore, the proposed method is suitable for characterization, calibration, or validation of AOTF hyperspectral imaging systems. © 2011 Society for Applied Spectroscopy
Remote sensing of drought and salinity stressed turfgrass
NASA Astrophysics Data System (ADS)
Ikemura, Yoshiaki
The ability to detect early signs of stress in turfgrass stands using a rapid, inexpensive, and nondestructive method would be a valuable management tool. Studies were conducted to determine if digital image analysis and spectroradiometric readings obtained from drought- and salinity-stressed turfgrasses accurately reflected the varying degrees of stress and correlated strongly with visual ratings, relative water content (RWC) and leaf osmolality, standard methods for measuring stress in plants. Greenhouse drought and salinity experiments were conducted on hybrid bluegrass [Poa arachnifera (Torn.) x pratensis (L.)] cv. Reveille and bermudagrass [Cynodon dactylon (L.)] cv. Princess 77. Increasing drought and salinity stress led to decreased RWC, increased leaf osmolality, and decreased visual ratings for both species. Percent green cover and hue values obtained from digital image analysis, and Normalized Difference Vegetation Index (NDVI), calculated from spectroradiometric readings, were moderately to highly correlated with visual ratings, RWC, and leaf osmolality. Similarly, in a field validation study conducted on hybrid bluegrass, spectral reflectance ratios were moderately to highly correlated with visual ratings. In addition, percent green cover obtained from digital image analysis was strongly correlated with most of the spectral ratios, particularly the ratio of fluorescence peaks (r = -0.88 to -0.99), modified triangular vegetation index (MTVI) (r = 0.82 to 0.98), and NDVI (r = 0.84 to 0.99), suggesting that spectral reflectance and digital image analysis are equally effective at detecting changes in color brought on by stress. The two methods differed in their ability to distinguish between drought salinity stress. Hue values obtained from digital image analysis responded differently to increasing drought stress than to increasing salinity stress. Whereas the onset of drought stress was reflected by increased hue values followed by a decrease in values as drought stress increased, there was no increase in hue values at the onset of salinity stress. Thus, changes in hue could be a key to distinguish drought and salinity stress. Both digital image analysis and spectroradiometry effectively detected drought and salinity stress and may have applications in turfgrass management as rapid and quantitative methods to determine drought and salinity stress in turf.
Study of Spectral/Radiometric Characteristics of the Thematic Mapper for Land Use Applications
NASA Technical Reports Server (NTRS)
Malila, W. A. (Principal Investigator); Metzler, M. D. (Principal Investigator)
1985-01-01
An investigation conducted in support of the LANDSAT 4/5 Image Data Quality Analysis (LIDQA) Program is discussed. Results of engineering analyses of radiometric, spatial, spectral, and geometric properties of the Thematic Mapper systems are summarized; major emphasis is placed on the radiometric analysis. Details of the analyses are presented in appendices, which contain three of the eight technical papers produced during this investigation; these three, together, describe the major activities and results of the investigation.
Color analysis and image rendering of woodblock prints with oil-based ink
NASA Astrophysics Data System (ADS)
Horiuchi, Takahiko; Tanimoto, Tetsushi; Tominaga, Shoji
2012-01-01
This paper proposes a method for analyzing the color characteristics of woodblock prints having oil-based ink and rendering realistic images based on camera data. The analysis results of woodblock prints show some characteristic features in comparison with oil paintings: 1) A woodblock print can be divided into several cluster areas, each with similar surface spectral reflectance; and 2) strong specular reflection from the influence of overlapping paints arises only in specific cluster areas. By considering these properties, we develop an effective rendering algorithm by modifying our previous algorithm for oil paintings. A set of surface spectral reflectances of a woodblock print is represented by using only a small number of average surface spectral reflectances and the registered scaling coefficients, whereas the previous algorithm for oil paintings required surface spectral reflectances of high dimension at all pixels. In the rendering process, in order to reproduce the strong specular reflection in specific cluster areas, we use two sets of parameters in the Torrance-Sparrow model for cluster areas with or without strong specular reflection. An experiment on a woodblock printing with oil-based ink was performed to demonstrate the feasibility of the proposed method.
NASA Astrophysics Data System (ADS)
Torkildsen, H. E.; Hovland, H.; Opsahl, T.; Haavardsholm, T. V.; Nicolas, S.; Skauli, T.
2014-06-01
In some applications of multi- or hyperspectral imaging, it is important to have a compact sensor. The most compact spectral imaging sensors are based on spectral filtering in the focal plane. For hyperspectral imaging, it has been proposed to use a "linearly variable" bandpass filter in the focal plane, combined with scanning of the field of view. As the image of a given object in the scene moves across the field of view, it is observed through parts of the filter with varying center wavelength, and a complete spectrum can be assembled. However if the radiance received from the object varies with viewing angle, or with time, then the reconstructed spectrum will be distorted. We describe a camera design where this hyperspectral functionality is traded for multispectral imaging with better spectral integrity. Spectral distortion is minimized by using a patterned filter with 6 bands arranged close together, so that a scene object is seen by each spectral band in rapid succession and with minimal change in viewing angle. The set of 6 bands is repeated 4 times so that the spectral data can be checked for internal consistency. Still the total extent of the filter in the scan direction is small. Therefore the remainder of the image sensor can be used for conventional imaging with potential for using motion tracking and 3D reconstruction to support the spectral imaging function. We show detailed characterization of the point spread function of the camera, demonstrating the importance of such characterization as a basis for image reconstruction. A simplified image reconstruction based on feature-based image coregistration is shown to yield reasonable results. Elimination of spectral artifacts due to scene motion is demonstrated.
A novel and compact spectral imaging system based on two curved prisms
NASA Astrophysics Data System (ADS)
Nie, Yunfeng; Bin, Xiangli; Zhou, Jinsong; Li, Yang
2013-09-01
As a novel detection approach which simultaneously acquires two-dimensional visual picture and one-dimensional spectral information, spectral imaging offers promising applications on biomedical imaging, conservation and identification of artworks, surveillance of food safety, and so forth. A novel moderate-resolution spectral imaging system consisting of merely two optical elements is illustrated in this paper. It can realize the function of a relay imaging system as well as a 10nm spectral resolution spectroscopy. Compared to conventional prismatic imaging spectrometers, this design is compact and concise with only two special curved prisms by utilizing two reflective surfaces. In contrast to spectral imagers based on diffractive grating, the usage of compound-prism possesses characteristics of higher energy utilization and wider free spectral range. The seidel aberration theory and dispersive principle of this special prism are analyzed at first. According to the results, the optical system of this design is simulated, and the performance evaluation including spot diagram, MTF and distortion, is presented. In the end, considering the difficulty and particularity of manufacture and alignment, an available method for fabrication and measurement is proposed.
Common hyperspectral image database design
NASA Astrophysics Data System (ADS)
Tian, Lixun; Liao, Ningfang; Chai, Ali
2009-11-01
This paper is to introduce Common hyperspectral image database with a demand-oriented Database design method (CHIDB), which comprehensively set ground-based spectra, standardized hyperspectral cube, spectral analysis together to meet some applications. The paper presents an integrated approach to retrieving spectral and spatial patterns from remotely sensed imagery using state-of-the-art data mining and advanced database technologies, some data mining ideas and functions were associated into CHIDB to make it more suitable to serve in agriculture, geological and environmental areas. A broad range of data from multiple regions of the electromagnetic spectrum is supported, including ultraviolet, visible, near-infrared, thermal infrared, and fluorescence. CHIDB is based on dotnet framework and designed by MVC architecture including five main functional modules: Data importer/exporter, Image/spectrum Viewer, Data Processor, Parameter Extractor, and On-line Analyzer. The original data were all stored in SQL server2008 for efficient search, query and update, and some advance Spectral image data Processing technology are used such as Parallel processing in C#; Finally an application case is presented in agricultural disease detecting area.
Multimodal hyperspectral optical microscopy
Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu; ...
2017-09-02
We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less
Multimodal hyperspectral optical microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu
We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less
NASA Technical Reports Server (NTRS)
Andersen, A. L.; Myers, W. L.; Safir, G.; Whiteside, E. P. (Principal Investigator)
1974-01-01
The author has identified the following significant results. The results of this investigation of ratioing simulated ERTS spectral bands and several non-ERTS bands (all collected by an airborne multispectral scanner) indicate that significant terrain information is available from band-ratio images. Ratio images, which are based on the relative spectral changes which occur from one band to another, are useful for enhancing differences and aiding the image interpreter in identifying and mapping the distribution of such terrain elements as seedling crops, all bare soil, organic soil, mineral soil, forest and woodlots, and marsh areas. In addition, the ratio technique may be useful for computer processing to obtain recognition images of large areas at lower costs than with statistical decision rules. The results of this study of ratio processing of aircraft MSS data will be useful for future processing and evaluation of ERTS-1 data for soil and landform studies. Additionally, the results of ratioing spectral bands other than those currently collected by ERTS-1 suggests that some other bands (particularly a thermal band) would be useful in future satellites.
Using foreground/background analysis to determine leaf and canopy chemistry
NASA Technical Reports Server (NTRS)
Pinzon, J. E.; Ustin, S. L.; Hart, Q. J.; Jacquemoud, S.; Smith, M. O.
1995-01-01
Spectral Mixture Analysis (SMA) has become a well established procedure for analyzing imaging spectrometry data, however, the technique is relatively insensitive to minor sources of spectral variation (e.g., discriminating stressed from unstressed vegetation and variations in canopy chemistry). Other statistical approaches have been tried e.g., stepwise multiple linear regression analysis to predict canopy chemistry. Grossman et al. reported that SMLR is sensitive to measurement error and that the prediction of minor chemical components are not independent of patterns observed in more dominant spectral components like water. Further, they observed that the relationships were strongly dependent on the mode of expressing reflectance (R, -log R) and whether chemistry was expressed on a weight (g/g) or are basis (g/sq m). Thus, alternative multivariate techniques need to be examined. Smith et al. reported a revised SMA that they termed Foreground/Background Analysis (FBA) that permits directing the analysis along any axis of variance by identifying vectors through the n-dimensional spectral volume orthonormal to each other. Here, we report an application of the FBA technique for the detection of canopy chemistry using a modified form of the analysis.
Hyperspectral retinal imaging with a spectrally tunable light source
NASA Astrophysics Data System (ADS)
Francis, Robert P.; Zuzak, Karel J.; Ufret-Vincenty, Rafael
2011-03-01
Hyperspectral retinal imaging can measure oxygenation and identify areas of ischemia in human patients, but the devices used by current researchers are inflexible in spatial and spectral resolution. We have developed a flexible research prototype consisting of a DLP®-based spectrally tunable light source coupled to a fundus camera to quickly explore the effects of spatial resolution, spectral resolution, and spectral range on hyperspectral imaging of the retina. The goal of this prototype is to (1) identify spectral and spatial regions of interest for early diagnosis of diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR); and (2) define required specifications for commercial products. In this paper, we describe the challenges and advantages of using a spectrally tunable light source for hyperspectral retinal imaging, present clinical results of initial imaging sessions, and describe how this research can be leveraged into specifying a commercial product.
Camouflage target detection via hyperspectral imaging plus information divergence measurement
NASA Astrophysics Data System (ADS)
Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Ji, Yiqun; Shen, Weimin
2016-01-01
Target detection is one of most important applications in remote sensing. Nowadays accurate camouflage target distinction is often resorted to spectral imaging technique due to its high-resolution spectral/spatial information acquisition ability as well as plenty of data processing methods. In this paper, hyper-spectral imaging technique together with spectral information divergence measure method is used to solve camouflage target detection problem. A self-developed visual-band hyper-spectral imaging device is adopted to collect data cubes of certain experimental scene before spectral information divergences are worked out so as to discriminate target camouflage and anomaly. Full-band information divergences are measured to evaluate target detection effect visually and quantitatively. Information divergence measurement is proved to be a low-cost and effective tool for target detection task and can be further developed to other target detection applications beyond spectral imaging technique.
Chiao, Chuan-Chin; Wickiser, J Kenneth; Allen, Justine J; Genter, Brock; Hanlon, Roger T
2011-05-31
Camouflage is a widespread phenomenon throughout nature and an important antipredator tactic in natural selection. Many visual predators have keen color perception, and thus camouflage patterns should provide some degree of color matching in addition to other visual factors such as pattern, contrast, and texture. Quantifying camouflage effectiveness in the eyes of the predator is a challenge from the perspectives of both biology and optical imaging technology. Here we take advantage of hyperspectral imaging (HSI), which records full-spectrum light data, to simultaneously visualize color match and pattern match in the spectral and the spatial domains, respectively. Cuttlefish can dynamically camouflage themselves on any natural substrate and, despite their colorblindness, produce body patterns that appear to have high-fidelity color matches to the substrate when viewed directly by humans or with RGB images. Live camouflaged cuttlefish on natural backgrounds were imaged using HSI, and subsequent spectral analysis revealed that most reflectance spectra of individual cuttlefish and substrates were similar, rendering the color match possible. Modeling color vision of potential di- and trichromatic fish predators of cuttlefish corroborated the spectral match analysis and demonstrated that camouflaged cuttlefish show good color match as well as pattern match in the eyes of fish predators. These findings (i) indicate the strong potential of HSI technology to enhance studies of biological coloration and (ii) provide supporting evidence that cuttlefish can produce color-coordinated camouflage on natural substrates despite lacking color vision.
Chu, Bingquan; Yu, Keqiang; Zhao, Yanru
2018-01-01
This study aimed to develop an approach for quickly and noninvasively differentiating the roasting degrees of coffee beans using hyperspectral imaging (HSI). The qualitative properties of seven roasting degrees of coffee beans (unroasted, light, moderately light, light medium, medium, moderately dark, and dark) were assayed, including moisture, crude fat, trigonelline, chlorogenic acid, and caffeine contents. These properties were influenced greatly by the respective roasting degree. Their hyperspectral images (874–1734 nm) were collected using a hyperspectral reflectance imaging system. The spectra of the regions of interest were manually extracted from the HSI images. Then, principal components analysis was employed to compress the spectral data and select the optimal wavelengths based on loading weight analysis. Meanwhile, the random frog (RF) methodology and the successive projections algorithm were also adopted to pick effective wavelengths from the spectral data. Finally, least squares support vector machine (LS-SVM) was utilized to establish discriminative models using spectral reflectance and corresponding labeled classes for each degree of roast sample. The results showed that the LS-SVM model, established by the RF selecting method, with eight wavelengths performed very well, achieving an overall classification accuracy of 90.30%. In conclusion, HSI was illustrated as a potential technique for noninvasively classifying the roasting degrees of coffee beans and might have an important application for the development of nondestructive, real-time, and portable sensors to monitor the roasting process of coffee beans. PMID:29671781
Chu, Bingquan; Yu, Keqiang; Zhao, Yanru; He, Yong
2018-04-19
This study aimed to develop an approach for quickly and noninvasively differentiating the roasting degrees of coffee beans using hyperspectral imaging (HSI). The qualitative properties of seven roasting degrees of coffee beans (unroasted, light, moderately light, light medium, medium, moderately dark, and dark) were assayed, including moisture, crude fat, trigonelline, chlorogenic acid, and caffeine contents. These properties were influenced greatly by the respective roasting degree. Their hyperspectral images (874⁻1734 nm) were collected using a hyperspectral reflectance imaging system. The spectra of the regions of interest were manually extracted from the HSI images. Then, principal components analysis was employed to compress the spectral data and select the optimal wavelengths based on loading weight analysis. Meanwhile, the random frog (RF) methodology and the successive projections algorithm were also adopted to pick effective wavelengths from the spectral data. Finally, least squares support vector machine (LS-SVM) was utilized to establish discriminative models using spectral reflectance and corresponding labeled classes for each degree of roast sample. The results showed that the LS-SVM model, established by the RF selecting method, with eight wavelengths performed very well, achieving an overall classification accuracy of 90.30%. In conclusion, HSI was illustrated as a potential technique for noninvasively classifying the roasting degrees of coffee beans and might have an important application for the development of nondestructive, real-time, and portable sensors to monitor the roasting process of coffee beans.
Superpixel-Augmented Endmember Detection for Hyperspectral Images
NASA Technical Reports Server (NTRS)
Thompson, David R.; Castano, Rebecca; Gilmore, Martha
2011-01-01
Superpixels are homogeneous image regions comprised of several contiguous pixels. They are produced by shattering the image into contiguous, homogeneous regions that each cover between 20 and 100 image pixels. The segmentation aims for a many-to-one mapping from superpixels to image features; each image feature could contain several superpixels, but each superpixel occupies no more than one image feature. This conservative segmentation is relatively easy to automate in a robust fashion. Superpixel processing is related to the more general idea of improving hyperspectral analysis through spatial constraints, which can recognize subtle features at or below the level of noise by exploiting the fact that their spectral signatures are found in neighboring pixels. Recent work has explored spatial constraints for endmember extraction, showing significant advantages over techniques that ignore pixels relative positions. Methods such as AMEE (automated morphological endmember extraction) express spatial influence using fixed isometric relationships a local square window or Euclidean distance in pixel coordinates. In other words, two pixels covariances are based on their spatial proximity, but are independent of their absolute location in the scene. These isometric spatial constraints are most appropriate when spectral variation is smooth and constant over the image. Superpixels are simple to implement, efficient to compute, and are empirically effective. They can be used as a preprocessing step with any desired endmember extraction technique. Superpixels also have a solid theoretical basis in the hyperspectral linear mixing model, making them a principled approach for improving endmember extraction. Unlike existing approaches, superpixels can accommodate non-isometric covariance between image pixels (characteristic of discrete image features separated by step discontinuities). These kinds of image features are common in natural scenes. Analysts can substitute superpixels for image pixels during endmember analysis that leverages the spatial contiguity of scene features to enhance subtle spectral features. Superpixels define populations of image pixels that are independent samples from each image feature, permitting robust estimation of spectral properties, and reducing measurement noise in proportion to the area of the superpixel. This permits improved endmember extraction, and enables automated search for novel and constituent minerals in very noisy, hyperspatial images. This innovation begins with a graph-based segmentation based on the work of Felzenszwalb et al., but then expands their approach to the hyperspectral image domain with a Euclidean distance metric. Then, the mean spectrum of each segment is computed, and the resulting data cloud is used as input into sequential maximum angle convex cone (SMACC) endmember extraction.
Spectral difference analysis and airborne imaging classification for citrus greening infected trees
USDA-ARS?s Scientific Manuscript database
Citrus greening, also called Huanglongbing (HLB), became a devastating disease spread through citrus groves in Florida, since it was first found in 2005. Multispectral (MS) and hyperspectral (HS) airborne images of citrus groves in Florida were acquired to detect citrus greening infected trees in 20...
Direct Penguin Counting Using Unmanned Aerial Vehicle Image
NASA Astrophysics Data System (ADS)
Hyun, C. U.; Kim, H. C.; Kim, J. H.; Hong, S. G.
2015-12-01
This study presents an application of unmanned aerial vehicle (UAV) images to monitor penguin colony in Baton Peninsula, King George Island, Antarctica. The area around Narębski Point located on the southeast coast of Barton Peninsula was designated as Antarctic Specially Protected Area No. 171 (ASPA 171), and Chinstrap and Gentoo penguins inhabit in this area. The UAV images were acquired in a part of ASPA 171 from four flights in a single day, Jan 18, 2014. About 360 images were mosaicked as an image of about 3 cm spatial resolution and then a subset including representative penguin rookeries was selected. The subset image was segmented based on gradient map of pixel values, and spectral and spatial attributes were assigned to each segment. The object based image analysis (OBIA) was conducted with consideration of spectral attributes including mean and minimum values of each segment and various shape attributes such as area, length, compactness and roundness to detect individual penguin. The segments indicating individual penguin were effectively detected on rookeries with high contrasts in the spectral and shape attributes. The importance of periodic and precise monitoring of penguins has been recognized because variations of their populations reflect environmental changes and disturbance from human activities. Utilization of very high resolution imaging method shown in this study can be applied to other penguin habitats in Antarctica, and the results will be able to support establishing effective environmental management plans.
Milewski, Robert J; Kumagai, Yutaro; Fujita, Katsumasa; Standley, Daron M; Smith, Nicholas I
2010-11-19
Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to perturb the cell, particularly in cases where incomplete information exists regarding the precise cellular reaction under observation. Label-free imaging techniques such as Raman microscopy are thus valuable tools for studying the transformations that occur in immune cells upon activation, both on the molecular and organelle levels. Due to extremely low signal levels, however, Raman microscopy requires sophisticated image processing techniques for noise reduction and signal extraction. To date, efficient, automated algorithms for resolving sub-cellular features in noisy, multi-dimensional image sets have not been explored extensively. We show that hybrid z-score normalization and standard regression (Z-LSR) can highlight the spectral differences within the cell and provide image contrast dependent on spectral content. In contrast to typical Raman imaging processing methods using multivariate analysis, such as single value decomposition (SVD), our implementation of the Z-LSR method can operate nearly in real-time. In spite of its computational simplicity, Z-LSR can automatically remove background and bias in the signal, improve the resolution of spatially distributed spectral differences and enable sub-cellular features to be resolved in Raman microscopy images of mouse macrophage cells. Significantly, the Z-LSR processed images automatically exhibited subcellular architectures whereas SVD, in general, requires human assistance in selecting the components of interest. The computational efficiency of Z-LSR enables automated resolution of sub-cellular features in large Raman microscopy data sets without compromise in image quality or information loss in associated spectra. These results motivate further use of label free microscopy techniques in real-time imaging of live immune cells.
Pradère, B; Poulon, F; Compérat, E; Lucas, I; Bazin, D; Doizi, S; Cussenot, O; Traxer, O; Abi Haidar, D
2018-05-28
In the framework of urologic oncology, mini-invasive procedures have increased in the last few decades particularly for urothelial carcinoma. One of the essential elements in the management of this disease is still the diagnosis, which strongly influences the choice of treatment. The histopathologic evaluation of the tumor grade is a keystone of diagnosis, and tumor characterization is not possible with just a macroscopic evaluation. Even today intraoperative evaluation remains difficult despite the emergence of new technologies which use exogenous fluorophore. This study assessed an optical multimodal technique based on endogenous fluorescence, combining qualitative and quantitative analysis, for the diagnostic of urothelial carcinoma. It was found that the combination of two photon fluorescence, second harmonic generation microscopy, spectral analysis and fluorescence lifetime imaging were all able to discriminate tumor from healthy tissue, and to determine the grade of tumors. Spectral analysis of fluorescence intensity and the redox ratio used as quantitative evaluations showed statistical differences between low grade and high grade tumors. These results showed that multimodal optical analysis is a promising technology for the development of an optical fiber setup designed for an intraoperative diagnosis of urothelial carcinoma in the area of endourology. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Image quality measures to assess hyperspectral compression techniques
NASA Astrophysics Data System (ADS)
Lurie, Joan B.; Evans, Bruce W.; Ringer, Brian; Yeates, Mathew
1994-12-01
The term 'multispectral' is used to describe imagery with anywhere from three to about 20 bands of data. The images acquired by Landsat and similar earth sensing satellites including the French Spot platform are typical examples of multispectral data sets. Applications range from crop observation and yield estimation, to forestry, to sensing of the environment. The wave bands typically range from the visible to thermal infrared and are fractions of a micron wide. They may or may not be contiguous. Thus each pixel will have several spectral intensities associated with it but detailed spectra are not obtained. The term 'hyperspectral' is typically used for spectral data encompassing hundreds of samples of a spectrum. Hyperspectral, electro-optical sensors typically operate in the visible and near infrared bands. Their characteristic property is the ability to resolve a large number (typically hundreds) of contiguous spectral bands, thus producing a detailed profile of the electromagnetic spectrum. Like multispectral sensors, recently developed hyperspectral sensors are often also imaging sensors, measuring spectral over a two dimensional spatial array of picture elements of pixels. The resulting data is thus inherently three dimensional - an array of samples in which two dimensions correspond to spatial position and the third to wavelength. The data sets, commonly referred to as image cubes or datacubes (although technically they are often rectangular solids), are very rich in information but quickly become unwieldy in size, generating formidable torrents of data. Both spaceborne and airborne hyperspectral cameras exist and are in use today. The data is unique in its ability to provide high spatial and spectral resolution simultaneously, and shows great promise in both military and civilian applications. A data analysis system has been built at TRW under a series of Internal Research and Development projects. This development has been prompted by the business opportunities, by the series of instruments built here and by the availability of data from other instruments. The products of the processing system has been used to process data produced by TRW sensors and other instruments. Figure 1 provides an overview of the TRW hyperspectral collection, data handling and exploitation capability. The Analysis and Exploitation functions deal with the digitized image cubes. The analysis system was designed to handle various types of data but the emphasis was on the data acquired by the TRW instruments.
Hugelier, Siewert; Vitale, Raffaele; Ruckebusch, Cyril
2018-03-01
This article explores smoothing with edge-preserving properties as a spatial constraint for the resolution of hyperspectral images with multivariate curve resolution-alternating least squares (MCR-ALS). For each constrained component image (distribution map), irrelevant spatial details and noise are smoothed applying an L 1 - or L 0 -norm penalized least squares regression, highlighting in this way big changes in intensity of adjacent pixels. The feasibility of the constraint is demonstrated on three different case studies, in which the objects under investigation are spatially clearly defined, but have significant spectral overlap. This spectral overlap is detrimental for obtaining a good resolution and additional spatial information should be provided. The final results show that the spatial constraint enables better image (map) abstraction, artifact removal, and better interpretation of the results obtained, compared to a classical MCR-ALS analysis of hyperspectral images.
NASA Astrophysics Data System (ADS)
Ewerlöf, Maria; Larsson, Marcus; Salerud, E. Göran
2017-02-01
Hyperspectral imaging (HSI) can estimate the spatial distribution of skin blood oxygenation, using visible to near-infrared light. HSI oximeters often use a liquid-crystal tunable filter, an acousto-optic tunable filter or mechanically adjustable filter wheels, which has too long response/switching times to monitor tissue hemodynamics. This work aims to evaluate a multispectral snapshot imaging system to estimate skin blood volume and oxygen saturation with high temporal and spatial resolution. We use a snapshot imager, the xiSpec camera (MQ022HG-IM-SM4X4-VIS, XIMEA), having 16 wavelength-specific Fabry-Perot filters overlaid on the custom CMOS-chip. The spectral distribution of the bands is however substantially overlapping, which needs to be taken into account for an accurate analysis. An inverse Monte Carlo analysis is performed using a two-layered skin tissue model, defined by epidermal thickness, haemoglobin concentration and oxygen saturation, melanin concentration and spectrally dependent reduced-scattering coefficient, all parameters relevant for human skin. The analysis takes into account the spectral detector response of the xiSpec camera. At each spatial location in the field-of-view, we compare the simulated output to the detected diffusively backscattered spectra to find the best fit. The imager is evaluated for spatial and temporal variations during arterial and venous occlusion protocols applied to the forearm. Estimated blood volume changes and oxygenation maps at 512x272 pixels show values that are comparable to reference measurements performed in contact with the skin tissue. We conclude that the snapshot xiSpec camera, paired with an inverse Monte Carlo algorithm, permits us to use this sensor for spatial and temporal measurement of varying physiological parameters, such as skin tissue blood volume and oxygenation.
[Research on Spectral Polarization Imaging System Based on Static Modulation].
Zhao, Hai-bo; Li, Huan; Lin, Xu-ling; Wang, Zheng
2015-04-01
The main disadvantages of traditional spectral polarization imaging system are: complex structure, with moving parts, low throughput. A novel method of spectral polarization imaging system is discussed, which is based on static polarization intensity modulation combined with Savart polariscope interference imaging. The imaging system can obtain real-time information of spectral and four Stokes polarization messages. Compared with the conventional methods, the advantages of the imaging system are compactness, low mass and no moving parts, no electrical control, no slit and big throughput. The system structure and the basic theory are introduced. The experimental system is established in the laboratory. The experimental system consists of reimaging optics, polarization intensity module, interference imaging module, and CCD data collecting and processing module. The spectral range is visible and near-infrared (480-950 nm). The white board and the plane toy are imaged by using the experimental system. The ability of obtaining spectral polarization imaging information is verified. The calibration system of static polarization modulation is set up. The statistical error of polarization degree detection is less than 5%. The validity and feasibility of the basic principle is proved by the experimental result. The spectral polarization data captured by the system can be applied to object identification, object classification and remote sensing detection.
Study on multispectral imaging detection and recognition
NASA Astrophysics Data System (ADS)
Jun, Wang; Na, Ding; Gao, Jiaobo; Yu, Hu; Jun, Wu; Li, Junna; Zheng, Yawei; Fei, Gao; Sun, Kefeng
2009-07-01
Multispectral imaging detecting technology use target radiation character in spectral spatial distribution and relation between spectral and image to detect target and remote sensing measure. Its speciality is multi channel, narrow bandwidth, large amount of information, high accuracy. The ability of detecting target in environment of clutter, camouflage, concealment and beguilement is improved. At present, spectral imaging technology in the range of multispectral and hyperspectral develop greatly. The multispectral imaging equipment of unmanned aerial vehicle can be used in mine detection, information, surveillance and reconnaissance. Spectral imaging spectrometer operating in MWIR and LWIR has already been applied in the field of remote sensing and military in the advanced country. The paper presents the technology of multispectral imaging. It can enhance the reflectance, scatter and radiation character of the artificial targets among nature background. The targets among complex background and camouflage/stealth targets can be effectively identified. The experiment results and the data of spectral imaging is obtained.
Hyperspectral imaging with wavelet transform for classification of colon tissue biopsy samples
NASA Astrophysics Data System (ADS)
Masood, Khalid
2008-08-01
Automatic classification of medical images is a part of our computerised medical imaging programme to support the pathologists in their diagnosis. Hyperspectral data has found its applications in medical imagery. Its usage is increasing significantly in biopsy analysis of medical images. In this paper, we present a histopathological analysis for the classification of colon biopsy samples into benign and malignant classes. The proposed study is based on comparison between 3D spectral/spatial analysis and 2D spatial analysis. Wavelet textural features in the wavelet domain are used in both these approaches for classification of colon biopsy samples. Experimental results indicate that the incorporation of wavelet textural features using a support vector machine, in 2D spatial analysis, achieve best classification accuracy.
Saliency-Guided Change Detection of Remotely Sensed Images Using Random Forest
NASA Astrophysics Data System (ADS)
Feng, W.; Sui, H.; Chen, X.
2018-04-01
Studies based on object-based image analysis (OBIA) representing the paradigm shift in change detection (CD) have achieved remarkable progress in the last decade. Their aim has been developing more intelligent interpretation analysis methods in the future. The prediction effect and performance stability of random forest (RF), as a new kind of machine learning algorithm, are better than many single predictors and integrated forecasting method. In this paper, we present a novel CD approach for high-resolution remote sensing images, which incorporates visual saliency and RF. First, highly homogeneous and compact image super-pixels are generated using super-pixel segmentation, and the optimal segmentation result is obtained through image superimposition and principal component analysis (PCA). Second, saliency detection is used to guide the search of interest regions in the initial difference image obtained via the improved robust change vector analysis (RCVA) algorithm. The salient regions within the difference image that correspond to the binarized saliency map are extracted, and the regions are subject to the fuzzy c-means (FCM) clustering to obtain the pixel-level pre-classification result, which can be used as a prerequisite for superpixel-based analysis. Third, on the basis of the optimal segmentation and pixel-level pre-classification results, different super-pixel change possibilities are calculated. Furthermore, the changed and unchanged super-pixels that serve as the training samples are automatically selected. The spectral features and Gabor features of each super-pixel are extracted. Finally, superpixel-based CD is implemented by applying RF based on these samples. Experimental results on Ziyuan 3 (ZY3) multi-spectral images show that the proposed method outperforms the compared methods in the accuracy of CD, and also confirm the feasibility and effectiveness of the proposed approach.
Fresnel zone plate light field spectral imaging simulation
NASA Astrophysics Data System (ADS)
Hallada, Francis D.; Franz, Anthony L.; Hawks, Michael R.
2017-05-01
Through numerical simulation, we have demonstrated a novel snapshot spectral imaging concept using binary diffractive optics. Binary diffractive optics, such as Fresnel zone plates (FZP) or photon sieves, can be used as the single optical element in a spectral imager that conducts both imaging and dispersion. In previous demonstrations of spectral imaging with diffractive optics, the detector array was physically translated along the optic axis to measure different image formation planes. In this new concept the wavelength-dependent images are constructed synthetically, by using integral photography concepts commonly applied to light field (plenoptic) cameras. Light field cameras use computational digital refocusing methods after exposure to make images at different object distances. Our concept refocuses to make images at different wavelengths instead of different object distances. The simulations in this study demonstrate this concept for an imager designed with a FZP. Monochromatic light from planar sources is propagated through the system to a measurement plane using wave optics in the Fresnel approximation. Simple images, placed at optical infinity, are illuminated by monochromatic sources and then digitally refocused to show different spectral bins. We show the formation of distinct images from different objects, illuminated by monochromatic sources in the VIS/NIR spectrum. Additionally, this concept could easily be applied to imaging in the MWIR and LWIR ranges. In conclusion, this new type of imager offers a rugged and simple optical design for snapshot spectral imaging and warrants further development.
Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance
NASA Technical Reports Server (NTRS)
Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.
2012-01-01
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time series analysis of the PC scores using techniques such as Singular Spectrum Analysis (SSA) and Multichannel SSA will provide information about the temporal variability of the dominant variables. Quantitative comparison techniques can evaluate how well the OSSE reproduces the temporal variability observed by SCIAMACHY spectral reflectance measurements during the first decade of the 21st century. PCA of OSSE-simulated reflectance can also be used to study how the dominant spectral variables change on centennial scales for forced and unforced climate change scenarios. To have confidence in OSSE predictions of the spectral variability of hyperspectral reflectance, it is first necessary for us to evaluate the degree to which the OSSE simulations are able to reproduce the Earth?s present-day spectral variability.
NASA Astrophysics Data System (ADS)
Arnold, Thomas; De Biasio, Martin; Leitner, Raimund
2015-06-01
Two problems are addressed in this paper (i) the fluorescent marker-based and the (ii) marker-free discrimination between healthy and cancerous human tissues. For both applications the performance of hyper-spectral methods are quantified. Fluorescent marker-based tissue classification uses a number of fluorescent markers to dye specific parts of a human cell. The challenge is that the emission spectra of the fluorescent dyes overlap considerably. They are, furthermore disturbed by the inherent auto-fluorescence of human tissue. This results in ambiguities and decreased image contrast causing difficulties for the treatment decision. The higher spectral resolution introduced by tunable-filter-based spectral imaging in combination with spectral unmixing techniques results in an improvement of the image contrast and therefore more reliable information for the physician to choose the treatment decision. Marker-free tissue classification is based solely on the subtle spectral features of human tissue without the use of artificial markers. The challenge in this case is that the spectral differences between healthy and cancerous tissues are subtle and embedded in intra- and inter-patient variations of these features. The contributions of this paper are (i) the evaluation of hyper-spectral imaging in combination with spectral unmixing techniques for fluorescence marker-based tissue classification, (ii) the evaluation of spectral imaging for marker-free intra surgery tissue classification. Within this paper, we consider real hyper-spectral fluorescence and endoscopy data sets to emphasize the practical capability of the proposed methods. It is shown that the combination of spectral imaging with multivariate statistical methods can improve the sensitivity and specificity of the detection and the staging of cancerous tissues compared to standard procedures.
Acousto-optic tunable filter chromatic aberration analysis and reduction with auto-focus system
NASA Astrophysics Data System (ADS)
Wang, Yaoli; Chen, Yuanyuan
2018-07-01
An acousto-optic tunable filter (AOTF) displays optical band broadening and sidelobes as a result of the coupling between the acoustic wave and optical waves of different wavelengths. These features were analysed by wave-vector phase matching between the optical and acoustic waves. A crossed-line test board was imaged by an AOTF multi-spectral imaging system, showing image blurring in the direction of diffraction and image sharpness in the orthogonal direction produced by the greater bandwidth and sidelobes in the former direction. Applying the secondary-imaging principle and considering the wavelength-dependent refractive index, focal length varies over the broad wavelength range. An automatic focusing method is therefore proposed for use in AOTF multi-spectral imaging systems. A new method for image-sharpness evaluation, based on improved Structure Similarity Index Measurement (SSIM), is also proposed, based on the characteristics of the AOTF imaging system. Compared with the traditional gradient operator, as same as it, the new evaluation function realized the evaluation between different image quality, thus could achieve the automatic focusing for different multispectral images.
Detecting early stage pressure ulcer on dark skin using multispectral imager
NASA Astrophysics Data System (ADS)
Kong, Linghua; Sprigle, Stephen; Yi, Dingrong; Wang, Chao; Wang, Fengtao; Liu, Fuhan; Wang, Jiwu; Zhao, Futing
2009-10-01
This paper introduces a novel idea, innovative technology in building multi spectral imaging based device. The benefit from them is people can have low cost, handheld and standing alone device which makes acquire multi spectral images real time with just a snapshot. The paper for the first time publishes some images got from such prototyped miniaturized multi spectral imager.
Lv, Peijie; Zhang, Yonggao; Liu, Jie; Ji, Lijuan; Chen, Yan; Gao, Jianbo
2014-01-01
To evaluate the detectability of urinary calculi on material decomposition (MD) images generated from spectral computed tomography (CT) and identify the influencing factors. Forty-six patients were examined with true nonenhanced (TNE) CT and spectral CT urography in the excretory phase. The contrast medium was removed from excretory phase images using water-based (WB) and calcium-based (CaB) MD analysis. The sensitivity for detection on WB and CaB images was evaluated using TNE results as the reference standard. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) on MD images were evaluated. Using logistic regression, the influences of image noise, attenuation, stone size, and patient's body mass index (BMI) were assessed. Threshold values with maximal sensitivity and specificity were calculated by means of receiver operating characteristic analyses. One hundred thirty-six calculi were detected on TNE images; 98 calculi were identified on WB images (sensitivity, 72.06%) and 101 calculi on CaB images (sensitivity, 74.26%). Sensitivities were 76.92% for the 3-5-mm stones and 84.51% for the 5-mm or larger stones on both WB and CaB images but reduced to 46.15% on WB images and 53.85% on CaB images for small calculi (<3 mm). Compared to WB images, CaB images showed lower image noise, higher SNR but similar CNR. Larger stone sizes (both >2.71 mm on WB and CaB) and greater CT attenuation (>280 Hounsfield units [HU] on WB, >215 HU on CaB) of the urinary stones were significantly associated with higher stone visibility rates on WB and CaB images (P ≤ .003). Image noise and BMI showed no impact on the stone detection. MD images generated from spectral CT showed good reliability for the detection of large (>2.71 mm) and hyperattenuating (>280 HU on WB, >215 HU on CaB) urinary calculi. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Rowan, L.C.; Mars, J.C.; Simpson, C.J.
2005-01-01
Spectral measurements made in the Mordor Pound, NT, Australia study area using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), in the laboratory and in situ show dominantly Al-OH and ferric-iron VNIR-SWIR absorption features in felsic rock spectra and ferrous-iron and Fe,Mg-OH features in the mafic-ultramafic rock spectra. ASTER ratio images, matched-filter, and spectral-angle mapper processing (SAM) were evaluated for mapping the lithologies. Matched-filter processing in which VNIR + SWIR image spectra were used for reference resulted in 4 felsic classes and 4 mafic-ultramafic classes based on Al-OH or Fe,Mg-OH absorption features and, in some, subtle reflectance differences related to differential weathering and vegetation. These results were similar to those obtained by match-filter analysis of HyMap data from a previous study, but the units were more clearly demarcated in the HyMap image. ASTER TIR spectral emittance data and laboratory emissivity measurements document a wide wavelength range of Si-O spectral features, which reflect the lithological diversity of the Mordor ultramafic complex and adjacent rocks. SAM processing of the spectral emittance data distinguished 2 classes representing the mafic-ultramafic rocks and 4 classes comprising the quartzose to intermediate composition rocks. Utilization of the complementary attributes of the spectral reflectance and spectral emittance data resulted in discrimination of 4 mafic-ultramafic categories; 3 categories of alluvial-colluvial deposits; and a significantly more completely mapped quartzite unit than could be accomplished by using either data set alone. ?? 2005 Elsevier Inc. All rights reserved.
Preliminary Results Of PCA On MRO CRISM Multispectral Images
NASA Astrophysics Data System (ADS)
Klassen, David R.; Smith, M. D.
2008-09-01
Mars Reconnaissance Orbiter arrived at Mars in March 2006 and by September had achieved its science-phase orbit with the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) beginning its visible to near-infrared (VIS/NIR) spectral imaging shortly thereafter. One of the goals of CRISM is to fill in the spatial gaps between the various targeted observations, eventually mapping the entire surface. Due to the large volume of data this would create, the instrument works in a reduced spectral sampling mode creating "multispectral” images. From this data we can create image cubes using 70 wavelengths from 0.410 to 3.504 µm. We present here a preliminary analysis of these multispectral mode data products using the technique of Principal Components Analysis. Previous work with ground-based images has shown that over an entire visible hemisphere, there are only three to four meaningful components out of 32-105 wavelengths over 1.5-4.1 µm. The first two of these components are fairly consistent over all time intervals from day-to-day and season-to-season. [1-4] The preliminary work on the CRISM images cubes implies similar results_three to four significant principal components that are fairly consistent over time. We will show these components and a rough linear mixture modeling based on in-data spectral endmembers derived from the extrema of the principal components [5]. References: [1] Klassen, D. R. and Bell III, J. F. (2001) BAAS 33, 1069. [2] Klassen, D. R. and Bell III, J. F. (2003) BAAS, 35, 936. [3] Klassen, D. R., Wark, T. J., Cugliotta, C. G. (2005) BAAS, 37, 693. [4] Klassen, D. R. and Bell III, J. F. (2007) in preparation. [5] Klassen, D. R. and Bell III, J. F. (2000) BAAS, 32, 1105.
NASA Astrophysics Data System (ADS)
Upendra Bhatt, Megha; Mall, Urs; Bugiolacchi, Roberto; Bhattacharya, Satadru
2010-05-01
The impact basins on lunar surface act as a window into the lunar interior and allow investigations of the composition of lower crust and upper mantle. Mare Moscoviense is one of the oldest impact basins on the far side of the Moon. We report on our preliminary analysis conducted in the central region of Mare Moscoviense using the near-infrared spectrometer, SIR-2 data in combination with the Hyperspectral Imager (HySI) data from the Chandrayaan-1 mission. SIR-2 is a compact, monolithic grating type point spectrometer which collected data with high spatial resolution (~200 m) and spectral resolution (6 nm) at wavelengths between 0.93 to 2.41 µm. The Indian HySI instrument mapped the lunar surface in the spectral range of 0.42 to 0.96 µm in 64 contiguous bands with a spectral bandwidth ~20 nm and spatial resolution of 80 m. We will explain the method of combining the response of SIR-2 and HySI to get a complete spectral coverage from 0.42-2.40 µm with high spatial and spectral resolution. We compare average reflectance spectra for spatially, spectrally and compositionally varying areas with the published literature.
NASA Astrophysics Data System (ADS)
Ungar, S.
2017-12-01
Over the past 3 years, the Earth Observing-one (EO-1) Hyperion imaging spectrometer was used to slowly scan the lunar surface at a rate which results in up to 32X oversampling to effectively increase the SNR. Several strategies, including comparison against the USGS RObotic Lunar Observatory (ROLO) mode,l are being employed to estimate the absolute and relative accuracy of the measurement set. There is an existing need to resolve discrepancies as high as 10% between ROLO and solar based calibration of current NASA EOS assets. Although the EO-1 mission was decommissioned at the end of March 2017, the development of a well-characterized exoatmospheric spectral radiometric database, for a range of lunar phase angles surrounding the fully illuminated moon, continues. Initial studies include a comprehensive analysis of the existing 17-year collection of more than 200 monthly lunar acquisitions. Specific lunar surface areas, such as a lunar mare, are being characterized as potential "lunar calibration sites" in terms of their radiometric stability in the presence of lunar nutation and libration. Site specific Hyperion-derived lunar spectral reflectance are being compared against spectrographic measurements made during the Apollo program. Techniques developed through this activity can be employed by future high-quality orbiting imaging spectrometers (such as HyspIRI and EnMap) to further refine calibration accuracies. These techniques will enable the consistent cross calibration of existing and future earth observing systems (spectral and multi-spectral) including those that do not have lunar viewing capability. When direct lunar viewing is not an option for an earth observing asset, orbiting imaging spectrometers can serve as transfer radiometers relating that asset's sensor response to lunar values through near contemporaneous observations of well characterized stable CEOS test sites. Analysis of this dataset will lead to the development of strategies to ensure more accurate cross calibrations when employing the more capable, future imaging spectrometers.
The Ring-Barking Experiment: Analysis of Forest Vitality Using Multi-Temporal Hyperspectral Data
NASA Astrophysics Data System (ADS)
Reichmuth, Anne; Bachmann, Martin; Heiden, Uta; Pinnel, Nicole; Holzwarth, Stefanie; Muller, Andreas; Henning, Lea; Einzmann, Kathrin; Immitzer, Markus; Seitz, Rudolf
2016-08-01
Through new operational optical spaceborne sensors (En- MAP and Sentinel-2) the impact analysis of climate change on forest ecosystems will be fostered. This analysis examines the potential of high spectral, spatial and temporal resolution data for detecting forest vegetation parameters, in particular Chlorophyll and Canopy Water content. The study site is a temperate spruce forest in Germany where in 2013 several trees were Ring-barked for a controlled die-off. During this experiment Ring- barked and Control trees were observed. Twelve airborne hyperspectral HySpex VNIR (Visible/Near Infrared) and SWIR (Shortwave Infrared) data with 1m spatial and 416 bands spectral resolution were acquired during the vegetation periods of 2013 and 2014. Additional laboratory spectral measurements of collected needle samples from Ring-barked and Control trees are available for needle level analysis. Index analysis of the laboratory measurements and image data are presented in this study.
Hyper-spectral image segmentation using spectral clustering with covariance descriptors
NASA Astrophysics Data System (ADS)
Kursun, Olcay; Karabiber, Fethullah; Koc, Cemalettin; Bal, Abdullah
2009-02-01
Image segmentation is an important and difficult computer vision problem. Hyper-spectral images pose even more difficulty due to their high-dimensionality. Spectral clustering (SC) is a recently popular clustering/segmentation algorithm. In general, SC lifts the data to a high dimensional space, also known as the kernel trick, then derive eigenvectors in this new space, and finally using these new dimensions partition the data into clusters. We demonstrate that SC works efficiently when combined with covariance descriptors that can be used to assess pixelwise similarities rather than in the high-dimensional Euclidean space. We present the formulations and some preliminary results of the proposed hybrid image segmentation method for hyper-spectral images.
Development of a digital-micromirror-device-based multishot snapshot spectral imaging system.
Wu, Yuehao; Mirza, Iftekhar O; Arce, Gonzalo R; Prather, Dennis W
2011-07-15
We report on the development of a digital-micromirror-device (DMD)-based multishot snapshot spectral imaging (DMD-SSI) system as an alternative to current piezostage-based multishot coded aperture snapshot spectral imager (CASSI) systems. In this system, a DMD is used to implement compressive sensing (CS) measurement patterns for reconstructing the spatial/spectral information of an imaging scene. Based on the CS measurement results, we demonstrated the concurrent reconstruction of 24 spectral images. The DMD-SSI system is versatile in nature as it can be used to implement independent CS measurement patterns in addition to spatially shifted patterns that piezostage-based systems can offer. © 2011 Optical Society of America
A spectral water index based on visual bands
NASA Astrophysics Data System (ADS)
Basaeed, Essa; Bhaskar, Harish; Al-Mualla, Mohammed
2013-10-01
Land-water segmentation is an important preprocessing step in a number of remote sensing applications such as target detection, environmental monitoring, and map updating. A Normalized Optical Water Index (NOWI) is proposed to accurately discriminate between land and water regions in multi-spectral satellite imagery data from DubaiSat-1. NOWI exploits the spectral characteristics of water content (using visible bands) and uses a non-linear normalization procedure that renders strong emphasize on small changes in lower brightness values whilst guaranteeing that the segmentation process remains image-independent. The NOWI representation is validated through systematic experiments, evaluated using robust metrics, and compared against various supervised classification algorithms. Analysis has indicated that NOWI has the advantages that it: a) is a pixel-based method that requires no global knowledge of the scene under investigation, b) can be easily implemented in parallel processing, c) is image-independent and requires no training, d) works in different environmental conditions, e) provides high accuracy and efficiency, and f) works directly on the input image without any form of pre-processing.
Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images
NASA Astrophysics Data System (ADS)
Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.
2018-04-01
A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.
NASA Technical Reports Server (NTRS)
Brand, R. R.; Barker, J. L.
1983-01-01
A multistage sampling procedure using image processing, geographical information systems, and analytical photogrammetry is presented which can be used to guide the collection of representative, high-resolution spectra and discrete reflectance targets for future satellite sensors. The procedure is general and can be adapted to characterize areas as small as minor watersheds and as large as multistate regions. Beginning with a user-determined study area, successive reductions in size and spectral variation are performed using image analysis techniques on data from the Multispectral Scanner, orbital and simulated Thematic Mapper, low altitude photography synchronized with the simulator, and associated digital data. An integrated image-based geographical information system supports processing requirements.
Intelligent image processing for vegetation classification using multispectral LANDSAT data
NASA Astrophysics Data System (ADS)
Santos, Stewart R.; Flores, Jorge L.; Garcia-Torales, G.
2015-09-01
We propose an intelligent computational technique for analysis of vegetation imaging, which are acquired with multispectral scanner (MSS) sensor. This work focuses on intelligent and adaptive artificial neural network (ANN) methodologies that allow segmentation and classification of spectral remote sensing (RS) signatures, in order to obtain a high resolution map, in which we can delimit the wooded areas and quantify the amount of combustible materials present into these areas. This could provide important information to prevent fires and deforestation of wooded areas. The spectral RS input data, acquired by the MSS sensor, are considered in a random propagation remotely sensed scene with unknown statistics for each Thematic Mapper (TM) band. Performing high-resolution reconstruction and adding these spectral values with neighbor pixels information from each TM band, we can include contextual information into an ANN. The biggest challenge in conventional classifiers is how to reduce the number of components in the feature vector, while preserving the major information contained in the data, especially when the dimensionality of the feature space is high. Preliminary results show that the Adaptive Modified Neural Network method is a promising and effective spectral method for segmentation and classification in RS images acquired with MSS sensor.
Fu, Fan; Sun, Shengjun; Liu, Liping; Li, Jianying; Su, Yaping; Li, Yingying
2018-04-19
The computed tomography angiography (CTA) spot sign is a validated predictor of haematoma expansion (HE) in spontaneous intracerebral haemorrhage (SICH). We investigated whether defining the iodine concentration (IC) inside the spot sign and the haematoma on Gemstone spectral imaging (GSI) would improve its sensitivity and specificity for predicting HE. From 2014 to 2016, we prospectively enrolled 65 SICH patients who underwent single-phase spectral CTA within 6 h. Logistic regression was performed to assess the risk factors for HE. The predictive performance of individual spot sign characteristics was examined via receiver operating characteristic (ROC) analysis. The spot sign was detected in 46.1% (30/65) of patients. ROC analysis indicated that IC inside the spot sign had the greatest area under the ROC curve for HE (0.858; 95% confidence interval, 0.727-0.989; p = 0.003). Multivariate analysis found that spot sign with higher IC (i.e. IC > 7.82 100 μg/ml) was an independent predictor of HE (odds ratio = 34.27; 95% confidence interval, 5.608-209.41; p < 0.001) with sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 0.81, 0.75, 0.90 and 0.60, respectively; while the spot sign showed sensitivity, specificity, PPV and NPV of 0.81, 0.79, 0.73 and 0.86. Logistic regression analysis indicated that the IC in haematomas was independently associated with HE (odds ratio = 1.525; 95% confidence interval, 1.041-2.235; p = 0.030). ICs in haematoma and in spot sign were all independently associated with HE. IC analysis in spectral imaging may help to identify SICH patients for targeted haemostatic therapy. • Iodine concentration in spot sign and haematoma can predict haematoma expansion • Spectral imaging could measure the IC inside the spot sign and haematoma • IC in spot sign improved the positive predictive value (PPV) cf. CTA.
Assessing and monitoring of urban vegetation using multiple endmember spectral mixture analysis
NASA Astrophysics Data System (ADS)
Zoran, M. A.; Savastru, R. S.; Savastru, D. M.
2013-08-01
During last years urban vegetation with significant health, biological and economical values had experienced dramatic changes due to urbanization and human activities in the metropolitan area of Bucharest in Romania. We investigated the utility of remote sensing approaches of multiple endmember spectral mixture analysis (MESMA) applied to IKONOS and Landsat TM/ETM satellite data for estimating fractional cover of urban/periurban forest, parks, agricultural vegetation areas. Because of the spectral heterogeneity of same physical features of urban vegetation increases with the increase of image resolution, the traditional spectral information-based statistical method may not be useful to classify land cover dynamics from high resolution imageries like IKONOS. So we used hierarchy tree classification method in classification and MESMA for vegetation land cover dynamics assessment based on available IKONOS high-resolution imagery of Bucharest town. This study employs thirty two endmembers and six hundred and sixty spectral models to identify all Earth's features (vegetation, water, soil, impervious) and shade in the Bucharest area. The mean RMS error for the selected vegetation land cover classes range from 0.0027 to 0.018. The Pearson correlation between the fraction outputs from MESMA and reference data from all IKONOS images 1m panchromatic resolution data for urban/periurban vegetation were ranging in the domain 0.7048 - 0.8287. The framework in this study can be applied to other urban vegetation areas in Romania.
NASA Technical Reports Server (NTRS)
Hsu, Wei-Chen; Kuss, Amber Jean; Ketron, Tyler; Nguyen, Andrew; Remar, Alex Covello; Newcomer, Michelle; Fleming, Erich; Debout, Leslie; Debout, Brad; Detweiler, Angela;
2011-01-01
Tidal marshes are highly productive ecosystems that support migratory birds as roosting and over-wintering habitats on the Pacific Flyway. Microphytobenthos, or more commonly 'biofilms' contribute significantly to the primary productivity of wetland ecosystems, and provide a substantial food source for macroinvertebrates and avian communities. In this study, biofilms were characterized based on taxonomic classification, density differences, and spectral signatures. These techniques were then applied to remotely sensed images to map biofilm densities and distributions in the South Bay Salt Ponds and predict the carrying capacity of these newly restored ponds for migratory birds. The GER-1500 spectroradiometer was used to obtain in situ spectral signatures for each density-class of biofilm. The spectral variation and taxonomic classification between high, medium, and low density biofilm cover types was mapped using in-situ spectral measurements and classification of EO-1 Hyperion and Landsat TM 5 images. Biofilm samples were also collected in the field to perform laboratory analyses including chlorophyll-a, taxonomic classification, and energy content. Comparison of the spectral signatures between the three density groups shows distinct variations useful for classification. Also, analysis of chlorophyll-a concentrations show statistically significant differences between each density group, using the Tukey-Kramer test at an alpha level of 0.05. The potential carrying capacity in South Bay Salt Ponds is estimated to be 250,000 birds.
SMV⊥: Simplex of maximal volume based upon the Gram-Schmidt process
NASA Astrophysics Data System (ADS)
Salazar-Vazquez, Jairo; Mendez-Vazquez, Andres
2015-10-01
In recent years, different algorithms for Hyperspectral Image (HI) analysis have been introduced. The high spectral resolution of these images allows to develop different algorithms for target detection, material mapping, and material identification for applications in Agriculture, Security and Defense, Industry, etc. Therefore, from the computer science's point of view, there is fertile field of research for improving and developing algorithms in HI analysis. In some applications, the spectral pixels of a HI can be classified using laboratory spectral signatures. Nevertheless, for many others, there is no enough available prior information or spectral signatures, making any analysis a difficult task. One of the most popular algorithms for the HI analysis is the N-FINDR because it is easy to understand and provides a way to unmix the original HI in the respective material compositions. The N-FINDR is computationally expensive and its performance depends on a random initialization process. This paper proposes a novel idea to reduce the complexity of the N-FINDR by implementing a bottom-up approach based in an observation from linear algebra and the use of the Gram-Schmidt process. Therefore, the Simplex of Maximal Volume Perpendicular (SMV⊥) algorithm is proposed for fast endmember extraction in hyperspectral imagery. This novel algorithm has complexity O(n) with respect to the number of pixels. In addition, the evidence shows that SMV⊥ calculates a bigger volume, and has lower computational time complexity than other poular algorithms on synthetic and real scenarios.
Breast Tissue Characterization with Photon-counting Spectral CT Imaging: A Postmortem Breast Study
Ding, Huanjun; Klopfer, Michael J.; Ducote, Justin L.; Masaki, Fumitaro
2014-01-01
Purpose To investigate the feasibility of breast tissue characterization in terms of water, lipid, and protein contents with a spectral computed tomographic (CT) system based on a cadmium zinc telluride (CZT) photon-counting detector by using postmortem breasts. Materials and Methods Nineteen pairs of postmortem breasts were imaged with a CZT-based photon-counting spectral CT system with beam energy of 100 kVp. The mean glandular dose was estimated to be in the range of 1.8–2.2 mGy. The images were corrected for pulse pile-up and other artifacts by using spectral distortion corrections. Dual-energy decomposition was then applied to characterize each breast into water, lipid, and protein contents. The precision of the three-compartment characterization was evaluated by comparing the composition of right and left breasts, where the standard error of the estimations was determined. The results of dual-energy decomposition were compared by using averaged root mean square to chemical analysis, which was used as the reference standard. Results The standard errors of the estimations of the right-left correlations obtained from spectral CT were 7.4%, 6.7%, and 3.2% for water, lipid, and protein contents, respectively. Compared with the reference standard, the average root mean square error in breast tissue composition was 2.8%. Conclusion Spectral CT can be used to accurately quantify the water, lipid, and protein contents in breast tissue in a laboratory study by using postmortem specimens. © RSNA, 2014 PMID:24814180
CALIBRATION AND VALIDATION OF CONFOCAL SPECTRAL IMAGING SYSTEMS
Confocal spectral imaging (CSI) microscope systems now on the market can perform spectral characterization of biological specimens containing fluorescent proteins, labels or dyes. Some CSI have been found to present inconsistent spectral characterizations within a particular syst...
Smile effect detection for dispersive hypersepctral imager based on the doped reflectance panel
NASA Astrophysics Data System (ADS)
Zhou, Jiankang; Liu, Xiaoli; Ji, Yiqun; Chen, Yuheng; Shen, Weimin
2012-11-01
Hyperspectral imager is now widely used in many regions, such as resource development, environmental monitoring and so on. The reliability of spectral data is based on the instrument calibration. The smile, wavelengths at the center pixels of imaging spectrometer detector array are different from the marginal pixels, is a main factor in the spectral calibration because it can deteriorate the spectral data accuracy. When the spectral resolution is high, little smile can result in obvious signal deviation near weak atmospheric absorption peak. The traditional method of detecting smile is monochromator wavelength scanning which is time consuming and complex and can not be used in the field or at the flying platform. We present a new smile detection method based on the holmium oxide panel which has the rich of absorbed spectral features. The higher spectral resolution spectrometer and the under-test imaging spectrometer acquired the optical signal from the Spectralon panel and the holmium oxide panel respectively. The wavelength absorption peak positions of column pixels are determined by curve fitting method which includes spectral response function sequence model and spectral resampling. The iteration strategy and Pearson coefficient together are used to confirm the correlation between the measured and modeled spectral curve. The present smile detection method is posed on our designed imaging spectrometer and the result shows that it can satisfy precise smile detection requirement of high spectral resolution imaging spectrometer.
ACTIM: an EDA initiated study on spectral active imaging
NASA Astrophysics Data System (ADS)
Steinvall, O.; Renhorn, I.; Ahlberg, J.; Larsson, H.; Letalick, D.; Repasi, E.; Lutzmann, P.; Anstett, G.; Hamoir, D.; Hespel, L.; Boucher, Y.
2010-10-01
This paper will describe ongoing work from an EDA initiated study on Active Imaging with emphasis of using multi or broadband spectral lasers and receivers. Present laser based imaging and mapping systems are mostly based on a fixed frequency lasers. On the other hand great progress has recently occurred in passive multi- and hyperspectral imaging with applications ranging from environmental monitoring and geology to mapping, military surveillance, and reconnaissance. Data bases on spectral signatures allow the possibility to discriminate between different materials in the scene. Present multi- and hyperspectral sensors mainly operate in the visible and short wavelength region (0.4-2.5 μm) and rely on the solar radiation giving shortcoming due to shadows, clouds, illumination angles and lack of night operation. Active spectral imaging however will largely overcome these difficulties by a complete control of the illumination. Active illumination enables spectral night and low-light operation beside a robust way of obtaining polarization and high resolution 2D/3D information. Recent development of broadband lasers and advanced imaging 3D focal plane arrays has led to new opportunities for advanced spectral and polarization imaging with high range resolution. Fusing the knowledge of ladar and passive spectral imaging will result in new capabilities in the field of EO-sensing to be shown in the study. We will present an overview of technology, systems and applications for active spectral imaging and propose future activities in connection with some prioritized applications.
Optical design and optical properties of a VUV spectrographic imager for ICON mission
NASA Astrophysics Data System (ADS)
Loicq, Jerome; Kintziger, Christian; Mazzoli, Alexandra; Miller, Tim; Chou, Cathy; Frey, Harald U.; Immel, Thomas J.; Mende, Stephen B.
2016-07-01
In the frame of the ICON (Ionospheric Connection Explorer) mission of NASA led by UC Berkeley, CSL and SSL Berkeley have designed in cooperation a new Far UV spectro-imager. The instrument is based on a Czerny-Turner spectrograph coupled with two back imagers. The whole field of view covers [+/- 12° vertical, +/- 9° horizontal]. The instrument is surmounted by a rotating mirror to adjust the horizontal field of view pointing by +/- 30°. To meet the scientific imaging and spectral requirements the instrument has been optimized. The optimization philosophy and related analysis are presented in the present paper. PSF, distortion map and spectral properties are described. A tolerance study and alignment cases were performed to prove the instrument can be built and aligned. Finally straylight and out of band properties are discussed.
Analysis of crystalline lens coloration using a black and white charge-coupled device camera.
Sakamoto, Y; Sasaki, K; Kojima, M
1994-01-01
To analyze lens coloration in vivo, we used a new type of Scheimpflug camera that is a black and white type of charge-coupled device (CCD) camera. A new methodology was proposed. Scheimpflug images of the lens were taken three times through red (R), green (G), and blue (B) filters, respectively. Three images corresponding with the R, G, and B channels were combined into one image on the cathode-ray tube (CRT) display. The spectral transmittance of the tricolor filters and the spectral sensitivity of the CCD camera were used to correct the scattering-light intensity of each image. Coloration of the lens was expressed on a CIE standard chromaticity diagram. The lens coloration of seven eyes analyzed by this method showed values almost the same as those obtained by the previous method using color film.
Characterizing Drought Impacted Soils in the San Joaquin Valley of California Using Remote Sensing
NASA Astrophysics Data System (ADS)
Wahab, L. M.; Miller, D.; Roberts, D. A.
2017-12-01
California's San Joaquin Valley is an extremely agriculturally productive region of the country, and understanding the state of soils in this region is an important factor in maintaining this high productivity. In this study, we quantified changing soil cover during the drought and analyzed spatial changes in salinity, organic matter, and moisture using unique soil spectral characteristics. We used data from the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) from Hyperspectral Infrared Imager (HyspIRI) campaign flights in 2013 and 2014 over the San Joaquin Valley. A mixture model was applied to both images that identified non- photosynthetic vegetation, green vegetation, and soil cover fractions through image endmembers of each of these three classes. We optimized the spectral library used to identify these classes with Iterative Endmember Selection (IES), and the images were unmixed using Multiple Endmember Spectral Mixture Analysis (MESMA). Maps of soil electrical conductivity, organic matter, soil saturated moisture, and field moisture were generated for the San Joaquin Valley based on indices developed by Ben-Dor et al. [2002]. Representative polygons were chosen to quantify changes between years. Maps of spectrally distinct soils were also generated for 2013 and 2014, in order to determine the spatial distribution of these soil types as well as their temporal dynamics between years. We estimated that soil cover increased by 16% from 2013-2014. Six spectrally distinct soil types were identified for the region, and it was determined that the distribution of these soil types was not constant for most areas between 2013 and 2014. Changes in soil pH, electrical conductivity, and soil moisture were strongly tied in the region between 2013 and 2014.
NASA Astrophysics Data System (ADS)
Belkić, Dževad; Belkić, Karen
2018-01-01
This paper on molecular imaging emphasizes improving specificity of magnetic resonance spectroscopy (MRS) for early cancer diagnostics by high-resolution data analysis. Sensitivity of magnetic resonance imaging (MRI) is excellent, but specificity is insufficient. Specificity is improved with MRS by going beyond morphology to assess the biochemical content of tissue. This is contingent upon accurate data quantification of diagnostically relevant biomolecules. Quantification is spectral analysis which reconstructs chemical shifts, amplitudes and relaxation times of metabolites. Chemical shifts inform on electronic shielding of resonating nuclei bound to different molecular compounds. Oscillation amplitudes in time signals retrieve the abundance of MR sensitive nuclei whose number is proportional to metabolite concentrations. Transverse relaxation times, the reciprocal of decay probabilities of resonances, arise from spin-spin coupling and reflect local field inhomogeneities. In MRS single voxels are used. For volumetric coverage, multi-voxels are employed within a hybrid of MRS and MRI called magnetic resonance spectroscopic imaging (MRSI). Common to MRS and MRSI is encoding of time signals and subsequent spectral analysis. Encoded data do not provide direct clinical information. Spectral analysis of time signals can yield the quantitative information, of which metabolite concentrations are the most clinically important. This information is equivocal with standard data analysis through the non-parametric, low-resolution fast Fourier transform and post-processing via fitting. By applying the fast Padé transform (FPT) with high-resolution, noise suppression and exact quantification via quantum mechanical signal processing, advances are made, presented herein, focusing on four areas of critical public health importance: brain, prostate, breast and ovarian cancers.
Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data
Kokaly, Raymond F.; Despain, Don G.; Clark, Roger N.; Livo, K. Eric
2003-01-01
Knowledge of the distribution of vegetation on the landscape can be used to investigate ecosystem functioning. The sizes and movements of animal populations can be linked to resources provided by different plant species. This paper demonstrates the application of imaging spectroscopy to the study of vegetation in Yellowstone National Park (Yellowstone) using spectral feature analysis of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data, acquired on August 7, 1996, were calibrated to surface reflectance using a radiative transfer model and field reflectance measurements of a ground calibration site. A spectral library of canopy reflectance signatures was created by averaging pixels of the calibrated AVIRIS data over areas of known forest and nonforest vegetation cover types in Yellowstone. Using continuum removal and least squares fitting algorithms in the US Geological Survey's Tetracorder expert system, the distributions of these vegetation types were determined by comparing the absorption features of vegetation in the spectral library with the spectra from the AVIRIS data. The 0.68 μm chlorophyll absorption feature and leaf water absorption features, centered near 0.98 and 1.20 μm, were analyzed. Nonforest cover types of sagebrush, grasslands, willows, sedges, and other wetland vegetation were mapped in the Lamar Valley of Yellowstone. Conifer cover types of lodgepole pine, whitebark pine, Douglas fir, and mixed Engelmann spruce/subalpine fir forests were spectrally discriminated and their distributions mapped in the AVIRIS images. In the Mount Washburn area of Yellowstone, a comparison of the AVIRIS map of forest cover types to a map derived from air photos resulted in an overall agreement of 74.1% (kappa statistic=0.62).
[Integration design and diffraction characteristics analysis of prism-grating-prism].
He, Tian-Bo; Bayanheshig; Li, Wen-Hao; Kong, Peng; Tang, Yu-Guo
2014-01-01
Prism-grating-prism (PGP) module is the important dispersing component in the hyper spectral imager. In order to effectively predict the distribution of diffraction efficiency of the whole PGP component and its diffraction characteristics before fabrication, a method of the PGP integration design is proposed. From the point of view of the volume phase holographic grating (VPHG) design, combined with the restrictive correlation between the various parameters of prisms and grating, we compiled the analysis software for calculating the whole PGP's diffraction efficiency. Furthermore, the effects of the structure parameters of prisms and grating on the PGP's diffraction characteristics were researched in detail. In particular we discussed the Bragg wavelength shift behaviour of the grating and a broadband PGP spectral component with high diffraction efficiency was designed for the imaging spectrometers. The result of simulation indicated that the spectral bandwidth of the PGP becomes narrower with the dispersion coefficient of prism 1 material decreasing; Bragg wavelength shift characteristics broaden the bandwidth of VPHG both spectrally and angularly, higher angular selectivity is desirable for selection requirements of the prism 1 material, and it can be easily tuned to achieve spectral bandwidth suitable for imaging PGP spectrograph; the vertex angle of prism 1, the film thickness and relative permittivity modulation of the grating have a significant impact on the distribution of PGP's diffraction efficiency, so precision control is necessary when fabrication. The diffraction efficiency of the whole PGP component designed by this method is no less than 50% in the wavelength range from 400 to 1000 nm, the specific design parameters have been given in this paper that have a certain reference value for PGP fabrication.
Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.
2016-01-01
A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070
NASA Astrophysics Data System (ADS)
Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.
2016-07-01
A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.
Spectrally And Temporally Resolved Low-Light Level Video Microscopy
NASA Astrophysics Data System (ADS)
Wampler, John E.; Furukawa, Ruth; Fechheimer, Marcus
1989-12-01
The IDG law-light video microscope system was designed to aid studies of localization of subcellular luminescence sources and stimulus/response coupling in single living cells using luminescent probes. Much of the motivation for design of this instrument system came from the pioneering efforts of Dr. Reynolds (Reynolds, Q. Rev. Biophys. 5, 295-347; Reynolds and Taylor, Bioscience 30, 586-592) who showed the value of intensified video camera systems for detection and localizion of fluorescence and bioluminescence signals from biological tissues. Our instrument system has essentially two roles, 1) localization and quantitation of very weak bioluminescence signals and 2) quantitation of intracellular environmental characteristics such as pH and calcium ion concentrations using fluorescent and bioluminescent probes. The instrument system exhibits over one million fold operating range allowing visualization and enhancement of quantum limited images with quantum limited response, spectral analysis of fluorescence signals, and transmitted light imaging. The computer control of the system implements rapid switching between light regimes, spatially resolved spectral scanning, and digital data processing for spectral shape analysis and for detailed analysis of the statistical distribution of single cell measurements. The system design and software algorithms used by the system are summarized. These design criteria are illustrated with examples taken from studies of bioluminescence, applications of bioluminescence to study developmental processes and gene expression in single living cells, and applications of fluorescent probes to study stimulus/response coupling in living cells.
Technology for detecting spectral radiance by a snapshot multi-imaging spectroradiometer
NASA Astrophysics Data System (ADS)
Zuber, Ralf; Stührmann, Ansgar; Gugg-Helminger, Anton; Seckmeyer, Gunther
2017-12-01
Technologies to determine spectral sky radiance distributions have evolved in recent years and have enabled new applications in remote sensing, for sky radiance measurements, in biological/diagnostic applications and luminance measurements. Most classical spectral imaging radiance technologies are based on mechanical and/or spectral scans. However, these methods require scanning time in which the spectral radiance distribution might change. To overcome this limitation, different so-called snapshot spectral imaging technologies have been developed that enable spectral and spatial non-scanning measurements. We present a new setup based on a facet mirror that is already used in imaging slicing spectrometers. By duplicating the input image instead of slicing it and using a specially designed entrance slit, we are able to select nearly 200 (14 × 14) channels within the field of view (FOV) for detecting spectral radiance in different directions. In addition, a megapixel image of the FOV is captured by an additional RGB camera. This image can be mapped onto the snapshot spectral image. In this paper, the mechanical setup, technical design considerations and first measurement results of a prototype are presented. For a proof of concept, the device is radiometrically calibrated and a 10 mm × 10 mm test pattern measured within a spectral range of 380 nm-800 nm with an optical bandwidth of 10 nm (full width at half maximum or FWHM). To show its potential in the UV spectral region, zenith sky radiance measurements in the UV of a clear sky were performed. Hence, the prototype was equipped with an entrance optic with a FOV of 0.5° and modified to obtain a radiometrically calibrated spectral range of 280 nm-470 nm with a FWHM of 3 nm. The measurement results have been compared to modeled data processed by UVSPEC, which showed deviations of less than 30%. This is far from being ideal, but an acceptable result with respect to available state-of-the-art intercomparisons.
USDA-ARS?s Scientific Manuscript database
The Lower Rio Grande Valley in the south of Texas is experiencing rapid increase of population to bring up urban growth that continues influencing on the irrigation districts in the region. This study evaluated the Landsat satellite multi-spectral imagery to provide information for GIS-based urbaniz...
Phoebe: A Surface Dominated by Water
NASA Astrophysics Data System (ADS)
Fraser, Wesley C.; Brown, Michael E.
2018-07-01
The Saturnian irregular satellite, Phoebe, can be broadly described as a water-rich rock. This object, which presumably originated from the same primordial population shared by the dynamically excited Kuiper Belt Objects (KBOs), has received high-resolution spectral imaging during the Cassini flyby. We present a new analysis of the Visual Infrared Mapping Spectrometer observations of Phoebe, which critically, includes a geometry correction routine that enables pixel-by-pixel mapping of visible and infrared spectral cubes directly onto the Phoebe shape model, even when an image exhibits significant trailing errors. The result of our re-analysis is a successful match of 46 images, producing spectral maps covering the majority of Phoebe’s surface, roughly a third of which is imaged by high-resolution observations (<22 km per pixel resolution). There is no spot on Phoebe’s surface that is absent of water absorption. The regions richest in water are clearly associated with the Jason and south pole impact basins. Phoebe exhibits only three spectral types, and a water–ice concentration that correlates with physical depth and visible albedo. The water-rich and water-poor regions exhibit significantly different crater size frequency distributions and different large crater morphologies. We propose that Phoebe once had a water-poor surface whose water–ice concentration was enhanced by basin-forming impacts that exposed richer subsurface layers. The range of Phoebe’s water–ice absorption spans the same range exhibited by dynamically excited KBOs. The common water–ice absorption depths and primordial origins, and the association of Phoebe’s water-rich regions with its impact basins, suggests the plausible idea that KBOs also originated with water-poor surfaces that were enhanced through stochastic collisional modification.
Spatial/Spectral Identification of Endmembers from AVIRIS Data using Mathematical Morphology
NASA Technical Reports Server (NTRS)
Plaza, Antonio; Martinez, Pablo; Gualtieri, J. Anthony; Perez, Rosa M.
2001-01-01
During the last several years, a number of airborne and satellite hyperspectral sensors have been developed or improved for remote sensing applications. Imaging spectrometry allows the detection of materials, objects and regions in a particular scene with a high degree of accuracy. Hyperspectral data typically consist of hundreds of thousands of spectra, so the analysis of this information is a key issue. Mathematical morphology theory is a widely used nonlinear technique for image analysis and pattern recognition. Although it is especially well suited to segment binary or grayscale images with irregular and complex shapes, its application in the classification/segmentation of multispectral or hyperspectral images has been quite rare. In this paper, we discuss a new completely automated methodology to find endmembers in the hyperspectral data cube using mathematical morphology. The extension of classic morphology to the hyperspectral domain allows us to integrate spectral and spatial information in the analysis process. In Section 3, some basic concepts about mathematical morphology and the technical details of our algorithm are provided. In Section 4, the accuracy of the proposed method is tested by its application to real hyperspectral data obtained from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imaging spectrometer. Some details about these data and reference results, obtained by well-known endmember extraction techniques, are provided in Section 2. Finally, in Section 5 we expose the main conclusions at which we have arrived.
NASA Astrophysics Data System (ADS)
Kim, H. O.; Yeom, J. M.
2014-12-01
Space-based remote sensing in agriculture is particularly relevant to issues such as global climate change, food security, and precision agriculture. Recent satellite missions have opened up new perspectives by offering high spatial resolution, various spectral properties, and fast revisit rates to the same regions. Here, we examine the utility of broadband red-edge spectral information in multispectral satellite image data for classifying paddy rice crops in South Korea. Additionally, we examine how object-based spectral features affect the classification of paddy rice growth stages. For the analysis, two seasons of RapidEye satellite image data were used. The results showed that the broadband red-edge information slightly improved the classification accuracy of the crop condition in heterogeneous paddy rice crop environments, particularly when single-season image data were used. This positive effect appeared to be offset by the multi-temporal image data. Additional texture information brought only a minor improvement or a slight decline, although it is well known to be advantageous for object-based classification in general. We conclude that broadband red-edge information derived from conventional multispectral satellite data has the potential to improve space-based crop monitoring. Because the positive or negative effects of texture features for object-based crop classification could barely be interpreted, the relationships between the textual properties and paddy rice crop parameters at the field scale should be further examined in depth.
Systolic Processor Array For Recognition Of Spectra
NASA Technical Reports Server (NTRS)
Chow, Edward T.; Peterson, John C.
1995-01-01
Spectral signatures of materials detected and identified quickly. Spectral Analysis Systolic Processor Array (SPA2) relatively inexpensive and satisfies need to analyze large, complex volume of multispectral data generated by imaging spectrometers to extract desired information: computational performance needed to do this in real time exceeds that of current supercomputers. Locates highly similar segments or contiguous subsegments in two different spectra at time. Compares sampled spectra from instruments with data base of spectral signatures of known materials. Computes and reports scores that express degrees of similarity between sampled and data-base spectra.
Kirk, R.L.; Howington-Kraus, E.; Hare, T.; Dorrer, E.; Cook, D.; Becker, K.; Thompson, K.; Redding, B.; Blue, J.; Galuszka, D.; Lee, E.M.; Gaddis, L.R.; Johnson, J. R.; Soderblom, L.A.; Ward, A.W.; Smith, P.H.; Britt, D.T.
1999-01-01
This paper describes our photogrammetric analysis of the Imager for Mars Pathfinder data, part of a broader program of mapping the Mars Pathfinder landing site in support of geoscience investigations. This analysis, carried out primarily with a commercial digital photogrammetric system, supported by our in-house Integrated Software for Imagers and Spectrometers (ISIS), consists of three steps: (1) geometric control: simultaneous solution for refined estimates of camera positions and pointing plus three-dimensional (3-D) coordinates of ???103 features sitewide, based on the measured image coordinates of those features; (2) topographic modeling: identification of ???3 ?? 105 closely spaced points in the images and calculation (based on camera parameters from step 1) of their 3-D coordinates, yielding digital terrain models (DTMs); and (3) geometric manipulation of the data: combination of the DTMs from different stereo pairs into a sitewide model, and reprojection of image data to remove parallax between the different spectral filters in the two cameras and to provide an undistorted planimetric view of the site. These processes are described in detail and example products are shown. Plans for combining the photogrammetrically derived topographic data with spectrophotometry are also described. These include photometric modeling using surface orientations from the DTM to study surface microtextures and improve the accuracy of spectral measurements, and photoclinometry to refine the DTM to single-pixel resolution where photometric properties are sufficiently uniform. Finally, the inclusion of rover images in a joint photogrammetric analysis with IMP images is described. This challenging task will provide coverage of areas hidden to the IMP, but accurate ranging of distant features can be achieved only if the lander is also visible in the rover image used. Copyright 1999 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Novelli, Antonio; Aguilar, Manuel A.; Nemmaoui, Abderrahim; Aguilar, Fernando J.; Tarantino, Eufemia
2016-10-01
This paper shows the first comparison between data from Sentinel-2 (S2) Multi Spectral Instrument (MSI) and Landsat 8 (L8) Operational Land Imager (OLI) headed up to greenhouse detection. Two closely related in time scenes, one for each sensor, were classified by using Object Based Image Analysis and Random Forest (RF). The RF input consisted of several object-based features computed from spectral bands and including mean values, spectral indices and textural features. S2 and L8 data comparisons were also extended using a common segmentation dataset extracted form VHR World-View 2 (WV2) imagery to test differences only due to their specific spectral contribution. The best band combinations to perform segmentation were found through a modified version of the Euclidian Distance 2 index. Four different RF classifications schemes were considered achieving 89.1%, 91.3%, 90.9% and 93.4% as the best overall accuracies respectively, evaluated over the whole study area.
WAVELENGTH AND ALIGNMENT TESTS FOR CONFOCAL SPECTRAL IMAGING SYSTEMS
Confocal spectral imaging (CSI) microscope systems now on the market delineate multiple fluorescent proteins, labels, or dyes within biological specimens by performing spectral characterizations. However, we find that some CSI present inconsistent spectral profiles of reference s...
NASA Astrophysics Data System (ADS)
Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2012-03-01
Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.
Hyperspectral image reconstruction using RGB color for foodborne pathogen detection on agar plates
NASA Astrophysics Data System (ADS)
Yoon, Seung-Chul; Shin, Tae-Sung; Park, Bosoon; Lawrence, Kurt C.; Heitschmidt, Gerald W.
2014-03-01
This paper reports the latest development of a color vision technique for detecting colonies of foodborne pathogens grown on agar plates with a hyperspectral image classification model that was developed using full hyperspectral data. The hyperspectral classification model depended on reflectance spectra measured in the visible and near-infrared spectral range from 400 and 1,000 nm (473 narrow spectral bands). Multivariate regression methods were used to estimate and predict hyperspectral data from RGB color values. The six representative non-O157 Shiga-toxin producing Eschetichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) were grown on Rainbow agar plates. A line-scan pushbroom hyperspectral image sensor was used to scan 36 agar plates grown with pure STEC colonies at each plate. The 36 hyperspectral images of the agar plates were divided in half to create training and test sets. The mean Rsquared value for hyperspectral image estimation was about 0.98 in the spectral range between 400 and 700 nm for linear, quadratic and cubic polynomial regression models and the detection accuracy of the hyperspectral image classification model with the principal component analysis and k-nearest neighbors for the test set was up to 92% (99% with the original hyperspectral images). Thus, the results of the study suggested that color-based detection may be viable as a multispectral imaging solution without much loss of prediction accuracy compared to hyperspectral imaging.
NASA Astrophysics Data System (ADS)
Wei, Liqing; Xiao, Xizhong; Wang, Yueming; Zhuang, Xiaoqiong; Wang, Jianyu
2017-11-01
Space-borne hyperspectral imagery is an important tool for earth sciences and industrial applications. Higher spatial and spectral resolutions have been sought persistently, although this results in more power, larger volume and weight during a space-borne spectral imager design. For miniaturization of hyperspectral imager and optimization of spectral splitting methods, several methods are compared in this paper. Spectral time delay integration (TDI) method with high transmittance Integrated Stepwise Filter (ISF) is proposed.With the method, an ISF imaging spectrometer with TDI could achieve higher system sensitivity than the traditional prism/grating imaging spectrometer. In addition, the ISF imaging spectrometer performs well in suppressing infrared background radiation produced by instrument. A compact shortwave infrared (SWIR) hyperspectral imager prototype based on HgCdTe covering the spectral range of 2.0-2.5 μm with 6 TDI stages was designed and integrated. To investigate the performance of ISF spectrometer, a method to derive the optimal blocking band curve of the ISF is introduced, along with known error characteristics. To assess spectral performance of the ISF system, a new spectral calibration based on blackbody radiation with temperature scanning is proposed. The results of the imaging experiment showed the merits of ISF. ISF has great application prospects in the field of high sensitivity and high resolution space-borne hyperspectral imagery.
Initial clinical testing of a multi-spectral imaging system built on a smartphone platform
NASA Astrophysics Data System (ADS)
Mink, Jonah W.; Wexler, Shraga; Bolton, Frank J.; Hummel, Charles; Kahn, Bruce S.; Levitz, David
2016-03-01
Multi-spectral imaging systems are often expensive and bulky. An innovative multi-spectral imaging system was fitted onto a mobile colposcope, an imaging system built around a smartphone in order to image the uterine cervix from outside the body. The multi-spectral mobile colposcope (MSMC) acquires images at different wavelengths. This paper presents the clinical testing of MSMC imaging (technical validation of the MSMC system is described elsewhere 1 ). Patients who were referred to colposcopy following abnormal screening test (Pap or HPV DNA test) according to the standard of care were enrolled. Multi-spectral image sets of the cervix were acquired, consisting of images from the various wavelengths. Image acquisition took 1-2 sec. Areas suspected for dysplasia under white light imaging were biopsied, according to the standard of care. Biopsied sites were recorded on a clockface map of the cervix. Following the procedure, MSMC data was processed from the sites of biopsied sites. To date, the initial histopathological results are still outstanding. Qualitatively, structures in the cervical images were sharper at lower wavelengths than higher wavelengths. Patients tolerated imaging well. The result suggests MSMC holds promise for cervical imaging.
SSME propellant path leak detection real-time
NASA Technical Reports Server (NTRS)
Crawford, R. A.; Smith, L. M.
1994-01-01
Included are four documents that outline the technical aspects of the research performed on NASA Grant NAG8-140: 'A System for Sequential Step Detection with Application to Video Image Processing'; 'Leak Detection from the SSME Using Sequential Image Processing'; 'Digital Image Processor Specifications for Real-Time SSME Leak Detection'; and 'A Color Change Detection System for Video Signals with Applications to Spectral Analysis of Rocket Engine Plumes'.
NASA Astrophysics Data System (ADS)
Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan
2012-01-01
Despite major improvements in dental healthcare and oral hygiene, dental caries remains one of the most prevalent oral diseases and represents the primary cause of oral pain and tooth loss. The initial stages of dental caries are characterized by demineralization of enamel crystals and are difficult to diagnose. Near infrared (NIR) hyperspectral imaging is a new promising technique for detection of early changes in the surfaces of carious teeth. This noninvasive imaging technique can characterize and differentiate between the sound tooth surface and initial or advanced tooth caries. The absorbing and scattering properties of dental tissues reflect in distinct spectral features, which can be measured, quantified and used to accurately classify and map different dental tissues. Specular reflections from the tooth surface, which appear as bright spots, mostly located around the edges and the crests of the teeth, act as a noise factor which can significantly interfere with the spectral measurements and analysis of the acquired images, degrading the accuracy of the classification and diagnosis. Employing cross-polarized imaging setup can solve this problem, however has yet to be systematically evaluated, especially in broadband hyperspectral imaging setups. In this paper, we employ cross-polarized illumination setup utilizing state-of-the-art high-contrast broadband wire-grid polarizers in the spectral range from 900 nm to 1700 nm for hyperspectral imaging of natural and artificial carious lesions of various degrees.
Research on hyperspectral dynamic scene and image sequence simulation
NASA Astrophysics Data System (ADS)
Sun, Dandan; Liu, Fang; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei
2016-10-01
This paper presents a simulation method of hyperspectral dynamic scene and image sequence for hyperspectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyperspectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyperspectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyperspectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyperspectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyperspectral images are consistent with the theoretical analysis results.
Quality evaluation of pansharpened hyperspectral images generated using multispectral images
NASA Astrophysics Data System (ADS)
Matsuoka, Masayuki; Yoshioka, Hiroki
2012-11-01
Hyperspectral remote sensing can provide a smooth spectral curve of a target by using a set of higher spectral resolution detectors. The spatial resolution of the hyperspectral images, however, is generally much lower than that of multispectral images due to the lower energy of incident radiation. Pansharpening is an image-fusion technique that generates higher spatial resolution multispectral images by combining lower resolution multispectral images with higher resolution panchromatic images. In this study, higher resolution hyperspectral images were generated by pansharpening of simulated lower hyperspectral and higher multispectral data. Spectral and spatial qualities of pansharpened images, then, were accessed in relation to the spectral bands of multispectral images. Airborne hyperspectral data of AVIRIS was used in this study, and it was pansharpened using six methods. Quantitative evaluations of pansharpened image are achieved using two frequently used indices, ERGAS, and the Q index.
Mapping tropical rainforest canopies using multi-temporal spaceborne imaging spectroscopy
NASA Astrophysics Data System (ADS)
Somers, Ben; Asner, Gregory P.
2013-10-01
The use of imaging spectroscopy for florisic mapping of forests is complicated by the spectral similarity among coexisting species. Here we evaluated an alternative spectral unmixing strategy combining a time series of EO-1 Hyperion images and an automated feature selection strategy in MESMA. Instead of using the same spectral subset to unmix each image pixel, our modified approach allowed the spectral subsets to vary on a per pixel basis such that each pixel is evaluated using a spectral subset tuned towards maximal separability of its specific endmember class combination or species mixture. The potential of the new approach for floristic mapping of tree species in Hawaiian rainforests was quantitatively demonstrated using both simulated and actual hyperspectral image time-series. With a Cohen's Kappa coefficient of 0.65, our approach provided a more accurate tree species map compared to MESMA (Kappa = 0.54). In addition, by the selection of spectral subsets our approach was about 90% faster than MESMA. The flexible or adaptive use of band sets in spectral unmixing as such provides an interesting avenue to address spectral similarities in complex vegetation canopies.